US20140271677A1 - Newcastle Disease Viruses and Uses Thereof - Google Patents
Newcastle Disease Viruses and Uses Thereof Download PDFInfo
- Publication number
- US20140271677A1 US20140271677A1 US14/205,776 US201414205776A US2014271677A1 US 20140271677 A1 US20140271677 A1 US 20140271677A1 US 201414205776 A US201414205776 A US 201414205776A US 2014271677 A1 US2014271677 A1 US 2014271677A1
- Authority
- US
- United States
- Prior art keywords
- ndv
- cell
- chimeric
- cancer
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 241000711404 Avian avulavirus 1 Species 0.000 title claims abstract description 724
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 364
- 201000011510 cancer Diseases 0.000 claims abstract description 209
- 210000002865 immune cell Anatomy 0.000 claims abstract description 170
- 239000005557 antagonist Substances 0.000 claims abstract description 156
- 239000000203 mixture Substances 0.000 claims abstract description 137
- 239000000556 agonist Substances 0.000 claims abstract description 126
- 238000000034 method Methods 0.000 claims abstract description 117
- 241000700605 Viruses Species 0.000 claims abstract description 90
- 210000004027 cell Anatomy 0.000 claims description 231
- 108010068327 4-hydroxyphenylpyruvate dioxygenase Proteins 0.000 claims description 156
- 239000003446 ligand Substances 0.000 claims description 85
- 108091008042 inhibitory receptors Proteins 0.000 claims description 64
- 108091008034 costimulatory receptors Proteins 0.000 claims description 53
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 49
- 239000008194 pharmaceutical composition Substances 0.000 claims description 44
- 102000005962 receptors Human genes 0.000 claims description 39
- 108020003175 receptors Proteins 0.000 claims description 39
- 102000004127 Cytokines Human genes 0.000 claims description 34
- 108090000695 Cytokines Proteins 0.000 claims description 34
- 208000015181 infectious disease Diseases 0.000 claims description 31
- 201000001441 melanoma Diseases 0.000 claims description 25
- 108010021064 CTLA-4 Antigen Proteins 0.000 claims description 22
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 claims description 22
- 102100040678 Programmed cell death protein 1 Human genes 0.000 claims description 17
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 claims description 14
- 108010002350 Interleukin-2 Proteins 0.000 claims description 14
- 102000000588 Interleukin-2 Human genes 0.000 claims description 14
- 102100020862 Lymphocyte activation gene 3 protein Human genes 0.000 claims description 14
- 102100029822 B- and T-lymphocyte attenuator Human genes 0.000 claims description 13
- 101710144268 B- and T-lymphocyte attenuator Proteins 0.000 claims description 13
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 claims description 13
- 102000002698 KIR Receptors Human genes 0.000 claims description 13
- 108010043610 KIR Receptors Proteins 0.000 claims description 13
- 239000003937 drug carrier Substances 0.000 claims description 12
- 101710089372 Programmed cell death protein 1 Proteins 0.000 claims description 11
- 206010009944 Colon cancer Diseases 0.000 claims description 10
- 101001068133 Homo sapiens Hepatitis A virus cellular receptor 2 Proteins 0.000 claims description 10
- 102100030703 Interleukin-22 Human genes 0.000 claims description 9
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 claims description 9
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 claims description 9
- 102100027207 CD27 antigen Human genes 0.000 claims description 8
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 claims description 8
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 claims description 8
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 claims description 8
- 238000009472 formulation Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 206010006187 Breast cancer Diseases 0.000 claims description 7
- 208000026310 Breast neoplasm Diseases 0.000 claims description 7
- 101150013553 CD40 gene Proteins 0.000 claims description 7
- 101000851370 Homo sapiens Tumor necrosis factor receptor superfamily member 9 Proteins 0.000 claims description 7
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 claims description 7
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 claims description 7
- 102100036856 Tumor necrosis factor receptor superfamily member 9 Human genes 0.000 claims description 7
- 230000001902 propagating effect Effects 0.000 claims description 7
- 102100025221 CD70 antigen Human genes 0.000 claims description 6
- 206010018338 Glioma Diseases 0.000 claims description 6
- 101000934356 Homo sapiens CD70 antigen Proteins 0.000 claims description 6
- 102000003812 Interleukin-15 Human genes 0.000 claims description 6
- 108090000172 Interleukin-15 Proteins 0.000 claims description 6
- 108010002586 Interleukin-7 Proteins 0.000 claims description 6
- 102100021592 Interleukin-7 Human genes 0.000 claims description 6
- 108010061593 Member 14 Tumor Necrosis Factor Receptors Proteins 0.000 claims description 6
- 208000006265 Renal cell carcinoma Diseases 0.000 claims description 6
- 102100028785 Tumor necrosis factor receptor superfamily member 14 Human genes 0.000 claims description 6
- 108010074108 interleukin-21 Proteins 0.000 claims description 6
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 5
- 108010042215 OX40 Ligand Proteins 0.000 claims description 5
- 102100032101 Tumor necrosis factor ligand superfamily member 9 Human genes 0.000 claims description 5
- 238000011109 contamination Methods 0.000 claims description 5
- 102100038078 CD276 antigen Human genes 0.000 claims description 4
- 101710185679 CD276 antigen Proteins 0.000 claims description 4
- 101000638251 Homo sapiens Tumor necrosis factor ligand superfamily member 9 Proteins 0.000 claims description 4
- 206010033128 Ovarian cancer Diseases 0.000 claims description 4
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 4
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 claims description 4
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 claims description 3
- 206010052747 Adenocarcinoma pancreas Diseases 0.000 claims description 3
- 208000001446 Anaplastic Thyroid Carcinoma Diseases 0.000 claims description 3
- 206010002240 Anaplastic thyroid cancer Diseases 0.000 claims description 3
- 108010029697 CD40 Ligand Proteins 0.000 claims description 3
- 102100032937 CD40 ligand Human genes 0.000 claims description 3
- 102100031351 Galectin-9 Human genes 0.000 claims description 3
- 101710121810 Galectin-9 Proteins 0.000 claims description 3
- 101710083479 Hepatitis A virus cellular receptor 2 homolog Proteins 0.000 claims description 3
- 101000597780 Mus musculus Tumor necrosis factor ligand superfamily member 18 Proteins 0.000 claims description 3
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 claims description 3
- 102100035283 Tumor necrosis factor ligand superfamily member 18 Human genes 0.000 claims description 3
- 108010079206 V-Set Domain-Containing T-Cell Activation Inhibitor 1 Proteins 0.000 claims description 3
- 102100038929 V-set domain-containing T-cell activation inhibitor 1 Human genes 0.000 claims description 3
- 239000003862 glucocorticoid Substances 0.000 claims description 3
- 208000029824 high grade glioma Diseases 0.000 claims description 3
- 201000005249 lung adenocarcinoma Diseases 0.000 claims description 3
- 201000011614 malignant glioma Diseases 0.000 claims description 3
- 201000002094 pancreatic adenocarcinoma Diseases 0.000 claims description 3
- 208000019179 thyroid gland undifferentiated (anaplastic) carcinoma Diseases 0.000 claims description 3
- 102000003298 tumor necrosis factor receptor Human genes 0.000 claims description 3
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 claims description 2
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 claims description 2
- 201000001142 lung small cell carcinoma Diseases 0.000 claims description 2
- 201000005243 lung squamous cell carcinoma Diseases 0.000 claims description 2
- 208000006178 malignant mesothelioma Diseases 0.000 claims description 2
- 208000000587 small cell lung carcinoma Diseases 0.000 claims description 2
- 101001117317 Homo sapiens Programmed cell death 1 ligand 1 Proteins 0.000 claims 2
- 101001117312 Homo sapiens Programmed cell death 1 ligand 2 Proteins 0.000 claims 2
- 102100024213 Programmed cell death 1 ligand 2 Human genes 0.000 claims 2
- 102100026890 Tumor necrosis factor ligand superfamily member 4 Human genes 0.000 claims 2
- 208000015347 renal cell adenocarcinoma Diseases 0.000 claims 1
- 230000002401 inhibitory effect Effects 0.000 abstract description 85
- 238000011282 treatment Methods 0.000 abstract description 30
- 238000002648 combination therapy Methods 0.000 description 90
- 108090000623 proteins and genes Proteins 0.000 description 90
- 238000002560 therapeutic procedure Methods 0.000 description 87
- 102000004169 proteins and genes Human genes 0.000 description 79
- 239000000427 antigen Substances 0.000 description 69
- 108091007433 antigens Proteins 0.000 description 69
- 102000036639 antigens Human genes 0.000 description 69
- 150000001413 amino acids Chemical class 0.000 description 67
- 102000014150 Interferons Human genes 0.000 description 61
- 108010050904 Interferons Proteins 0.000 description 61
- 229940079322 interferon Drugs 0.000 description 61
- 229960005486 vaccine Drugs 0.000 description 61
- 229940030156 cell vaccine Drugs 0.000 description 58
- 210000000822 natural killer cell Anatomy 0.000 description 42
- 238000011374 additional therapy Methods 0.000 description 40
- 230000027455 binding Effects 0.000 description 40
- 241001465754 Metazoa Species 0.000 description 38
- 239000012634 fragment Substances 0.000 description 38
- 108090000765 processed proteins & peptides Proteins 0.000 description 37
- 238000003556 assay Methods 0.000 description 33
- 238000003776 cleavage reaction Methods 0.000 description 32
- 230000007017 scission Effects 0.000 description 32
- 229940045513 CTLA4 antagonist Drugs 0.000 description 31
- 235000013601 eggs Nutrition 0.000 description 31
- 230000000694 effects Effects 0.000 description 30
- 102000004196 processed proteins & peptides Human genes 0.000 description 29
- 230000019491 signal transduction Effects 0.000 description 28
- 229920001184 polypeptide Polymers 0.000 description 26
- 210000000170 cell membrane Anatomy 0.000 description 25
- 239000012141 concentrate Substances 0.000 description 24
- 241000699670 Mus sp. Species 0.000 description 22
- 238000010171 animal model Methods 0.000 description 22
- 239000003795 chemical substances by application Substances 0.000 description 22
- 230000000799 fusogenic effect Effects 0.000 description 20
- 230000035772 mutation Effects 0.000 description 20
- 230000003612 virological effect Effects 0.000 description 19
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 18
- 102100034980 ICOS ligand Human genes 0.000 description 18
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 18
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 17
- 208000009956 adenocarcinoma Diseases 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 17
- 108020001507 fusion proteins Proteins 0.000 description 16
- 102000037865 fusion proteins Human genes 0.000 description 16
- 230000000644 propagated effect Effects 0.000 description 16
- 230000004083 survival effect Effects 0.000 description 16
- -1 Bcl-xL Proteins 0.000 description 15
- 101710093458 ICOS ligand Proteins 0.000 description 15
- 230000012010 growth Effects 0.000 description 15
- 210000002845 virion Anatomy 0.000 description 15
- 230000004913 activation Effects 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 14
- 241001529936 Murinae Species 0.000 description 13
- 239000012636 effector Substances 0.000 description 13
- 238000000338 in vitro Methods 0.000 description 13
- 230000009467 reduction Effects 0.000 description 13
- 208000024891 symptom Diseases 0.000 description 13
- 230000002424 anti-apoptotic effect Effects 0.000 description 12
- 238000003018 immunoassay Methods 0.000 description 12
- 230000008595 infiltration Effects 0.000 description 12
- 238000001764 infiltration Methods 0.000 description 12
- 230000005855 radiation Effects 0.000 description 12
- 230000001225 therapeutic effect Effects 0.000 description 12
- 230000035897 transcription Effects 0.000 description 12
- 238000013518 transcription Methods 0.000 description 12
- 241000271566 Aves Species 0.000 description 11
- 201000009030 Carcinoma Diseases 0.000 description 11
- 241000287828 Gallus gallus Species 0.000 description 11
- 235000013330 chicken meat Nutrition 0.000 description 11
- 238000001727 in vivo Methods 0.000 description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 10
- 102100037850 Interferon gamma Human genes 0.000 description 10
- 108010074328 Interferon-gamma Proteins 0.000 description 10
- 108091028043 Nucleic acid sequence Proteins 0.000 description 10
- 210000004443 dendritic cell Anatomy 0.000 description 10
- 208000032839 leukemia Diseases 0.000 description 10
- 230000002101 lytic effect Effects 0.000 description 10
- 230000000861 pro-apoptotic effect Effects 0.000 description 10
- 206010041823 squamous cell carcinoma Diseases 0.000 description 10
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 9
- 238000004113 cell culture Methods 0.000 description 9
- 238000000684 flow cytometry Methods 0.000 description 9
- 238000010353 genetic engineering Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 210000004698 lymphocyte Anatomy 0.000 description 9
- 210000002540 macrophage Anatomy 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 230000003827 upregulation Effects 0.000 description 9
- 238000002965 ELISA Methods 0.000 description 8
- 108010047761 Interferon-alpha Proteins 0.000 description 8
- 102000006992 Interferon-alpha Human genes 0.000 description 8
- 239000002246 antineoplastic agent Substances 0.000 description 8
- 230000001413 cellular effect Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 229940125697 hormonal agent Drugs 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 201000008808 Fibrosarcoma Diseases 0.000 description 7
- 102000001398 Granzyme Human genes 0.000 description 7
- 108060005986 Granzyme Proteins 0.000 description 7
- 108060003951 Immunoglobulin Proteins 0.000 description 7
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 7
- 102100034256 Mucin-1 Human genes 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 230000000340 anti-metabolite Effects 0.000 description 7
- 229940100197 antimetabolite Drugs 0.000 description 7
- 239000002256 antimetabolite Substances 0.000 description 7
- 230000002238 attenuated effect Effects 0.000 description 7
- 229940127089 cytotoxic agent Drugs 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 102000018358 immunoglobulin Human genes 0.000 description 7
- 238000007912 intraperitoneal administration Methods 0.000 description 7
- 230000002601 intratumoral effect Effects 0.000 description 7
- 210000001165 lymph node Anatomy 0.000 description 7
- 150000007523 nucleic acids Chemical group 0.000 description 7
- 244000309459 oncolytic virus Species 0.000 description 7
- 210000003289 regulatory T cell Anatomy 0.000 description 7
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 101000611936 Homo sapiens Programmed cell death protein 1 Proteins 0.000 description 6
- 102100026720 Interferon beta Human genes 0.000 description 6
- 108090000467 Interferon-beta Proteins 0.000 description 6
- 206010025323 Lymphomas Diseases 0.000 description 6
- 208000010359 Newcastle Disease Diseases 0.000 description 6
- 102000035195 Peptidases Human genes 0.000 description 6
- 108091005804 Peptidases Proteins 0.000 description 6
- 239000004365 Protease Substances 0.000 description 6
- 206010039491 Sarcoma Diseases 0.000 description 6
- 108010067390 Viral Proteins Proteins 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 231100000135 cytotoxicity Toxicity 0.000 description 6
- 230000003013 cytotoxicity Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000028993 immune response Effects 0.000 description 6
- 238000009169 immunotherapy Methods 0.000 description 6
- 238000010348 incorporation Methods 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 238000001990 intravenous administration Methods 0.000 description 6
- 230000007774 longterm Effects 0.000 description 6
- 208000020816 lung neoplasm Diseases 0.000 description 6
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- 230000001717 pathogenic effect Effects 0.000 description 6
- 238000001356 surgical procedure Methods 0.000 description 6
- 238000001262 western blot Methods 0.000 description 6
- 108010074708 B7-H1 Antigen Proteins 0.000 description 5
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 5
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 5
- 102000001301 EGF receptor Human genes 0.000 description 5
- 108060006698 EGF receptor Proteins 0.000 description 5
- 201000009051 Embryonal Carcinoma Diseases 0.000 description 5
- 241000283073 Equus caballus Species 0.000 description 5
- 102000013691 Interleukin-17 Human genes 0.000 description 5
- 108050003558 Interleukin-17 Proteins 0.000 description 5
- 108700011259 MicroRNAs Proteins 0.000 description 5
- 108010008707 Mucin-1 Proteins 0.000 description 5
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 5
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 210000000612 antigen-presenting cell Anatomy 0.000 description 5
- 208000035269 cancer or benign tumor Diseases 0.000 description 5
- 230000003833 cell viability Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 5
- 230000002458 infectious effect Effects 0.000 description 5
- 201000005202 lung cancer Diseases 0.000 description 5
- 239000006166 lysate Substances 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 230000000174 oncolytic effect Effects 0.000 description 5
- 201000002528 pancreatic cancer Diseases 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 5
- 238000001959 radiotherapy Methods 0.000 description 5
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 5
- 230000001988 toxicity Effects 0.000 description 5
- 231100000419 toxicity Toxicity 0.000 description 5
- 210000004881 tumor cell Anatomy 0.000 description 5
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 4
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 4
- 101150051188 Adora2a gene Proteins 0.000 description 4
- 102100026596 Bcl-2-like protein 1 Human genes 0.000 description 4
- 239000004971 Cross linker Substances 0.000 description 4
- 208000001382 Experimental Melanoma Diseases 0.000 description 4
- 208000032612 Glial tumor Diseases 0.000 description 4
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 4
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 4
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 4
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 4
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 4
- 102100021317 Inducible T-cell costimulator Human genes 0.000 description 4
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 4
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 4
- 102000015696 Interleukins Human genes 0.000 description 4
- 108010063738 Interleukins Proteins 0.000 description 4
- 206010029260 Neuroblastoma Diseases 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 4
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 4
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 4
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 4
- 201000010208 Seminoma Diseases 0.000 description 4
- 208000005718 Stomach Neoplasms Diseases 0.000 description 4
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 4
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 4
- 230000001093 anti-cancer Effects 0.000 description 4
- 230000002146 bilateral effect Effects 0.000 description 4
- 210000000481 breast Anatomy 0.000 description 4
- 238000002512 chemotherapy Methods 0.000 description 4
- 208000029742 colonic neoplasm Diseases 0.000 description 4
- 238000011443 conventional therapy Methods 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 208000005017 glioblastoma Diseases 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 4
- 239000002679 microRNA Substances 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 201000008968 osteosarcoma Diseases 0.000 description 4
- 208000008443 pancreatic carcinoma Diseases 0.000 description 4
- 230000000069 prophylactic effect Effects 0.000 description 4
- 239000000333 selective estrogen receptor modulator Substances 0.000 description 4
- 210000003491 skin Anatomy 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000009885 systemic effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 238000011830 transgenic mouse model Methods 0.000 description 4
- 239000004066 vascular targeting agent Substances 0.000 description 4
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 3
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 3
- 201000003076 Angiosarcoma Diseases 0.000 description 3
- 206010003571 Astrocytoma Diseases 0.000 description 3
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 3
- 206010004146 Basal cell carcinoma Diseases 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 3
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 3
- 102100032912 CD44 antigen Human genes 0.000 description 3
- 241000282472 Canis lupus familiaris Species 0.000 description 3
