US20140274996A1 - Tazobactam and ceftolozane antibiotic compositions - Google Patents
Tazobactam and ceftolozane antibiotic compositions Download PDFInfo
- Publication number
- US20140274996A1 US20140274996A1 US14/214,367 US201414214367A US2014274996A1 US 20140274996 A1 US20140274996 A1 US 20140274996A1 US 201414214367 A US201414214367 A US 201414214367A US 2014274996 A1 US2014274996 A1 US 2014274996A1
- Authority
- US
- United States
- Prior art keywords
- ceftolozane
- sodium chloride
- tazobactam
- cxa
- day
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- JNLLSXMGCSXAIB-YUXKHQAGSA-N CC(=O)C/C=N/CCCC(=O)CC1=C(N)N(C)[N+](CC2=C(C(=O)[O-])N3C(=O)[C@@H](CC(=O)/C(=N\OC(C)(C)C(=O)O)C4=NSC(N)=N4)[C@H]3SC2)=C1 Chemical compound CC(=O)C/C=N/CCCC(=O)CC1=C(N)N(C)[N+](CC2=C(C(=O)[O-])N3C(=O)[C@@H](CC(=O)/C(=N\OC(C)(C)C(=O)O)C4=NSC(N)=N4)[C@H]3SC2)=C1 JNLLSXMGCSXAIB-YUXKHQAGSA-N 0.000 description 3
- RRCUOWDAOJHKQB-AQZPCYEBSA-N CN1C(N)=C(CC(=O)CCC/N=C/CC(=O)O)C=[N+]1CC1=C(C(=O)[O-])N2C(=O)[C@@H](CC(=O)/C(=N\OC(C)(C)C(=O)O)C3=NSC(N)=N3)[C@H]2SC1 Chemical compound CN1C(N)=C(CC(=O)CCC/N=C/CC(=O)O)C=[N+]1CC1=C(C(=O)[O-])N2C(=O)[C@@H](CC(=O)/C(=N\OC(C)(C)C(=O)O)C3=NSC(N)=N3)[C@H]2SC1 RRCUOWDAOJHKQB-AQZPCYEBSA-N 0.000 description 2
- 0 CC(C)(C(O)=O)ON=C(C(N[C@]([C@]1SCC(C*N(C)C(N)=C(C)NC(NCCN=CCC(O)=O)=O)=C(C([O-])=O)N11)C1=O)=O)c1n[s]c(N)n1 Chemical compound CC(C)(C(O)=O)ON=C(C(N[C@]([C@]1SCC(C*N(C)C(N)=C(C)NC(NCCN=CCC(O)=O)=O)=C(C([O-])=O)N11)C1=O)=O)c1n[s]c(N)n1 0.000 description 1
- WCKVTVIEDQMALA-RIAQUSEWSA-N CN1C(N)=C(NC(=O)NCCN)C=[N+]1CC1=C(C(=O)O)N2C(=O)[C@@H](CC(=O)/C(=N\OC(C)(C)C(=O)O)C3=NSC(N)=N3)[C@H]2SC1.O=[SH](=O)O[O-] Chemical compound CN1C(N)=C(NC(=O)NCCN)C=[N+]1CC1=C(C(=O)O)N2C(=O)[C@@H](CC(=O)/C(=N\OC(C)(C)C(=O)O)C3=NSC(N)=N3)[C@H]2SC1.O=[SH](=O)O[O-] WCKVTVIEDQMALA-RIAQUSEWSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/54—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
- A61K31/542—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
- A61K31/545—Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
- A61K31/546—Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine containing further heterocyclic rings, e.g. cephalothin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/197—Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
- A61K31/198—Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/429—Thiazoles condensed with heterocyclic ring systems
- A61K31/43—Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/429—Thiazoles condensed with heterocyclic ring systems
- A61K31/43—Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
- A61K31/431—Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems containing further heterocyclic rings, e.g. ticarcillin, azlocillin, oxacillin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/16—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
- A61K47/18—Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
- A61K47/183—Amino acids, e.g. glycine, EDTA or aspartame
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/19—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/54—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
- A61K31/542—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
- A61K31/545—Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
Definitions
- compositions comprising ceftolozane
- pharmaceutical compositions comprising tazobactam and ceftolozane
- methods of making those compositions and related methods and uses thereof.
- cephalosporin (6R,7R)-3-[5-amino-4- ⁇ [(2-aminoethyl)carbamoyl]amino ⁇ -1-methyl-1H-pyrazol-2-ium-2-yl)methyl]-7-( ⁇ (2Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-[(1-carboxy-1-methylethoxy)imino]acetyl ⁇ amino)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (also referred to as ceftolozane, “CXA-101” or (6R,7R)-3-[5-Amino-4-[3-(2-aminoethyl)ureido]-1-methyl-1H-pyrazol-2-ium-2-ylmethyl]-7-[2-(5-amino-1,2,4-thiadiazol-3-yl)-2-[(
- ceftolozane The antibacterial activity of ceftolozane is believed to result from its interaction with penicillin binding proteins (PBPs) to inhibit the biosynthesis of the bacterial cell wall which acts to stop bacterial replication.
- PBPs penicillin binding proteins
- Ceftolozane can be combined (e.g., mixed) with a ⁇ -lactamase inhibitor (“BLI”), such as tazobactam.
- BLI ⁇ -lactamase inhibitor
- Tazobactam is a BLI against Class A and some Class C ⁇ -lactamases, with well-established in vitro and in vivo efficacy in combination with active ⁇ -lactam antibiotics.
- Antibiotic pharmaceutical compositions can include a beta-lactam compound having antibiotic properties (i.e., an antibiotic compound possessing one or more beta-lactam moieties) and a BLI, such as tazobactam.
- Beta-lactam compounds can be formulated with and/or administered in combination with, beta-lactamase inhibiting compounds (e.g., tazobactam and salts thereof) in order to mitigate the effects of bacterial beta-lactamases.
- beta-lactamase inhibiting compounds e.g., tazobactam and salts thereof
- the combination of ceftolozane, and tazobactam in a 2:1 weight ratio is an antibiotic pharmaceutical composition (“CXA-201”) formulated for parenteral administration.
- CXA-201 displays potent antibacterial activity in vitro against common Gram-negative and selected Gram-positive organisms.
- CXA-201 is a combination antibacterial with activity against many Gram-negative pathogens known to cause intrapulmonary infections, including nosocomial pneumonia caused by P. aeruginosa.
- compositions comprising ceftolozane, methods of making the compositions, and pharmaceutical compositions prepared using ceftolozane.
- pharmaceutical compositions comprising ceftolozane and tazobactam, methods of making those compositions, and pharmaceutical compositions prepared using ceftolozane and tazobactam. Methods of making and related uses of these combinations are also provided.
- composition comprising sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a weight ratio of 476:1000 to 500:1000.
- the sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate are at a weight ratio of 476:1000.
- the sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate are at a weight ratio of 480:1000.
- the sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate are at a weight ratio of 481:1000 to 500:1000.
- the sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate are at a weight ratio of 481:1000.
- the sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate are at a weight ratio of 485:1000.
- the pharmaceutical compositions comprise less than 4% by weight of water.
- a pharmaceutical composition comprising sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a molar ratio of 8.14:1 to 8.56:1.
- a pharmaceutical composition comprising sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a molar ratio of 8.23:1 to 8.56:1.
- a vial containing an antibiotic composition for treating an infection wherein the antibiotic composition comprises sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a weight ratio of 476:1000 to 500:1000.
- the antibiotic composition comprises sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a weight ratio of 476:1000.
- the antibiotic composition comprises sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a weight ratio of 480:1000.
- the antibiotic composition comprises sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a weight ratio of 481:1000 to 500:1000.
- the antibiotic composition comprises sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a weight ratio of 481:1000.
- the antibiotic composition comprises sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a weight ratio of 485:1000.
- the antibiotic compositions comprise less than 4% by weight of water.
- the infections are caused by bacteria selected from the group consisting of: Staphylococcus aureus, Escherichia coli, Acinetobacter baumanii, Haemophilus influenzae, Klebsiella pneumoniae , and Pseudomonas aeruginosa.
- the infections are selected from the group consisting of nosocomial pneumonia, complicated intra-abdominal infections and complicated urinary tract infections.
- a method of preparing a composition comprising sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate, wherein the method comprises combining sodium chloride with 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a weight ratio of 476:1000 to 500:
- the method comprises combining sodium chloride with 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a weight ratio of 481:1000 to 500:1000 to form a mixture, followed by lyophilization of the mixture.
- a method of preparing a composition comprising sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate, wherein the method comprises combining sodium chloride with 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a molar ratio of 8.14:1
- the method comprises combining sodium chloride with 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a molar ratio of 8.23:1 to 8.56:1 to form a mixture, followed by lyophilization of the mixture.
- composition formed by any one of the methods provided herein.
- provided herein is a method for the treatment of a bacterial infection in a mammal, wherein the method comprises administering to said mammal a therapeutically effective amount of a pharmaceutical composition provided herein.
- the bacterial infection is caused by bacteria selected from the group consisting of: Staphylococcus aureus, Escherichia coli, Acinetobacter baumanii, Haemophilus influenzae, Klebsiella pneumonia , and Pseudomonas aeruginosa.
- the bacterial infection is selected from the group consisting of nosocomial pneumonia, complicated intra-abdominal infections and complicated urinary tract infections.
- FIG. 1 is a graph showing the lyophilization program used in the manufacturing of the monoproduct for injection.
- FIG. 2 is a flowchart showing the manufacturing process for a CXA-101 composition for injection.
- FIG. 3 is a flowchart showing the manufacturing steps for a pharmaceutical composition comprising ceftolozane and sodium chloride.
- FIG. 4 is a flowchart showing the manufacturing process for preparing a CXA-201 composition comprising ceftolozane (referred to as CXA-101), tazobactam, and sodium chloride.
- FIG. 5 is a reference HPLC chromatogram showing the peaks of ceftolozane (also referred to as CXA-101) and related impurities.
- FIG. 6 is a plot of the data points from Table 5, showing the purity of the ceftolozane in CXA-101 compositions at 60° C. on day 0, day 1, day 3, and day 7, as measured by the HPLC method described in Example 4, wherein the CXA-101 compositions comprise ceftolozane and sodium chloride.
- the amount of the sodium chloride in the CXA-101 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (* marks), 190.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (X marks).
- FIG. 7 is a plot of the data points from Table 6, showing the peak area of the impurity peak 1 in CXA-101 compositions at 60° C. on day 0, day 1, day 3, and day 7, as measured by the HPLC method described in Example 4, wherein the CXA-101 compositions comprise ceftolozane and sodium chloride.
- the amount of the sodium chloride in the CXA-101 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (* marks), 190.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (X marks).
- FIG. 8 is a plot of the data points from Table 7, showing the total peak area of the impurity with a RRT of 0.43 and the impurity peak 3 in CXA-101 compositions at 60° C. on day 0, day 1, day 3, and day 7, as measured by the HPLC method described in Example 4, wherein the CXA-101 compositions comprise ceftolozane and sodium chloride.
- the amount of the sodium chloride in the CXA-101 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (* marks), 190.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (X marks).
- FIG. 9 is a plot of the data points from Table 8, showing the peak area of the impurity peak 7 in CXA-101 compositions at 60° C. on day 0, day 1, day 3, and day 7, as measured by the HPLC method described in Example 4, wherein the CXA-101 compositions comprise ceftolozane and sodium chloride.
- the amount of the sodium chloride in the CXA-101 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (* marks), 190.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (X marks).
- FIG. 10 is a plot of the data points from Table 10, showing the purity of ceftolozane in CXA-201 compositions at 60° C. on day 0, day 1, day 3, and day 7, as measured by the HPLC method described in Example 4, wherein the CXA-201 compositions comprise ceftolozane, tazobactam, and sodium chloride.
- the amount of the sodium chloride in the CXA-201 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (X marks), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles).
- FIG. 11 is a plot of the data points from Table 11, showing the peak area of the impurity peak 1 in CXA-201 compositions at 60° C. on day 0, day 1, day 3, and day 7, as measured by the HPLC method described in Example 4, wherein the CXA-201 compositions comprise ceftolozane, tazobactam, and sodium chloride.
- the amount of the sodium chloride in the CXA-201 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (X marks), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles).
- FIG. 12 is a plot of the data points from Table 12, showing the total peak area of the impurity with a RRT of 0.43 and the impurity peak 3 in CXA-201 compositions at 60° C. on day 0, day 1, day 3, and day 7, as measured by the HPLC method described in Example 4, wherein the CXA-201 compositions comprise ceftolozane, tazobactam, and sodium chloride.
- the amount of the sodium chloride in the CXA-201 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (X marks), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles).
- FIG. 13 is a plot of the data points from Table 13, showing the peak area of the impurity peak 7 in CXA-201 compositions at 60° C. on day 0, day 1, day 3, and day 7, as measured by the HPLC method described in Example 4, wherein the CXA-201 compositions comprise ceftolozane, tazobactam, and sodium chloride.
- the amount of the sodium chloride in the CXA-201 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (X marks), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles).
- FIG. 14 is a manufacturing flowchart showing CXA-201 development using a co-lyophilization process, as described herein.
- FIG. 15 is the formula of the impurity RRT 1.22, which has been identified to be a degradation product formed by a reaction between ceftolozane and formylacetic acid, a degradation product of tazobactam as illustrated in Marunaka et al. (Chem. Pharm. Bull. 1988, Vol. 36 (11), pp. 4478-4487).
- compositions comprising one or more drug substances or excipients can be prepared in a variety of ways, including, for example, blending and lyophilization (also known as “co-lyophilization”).
- lyophilization is a process of freeze-drying in which water is sublimed from a frozen solution of one or more solutes. Specific methods of lyophilization are described in Remington's Pharmaceutical Sciences, Chapter 84, page 1565, Eighteenth Edition, A. R. Gennaro, (Mack Publishing Co., Easton, Pa., 1990).
- the formulation of pharmaceutical compositions can be selected to minimize decomposition of the constituent drug substances and to produce a composition that is stable under a variety of storage conditions.
- compositions comprising ceftolozane and 125 to 1000 mg sodium chloride per 1000 mg of ceftolozane have been observed to exhibit better chemical stability over the course of time and/or in the presence of heat, and less impurities than those pharmaceutical compositions comprising ceftolozane and less sodium chloride (i.e., less than 125 mg sodium chloride per 1000 mg of ceftolozane).
- the pharmaceutical compositions comprising ceftolozane and 125 to 500 mg sodium chloride per 1000 mg of ceftolozane have been found to be more stable than the compositions comprising ceftolozane and less than 125 mg sodium chloride per 1000 mg of ceftolozane.
- compositions comprising ceftolozane, tazobactam, and 125 to 1000 mg sodium chloride per gram of ceftolozane exhibit better chemical stability and less impurities than those pharmaceutical compositions comprising ceftolozane and tazobactam, but less sodium chloride.
- the pharmaceutical compositions comprising ceftolozane, tazobactam, and 125 to 500 mg sodium chloride per 1000 mg of ceftolozane have been found to be more stable than the compositions comprising ceftolozane, tazobactam, and less than 125 mg sodium chloride per gram of ceftolozane.
- a pharmaceutical composition comprising ceftolozane and 125 to 1000 mg sodium chloride per 1000 mg of ceftolozane.
- the invention is a pharmaceutical composition comprising ceftolozane and tazobactam, further comprising 125 to 1000 mg sodium chloride per 1000 mg of ceftolozane.
- the pharmaceutical composition comprises 125 to 500 mg sodium chloride per 1000 mg of ceftolozane.
- 125 to 1000 mg sodium chloride per 1000 mg of ceftolozane refers to a ratio of sodium chloride to ceftolozane.
- “125 to 1000 mg sodium chloride per 1000 mg of ceftolozane” includes, for example, 62.5 to 500 mg sodium chloride per 500 mg of ceftolozane, as well as, for example, 25 to 200 mg sodium chloride per 200 mg ceftolozane, etc.
- compositions comprising ceftolozane and tazobactam prepared by blending these two compounds, wherein the ceftolozane and tazobactam are individually lyophilized prior to blending, have been observed to exhibit beneficial properties, including reduced levels of impurities.
- the pharmaceutical composition prepared by blending ceftolozane and tazobactam, wherein the ceftolozane and tazobactam were individually lyophilized prior to blending lead to a much lower concentration of the following degradation product:
- This degradation product having a Relative Retention Time (RRT) of 1.22 (relative to ceftolozane using the HPLC method described in Example 4), which is also referred to as “the Impurity RRT 1.22”, has been identified to be a degradation product formed by a reaction between ceftolozane and formylacetic acid, a degradation product of tazobactam as illustrated in Marunaka et al. (Chem. Pharm. Bull. 1988, Vol. 36 (11), pp. 4478-4487).
- RRT Relative Retention Time
- compositions of ceftolozane and tazobactam wherein the compositions were formed through co-lyophilization, i.e., the ceftolozane and tazobactam were combined and lyophilized together, as opposed to being individually lyophilized (see, e.g., Example 7).
- composition comprising ceftolozane and tazobactam, wherein the composition has less than 0.1% by weight of the following compound:
- the pharmaceutical composition has less than 0.05% by weight of the following compound:
- composition includes preparations suitable for administration to mammals, e.g., humans.
- the compounds of the present invention are administered as pharmaceuticals to mammals, e.g., humans, they can be given per se or as a pharmaceutical composition containing, for example, 0.1% to 99.9% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.
- compositions described herein can be formulated to have any concentration desired (i.e., any concentration of tazobactam, or a hydrate or solvate thereof, and any concentration of ceftolozane).
- the composition is formulated such that it comprises at least a therapeutically effective amount of both compounds (i.e., a therapeutically effective amount of the combination of tazobactam, or a hydrate or solvate thereof, and ceftolozane).
- compositions include those suitable for parenteral (including intravenous) administration, although the most suitable route will depend on the nature and severity of the condition being treated.
- the compositions may be conveniently presented in unit dosage form, and prepared by any of the methods well known in the art of pharmacy.
- compositions may additionally comprise excipients, stabilizers, pH adjusting additives (e.g., buffers) and the like.
- pH adjusting additives e.g., buffers
- Non-limiting examples of these additives include sodium chloride, citric acid and L-arginine.
- sodium chloride results in greater stability
- L-arginine is used to adjust pH and to increase the solubility of ceftolozane
- citric acid is used to prevent discoloration of the product, due to its ability to chelate metal ions.
- compositions disclosed herein can be prepared via blending.
- blending refers to a process comprising physically combining ceftolozane and tazobactam, wherein each of ceftolozane and tazobactam have been individually lyophilized (i.e., lyophilized in the absence of one another) prior to being combined.
- the pharmaceutical compositions described herein are formulated for parenteral administration. In another particular embodiment, the pharmaceutical compositions described herein are formulated for administration by intravenous injection or infusion.
- a pharmaceutical composition comprising tazobactam and ceftolozane.
- compositions prepared according to the following methods.
- a pharmaceutical composition comprising sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a weight ratio of 476:1000 to 500:1000, or at a molar ratio of 8.14:1 to 8.56:1.
- a pharmaceutical composition comprising sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a weight ratio of 481:1000 to 500:1000, or at a molar ratio of 8.23:1 to 8.56:1.
- compositions comprising sodium chloride and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio ⁇ methyl-3-cephem-4-carboxylate at a weight ratio of 476:1000, or 480:1000, or 481:1000, or 485:1000.
- the pharmaceutical compositions further comprise tazobactam sodium at a quantity equivalent of 500 mg of tazobactam free acid in a lyophilized powder form per 1000 mg of ceftolozane (anhydrous, free base equivalent).
- the pharmaceutical compositions comprise less than 4% by weight of water.
- the pharmaceutical compositions are reconstituted with sterile saline and/or sterile water for injection.
- a vial containing one of the pharmaceutical compositions described above for treating an infection is provided herein.
- the infections are caused by bacteria selected from the group consisting of: Staphylococcus aureus, Escherichia coli, Acinetobacter baumanii, Haemophilus influenzae, Klebsiella pneumoniae , and Pseudomonas aeruginosa .
- the infections are selected from the group consisting of nosocomial pneumonia, complicated intra-abdominal infections and complicated urinary tract infections.
- a method of preparing a composition comprising ceftolozane and sodium chloride comprising combining sodium chloride with ceftolozane, wherein 125-1000 mg sodium chloride per 1000 mg of ceftolozane is combined, followed by lyophilization of the sodium chloride ceftolozane mixture.
- a method of preparing a composition comprising sodium chloride, tazobactam, and ceftolozane comprising combining sodium chloride, tazobactam, and ceftolozane, wherein 125-1000 mg sodium chloride per 1000 mg of ceftolozane is combined, followed by lyophilization of the mixture of sodium chloride, tazobactam, and ceftolozane.
- 125-500 mg sodium chloride per 1000 mg of ceftolozane is combined.
- the method further comprises lyophilizing ceftolozane in the absence of tazobactam. In yet another embodiment of the methods described above, the method can further comprise lyophilizing tazobactam in the absence of ceftolozane.
- the method can comprise the steps of: (1) adding 125 to 1000 mg sodium chloride per 1000 mg of ceftolozane followed by lyophilizing ceftolozane; (2) lyophilizing tazobactam; and (3) combining the separately lyophilized ceftolozane and tazobactam to obtain said pharmaceutical composition.
- the method comprises adding 125 to 500 mg sodium chloride per 1000 mg of ceftolozane.
- a method of making a pharmaceutical composition comprising combining tazobactam and ceftolozane.
- the method further comprises lyophilizing ceftolozane in the absence of tazobactam.
- the method further comprises lyophilizing tazobactam in the absence of ceftolozane.
- the method comprises the steps of: (1) lyophilizing ceftolozane; (2) lyophilizing tazobactam; and (3) combining the separately lyophilized ceftolozane and tazobactam to obtain said pharmaceutical composition.
- the method further comprises packaging the blended powder into Sterbags®.
- the molar ratio of tazobactam to ceftolozane in the mixture is in the range of 1:3 to 3:1. In another embodiment, the molar ratio of tazobactam to ceftolozane in the mixture is in the range of 1:2 to 2:1. In another embodiment, the molar ratio of tazobactam to ceftolozane in the mixture is in the range of 1:0.9 to 0.9:1. In a particular embodiment, the ratio of tazobactam to ceftolozane in the mixture is about 0.9:1. In another particular embodiment, the ratio of tazobactam to ceftolozane in the mixture is about 1:2.
- Tazobactam inhibits or decreases the activity of beta-lactamases (e.g., bacterial beta-lactamases), and can be combined with beta-lactam compounds (e.g., antibiotics), thereby broadening the spectrum of the beta-lactam compound and increasing the beta-lactam compound's efficacy against organisms that produce beta-lactamase.
- beta-lactamases e.g., bacterial beta-lactamases
- beta-lactam compounds e.g., antibiotics
- a method for the treatment of bacterial infections in a mammal comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition prepared according to the methods described herein.
- a method for the treatment of bacterial infections in a mammal comprising administering to said mammal a therapeutically effective amount of tazobactam and ceftolozane.
- the bacterial infection is caused by an extended-spectrum beta-lactamase-producing organism.
- the bacterial infection is caused by an antibiotic-resistant organism.
- a method for the treatment of bacterial infections in a mammal comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising ceftolozane.
- the invention is a method for the treatment of bacterial infections in a mammal, comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising both tazobactam and ceftolozane.
- the bacterial infection is caused by an extended-spectrum beta-lactamase-producing organism.
- the bacterial infection is caused by an antibiotic-resistant organism.
- the pharmaceutical composition further comprises 125 to 1000 mg sodium chloride per 1000 mg of ceftolozane. In some other embodiments, the pharmaceutical composition comprises 125 to 500 mg sodium chloride per 1000 mg of ceftolozane.
- a method for the treatment of bacterial infections in a mammal comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising tazobactam, ceftolozane, and less than 0.1% by weight of the following compound:
- the pharmaceutical composition comprises tazobactam, ceftolozane, and less than 0.05% by weight of the following compound:
- Non-limiting examples of bacterial infections that can be treated by the methods of the invention include infections caused by: aerobic and facultative gram-positive microorganisms (e.g., Staphylococcus aureus, Enterococcus faecalis, Staphylococcus epidermidis, Streptococcus agalactiae, Streptococcus pneumonia, Streptococcus pyogenes , Viridans group streptococci), aerobic and facultative gram-negative microorganisms (e.g., Acinetobacter baumanii, Escherichia coli, Haemophilus influenza, Klebsiella pneumonia, Pseudomonas aeruginosa, Citrobacter koseri, Moraxella catarrhalis, Morganella morganii, Neisseria gonorrhoeae, Proteus mirabilis, Proteus vulgaris, Serratia marcescens, Providencia stuartii
- the bacterial infection resulting from beta-lactamase-producing organisms are treated or controlled.
- beta-lactamase-producing organisms include:
- ESBL extended-spectrum beta-lactamase-producing organisms selected from the group consisting of Enterobacteriaceae spp.: Escherichia coli, Klebsiella spp. (including K. pneumoniae and K. oxytoca ), Proteus mirabilis, Proteus vulgaris, Enterobacter spp., Serratia spp., Citrobacter spp., Pseudomonas spp., Acinetobacter spp.) and Bacteroides spp.;
- CSBL conventional-spectrum beta-lactamase
- Inducible-AmpC-type beta-lactamases such as Citrobacter spp., Serratia spp., Morganella morganii, Proteus vulgaris , and Enterobacter cloacae.
- bacterial infection is associated with one or more of the following conditions:
- Nosocomial pneumonia caused by piperacillin-resistant, beta-lactamase producing strains of Staphylococcus aureus and by Acinetobacter baumanii, Haemophilus influenzae, Klebsiella pneumoniae , and Pseudomonas aeruginosa.
- tazobactam and hydrates and solvates thereof, in combination with ceftolozane, for the preparation of a medicament for the treatment of bacterial infection.
- the bacterial infection can result from either gram-negative or gram-positive organisms.
- treating describes the management and care of a patient for the purpose of combating a disease, condition, or disorder and includes the administration of a pharmaceutical composition of the present invention to alleviate the symptoms or complications of a disease, condition or disorder, or to eliminate the disease, condition or disorder.
- the term “treat” can also include treatment of a cell in vitro or an animal model.
- a “therapeutically effective amount” of a compound of the invention is meant a sufficient amount of the compound to treat the disorder (e.g., bacterial infection).
- the specific therapeutically effective amount that is required for the treatment of any particular patient or organism will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound or composition employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts (see, for example, Goodman and Gilman's, “The Pharmacological Basis of Therapeutics”, Tenth Edition, A.
- a sterile tilter-set which consists of a 0.2 um polyvinylidene fluoride membrane filter (Durapore®, Millipore) and a 0.1 urn polyvinylidene fluoride membrane filter (Durapore®, Millipore) connected in tandem. Confirm the integrity of each filter before and after the filtration. Take approximately 100 mL of the filtrate in order to check bioburden.
- CXA-101 bulk drug product manufacturing process There are four main steps in the manufacture of CXA-101 bulk drug product: dissolution, sterile filtration, bulk lyophilization, and packaging into Sterbags®. These four main steps are composed of a total of 20 minor steps.
- the flowchart of the CXA-101 bulk drug product manufacturing process is presented in FIG. 3 , and described below.
- Solution pH is verified to be in the target range of 6.5 to 7.0.
- Solution pH is verified to be in the target range of 6.0 to 7.0. If the pH is out of this range adjust with either L-Arginine or citric acid.
- the solution is passed through the filter (pore size 0.45 ⁇ m) followed by double filters (pore size 0.22 ⁇ m) onto a shelf on the Criofarma lyophilizer.
- the washing solution is passed from Step 12 through sterile filtration.
- the washing solution is loaded onto a separate shelf in the lyophilizer (and later discarded).
- the solution is lyophilized until dry.
- the product shelf is cooled to 20° C. ⁇ 5° C.
- the lyophilized bulk drug product powder is milled.
- the milled powder is sieved.
- the sieved powder is blended for 30 minutes.
- a low energy drum blender that agitates the material by tumbling and also moving the bed up and down is used.
- a representative process of blending is described as follows.
- the blender was charged with 23.4 kg of CXA-101 bulk product, and 5.4 kg of tazobactam bulk product. Both the CXA-101 and tazobactam were individually lyophilized beforehand. The material was blended for 180 minutes.
- In-process tests of content assay for both CXA-101 and tazobactam were performed to assess the homogeneity using the samples of blend materials taken from three places.
- the RSD for each of CXA-101 and tazobactam content assay was no greater than 2% and the RSD for the ratio of CXA-101/tazobactam was no greater than 2% (See Table 1).
- the flow chart of the fill and finish process for the final drug product, CXA-101/tazobactam for injection, 1000 mg/500 mg, is presented in FIG. 4 .
- Glass vials are washed with WFI and depyrogenated in a Class 100 depyrogenation tunnel at a temperature of 320° C.
- Pre-washed and pre-siliconized stoppers are autoclaved for 40 minutes at 121° C.
- the bulk drug product is packaged in a Sterbag® system comprised of three bags.
- the outer bag is cleaned with disinfectant in a Class 10,000 clean room.
- the bag system is placed in a pass-through UV box where it is subjected to UV radiation (>20 ⁇ W/cm 2 ) for 20 minutes to sterilize the surface of the outer bag.
- the outer bag is removed and left in the UV box.
- the middle bag is placed in a Class A laminar airflow (LAF) hood.
- LAF laminar airflow
- the sterile middle bag is removed under LAF.
- the sterile, bottle-shaped inner bag is then placed in a sterile stainless steel carrier and attached to the filling machine.
- Sterile bulk CXA-101/tazobactam drug product is filled under a nitrogen blanket into 30-mL, Type I clear glass vials.
- the sterile drug product is gravity-fed into the filling machine under LAF. Vial fill weights are periodically checked throughout the filling operation to ensure proper operation of the filling line. Filling and stoppering operations are performed under Class 100 LAF conditions. Capping and vial washing are done in the Class 10,000 clean room.
- Sodium perchlorate buffer solution was made by dissolving 14.05 g of sodium perchlorate monohydrate in 1000.0 mL of water followed by adjusting pH to 2.5 with diluted perchloric acid (1 in 20).
- Sodium acetate buffer solution pH 5.5 (diluent) was made by dissolving 1.36 g of sodium acetate trihydrate in 1000.0 mL of water followed by adjusting to pH 5.5 with diluted acetic acid (1 in 10).
- Sample solution dissolve 20.0 mg, exactly weighed, of a sample, in 20.0 mL of water (prepare just before injection into HPLC system).
- System suitability solution (1%) take 1.0 mL of the sample solution (use first sample if more are present) and transfer into a 100.0 mL volumetric flask, dilute with water to volume and mix.
- Peak 1 Peak 1 (P1) ⁇ 0.1 Peak 2 (P2) ⁇ 0.2 Peak 3 (P3) ⁇ 0.4 Peak 4 (P4) ⁇ 0.6 Peak 5 (P5) ⁇ 0.9 CXA-101 1.0 Peak 6 (P6) ⁇ 1.1 Peak 7 (P7) ⁇ 1.3 Peak 8 (P8) ⁇ 1.4 Peak 9 (P9) ⁇ 1.7 Peaks 10, 11 (P10, 11) ⁇ 2.3
- a t area of CXA-101 peak in the sample chromatogram
- ⁇ A i total peak areas of impurities in the sample chromatogram
- the co-lyophilization process is illustrated in FIG. 14 .
- the components of a CXA-201 composition prepared by co-lyophilization are described in Table 14 below.
- the Co-Lyo Combo Drug Product was prepared, as described above in Example 6.
- the formulation composition of the Combo drug product is shown in Table 15.
- the impurity was identified as a degradation product, shown in FIG. 15 , which was formed by a reaction between ceftolozane and formylacetic acid, which was a degradation product of tazobactam.
- the stability data at 25° C. and at 40° C. have shown that the impurity increases over time.
- the blend drug product was prepared, as described above in Example 3, on lab scale by use of a small blender.
- the composition of the blend drug product is shown in Table 18.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Inorganic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application claims priority to U.S. Provisional Application No. 61/792,092, filed Mar. 15, 2013, and U.S. Provisional Application No. 61/793,007, filed Mar. 15, 2013. The contents of these applications are incorporated hereby by reference in their entireties.
- This disclosure relates to pharmaceutical compositions comprising ceftolozane, pharmaceutical compositions comprising tazobactam and ceftolozane, methods of making those compositions, and related methods and uses thereof.
- The cephalosporin (6R,7R)-3-[5-amino-4-{[(2-aminoethyl)carbamoyl]amino}-1-methyl-1H-pyrazol-2-ium-2-yl)methyl]-7-({(2Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-[(1-carboxy-1-methylethoxy)imino]acetyl}amino)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (also referred to as ceftolozane, “CXA-101” or (6R,7R)-3-[5-Amino-4-[3-(2-aminoethyl)ureido]-1-methyl-1H-pyrazol-2-ium-2-ylmethyl]-7-[2-(5-amino-1,2,4-thiadiazol-3-yl)-2-[(Z)-1-carboxy-1-methylethoxyimino]acetamido]-3-cephem-4-carboxylic acid) is an antibacterial agent. The antibacterial activity of ceftolozane is believed to result from its interaction with penicillin binding proteins (PBPs) to inhibit the biosynthesis of the bacterial cell wall which acts to stop bacterial replication. Ceftolozane can be combined (e.g., mixed) with a β-lactamase inhibitor (“BLI”), such as tazobactam. Tazobactam is a BLI against Class A and some Class C β-lactamases, with well-established in vitro and in vivo efficacy in combination with active β-lactam antibiotics.
- Antibiotic pharmaceutical compositions can include a beta-lactam compound having antibiotic properties (i.e., an antibiotic compound possessing one or more beta-lactam moieties) and a BLI, such as tazobactam. Beta-lactam compounds can be formulated with and/or administered in combination with, beta-lactamase inhibiting compounds (e.g., tazobactam and salts thereof) in order to mitigate the effects of bacterial beta-lactamases. For example, the combination of ceftolozane, and tazobactam in a 2:1 weight ratio is an antibiotic pharmaceutical composition (“CXA-201”) formulated for parenteral administration. CXA-201 displays potent antibacterial activity in vitro against common Gram-negative and selected Gram-positive organisms. CXA-201 is a broad-spectrum antibacterial with in vitro activity against Enterobacteriaceae including strains expressing extended spectrum β-lactamases-resistant (MIC90=1 μg/mL), as well as Pseudomonas aeruginosa (P. aeruginosa) including multi-drug resistant strains (MIC90=2 μg/mL). CXA-201 is a combination antibacterial with activity against many Gram-negative pathogens known to cause intrapulmonary infections, including nosocomial pneumonia caused by P. aeruginosa.
- Provided herein are pharmaceutical compositions comprising ceftolozane, methods of making the compositions, and pharmaceutical compositions prepared using ceftolozane. Also provided herein are pharmaceutical compositions comprising ceftolozane and tazobactam, methods of making those compositions, and pharmaceutical compositions prepared using ceftolozane and tazobactam. Methods of making and related uses of these combinations are also provided.
- In one aspect, provided herein is pharmaceutical composition comprising sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a weight ratio of 476:1000 to 500:1000.
- In one particular embodiment, the sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate are at a weight ratio of 476:1000.
- In another particular embodiment, the sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate are at a weight ratio of 480:1000.
- In a further embodiment, the sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate are at a weight ratio of 481:1000 to 500:1000.
- In one particular embodiment, the sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate are at a weight ratio of 481:1000.
- In yet another particular embodiment, the sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate are at a weight ratio of 485:1000.
- In certain embodiments, the pharmaceutical compositions comprise less than 4% by weight of water.
- In another aspect, provided herein is a pharmaceutical composition comprising sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a molar ratio of 8.14:1 to 8.56:1.
- In one embodiment, provided herein is a pharmaceutical composition comprising sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a molar ratio of 8.23:1 to 8.56:1.
- In another aspect, provided herein is a vial containing an antibiotic composition for treating an infection, wherein the antibiotic composition comprises sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a weight ratio of 476:1000 to 500:1000.