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 3
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 3
- 241000283074 Equus asinus Species 0.000 description 3
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 3
- 229940102550 Estrogen receptor antagonist Drugs 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 208000001258 Hemangiosarcoma Diseases 0.000 description 3
- 208000017604 Hodgkin disease Diseases 0.000 description 3
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 3
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 3
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 3
- 101001019455 Homo sapiens ICOS ligand Proteins 0.000 description 3
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 3
- 101000956263 Homo sapiens Uncharacterized protein C19orf48 Proteins 0.000 description 3
- 102000037982 Immune checkpoint proteins Human genes 0.000 description 3
- 108091008036 Immune checkpoint proteins Proteins 0.000 description 3
- 108010002335 Interleukin-9 Proteins 0.000 description 3
- 102000000585 Interleukin-9 Human genes 0.000 description 3
- 208000018142 Leiomyosarcoma Diseases 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- 208000034578 Multiple myelomas Diseases 0.000 description 3
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 3
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 102000004473 OX40 Ligand Human genes 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 241000286209 Phasianidae Species 0.000 description 3
- 208000007641 Pinealoma Diseases 0.000 description 3
- 206010060862 Prostate cancer Diseases 0.000 description 3
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 3
- 102100038358 Prostate-specific antigen Human genes 0.000 description 3
- 102000004389 Ribonucleoproteins Human genes 0.000 description 3
- 108010081734 Ribonucleoproteins Proteins 0.000 description 3
- 241000700584 Simplexvirus Species 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 3
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 3
- 208000024313 Testicular Neoplasms Diseases 0.000 description 3
- 102100038573 Uncharacterized protein C19orf48 Human genes 0.000 description 3
- 108020000999 Viral RNA Proteins 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 230000005975 antitumor immune response Effects 0.000 description 3
- 239000003886 aromatase inhibitor Substances 0.000 description 3
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- 238000001815 biotherapy Methods 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 3
- 210000001072 colon Anatomy 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 206010017758 gastric cancer Diseases 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 238000010166 immunofluorescence Methods 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 108010074109 interleukin-22 Proteins 0.000 description 3
- 238000007917 intracranial administration Methods 0.000 description 3
- 210000003292 kidney cell Anatomy 0.000 description 3
- 206010024627 liposarcoma Diseases 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 210000001672 ovary Anatomy 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 210000002307 prostate Anatomy 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 201000011549 stomach cancer Diseases 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000009120 supportive therapy Methods 0.000 description 3
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 3
- 206010042863 synovial sarcoma Diseases 0.000 description 3
- 230000002463 transducing effect Effects 0.000 description 3
- 230000010415 tropism Effects 0.000 description 3
- 210000003501 vero cell Anatomy 0.000 description 3
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 102000007471 Adenosine A2A receptor Human genes 0.000 description 2
- 108010085277 Adenosine A2A receptor Proteins 0.000 description 2
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 2
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 description 2
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 2
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 208000011691 Burkitt lymphomas Diseases 0.000 description 2
- 108010074051 C-Reactive Protein Proteins 0.000 description 2
- 102100032752 C-reactive protein Human genes 0.000 description 2
- 102100024217 CAMPATH-1 antigen Human genes 0.000 description 2
- 108010065524 CD52 Antigen Proteins 0.000 description 2
- 201000000274 Carcinosarcoma Diseases 0.000 description 2
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- 208000005243 Chondrosarcoma Diseases 0.000 description 2
- 201000009047 Chordoma Diseases 0.000 description 2
- 208000006332 Choriocarcinoma Diseases 0.000 description 2
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 2
- 241000272194 Ciconiiformes Species 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 208000009798 Craniopharyngioma Diseases 0.000 description 2
- 102000013701 Cyclin-Dependent Kinase 4 Human genes 0.000 description 2
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 description 2
- 102000016911 Deoxyribonucleases Human genes 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 102100037024 E3 ubiquitin-protein ligase XIAP Human genes 0.000 description 2
- 206010014967 Ependymoma Diseases 0.000 description 2
- 101001065501 Escherichia phage MS2 Lysis protein Proteins 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 208000006168 Ewing Sarcoma Diseases 0.000 description 2
- 102000015212 Fas Ligand Protein Human genes 0.000 description 2
- 108010039471 Fas Ligand Protein Proteins 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 229920001917 Ficoll Polymers 0.000 description 2
- 102100035233 Furin Human genes 0.000 description 2
- 108090001126 Furin Proteins 0.000 description 2
- 208000021309 Germ cell tumor Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 101710133291 Hemagglutinin-neuraminidase Proteins 0.000 description 2
- 102000018713 Histocompatibility Antigens Class II Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 2
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 2
- 101001056180 Homo sapiens Induced myeloid leukemia cell differentiation protein Mcl-1 Proteins 0.000 description 2
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 2
- 206010061598 Immunodeficiency Diseases 0.000 description 2
- 102100026539 Induced myeloid leukemia cell differentiation protein Mcl-1 Human genes 0.000 description 2
- 101710205775 Inducible T-cell costimulator Proteins 0.000 description 2
- 208000002979 Influenza in Birds Diseases 0.000 description 2
- 102100022297 Integrin alpha-X Human genes 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- 108010052014 Liberase Proteins 0.000 description 2
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 208000000172 Medulloblastoma Diseases 0.000 description 2
- 206010027406 Mesothelioma Diseases 0.000 description 2
- 108010006035 Metalloproteases Proteins 0.000 description 2
- 102000005741 Metalloproteases Human genes 0.000 description 2
- 208000010190 Monoclonal Gammopathy of Undetermined Significance Diseases 0.000 description 2
- 208000003445 Mouth Neoplasms Diseases 0.000 description 2
- 108010063954 Mucins Proteins 0.000 description 2
- 102000015728 Mucins Human genes 0.000 description 2
- 206010057269 Mucoepidermoid carcinoma Diseases 0.000 description 2
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- 208000034176 Neoplasms, Germ Cell and Embryonal Diseases 0.000 description 2
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 2
- 201000010133 Oligodendroglioma Diseases 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 208000010191 Osteitis Deformans Diseases 0.000 description 2
- 101710181008 P protein Proteins 0.000 description 2
- 208000027868 Paget disease Diseases 0.000 description 2
- 101710177166 Phosphoprotein Proteins 0.000 description 2
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 2
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 241000725643 Respiratory syncytial virus Species 0.000 description 2
- 201000000582 Retinoblastoma Diseases 0.000 description 2
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 2
- 206010057644 Testis cancer Diseases 0.000 description 2
- 102000003929 Transaminases Human genes 0.000 description 2
- 108090000340 Transaminases Proteins 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- 208000002495 Uterine Neoplasms Diseases 0.000 description 2
- 208000014070 Vestibular schwannoma Diseases 0.000 description 2
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 2
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 2
- 208000008383 Wilms tumor Diseases 0.000 description 2
- 108700031544 X-Linked Inhibitor of Apoptosis Proteins 0.000 description 2
- 208000004064 acoustic neuroma Diseases 0.000 description 2
- 208000017733 acquired polycythemia vera Diseases 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 208000002517 adenoid cystic carcinoma Diseases 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 208000037844 advanced solid tumor Diseases 0.000 description 2
- 238000007818 agglutination assay Methods 0.000 description 2
- 230000000735 allogeneic effect Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 230000000840 anti-viral effect Effects 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229940046844 aromatase inhibitors Drugs 0.000 description 2
- 238000003149 assay kit Methods 0.000 description 2
- 206010064097 avian influenza Diseases 0.000 description 2
- DVQHYTBCTGYNNN-UHFFFAOYSA-N azane;cyclobutane-1,1-dicarboxylic acid;platinum Chemical compound N.N.[Pt].OC(=O)C1(C(O)=O)CCC1 DVQHYTBCTGYNNN-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 206010006007 bone sarcoma Diseases 0.000 description 2
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 2
- 229940022399 cancer vaccine Drugs 0.000 description 2
- 238000009566 cancer vaccine Methods 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 201000010897 colon adenocarcinoma Diseases 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000009260 cross reactivity Effects 0.000 description 2
- 208000002445 cystadenocarcinoma Diseases 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 235000021186 dishes Nutrition 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 108010030074 endodeoxyribonuclease MluI Proteins 0.000 description 2
- 208000037828 epithelial carcinoma Diseases 0.000 description 2
- 210000000981 epithelium Anatomy 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 201000004101 esophageal cancer Diseases 0.000 description 2
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 2
- 229960005420 etoposide Drugs 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 201000006585 gastric adenocarcinoma Diseases 0.000 description 2
- 238000012817 gel-diffusion technique Methods 0.000 description 2
- 201000009277 hairy cell leukemia Diseases 0.000 description 2
- 208000025750 heavy chain disease Diseases 0.000 description 2
- 201000002222 hemangioblastoma Diseases 0.000 description 2
- 201000005787 hematologic cancer Diseases 0.000 description 2
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 2
- 208000006359 hepatoblastoma Diseases 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 2
- 230000005965 immune activity Effects 0.000 description 2
- 230000036737 immune function Effects 0.000 description 2
- 230000000951 immunodiffusion Effects 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 230000003308 immunostimulating effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000015788 innate immune response Effects 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 238000012004 kinetic exclusion assay Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 201000005296 lung carcinoma Diseases 0.000 description 2
- 208000037829 lymphangioendotheliosarcoma Diseases 0.000 description 2
- 208000012804 lymphangiosarcoma Diseases 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 208000027202 mammary Paget disease Diseases 0.000 description 2
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 206010027191 meningioma Diseases 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 230000001394 metastastic effect Effects 0.000 description 2
- 208000037819 metastatic cancer Diseases 0.000 description 2
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 230000025090 microtubule depolymerization Effects 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 201000005328 monoclonal gammopathy of uncertain significance Diseases 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 230000036457 multidrug resistance Effects 0.000 description 2
- 210000000066 myeloid cell Anatomy 0.000 description 2
- 208000001611 myxosarcoma Diseases 0.000 description 2
- 208000007538 neurilemmoma Diseases 0.000 description 2
- 229960003301 nivolumab Drugs 0.000 description 2
- 230000036963 noncompetitive effect Effects 0.000 description 2
- 231100001143 noxa Toxicity 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 208000004019 papillary adenocarcinoma Diseases 0.000 description 2
- 201000010198 papillary carcinoma Diseases 0.000 description 2
- 230000007918 pathogenicity Effects 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 208000037244 polycythemia vera Diseases 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 230000007115 recruitment Effects 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 201000007416 salivary gland adenoid cystic carcinoma Diseases 0.000 description 2
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 229940095743 selective estrogen receptor modulator Drugs 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000009097 single-agent therapy Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 208000017572 squamous cell neoplasm Diseases 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 230000003637 steroidlike Effects 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 201000010965 sweat gland carcinoma Diseases 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 208000001608 teratocarcinoma Diseases 0.000 description 2
- 201000003120 testicular cancer Diseases 0.000 description 2
- 230000004797 therapeutic response Effects 0.000 description 2
- 210000001685 thyroid gland Anatomy 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 206010044412 transitional cell carcinoma Diseases 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 210000003932 urinary bladder Anatomy 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 229960004528 vincristine Drugs 0.000 description 2
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 2
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 2
- 230000029812 viral genome replication Effects 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- 229960004854 viral vaccine Drugs 0.000 description 2
- LAQPKDLYOBZWBT-NYLDSJSYSA-N (2s,4s,5r,6r)-5-acetamido-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r)-5-acetamido-1,2-dihydroxy-6-oxo-4-{[(2s,3s,4r,5s,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}hexan-3-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-4-hydroxy-6-[(1r,2r)-1,2,3-trihydrox Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]([C@@H](NC(C)=O)C=O)[C@@H]([C@H](O)CO)O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O)[C@@H](CO)O1 LAQPKDLYOBZWBT-NYLDSJSYSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- VHZPUDNSVGRVMB-RXDLHWJPSA-N (8s,11r,13s,14s,17s)-11-(4-acetylphenyl)-17-hydroxy-13-methyl-17-(1,1,2,2,2-pentafluoroethyl)-1,2,6,7,8,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-3-one Chemical compound C1=CC(C(=O)C)=CC=C1[C@@H]1C2=C3CCC(=O)C=C3CC[C@H]2[C@H](CC[C@@]2(O)C(F)(F)C(F)(F)F)[C@]2(C)C1 VHZPUDNSVGRVMB-RXDLHWJPSA-N 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- 108010082808 4-1BB Ligand Proteins 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- IDPUKCWIGUEADI-UHFFFAOYSA-N 5-[bis(2-chloroethyl)amino]uracil Chemical compound ClCCN(CCCl)C1=CNC(=O)NC1=O IDPUKCWIGUEADI-UHFFFAOYSA-N 0.000 description 1
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 description 1
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 1
- WYWHKKSPHMUBEB-UHFFFAOYSA-N 6-Mercaptoguanine Natural products N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- 102100033350 ATP-dependent translocase ABCB1 Human genes 0.000 description 1
- 206010000599 Acromegaly Diseases 0.000 description 1
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- 206010000890 Acute myelomonocytic leukaemia Diseases 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 108010012934 Albumin-Bound Paclitaxel Proteins 0.000 description 1
- 102100037982 Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 229940122815 Aromatase inhibitor Drugs 0.000 description 1
- 102100022717 Atypical chemokine receptor 1 Human genes 0.000 description 1
- 241000035315 Avulavirus Species 0.000 description 1
- 102100035526 B melanoma antigen 1 Human genes 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000035821 Benign schwannoma Diseases 0.000 description 1
- 108060000903 Beta-catenin Proteins 0.000 description 1
- 102000015735 Beta-catenin Human genes 0.000 description 1
- 206010004593 Bile duct cancer Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 206010073106 Bone giant cell tumour malignant Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 206010006143 Brain stem glioma Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 101150012716 CDK1 gene Proteins 0.000 description 1
- FVLVBPDQNARYJU-XAHDHGMMSA-N C[C@H]1CCC(CC1)NC(=O)N(CCCl)N=O Chemical compound C[C@H]1CCC(CC1)NC(=O)N(CCCl)N=O FVLVBPDQNARYJU-XAHDHGMMSA-N 0.000 description 1
- 101100463133 Caenorhabditis elegans pdl-1 gene Proteins 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 241000759909 Camptotheca Species 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- SHHKQEUPHAENFK-UHFFFAOYSA-N Carboquone Chemical compound O=C1C(C)=C(N2CC2)C(=O)C(C(COC(N)=O)OC)=C1N1CC1 SHHKQEUPHAENFK-UHFFFAOYSA-N 0.000 description 1
- 206010007275 Carcinoid tumour Diseases 0.000 description 1
- 108090000538 Caspase-8 Proteins 0.000 description 1
- 102100026548 Caspase-8 Human genes 0.000 description 1
- 102000010792 Chromogranin A Human genes 0.000 description 1
- 108010038447 Chromogranin A Proteins 0.000 description 1
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 1
- 102000004420 Creatine Kinase Human genes 0.000 description 1
- 108010042126 Creatine kinase Proteins 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- 108010068192 Cyclin A Proteins 0.000 description 1
- 108010058546 Cyclin D1 Proteins 0.000 description 1
- 102100025191 Cyclin-A2 Human genes 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 239000012623 DNA damaging agent Substances 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- 102000007443 Deubiquitinating Enzyme CYLD Human genes 0.000 description 1
- 108010086291 Deubiquitinating Enzyme CYLD Proteins 0.000 description 1
- 208000006402 Ductal Carcinoma Diseases 0.000 description 1
- 206010058314 Dysplasia Diseases 0.000 description 1
- 238000011510 Elispot assay Methods 0.000 description 1
- 101100059559 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) nimX gene Proteins 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000283070 Equus zebra Species 0.000 description 1
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 206010016935 Follicular thyroid cancer Diseases 0.000 description 1
- VWUXBMIQPBEWFH-WCCTWKNTSA-N Fulvestrant Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3[C@H](CCCCCCCCCS(=O)CCCC(F)(F)C(F)(F)F)CC2=C1 VWUXBMIQPBEWFH-WCCTWKNTSA-N 0.000 description 1
- 102100039717 G antigen 1 Human genes 0.000 description 1
- 102100024165 G1/S-specific cyclin-D1 Human genes 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 206010018404 Glucagonoma Diseases 0.000 description 1
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 1
- 108060003393 Granulin Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 108700004031 HN Proteins 0.000 description 1
- 101710154606 Hemagglutinin Proteins 0.000 description 1
- 241000711549 Hepacivirus C Species 0.000 description 1
- 108091080980 Hepatitis delta virus ribozyme Proteins 0.000 description 1
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 1
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 1
- 108010027412 Histocompatibility Antigens Class II Proteins 0.000 description 1
- 101000773083 Homo sapiens 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- 101000834898 Homo sapiens Alpha-synuclein Proteins 0.000 description 1
- 101000678879 Homo sapiens Atypical chemokine receptor 1 Proteins 0.000 description 1
- 101000874316 Homo sapiens B melanoma antigen 1 Proteins 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101000886137 Homo sapiens G antigen 1 Proteins 0.000 description 1
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 1
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 1
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 1
- 101000798109 Homo sapiens Melanotransferrin Proteins 0.000 description 1
- 101000623901 Homo sapiens Mucin-16 Proteins 0.000 description 1
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 1
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 1
- 101000600434 Homo sapiens Putative uncharacterized protein encoded by MIR7-3HG Proteins 0.000 description 1
- 101000652359 Homo sapiens Spermatogenesis-associated protein 2 Proteins 0.000 description 1
- 101000934341 Homo sapiens T-cell surface glycoprotein CD5 Proteins 0.000 description 1