- In one particular embodiment of the vial, the antibiotic composition comprises sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a weight ratio of 476:1000.
- In another particular embodiment of the vial, the antibiotic composition comprises sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a weight ratio of 480:1000.
- In a further embodiment of the vial, the antibiotic composition comprises sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a weight ratio of 481:1000 to 500:1000.
- In one particular embodiment of the vial, the antibiotic composition comprises sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a weight ratio of 481:1000.
- In yet another particular embodiment of the vial, the antibiotic composition comprises sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a weight ratio of 485:1000.
- In certain embodiments of the vials described above, the antibiotic compositions comprise less than 4% by weight of water.
- In other embodiments of the vials, the infections are caused by bacteria selected from the group consisting of: Staphylococcus aureus, Escherichia coli, Acinetobacter baumanii, Haemophilus influenzae, Klebsiella pneumoniae, and Pseudomonas aeruginosa.
- In other embodiments of the vials, the infections are selected from the group consisting of nosocomial pneumonia, complicated intra-abdominal infections and complicated urinary tract infections.
- In still another aspect, provided herein is a method of preparing a composition comprising sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate, wherein the method comprises combining sodium chloride with 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a weight ratio of 476:1000 to 500:1000 to form a mixture, followed by lyophilization of the mixture.
- In one embodiment, the method comprises combining sodium chloride with 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a weight ratio of 481:1000 to 500:1000 to form a mixture, followed by lyophilization of the mixture.
- In a further aspect, provided herein is a method of preparing a composition comprising sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate, wherein the method comprises combining sodium chloride with 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a molar ratio of 8.14:1 to 8.56:1 to form a mixture, followed by lyophilization of the mixture.
- In one embodiment, the method comprises combining sodium chloride with 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a molar ratio of 8.23:1 to 8.56:1 to form a mixture, followed by lyophilization of the mixture.
- In another aspect, provided herein is a composition formed by any one of the methods provided herein.
- In yet another aspect, provided herein is a method for the treatment of a bacterial infection in a mammal, wherein the method comprises administering to said mammal a therapeutically effective amount of a pharmaceutical composition provided herein.
- In one embodiment of the treatment method, the bacterial infection is caused by bacteria selected from the group consisting of: Staphylococcus aureus, Escherichia coli, Acinetobacter baumanii, Haemophilus influenzae, Klebsiella pneumonia, and Pseudomonas aeruginosa.
- In one embodiment of the treatment method, the bacterial infection is selected from the group consisting of nosocomial pneumonia, complicated intra-abdominal infections and complicated urinary tract infections.
-
FIG. 1 is a graph showing the lyophilization program used in the manufacturing of the monoproduct for injection. -
FIG. 2 is a flowchart showing the manufacturing process for a CXA-101 composition for injection. -
FIG. 3 is a flowchart showing the manufacturing steps for a pharmaceutical composition comprising ceftolozane and sodium chloride. -
FIG. 4 is a flowchart showing the manufacturing process for preparing a CXA-201 composition comprising ceftolozane (referred to as CXA-101), tazobactam, and sodium chloride. -
FIG. 5 is a reference HPLC chromatogram showing the peaks of ceftolozane (also referred to as CXA-101) and related impurities. -
FIG. 6 is a plot of the data points from Table 5, showing the purity of the ceftolozane in CXA-101 compositions at 60° C. onday 0,day 1,day 3, andday 7, as measured by the HPLC method described in Example 4, wherein the CXA-101 compositions comprise ceftolozane and sodium chloride. The amount of the sodium chloride in the CXA-101 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (* marks), 190.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (X marks). -
FIG. 7 is a plot of the data points from Table 6, showing the peak area of theimpurity peak 1 in CXA-101 compositions at 60° C. onday 0,day 1,day 3, andday 7, as measured by the HPLC method described in Example 4, wherein the CXA-101 compositions comprise ceftolozane and sodium chloride. The amount of the sodium chloride in the CXA-101 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (* marks), 190.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (X marks). -
FIG. 8 is a plot of the data points from Table 7, showing the total peak area of the impurity with a RRT of 0.43 and theimpurity peak 3 in CXA-101 compositions at 60° C. onday 0,day 1,day 3, andday 7, as measured by the HPLC method described in Example 4, wherein the CXA-101 compositions comprise ceftolozane and sodium chloride. The amount of the sodium chloride in the CXA-101 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (* marks), 190.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (X marks). -
FIG. 9 is a plot of the data points from Table 8, showing the peak area of theimpurity peak 7 in CXA-101 compositions at 60° C. onday 0,day 1,day 3, andday 7, as measured by the HPLC method described in Example 4, wherein the CXA-101 compositions comprise ceftolozane and sodium chloride. The amount of the sodium chloride in the CXA-101 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (* marks), 190.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (X marks). -
FIG. 10 is a plot of the data points from Table 10, showing the purity of ceftolozane in CXA-201 compositions at 60° C. onday 0,day 1,day 3, andday 7, as measured by the HPLC method described in Example 4, wherein the CXA-201 compositions comprise ceftolozane, tazobactam, and sodium chloride. The amount of the sodium chloride in the CXA-201 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (X marks), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles). -
FIG. 11 is a plot of the data points from Table 11, showing the peak area of theimpurity peak 1 in CXA-201 compositions at 60° C. onday 0,day 1,day 3, andday 7, as measured by the HPLC method described in Example 4, wherein the CXA-201 compositions comprise ceftolozane, tazobactam, and sodium chloride. The amount of the sodium chloride in the CXA-201 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (X marks), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles). -
FIG. 12 is a plot of the data points from Table 12, showing the total peak area of the impurity with a RRT of 0.43 and theimpurity peak 3 in CXA-201 compositions at 60° C. onday 0,day 1,day 3, andday 7, as measured by the HPLC method described in Example 4, wherein the CXA-201 compositions comprise ceftolozane, tazobactam, and sodium chloride. The amount of the sodium chloride in the CXA-201 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (X marks), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles). -
FIG. 13 is a plot of the data points from Table 13, showing the peak area of theimpurity peak 7 in CXA-201 compositions at 60° C. onday 0,day 1,day 3, andday 7, as measured by the HPLC method described in Example 4, wherein the CXA-201 compositions comprise ceftolozane, tazobactam, and sodium chloride. The amount of the sodium chloride in the CXA-201 compositions is 481.0 mg sodium chloride per 1000 mg of ceftolozane (X marks), 125.0 mg sodium chloride per 1000 mg of ceftolozane (filled diamonds), 75.0 mg sodium chloride per 1000 mg of ceftolozane (filled squares), and 50.0 mg sodium chloride per 1000 mg of ceftolozane (filled triangles). -
FIG. 14 is a manufacturing flowchart showing CXA-201 development using a co-lyophilization process, as described herein. -
FIG. 15 is the formula of the impurity RRT 1.22, which has been identified to be a degradation product formed by a reaction between ceftolozane and formylacetic acid, a degradation product of tazobactam as illustrated in Marunaka et al. (Chem. Pharm. Bull. 1988, Vol. 36 (11), pp. 4478-4487). - Pharmaceutical compositions comprising one or more drug substances or excipients can be prepared in a variety of ways, including, for example, blending and lyophilization (also known as “co-lyophilization”). As is known to those skilled in the art, lyophilization is a process of freeze-drying in which water is sublimed from a frozen solution of one or more solutes. Specific methods of lyophilization are described in Remington's Pharmaceutical Sciences, Chapter 84, page 1565, Eighteenth Edition, A. R. Gennaro, (Mack Publishing Co., Easton, Pa., 1990).
- The formulation of pharmaceutical compositions can be selected to minimize decomposition of the constituent drug substances and to produce a composition that is stable under a variety of storage conditions.
- Surprisingly, pharmaceutical compositions comprising ceftolozane and 125 to 1000 mg sodium chloride per 1000 mg of ceftolozane have been observed to exhibit better chemical stability over the course of time and/or in the presence of heat, and less impurities than those pharmaceutical compositions comprising ceftolozane and less sodium chloride (i.e., less than 125 mg sodium chloride per 1000 mg of ceftolozane). In particular embodiments described herein (see, e.g., Example 5), the pharmaceutical compositions comprising ceftolozane and 125 to 500 mg sodium chloride per 1000 mg of ceftolozane have been found to be more stable than the compositions comprising ceftolozane and less than 125 mg sodium chloride per 1000 mg of ceftolozane.
- It has also been observed that pharmaceutical compositions comprising ceftolozane, tazobactam, and 125 to 1000 mg sodium chloride per gram of ceftolozane exhibit better chemical stability and less impurities than those pharmaceutical compositions comprising ceftolozane and tazobactam, but less sodium chloride. In particular embodiments described herein (see, e.g., Example 5), the pharmaceutical compositions comprising ceftolozane, tazobactam, and 125 to 500 mg sodium chloride per 1000 mg of ceftolozane have been found to be more stable than the compositions comprising ceftolozane, tazobactam, and less than 125 mg sodium chloride per gram of ceftolozane. Accordingly, in one aspect, provided herein is a pharmaceutical composition comprising ceftolozane and 125 to 1000 mg sodium chloride per 1000 mg of ceftolozane. In another aspect, the invention is a pharmaceutical composition comprising ceftolozane and tazobactam, further comprising 125 to 1000 mg sodium chloride per 1000 mg of ceftolozane. In certain embodiments of both of these aspects, the pharmaceutical composition comprises 125 to 500 mg sodium chloride per 1000 mg of ceftolozane.
- As used herein, “125 to 1000 mg sodium chloride per 1000 mg of ceftolozane” refers to a ratio of sodium chloride to ceftolozane. For example, “125 to 1000 mg sodium chloride per 1000 mg of ceftolozane” includes, for example, 62.5 to 500 mg sodium chloride per 500 mg of ceftolozane, as well as, for example, 25 to 200 mg sodium chloride per 200 mg ceftolozane, etc.
- In addition, surprisingly, pharmaceutical compositions comprising ceftolozane and tazobactam prepared by blending these two compounds, wherein the ceftolozane and tazobactam are individually lyophilized prior to blending, have been observed to exhibit beneficial properties, including reduced levels of impurities. In a particular embodiment described herein (see, e.g., Example 3), the pharmaceutical composition prepared by blending ceftolozane and tazobactam, wherein the ceftolozane and tazobactam were individually lyophilized prior to blending, lead to a much lower concentration of the following degradation product:
- This degradation product, having a Relative Retention Time (RRT) of 1.22 (relative to ceftolozane using the HPLC method described in Example 4), which is also referred to as “the Impurity RRT 1.22”, has been identified to be a degradation product formed by a reaction between ceftolozane and formylacetic acid, a degradation product of tazobactam as illustrated in Marunaka et al. (Chem. Pharm. Bull. 1988, Vol. 36 (11), pp. 4478-4487).
- In contrast, a much greater amount of this impurity was found in compositions of ceftolozane and tazobactam, wherein the compositions were formed through co-lyophilization, i.e., the ceftolozane and tazobactam were combined and lyophilized together, as opposed to being individually lyophilized (see, e.g., Example 7).
- Accordingly, in one aspect, provided herein is a pharmaceutical composition comprising ceftolozane and tazobactam, wherein the composition has less than 0.1% by weight of the following compound:
- In an embodiment, the pharmaceutical composition has less than 0.05% by weight of the following compound:
- The compound 5-amino-4-{[(2-aminoethyl)carbamoyl]amino}-2-{[(6R,7R)-7-({(2Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-[(1-carboxy-1-methylethoxy)imino]acetyl}amino)-2-carboxy-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-3-yl]methyl}-1-methyl-1H-pyrazolium monosulfate (also known also as ceftolozane sulfate, FR264205, “CXA-101”) is a cephalosporin compound (shown below), the synthesis of which is described in U.S. Pat. No. 7,129,232, wherein the compound is also named 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate. As used herein, the term “ceftolozane” may also refer to “ceftolozane sulfate”.
- The term “pharmaceutical composition” includes preparations suitable for administration to mammals, e.g., humans. When the compounds of the present invention are administered as pharmaceuticals to mammals, e.g., humans, they can be given per se or as a pharmaceutical composition containing, for example, 0.1% to 99.9% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.
- The pharmaceutical compositions described herein can be formulated to have any concentration desired (i.e., any concentration of tazobactam, or a hydrate or solvate thereof, and any concentration of ceftolozane). In some embodiments, the composition is formulated such that it comprises at least a therapeutically effective amount of both compounds (i.e., a therapeutically effective amount of the combination of tazobactam, or a hydrate or solvate thereof, and ceftolozane).
- Pharmaceutical compositions include those suitable for parenteral (including intravenous) administration, although the most suitable route will depend on the nature and severity of the condition being treated. The compositions may be conveniently presented in unit dosage form, and prepared by any of the methods well known in the art of pharmacy.
- Pharmaceutical compositions may additionally comprise excipients, stabilizers, pH adjusting additives (e.g., buffers) and the like. Non-limiting examples of these additives include sodium chloride, citric acid and L-arginine. For example, the use of sodium chloride results in greater stability; L-arginine is used to adjust pH and to increase the solubility of ceftolozane; and citric acid is used to prevent discoloration of the product, due to its ability to chelate metal ions.
- The pharmaceutical compositions disclosed herein can be prepared via blending. As used herein, blending refers to a process comprising physically combining ceftolozane and tazobactam, wherein each of ceftolozane and tazobactam have been individually lyophilized (i.e., lyophilized in the absence of one another) prior to being combined.
- In a particular embodiment, the pharmaceutical compositions described herein are formulated for parenteral administration. In another particular embodiment, the pharmaceutical compositions described herein are formulated for administration by intravenous injection or infusion.
- In one aspect, provided herein is a pharmaceutical composition comprising tazobactam and ceftolozane.
- In another aspect, provided herein are pharmaceutical compositions prepared according to the following methods.
- In one embodiment, provided herein is a pharmaceutical composition comprising sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a weight ratio of 476:1000 to 500:1000, or at a molar ratio of 8.14:1 to 8.56:1.
- In another embodiment, provided herein is a pharmaceutical composition comprising sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a weight ratio of 481:1000 to 500:1000, or at a molar ratio of 8.23:1 to 8.56:1.
- In certain particular embodiments, provided herein are pharmaceutical compositions comprising sodium chloride and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate at a weight ratio of 476:1000, or 480:1000, or 481:1000, or 485:1000.
- In certain embodiments, the pharmaceutical compositions further comprise tazobactam sodium at a quantity equivalent of 500 mg of tazobactam free acid in a lyophilized powder form per 1000 mg of ceftolozane (anhydrous, free base equivalent).
- In certain embodiments, the pharmaceutical compositions comprise less than 4% by weight of water.
- In other embodiments, the pharmaceutical compositions are reconstituted with sterile saline and/or sterile water for injection.
- In a further embodiment, provided herein is a vial containing one of the pharmaceutical compositions described above for treating an infection. In certain embodiments, the infections are caused by bacteria selected from the group consisting of: Staphylococcus aureus, Escherichia coli, Acinetobacter baumanii, Haemophilus influenzae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. In other embodiments, the infections are selected from the group consisting of nosocomial pneumonia, complicated intra-abdominal infections and complicated urinary tract infections.
- In one aspect, provided herein is a method of preparing a composition comprising ceftolozane and sodium chloride, comprising combining sodium chloride with ceftolozane, wherein 125-1000 mg sodium chloride per 1000 mg of ceftolozane is combined, followed by lyophilization of the sodium chloride ceftolozane mixture.
- In another aspect, provided herein is a method of preparing a composition comprising sodium chloride, tazobactam, and ceftolozane, comprising combining sodium chloride, tazobactam, and ceftolozane, wherein 125-1000 mg sodium chloride per 1000 mg of ceftolozane is combined, followed by lyophilization of the mixture of sodium chloride, tazobactam, and ceftolozane.
- In one embodiment of these methods, 125-500 mg sodium chloride per 1000 mg of ceftolozane is combined.
- In another embodiment of these methods, the method further comprises lyophilizing ceftolozane in the absence of tazobactam. In yet another embodiment of the methods described above, the method can further comprise lyophilizing tazobactam in the absence of ceftolozane.
- In a further embodiment of these methods, the method can comprise the steps of: (1) adding 125 to 1000 mg sodium chloride per 1000 mg of ceftolozane followed by lyophilizing ceftolozane; (2) lyophilizing tazobactam; and (3) combining the separately lyophilized ceftolozane and tazobactam to obtain said pharmaceutical composition. In yet a further embodiment, the method comprises adding 125 to 500 mg sodium chloride per 1000 mg of ceftolozane.
- In another aspect, provided herein is a method of making a pharmaceutical composition, comprising combining tazobactam and ceftolozane. In one embodiment, the method further comprises lyophilizing ceftolozane in the absence of tazobactam. In another embodiment, the method further comprises lyophilizing tazobactam in the absence of ceftolozane.
- In a further embodiment, the method comprises the steps of: (1) lyophilizing ceftolozane; (2) lyophilizing tazobactam; and (3) combining the separately lyophilized ceftolozane and tazobactam to obtain said pharmaceutical composition. In one embodiment, the method further comprises packaging the blended powder into Sterbags®.
- In one embodiment of the method, and above embodiments, the molar ratio of tazobactam to ceftolozane in the mixture is in the range of 1:3 to 3:1. In another embodiment, the molar ratio of tazobactam to ceftolozane in the mixture is in the range of 1:2 to 2:1. In another embodiment, the molar ratio of tazobactam to ceftolozane in the mixture is in the range of 1:0.9 to 0.9:1. In a particular embodiment, the ratio of tazobactam to ceftolozane in the mixture is about 0.9:1. In another particular embodiment, the ratio of tazobactam to ceftolozane in the mixture is about 1:2.
- Tazobactam inhibits or decreases the activity of beta-lactamases (e.g., bacterial beta-lactamases), and can be combined with beta-lactam compounds (e.g., antibiotics), thereby broadening the spectrum of the beta-lactam compound and increasing the beta-lactam compound's efficacy against organisms that produce beta-lactamase. A compound or a composition possesses efficacy against an organism if it kills or weakens the organism, or inhibits or prevents reproduction the organism.