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 101100508081 Human herpesvirus 1 (strain 17) ICP34.5 gene Proteins 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 101100156155 Human papillomavirus type 16 E7 gene Proteins 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 208000005726 Inflammatory Breast Neoplasms Diseases 0.000 description 1
- 206010021980 Inflammatory carcinoma of the breast Diseases 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100022338 Integrin alpha-M Human genes 0.000 description 1
- 229940123038 Integrin antagonist Drugs 0.000 description 1
- 102100023530 Interleukin-1 receptor-associated kinase 3 Human genes 0.000 description 1
- 101710199012 Interleukin-1 receptor-associated kinase 3 Proteins 0.000 description 1
- 208000037396 Intraductal Noninfiltrating Carcinoma Diseases 0.000 description 1
- 206010073086 Iris melanoma Diseases 0.000 description 1
- 208000009164 Islet Cell Adenoma Diseases 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 101150062031 L gene Proteins 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 231100000416 LDH assay Toxicity 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 206010024305 Leukaemia monocytic Diseases 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 1
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 1
- 102000016200 MART-1 Antigen Human genes 0.000 description 1
- 108010010995 MART-1 Antigen Proteins 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 208000007054 Medullary Carcinoma Diseases 0.000 description 1
- 208000009018 Medullary thyroid cancer Diseases 0.000 description 1
- 208000035490 Megakaryoblastic Acute Leukemia Diseases 0.000 description 1
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 1
- 108010071463 Melanoma-Specific Antigens Proteins 0.000 description 1
- 102000007557 Melanoma-Specific Antigens Human genes 0.000 description 1
- 102100032239 Melanotransferrin Human genes 0.000 description 1
- 108010047230 Member 1 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 1
- 206010054949 Metaplasia Diseases 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 108091027966 Mir-137 Proteins 0.000 description 1
- 108091028232 Mir-184 Proteins 0.000 description 1
- VFKZTMPDYBFSTM-KVTDHHQDSA-N Mitobronitol Chemical compound BrC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CBr VFKZTMPDYBFSTM-KVTDHHQDSA-N 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 208000035489 Monocytic Acute Leukemia Diseases 0.000 description 1
- 102100023123 Mucin-16 Human genes 0.000 description 1
- 206010073101 Mucinous breast carcinoma Diseases 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101001049180 Mus musculus Killer cell lectin-like receptor subfamily B member 1C Proteins 0.000 description 1
- 101100208706 Mus musculus Usp18 gene Proteins 0.000 description 1
- 102000010168 Myeloid Differentiation Factor 88 Human genes 0.000 description 1
- 108010077432 Myeloid Differentiation Factor 88 Proteins 0.000 description 1
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 1
- 208000033835 Myelomonocytic Acute Leukemia Diseases 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 108010069196 Neural Cell Adhesion Molecules Proteins 0.000 description 1
- 102000005348 Neuraminidase Human genes 0.000 description 1
- 108010006232 Neuraminidase Proteins 0.000 description 1
- 101000770563 Nipah virus Protein W Proteins 0.000 description 1
- 206010029488 Nodular melanoma Diseases 0.000 description 1
- 101710144128 Non-structural protein 2 Proteins 0.000 description 1
- 208000010505 Nose Neoplasms Diseases 0.000 description 1
- 101710199667 Nuclear export protein Proteins 0.000 description 1
- XDMCWZFLLGVIID-SXPRBRBTSA-N O-(3-O-D-galactosyl-N-acetyl-beta-D-galactosaminyl)-L-serine Chemical compound CC(=O)N[C@H]1[C@H](OC[C@H]([NH3+])C([O-])=O)O[C@H](CO)[C@H](O)[C@@H]1OC1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 XDMCWZFLLGVIID-SXPRBRBTSA-N 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 1
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 1
- 101710160107 Outer membrane protein A Proteins 0.000 description 1
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 1
- 101150084044 P gene Proteins 0.000 description 1
- 102100034574 P protein Human genes 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 206010053869 POEMS syndrome Diseases 0.000 description 1
- 102100034640 PWWP domain-containing DNA repair factor 3A Human genes 0.000 description 1
- 108050007154 PWWP domain-containing DNA repair factor 3A Proteins 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 101001128814 Pandinus imperator Pandinin-1 Proteins 0.000 description 1
- 206010033701 Papillary thyroid cancer Diseases 0.000 description 1
- 241000711504 Paramyxoviridae Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 208000009565 Pharyngeal Neoplasms Diseases 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 206010050487 Pinealoblastoma Diseases 0.000 description 1
- KMSKQZKKOZQFFG-HSUXVGOQSA-N Pirarubicin Chemical compound O([C@H]1[C@@H](N)C[C@@H](O[C@H]1C)O[C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1CCCCO1 KMSKQZKKOZQFFG-HSUXVGOQSA-N 0.000 description 1
- 208000010067 Pituitary ACTH Hypersecretion Diseases 0.000 description 1
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 1
- 208000020627 Pituitary-dependent Cushing syndrome Diseases 0.000 description 1
- 241001495452 Podophyllum Species 0.000 description 1
- HFVNWDWLWUCIHC-GUPDPFMOSA-N Prednimustine Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 HFVNWDWLWUCIHC-GUPDPFMOSA-N 0.000 description 1
- 102000003946 Prolactin Human genes 0.000 description 1
- 108010057464 Prolactin Proteins 0.000 description 1
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 1
- 208000004965 Prostatic Intraepithelial Neoplasia Diseases 0.000 description 1
- 206010071019 Prostatic dysplasia Diseases 0.000 description 1
- 101710176177 Protein A56 Proteins 0.000 description 1
- 102000010635 Protein Inhibitors of Activated STAT Human genes 0.000 description 1
- 108010038241 Protein Inhibitors of Activated STAT Proteins 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- 108700020978 Proto-Oncogene Proteins 0.000 description 1
- 102000052575 Proto-Oncogene Human genes 0.000 description 1
- 102100037401 Putative uncharacterized protein encoded by MIR7-3HG Human genes 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 101150027249 RL1 gene Proteins 0.000 description 1
- 238000010357 RNA editing Methods 0.000 description 1
- 230000026279 RNA modification Effects 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 239000012979 RPMI medium Substances 0.000 description 1
- AHHFEZNOXOZZQA-ZEBDFXRSSA-N Ranimustine Chemical compound CO[C@H]1O[C@H](CNC(=O)N(CCCl)N=O)[C@@H](O)[C@H](O)[C@H]1O AHHFEZNOXOZZQA-ZEBDFXRSSA-N 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 238000011579 SCID mouse model Methods 0.000 description 1
- 108010044012 STAT1 Transcription Factor Proteins 0.000 description 1
- 208000004337 Salivary Gland Neoplasms Diseases 0.000 description 1
- 101710173693 Short transient receptor potential channel 1 Proteins 0.000 description 1
- 102100029904 Signal transducer and activator of transcription 1-alpha/beta Human genes 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 102220497176 Small vasohibin-binding protein_T47D_mutation Human genes 0.000 description 1
- 208000004346 Smoldering Multiple Myeloma Diseases 0.000 description 1
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 206010042553 Superficial spreading melanoma stage unspecified Diseases 0.000 description 1
- 102000008036 Suppressor of Cytokine Signaling Proteins Human genes 0.000 description 1
- 108010075383 Suppressor of Cytokine Signaling Proteins Proteins 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 230000006052 T cell proliferation Effects 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 102100025244 T-cell surface glycoprotein CD5 Human genes 0.000 description 1
- 102100038126 Tenascin Human genes 0.000 description 1
- 108010008125 Tenascin Proteins 0.000 description 1
- 206010043276 Teratoma Diseases 0.000 description 1
- 206010043515 Throat cancer Diseases 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- IVTVGDXNLFLDRM-HNNXBMFYSA-N Tomudex Chemical compound C=1C=C2NC(C)=NC(=O)C2=CC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)S1 IVTVGDXNLFLDRM-HNNXBMFYSA-N 0.000 description 1
- YCPOZVAOBBQLRI-WDSKDSINSA-N Treosulfan Chemical compound CS(=O)(=O)OC[C@H](O)[C@@H](O)COS(C)(=O)=O YCPOZVAOBBQLRI-WDSKDSINSA-N 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- LVTKHGUGBGNBPL-UHFFFAOYSA-N Trp-P-1 Chemical compound N1C2=CC=CC=C2C2=C1C(C)=C(N)N=C2C LVTKHGUGBGNBPL-UHFFFAOYSA-N 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 206010073104 Tubular breast carcinoma Diseases 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 201000005969 Uveal melanoma Diseases 0.000 description 1
- 208000009311 VIPoma Diseases 0.000 description 1
- 101900001372 Vaccinia virus RNA-binding protein E3 Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 102100026383 Vasopressin-neurophysin 2-copeptin Human genes 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 206010047642 Vitiligo Diseases 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 208000004354 Vulvar Neoplasms Diseases 0.000 description 1
- 101100273808 Xenopus laevis cdk1-b gene Proteins 0.000 description 1
- 201000006083 Xeroderma Pigmentosum Diseases 0.000 description 1
- 208000012018 Yolk sac tumor Diseases 0.000 description 1
- GZOSMCIZMLWJML-VJLLXTKPSA-N abiraterone Chemical compound C([C@H]1[C@H]2[C@@H]([C@]3(CC[C@H](O)CC3=CC2)C)CC[C@@]11C)C=C1C1=CC=CN=C1 GZOSMCIZMLWJML-VJLLXTKPSA-N 0.000 description 1
- 229960000853 abiraterone Drugs 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229940028652 abraxane Drugs 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- USZYSDMBJDPRIF-SVEJIMAYSA-N aclacinomycin A Chemical compound O([C@H]1[C@@H](O)C[C@@H](O[C@H]1C)O[C@H]1[C@H](C[C@@H](O[C@H]1C)O[C@H]1C[C@]([C@@H](C2=CC=3C(=O)C4=CC=CC(O)=C4C(=O)C=3C(O)=C21)C(=O)OC)(O)CC)N(C)C)[C@H]1CCC(=O)[C@H](C)O1 USZYSDMBJDPRIF-SVEJIMAYSA-N 0.000 description 1
- 229960004176 aclarubicin Drugs 0.000 description 1
- 206010000583 acral lentiginous melanoma Diseases 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 208000037831 acute erythroleukemic leukemia Diseases 0.000 description 1
- 208000037832 acute lymphoblastic B-cell leukemia Diseases 0.000 description 1
- 208000037833 acute lymphoblastic T-cell leukemia Diseases 0.000 description 1
- 208000013593 acute megakaryoblastic leukemia Diseases 0.000 description 1
- 208000020700 acute megakaryocytic leukemia Diseases 0.000 description 1
- 208000011912 acute myelomonocytic leukemia M4 Diseases 0.000 description 1
- 208000036676 acute undifferentiated leukemia Diseases 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 201000008395 adenosquamous carcinoma Diseases 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 208000020990 adrenal cortex carcinoma Diseases 0.000 description 1
- 201000005188 adrenal gland cancer Diseases 0.000 description 1
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 1
- 208000007128 adrenocortical carcinoma Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- TXUZVZSFRXZGTL-QPLCGJKRSA-N afimoxifene Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=C(O)C=C1 TXUZVZSFRXZGTL-QPLCGJKRSA-N 0.000 description 1
- 229950003105 afimoxifene Drugs 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 108010034034 alpha-1,6-mannosylglycoprotein beta 1,6-N-acetylglucosaminyltransferase Proteins 0.000 description 1
- ANBQYFIVLNNZCU-CQCLMDPOSA-N alpha-L-Fucp-(1->2)-[alpha-D-GalpNAc-(1->3)]-beta-D-Galp-(1->3)-[alpha-L-Fucp-(1->4)]-beta-D-GlcpNAc-(1->3)-beta-D-Galp Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@H]2[C@@H]([C@@H](O[C@@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)NC(C)=O)[C@@H](O)[C@@H](CO)O2)O[C@H]2[C@H]([C@H](O)[C@H](O)[C@H](C)O2)O)[C@@H](NC(C)=O)[C@H](O[C@H]2[C@H]([C@@H](CO)O[C@@H](O)[C@@H]2O)O)O[C@@H]1CO ANBQYFIVLNNZCU-CQCLMDPOSA-N 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 229960003437 aminoglutethimide Drugs 0.000 description 1
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 229960002550 amrubicin Drugs 0.000 description 1
- VJZITPJGSQKZMX-XDPRQOKASA-N amrubicin Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC=C4C(=O)C=3C(O)=C21)(N)C(=O)C)[C@H]1C[C@H](O)[C@H](O)CO1 VJZITPJGSQKZMX-XDPRQOKASA-N 0.000 description 1
- 229960002932 anastrozole Drugs 0.000 description 1
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- RGHILYZRVFRRNK-UHFFFAOYSA-N anthracene-1,2-dione Chemical class C1=CC=C2C=C(C(C(=O)C=C3)=O)C3=CC2=C1 RGHILYZRVFRRNK-UHFFFAOYSA-N 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000005809 anti-tumor immunity Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 229940087620 aromasin Drugs 0.000 description 1
- MCGDSOGUHLTADD-UHFFFAOYSA-N arzoxifene Chemical compound C1=CC(OC)=CC=C1C1=C(OC=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 MCGDSOGUHLTADD-UHFFFAOYSA-N 0.000 description 1
- 229950005529 arzoxifene Drugs 0.000 description 1
- KLNFSAOEKUDMFA-UHFFFAOYSA-N azanide;2-hydroxyacetic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OCC(O)=O KLNFSAOEKUDMFA-UHFFFAOYSA-N 0.000 description 1
- 208000003373 basosquamous carcinoma Diseases 0.000 description 1
- 229960000817 bazedoxifene Drugs 0.000 description 1
- UCJGJABZCDBEDK-UHFFFAOYSA-N bazedoxifene Chemical compound C=1C=C(OCCN2CCCCCC2)C=CC=1CN1C2=CC=C(O)C=C2C(C)=C1C1=CC=C(O)C=C1 UCJGJABZCDBEDK-UHFFFAOYSA-N 0.000 description 1
- LNHWXBUNXOXMRL-VWLOTQADSA-N belotecan Chemical compound C1=CC=C2C(CCNC(C)C)=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 LNHWXBUNXOXMRL-VWLOTQADSA-N 0.000 description 1
- 229950011276 belotecan Drugs 0.000 description 1
- 229960002707 bendamustine Drugs 0.000 description 1
- YTKUWDBFDASYHO-UHFFFAOYSA-N bendamustine Chemical compound ClCCN(CCCl)C1=CC=C2N(C)C(CCCC(O)=O)=NC2=C1 YTKUWDBFDASYHO-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- CXQCLLQQYTUUKJ-ALWAHNIESA-N beta-D-GalpNAc-(1->4)-[alpha-Neup5Ac-(2->8)-alpha-Neup5Ac-(2->3)]-beta-D-Galp-(1->4)-beta-D-Glcp-(1<->1')-Cer(d18:1/18:0) Chemical compound O[C@@H]1[C@@H](O)[C@H](OC[C@H](NC(=O)CCCCCCCCCCCCCCCCC)[C@H](O)\C=C\CCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@@H](CO)O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)C(O)=O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](CO)O1 CXQCLLQQYTUUKJ-ALWAHNIESA-N 0.000 description 1
- 229940108502 bicnu Drugs 0.000 description 1
- 201000007180 bile duct carcinoma Diseases 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 208000018420 bone fibrosarcoma Diseases 0.000 description 1
- 238000002725 brachytherapy Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 201000007476 breast mucinous carcinoma Diseases 0.000 description 1
- 201000000135 breast papillary carcinoma Diseases 0.000 description 1
- KQNZDYYTLMIZCT-KQPMLPITSA-N brefeldin A Chemical compound O[C@@H]1\C=C\C(=O)O[C@@H](C)CCC\C=C\[C@@H]2C[C@H](O)C[C@H]21 KQNZDYYTLMIZCT-KQPMLPITSA-N 0.000 description 1
- JUMGSHROWPPKFX-UHFFFAOYSA-N brefeldin-A Natural products CC1CCCC=CC2(C)CC(O)CC2(C)C(O)C=CC(=O)O1 JUMGSHROWPPKFX-UHFFFAOYSA-N 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 239000003560 cancer drug Substances 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 229960002115 carboquone Drugs 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000004970 cd4 cell Anatomy 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 238000012054 celltiter-glo Methods 0.000 description 1
- 230000005889 cellular cytotoxicity Effects 0.000 description 1
- 230000010479 cellular ifn response Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 210000003837 chick embryo Anatomy 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 208000006990 cholangiocarcinoma Diseases 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000024207 chronic leukemia Diseases 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960002436 cladribine Drugs 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 208000029664 classic familial adenomatous polyposis Diseases 0.000 description 1
- 229960000928 clofarabine Drugs 0.000 description 1
- WDDPHFBMKLOVOX-AYQXTPAHSA-N clofarabine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1F WDDPHFBMKLOVOX-AYQXTPAHSA-N 0.000 description 1
- 229960003608 clomifene Drugs 0.000 description 1
- GKIRPKYJQBWNGO-OCEACIFDSA-N clomifene Chemical compound C1=CC(OCCN(CC)CC)=CC=C1C(\C=1C=CC=CC=1)=C(\Cl)C1=CC=CC=C1 GKIRPKYJQBWNGO-OCEACIFDSA-N 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 229960003603 decitabine Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 201000010064 diabetes insipidus Diseases 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940115080 doxil Drugs 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 208000028715 ductal breast carcinoma in situ Diseases 0.000 description 1
- 229940056913 eftilagimod alfa Drugs 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 210000001900 endoderm Anatomy 0.000 description 1
- 208000001991 endodermal sinus tumor Diseases 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003114 enzyme-linked immunosorbent spot assay Methods 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 229930013356 epothilone Natural products 0.000 description 1
- HESCAJZNRMSMJG-KKQRBIROSA-N epothilone A Chemical class C/C([C@@H]1C[C@@H]2O[C@@H]2CCC[C@@H]([C@@H]([C@@H](C)C(=O)C(C)(C)[C@@H](O)CC(=O)O1)O)C)=C\C1=CSC(C)=N1 HESCAJZNRMSMJG-KKQRBIROSA-N 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- 229960000255 exemestane Drugs 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 208000024519 eye neoplasm Diseases 0.000 description 1
- 229950011548 fadrozole Drugs 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 201000008825 fibrosarcoma of bone Diseases 0.000 description 1
- 108700042480 filovirus VP35 Proteins 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 229960000961 floxuridine Drugs 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229940014144 folate Drugs 0.000 description 1
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 201000003444 follicular lymphoma Diseases 0.000 description 1
- 229960004421 formestane Drugs 0.000 description 1
- OSVMTWJCGUFAOD-KZQROQTASA-N formestane Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1O OSVMTWJCGUFAOD-KZQROQTASA-N 0.000 description 1
- 229960004783 fotemustine Drugs 0.000 description 1
- YAKWPXVTIGTRJH-UHFFFAOYSA-N fotemustine Chemical compound CCOP(=O)(OCC)C(C)NC(=O)N(CCCl)N=O YAKWPXVTIGTRJH-UHFFFAOYSA-N 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229960002258 fulvestrant Drugs 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- GIVLTTJNORAZON-HDBOBKCLSA-N ganglioside GM2 (18:0) Chemical compound O[C@@H]1[C@@H](O)[C@H](OC[C@H](NC(=O)CCCCCCCCCCCCCCCCC)[C@H](O)\C=C\CCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](CO)O1 GIVLTTJNORAZON-HDBOBKCLSA-N 0.000 description 1
- PFJKOHUKELZMLE-VEUXDRLPSA-N ganglioside GM3 Chemical compound O[C@@H]1[C@@H](O)[C@H](OC[C@@H]([C@H](O)/C=C/CCCCCCCCCCCCC)NC(=O)CCCCCCCCCCCCC\C=C/CCCCCCCC)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O)[C@@H](CO)O1 PFJKOHUKELZMLE-VEUXDRLPSA-N 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 208000015419 gastrin-producing neuroendocrine tumor Diseases 0.000 description 1
- 201000000052 gastrinoma Diseases 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 229940020967 gemzar Drugs 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000035931 haemagglutination Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000185 hemagglutinin Substances 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 229940088013 hycamtin Drugs 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- 230000003463 hyperproliferative effect Effects 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 229940090411 ifex Drugs 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- 230000005746 immune checkpoint blockade Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000000760 immunoelectrophoresis Methods 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 238000002650 immunosuppressive therapy Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 201000004653 inflammatory breast carcinoma Diseases 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 108700032552 influenza virus INS1 Proteins 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 206010022498 insulinoma Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 108040006849 interleukin-2 receptor activity proteins Proteins 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 201000002696 invasive tubular breast carcinoma Diseases 0.000 description 1
- 229960005386 ipilimumab Drugs 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 201000002529 islet cell tumor Diseases 0.000 description 1
- 229960002014 ixabepilone Drugs 0.000 description 1
- FABUFPQFXZVHFB-CFWQTKTJSA-N ixabepilone Chemical compound C/C([C@@H]1C[C@@H]2O[C@]2(C)CCC[C@@H]([C@@H]([C@H](C)C(=O)C(C)(C)[C@H](O)CC(=O)N1)O)C)=C\C1=CSC(C)=N1 FABUFPQFXZVHFB-CFWQTKTJSA-N 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 210000000244 kidney pelvis Anatomy 0.000 description 1
- 238000012933 kinetic analysis Methods 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- 238000002843 lactate dehydrogenase assay Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 208000003849 large cell carcinoma Diseases 0.000 description 1
- 229950005692 larotaxel Drugs 0.000 description 1