- In one aspect, provided herein is a method for the treatment of bacterial infections in a mammal, comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition prepared according to the methods described herein. In another aspect, provided herein is a method for the treatment of bacterial infections in a mammal, comprising administering to said mammal a therapeutically effective amount of tazobactam and ceftolozane. In certain embodiments of the above methods, the bacterial infection is caused by an extended-spectrum beta-lactamase-producing organism. In certain embodiments, the bacterial infection is caused by an antibiotic-resistant organism.
- In another aspect, provided herein is a method for the treatment of bacterial infections in a mammal, comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising ceftolozane. In yet another aspect, the invention is a method for the treatment of bacterial infections in a mammal, comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising both tazobactam and ceftolozane. In certain embodiments of the above methods, the bacterial infection is caused by an extended-spectrum beta-lactamase-producing organism. In certain embodiments, the bacterial infection is caused by an antibiotic-resistant organism.
- In certain embodiments of both aspects, the pharmaceutical composition further comprises 125 to 1000 mg sodium chloride per 1000 mg of ceftolozane. In some other embodiments, the pharmaceutical composition comprises 125 to 500 mg sodium chloride per 1000 mg of ceftolozane.
- In another aspect, provided herein is a method for the treatment of bacterial infections in a mammal, comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising tazobactam, ceftolozane, and less than 0.1% by weight of the following compound:
- In one embodiment of the treatment method, the pharmaceutical composition comprises tazobactam, ceftolozane, and less than 0.05% by weight of the following compound:
- Non-limiting examples of bacterial infections that can be treated by the methods of the invention include infections caused by: aerobic and facultative gram-positive microorganisms (e.g., Staphylococcus aureus, Enterococcus faecalis, Staphylococcus epidermidis, Streptococcus agalactiae, Streptococcus pneumonia, Streptococcus pyogenes, Viridans group streptococci), aerobic and facultative gram-negative microorganisms (e.g., Acinetobacter baumanii, Escherichia coli, Haemophilus influenza, Klebsiella pneumonia, Pseudomonas aeruginosa, Citrobacter koseri, Moraxella catarrhalis, Morganella morganii, Neisseria gonorrhoeae, Proteus mirabilis, Proteus vulgaris, Serratia marcescens, Providencia stuartii, Providencia rettgeri, Salmonella enterica), gram-positive anaerobes (Clostridium perfringens), and gram-negative anaerobes (e.g., Bacteroides fragilis group (e.g., B. fragilis, B. ovatus, B. thetaiotaomicron, and B. vulgates), Bacteroides distasonis, Prevotella melaninogenica).
- In certain embodiments of the methods described herein, the bacterial infection resulting from beta-lactamase-producing organisms are treated or controlled. Non-limiting examples of beta-lactamase-producing organisms include:
- (1) ESBL (extended-spectrum beta-lactamase)-producing organisms selected from the group consisting of Enterobacteriaceae spp.: Escherichia coli, Klebsiella spp. (including K. pneumoniae and K. oxytoca), Proteus mirabilis, Proteus vulgaris, Enterobacter spp., Serratia spp., Citrobacter spp., Pseudomonas spp., Acinetobacter spp.) and Bacteroides spp.;
- (2) CSBL (conventional-spectrum beta-lactamase)-producing organisms, known to those of skill in the art; and
- (3) Inducible-AmpC-type beta-lactamases, such as Citrobacter spp., Serratia spp., Morganella morganii, Proteus vulgaris, and Enterobacter cloacae.
- In certain embodiments of the methods described herein, bacterial infection is associated with one or more of the following conditions:
- Community-acquired pneumonia (moderate severity only) caused by piperacillin-resistant, beta-lactamase producing strains of Haemophilus influenza;
- Nosocomial pneumonia (moderate to severe) caused by piperacillin-resistant, beta-lactamase producing strains of Staphylococcus aureus and by Acinetobacter baumanii, Haemophilus influenzae, Klebsiella pneumoniae, and Pseudomonas aeruginosa.
- Complicated intra-abdominal infections; Complicated urinary tract infections (cUTIs); Acute Pyelonephritis; Systemic Inflammatory Response Syndrome (SIRS).
- Also provided herein is the use of tazobactam, and hydrates and solvates thereof, in combination with ceftolozane, for the preparation of a medicament for the treatment of bacterial infection. The bacterial infection can result from either gram-negative or gram-positive organisms.
- As used herein, “treating”, “treat” or “treatment” describes the management and care of a patient for the purpose of combating a disease, condition, or disorder and includes the administration of a pharmaceutical composition of the present invention to alleviate the symptoms or complications of a disease, condition or disorder, or to eliminate the disease, condition or disorder. The term “treat” can also include treatment of a cell in vitro or an animal model.
- By a “therapeutically effective amount” of a compound of the invention is meant a sufficient amount of the compound to treat the disorder (e.g., bacterial infection). The specific therapeutically effective amount that is required for the treatment of any particular patient or organism (e.g., a mammal) will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound or composition employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts (see, for example, Goodman and Gilman's, “The Pharmacological Basis of Therapeutics”, Tenth Edition, A. Gilman, J. Hardman and L. Limbird, eds., McGraw-Hill Press, 155-173, 2001, which is incorporated herein by reference in its entirety). The therapeutically effective amount for a given situation can be readily determined by routine experimentation and is within the skill and judgment of the ordinary clinician.
- 1) Weigh 30 kg of water for injection into the compounding vessel;
- 2) Add 100 g of citric acid, anhydrous and 150 g of sodium bicarbonate into the compounding vessel and dissolve them with mixing;
- 3) Weigh 5,000 g potency of CXA-101 drug substance and suspend it with mixing. (Note any generation of carbon dioxide.)
- 4) Slowly add 1,100 g of sodium bicarbonate and dissolve CXA-101 with mixing. (Again, note any generation of carbon dioxide.)
- 5) Add 1,146 g of sodium chloride and 10,000 g of maltose, dissolve with mixing.
- 6) Purge dissolved carbon dioxide in the solution with nitrogen until the pH of the solution does not change.
- 7) Adjust the pH of the solution to 6.0±0.1 with 5%-sodium bicarbonate solution.
- 8) Adjust the total weight to 56,850 g (D20=1.137) with water for injection.
- 9) Confirm the pH of the compounded solution within the range 6.0±0.1.
- 10) Filtrate the compounded solution with a sterile tilter-set which consists of a 0.2 um polyvinylidene fluoride membrane filter (Durapore®, Millipore) and a 0.1 urn polyvinylidene fluoride membrane filter (Durapore®, Millipore) connected in tandem. Confirm the integrity of each filter before and after the filtration. Take approximately 100 mL of the filtrate in order to check bioburden.
- 11) Filter the prefiltered compounded solution through a sterile filter-set which consists of a 0.2 um polyvinylidene fluoride membrane filter and a 0.1 urn polyvinylidene fluoride membrane filter connected in tandem, and introduce the final filtrate into an aseptic room. Confirm the integrity of each filter before and after the filtration.
- 12) Wash a sufficient quantity of 28 mL vials with water for injection and sterilize the washed vials by a dry-heat sterilizer. Then transfer the sterilized vials into a Grade A area located in an aseptic room.
- 13) Wash a sufficient quantity of stoppers with water for injection. Sterilize and dry the washed stoppers by steam sterilizer. Then transfer the sterilized stoppers into a Grade A area located in an aseptic room.
- 14) Sterilize a sufficient quantity of flip-off caps by steam sterilizer. Then transfer the sterilized flip-off caps into a Grade A or B area located in an aseptic room.
- 15) Adjust the fill weight of the filtered compounded solution to 11.37 g (corresponds to 10 mL of the compounded solution), then start filling operation. Check the filled weight in sufficient frequency and confirm it is in target range (11.37 g±1%, 11.26 to 11.43 g). When deviation from the control range (11.37 g±2%, 11.14 to 11.59 g) is occurred, re-adjust the filling weight.
- 16) Immediately after a vial is filled, partially stopper the vial with a sterilized stopper. Load the filled and partially stoppered vials onto the shelves of a lyophilizer aseptically.
- 17) After all filled and partially stoppered vials are loaded into a lyophilizer, start the lyophilization program shown in
FIG. 1 . Freeze the loaded vials at −40° C. and keep until all vials freeze. Forward the program to primary drying step (shelf temperature; −20° C., chamber pressure; 100 to 150 mTorr). Primary drying time should be determined by monitoring the product temperature. Forward the program to secondary drying step (shelf temperature; 30° C., chamber pressure; not more than 10 mTorr) after completion of the primary drying step. After all vials are dried completely, return the chamber pressure to atmospheric pressure with sterilized nitrogen. Then stopper vials completely. - 18) Unload the lyophilized vials from the chamber and crimp with sterilized flip-off caps.
- 19) Subject all crimped vials to visual inspection and label and package all passed vials.
- There are four main steps in the manufacture of CXA-101 bulk drug product: dissolution, sterile filtration, bulk lyophilization, and packaging into Sterbags®. These four main steps are composed of a total of 20 minor steps. The flowchart of the CXA-101 bulk drug product manufacturing process is presented in
FIG. 3 , and described below. - 1. The prescribed amount of WFI is charged into the dissolution reactor.
- 2. A prescribed amount of citric acid is added.
- 3. The solution is cooled at 5° C. to 10° C.
- 4. A prescribed amount of CXA-101 drug substance is added to the solution.
- 5. A prescribed amount of L-arginine is slowly added to the solution.
- 6. A check for complete dissolution is performed. Solution pH is verified to be in the target range of 6.5 to 7.0.
- 7. A prescribed amount of sodium chloride is added to the solution.
- 8. A check for complete dissolution is performed. Solution pH is verified to be in the target range of 6.0 to 7.0. If the pH is out of this range adjust with either L-Arginine or citric acid.
- 9. WFI is added to bring the net weight to 124.4 kg and the solution is mixed well.
- 10. Samples are withdrawn for testing of final pH.
- 11. The solution is passed through the filter (pore size 0.45 μm) followed by double filters (pore size 0.22 μm) onto a shelf on the Criofarma lyophilizer.
- 12. The line is washed with WFI.
- 13. The washing solution is passed from Step 12 through sterile filtration.
- 14. The washing solution is loaded onto a separate shelf in the lyophilizer (and later discarded).
- 15. The solution is lyophilized until dry.
- 16. The product shelf is cooled to 20° C.±5° C.
- IV. Packaging into Sterbags®
- 17. The lyophilized bulk drug product powder is milled.
- 18. The milled powder is sieved.
- 19. The sieved powder is blended for 30 minutes.
- 20. The powder is then discharged into Sterbags®
- A low energy drum blender that agitates the material by tumbling and also moving the bed up and down is used. A representative process of blending is described as follows. For CXA-101/tazobactam for injection, the blender was charged with 23.4 kg of CXA-101 bulk product, and 5.4 kg of tazobactam bulk product. Both the CXA-101 and tazobactam were individually lyophilized beforehand. The material was blended for 180 minutes. In-process tests of content assay for both CXA-101 and tazobactam were performed to assess the homogeneity using the samples of blend materials taken from three places. The RSD for each of CXA-101 and tazobactam content assay was no greater than 2% and the RSD for the ratio of CXA-101/tazobactam was no greater than 2% (See Table 1).
-
TABLE 1 In-Process Testing of Blending Samples of a CXA-201 Composition at Three Places Acceptance Results Limits Sam- 60 120 180 Test (expected value) pling minute minute minute Content: 30.4%-37.2% 1 34.24 34.07 34.42 Ceftolozane 12 34.62 34.21 34.66 3 34.71 34.60 34.85 Mean 3 34.52 34.30 34.64 RSD % 0.72 0.80 0.63 Content: 15.2%-18.6% 1 17.96 18.20 17.12 Tazobactam 22 16.90 18.26 16.51 3 17.27 16.93 17.02 Mean 3 17.38 17.80 16.89 RSD % 3.10 4.22 1.96 Ratio of 2.004 1 1.91 1.87 2.01 Content 2 2.05 1.87 2.10 (w/w) 3 2.01 2.04 2.05 ceftolozane/ Mean 3 1.99 1.93 2.05 tazobactam RSD % 3.69 5.12 2.2 RSD = relative standard deviation 1Theoretical value: 33.96% Acceptance limits are 90%-110% of the theoretical value. 2Theoretical value: 16.99% Acceptance limits are 90%-110% of the theoretical value. 3 Three samples are taken at each time point at three places to measure the percentage by weight of ceftolozane and tazobactam. The “Mean” is the average of the percentages or the weight ratios of Ceftolozane/tazobactam. 4Acceptance limits were established based on batch history.
B. Packaging into Sterbags®
The blended powder is then discharged into Sterbags®. - The flow chart of the fill and finish process for the final drug product, CXA-101/tazobactam for injection, 1000 mg/500 mg, is presented in
FIG. 4 . Glass vials are washed with WFI and depyrogenated in aClass 100 depyrogenation tunnel at a temperature of 320° C. Pre-washed and pre-siliconized stoppers are autoclaved for 40 minutes at 121° C. The bulk drug product is packaged in a Sterbag® system comprised of three bags. The outer bag is cleaned with disinfectant in a Class 10,000 clean room. The bag system is placed in a pass-through UV box where it is subjected to UV radiation (>20 μW/cm2) for 20 minutes to sterilize the surface of the outer bag. The outer bag is removed and left in the UV box. The middle bag is placed in a Class A laminar airflow (LAF) hood. The sterile middle bag is removed under LAF. The sterile, bottle-shaped inner bag is then placed in a sterile stainless steel carrier and attached to the filling machine. - Sterile bulk CXA-101/tazobactam drug product is filled under a nitrogen blanket into 30-mL, Type I clear glass vials. The sterile drug product is gravity-fed into the filling machine under LAF. Vial fill weights are periodically checked throughout the filling operation to ensure proper operation of the filling line. Filling and stoppering operations are performed under
Class 100 LAF conditions. Capping and vial washing are done in the Class 10,000 clean room. -
-
Column Develosil ODS-UG-5; 5 μm, 250 × 4.6 mm (Nomura Chemical, Japan) Mobile phase Sodium Perchlorate Buffer Solution (PH 2.5)/CH3CN 90:10 (vlv) Flow rate 1.0 mL/min Wavelength 254 nm Injection volume 10 μL Oven Temperature 45° C. Run Time 85 minutes -
-
Time (min) A % B % 0 75 25 30 70 30 60 0 100 85 0 100 85.1 75 25 110 75 25 - Sodium perchlorate buffer solution was made by dissolving 14.05 g of sodium perchlorate monohydrate in 1000.0 mL of water followed by adjusting pH to 2.5 with diluted perchloric acid (1 in 20).
- Mobile phase was then made by mixing sodium perchlorate buffer solution (pH 2.5) and acetonitrile in the ratio 90:10 (v/v).
- Sodium acetate buffer solution pH 5.5 (diluent) was made by dissolving 1.36 g of sodium acetate trihydrate in 1000.0 mL of water followed by adjusting to pH 5.5 with diluted acetic acid (1 in 10).
- Sample solution: dissolve 20.0 mg, exactly weighed, of a sample, in 20.0 mL of water (prepare just before injection into HPLC system).
- System suitability solution (1%): take 1.0 mL of the sample solution (use first sample if more are present) and transfer into a 100.0 mL volumetric flask, dilute with water to volume and mix.
- 1. Inject blank (water)
2. Inject system suitability solution and check for tailing factor and theoretical plate number for CAA-101 peak: -
- The tailing factor must not be greater than 1.5
- Theoretical plates number must not be less than 10000
3. Inject sample solution
4. Inject system suitability solution and check for tailing factor and theoretical plate number for CXA-101 peak. - The tailing factor must not be greater than 1.5
- Theoretical plates number must not be less than 10000
5. Identify the peaks of Related Substances in the Sample chromatogram based on the reference chromatogram reported inFIG. 5 or, alternatively, on the basis of the following RRT values:
-
Impurity RRT Peak 1 (P1) ~0.1 Peak 2 (P2) ~0.2 Peak 3 (P3) ~0.4 Peak 4 (P4) ~0.6 Peak 5 (P5) ~0.9 CXA-101 1.0 Peak 6 (P6) ~1.1 Peak 7 (P7) ~1.3 Peak 8 (P8) ~1.4 Peak 9 (P9) ~1.7 Peaks 10, 11 (P10, 11)~2.3 -
- wherein:
- Ci=Amount of related substance i in the Sample, area %
- Ai=Peak area of related substance i in the Sample chromatogram
- At=Area of CXA-101 peak in the Sample chromatogram
- At+ΣAi=Total peaks area in the Sample chromatogram
- Consider as any Unspecified Impurity, each peak in the chromatogram except CXA-101, peaks from 1 to 11 and every peak present in the blank chromatogram and report the largest.
-
- wherein:
- CT=total impurities content in the Sample, area %
- At=area of CXA-101 peak in the sample chromatogram
- ΣAi=total peak areas of impurities in the sample chromatogram
- A stability study was carried out at 25° C., and samples were analyzed by HPLC. High, mid, and low salt formulations contained 480, 125, and 62.5 mg NaCl per 1000 mg of ceftolozane, respectively. Compositions of blend Drug Product are listed in Table 2. Test results are summarized in Table 3.
-
TABLE 2 Comparison of the CXA-201 Compositions Lot CXA-101 NaCl Tazobactam C1 10% High Na C2 20% Mid Na C3 20% Low Na C4 20% Mid Arginate C5 20% Low Arginate -
TABLE 3 RT 63′ Peak Area at t = 3 months, 25° C./60 % RH storage 1st data 2nd data 3rd data collection collection collection Sam- Area Area Area ple Summary RT % RT % RT % C1 High salt + Tazo Na 63.90 0.03 63.30 0.08 62.49 0.14 C2 Mid salt + Tazo Na 63.78 0.06 63.12 0.12 62.45 0.28 C3 Low salt + Tazo Na 63.75 0.12 63.11 0.14 62.46 0.29 C4 Mid salt + Tazo Arg 63.76 0.10 63.16 0.13 62.44 0.28 C5 Low salt + Tazo Arg 63.72 0.08 63.14 0.16 62.46 0.33 - Conclusion: at the three month time point, the reduced salt formulations were observed to be not as stable as the full salt formulation; and trends indicate that reduction in salt causes at least 1.5-fold greater impurity at RT=63 minutes (HPLC).