- SEFGUGYLLVNFIJ-QDRLFVHASA-N larotaxel dihydrate Chemical compound O.O.O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@@]23[C@H]1[C@@]1(CO[C@@H]1C[C@@H]2C3)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 SEFGUGYLLVNFIJ-QDRLFVHASA-N 0.000 description 1
- 229960002367 lasofoxifene Drugs 0.000 description 1
- GXESHMAMLJKROZ-IAPPQJPRSA-N lasofoxifene Chemical compound C1([C@@H]2[C@@H](C3=CC=C(C=C3CC2)O)C=2C=CC(OCCN3CCCC3)=CC=2)=CC=CC=C1 GXESHMAMLJKROZ-IAPPQJPRSA-N 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 206010024217 lentigo Diseases 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 229960003881 letrozole Drugs 0.000 description 1
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 1
- XZEUAXYWNKYKPL-WDYNHAJCSA-N levormeloxifene Chemical compound C1([C@H]2[C@@H](C3=CC=C(C=C3OC2(C)C)OC)C=2C=CC(OCCN3CCCC3)=CC=2)=CC=CC=C1 XZEUAXYWNKYKPL-WDYNHAJCSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 229950001947 lonaprisan Drugs 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 201000004593 malignant giant cell tumor Diseases 0.000 description 1
- 201000005282 malignant pleural mesothelioma Diseases 0.000 description 1
- 229960000733 mannosulfan Drugs 0.000 description 1
- UUVIQYKKKBJYJT-ZYUZMQFOSA-N mannosulfan Chemical compound CS(=O)(=O)OC[C@@H](OS(C)(=O)=O)[C@@H](O)[C@H](O)[C@H](OS(C)(=O)=O)COS(C)(=O)=O UUVIQYKKKBJYJT-ZYUZMQFOSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 208000030163 medullary breast carcinoma Diseases 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 230000015689 metaplastic ossification Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 108091079012 miR-133a Proteins 0.000 description 1
- 108091024038 miR-133a stem-loop Proteins 0.000 description 1
- 108091063348 miR-193 stem-loop Proteins 0.000 description 1
- 108091036762 miR-193a stem-loop Proteins 0.000 description 1
- 108091062762 miR-21 stem-loop Proteins 0.000 description 1
- 108091041631 miR-21-1 stem-loop Proteins 0.000 description 1
- 108091044442 miR-21-2 stem-loop Proteins 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 108010071421 milk fat globule Proteins 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 1
- 229960005485 mitobronitol Drugs 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 201000006894 monocytic leukemia Diseases 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 229940051875 mucins Drugs 0.000 description 1
- 201000005962 mycosis fungoides Diseases 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 208000037830 nasal cancer Diseases 0.000 description 1
- 210000000581 natural killer T-cell Anatomy 0.000 description 1
- 229950007221 nedaplatin Drugs 0.000 description 1
- PGSADBUBUOPOJS-UHFFFAOYSA-N neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 description 1
- 229960001420 nimustine Drugs 0.000 description 1
- VFEDRRNHLBGPNN-UHFFFAOYSA-N nimustine Chemical compound CC1=NC=C(CNC(=O)N(CCCl)N=O)C(N)=N1 VFEDRRNHLBGPNN-UHFFFAOYSA-N 0.000 description 1
- 201000000032 nodular malignant melanoma Diseases 0.000 description 1
- 229940085033 nolvadex Drugs 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 201000002575 ocular melanoma Diseases 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 229960003327 ormeloxifene Drugs 0.000 description 1
- BWKDAMBGCPRVPI-ZQRPHVBESA-N ortataxel Chemical compound O([C@@H]1[C@]23OC(=O)O[C@H]2[C@@H](C(=C([C@@H](OC(C)=O)C(=O)[C@]2(C)[C@@H](O)C[C@H]4OC[C@]4([C@H]21)OC(C)=O)C3(C)C)C)OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)CC(C)C)C(=O)C1=CC=CC=C1 BWKDAMBGCPRVPI-ZQRPHVBESA-N 0.000 description 1
- 229950001094 ortataxel Drugs 0.000 description 1
- 201000009234 osteosclerotic myeloma Diseases 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 208000021255 pancreatic insulinoma Diseases 0.000 description 1
- 208000022102 pancreatic neuroendocrine neoplasm Diseases 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 229960002621 pembrolizumab Drugs 0.000 description 1
- 229960005079 pemetrexed Drugs 0.000 description 1
- QOFFJEBXNKRSPX-ZDUSSCGKSA-N pemetrexed Chemical compound C1=N[C]2NC(N)=NC(=O)C2=C1CCC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 QOFFJEBXNKRSPX-ZDUSSCGKSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 230000008823 permeabilization Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229950005566 picoplatin Drugs 0.000 description 1
- IIMIOEBMYPRQGU-UHFFFAOYSA-L picoplatin Chemical compound N.[Cl-].[Cl-].[Pt+2].CC1=CC=CC=N1 IIMIOEBMYPRQGU-UHFFFAOYSA-L 0.000 description 1
- 208000024724 pineal body neoplasm Diseases 0.000 description 1
- 201000004123 pineal gland cancer Diseases 0.000 description 1
- 201000003113 pineoblastoma Diseases 0.000 description 1
- 206010035059 pineocytoma Diseases 0.000 description 1
- 229960001221 pirarubicin Drugs 0.000 description 1
- 229960004403 pixantrone Drugs 0.000 description 1
- PEZPMAYDXJQYRV-UHFFFAOYSA-N pixantrone Chemical compound O=C1C2=CN=CC=C2C(=O)C2=C1C(NCCN)=CC=C2NCCN PEZPMAYDXJQYRV-UHFFFAOYSA-N 0.000 description 1
- 230000007505 plaque formation Effects 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229960003171 plicamycin Drugs 0.000 description 1
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229960004694 prednimustine Drugs 0.000 description 1
- 208000016800 primary central nervous system lymphoma Diseases 0.000 description 1
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229940097325 prolactin Drugs 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 201000005825 prostate adenocarcinoma Diseases 0.000 description 1
- 208000021046 prostate intraepithelial neoplasia Diseases 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000007026 protein scission Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 229960004622 raloxifene Drugs 0.000 description 1
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 description 1
- 229960004432 raltitrexed Drugs 0.000 description 1
- 229960002185 ranimustine Drugs 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000008593 response to virus Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- VHXNKPBCCMUMSW-FQEVSTJZSA-N rubitecan Chemical compound C1=CC([N+]([O-])=O)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VHXNKPBCCMUMSW-FQEVSTJZSA-N 0.000 description 1
- 229950009213 rubitecan Drugs 0.000 description 1
- 229960005399 satraplatin Drugs 0.000 description 1
- 190014017285 satraplatin Chemical compound 0.000 description 1
- 206010039667 schwannoma Diseases 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 229960003440 semustine Drugs 0.000 description 1
- 208000002491 severe combined immunodeficiency Diseases 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 208000010721 smoldering plasma cell myeloma Diseases 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000011301 standard therapy Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- VLYWMPOKSSWJAL-UHFFFAOYSA-N sulfamethoxypyridazine Chemical compound N1=NC(OC)=CC=C1NS(=O)(=O)C1=CC=C(N)C=C1 VLYWMPOKSSWJAL-UHFFFAOYSA-N 0.000 description 1
- 208000030457 superficial spreading melanoma Diseases 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 101150047061 tag-72 gene Proteins 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- RCINICONZNJXQF-XAZOAEDWSA-N taxol® Chemical compound O([C@@H]1[C@@]2(CC(C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3(C21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-XAZOAEDWSA-N 0.000 description 1
- 229960001674 tegafur Drugs 0.000 description 1
- WFWLQNSHRPWKFK-ZCFIWIBFSA-N tegafur Chemical compound O=C1NC(=O)C(F)=CN1[C@@H]1OCCC1 WFWLQNSHRPWKFK-ZCFIWIBFSA-N 0.000 description 1
- 229940061353 temodar Drugs 0.000 description 1
- 229960004964 temozolomide Drugs 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- MODVSQKJJIBWPZ-VLLPJHQWSA-N tesetaxel Chemical compound O([C@H]1[C@@H]2[C@]3(OC(C)=O)CO[C@@H]3CC[C@@]2(C)[C@H]2[C@@H](C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C(=CC=CN=4)F)C[C@]1(O)C3(C)C)O[C@H](O2)CN(C)C)C(=O)C1=CC=CC=C1 MODVSQKJJIBWPZ-VLLPJHQWSA-N 0.000 description 1
- 229950009016 tesetaxel Drugs 0.000 description 1
- 229960005353 testolactone Drugs 0.000 description 1
- BPEWUONYVDABNZ-DZBHQSCQSA-N testolactone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(OC(=O)CC4)[C@@H]4[C@@H]3CCC2=C1 BPEWUONYVDABNZ-DZBHQSCQSA-N 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 208000030901 thyroid gland follicular carcinoma Diseases 0.000 description 1
- 208000030045 thyroid gland papillary carcinoma Diseases 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- MNRILEROXIRVNJ-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=NC=N[C]21 MNRILEROXIRVNJ-UHFFFAOYSA-N 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 description 1
- 229960005026 toremifene Drugs 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229950007217 tremelimumab Drugs 0.000 description 1
- 229960003181 treosulfan Drugs 0.000 description 1
- IUCJMVBFZDHPDX-UHFFFAOYSA-N tretamine Chemical compound C1CN1C1=NC(N2CC2)=NC(N2CC2)=N1 IUCJMVBFZDHPDX-UHFFFAOYSA-N 0.000 description 1
- 229950001353 tretamine Drugs 0.000 description 1
- 229960004560 triaziquone Drugs 0.000 description 1
- PXSOHRWMIRDKMP-UHFFFAOYSA-N triaziquone Chemical compound O=C1C(N2CC2)=C(N2CC2)C(=O)C=C1N1CC1 PXSOHRWMIRDKMP-UHFFFAOYSA-N 0.000 description 1
- 229950002860 triplatin tetranitrate Drugs 0.000 description 1
- 190014017283 triplatin tetranitrate Chemical compound 0.000 description 1
- 229960000875 trofosfamide Drugs 0.000 description 1
- UMKFEPPTGMDVMI-UHFFFAOYSA-N trofosfamide Chemical compound ClCCN(CCCl)P1(=O)OCCCN1CCCl UMKFEPPTGMDVMI-UHFFFAOYSA-N 0.000 description 1
- 229960001814 trypan blue Drugs 0.000 description 1
- 210000003606 umbilical vein Anatomy 0.000 description 1
- 229960001055 uracil mustard Drugs 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 208000037965 uterine sarcoma Diseases 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 229960000653 valrubicin Drugs 0.000 description 1
- ZOCKGBMQLCSHFP-KQRAQHLDSA-N valrubicin Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)CCCC)[C@H]1C[C@H](NC(=O)C(F)(F)F)[C@H](O)[C@H](C)O1 ZOCKGBMQLCSHFP-KQRAQHLDSA-N 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 208000008662 verrucous carcinoma Diseases 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 230000007444 viral RNA synthesis Effects 0.000 description 1
- 230000009447 viral pathogenesis Effects 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229960001771 vorozole Drugs 0.000 description 1
- XLMPPFTZALNBFS-INIZCTEOSA-N vorozole Chemical compound C1([C@@H](C2=CC=C3N=NN(C3=C2)C)N2N=CN=C2)=CC=C(Cl)C=C1 XLMPPFTZALNBFS-INIZCTEOSA-N 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229960000641 zorubicin Drugs 0.000 description 1
- FBTUMDXHSRTGRV-ALTNURHMSA-N zorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(\C)=N\NC(=O)C=1C=CC=CC=1)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 FBTUMDXHSRTGRV-ALTNURHMSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
- A61K35/768—Oncolytic viruses not provided for in groups A61K35/761 - A61K35/766
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2818—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2827—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2878—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18111—Avulavirus, e.g. Newcastle disease virus
- C12N2760/18121—Viruses as such, e.g. new isolates, mutants or their genomic sequences
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18111—Avulavirus, e.g. Newcastle disease virus
- C12N2760/18122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18111—Avulavirus, e.g. Newcastle disease virus
- C12N2760/18132—Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18111—Avulavirus, e.g. Newcastle disease virus
- C12N2760/18133—Use of viral protein as therapeutic agent other than vaccine, e.g. apoptosis inducing or anti-inflammatory
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18111—Avulavirus, e.g. Newcastle disease virus
- C12N2760/18141—Use of virus, viral particle or viral elements as a vector
- C12N2760/18143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Definitions
- chimeric Newcastle disease viruses engineered to express an agonist of a co-stimulatory signal of an immune cell and compositions comprising such viruses. Also described herein are chimeric Newcastle disease viruses engineered to express an antagonist of an inhibitory signal of an immune cell and compositions comprising such viruses. The chimeric Newcastle disease viruses and compositions are useful in the treatment of cancer. In addition, described herein are methods for treating cancer comprising administering Newcastle disease viruses in combination with an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell.
- Newcastle Disease Virus is a member of the Avulavirus genus in the Paramyxoviridae family, which has been shown to infect a number of avian species (Alexander, D J (1988). Newcastle disease, Newcastle disease virus—an avian paramyxovirus. Kluwer Academic Publishers Dordrecht, The Netherlands. pp 1-22). NDV possesses a single-stranded RNA genome in negative sense and does not undergo recombination with the host genome or with other viruses (Alexander, D J (1988). Newcastle disease, Newcastle disease virus—an avian paramyxovirus. Kluwer Academic Publishers: Dordrecht, The Netherlands. pp 1-22).
- the genomic RNA contains genes in the order of 3′-NP-P-M-F-HN-L-5′, described in further detail below. Two additional proteins, V and W, are produced by NDV from the P gene by alternative mRNAs that are generated by RNA editing.
- the genomic RNA also contains a leader sequence at the 3′ end.
- the structural elements of the virion include the virus envelope which is a lipid bilayer derived from the cell plasma membrane.
- the glycoprotein, hemagglutinin-neuraminidase (HN) protrudes from the envelope allowing the virus to contain both hemagglutinin (e.g., receptor binding/fusogenic) and neuraminidase activities.
- the fusion glycoprotein (F) which also interacts with the viral membrane, is first produced as an inactive precursor, then cleaved post-translationally to produce two disulfide linked polypeptides.
- the active F protein is involved in penetration of NDV into host cells by facilitating fusion of the viral envelope with the host cell plasma membrane.
- the matrix protein (M) is involved with viral assembly, and interacts with both the viral membrane as well as the nucleocapsid proteins.
- the main protein subunit of the nucleocapsid is the nucleocapsid protein (NP) which confers helical symmetry on the capsid.
- NP nucleocapsid protein
- P phosphoprotein
- L L protein
- the phosphoprotein (P) which is subject to phosphorylation, is thought to play a regulatory role in transcription, and may also be involved in methylation, phosphorylation and polyadenylation.
- the L gene which encodes an RNA-dependent RNA polymerase, is required for viral RNA synthesis together with the P protein.
- the L protein which takes up nearly half of the coding capacity of the viral genome is the largest of the viral proteins, and plays an important role in both transcription and replication.
- the V protein has been shown to inhibit interferon-alpha and to contribute to the virulence of NDV (Huang et al. (2003). Newcastle disease virus V protein is associated with viral pathogenesis and functions as an Alpha Interferon Antagonist. Journal of Virology 77: 8676-8685).
- NDV Newcastle disease virus
- Naturally-occurring strains of NDV have been used in multiple clinical trials against advanced human cancers (Sinkovics, J G, and Horvath, J C (2000). Newcastle disease virus (NDV): brief history of its oncolytic strains. J Clin Virol 16: 1-15; Lorence et al. (2007). Phase 1 clinical experience using intravenous administration of PV701, an oncolytic Newcastle disease virus. Curr Cancer Drug Targets 7: 157-167; Hotte et al.
- NDVs Newcastle disease viruses
- chimeric NDVs engineered to express an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell.
- chimeric NDVs comprising a packaged genome which encodes an agonist of a co-stimulatory signal of an immune cell, wherein the agonist is expressed.
- chimeric NDVs comprising a packaged genome which encodes an antagonist of an inhibitory signal of an immune cell, wherein the antagonist is expressed.
- chimeric NDVs comprising a packaged genome which encodes an agonist of a co-stimulatory signal of an immune cell and a mutated F protein that causes the NDV to be highly fusogenic, wherein the agonist and the mutated F protein are expressed.
- chimeric NDVs comprising a packaged genome which encodes an agonist of a co-stimulatory signal of an immune cell and a mutated F protein with a mutated cleavage site, wherein the agonist and the mutated F protein are expressed.
- the chimeric NDVs expressing the mutated F protein have increased fusogenic activity relative to the corresponding virus expressing the counterpart F protein without the mutations to the cleavage site.
- the modified F protein is incorporated into the virion.
- chimeric NDVs comprising a packaged genome which encodes an antagonist of an inhibitory signal of an immune cell and a mutated F protein that causes the NDV to be highly fusogenic, wherein the antagonist and the mutated F protein are expressed.
- chimeric NDVs comprising a packaged genome which encodes antagonist of an inhibitory signal of an immune cell and a mutated F protein with a mutated cleavage site, wherein the antagonist and the mutated F protein are expressed.
- the chimeric NDVs expressing the mutated F protein have increased fusogenic activity relative to the corresponding virus expressing the counterpart F protein without the mutations to the cleavage site.
- the modified F protein is incorporated into the virion.
- chimeric NDVs comprising a packaged genome which encodes an agonist of a co-stimulatory signal of an immune cell and a cytokine (e.g., interleukin (IL)-2), wherein the agonist and the cytokine are expressed.
- a cytokine e.g., interleukin (IL)-2
- chimeric NDVs comprising a packaged genome which encodes an agonist of a co-stimulatory signal of an immune cell, a cytokine (e.g., IL-2) and a mutated F protein that causes the NDV to be highly fusogenic, wherein the agonist, the cytokine and the mutated F protein are expressed.
- chimeric NDVs comprising a packaged genome which encodes an agonist of a co-stimulatory signal of an immune cell, a cytokine (e.g., IL-2) and a mutated F protein with a mutated cleavage site, wherein the agonist, the cytokine and the mutated F protein are expressed.
- a cytokine e.g., IL-2
- a mutated F protein with a mutated cleavage site wherein the agonist, the cytokine and the mutated F protein are expressed.
- the chimeric NDVs expressing the mutated F protein with the mutated cleavage site are highly fusogenic.
- the mutated F protein is incorporated into the virion.
- chimeric NDVs comprising a packaged genome which encodes an antagonist of an inhibitory signal of an immune cell of an immune cell and a cytokine (e.g., IL-2), wherein the antagonist and the cytokine are expressed.
- a cytokine e.g., IL-2
- chimeric NDVs comprising a packaged genome which encodes an antagonist of an inhibitory signal of an immune cell, a cytokine (e.g., IL-2) and a mutated F protein that causes the NDV to be highly fusogenic, wherein the antagonist, the cytokine and the mutated F protein are expressed.
- chimeric NDVs comprising a packaged genome which encodes an antagonist of an inhibitory signal of an immune cell, a cytokine (e.g., IL-2) and a mutated F protein with a mutated cleavage site, wherein the antagonist, the cytokine and the mutated F protein are expressed.
- the chimeric NDVs expressing the mutated F protein with the mutated cleavage site are highly fusogenic.
- the mutated F protein is incorporated into the virion.
- the agonist of a co-stimulatory signal of an immune cell is an agonist of a co-stimulatory receptor expressed by an immune cell.
- co-stimulatory receptors include glucocorticoid-induced tumor necrosis factor receptor (GITR), Inducible T-cell costimulator (ICOS or CD278), OX40 (CD134), CD27, CD28, 4-1BB (CD137), and CD40.
- GITR glucocorticoid-induced tumor necrosis factor receptor
- ICOS or CD278 Inducible T-cell costimulator
- OX40 CD134
- CD27, CD28, 4-1BB (CD137) CD40.
- CD137 CD137
- the antibody is an sc-Fv.
- the antibody is a bispecific antibody that binds to two receptors on an immune cell.
- the bispecific antibody binds to a receptor on an immune cell and to another receptor on a cancer cell.
- the antibody is a human or humanized antibody.
- the ligand or an antibody is a chimeric protein comprising a NDV F protein or NDV FIN protein. Methods for generating such chimeric proteins are known in the art. See, e.g., U.S. Patent Application Publication No. 2012-0122185, the disclosure of which is herein incorporated by reference in its entirety. Also see Park et al., PNAS 2006; 103:8203-8 and Murawski et al., J Virol 2010; 84:1110-23, the disclosures of which is herein incorporated by reference in their entireties.
- the antagonist of an inhibitory signal of an immune cell is an antagonist of an inhibitory receptor expressed by an immune cell.
- inhibitory receptors include cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4 or CD52), programmed cell death protein 1 (PD1 or CD279), B and T-lymphocyte attenuator (BTLA), killer cell immunoglobulin-like receptor (KIR), lymphocyte activation gene 3 (LAG3), T-cell membrane protein 3 (TIM3), and adenosine A2a receptor (A2aR).