- B. CXA-101 Peak Trends with NaCl
- A stability study was carried out at 30° C. and 60° C., and samples were analyzed by HPLC. Sodium chloride content in test samples is described in Table 4. Stability data are summarized in Tables 5-8. The data are also plotted in
FIGS. 6-9 to show trends of total purity,peak 1, RRT 0.43+peak 3, andpeak 7 with respect to NaCl. -
TABLE 4 Sodium Chloride Content in the CXA-101 Compositions Samples NaCl content A1 481.0 mg NaCl per 1000 mg of ceftolozane A2 190.0 mg NaCl per 1000 mg of ceftolozane A3 125.0 mg NaCl per 1000 mg of ceftolozane A4 75.0 mg NaCl per 1000 mg of ceftolozane A5 50.0 mg NaCl per 1000 mg of ceftolozane -
TABLE 5 The Purity of Ceftolozane in CXA-101 Compositions with Varying Amounts of Sodium Chloride Day A1 A2 A3 A4 A5 t0/60° C. 0 96.6 98.0 97.9 97.8 97.7 t0/30° C. 0 98.1 97.8 97.8 97.7 1 day/60° C. 1 95.9 96.9 96.5 95.7 95.5 1 day/30° C. 1 98.2 97.7 97.7 97.6 3 days/60° C. 3 94.9 95.7 94.8 93.9 93.6 (Δt0-t3) (1.7) (2.3) (3.1) (3.9) (4.1) 3 day/30° C. 3 98.0 97.5 97.5 97.3 7 days/60° C. 7 93.6 94.0 94.2 92.3 91.9 7 day/30° C. 7 97.8 97.2 97.1 97.0 Total Δ/60° C. 3.07 4.06 3.7 5.48 5.83 Total Δ/30° C. 0.3 0.6 0.7 0.7 -
TABLE 6 The HPLC Peak Area of Impurity Peak 1 in CXA-101 Compositionswith Varying Amounts of Sodium Chloride Day A1 A2 A3 A4 A5 t0/60° C. 0 0.95 0.31 0.3 0.36 0.39 t0/30° C. 0 0.47 0.36 0.36 0.39 1 day/60° C. 1 1.36 0.86 0.94 1.36 1.39 1 day/30° C. 1 0.48 0.40 0.42 0.48 3 days/60° C. 3 1.71 1.31 1.73 2.06 2.1 3 day/30° C. 3 0.53 0.50 0.52 0.58 7 days/60° C. 7 2.26 2.14 2.07 2.86 2.93 7 day/30° C. 7 0.62 0.63 0.66 0.72 INCREASE %/60° C. 1.31 1.83 1.77 2.5 2.54 INCREASE %/30° C. 0.15 0.27 0.30 0.33 -
TABLE 7 The Total HPLC Peak Area of the Impurity with a RRT of 0.43 and Impurity peak 3 in CXA-101 Compositionswith Varying Amounts of Sodium Chloride Day A1 A2 A3 A4 A5 t0/60° C. 0 0.28 0.10 0.09 0.10 0.11 t0/30° C. 0 0.15 0.10 0.10 0.11 1 day/60° C. 1 0.37 0.13 0.16 0.35 0.36 1 day/30° C. 1 0.13 0.09 0.09 0.10 3 days/60° C. 3 0.68 0.21 0.31 0.71 0.71 3 day/30° C. 3 0.17 0.13 0.13 0.14 7 days/60° C. 7 1.04 0.36 0.30 0.81 0.81 7 day/30° C. 7 0.19 0.16 0.16 0.17 INCREASE %/60° C. 0.76 0.26 0.21 0.71 0.7 INCREASE %/30° C. 0.04 0.06 0.06 0.06 -
TABLE 8 The HPLC Peak Area of Impurity Peak 7 in CXA-101 Compositionswith Varying Amounts of Sodium Chloride Day A1 A2 A3 A4 A5 t0/60° C. 0 1.31 0.95 0.96 1.01 1.02 t0/30° C. 0 0.69 1.00 1.01 1.02 1 day/60° C. 1 1.37 1.10 1.10 1.23 1.29 1 day/30° C. 1 0.68 0.99 1.01 1.02 3 days/60° C. 3 1.43 1.19 1.27 1.41 1.46 3 day/30° C. 3 0.68 1.03 1.01 1.05 7 days/60° C. 7 1.49 1.31 1.35 1.55 1.57 7 day/30° C. 7 0.68 1.01 1.03 1.07 INCREASE %/60° C. 0.18 0.36 0.39 0.54 0.55 INCREASE %/30° C. NC 0.01 0.02 0.05 - Conclusion: the stability test demonstrates that high sodium chloride content enhances stability of Mono product CXA-101.
- C. CXA-201 Peak Trends with NaCl
- A stability study was carried out at 30° C. and 60° C., and samples were analyzed by HPLC. Sodium chloride content is described in Table 9. Stability data at 60° C. are summarized in Tables 10-13. The data are also plotted in
FIGS. 10-13 to show trends of total purity,peak 1, RRT 0.43+peak 3, andpeak 7 with respect to NaCl. -
TABLE 9 The Sodium Chloride Content in the CXA-201 Compositions Samples NaCl content B1 481.0 mg sodium chloride per 1000 mg of ceftolozane B2 125.0 mg sodium chloride per 1000 mg of ceftolozane B3 75.0 mg sodium chloride per 1000 mg of ceftolozane B4 50.0 mg sodium chloride per 1000 mg of ceftolozane -
TABLE 10 The Purity of Ceftolozane in CXA-201 Compositions with Varying Amounts of Sodium Chloride Day B1 B2 B3 B4 t0 0 98.1 97.8 97.8 97.7 1 day/60° C. 1 97.2 96.3 96.2 96.0 1 day/30° C. 1 98.2 97.7 97.6 97.6 3 days/60° C. 3 95.4 (2.7) 94.9 (2.9) 94.7 (3.1) 94.6 (3.1) (Δt0-t3) 3 day/30° C. 3 98.0 97.5 97.4 97.3 7 days/60° C. 7 92.7 93.8 93.6 93.4 7 day/30° C. 7 97.8 97.2 97.0 96.9 Total Δ/60° C. 5.3 4.0 4.2 4.3 Total Δ/30° C. 0.3 0.6 0.8 0.8 -
TABLE 11 The HPLC Peak Area of Impurity Peak 1 of Ceftolozane in CXA-201 Compositions with Varying Amounts of Sodium Chloride Day B1 B2 B3 B4 t0 0 0.47 0.38 0.38 0.41 1 day/60° C. 1 1 1.08 1.09 1.14 1 day/30° C. 1 0.48 0.44 0.45 0.49 3 days/60° C. 3 1.85 1.64 1.66 1.71 3 day/30° C. 3 0.53 0.53 0.56 0.61 7 days/60° C. 7 3.3 2.28 2.25 2.29 7 day/30° C. 7 0.62 0.67 0.71 0.77 INCREASE %/60° C. 2.83 1.9 1.87 1.88 INCREASE %/30° C. 0.15 0.29 0.33 0.36 -
TABLE 12 The Total HPLC Peak Area of the Impurity with a RRT of 0.43 and Impurity Peak 3 of Ceftolozane in CXA-201Compositions with Varying Amounts of Sodium Chloride Day B1 B2 B3 B4 t0 0 0.15 0.12 0.12 0.12 1 day/60° C. 1 0.36 0.35 0.31 0.32 1 day/30° C. 1 0.13 0.12 0.13 0.12 3 days/60° C. 3 0.92 0.67 0.65 0.62 3 days/30° C. 3 0.17 0.16 0.17 0.16 7 days/60° C. 7 1.29 0.78 0.75 0.71 7 days/30° C. 7 0.19 0.19 0.20 0.20 INCREASE %/60° C. 1.14 0.66 0.63 0.59 INCREASE %/30° C. 0.04 0.07 0.08 0.08 -
TABLE 13 The HPLC Peak Area of Impurity Peak 7 of Ceftolozane in CXA-201 Compositions with Varying Amounts of Sodium Chloride Day B1 B2 B3 B4 t0 0 0.69 1.01 1.01 1.01 1 day/60° C. 1 0.73 1.12 1.15 1.18 1 day/30° C. 1 0.68 1.00 0.99 0.95 3 days/60° C. 3 0.8 1.24 1.27 1.27 3 days/30° C. 3 0.68 1.00 1.01 1.03 7 days/60° C. 7 0.94 1.32 1.35 1.4 7 days/30° C. 7 0.68 1.02 1.05 1.06 INCREASE %/60° C. 0.25 0.31 0.34 0.39 INCREASE %/30° C. NC 0.01 0.04 0.05
Conclusion: the stability data shows that high sodium chloride content enhances stability of Combination product CXA-201. - The co-lyophilization process is illustrated in
FIG. 14 . The components of a CXA-201 composition prepared by co-lyophilization are described in Table 14 below. -
TABLE 14 Components of a CXA-201 Composition Prepared by Co-lyophilization Component Function Amount (mg/container) ceftolozane Active pharmaceutical 1000 (potency) ingredient L-arginine Alkalization reagent 587 Citric acid Buffer 21 (anhydrous) Sodium chloride Stabilizer 476 Tazobactam Active pharmaceutical 500 (free acid) ingredient Sodium Alkalization reagent Quantity sufficient1 for bicarbonate pH 4.8 to 7.0 water Dissolution solvent Not more than 4% by weight2 Nitrogen Inert gas Sufficient quantity 1Sodium content is approximately 78 mg/g of tazobactam in drug product after lyophilization. 2Water is removed during the lyophilization process and is controlled at no more than 4% by weight. - The Co-Lyo Combo Drug Product was prepared, as described above in Example 6. The formulation composition of the Combo drug product is shown in Table 15.
-
TABLE 15 Components of the CXA-201 Composition Prepared by the Co-Lyophilization CXA-201 16.3 g active ceftolozane Comp. 8.1 g active Tazobactam free ac. 15.5 g L-Arginine 350 mg Citric acid 7.9 g NaCl 6.1 pH compounded solution - This sample was put into stability study. The following Tables 16 and 17 are representative examples that summarize the results at 25° C./RH=60% and 40° C./RH=75% after one month (T1) and three months (T2). Samples were analyzed using the HPLC method as described in Example 4.
-
TABLE 16 Stability Data of Co-Lyophilized CXA- 201 Composition at 25° C./RH = 60% Test items Spec. D.P. T0 T1 25° C. T2 25° C. Related Substances Peak1 ≦1.50% 0.31% 0.54% 0.71% Peak2 ≦0.40% 0.07% 0.07% 0.09% Peak3 ≦0.30% <0.03% <0.03% <0.03% Peak4 ≦0.80% 0.08% 0.08% 0.09% Peak5 ≦1.00% 0.27% 0.26% 0.29% Peak6 ≦0.15% <0.03% <0.03% <0.03% Peak7 ≦2.00% 0.64% 0.65% 0.66% Peak8 ≦0.15% <0.03% <0.03% <0.03% Peak9 ≦0.60% 0.05% 0.11% 0.10% Peak10, 11 ≦0.15% each 0.04% 0.04% 0.04% Peak12 ≦2.00% <0.03% <0.03% <0.03% Others (RRT 0.43) ≦0.15% <0.03% <0.03% 0.04% Others (RRT 1.22) ≦0.15% 0.13% 0.30% 0.38% Others (RRT 2.18) ≦0.15% 0.03% <0.03% 0.05% Others (RRT 2.77) ≦0.15% <0.03% 0.03% 0.03% Sing. Unk. ≦0.15% 0.05% 0.07% 0.05% Total ≦5.00% 1.67% 2.19% 2.77% pH report value 5.5 4.83 -
TABLE 17 Stability Data Co-Lyophilized CXA- 201 Composition at 40° C./RH = 75% Test items Spec. D.P. T0 T1 40° C. T2 40° C. Related Substances Peak1 ≦1.50% 0.31% 1.77% 2.22% Peak2 ≦0.40% 0.07% 0.10% 0.16% Peak3 ≦0.30% <0.03% <0.03% 0.06% Peak4 ≦0.80% 0.08% 0.09% 0.09% Peak5 ≦1.00% 0.27% 0.27% 0.30% Peak6 ≦0.15% <0.03% <0.03% <0.03% Peak7 ≦2.00% 0.64% 0.69% 0.78% Peak8 ≦0.15% <0.03% <0.03% 0.10% Peak9 ≦0.60% 0.05% 0.09% 0.09% Peak10, 11 ≦0.15% each 0.04% 0.04% 0.05% Peak12 ≦2.00% <0.03% <0.03% <0.03% Others (RRT 0.43) ≦0.15% <0.03% 0.09% 0.15% Others (RRT 1.22) ≦0.15% 0.13% 0.74% 0.97% Others (RRT 2.18) ≦0.15% 0.03% <0.03% 0.08% Others (RRT 2.77) ≦0.15% <0.03% <0.03% 0.04% Sing. Unk. ≦0.15% 0.05% 0.11% 0.25% Total ≦5.00% 1.67% 4.49% 6.32% pH report value 5.5 4.09 - A new impurity having RRT=1.22 was observed in the co-lyophilized drug product. The impurity was identified as a degradation product, shown in
FIG. 15 , which was formed by a reaction between ceftolozane and formylacetic acid, which was a degradation product of tazobactam. The stability data at 25° C. and at 40° C. have shown that the impurity increases over time. - The blend drug product was prepared, as described above in Example 3, on lab scale by use of a small blender. The composition of the blend drug product is shown in Table 18.
-
TABLE 18 Components of the Blend Composition Quantity as active Component Composition components CXA-201 CXA-101 Ceftolozane 10.8 g Comp. for Injection L-Arginine 6.7 g Bulk (25 g) Citric acid 233 mg Sodium chloride 5.2 g Tazobactam sodium 5.4 g (as Tazo sterile Bulk(6 g) free acid) - This sample was put into stability study. The following Tables 19 and 20 are representative examples that summarizes the results at 25° C./RH=60% and 40° C./RH=75% after one month (T1) and three months (T2). Samples were analyzed using the HPLC method as described in Example 4.
-
TABLE 19 Stability Data of Blend CXA-201 Composition at 25° C./RH = 60% Test items Specifications T0 T1 25° C. T2 25° C. Related Substances Peak1 ≦1.50% 0.61% 0.93% 1.08% Peak2 ≦0.40% <0.03% <0.03% <0.03% Peak3 ≦0.30% <0.03% <0.03% <0.03% Peak4 ≦0.80% 0.03% 0.03% 0.04% Peak5 ≦1.00% 0.09% 0.12% 0.13% Peak6 ≦0.15% <0.03% <0.03% <0.03% Peak7 ≦2.00% 1.28% 1.34% 1.35% Peak8 ≦0.15% <0.03% <0.03% <0.03% Peak9 ≦0.60% 0.03% <0.03% 0.03% Peak10, 11 ≦0.30% <0.03% 0.04% 0.05% Sing. Unk. ≦0.15% 0.13% 0.13% 0.14% Total ≦5.00% 2.49% 3.03% 3.28% Assay CXA-101 Teor. 32.5% n.a. n.a. % = 32.6% Assay Tazobactam Teor. 18.2% n.a. n.a. % = 17.4% Tazobactam Related ≦4.0% 0.07% 0.12% 0.14% Compound A K.F. ≦4.0% 2.6% n.a. n.a. pH 5.0-7.0 6.0 5.6 5.1 -
TABLE 20 Stability Data of Blend CXA-201 Composition at 40° C./RH = 75% Test items Specifications T0 T1 40° C. T2 40° C. Related Substances Peak1 ≦1.50% 0.61% 1.66% 2.28% Peak2 ≦0.40% <0.03% <0.03% <0.03% Peak3 ≦0.30% <0.03% <0.03% 0.04% Peak4 ≦0.80% 0.03% 0.04% 0.05% Peak5 ≦1.00% 0.09% 0.13% 0.14% Peak6 ≦0.15% <0.03% <0.03% <0.03% Peak7 ≦2.00% 1.28% 1.41% 1.46% Peak8 ≦0.15% <0.03% <0.03% <0.03% Peak9 ≦0.60% 0.03% <0.03% 0.03% Peak10, 11 ≦0.30% <0.03% 0.08% 0.09% Sing. Unk. ≦0.15% 0.13% 0.14% 0.13% Total ≦5.00% 2.49% 4.21% 5.27% Assay CXA-101 Teor. 32.5% n.a. n.a. % = 32.6% Assay Tazobactam Teor. 18.2% n.a. n.a % = 17.4% Tazobactam Related ≦4.0% 0.07% 0.35% 0.54% Compound A K.F. ≦4.0% 2.6% n.a. n.a. pH 5.0-7.0 6.0 5.0 4.4 - The data at both 25° C. and at 40° C. have shown that the blending process completely inhibits formation of the impurity RRT=1.22.
Claims (2)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/214,367 US20140274996A1 (en) | 2013-03-15 | 2014-03-14 | Tazobactam and ceftolozane antibiotic compositions |
| US14/522,893 US20150045336A1 (en) | 2013-03-15 | 2014-10-24 | Tazobactam and ceftolozane antibiotic compositions |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361793007P | 2013-03-15 | 2013-03-15 | |
| US201361792092P | 2013-03-15 | 2013-03-15 | |
| US14/214,367 US20140274996A1 (en) | 2013-03-15 | 2014-03-14 | Tazobactam and ceftolozane antibiotic compositions |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/522,893 Continuation US20150045336A1 (en) | 2013-03-15 | 2014-10-24 | Tazobactam and ceftolozane antibiotic compositions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140274996A1 true US20140274996A1 (en) | 2014-09-18 |
Family
ID=51522651
Family Applications (12)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/214,417 Abandoned US20140274997A1 (en) | 2013-03-15 | 2014-03-14 | Cephalosporin pharmaceutical compositions |
| US14/214,212 Abandoned US20140274993A1 (en) | 2013-03-15 | 2014-03-14 | Ceftolozane-tazobactam pharmaceutical compositions |
| US14/213,532 Abandoned US20140274991A1 (en) | 2013-03-15 | 2014-03-14 | Ceftolozane pharmaceutical compositions |
| US14/214,367 Abandoned US20140274996A1 (en) | 2013-03-15 | 2014-03-14 | Tazobactam and ceftolozane antibiotic compositions |
| US14/214,221 Active US9320740B2 (en) | 2013-03-15 | 2014-03-14 | Ceftolozane-tazobactam pharmaceutical compositions |
| US14/212,590 Abandoned US20140275000A1 (en) | 2013-03-15 | 2014-03-14 | Ceftolozane pharmaceutical compositions |
| US14/212,781 Abandoned US20140274990A1 (en) | 2013-03-15 | 2014-03-14 | Ceftolozane pharmaceutical compositions |
| US14/285,185 Active US8968753B2 (en) | 2013-03-15 | 2014-05-22 | Ceftolozane-tazobactam pharmaceutical compositions |
| US14/522,893 Abandoned US20150045336A1 (en) | 2013-03-15 | 2014-10-24 | Tazobactam and ceftolozane antibiotic compositions |
| US14/531,352 Abandoned US20150150883A1 (en) | 2013-03-15 | 2014-11-03 | Ceftolozane-tazobactam pharmaceutical compositions |
| US15/071,530 Active US9925196B2 (en) | 2013-03-15 | 2016-03-16 | Ceftolozane-tazobactam pharmaceutical compositions |
| US15/895,279 Abandoned US20180169106A1 (en) | 2013-03-15 | 2018-02-13 | Ceftolozane-tazobactam pharmaceutical compositions |
Family Applications Before (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/214,417 Abandoned US20140274997A1 (en) | 2013-03-15 | 2014-03-14 | Cephalosporin pharmaceutical compositions |
| US14/214,212 Abandoned US20140274993A1 (en) | 2013-03-15 | 2014-03-14 | Ceftolozane-tazobactam pharmaceutical compositions |
| US14/213,532 Abandoned US20140274991A1 (en) | 2013-03-15 | 2014-03-14 | Ceftolozane pharmaceutical compositions |
Family Applications After (8)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/214,221 Active US9320740B2 (en) | 2013-03-15 | 2014-03-14 | Ceftolozane-tazobactam pharmaceutical compositions |
| US14/212,590 Abandoned US20140275000A1 (en) | 2013-03-15 | 2014-03-14 | Ceftolozane pharmaceutical compositions |
| US14/212,781 Abandoned US20140274990A1 (en) | 2013-03-15 | 2014-03-14 | Ceftolozane pharmaceutical compositions |
| US14/285,185 Active US8968753B2 (en) | 2013-03-15 | 2014-05-22 | Ceftolozane-tazobactam pharmaceutical compositions |
| US14/522,893 Abandoned US20150045336A1 (en) | 2013-03-15 | 2014-10-24 | Tazobactam and ceftolozane antibiotic compositions |
| US14/531,352 Abandoned US20150150883A1 (en) | 2013-03-15 | 2014-11-03 | Ceftolozane-tazobactam pharmaceutical compositions |
| US15/071,530 Active US9925196B2 (en) | 2013-03-15 | 2016-03-16 | Ceftolozane-tazobactam pharmaceutical compositions |
| US15/895,279 Abandoned US20180169106A1 (en) | 2013-03-15 | 2018-02-13 | Ceftolozane-tazobactam pharmaceutical compositions |
Country Status (1)
| Country | Link |
|---|---|
| US (12) | US20140274997A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8968753B2 (en) | 2013-03-15 | 2015-03-03 | Calixa Therapeutics, Inc. | Ceftolozane-tazobactam pharmaceutical compositions |
| US9044485B2 (en) | 2013-03-15 | 2015-06-02 | Calixa Therapeutics, Inc. | Ceftolozane antibiotic compositions |
| US9724353B2 (en) | 2011-09-09 | 2017-08-08 | Merck Sharp & Dohme Corp. | Methods for treating intrapulmonary infections |
| US9872906B2 (en) | 2013-03-15 | 2018-01-23 | Merck Sharp & Dohme Corp. | Ceftolozane antibiotic compositions |
| US10376496B2 (en) | 2013-09-09 | 2019-08-13 | Merck, Sharp & Dohme Corp. | Treating infections with ceftolozane/tazobactam in subjects having impaired renal function |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101801521B (en) | 2007-05-14 | 2015-06-17 | 纽约州立大学研究基金会 | Physiological dispersion response induction in bacterial cells in biofilms |
| BR112015006868B1 (en) * | 2012-09-27 | 2021-11-30 | Merck Sharp & Dohme Corp | PHARMACEUTICAL COMPOSITION OF CRYSTALLINE TAZOBACTAM-ARGININE AND BETA-LACTAMIC COMPOUND, ITS USE, METHOD FOR MAKING A PHARMACEUTICAL COMPOSITION AND USE OF CRYSTALLINE TAZOBACTAM-ARGININE AND BETA-LACTAMIC COMPOUND |
| CN110314163A (en) * | 2018-03-30 | 2019-10-11 | 杭州森泽医药科技有限公司 | A kind of latamoxef sodium pharmaceutical composition and application |
| US11541105B2 (en) | 2018-06-01 | 2023-01-03 | The Research Foundation For The State University Of New York | Compositions and methods for disrupting biofilm formation and maintenance |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8906898B1 (en) * | 2013-09-27 | 2014-12-09 | Calixa Therapeutics, Inc. | Solid forms of ceftolozane |
Family Cites Families (265)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IL37879A (en) | 1970-10-27 | 1974-12-31 | Ciba Geigy Ag | 3-unsubstituted cephalosporin derivatives,process for their manufacture and compositions containing them |
| US4299829A (en) | 1976-03-12 | 1981-11-10 | Fujisawa Pharmaceutical Co., Ltd. | 2-Lower alkyl-7-substituted-2 or 3-cephem 4-carboxylic acid compounds |
| US4464369A (en) | 1977-03-14 | 1984-08-07 | Fujisawa Pharmaceutical Co., Ltd. | 7-Acylamino-3-cephem-4-carboxylic acid derivatives and pharmaceutical compositions |
| US4409217A (en) | 1977-03-14 | 1983-10-11 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| US4496562A (en) | 1977-03-14 | 1985-01-29 | Fujisawa Pharmaceutical Co., Ltd. | 7-Substituted-3-cephem-4-carboxylic acid esters |
| PH17188A (en) | 1977-03-14 | 1984-06-14 | Fujisawa Pharmaceutical Co | New cephem and cepham compounds and their pharmaceutical compositions and method of use |
| JPS543087A (en) | 1977-06-03 | 1979-01-11 | Fujisawa Pharmaceut Co Ltd | Preparation of cephalosporin compound |
| GB1604738A (en) | 1977-07-28 | 1981-12-16 | Yamanouchi Pharma Co Ltd | 1,3-dithietane-2-carboxylic acid derivatives and the preparation thereof |
| JPS609719B2 (en) | 1977-08-06 | 1985-03-12 | 武田薬品工業株式会社 | Cephalosporin derivatives and their production method |
| US4370326A (en) | 1977-09-13 | 1983-01-25 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds and composition |
| IT1192287B (en) | 1977-11-14 | 1988-03-31 | Fujisawa Pharmaceutical Co | PHARMACEUTICAL ACTION DERIVATIVES OF CEPHALOSPORANIC ACID AND RELATED PREPARATION PROCEDURE |
| US4363807A (en) | 1978-04-06 | 1982-12-14 | Fujisawa Pharmaceutical Company, Limited | Cepham compounds |
| SE7804231L (en) | 1978-04-14 | 1979-10-15 | Haessle Ab | Gastric acid secretion |
| AR229883A1 (en) | 1978-05-26 | 1983-12-30 | Glaxo Group Ltd | PROCEDURE FOR THE PREPARATION OF ANTIBIOTIC (6R, 7R) -7 - ((Z) -2- (2-AMINOTIAZOL-4-IL) -2- (2-CARBOXIPROP-2-OXIIMINO) -ACETAMIDO) -3- (1 -PIRIDINOMETIL) -CEF-3-EM-4-CARBOXYLATE |
| US4264597A (en) | 1978-06-06 | 1981-04-28 | Masashi Hashimoto | Cephalosporin analogues and processes for the preparation thereof |
| US4268509A (en) | 1978-07-10 | 1981-05-19 | Fujisawa Pharmaceutical Co., Ltd. | New cephem compounds and processes for preparation thereof |
| US4284631A (en) | 1978-07-31 | 1981-08-18 | Fujisawa Pharmaceutical Co., Ltd. | 7-Substituted cephem compounds and pharmaceutical antibacterial compositions containing them |
| US4305937A (en) | 1978-08-17 | 1981-12-15 | Fujisawa Pharmaceutical Co., Ltd. | 2-Lower alkyl-7-substituted-2 or 3-cephem-4-carboxylic acid compounds and antibacterial pharmaceutical compositions containing them |
| US4703046A (en) | 1978-09-08 | 1987-10-27 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds and processes for preparation thereof |
| EP0048504B1 (en) | 1978-09-12 | 1988-08-17 | Fujisawa Pharmaceutical Co., Ltd. | Intermediate compounds for preparing cephem compounds; processes for their preparation and processes for preparing cephem compounds |
| US4327093A (en) | 1978-10-24 | 1982-04-27 | Fujisawa Pharmaceutical Co., Ltd. | 3,7-Disubstituted-2 or 3-cephem-4-carboxylic acid compounds |
| DE2945248A1 (en) | 1978-11-13 | 1980-05-22 | Fujisawa Pharmaceutical Co | CEPHEM COMPOUNDS, METHOD FOR THEIR PRODUCTION AND ANTIBACTERIAL PHARMACEUTICAL AGENTS CONTAINING THE SAME |
| US4332798A (en) | 1978-12-29 | 1982-06-01 | Fujisawa Pharmaceutical Co., Ltd. | 7-Amino-thia-diazole oxyimino derivatives of cephem and cephem compounds |
| US4390534A (en) | 1978-12-29 | 1983-06-28 | Fujisawa Pharmaceutical Co., Ltd. | Cephem and cepham compounds |
| AU536842B2 (en) | 1978-12-29 | 1984-05-24 | Fujisawa Pharmaceutical Co., Ltd. | Cephalosporin antibiotics |
| US4291031A (en) | 1979-02-19 | 1981-09-22 | Fujisawa Pharmaceutical Co., Ltd. | 3-Phosphonocephalosporanic acid derivatives, and pharmaceutical composition comprising the same |
| US4339449A (en) | 1979-03-27 | 1982-07-13 | Fujisawa Pharmaceutical Company, Limited | Analogous compounds of cephalosporins, and pharmaceutical composition comprising the same |
| FR2462439A1 (en) | 1979-07-26 | 1981-02-13 | Roussel Uclaf | NOVEL PROCESS FOR THE PREPARATION OF PRODUCTS DERIVED FROM 7 - / (2-ARYL) 2-HYDROXYIMINO ACETAMIDO / CEPHALOSPORANIC ACID |
| EP0025199B1 (en) | 1979-09-03 | 1984-10-31 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds, processes for their preparation and pharmaceutical compositions containing them |
| US4381299A (en) | 1980-03-07 | 1983-04-26 | Fujisawa Pharmaceutical Co., Ltd. | 7-Amino-thiadiazole oxyimino derivatives of cephem and cepham compounds |
| US4338313A (en) | 1979-10-12 | 1982-07-06 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| US4332800A (en) | 1979-10-12 | 1982-06-01 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| US4409214A (en) | 1979-11-19 | 1983-10-11 | Fujisawa Pharmaceutical, Co., Ltd. | 7-Acylamino-3-vinylcephalosporanic acid derivatives and processes for the preparation thereof |
| US4409215A (en) | 1979-11-19 | 1983-10-11 | Fujisawa Pharmaceutical Co., Ltd. | 7-Acylamino-3-substituted cephalosporanic acid derivatives and processes for the preparation thereof |
| US4420477A (en) | 1979-11-30 | 1983-12-13 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| US4443443A (en) | 1979-12-17 | 1984-04-17 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| US4405617A (en) | 1980-02-11 | 1983-09-20 | Fujisawa Pharmaceutical Co., Ltd. | 3-(Propynyltetrazol)thiomethyl-3-cephems |
| JPS56125392A (en) | 1980-03-06 | 1981-10-01 | Fujisawa Pharmaceut Co Ltd | Cepham and cephem compound and preparation thereof |
| US4470980A (en) | 1980-03-07 | 1984-09-11 | Interx Research Corp. | Method of increasing oral absorption of β-lactam antibiotics |
| JPS5711909A (en) | 1980-06-23 | 1982-01-21 | Shionogi & Co Ltd | Stable freeze-dried preparation of beta-lactam |
| EP0043546B1 (en) | 1980-07-04 | 1986-01-29 | Fujisawa Pharmaceutical Co., Ltd. | 7-oxo-cephalosporins and 6-oxo-penicillins, their analogues and process for their preparation |
| US4443444A (en) | 1980-08-11 | 1984-04-17 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| EP0046964B1 (en) | 1980-08-29 | 1986-08-20 | Fujisawa Pharmaceutical Co., Ltd. | New cephem compounds and processes for preparation thereof |
| US4416879A (en) | 1980-09-08 | 1983-11-22 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| GR78245B (en) | 1980-09-12 | 1984-09-26 | Ciba Geigy Ag | |
| US4367228A (en) | 1980-10-29 | 1983-01-04 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compound and composition |
| US4431642A (en) | 1980-12-01 | 1984-02-14 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| IT1142096B (en) | 1980-12-15 | 1986-10-08 | Fujisawa Pharmaceutical Co | 7-ACHYLAMINE CEPHALOSPORANIC ACID DERIVATIVES AND PROCEDURES FOR THEIR PREPARATION |
| US4427677A (en) | 1980-12-31 | 1984-01-24 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| EP0055465B1 (en) | 1980-12-31 | 1989-08-23 | Fujisawa Pharmaceutical Co., Ltd. | 7-acylaminocephalosporanic acid derivatives and processes for the preparation thereof |
| GR76342B (en) | 1981-02-02 | 1984-08-06 | Fujisawa Pharmaceutical Co | |
| US4336253A (en) | 1981-03-11 | 1982-06-22 | Eli Lilly And Company | Cephalosporin antibiotics |
| JPS6011917B2 (en) | 1981-04-09 | 1985-03-28 | 山之内製薬株式会社 | Novel cephalosporin compounds |
| DE3118732A1 (en) | 1981-05-12 | 1982-12-02 | Hoechst Ag, 6000 Frankfurt | CEPHALOSPORINE DERIVATIVES AND METHOD FOR THEIR PRODUCTION |
| JPS57193489A (en) | 1981-05-21 | 1982-11-27 | Fujisawa Pharmaceut Co Ltd | Syn-isomer of 7-substituted-3-cephem-4-carboxylic acid ester and its preparation |
| GR75487B (en) | 1981-06-22 | 1984-07-23 | Fujisawa Pharmaceutical Co | |
| IE53429B1 (en) | 1981-08-03 | 1988-11-09 | Fujisawa Pharmaceutical Co | New cephem compounds and processes for preparation thereof |
| US4436912A (en) | 1981-09-08 | 1984-03-13 | Eli Lilly And Company | 7-[2-(2-Aminooxazol-4-yl)-2-(oximino)acetamido cephalosporin antibiotics and intermediates therefor |
| US4430499A (en) | 1981-09-08 | 1984-02-07 | Eli Lilly And Company | 7-[2-(2-Aminooxazol-4-yl)-2-(oximino)acetamido]cephalosporin antibiotics |
| US4577014A (en) | 1981-09-08 | 1986-03-18 | Eli Lilly And Company | Thieno and furopyridinium-substituted cephalosporins |
| JPS5859991A (en) | 1981-09-14 | 1983-04-09 | Fujisawa Pharmaceut Co Ltd | Novel cephem compound and its preparation |
| US4521413A (en) | 1981-09-14 | 1985-06-04 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| US4402955A (en) | 1981-10-02 | 1983-09-06 | Eli Lilly And Company | Dioximino cephalosporin antibiotics |
| US4450270A (en) | 1981-10-02 | 1984-05-22 | Eli Lilly And Company | Dioximino cephalosporin antibiotics |
| US4501739A (en) | 1982-01-19 | 1985-02-26 | Eli Lilly And Company | Thieno and furopyridinium-substituted cephalosporins |
| DE3207840A1 (en) | 1982-03-04 | 1983-09-15 | Hoechst Ag, 6230 Frankfurt | "CEPHALOSPORINE DERIVATIVES AND METHOD FOR THE PRODUCTION THEREOF" |
| JPS58154547A (en) | 1982-03-09 | 1983-09-14 | Nippon Shinyaku Co Ltd | Stabilization of azulene derivative |