- CTLA-4 or CD52 cytotoxic T-lymphocyte-associated antigen 4
- PD1 or CD279 programmed cell death protein 1
- B and T-lymphocyte attenuator (BTLA) B and T-lymphocyte attenuator (BTLA), killer cell immunoglobulin-like receptor (KIR), lymphocyte activation gene 3 (LAG3), T-cell membrane protein 3 (TIM3), and adenosine A2a receptor (A2aR).
- the antibody is a monoclonal antibody. In another embodiment, the antibody is an sc-Fv. In specific embodiments, the antibody is a human or humanized antibody. In another specific embodiment, the antagonist of an inhibitory receptor is a soluble receptor or antibody (or an antigen-binding fragment thereof) that specifically binds to a ligand of the inhibitory receptor.
- the NDVs described herein can be propagated in any cell, subject, tissue or organ susceptible to a NDV infection.
- the NDVs described herein e.g., chimeric NDVs described herein
- the NDVs described herein e.g., chimeric NDVs described herein
- the NDVs described herein may be propagated in an embryonated egg.
- presented herein are isolated cells, tissues or organs infected with an NDV described herein (e.g., a chimeric NDV described herein). See, e.g., Section 5.4, infra, for examples of cells, animals and eggs to infect with an NDV described herein (e.g., a chimeric NDV described herein).
- presented herein are isolated cancer cells infected with an NDV described herein (e.g., a chimeric NDV described herein).
- presented herein are cell lines infected with an NDV described herein (e.g., a chimeric NDV described herein).
- presented herein are embryonated eggs infected with an NDV described herein (e.g., a chimeric NDV described herein).
- compositions comprising an NDV described herein (e.g., a chimeric NDV described herein).
- pharmaceutical compositions comprising an NDV described herein (e.g., a chimeric NDV described herein) and a pharmaceutically acceptable carrier.
- pharmaceutical compositions comprising cancer cells infected with an NDV described herein (e.g., a chimeric NDV described herein), and a pharmaceutically acceptable carrier.
- the cancer cells have been treated with gamma radiation prior to incorporation into the pharmaceutical composition.
- the cancer cells have been treated with gamma radiation before infection with the NDV (e.g., chimeric NDV).
- the cancer cells have been treated with gamma radiation after infection with the NDV (e.g., chimeric NDV).
- NDV e.g., chimeric NDV
- pharmaceutical compositions comprising protein concentrate from lysed NDV-infected cancer cells (e.g., chimeric-NDV infected cancer cells), and a pharmaceutically acceptable carrier.
- a method for producing a pharmaceutical composition comprises: (a) propagating an NDV described herein (e.g., a chimeric NDV described herein) in a cell line that is susceptible to an NDV infection; and (b) collecting the progeny virus, wherein the virus is grown to sufficient quantities and under sufficient conditions that the virus is free from contamination, such that the progeny virus is suitable for formulation into a pharmaceutical composition.
- a method for producing a pharmaceutical composition comprises: (a) propagating an NDV described herein (e.g., a chimeric NDV described herein) in an embryonated egg; and (b) collecting the progeny virus, wherein the virus is grown to sufficient quantities and under sufficient conditions that the virus is free from contamination, such that the progeny virus is suitable for formulation into a pharmaceutical composition.
- an NDV described herein e.g., a chimeric NDV described herein
- a method for treating cancer comprises infecting a cancer cell in a subject with a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra) or a composition thereof.
- a method for treating cancer comprises administering to a subject in need thereof a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra) or a composition thereof.
- an effective amount of a chimeric NDV described herein e.g., a chimeric NDV described in Section 5.2, infra
- a composition comprising an effective amount of a chimeric NDV described herein is administered to a subject to treat cancer.
- the chimeric NDV comprises a genome, the genome comprising an agonist of a co-stimulatory signal of an immune cell (e.g., an agonist of a co-stimulatory receptor of an immune cell) and/or an antagonist of an inhibitory signal of an immune cell (e.g., an antagonist of an inhibitory receptor of an immune cell).
- the genome of the NDV also comprises a mutated F protein.
- two or more chimeric NDVs are administered to a subject to treat cancer.
- presented herein are methods for treating cancer utilizing an NDV described herein (e.g., a chimeric NDV such as described in Section 5.2, infra) or a composition comprising such the NDV in combination with one or more other therapies.
- methods for treating cancer comprising administering to a subject an NDV described herein (e.g., a chimeric NDV, such as described in Section 5.2.1, infra) and one or more other therapies.
- methods for treating cancer comprising administering to a subject an effective amount of an NDV described herein or a composition comprising an effective amount of an NDV described herein, and one or more other therapies.
- the NDV and one or more other therapies can be administered concurrently or sequentially to the subject. In certain embodiments, the NDV and one or more other therapies are administered in the same composition. In other embodiments, the NDV and one or more other therapies are administered in different compositions. The NDV and one or more other therapies can be administered by the same or different routes of administration to the subject.
- any NDV type or strain may be used in a combination therapy disclosed herein, including, but not limited to, naturally-occurring strains, variants or mutants, mutagenized viruses, reassortants and/or genetically engineered viruses.
- the NDV used in a combination with one or more other therapies is a naturally-occurring strain.
- the NDV used in combination with one or more other therapies is a chimeric NDV.
- the chimeric NDV comprises a packaged genome, the genome comprising a cytokine (e.g., IL-2, IL-7, IL-15, IL-17, or IL-21).
- the term “about” or “approximately” when used in conjunction with a number refers to any number within 1, 5 or 10% of the referenced number.
- antibody refers to molecules that contain an antigen binding site, e.g., immunoglobulins.
- Antibodies include, but are not limited to, monoclonal antibodies, bispecific antibodies, multispecific antibodies, human antibodies, humanized antibodies, synthetic antibodies, chimeric antibodies, polyclonal antibodies, single domain antibodies, camelized antibodies, single-chain Fvs (scFv), single chain antibodies, Fab fragments, F(ab′) fragments, disulfide-linked bispecific Fvs (sdFv), intrabodies, and anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id and anti-anti-Id antibodies to antibodies), and epitope-binding fragments of any of the above.
- the bispecific antibody specifically binds to a co-stimulatory receptor of an immune cell or an inhibitory receptor of an immune, and a receptor on a cancer cell. In some embodiments, the bispecific antibody specifically binds to two receptors immune cells, e.g., two co-stimulatory receptors on immune cells, two inhibitory receptors on immune cells, or one co-stimulatory receptor on immune cells and one inhibitory receptor on immune cells.
- fragment is the context of a fragment of a proteinaceous agent (e.g., a protein) refers to a fragment that is 8 or more contiguous amino acids, 10 or more contiguous amino acids, 15 or more contiguous amino acids, 20 or more contiguous amino acids, 25 or more contiguous amino acids, 50 or more contiguous amino acids, 75 or more contiguous amino acids, 100 or more contiguous amino acids, 150 or more contiguous amino acids, 200 or more contiguous amino acids, or in the range of between 10 to 300 contiguous amino acids, 10 to 200 contiguous amino acids, 10 to 250 contiguous amino acids, 10 to 150 contiguous amino acids, 10 to 100 contiguous amino acids, 10 to 50 contiguous amino acids, 50 to 100 contiguous amino acids, 50 to 150 contiguous amino acids, 50 to 200 contiguous amino acids, 50 to 250 contiguous amino acids, 50 to 300 contiguous amino acids, 25 to 50 contiguous amino acids, 25 to 75 contiguous amino acids,
- a fragment of a proteinaceous agent retains one or more functions of the proteinaceous agent—in other words, it is a functional fragment.
- a fragment of a proteinaceous agent retains the ability to interact with another protein and/or to induce, enhance or activate one or more signal transduction pathways.
- the term “functional fragment,” in the context of a proteinaceous agent, refers to a portion of a proteinaceous agent that retains one or more activities or functions of the proteinaceous agent.
- a functional fragment of an inhibitory receptor may retain the ability to bind one or more of its ligands.
- a functional fragment of a ligand of a co-stimulatory receptor may retain the ability to bind to the receptor and/or induce, enhance or activate one or more signal transduction pathways mediated by the ligand binding to its co-stimulatory receptor.
- heterologous refers an entity not found in nature to be associated with (e.g., encoded by and/or expressed by the genome of) a naturally occurring NDV.
- yielderly human refers to a human 65 years or older.
- human adult refers to a human that is 18 years or older.
- human infant refers to a newborn to 1 year old year human.
- the syncytia are quantitated microscopically by counting the number of nuclei per syncytium after a certain period of time (e.g., about 8 hours to about 12 hours, about 12 hours to about 24 hours, about 24 hours to about 36 hours, or about 36 hours to about 48 hours).
- an interferon antagonist is an agent that reduces or inhibits interferon expression and/or activity.
- the interferon antagonist reduces or inhibits the expression and/or activity of type I IFN.
- the interferon antagonist reduces or inhibits the expression and/or activity of type II IFN.
- the interferon antagonist reduces or inhibits the expression and/or activity of type III IFN.
- the interferon antagonist reduces or inhibits the expression and/or activity of either IFN- ⁇ , IFN- ⁇ or both.
- the interferon antagonist reduces or inhibits the expression and/or activity of IFN- ⁇ .
- the interferon antagonist reduces or inhibits the expression and/or activity of one, two or all of IFN- ⁇ , IFN- ⁇ , and IFN- ⁇ .
- the expression and/or activity of IFN- ⁇ , IFN- ⁇ and/or IFN- ⁇ in an embryonated egg or cell is reduced approximately 1 to approximately 100 fold, approximately 5 to approximately 80 fold, approximately 20 to approximately 80 fold, approximately 1 to approximately 10 fold, approximately 1 to approximately 5 fold, approximately 40 to approximately 80 fold, or 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 fold by an interferon antagonist relative to the expression and/or activity of IFN- ⁇ , IFN- ⁇ , and/or IFN- ⁇ in a control embryonated egg or a cell not expressing or not contacted with such an interferon antagonist as measured by the techniques described herein or known to one skilled in the art.
- the expression and/or activity of IFN- ⁇ , IFN- ⁇ and/or IFN- ⁇ in an embryonated egg or cell is reduced by at least 20% to 25%, at least 25% to 30%, at least 30% to 35%, at least 35% to 40%, at least 40% to 45%, at least 45% to 50%, at least 50% to 55%, at least 55% to 60%, at least 60% to 65%, at least 65% to 70%, at least 70% to 75%, at least 75% to 80%, at least 80% to 85%, at least 85% to 90%, at least 90% to 95%, at least 95% to 99% or by 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% by an interferon antagonist relative to the expression and/or activity of IFN- ⁇ , IFN- ⁇ , and/or IFN- ⁇ in a control embryonated egg or a cell not expressing or not contacted with such an interferon antagonist as
- IFN deficient systems or “IFN-deficient substrates” refer to systems, e.g., cells, cell lines and animals, such as mice, chickens, turkeys, rabbits, rats, horses etc., which do not produce one, two or more types of IFN, or do not produce any type of IFN, or produce low levels of one, two or more types of IFN, or produce low levels of any IFN (i.e., a reduction in any IFN expression of 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, 80-90% or more when compared to IFN-competent systems under the same conditions), do not respond or respond less efficiently to one, two or more types of IFN, or do not respond to any type of IFN, have a delayed response to one, two or more types of IFN, and/or are deficient in the activity of antiviral genes induced by one, two or more types of IFN, or induced by any type of IFN
- immunospecifically binds As used herein, the terms “immunospecifically binds,” “immunospecifically recognizes,” “specifically binds,” and “specifically recognizes” are analogous terms in the context of antibodies and refer to molecules that specifically bind to an antigen (e.g., epitope or immune complex) as understood by one skilled in the art.
- an antigen e.g., epitope or immune complex
- molecules that specifically bind to an antigen bind to the antigen with a dissociation constant (i.e., Ka) that is at least 2 logs, 2.5 logs, 3 logs, 3.5 logs, 4 logs or greater than the Ka when the molecules bind to another antigen.
- a dissociation constant i.e., Ka
- molecules that specifically bind to an antigen do not cross react with other proteins.
- the term “monoclonal antibody” is a term of the art and generally refers to an antibody obtained from a population of homogenous or substantially homogeneous antibodies, and each monoclonal antibody will typically recognize a single epitope (e.g., single conformation epitope) on the antigen.
- the term “native ligand” refers to any naturally occurring ligand that binds to a naturally occurring receptor.
- the ligand is a mammalian ligand.
- the ligand is a human ligand.
- native polypeptide(s) in the context of proteins or polypeptides refers to any naturally occurring amino acid sequence, including immature or precursor and mature forms of a protein.
- native polypeptide is a human protein or polypeptide.
- the term “native receptor” refers to any naturally occurring receptor that binds to a naturally occurring ligand.
- the receptor is a mammalian receptor.
- the receptor is a human receptor.
- the terms “subject” or “patient” are used interchangeably.
- the terms “subject” and “subjects” refers to an animal.
- the subject is a mammal including a non-primate (e.g., a camel, donkey, zebra, cow, horse, horse, cat, dog, rat, and mouse) and a primate (e.g., a monkey, chimpanzee, and a human).
- the subject is a non-human mammal.
- the subject is a pet (e.g., dog or cat) or farm animal (e.g., a horse, pig or cow).
- the subject is a human.
- the terms “treat” and “treating” in the context of the administration of a therapy refers to a treatment/therapy from which a subject receives a beneficial effect, such as the reduction, decrease, attenuation, diminishment, stabilization, remission, suppression, inhibition or arrest of the development or progression of cancer, or a symptom thereof.
- the treatment/therapy that a subject receives results in at least one or more of the following effects: (i) the reduction or amelioration of the severity of cancer and/or a symptom associated therewith; (ii) the reduction in the duration of a symptom associated with cancer; (iii) the prevention in the recurrence of a symptom associated with cancer; (iv) the regression of cancer and/or a symptom associated therewith; (v) the reduction in hospitalization of a subject; (vi) the reduction in hospitalization length; (vii) the increase in the survival of a subject; (viii) the inhibition of the progression of cancer and/or a symptom associated therewith; (ix) the enhancement or improvement the therapeutic effect of another therapy; (x) a reduction or elimination in the cancer cell population; (xi) a reduction in the growth of a tumor or neoplasm; (xii) a decrease in tumor size; (xiii) a reduction in the formation of a tumor; (xiv) eradication
- the term “in combination” in the context of the administration of (a) therapy(ies) to a subject refers to the use of more than one therapy.
- the use of the term “in combination” does not restrict the order in which therapies are administered to a subject.
- a first therapy can be administered prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapy to a subject.
- the terms “therapies” and “therapy” can refer to any protocol(s), method(s), and/or agent(s) that can be used in the treatment of cancer.
- the terms “therapies” and “therapy” refer to biological therapy, supportive therapy, hormonal therapy, chemotherapy, immunotherapy and/or other therapies useful in the treatment of cancer.
- a therapy includes adjuvant therapy.
- the term “therapy” refers to a chimeric NDV described herein. In other embodiments, the term “therapy” refers to an agent that is not a chimeric NDV.
- FIGS. 4A-4C Lymphocytes infiltrating distant tumors upregulate activation, lytic, and proliferation markers. Representative expression plots on CD4 effector cells (top) and the corresponding percentages in the CD4 effector, CD8, Tregs (bottom) are shown for A) CD44, B) Granzyme B, and C) Ki-67.
- FIGS. 5A-5D NDV Monotherapy delays the growth of distant tumors and provides some protection against tumor rechallenge. Bilateral flank tumors were established as described in FIG. 2A and the animals were treated and followed for survival. A) Growth of right flank (treated) tumors. B) Growth of left flank (non-treated) tumors. C) Overall survival. Numbers in boxes indicate percent of animals free of tumors. D) Survival in animals cured of B16-F10 melanoma by NDV re-challenged on day 75 with B16-F10 melanoma cells. Representative results of two different experiments with 10 mice per group.
- FIGS. 6A-6B Tumor-infiltrating lymphocytes from both treated and non-treated tumors upregulate CTLA-4 in response to NDV therapy.
- FIG. 7A-7C Combination therapy with NDV and CTLA-4 blockade enhances anti-tumor effect in the injected and distant tumors.
- Bilateral B16 flank tumors were established and the animals were treated as described in FIG. 2A with or without anti-CTLA-4 antibody 9H10.
- FIG. 8 Combination therapy with NDV and anti-CTLA-4 is effective systemically against non-virus-permissive prostate TRAMP tumors.
- Right (day 12) and left (day 3) flank TRAMP tumors were established and the animals were treated with NDV as described in FIG. 2A with or without systemic anti-CTLA-4 antibody. Growth of left flank (non-injected) tumors is shown. Numbers in boxes indicate percent of animals free of tumors.
- FIG. 9A-9C NDV infection upregulates expression of PD-L1 in B16-F10 tumors.
- FIGS. 10A-10F Combination therapy with NDV and anti-PD-1 is effective systemically against B16 melanoma and results in increased T cell infiltration with upregulation of activation markers.
- D-E Tumor-infiltrating lymphocytes from distant tumors were isolated and stained for expression of ICOS (D) and Granzyme B (E).
- F Tumor infiltrating lymphocytes were re-stimulated with dendritic cells loaded with tumor lysates and assessed for expression of IFN gamma by intracellular cytokine staining.
- FIG. 11 Combination therapy with NDV and CTLA-4 induces upregulation of ICOS and CD4 effector cells in distant tumors and tumor-draining lymph nodes (TDLN).
- TDLN tumor-draining lymph nodes
- FIGS. 15A-15C NDV treatment leads to distant B16 tumor infiltration with macrophages, NK cells, CD8 and CD4 effector cells and decreases the frequency of Tregs.
- FIG. 16A-16B Lymphocytes infiltrating distant B16 tumors upregulate activation, lytic, and proliferation markers.
- FIG. 17 Tumor infiltrating lymphocytes from treated animals secrete IFN-gamma in response to stimulation with DC's loaded with B16-F10 lysates. Representative dot plots are shown.
- FIGS. 18A-18B Animals cured by combination therapy are protected from further tumor challenge.
- FIG. 19A-19B Recombinant ICOSL-F chimeric protein is efficiently expressed on surface.
- compositions comprising an NDV described herein (e.g., a chimeric NDV described herein).
- pharmaceutical compositions comprising an NDV described herein (e.g., a chimeric NDV described herein) and a pharmaceutically acceptable carrier.
- pharmaceutical compositions comprising cancer cells infected with an NDV described herein (e.g., a chimeric NDV described herein), and a pharmaceutically acceptable carrier.
- pharmaceutical compositions comprising protein concentrate from lysed NDV-infected cancer cells (e.g., chimeric-NDV infected cancer cells), and a pharmaceutically acceptable carrier.
- a method for producing a pharmaceutical composition comprises: (a) propagating an NDV described herein (e.g., a chimeric NDV described herein) in a cell line that is susceptible to an NDV infection; and (b) collecting the progeny virus, wherein the virus is grown to sufficient quantities and under sufficient conditions that the virus is free from contamination, such that the progeny virus is suitable for formulation into a pharmaceutical composition.
- a method for producing a pharmaceutical composition comprises: (a) propagating an NDV described herein (e.g., a chimeric NDV described herein) in an embryonated egg; and (b) collecting the progeny virus, wherein the virus is grown to sufficient quantities and under sufficient conditions that the virus is free from contamination, such that the progeny virus is suitable for formulation into a pharmaceutical composition.
- an NDV described herein e.g., a chimeric NDV described herein
- a method for treating cancer comprises administering to a subject in need thereof cancer cells infected with a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra) or composition thereof.
- the cancer cells have been treated with gamma radiation prior to administration to the subject or incorporation into the composition.
- a method for treating cancer comprises administering to a subject in need thereof a protein concentrate or plasma membrane fragments from cancer cells infected with a chimeric NDV (e.g., a chimeric NDV described in Section 5.2, infra) or a composition thereof.