| US4640915A (en) | 1982-03-29 | 1987-02-03 | Fujisawa Pharmaceutical Co., Ltd. | 1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid derivatives |
| JPS58225091A (en) | 1982-06-21 | 1983-12-27 | Taiho Yakuhin Kogyo Kk | Penicillin derivative and its preparation |
| AU541028B2 (en) | 1982-06-21 | 1984-12-13 | Taiho Pharmaceutical Co., Ltd. | 6-unsubstituted penicillin derivatives |
| US4563449A (en) | 1982-07-19 | 1986-01-07 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| US4546101A (en) | 1982-09-10 | 1985-10-08 | Fujisawa Pharmaceutical Co., Ltd. | New cephem compounds useful for treating infectious diseases in human being and animals and processes for preparation thereof |
| GB8323034D0 (en) | 1983-08-26 | 1983-09-28 | Fujisawo Pharmaceutical Co Ltd | 7-substituted-3-vinyl-3-cephem compounds |
| US4609730A (en) | 1982-11-22 | 1986-09-02 | Fujisawa Pharmaceutical Co., Ltd. | 7-[substituted imino-2-(2-aminothiazol-4-yl)-acetamido]-3(2,2-dihalovinyl or ethynyl)-3-cephem-4-carboxylic acid (syn isomers), having antimicrobial activities |
| GR79043B (en) | 1982-12-06 | 1984-10-02 | Fujisawa Pharmaceutical Co | |
| US4608373A (en) | 1982-12-13 | 1986-08-26 | Yamanouchi Pharmaceutical Co., Ltd. | Cephem compounds |
| US4463003A (en) | 1982-12-22 | 1984-07-31 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| US4487768A (en) | 1982-12-22 | 1984-12-11 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| DE3247613A1 (en) | 1982-12-23 | 1984-07-05 | Hoechst Ag, 6230 Frankfurt | CEPHALOSPORINE DERIVATIVES AND METHOD FOR THEIR PRODUCTION |
| US4562073A (en) | 1982-12-24 | 1985-12-31 | Taiho Pharmaceutical Company Limited | Penicillin derivatives |
| US4499088A (en) | 1983-01-04 | 1985-02-12 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| DE3316798A1 (en) | 1983-05-07 | 1984-11-08 | Hoechst Ag, 6230 Frankfurt | METHOD FOR PRODUCING CEPHEM COMPOUNDS |
| FR2550200B1 (en) | 1983-08-01 | 1988-04-08 | Fujisawa Pharmaceutical Co | PROCESS FOR THE PREPARATION OF CEPHEM COMPOUNDS WITH ANTIMICROBIAL ACTIVITY AND NOVEL PRODUCTS THUS OBTAINED |
| JPS6045514A (en) | 1983-08-22 | 1985-03-12 | Shionogi & Co Ltd | Stable antibacterial lyophilized pharmactical preparation |
| DE3409431A1 (en) | 1983-10-08 | 1985-04-18 | Hoechst Ag, 6230 Frankfurt | CEPHALOSPORINE DERIVATIVES AND METHOD FOR THEIR PRODUCTION |
| EP0137442A3 (en) | 1983-10-08 | 1986-01-15 | Hoechst Aktiengesellschaft | Cephalosporin derivatives and process for their preparation |
| US4690921A (en) | 1983-10-11 | 1987-09-01 | Yamanouchi Pharmaceutical Co., Ltd. | Cephalosporin compounds and salts thereof |
| US4692443A (en) | 1983-10-17 | 1987-09-08 | Eli Lilly And Company | 3-bicyclicpyridinium-methyl cephalosporins |
| US4748172A (en) | 1983-10-17 | 1988-05-31 | Eli Lilly And Company | 3-bicyclicpyridinium-methyl cephalosporins |
| ZA847926B (en) | 1983-10-17 | 1986-05-28 | Lilly Co Eli | 3-bicyclicpyridinium-methyl cephalosporins |
| GB8329030D0 (en) | 1983-10-31 | 1983-11-30 | Fujisawa Pharmaceutical Co | Cephem compounds |
| GB8401093D0 (en) | 1984-01-16 | 1984-02-15 | Fujisawa Pharmaceutical Co | Cephem compounds |
| JPS60169486A (en) | 1984-02-10 | 1985-09-02 | Yamanouchi Pharmaceut Co Ltd | Preparation of 7-amino-3-substituted methyl-3-cephem-4- carboxylic acid and lower alkylsilyl derivative thereof |
| GB8406231D0 (en) | 1984-03-09 | 1984-04-11 | Fujisawa Pharmaceutical Co | Cephem compounds |
| JPS60214792A (en) | 1984-04-06 | 1985-10-28 | Taiho Yakuhin Kogyo Kk | Penamic acid ester derivatives |
| US4705851A (en) | 1984-09-28 | 1987-11-10 | Fujisawa Pharmaceutical Co., Ltd. | Process for the preparation of 3-phosphoniummethyl-3-cephem compounds |
| US4761410A (en) | 1985-01-14 | 1988-08-02 | Fujisawa Pharmaceutical Co., Ltd. | Cephem Compounds |
| US4808711A (en) | 1985-01-21 | 1989-02-28 | Sankei Pharmaceutical Co., Ltd. | Cephalosporin derivatives |
| GB8504072D0 (en) | 1985-02-18 | 1985-03-20 | Fujisawa Pharmaceutical Co | Cephem compounds |
| JPS62103092A (en) | 1985-07-18 | 1987-05-13 | Sagami Chem Res Center | Beta-lactam derivative |
| JPS6230789A (en) | 1985-08-01 | 1987-02-09 | Yamanouchi Pharmaceut Co Ltd | 7-formylaminocephalosporin compound and production thereof |
| US5194432A (en) | 1985-11-22 | 1993-03-16 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| CN86107947A (en) | 1985-11-22 | 1987-05-27 | 藤沢药品工业株式会社 | New cephem compounds and preparation method thereof |
| US4808617A (en) | 1985-12-18 | 1989-02-28 | Bristol-Myers Company | Lyophilized or precipitated cephalosporin zwitterion and salt combination |
| JPS62158290A (en) | 1985-12-28 | 1987-07-14 | Banyu Pharmaceut Co Ltd | Novel cephalosporin derivative |
| DE3789466T2 (en) | 1986-03-17 | 1994-07-28 | Fujisawa Pharmaceutical Co | 3,7-disubstituted-3-cephem compounds and process for their preparation. |
| JP2690009B2 (en) | 1986-07-10 | 1997-12-10 | エーザイ 株式会社 | Cefalosporin injection |
| US4833134A (en) | 1986-08-19 | 1989-05-23 | Takeda Chemical Industries, Ltd. | Cephem compounds |
| JPS6351388A (en) | 1986-08-22 | 1988-03-04 | Teijin Ltd | Cephalosporin derivative, production thereof and composition having antimicrobial activity |
| JPS6351389A (en) | 1986-08-22 | 1988-03-04 | Teijin Ltd | Cephalosporin derivative, production thereof and composition having antimicrobial activity |
| US5162520A (en) | 1986-09-22 | 1992-11-10 | Fujisawa Pharmaceutical Co., Ltd. | Intermediates for cephem compounds |
| CA1293719C (en) | 1986-09-22 | 1991-12-31 | Takao Takaya | Cephem compounds and processes for preparation thereof |
| US4882434A (en) | 1986-10-29 | 1989-11-21 | Takeda Chemical Industries, Ltd. | Gamma-lactonecarboxylic acid derivatives and their use as antibacterial agents or intermediates |
| KR880006244A (en) | 1986-11-24 | 1988-07-22 | 후지사와 도모 기찌 로 | 3-Pyrrolidinylthio-1-azabibischloro [3.2.0] hapt2-ene-2-carboxylic acid compound and preparation method thereof |
| EP0272455B1 (en) | 1986-11-24 | 1993-02-10 | Fujisawa Pharmaceutical Co., Ltd. | 3-Pyrrolidinylthio-1-azabicyclo [3.2.0] hept-2-ene-2-carboxylic acid compounds |
| AU1630988A (en) | 1987-05-30 | 1988-12-01 | Kyoto Pharmaceutical Industries, Ltd. | Cephalosporin compound and pharmaceutical composition thereof |
| IE61679B1 (en) | 1987-08-10 | 1994-11-16 | Fujisawa Pharmaceutical Co | Water-soluble antibiotic composition and water-soluble salts of new cephem compounds |
| EP0303172A3 (en) | 1987-08-14 | 1991-05-15 | F. Hoffmann-La Roche Ag | Oxyimino-cephalosporins |
| US5073550A (en) | 1987-08-14 | 1991-12-17 | Hoffmann-La Roche Inc. | Cephalosphorins with sulfur-containing oxyimino side chain |
| US5138066A (en) | 1987-08-14 | 1992-08-11 | Hoffmann-La Roche, Inc. | Intermediates for cephalosporins with sulfur-containing oxyimino side chain |
| ZA885709B (en) | 1987-08-19 | 1989-04-26 | Fujisawa Pharmaceutical Co | Novel crystalline 7-(2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido)-3-vinyl-3-cephem-4-carboxylic acid(syn isomer) |
| US5210080A (en) | 1987-09-07 | 1993-05-11 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| US5663163A (en) | 1987-09-07 | 1997-09-02 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds and processes for preparation thereof |
| IE63094B1 (en) | 1987-09-14 | 1995-03-22 | Fujisawa Pharmaceutical Co | Cephem compound and a process for preparation thereof |
| DK637888A (en) | 1987-11-24 | 1989-05-25 | Hoffmann La Roche | carboxylic esters |
| GB8804058D0 (en) | 1988-02-22 | 1988-03-23 | Fujisawa Pharmaceutical Co | 3-alkenyl-1-azabicyclo(3 2 0)hept-2-ene-2-carboxylic acid compounds |
| JP2648750B2 (en) | 1988-03-02 | 1997-09-03 | 大塚化学株式会社 | Method for producing β-lactam derivative |
| US5173485A (en) | 1988-03-09 | 1992-12-22 | Fujisawa Pharmaceutical Company, Ltd. | Cephem compounds |
| CS273349B2 (en) | 1988-03-31 | 1991-03-12 | Hoffmann La Roche | Method of cephalosporin's new derivatives production |
| US5336768A (en) | 1988-05-24 | 1994-08-09 | Hoffmann-La Roche Inc. | Antibacterial cephalosporin compounds |
| KR900006811B1 (en) | 1988-05-11 | 1990-09-21 | 주식회사 럭 키 | Cephalosphorin derivatives and its process |
| US4963544A (en) | 1988-05-23 | 1990-10-16 | Fujisawa Pharmaceutical Company, Ltd. | 3-pyrrolidinylthio-1-azabicyclo[3.2.0]-hept-2-ene-2-carboxylic acid compounds |
| US5244890A (en) | 1988-06-06 | 1993-09-14 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| EP0366189A3 (en) | 1988-10-24 | 1992-01-02 | Norwich Eaton Pharmaceuticals, Inc. | Novel antimicrobial lactam-quinolones |
| JP2785195B2 (en) | 1989-01-11 | 1998-08-13 | ソニー株式会社 | Optical encoder for disk drive |
| GB8905301D0 (en) | 1989-03-08 | 1989-04-19 | Fujisawa Pharmaceutical Co | New cephem compound and a process for preparation thereof |
| US5081116A (en) | 1989-04-12 | 1992-01-14 | Yamanouchi Pharmaceutical Co., Ltd. | Cephalosporin derivatives |
| US5102877A (en) | 1989-04-28 | 1992-04-07 | Fujisawa Pharmaceutical Co., Ltd. | 1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid compounds |
| NO903360L (en) | 1989-08-11 | 1991-02-12 | Ici Pharma | ANTIBIOTIC COMPOUNDS. |
| GB8923844D0 (en) | 1989-10-23 | 1989-12-13 | Fujisawa Pharmaceutical Co | Carbapenem compounds |
| US5215982A (en) | 1989-11-10 | 1993-06-01 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| US4982596A (en) | 1990-01-26 | 1991-01-08 | Buell Industries, Inc. | Die for manufacturing a fastener blank |
| KR910015587A (en) | 1990-02-27 | 1991-09-30 | 후지사와 토모키치로 | Cefem compound |
| US5234920A (en) | 1990-08-23 | 1993-08-10 | Bristol-Myers Squibb Company | Antibiotic C-7 catechol-substituted cephalosporin compounds, compositions, and method of use thereof |
| US5095012A (en) | 1990-08-23 | 1992-03-10 | Bristol-Myers Squibb Company | Antibiotic c-7 catechol-substituted cephalosporin compounds, compositions, and method of use thereof |
| US5286721A (en) | 1990-10-15 | 1994-02-15 | Fujisawa Pharmaceutical Co., Ltd. | 1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid compounds |
| GB9023479D0 (en) | 1990-10-29 | 1990-12-12 | Fujisawa Pharmaceutical Co | New cephem compounds and processes for preparation thereof |
| US5281589A (en) | 1991-06-15 | 1994-01-25 | Cheil Foods & Chemicals, Inc. | 3-fused pyridiniummethyl cephalosporins |
| US5523400A (en) | 1993-04-16 | 1996-06-04 | Hoffmann-La Roche Inc. | Cephalosporin antibiotics |
| KR100194994B1 (en) | 1993-06-05 | 1999-06-15 | 손경식 | New cefem compound |
| CA2145078C (en) | 1993-11-06 | 1999-08-10 | Georg Trickes | Crystalline penicillin derivative, and its production and use |
| EP0664117A1 (en) | 1994-01-25 | 1995-07-26 | F. Hoffmann-La Roche Ag | Liposome solutions |
| TW293010B (en) | 1994-04-20 | 1996-12-11 | Hui-Po Wang | Method for preparing cephalosporin derivatives |
| EP0723966A4 (en) | 1994-08-16 | 1997-01-29 | Meiji Seika Co | Novel cephem derivative |
| DE4440141A1 (en) | 1994-11-10 | 1996-05-15 | Hoechst Ag | Novel crystalline cephem acid addition salts and process for their preparation |
| JPH09110877A (en) | 1995-10-17 | 1997-04-28 | Katayama Seiyakushiyo:Kk | Cephem compound, its production and antibacterial agent containing the compound |
| CN1088711C (en) | 1996-04-04 | 2002-08-07 | 盐野义制药株式会社 | Cephem compound and medicine containing the compound |
| AUPN955596A0 (en) | 1996-04-30 | 1996-05-23 | Fujisawa Pharmaceutical Co., Ltd. | New compound |
| EP0970065A4 (en) | 1997-11-29 | 2001-03-07 | William L Truett | Antibiotics and process for preparation |
| US6235311B1 (en) | 1998-03-18 | 2001-05-22 | Bristol-Myers Squibb Company | Pharmaceutical composition containing a combination of a statin and aspirin and method |
| WO1999063929A2 (en) | 1998-06-08 | 1999-12-16 | Advanced Medicine, Inc. | Multibinding inhibitors of microsomal triglyceride transferase protein |
| WO2000004915A1 (en) | 1998-07-23 | 2000-02-03 | Intrabiotics Pharmaceuticals, Inc. | Compositions and methods for the treatment or prevention of pulmonary infections |
| TW526202B (en) | 1998-11-27 | 2003-04-01 | Shionogi & Amp Co | Broad spectrum cephem having benzo[4,5-b]pyridium methyl group of antibiotic activity |
| CN1109688C (en) | 1999-01-12 | 2003-05-28 | 中国药品生物制品检定所 | Preparation and application of tazobactam semihydrate |
| US6207661B1 (en) | 1999-02-22 | 2001-03-27 | Baxter International Inc. | Premixed formulation of piperacillin sodium and tazobactam sodium injection |
| TWI233805B (en) | 1999-07-01 | 2005-06-11 | Fujisawa Pharmaceutical Co | Stabilized pharmaceutical composition in lyophilized form as antifungal agent |
| US6610681B1 (en) | 1999-08-16 | 2003-08-26 | Revaax Pharmaceuticals, Llc | Neurotherapeutic clavulanate composition and method |
| BR0110290A (en) | 2000-04-24 | 2003-02-18 | Daiichi Seiyaku Co | Stabilized liquid preparation |
| WO2011101710A1 (en) | 2010-02-16 | 2011-08-25 | Wockhardt Research Centre | Efflux pump inhibitors |
| JP3743822B2 (en) | 2000-08-11 | 2006-02-08 | 大塚化学ホールディングス株式会社 | Penicillin crystals and production method thereof |
| JP3743823B2 (en) | 2000-08-11 | 2006-02-08 | 大塚化学ホールディングス株式会社 | Penicillin crystals and production method thereof |
| US6599893B2 (en) | 2000-08-29 | 2003-07-29 | Essential Therapeutics, Inc. | Cephalosporin antibiotics and prodrugs thereof |
| US7179801B2 (en) | 2001-05-01 | 2007-02-20 | Astellas Pharma Inc. | Cephem compounds |
| JP3306473B1 (en) | 2001-05-01 | 2002-07-24 | 大塚化学株式会社 | Anhydrous crystal of β-lactam compound and method for producing the same |
| JP2002338578A (en) | 2001-05-14 | 2002-11-27 | Otsuka Chem Co Ltd | Hydrate crystals of β-lactam compounds |
| WO2002102378A1 (en) | 2001-06-18 | 2002-12-27 | Revaax Pharmaceuticals, Llc | Therapeutic treatment for sexual dysfunction |
| TWI335332B (en) | 2001-10-12 | 2011-01-01 | Theravance Inc | Cross-linked vancomycin-cephalosporin antibiotics |
| US7378408B2 (en) | 2001-11-30 | 2008-05-27 | Pfizer Inc. | Methods of treatment and formulations of cephalosporin |
| WO2003066053A1 (en) | 2002-02-07 | 2003-08-14 | Rutgers, The State University | Antibiotic polymers |
| TW200305422A (en) | 2002-03-18 | 2003-11-01 | Shionogi & Co | Broad spectrum cefem compounds |
| JP4347799B2 (en) | 2002-05-24 | 2009-10-21 | セラヴァンス, インコーポレーテッド | Cross-linked glycopeptide-cephalosporin antibiotics |
| CA2487883C (en) | 2002-06-07 | 2011-04-19 | Orchid Chemicals & Pharmaceuticals Limited | Process for preparation of penam derivatives from cepham derivatives |
| WO2004019901A2 (en) | 2002-08-30 | 2004-03-11 | Orchid Chemicals & Pharmaceuticals Ltd. | Sustained release pharmaceutical composition |
| US9211259B2 (en) | 2002-11-29 | 2015-12-15 | Foamix Pharmaceuticals Ltd. | Antibiotic kit and composition and uses thereof |
| AU2002952355A0 (en) | 2002-10-30 | 2002-11-14 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| ATE368042T1 (en) | 2002-10-30 | 2007-08-15 | Astellas Pharma Inc | CEPHEMEM COMPOUNDS |