- the chimeric NDV comprises a packaged genome, the genome comprising an agonist of a co-stimulatory signal of an immune cell (e.g., an agonist of a co-stimulatory receptor of an immune cell) and/or an antagonist of an inhibitory signal of an immune cell (e.g., an antagonist of an inhibitory receptor of an immune cell), wherein the agonist and/or antagonist are expressed by the NDV.
- the genome of the NDV also comprises a mutated F protein, which is expressed by the NDV.
- the genome of the NDV also comprises a mutated F protein, a tumor antigen, a heterologous interferon antagonist, a pro-apoptotic molecule and/or an anti-apoptotic molecule.
- the one or more therapies used in combination with an NDV described herein is one or more other therapies described in Section 5.6.4, infra.
- the one or more therapies used in combination with an NDV described herein are an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell.
- any NDV type or strain may be used in a combination therapy disclosed herein, including, but not limited to, naturally-occurring strains, variants or mutants, mutagenized viruses, reassortants and/or genetically engineered viruses.
- the NDV used in a combination therapy disclosed herein is a naturally-occurring strain.
- the NDV is a lytic strain.
- the NDV used in a combination therapy disclosed herein is a non-lytic strain.
- the NDV used in a combination therapy disclosed herein is lentogenic strain.
- the NDV is a mesogenic strain.
- the NDV used in a combination therapy disclosed herein is a velogenic strain.
- NDV strains include, but are not limited to, the 73-T strain, NDV HUJ strain, Ulster strain, MTH-68 strain, lentil strain, Hickman strain, PV701 strain, Hitchner B1 strain (see, e.g., Genbank No. AF309418 or NC — 002617), La Sota strain (see, e.g., Genbank No. AY845400), YG97 strain, MET95 strain, Roakin strain, and F48E9 strain.
- the NDV used in a combination therapy disclosed herein is a B1 strain as identified by Genbank No.
- the NDV used in a combination therapy disclosed herein is the NDV identified by ATCC No. VR2239. In another specific embodiment, the NDV used in a combination therapy disclosed herein is the La Sota strain.
- the NDV used in a combination therapy disclosed herein is not pathogenic birds as assessed by a technique known to one of skill.
- the NDV used in a combination therapy is no pathogenic as assessed by intracranial injection of 1-day-old chicks with the virus, and disease development and death as scored for 8 days.
- the NDV used in a combination therapy disclosed herein has an intracranial pathogenicity index of less than 0.7, less than 0.6, less than 0.5, less than 0.4, less than 0.3, less than 0.2 or less than 0.1.
- the NDV used in a combination therapy disclosed herein has an intracranial pathogenicity index is zero.
- the NDV used in a combination therapy disclosed herein is a mesogenic strain that has been genetically engineered so as not be a considered pathogenic in birds as techniques known to one skilled in the art. In certain embodiments, the NDV used in a combination therapy disclosed herein is a velogenic strain that has been genetically engineered so as not be a considered pathogenic in birds as techniques known to one skilled in the art.
- the NDV used in a combination therapy disclosed herein expresses a mutated F protein.
- the NDV used in a combination therapy expresses a mutated F protein is highly fusogenic and able to form syncytia.
- the mutated F protein is incorporated into the virion.
- a genome of a NDV used in a combination therapy disclosed herein is engineered to express a mutated F protein with a mutated cleavage site.
- the NDV used in a combination therapy disclosed herein is engineered to express a mutated F protein in which the cleavage site of the F protein is mutated to produce a polybasic amino acid sequence, which allows the protein to be cleaved by intracellular proteases, which makes the virus more effective in entering cells and forming syncytia.
- the NDV used in a combination therapy disclosed herein is engineered to express a mutated F protein in which the cleavage site of the F protein is replaced with one containing one or two extra arginine residues, allowing the mutant cleavage site to be activated by ubiquitously expressed proteases of the furin family.
- Specific examples of NDVs that express such a mutated F protein include, but are not limited to, rNDV/F2aa and rNDV/F3aa.
- the NDV used in a combination therapy disclosed herein is engineered to express a mutated F protein with the amino acid mutation L289A.
- the L289A mutated F protein possesses one, two or three arginine residues in the cleavage site.
- the mutated F protein is from a different type or strain of NDV than the backbone NDV.
- the mutated F protein is in addition to the backbone NDV F protein.
- the mutated F protein replaces the backbone NDV F protein.
- the NDV used in a combination therapy disclosed herein does not comprise an NDV V protein encoding sequence.
- the NDV used in a combination therapy disclosed herein expresses a mutated V protein. See, e.g., Elankumaran et al., 2010, J. Virol. 84(8): 3835-3844, which is incorporated herein by reference, for examples of mutated V proteins.
- a mesogenic or velogenic NDV strain used in a combination therapy disclosed herein expresses a mutated V protein, such as disclosed by Elankumaran et al., 2010, J. Virol. 84(8): 3835-3844.
- the NDV used in a combination therapy disclosed herein is an NDV disclosed in U.S. Pat. No. 7,442,379, U.S. Pat. No. 6,451,323, or U.S. Pat. No. 6,146,642, which is incorporated herein by reference in its entirety.
- the NDV used in a combination therapy disclosed herein is genetically engineered to encode and express a heterologous peptide or protein.
- the NDV used in a combination therapy disclosed herein is a chimeric NDV known to one of skill in the art, or a chimeric NDV disclosed herein (see, e.g., Section 5.2, infra).
- the NDV used in a combination therapy disclosed herein is a chimeric NDV comprising a genome engineered to express a tumor antigen (see below for examples of tumor antigens).
- the NDV used in a combination therapy disclosed herein is a chimeric NDV comprising a genome engineered to express a heterologous interferon antagonist (see below for examples of heterologous interferon antagonists).
- the NDV used in a combination therapy disclosed herein is a chimeric NDV disclosed in U.S. patent application publication No. 2012/0058141, which is incorporated herein by reference in its entirety.
- the NDV used in a combination therapy disclosed herein is a chimeric NDV disclosed in U.S. patent application publication No. 2012/0122185, which is incorporated herein by reference in its entirety.
- the NDV used in a combination therapy disclosed herein is a chimeric NDV comprising a genome engineered to express a cytokine, such as, e.g., IL-2, IL-7, IL-9, IL-15, IL-17, IL-21, IL-22, IFN-gamma, GM-CSF, and TNF-alpha.
- the NDV used in a combination therapy disclosed herein is a chimeric NDV comprising a genome engineered to express IL-2.
- chimeric NDVs comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or Natural Killer (NK) cell.
- a genome of a NDV is engineered to express an agonist of a co-stimulatory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell.
- a genome of a NDV is engineered to express an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell.
- the NDV serves as the “backbone” that is engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or Natural Killer (NK) cell.
- an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or Natural Killer (NK) cell.
- chimeric NDVs comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a mutated F protein.
- a genome of a NDV is engineered to express an agonist of a co-stimulatory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a mutated F protein.
- a genome of a NDV is engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a mutated F protein with a mutated cleavage site.
- the NDV is engineered to express a mutated F protein in which the cleavage site of the F protein is mutated to produce a polybasic amino acid sequence, which allows the protein to be cleaved by intracellular proteases, which makes the virus more effective in entering cells and forming syncytia.
- the NDV is engineered to express a mutated F protein in which the cleavage site of the F protein is replaced with one containing one or two extra arginine residues, allowing the mutant cleavage site to be activated by ubiquitously expressed proteases of the furin family.
- NDVs that express such a mutated F protein include, but are not limited to, rNDV/F2aa and rNDV/F3aa.
- the chimeric NDV is engineered to express a mutated F protein with the amino acid mutation L289A.
- the mutated F protein is from a different type or strain of NDV than the backbone NDV.
- the L289A mutated F protein possesses one, two or three arginine residues in the cleavage site.
- the mutated F protein is in addition to the backbone NDV F protein.
- the mutated F protein replaces the backbone NDV F protein.
- the mutated F protein is incorporated into the virion.
- the genome of a NDV engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell comprises a mutated NDV V protein encoding sequence, such as disclosed by Elankumaran et al., 2010, J. Virol. 84(8): 3835-3844.
- the genome of a NDV engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell does not comprise an NDV V protein encoding sequence.
- parental backbone of the chimeric NDV is a mesogenic or velogenic NDV strain that is engineered to express a mutated V protein, such as disclosed by Elankumaran et al., 2010, J. Virol. 84(8): 3835-3844.
- chimeric NDVs comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a cytokine.
- a genome of a NDV is engineered to express an agonist of a co-stimulatory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a cytokine.
- a genome of a NDV is engineered to express an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a cytokine
- an immune cell such as, e.g., a T-lymphocyte or NK cell
- cytokine Specific examples of cytokines include, but are not limited to, interleukin (IL)-2, IL-7, IL-9, IL-15, IL-17, IL-21, IL-22, interferon (IFN) gamma, GM-CSF, and tumor necrosis factor (TNF)-alpha.
- chimeric NDVs comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, a mutated F protein, and a cytokine (e.g., IL-2, IL-7, IL-9, IL-15, IL-17, IL-21, IL-22, IFN-gamma, GM-CSF, and TNF-alpha).
- the mutated F protein are highly fusogenic.
- the mutated F protein has a mutant cleavage site (such as described herein).
- the mutated F protein comprises the amino acid mutation L289A.
- the chimeric NDV is engineered to express a mutated F protein with the amino acid mutation L289A.
- the mutated F protein is from a different type or strain of NDV than the backbone NDV.
- the L289A mutated F protein possesses one, two or three arginine residues in the cleavage site.
- the mutated F protein is in addition to the backbone NDV F protein.
- the mutated F protein replaces the backbone NDV F protein.
- the mutated F protein is incorporated into the virion.
- chimeric NDVs comprising a genome engineered to express (i) an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, and (ii) a tumor antigen.
- a genome of a NDV is engineered to express an agonist of a co-stimulatory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a tumor antigen.
- a genome of a NDV is engineered to express an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a tumor antigen.
- Tumor antigens include tumor-associated antigens and tumor-specific antigens.
- Specific examples of tumor antigens include, but are not limited to, MAGE-1, MAGE-3, BAGE, GAGE-1, GAGE-2, N-acetylglucosaminyltransferase-V, p-15, gp100, MART-1/MelanA, TRP-1 (gp75), Tyrosinase, cyclin-dependent kinase 4, ⁇ -catenin, MUM-1, CDK4, HER-2/neu, human papillomavirus-E6, human papillomavirus E7, CD20, carcinoembryonic antigen (CEA), epidermal growth factor receptor, MUC-1, caspase-8, CD5, mucin-1, Lewisx, CA-125, p185HER2, IL-2R, Fap- ⁇ , tenascin, antigens associated with a metalloproteinase, and CAMPATH-1.
- KS 1/4 pan-carcinoma antigen such as ovarian carcinoma antigen (CA125), prostatic acid phosphate, prostate specific antigen, melanoma-associated antigen p97, melanoma antigen gp75, high molecular weight melanoma antigen (HMW-MAA), prostate specific membrane antigen, CEA, polymorphic epithelial mucin antigen, milk fat globule antigen, colorectal tumor-associated antigens (such as: CEA, TAG-72, CO17-1A, GICA 19-9, CTA-1 and LEA), Burkitt's lymphoma antigen-38.13, CD19, B-lymphoma antigen-CD20, CD33, melanoma specific antigens (such as ganglioside GD2, ganglioside GD3, ganglioside GM2, ganglioside GM3), tumor-specific transplantation type of cell-surface antigen (TSTA) (such as ganglioside GD
- chimeric NDVs comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, a mutated F protein, and a tumor antigen.
- the mutated F protein are highly fusogenic.
- the mutated F protein has a mutant cleavage site (such as described herein).
- the mutated F protein comprises the amino acid mutation L289A.
- the chimeric NDV is engineered to express a mutated F protein with the amino acid mutation L289A.
- the mutated F protein is from a different type or strain of NDV than the backbone NDV.
- the L289A mutated F protein possesses one, two or three arginine residues in the cleavage site.
- the mutated F protein is in addition to the backbone NDV F protein.
- the mutated F protein replaces the backbone NDV F protein.
- the mutated F protein is incorporated into the virion.
- chimeric NDVs comprising a genome engineered to express (i) an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, and (ii) a heterologous interferon antagonist.
- a genome of a NDV is engineered to express an agonist of a co-stimulatory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a heterologous interferon antagonist.
- a genome of a NDV is engineered to express an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a heterologous interferon antagonist.
- an antagonist of an inhibitory signal of an immune cell such as, e.g., a T-lymphocyte or NK cell
- a heterologous interferon antagonist See, e.g., U.S. patent application publication No. 2012-0058141, which is incorporated herein by reference, for examples of chimeric NDV engineered to express heterologous interferon antagonists.
- Interferon antagonists may be identified using any technique known to one of skill in the art, including, e.g., the techniques described in U.S. Pat. Nos. 6,635,416; 7,060,430; and 7,442,527; which are incorporated herein by reference in their entirety.
- the heterologous interferon antagonist is a viral protein.
- viral proteins may be obtained or derived from any virus and the virus may infect any species (e.g., the virus may infect humans or non-human mammals).
- heterologous interferon antagonists include, without limitation, Nipah virus W protein, Nipah V protein, Ebola virus VP35 protein, vaccinia virus E3L protein, influenza virus NS1 protein, respiratory syncytial virus (RSV) NS2 protein, herpes simplex virus (HSV) type 1 ICP34.5 protein, Hepatitis C virus NS3-4 protease, dominant-negative cellular proteins that block the induction or response to innate immunity (e.g., STAT1, MyD88, IKK and TBK), and cellular regulators of the innate immune response (e.g., SOCS proteins, PIAS proteins, CYLD proteins, IkB protein, AtgS protein, Pin1 protein, IRAK-M protein, and UBP43). See, e.g., U.S. patent application publication No. 2012-0058141, which is incorporated herein by reference in its entirety, for additional information regarding heterologous interferon antagonist.
- chimeric NDVs comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, a mutated F protein, and a heterologous interferon antagonist.
- the mutated F protein are highly fusogenic.
- the mutated F protein has a mutant cleavage site (such as described herein).
- the mutated F protein comprises the amino acid mutation L289A.
- the chimeric NDV is engineered to express a mutated F protein with the amino acid mutation L289A.
- the mutated F protein is from a different type or strain of NDV than the backbone NDV.
- the L289A mutated F protein possesses one, two or three arginine residues in the cleavage site.
- the mutated F protein is in addition to the backbone NDV F protein.
- the mutated F protein replaces the backbone NDV F protein.
- the mutated F protein is incorporated into the virion.
- chimeric NDVs comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a pro-apoptotic molecule.
- a genome of a NDV is engineered to express an agonist of a co-stimulatory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a pro-apoptotic molecule.
- a genome of a NDV is engineered to express an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a pro-apoptotic molecule.
- an antagonist of an inhibitory signal of an immune cell such as, e.g., a T-lymphocyte or NK cell
- a pro-apoptotic molecule include, but are not limited to, Bax, Bak, Bad, BID, Bcl-xS, Bim, Noxa, Puma, AIF, FasL, and TRAIL.
- chimeric NDVs comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, a mutated F protein, and a pro-apoptotic molecule.
- the mutated F protein are highly fusogenic.
- the mutated F protein has a mutant cleavage site (such as described herein).
- the mutated F protein comprises the amino acid mutation L289A.
- the chimeric NDV is engineered to express a mutated F protein with the amino acid mutation L289A.
- the mutated F protein is from a different type or strain of NDV than the backbone NDV.
- the L289A mutated F protein possesses one, two or three arginine residues in the cleavage site.
- the mutated F protein is in addition to the backbone NDV F protein.
- the mutated F protein replaces the backbone NDV F protein.
- the mutated F protein is incorporated into the virion.
- chimeric NDVs comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and an anti-apoptotic molecule.
- a genome of a NDV is engineered to express an agonist of a co-stimulatory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and an anti-apoptotic molecule.
- a genome of a NDV is engineered to express an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and an anti-apoptotic molecule.
- an anti-apoptotic molecule include, but are not limited to, Bcl-2, Bcl-xL, Mcl-1, and XIAP.
- chimeric NDVs comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, a mutated F protein, and an anti-apoptotic molecule.
- the mutated F protein are highly fusogenic.
- the mutated F protein has a mutant cleavage site (such as described herein).
- the mutated F protein comprises the amino acid mutation L289A.
- the chimeric NDV is engineered to express a mutated F protein with the amino acid mutation L289A.
- the mutated F protein is from a different type or strain of NDV than the backbone NDV.
- the L289A mutated F protein possesses one, two or three arginine residues in the cleavage site.
- the mutated F protein is in addition to the backbone NDV F protein.
- the mutated F protein replaces the backbone NDV F protein.
- the mutated F protein is incorporated into the virion.
- any NDV type or strain may be used as a backbone that is engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and in certain embodiments, engineered to express a cytokine, tumor antigen, heterologous interferon antagonist and/or mutated F protein, including, but not limited to, naturally-occurring strains, variants or mutants, mutagenized viruses, reassortants and/or genetically engineered viruses.
- the NDV used in a combination therapy disclosed herein is a naturally-occurring strain.
- the NDV that serves as the backbone for genetic engineering is a lytic strain. In other embodiments, the NDV that serves as the backbone for genetic engineering is a non-lytic strain. In certain embodiments, the NDV that serves as the backbone for genetic engineering is lentogenic strain. In some embodiments, the NDV that serves as the backbone for genetic engineering is mesogenic strain. In other embodiments, the NDV that serves as the backbone for genetic engineering is a velogenic strain.
- NDV strains include, but are not limited to, the 73-T strain, NDV HUJ strain, Ulster strain, MTH-68 strain, lentil strain, Hickman strain, PV701 strain, Hitchner B1 strain, La Sota strain (see, e.g., Genbank No. AY845400), YG97 strain, MET95 strain, Roakin strain, and F48E9 strain.
- the NDV that serves as the backbone for genetic engineering is the Hitchner B1 strain.
- the NDV that serves as the backbone for genetic engineering is a B1 strain as identified by Genbank No. AF309418 or NC — 002617.
- the NDV that serves as the backbone for genetic engineering is the NDV identified by ATCC No. VR2239.
- the NDV that serves as the backbone for genetic engineering is the La Sota strain.
- Attenuation, or further attenuation, of the chimeric NDV is desired such that the chimeric NDV remains, at least partially, infectious and can replicate in vivo, but only generate low titers resulting in subclinical levels of infection that are non-pathogenic (see, e.g., Khattar et al., 2009, J. Virol. 83:7779-7782).
- the NDV is attenuated by deletion of the V protein.
- Such attenuated chimeric NDVs may be especially suited for embodiments wherein the virus is administered to a subject in order to act as an immunogen, e.g., a live vaccine.
- the viruses may be attenuated by any method known in the art.
- a chimeric NDV in addition to expressing an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and in certain embodiments, a mutated F protein and a cytokine, a chimeric NDV is engineered to express a suicide gene (e.g., thymidine kinase) or another molecule that inhibits NDV replication or function (a gene that makes NDV sensitive to an antibiotic or an anti-viral agent).
- a suicide gene e.g., thymidine kinase
- another molecule that inhibits NDV replication or function a gene that makes NDV sensitive to an antibiotic or an anti-viral agent
- a chimeric NDV in addition to expressing an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and in certain embodiments, a mutated F protein and a cytokine, a chimeric NDV is engineered to encode tissue-specific microRNA (miRNA) target sites (e.g., sites targeted by miR-21, miR-184, miR-133a/133b, miR-137, and/or miR-193a microRNAs).
- miRNA tissue-specific microRNA
- the tropism of the chimeric NDV is altered.
- the tropism of the virus is altered by modification of the F protein cleavage site to be recognized by tissue-specific or tumor-specific proteases such as matrix metalloproteases (MMP) and urokinase.
- MMP matrix metalloproteases
- tropism of the virus is altered by introduction of tissue-specific miRNA target sites.
- NDV FIN protein is mutated to recognize tumor-specific receptor.
- the agonist of a co-stimulatory signal and/or the antagonist of an inhibitory signal of an immune cell may be inserted into the genome of the backbone NDV between two transcription units.
- the agonist of a co-stimulatory signal and/or the antagonist of an inhibitory signal of an immune cell is inserted into the genome of the backbone NDV between the M and P transcription units or between the HN and L transcription units.
- the cytokine, and/or mutated F protein are inserted into the genome of the backbone NDV between two or more transcription units (e.g., between the M and P transcription units or between the FIN and L transcription units).
- the chimeric NDVs described herein may be engineered to express any agonist of a co-stimulatory signal and/or any antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte, NK cell or antigen-presenting cell (e.g., a dendritic cell or macrophage), known to one of skill in the art.
- the agonist and/or antagonist is an agonist of a human co-stimulatory signal of an immune cell and/or antagonist of a human inhibitory signal of an immune cell.
- the agonist of a co-stimulatory signal is an agonist of a co-stimulatory molecule (e.g., co-stimulatory receptor) found on immune cells, such as, e.g., T-lymphocytes (e.g., CD4+ or CD8+ T-lymphocytes), NK cells and/or antigen-presenting cells (e.g., dendritic cells or macrophages).
- a co-stimulatory molecule e.g., co-stimulatory receptor
- immune cells such as, e.g., T-lymphocytes (e.g., CD4+ or CD8+ T-lymphocytes), NK cells and/or antigen-presenting cells (e.g., dendritic cells or macrophages).
- co-stimulatory molecules include glucocorticoid-induced tumor necrosis factor receptor (GITR), Inducible T-cell costimulator (ICOS or CD278), OX40 (CD134), CD27, CD28, 4-1BB (CD137), CD40, lymphotoxin alpha (LT alpha), and LIGHT (lymphotoxin-like, exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T lymphocytes).
- the agonist is an agonist of a human co-stimulatory receptor of an immune cell.
- the agonist of a co-stimulatory receptor is not an agonist of ICOS.
- the antagonist is an antagonist of an inhibitory molecule (e.g., inhibitory receptor) found on immune cells, such as, e.g., T-lymphocytes (e.g., CD4+ or CD8+ T-lymphocytes), NK cells and/or antigen-presenting cells (e.g., dendritic cells or macrophages).
- an inhibitory molecule e.g., inhibitory receptor
- immune cells such as, e.g., T-lymphocytes (e.g., CD4+ or CD8+ T-lymphocytes), NK cells and/or antigen-presenting cells (e.g., dendritic cells or macrophages).
- the agonist of a co-stimulatory receptor is an antibody or antigen-binding fragment thereof that specifically binds to the co-stimulatory receptor.
- co-stimulatory receptors include GITR, ICOS, OX40, CD27, CD28, 4-1BB, or CD40.
- the antibody is a monoclonal antibody.
- the antibody is an sc-Fv.
- the antibody is a bispecific antibody that binds to two receptors on an immune cell.
- the bispecific antibody binds to a receptor on an immune cell and to another receptor on a cancer cell.
- the antibody is a human or humanized antibody.
- the ligand or an antibody is a chimeric protein with NDV F protein or NDV FIN protein. See, e.g., U.S. patent application Publication No. 2012/0122185, which is incorporated herein by reference for a description regarding generation of chimeric F or chimeric FIN proteins.
- the chimeric protein is the chimeric F protein described in Section 6, infra. The techniques described below for generating the chimeric ICOSL-F protein can be used to generate other chimeric F proteins or chimeric FIN proteins.
- the agonist of a co-stimulatory receptor is a ligand of the co-stimulatory receptor.
- the ligand is fragment of a native ligand.
- native ligands include B7RP1, CD137L, OX40L, CD70, herpes virus entry mediator (HVEM), CD80, and CD86.
- HVEM herpes virus entry mediator
- the nucleotide sequences encoding native ligands as well as the amino acid sequences of native ligands are known in the art.
- the nucleotide and amino acid sequences of B7RP1 (GenBank human: NM — 015259.4, NP — 056074.1 murine: NM — 015790.3, NP — 056605.1), CD137 L (GenBank human: NM — 003811.3, NP — 003802.1, murine: NM — 009404.3, NP — 033430.1), OX40 L (GenBank human: NM — 003326.3, NP — 003317.1, murine: NM — 009452.2, NP — 033478.1), CD70 (GenBank human: NM — 001252.3, NP — 001243.1, murine: NM — 011617.2, AAD00274.1), CD80 (GenBank human: NM — 005191.3, NP — 005182.1, murine: NM — 009855.2.
- the ligand is a derivative of a native ligand.
- the ligand is a fusion protein comprising at least a portion of the native ligand or a derivative of the native ligand that specifically binds to the co-stimulatory receptor, and a heterologous amino acid sequence.
- the fusion protein comprises at least a portion of the native ligand or a derivative of the native ligand that specifically binds to the co-stimulatory receptor, and the Fc portion of an immunoglobulin or a fragment thereof.
- a ligand fusion protein is a 4-1BB ligand fused to Fc portion of immunoglobulin (described by Meseck M et al., J Immunother. 2011 34:175-82).
- the antagonist of an inhibitory receptor is an antibody (or an antigen-binding fragment) or a soluble receptor that specifically binds to the native ligand for the inhibitory receptor and blocks the native ligand from binding to the inhibitory receptor and transducing an inhibitory signal(s).
- native ligands for inhibitory receptors include PDL-1, PDL-2, B7-H3, B7-H4, HVEM, Gal9 and adenosine.
- Specific examples of inhibitory receptors that bind to a native ligand include CTLA-4, PD-1, BTLA, KIR, LAG3, TIM3, and A2aR.
- the antagonist of an inhibitory receptor is a soluble receptor that specifically binds to the native ligand for the inhibitory receptor and blocks the native ligand from binding to the inhibitory receptor and transducing an inhibitory signal(s).
- the soluble receptor is a fragment of a native inhibitory receptor or a fragment of a derivative of a native inhibitory receptor that specifically binds to native ligand (e.g., the extracellular domain of a native inhibitory receptor or a derivative of an inhibitory receptor).
- the soluble receptor is a fusion protein comprising at least a portion of the native inhibitory receptor or a derivative of the native inhibitory receptor (e.g., the extracellular domain of the native inhibitory receptor or a derivative of the native inhibitory receptor), and a heterologous amino acid sequence.
- the fusion protein comprises at least a portion of the native inhibitory receptor or a derivative of the native inhibitory receptor, and the Fc portion of an immunoglobulin or a fragment thereof.
- An example of a soluble receptor fusion protein is a LAG3-Ig fusion protein (described by Huard B et al., Eur J. Immunol. 1995 25:2718-21).
- the antagonist of an inhibitory receptor is an antibody (or an antigen-binding fragment) that specifically binds to the native ligand for the inhibitory receptor and blocks the native ligand from binding to the inhibitory receptor and transducing an inhibitory signal(s).
- the antibody is a monoclonal antibody.
- the antibody is an scFv.
- the antibody is a human or humanized antibody.
- a specific example of an antibody to inhibitory ligand is anti-PD-L1 antibody (Iwai Y, et al. PNAS 2002; 99:12293-12297).
- the antagonist of an inhibitory receptor is an antibody (or an antigen-binding fragment) or ligand that binds to the inhibitory receptor, but does not transduce an inhibitory signal(s).
- inhibitory receptors include CTLA-4, PD1, BTLA, KIR, LAG3, TIM3, and A2aR.
- the antibody is a monoclonal antibody.
- the antibody is an scFv.
- the antibody is a human or humanized antibody.
- a specific example of an antibody to inhibitory receptor is anti-CTLA-4 antibody (Leach D R, et al. Science 1996; 271: 1734-1736).
- Another example of an antibody to inhibitory receptor is anti-PD-1 antibody (Topalian S L, NEJM 2012; 28:3167-75).
- a chimeric NDV described herein is engineered to an antagonist of CTLA-4, such as, e.g., Ipilimumab or Tremelimumab.
- a chimeric NDV described herein is engineered to an antagonist of PD1, such as, e.g., MDX-1106 (BMS-936558), MK3475, CT-011, AMP-224, or MDX-1105.
- a chimeric NDV described herein is engineered to express an antagonist of LAG3, such as, e.g., IMP321.
- a chimeric NDV described herein is engineered to express an antibody (e.g., a monoclonal antibody or an antigen-binding fragment thereof, or scFv) that binds to B7-H3, such as, e.g., MGA271.
- a chimeric NDV described herein is engineered to express an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell described in Section 6, infra.
- NDV described herein is engineered to express anti-CD28 scvFv, ICOSL, CD40L, OX40L, CD137L, GITRL, and/or CD70.
- an agonist of a co-stimulatory signal of an immune cell induces (e.g., selectively) induces one or more of the signal transduction pathways induced by the binding of a co-stimulatory receptor to its ligand.
- an agonist of a co-stimulatory receptor induces one or more of the signal transduction pathways induced by the binding of the co-stimulatory receptor to one or more of its ligands by at least 25%, 30%, 40%, 50%, 60%, 75%, 80%, 85%, 90%, 95%, 98% or 99%, or in the range of between 25% to 50%, 25% to 75%, 50% to 75%, 50% to 95%, 75% to 95%, or 75% to 100% relative to the one or more signal transduction pathways induced by the binding of the co-stimulatory receptor to one or more of its ligands in the absence of the agonist.
- an agonist of a co-stimulatory receptor induces one or more of the signal transduction pathways induced by the binding of the co-stimulatory receptor to one particular ligand by at least 25%, 30%, 40%, 50%, 60%, 75%, 80%, 85%, 90%, 95%, 98% or 99%, or in the range of between 25% to 50%, 25% to 75%, 50% to 75%, 50% to 95%, 75% to 95%, or 75% to 100% relative to the one or more signal transduction pathways induced by the binding of the co-stimulatory receptor to the particular ligand in the absence of the agonist; and (ii) does not induce, or induces one or more of the signal transduction pathways induced by the binding of the co-stimulatory receptor to one or more other ligands by less than 20%, 15%, 10%, 5%, or 2%, or in the range of between 2% to 5%, 2% to 10%, 5% to 10%, 5% to 15%, 5% to 20%, 10% to 15%, or 15% to
- an agonist of a co-stimulatory signal of an immune cell activates or enhances (e.g., selectively activates or enhances) one or more of the signal transduction pathways induced by the binding of a co-stimulatory receptor to its ligand.
- an agonist of a co-stimulatory receptor activates or enhances one or more of the signal transduction pathways induced by the binding of the co-stimulatory receptor to one or more of its ligands by at least 25%, 30%, 40%, 50%, 60%, 75%, 80%, 85%, 90%, 95%, 98% or 99%, or in the range of between 25% to 50%, 25% to 75%, 50% to 75%, 50% to 95%, 75% to 95%, or 75% to 100% relative to the one or more signal transduction pathways induced by the binding of co-stimulatory receptor to one or more of its ligands in the absence of the agonist.
- an agonist of a co-stimulatory receptor activates or enhances one or more of the signal transduction pathways induced by the binding of the co-stimulatory receptor to one particular ligand by at least 25%, 30%, 40%, 50%, 60%, 75%, 80%, 85%, 90%, 95%, 98% or 99%, or in the range of between 25% to 50%, 25% to 75%, 50% to 75%, 50% to 95%, 75% to 95%, or 75% to 100% relative to the one or more signal transduction pathways induced by the binding of the co-stimulatory receptor to the particular ligand in the absence of the agonist; and (ii) does not activate or enhance, or activates or enhances one or more of the signal transduction pathways induced by the binding of the co-stimulatory receptor to one or more other ligands by less than 20%, 15%, 10%, 5%, or 2%, or in the range of between 2% to 5%, 2% to 10%, 5%
- an antagonist of an inhibitory signal of an immune cell inhibits or reduces one or more of the signal transduction pathways induced by the binding of an inhibitory receptor to its ligand.
- an antagonist of an inhibitory receptor inhibits or reduces one or more of the signal transduction pathways induced by the binding of the inhibitory receptor to one or more of its ligands by at least 25%, 30%, 40%, 50%, 60%, 75%, 80%, 85%, 90%, 95%, 98% or 99%, or in the range of between 25% to 50%, 25% to 75%, 50% to 75%, 50% to 95%, 75% to 95%, or 75% to 100% relative to the one or more signal transduction pathways induced by the binding of the inhibitory receptor to one or more of its ligands in the absence of the antagonist.
- an antagonist of an inhibitory receptor (i) inhibits or reduces one or more of the signal transduction pathways induced by the binding of the inhibitory receptor to one particular ligand by at least 25%, 30%, 40%, 50%, 60%, 75%, 80%, 85%, 90%, 95%, 98% or 99%, or in the range of between 25% to 50%, 25% to 75%, 50% to 75%, 50% to 95%, 75% to 95%, or 75% to 100% relative to the one or more signal transduction pathways induced by the binding of the inhibitory receptor to the one particular ligand in the absence of the antagonist; and (ii) does not inhibit or reduce, or inhibits or reduces one or more of the signal transduction pathways induced by the binding of the inhibitory receptor to one or more other ligands by less than 20%, 15%, 10%, 5%, or 2%, or in the range of between 2% to 5%, 2% to 10%, 5% to 10%, 5% to 15%, 5% to 20%, 10% to 15%, or 15% to 20% relative to the one or
- expression of an activation marker on immune cells e.g., CD44, Granzyme, or Ki-67
- expression of a co-stimulatory receptor on immune cells e.g., ICOS, CD28, OX40, or CD27
- expression of a ligand for a co-stimulatory receptor e.g., B7HRP1, CD80, CD86, OX40L, or CD70
- cytokine secretion infiltration of immune cells (e.g., T-lymphocytes, B lymphocytes and/or NK cells) to a tumor, antibody production, effector function, T cell activation, T cell differentiation, T cell proliferation, B cell differentiation, B cell proliferation, and/or NK cell proliferation is induced, activated and/or enhanced following contact with an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell.
- myeloid-derived suppressor cell tumor infiltration and proliferation, Treg tumor infiltration, activation and proliferation, peripheral blood MDSC and Treg counts are inhibited following contact with an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell.
- the NDVs described herein can be generated using the reverse genetics technique.
- the reverse genetics technique involves the preparation of synthetic recombinant viral RNAs that contain the non-coding regions of the negative-strand, viral RNA which are essential for the recognition by viral polymerases and for packaging signals necessary to generate a mature virion.
- the recombinant RNAs are synthesized from a recombinant DNA template and reconstituted in vitro with purified viral polymerase complex to form recombinant ribonucleoproteins (RNPs) which can be used to transfect cells.
- RNPs ribonucleoproteins
- the synthetic recombinant RNPs can be rescued into infectious virus particles.
- the foregoing techniques are described in U.S. Pat. No. 5,166,057 issued Nov. 24, 1992; in U.S. Pat. No. 5,854,037 issued Dec. 29, 1998; in U.S. Pat. No. 6,146,642 issued Nov. 14, 2000; in European Patent Publication EP 0702085A1, published Feb. 20, 1996; in U.S. patent application Ser. No. 09/152,845; in International Patent Publications PCT WO97/12032 published Apr. 3, 1997; WO96/34625 published Nov. 7, 1996; in European Patent Publication EP A780475; WO 99/02657 published Jan. 21, 1999; WO 98/53078 published Nov.
- the helper-free plasmid technology can also be utilized to engineer a NDV described herein.
- a complete cDNA of a NDV e.g., the Hitchner B1 strain
- a plasmid vector e.g., the Hitchner B1 strain
- a nucleotide sequence encoding a heterologous amino acid sequence e.g., a nucleotide sequence encoding an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell
- a nucleotide sequence encoding a heterologous amino acid sequence may be engineered into a NDV transcription unit so long as the insertion does not affect the ability of the virus to infect and replicate.
- the single segment is positioned between a T7 promoter and the hepatitis delta virus ribozyme to produce an exact negative transcript from the T7 polymerase.
- the plasmid vector and expression vectors comprising the necessary viral proteins are transfected into cells leading to production of recombinant viral particles (see, e.g., International Publication No.
- Bicistronic techniques to produce multiple proteins from a single mRNA are known to one of skill in the art.
- Bicistronic techniques allow the engineering of coding sequences of multiple proteins into a single mRNA through the use of IRES sequences.
- IRES sequences direct the internal recruitment of ribozomes to the RNA molecule and allow downstream translation in a cap independent manner.
- a coding region of one protein is inserted into the ORF of a second protein.
- the insertion is flanked by an IRES and any untranslated signal sequences necessary for proper expression and/or function.
- the insertion must not disrupt the open reading frame, polyadenylation or transcriptional promoters of the second protein (see e.g., Garc ⁇ a-Sastre et al., 1994, J. Virol. 68:6254-6261 and Garc ⁇ a-Sastre et al., 1994 Dev. Biol. Stand. 82:237-246, each of which are incorporated by reference herein in their entirety
- the NDVs described herein can be propagated in any substrate that allows the virus to grow to titers that permit the uses of the viruses described herein.
- the substrate allows the NDVs described herein (e.g., the chimeric NDVs) to grow to titers comparable to those determined for the corresponding wild-type viruses.
- the NDVs described herein may be grown in cells (e.g., avian cells, chicken cells, etc.) that are susceptible to infection by the viruses, embryonated eggs (e.g., chicken eggs or quail eggs) or animals (e.g., birds). Such methods are well-known to those skilled in the art.
- the NDVs described herein may be propagated in cancer cells, e.g., carcinoma cells (e.g., breast cancer cells and prostate cancer cells), sarcoma cells, leukemia cells, lymphoma cells, and germ cell tumor cells (e.g., testicular cancer cells and ovarian cancer cells).
- the NDVs described herein may be propagated in cell lines, e.g., cancer cell lines such as HeLa cells, MCF7 cells, THP-1 cells, U87 cells, DU145 cells, Lncap cells, and T47D cells.
- the NDVs described herein are propagated in chicken cells or embryonated eggs. Representative chicken cells include, but are not limited to, chicken embryo fibroblasts and chicken embryo kidney cells.
- the NDVs described herein are propagated in Vero cells.
- the NDVs described herein are propagated in cancer cells in accordance with the methods described in Section 6, infra.
- the NDVs described herein are propagated in chicken eggs or quail eggs.
- a NDV virus described herein is first propagated in embryonated eggs and then propagated in cells (e.g., a cell line).
- the NDVs described herein may be propagated in embryonated eggs, e.g., from 6 to 14 days old, 6 to 12 days old, 6 to 10 days old, 6 to 9 days old, 6 to 8 days old, or 10 to 12 days old. Young or immature embryonated eggs can be used to propagate the NDVs described herein (e.g., the chimeric NDVs).
- Immature embryonated eggs encompass eggs which are less than ten day old eggs, e.g., eggs 6 to 9 days old or 6 to 8 days old that are IFN-deficient.
- Immature embryonated eggs also encompass eggs which artificially mimic immature eggs up to, but less than ten day old, as a result of alterations to the growth conditions, e.g., changes in incubation temperatures; treating with drugs; or any other alteration which results in an egg with a retarded development, such that the IFN system is not fully developed as compared with ten to twelve day old eggs.
- the NDVs described herein e.g., the chimeric NDVs
- the growth and propagation viruses see, e.g., U.S. Pat. No. 6,852,522 and U.S. Pat. No. 7,494,808, both of which are hereby incorporated by reference in their entireties.
- the NDVs described herein can be removed from cell culture and separated from cellular components, typically by well known clarification procedures, e.g., such as gradient centrifugation and column chromatography, and may be further purified as desired using procedures well known to those skilled in the art, e.g., plaque assays.
- compositions are used in methods of treating cancer.
- a NDV described herein e.g., the chimeric NDVs
- plasma membrane fragments from NDV infected cells or whole cancer cells infected with NDV in compositions.