| WO2004039776A2 (en) | 2002-11-01 | 2004-05-13 | Orchid Chemicals & Pharmaceuticals Ltd | A process for the preparation of benzyl 2-oxo-4- (heteroaryl) dithio-alpha-isoprenyl-1- azetidineazetate derivatives |
| KR20050083971A (en) | 2002-11-22 | 2005-08-26 | 더 존스 홉킨스 유니버시티 | Target for therapy of cognitive impairment |
| DE10304403A1 (en) | 2003-01-28 | 2004-08-05 | Röhm GmbH & Co. KG | Process for the preparation of an oral dosage form with immediate disintegration and drug release |
| SI1468697T1 (en) | 2003-04-14 | 2008-04-30 | Wyeth Corp | Compositions containing piperacillin and tazobactam useful for injection |
| AU2003230899A1 (en) | 2003-04-14 | 2004-11-26 | Wyeth Holdings Corporation | Compositions containing piperacillin and tazobactam useful for injection |
| AU2003902380A0 (en) | 2003-05-16 | 2003-06-05 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
| JP2007500222A (en) | 2003-05-23 | 2007-01-11 | セラヴァンス インコーポレーテッド | Cross-linked glycopeptide-cephalosporin antibiotics |
| ATE388153T1 (en) | 2003-07-11 | 2008-03-15 | Theravance Inc | CROSS-LINKED GLYCOPEPTIDE CEPHALOSPORIN ANTIBIOTICS |
| US8173840B2 (en) | 2003-07-29 | 2012-05-08 | Signature R&D Holdings, Llc | Compounds with high therapeutic index |
| US7589233B2 (en) | 2003-07-29 | 2009-09-15 | Signature R&D Holdings, Llc | L-Threonine derivatives of high therapeutic index |
| US7273935B2 (en) | 2003-08-21 | 2007-09-25 | Orchid Chemicals & Pharmaceuticals, Ltd. | Process for the preparation of 3-methylcepham derivatives |
| US7192943B2 (en) | 2003-09-18 | 2007-03-20 | Astellas Pharma Inc. | Cephem compounds |
| FR2860235A1 (en) | 2003-09-29 | 2005-04-01 | Yang Ji Chemical Company Ltd | USE OF A COMPOUND OF FORMULA (I) INHIBITOR OF AROMATASE FOR THERAPEUTIC PURPOSES AND COMPOUNDS OF FORMULA (I) AS SUCH |
| TW200523264A (en) | 2003-10-09 | 2005-07-16 | Otsuka Chemical Co Ltd | CMPB crystal and method for producing the same |
| TW200519119A (en) | 2003-10-10 | 2005-06-16 | Otsuka Chemical Co Ltd | PENAM crystal and process for producing the same |
| JP4535366B2 (en) | 2003-12-03 | 2010-09-01 | 塩野義製薬株式会社 | Method for producing cephem agent |
| CN1913890A (en) | 2004-01-30 | 2007-02-14 | 惠氏公司 | Compositions substantially free of galactomannan containing piperacillin and tazobactam |
| US20060019914A1 (en) | 2004-02-11 | 2006-01-26 | University Of Tennessee Research Foundation | Inhibition of tumor growth and invasion by anti-matrix metalloproteinase DNAzymes |
| EP1721906A4 (en) | 2004-03-05 | 2008-02-27 | Shionogi & Co | 3-pyridinium methylcephem compound |
| US7417143B2 (en) | 2004-04-07 | 2008-08-26 | Orchid Chemicals & Pharmaceuticals Limited | Process for the preparation of Tazobactam in pure form |
| BRPI0516583A (en) | 2004-10-14 | 2008-09-16 | Wyeth Corp | pharmaceutical composition and method of treating a bacterial infection |
| US20060099253A1 (en) | 2004-10-20 | 2006-05-11 | Wyeth | Antibiotic product formulation |
| US20060173177A1 (en) | 2005-01-28 | 2006-08-03 | Gego Csaba L | Process for preparation of penam derivatives |
| BRPI0607168A2 (en) | 2005-02-14 | 2009-08-11 | Venus Remedies Ltd | parenteral combination therapy, pharmaceutical composition, process for preparing a pharmaceutical composition and method of treatment |
| WO2006088305A1 (en) | 2005-02-15 | 2006-08-24 | Chong Kun Dang Pharmaceutical Corp. | Gastric-retentive controlled release mono-matrix tablet |
| AU2006339311A1 (en) | 2005-06-07 | 2007-09-07 | Foamix Ltd. | Antibiotic kit and composition and uses thereof |
| ITMI20051630A1 (en) | 2005-09-02 | 2007-03-03 | Acs Dobfar Spa | INJECTABLE STERILE PHARMACEUTICAL FORMULATION CONTAINING AT LEAST TWO ACTIVE PRINCIPLES |
| KR101424518B1 (en) | 2005-09-29 | 2014-08-06 | 노바르티스 아게 | Antibiotic formulations, unit doses, kits, and methods |
| EP1787641A1 (en) | 2005-11-22 | 2007-05-23 | Helm AG | Tazobactam-piperacillin lyophilisate |
| JP5004964B2 (en) | 2005-12-05 | 2012-08-22 | サンド・アクチエンゲゼルシヤフト | Process for the preparation of freeze-dried piperacillin sodium with improved stability after re-dissolution |
| WO2007086014A1 (en) | 2006-01-25 | 2007-08-02 | Jegannathan Srinivas | Formulation comprising cefpirome, tazobactam and linezolid |
| WO2007086011A1 (en) | 2006-01-25 | 2007-08-02 | Jegannathan Srinivas | Formulation comprising cefepime, tazobactam and linezolid |
| WO2007086013A1 (en) | 2006-01-25 | 2007-08-02 | Jegannathan Srinivas | Formulation comprising of ceftazidime, tazobactam and linezolid |
| WO2008075207A2 (en) | 2006-04-04 | 2008-06-26 | Foamix Ltd. | Anti-infection augmentation foamable compositions and kit and uses thereof |
| US20090275552A1 (en) | 2006-04-28 | 2009-11-05 | Mahesh Vithalbhai Patel | Therapy for Treating Resistant Bacterial Infections |
| US20070286817A1 (en) | 2006-06-07 | 2007-12-13 | Wyeth | Treating cystic fibrosis with antibiotics via a swirler delivery |
| US20070286818A1 (en) | 2006-06-07 | 2007-12-13 | Wyeth | Treating cystic fibrosis with antibiotics via an aerosol drug |
| WO2007145868A1 (en) | 2006-06-07 | 2007-12-21 | Wyeth | Treating cystic fibrosis with antibiotics via an aerosol drug |
| WO2007145866A1 (en) | 2006-06-07 | 2007-12-21 | Wyeth | Treating cystic fibrosis with antibiotics via a swirler delivery |
| WO2008010048A2 (en) | 2006-07-12 | 2008-01-24 | Orchid Chemicals & Pharmaceuticals Limited | Novel 2-substituted methyl penam derivatives |
| CN101129383B (en) | 2006-08-25 | 2014-04-02 | 天津和美生物技术有限公司 | Antibiotic compound containing aminoglycoside antibiotic |
| CN101129382B (en) | 2006-08-25 | 2013-12-25 | 天津和美生物技术有限公司 | Antibiotic compound containing beta-lactam antibiotic and buffering component |
| CN101129381B (en) | 2006-08-25 | 2012-02-01 | 天津和美生物技术有限公司 | Combination of Antibiotics Containing β-Lactam Antibiotics and Ion Chelating Agents |
| NZ575435A (en) | 2006-09-07 | 2012-01-12 | Merial Ltd | Soft chewable, tablet, and long-acting injectable veterinary antibiotic formulations |
| US20080103121A1 (en) | 2006-10-30 | 2008-05-01 | Gole Dilip J | Cephalosporin derivative formulation |
| FI119678B (en) | 2006-11-28 | 2009-02-13 | Ipsat Therapies Oy | Use of beta-lactamase |
| CN101547898B (en) | 2006-12-10 | 2014-09-24 | 于崇曦 | Transdermal drug delivery system for β-lactam antibiotics |
| DE102007009242A1 (en) | 2007-02-22 | 2008-09-18 | Evonik Röhm Gmbh | Pellets with enteric-coated matix |
| ES2704439T3 (en) | 2007-03-20 | 2019-03-18 | Scf Pharma Inc | Compositions comprising monoglycerides of polyunsaturated fatty acids or derivatives thereof and uses thereof |
| ITMI20070568A1 (en) | 2007-03-22 | 2008-09-23 | Acs Dobfar Spa | INJECTABLE STERILE PHARMACEUTICAL COMOSIATION HAVING PIPERACILLIN SODIUM AND TAZOBACTAM SODIUM AS ACTIVE PRINCIPLES |
| US20090098088A1 (en) | 2007-10-10 | 2009-04-16 | The Procter & Gamble Company | Methods And Kits For The Treatment Of Diverticular Conditions |
| CA2716514A1 (en) | 2008-02-21 | 2009-08-27 | Sequoia Pharmaceuticals, Inc. | Hiv protease inhibitor and cytochrome p450 inhibitor combinations |
| KR20100137439A (en) | 2008-03-04 | 2010-12-30 | 엘란 파마 인터내셔널 리미티드 | Stability of Anti-Infective Liquid Formulations and Adjusted Dose Therapy of Anti-Infectives |
| ITPI20080025A1 (en) | 2008-03-31 | 2009-10-01 | Italmed S R L | COMPOSITION FOR DENTAL USE FOR THE TREATMENT OF PERIMPLANTS |
| BRPI0911998A2 (en) | 2008-05-01 | 2015-10-13 | Procter & Gamble | Methods and Kits for the Treatment of Inflammatory Bowel Disorder Conditions |
| US20110190252A1 (en) | 2008-07-30 | 2011-08-04 | Alan Watson | Compositions including clavulanic acid and related methods of use |
| CN101434610B (en) | 2008-12-19 | 2011-07-20 | 齐鲁天和惠世制药有限公司 | Penam iodide, preparation and use thereof |
| CN105566213B (en) | 2009-06-10 | 2019-11-12 | 上海泰飞尔生化技术有限公司 | The prodrugs composition of antimicrobial and antimicrobial related compound with high-penetration |
| MX2012001156A (en) | 2009-07-28 | 2012-05-08 | Anacor Pharmaceuticals Inc | Trisubstituted boron-containing molecules. |
| CN101696212B (en) | 2009-08-28 | 2012-01-11 | 海南美大制药有限公司 | High-purity tazobactam sodium compound |
| EP2544528A1 (en) | 2010-03-09 | 2013-01-16 | Merck Sharp & Dohme Corp. | FtsZ INHIBITORS AS POTENTIATORS OF BETA-LACTAM ANTIBIOTICS AGAINST METHICILLIN-RESISTANT STAPHYLOCOCCUS |
| JP2013523830A (en) | 2010-04-06 | 2013-06-17 | プリサイエンス ラブス, エルエルシー | Methods of treatment with 3-bromopyruvate and other selective inhibitors of ATP production |
| CN102020663B (en) | 2010-11-24 | 2013-04-03 | 山东鑫泉医药有限公司 | Tazobactam synthesis method |
| CN102382123A (en) | 2011-03-10 | 2012-03-21 | 海南美好西林生物制药有限公司 | Preparation method of tazobactam sodium |
| WO2013014497A1 (en) | 2011-07-26 | 2013-01-31 | Wockhardt Limited | Pharmaceutical compositions comprising beta-lactam antibiotic, sulbactam and beta-lactamase inhibitor |
| DK2748165T3 (en) | 2011-08-27 | 2016-12-19 | Wockhardt Ltd | 1,6-diazabicyclo [3,2,1] octane-7-ON DERIVATIVES AND THEIR USE IN THE TREATMENT OF BACTERIAL INFECTIONS |
| SI3616695T1 (en) | 2011-09-09 | 2025-01-31 | Merck Sharp & Dohme Llc | Ceftolozane/tazobactam for treating intrapulmonary infections |
| US8916709B2 (en) | 2012-03-30 | 2014-12-23 | Cubist Pharmaceuticals, Inc. | 1,2,4-oxadiazole and 1,2,4-thiadiazole β-lactamase inhibitors |
| KR20150003777A (en) | 2012-03-30 | 2015-01-09 | 큐비스트 파마슈티컬즈 인코포레이티드 | ISOXAZOLE β-LACTAMASE INHIBITORS |
| MX2014011827A (en) | 2012-03-30 | 2015-02-20 | Cubist Pharm Inc | 1,3,4-OXADIAZOLE AND 1,3,4-THIADIAZOLE ß-LACTAMASE INHIBITORS. |
| US8969570B2 (en) | 2012-03-30 | 2015-03-03 | Cubist Pharmaceuticals, Inc. | Beta-lactamase inhibitors |
| US8809314B1 (en) | 2012-09-07 | 2014-08-19 | Cubist Pharmacueticals, Inc. | Cephalosporin compound |
| US8476425B1 (en) | 2012-09-27 | 2013-07-02 | Cubist Pharmaceuticals, Inc. | Tazobactam arginine compositions |
| BR112015006868B1 (en) | 2012-09-27 | 2021-11-30 | Merck Sharp & Dohme Corp | PHARMACEUTICAL COMPOSITION OF CRYSTALLINE TAZOBACTAM-ARGININE AND BETA-LACTAMIC COMPOUND, ITS USE, METHOD FOR MAKING A PHARMACEUTICAL COMPOSITION AND USE OF CRYSTALLINE TAZOBACTAM-ARGININE AND BETA-LACTAMIC COMPOUND |
| CN110279698B (en) | 2013-03-15 | 2022-10-28 | 默沙东有限责任公司 | Ceftolozane antibiotic compositions |
| US9872906B2 (en) * | 2013-03-15 | 2018-01-23 | Merck Sharp & Dohme Corp. | Ceftolozane antibiotic compositions |
| US20140274997A1 (en) | 2013-03-15 | 2014-09-18 | Cubist Pharmaceuticals, Inc. | Cephalosporin pharmaceutical compositions |
| US20150072968A1 (en) * | 2013-09-09 | 2015-03-12 | Calixa Therapeutics, Inc. | Treating Infections with Ceftolozane/Tazobactam in Subjects Having Impaired Renal Function |
| US20160228448A1 (en) * | 2013-09-27 | 2016-08-11 | Merck Sharp & Dohme Corp. | Solid Forms of Ceftolozane |
-
2014
- 2014-03-14 US US14/214,417 patent/US20140274997A1/en not_active Abandoned
- 2014-03-14 US US14/214,212 patent/US20140274993A1/en not_active Abandoned
- 2014-03-14 US US14/213,532 patent/US20140274991A1/en not_active Abandoned
- 2014-03-14 US US14/214,367 patent/US20140274996A1/en not_active Abandoned
- 2014-03-14 US US14/214,221 patent/US9320740B2/en active Active
- 2014-03-14 US US14/212,590 patent/US20140275000A1/en not_active Abandoned
- 2014-03-14 US US14/212,781 patent/US20140274990A1/en not_active Abandoned
- 2014-05-22 US US14/285,185 patent/US8968753B2/en active Active
- 2014-10-24 US US14/522,893 patent/US20150045336A1/en not_active Abandoned
- 2014-11-03 US US14/531,352 patent/US20150150883A1/en not_active Abandoned
-
2016
- 2016-03-16 US US15/071,530 patent/US9925196B2/en active Active
-
2018
- 2018-02-13 US US15/895,279 patent/US20180169106A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8906898B1 (en) * | 2013-09-27 | 2014-12-09 | Calixa Therapeutics, Inc. | Solid forms of ceftolozane |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9724353B2 (en) | 2011-09-09 | 2017-08-08 | Merck Sharp & Dohme Corp. | Methods for treating intrapulmonary infections |
| US10028963B2 (en) | 2011-09-09 | 2018-07-24 | Merck Sharp & Dohme Corp. | Methods for treating intrapulmonary infections |
| US8968753B2 (en) | 2013-03-15 | 2015-03-03 | Calixa Therapeutics, Inc. | Ceftolozane-tazobactam pharmaceutical compositions |
| US9044485B2 (en) | 2013-03-15 | 2015-06-02 | Calixa Therapeutics, Inc. | Ceftolozane antibiotic compositions |
| US9320740B2 (en) | 2013-03-15 | 2016-04-26 | Merck Sharp & Dohme Corp. | Ceftolozane-tazobactam pharmaceutical compositions |
| US9872906B2 (en) | 2013-03-15 | 2018-01-23 | Merck Sharp & Dohme Corp. | Ceftolozane antibiotic compositions |
| US9925196B2 (en) | 2013-03-15 | 2018-03-27 | Merck Sharp & Dohme Corp. | Ceftolozane-tazobactam pharmaceutical compositions |
| US10420841B2 (en) | 2013-03-15 | 2019-09-24 | Merck, Sharp & Dohme Corp. | Ceftolozane antibiotic compositions |
| US11278622B2 (en) | 2013-03-15 | 2022-03-22 | Merck Sharp & Dohme Corp. | Ceftolozane antibiotic compositions |
| US10376496B2 (en) | 2013-09-09 | 2019-08-13 | Merck, Sharp & Dohme Corp. | Treating infections with ceftolozane/tazobactam in subjects having impaired renal function |
| US10933053B2 (en) | 2013-09-09 | 2021-03-02 | Merck Sharp & Dohme Corp. | Treating infections with ceftolozane/tazobactam in subjects having impaired renal function |
Also Published As
| Publication number | Publication date |
|---|---|
| US20140274998A1 (en) | 2014-09-18 |
| US20140274997A1 (en) | 2014-09-18 |
| US20140274991A1 (en) | 2014-09-18 |
| US8968753B2 (en) | 2015-03-03 |
| US20150045336A1 (en) | 2015-02-12 |
| US9320740B2 (en) | 2016-04-26 |
| US20160193221A1 (en) | 2016-07-07 |
| US20180169106A1 (en) | 2018-06-21 |
| US20140274993A1 (en) | 2014-09-18 |
| US20150150883A1 (en) | 2015-06-04 |
| US9925196B2 (en) | 2018-03-27 |
| US20140274990A1 (en) | 2014-09-18 |
| US20140262868A1 (en) | 2014-09-18 |
| US20140275000A1 (en) | 2014-09-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7177314B2 (en) | Ceftolozane antibiotic composition | |
| US11278622B2 (en) | Ceftolozane antibiotic compositions | |
| US20140274996A1 (en) | Tazobactam and ceftolozane antibiotic compositions | |
| AU2015200599B2 (en) | Ceftolozane Antibiotic Compositions | |
| NZ711823B2 (en) | Ceftolozane antibiotic compositions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CUBIST PHARMACEUTICALS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAMOUR, NICOLE MILLER;TERRACCIANO, JOSEPH;REEL/FRAME:032884/0414 Effective date: 20140507 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: CALIXA THERAPEUTICS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CUBIST PHARMACEUTICALS, INC.;REEL/FRAME:037190/0908 Effective date: 20140603 |
|
| AS | Assignment |
Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CALIXA THERAPEUTICS, INC.;REEL/FRAME:037198/0658 Effective date: 20150610 |