- the compositions are pharmaceutical compositions, such as immunogenic formulations (e.g., vaccine formulations).
- the compositions may be used in methods of treating cancer.
- a pharmaceutical composition comprises a NDV described herein (e.g., the chimeric NDVs), in an admixture with a pharmaceutically acceptable carrier.
- the pharmaceutical composition further comprises one or more additional prophylactic or therapeutic agents, such as described in Section 5.6.4, infra.
- a pharmaceutical composition comprises an effective amount of a NDV described herein (e.g., the chimeric NDVs), and optionally one or more additional prophylactic of therapeutic agents, in a pharmaceutically acceptable carrier.
- the NDV e.g., a chimeric NDV
- the NDV is the only active ingredient included in the pharmaceutical composition.
- a pharmaceutical composition (e.g., an oncolysate vaccine) comprises a protein concentrate or a preparation of plasma membrane fragments from NDV infected cancer cells, in an admixture with a pharmaceutically acceptable carrier.
- the pharmaceutical composition further comprises one or more additional prophylactic or therapeutic agents, such as described in Section 5.6.4, infra.
- a pharmaceutical composition (e.g., a whole cell vaccine) comprises cancer cells infected with NDV, in an admixture with a pharmaceutically acceptable carrier.
- the pharmaceutical composition further comprises one or more additional prophylactic or therapeutic agents, such as described in Section 5.6.4, infra.
- compositions provided herein can be in any form that allows for the composition to be administered to a subject.
- the pharmaceutical compositions are suitable for veterinary and/or human administration.
- pharmaceutically acceptable means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeiae for use in animals, and more particularly in humans.
- carrier refers to a diluent, adjuvant, excipient, or vehicle with which the pharmaceutical composition is administered. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions.
- Suitable excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
- suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin. The formulation should suit the mode of administration.
- the pharmaceutical compositions are formulated to be suitable for the intended route of administration to a subject.
- the pharmaceutical composition may be formulated to be suitable for parenteral, intrapleural, inhalation, intraperitoneal, oral, intradermal, colorectal, intraperitoneal and intratumoral administration.
- the pharmaceutical composition may be formulated for intravenous, oral, intraperitoneal, intranasal, intratracheal, subcutaneous, intramuscular, topical, pulmonary, or intratumoral administration.
- a chimeric NDV described herein may be used in the treatment of cancer.
- methods for treating cancer comprising administering to a subject in need thereof a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) or a composition thereof.
- a method for treating cancer comprising administering to a subject in need thereof an effective amount of a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) or a composition thereof.
- a chimeric NDV engineered to express an agonist of a co-stimulatory signal of an immune cell, or a composition thereof is administered to a subject to treat cancer.
- a chimeric NDV engineered to express an antagonist of an inhibitory signal of an immune cell, or a composition thereof is administered to a subject to treat cancer.
- a chimeric NDV engineered to express an agonist of a co-stimulatory signal of an immune cell and a mutated F protein or a composition thereof is administered to a subject to treat cancer.
- a chimeric NDV engineered to express an antagonist of an inhibitory signal of an immune cell and a mutated F protein or a composition thereof is administered to a subject to treat cancer.
- a chimeric NDV (e.g., a chimeric NDV described in Section 5.2, supra) described herein or a composition thereof, an oncolysate vaccine, or a whole cell cancer vaccine used in a method for treating cancer may be used as any line of therapy (e.g., a first, second, third, fourth or fifth line therapy).
- a chimeric NDV described herein is the only active ingredient administered to treat cancer.
- a chimeric NDV described herein is the only active ingredient in a composition administered to treat cancer.
- the chimeric NDV (e.g., a chimeric NDV described in Section 5.2, supra) or a composition thereof may be administered locally or systemically to a subject.
- the chimeric NDV e.g., a chimeric NDV described in Section 5.2, supra
- composition may be administered parenterally (e.g., intravenously or subcutanously), intratumorally, intrapleurally, intranasally, intraperitoneally, orally, by inhalation, topically or intradermally to a subject.
- the methods described herein include the treatment of cancer for which no treatment is available.
- a chimeric NDV described herein e.g., a chimeric NDV described in Section 5.2, supra
- a composition thereof is administered to a subject to treat cancer as an alternative to other conventional therapies.
- a method for treating cancer comprising administering to a subject in need thereof a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) or a composition thereof and one or more additional therapies, such as described in Section 5.6.4, infra.
- one or more therapies are administered to a subject in combination with a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) or a composition thereof to treat cancer.
- the additional therapies are currently being used, have been used or are known to be useful in treating cancer.
- a chimeric NDV described herein e.g., a chimeric NDV described in Section 5.2, supra
- a composition thereof is administered to a subject in combination with a supportive therapy, a pain relief therapy, or other therapy that does not have a therapeutic effect on cancer.
- the one or more additional therapies administered in combination with a chimeric NDV described herein is one or more of the therapies described in Section 5.6.4.1, infra.
- a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) and one or more additional therapies are administered in the same composition.
- a chimeric NDV and one or more additional therapies are administered in different compositions.
- two, three or multiple NDVs are administered to a subject to treat cancer.
- the second or more chimeric NDVs used in accordance with methods described herein that comprise administration of two, three or multiple NDVs to a subject to treat cancer may be naturally occurring chimeric NDVs or engineered chimeric NDVs that have been engineered to express heterologous amino acid sequence (e.g., a cytokine).
- the first and second chimeric NDVs may be part of the same pharmaceutical composition or different pharmaceutical compositions.
- first chimeric NDV and the second chimeric NDV are administered by the same route of administration (e.g., both are administered intratumorally or intravenously). In other embodiments, the first chimeric NDV and the second chimeric NDV are administered by different routes of administration (e.g., one is administered intratumorally and the other is administered intravenously).
- a first chimeric NDV engineered to express an agonist of a co-stimulatory signal of an immune cell is administered to a patient to treat cancer in combination with a second chimeric NDV engineered to express an antagonist of an inhibitory signal of an immune cell.
- a first chimeric NDV engineered to express an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune is administered in combination with a second chimeric NDV engineered to express one, two or more of the following: a cytokine (e.g., IL-2), a heterologous interferon antagonist, a tumor antigen, a pro-apopototic molecule, and/or anti-apoptotic molecule.
- the first chimeric NDV, the second chimeric NDV, or both express a mutated F protein that increases the fusogenic activity of the chimeric NDV.
- the first chimeric NDV, the second chimeric NDV or both express a mutated F protein with a mutation in the cleavage site (such as described herein).
- a first composition e.g., a pharmaceutical composition
- a second composition e.g., a pharmaceutical composition
- a second composition comprising a second chimeric NDV engineered to express an antagonist of an inhibitory signal of an immune cell
- the first chimeric NDV, the second chimeric NDV, or both express a mutated F protein that increases the fusogenic activity of the chimeric NDV.
- the first chimeric NDV, the second chimeric NDV or both express a mutated F protein with a mutation in the cleavage site (such as described herein).
- a method for treating cancer comprising administering to a subject in need thereof an effective amount of an NDV described herein (e.g., an NDV described in Section 5.1, supra) or a composition thereof and an effective amount of one or more additional therapies, such as described in Section 5.6.4, infra. (e.g., Section 5.6.4.1).
- an NDV described herein e.g., an NDV described in Section 5.1, supra
- one or more additional therapies such as described in Section 5.6.4, infra (e.g., Section 5.6.4.1)
- an NDV e.g., an NDV described in Section 5.1, supra
- one or more additional therapies are administered in different compositions.
- NDV e.g., an NDV described in Section 5.1, supra
- a composition thereof, an oncolysate vaccine, or a whole cell cancer vaccine in combination with one or more additional therapies, such as described herein in Section 5.6.4, infra may be used as any line of therapy (e.g., a first, second, third, fourth or fifth line therapy) for treating cancer in accordance with a method described herein.
- whole cancer cells infected with a chimeric NDV described herein can be used to treat cancer.
- a chimeric NDV described herein e.g., a chimeric NDV described in Section 5.2, supra
- a cancer cell or a population of cancer cells may be contacted with a cancer cell or a population of cancer cells and the infected cancer cell or population of cancer cells may be administered to a subject to treat cancer.
- the cancer cells are subjected to gamma radiation prior to infection with a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra).
- the cancer cells are preferably in a pharmaceutical composition.
- the cancer cells are administered in combination with one or more additional therapies, such as described in Section 5.6.4, infra.
- the cancer cells and one or more additional therapies are administered in the same composition.
- the cancer cells and one or more additional therapies are administered in different compositions.
- a chimeric NDV described herein may be contacted with a cancer cell or a population of cancer cells and the infected cancer cell or population of cancer cells may be lysed using techniques known to one of skill in the art to obtain protein concentrate or plasma membrane fragments of the NDV-infected cancer cells, and the protein concentrate or plasma membrane fragments of the NDV-infected cancer cells may be administered to a subject to treat cancer.
- the protein concentrate or plasma membrane fragments may be administered locally or systemically to a subject.
- the protein concentrate or plasma membrane fragments may be administered parenterally, intratumorally, intransally, intrapleurally, orally, by inhalation, topically or intradermally to a subject.
- a protein concentrate or plasma membrane preparation is administered intratumorally or to the skin (e.g., intradermally) of a subject.
- the cancer cells used to produce the protein concentrate or plasma membrane preparation may be autologous or allogeneic.
- the backbone of the chimeric NDV is a lytic strain.
- the protein concentrate or plasma membrane preparation may be administered to a subject alone or in combination with an additional therapy.
- the protein concentrate or plasma membrane preparation is preferably in a pharmaceutical composition.
- a protein concentrate or plasma membrane preparation from lysed cancer cells infected with an NDV may be used in combination with one or more additional therapies, such as described herein in Section 5.6.4, infra (e.g., Section 5.6.4.1), in the treatment of cancer.
- additional therapies such as described herein in Section 5.6.4, infra (e.g., Section 5.6.4.1)
- methods for treating cancer comprising administering to a subject in need thereof a protein concentrate or plasma membrane preparation from lysed cancer cells infected with an NDV (e.g., an NDV described in Section 5.1, supra) in combination with one or more additional therapies, such as described herein in Section 5.6.4, infra. (e.g., Section 5.6.4.1).
- a method for treating cancer comprising administering to a subject in need thereof an effective amount of a protein concentrate or plasma membrane preparation from lysed cancer cells infected with an NDV (e.g., an NDV described in Section 5.1, supra) in combination with an effective amount of one or more additional therapies, such as described in Section 5.6.4, infra. (e.g., Section 5.6.4.1).
- the protein concentrate or plasma membrane preparation and one or more additional therapies such as described in Section 5.6.4, infra, are administered in the same composition.
- the protein concentrate or plasma membrane preparation and one or more additional therapies are administered in different compositions.
- the chimeric NDVs described herein can be used to produce antibodies which can be used in diagnostic immunoassays, passive immunotherapy, and the generation of antiidiotypic antibodies.
- a chimeric NDV described herein e.g., a chimeric NDV described in Section 5.2, supra
- a subject e.g., a mouse, rat, pig, horse, donkey, bird or human
- a subject e.g., a mouse, rat, pig, horse, donkey, bird or human
- an NDV described herein e.g., an NDV described in Section 5.1 or 5.2, supra
- a subject e.g., a mouse, rat, pig, horse, donkey, bird, or human
- additional therapies such as described in Section 5.6.4, infra
- the generated antibodies may be isolated by standard techniques known in the art (e.g., immunoaffinity chromatography, centrifugation, precipitation, etc.) and used in diagnostic immunoassays, passive immunotherapy and generation of antiidiotypic antibodies.
- the antibodies isolated from subjects administered a chimeric NDV described herein e.g., a chimeric NDV described in Section 5.2, supra
- isolated from subjects administered an NDV described herein e.g., an NDV described in Section 5.1 or 5.2, supra
- additional therapies such as described in Section 5.6.4, infra
- any immunoassay system known in the art may be used for this purpose including but not limited to competitive and noncompetitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme linked immunosorbent assays), “sandwich” immunoassays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement fixation assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays and immunoelectrophoresis assays, to name but a few.
- radioimmunoassays ELISA (enzyme linked immunosorbent assays), “sandwich” immunoassays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement fixation assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays and immunoelectrophoresis assays, to name
- an NDV e.g., a chimeric NDV
- an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject suffering from cancer.
- an NDV e.g., a chimeric NDV
- an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject predisposed or susceptible to cancer.
- an NDV e.g., a chimeric NDV
- a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject diagnosed with cancer.
- specific examples of the types of cancer are described herein.
- the subject has metastatic cancer.
- the subject has stage 1, stage 2 or stage 3 cancer.
- the subject is in remission.
- the subject has a recurrence of cancer.
- an NDV e.g., a chimeric NDV
- a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a human that is 0 to 6 months old, 6 to 12 months old, 6 to 18 months old, 18 to 36 months old, 1 to 5 years old, 5 to 10 years old, 10 to 15 years old, 15 to 20 years old, 20 to 25 years old, 25 to 30 years old, 30 to 35 years old, 35 to 40 years old, 40 to 45 years old, 45 to 50 years old, 50 to 55 years old, 55 to 60 years old, 60 to 65 years old, 65 to 70 years old, 70 to 75 years old, 75 to 80 years old, 80 to 85 years old, 85 to 90 years old, 90 to 95 years old or 95 to 100 years old.
- an NDV e.g., a chimeric NDV
- an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a human infant.
- an NDV e.g., a chimeric NDV
- a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a human toddler.
- an NDV e.g., a chimeric NDV
- an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a human child.
- an NDV e.g., a chimeric NDV
- a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a human adult.
- an NDV e.g., a chimeric NDV
- a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to an elderly human.
- an NDV e.g., a chimeric NDV
- an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject in an immunocompromised state or immunosuppressed state or at risk for becoming immunocompromised or immunosuppressed.
- an NDV e.g., a chimeric NDV
- a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject receiving or recovering from immunosuppressive therapy.
- an NDV e.g., a chimeric NDV
- a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject that has or is at risk of getting cancer.
- the subject is, will or has undergone surgery, chemotherapy and/or radiation therapy.
- the patient has undergone surgery to remove the tumor or neoplasm.
- the patient is administered an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein following surgery to remove a tumor or neoplasm.
- the patient is administered an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein prior to undergoing surgery to remove a tumor or neoplasm.
- an NDV e.g., a chimeric NDV
- a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject that has, will have or had a tissue transplant, organ transplant or transfusion.
- the determination of whether a patient is refractory can be made either in vivo or in vitro by any method known in the art for assaying the effectiveness of a treatment of cancer, using art-accepted meanings of “refractory” in such a context.
- the patient to be treated in accordance with the methods described herein is a patient already being treated with antibiotics, anti-virals, anti-fungals, or other biological therapy/immunotherapy or anti-cancer therapy.
- these patients are refractory patients, and patients who are too young for conventional therapies.
- the subject being administered an NDV e.g., a chimeric NDV
- an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein has not received therapy prior to the administration of the chimeric NDV or composition, the oncolysate vaccine, or the whole cell vaccine, or the combination therapy.
- an NDV e.g., a chimeric NDV
- a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a patient to prevent the onset of cancer in a patient at risk of developing cancer.
- compounds are administered to a patient who are susceptible to adverse reactions to conventional therapies.
- the subject being administered an NDV e.g., a chimeric NDV or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein has not received prior therapy.
- an NDV e.g., a chimeric NDV
- a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject who has received a therapy prior to administration of the NDV (e.g., a chimeric NDV) or composition, the oncolysate vaccine, the whole cell vaccine, or the combination therapy.
- the subject administered an NDV e.g., a chimeric NDV
- an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein experienced adverse side effects to a prior therapy or a prior therapy was discontinued due to unacceptable levels of toxicity to the subject.
- an NDV or a composition thereof, an oncolysate vaccine, or a whole cell vaccine which will be effective in the treatment of cancer will depend on the nature of the cancer, the route of administration, the general health of the subject, etc. and should be decided according to the judgment of a medical practitioner. Standard clinical techniques, such as in vitro assays, may optionally be employed to help identify optimal dosage ranges.
- suitable dosage ranges of an NDV for administration are generally about 10 2 , 5 ⁇ 10 2 , 10 3 , 5 ⁇ 10 3 , 10 4 , 5 ⁇ 10 4 , 10 5 , 5 ⁇ 10 5 , 10 6 , 5 ⁇ 10 6 , 10 7 , 5 ⁇ 10 7 , 10 8 , 5 ⁇ 10 8 , 1 ⁇ 10 9 , 5 ⁇ 10 9 , 1 ⁇ 10 19 , 5 ⁇ 10 10 , 1 ⁇ 10 11 , 5 ⁇ 10 11 or 10 12 pfu, and most preferably about 10 4 to about 10 12 , 10 6 to 10 12 , 10 8 to 10 12 , 10 9 to 10 12 or 10 9 to 10 11 , and can be administered to a subject once, twice, three, four or more times with intervals as often as needed.
- Dosage ranges of whole cell vaccines for administration may include 10 2 , 5 ⁇ 10 2 , 10 3 , 5 ⁇ 10 3 , 10 4 , 5 ⁇ 10 4 , 10 5 , 5 ⁇ 10 5 , 10 6 , 5 ⁇ 10 6 , 10 7 , 5 ⁇ 10 7 , 10 8 , 5 ⁇ 10 8 , 1 ⁇ 10 9 , 5 ⁇ 10 9 , 1 ⁇ 10 10 , 5 ⁇ 10 10 , 1 ⁇ 10 11 , 5 ⁇ 10 11 or 10 12 cells, and can be administered to a subject once, twice, three or more times with intervals as often as needed.
- dosages similar to those currently being used in clinical trials for NDV, oncolysate vaccines or whole cell vaccines are administered to a subject. Effective doses may be extrapolated from dose response curves derived from in vitro or animal model test systems.
- an NDV e.g., a chimeric NDV
- a composition thereof is administered to a subject as a single dose followed by a second dose 1 to 6 weeks, 1 to 5 weeks, 1 to 4 weeks, 1 to 3 weeks, 1 to 2 weeks later.
- booster inoculations may be administered to the subject at 6 to 12 month intervals following the second inoculation.
- an oncolysate vaccine or a whole cell vaccine is administered to a subject as a single dose followed by a second dose 1 to 6 weeks, 1 to 5 weeks, 1 to 4 weeks, 1 to 3 weeks, 1 to 2 weeks later.
- administration of the same NDV e.g., chimeric NDV
- a composition thereof, oncolysate vaccine, or whole cell vaccine may be repeated and the administrations may be separated by at least 1 day, 2 days, 3 days, 5 days, 6 says, 7 days, 10 days, 14 days, 15 days, 21 days, 28 days, 30 days, 45 days, 2 months, 75 days, 3 months, or at least 6 months.
- administration of the same NDV (e.g., a NDV) or a composition thereof, oncolysate vaccine, or whole cell vaccine may be repeated and the administrations may be separated by 1 to 14 days, 1 to 7 days, 7 to 14 days, 1 to 30 days, 15 to 30 days, 15 to 45 days, 15 to 75 days, 15 to 90 days, 1 to 3 months, 3 to 6 months, 3 to 12 months, or 6 to 12 months.
- a first NDV e.g., a first chimeric NDV
- a composition thereof is administered to a subject followed by the administration of a second NDV (e.g., a second chimeric NDV) or a composition thereof.
- the first and second NDVs (e.g., the first and second chimeric NDVs) or compositions thereof may be separated by at least 1 day, 2 days, 3 days, 5 days, 6 days, 7 days, 10 days, 14 days, 15 days, 21 days, 28 days, 30 days, 45 days, 2 months, 75 days, 3 months, or at least 6 months.
- the first and second NDVs (e.g., the first and second chimeric NDVs) or compositions thereof may be separated by 1 to 14 days, 1 to 7 days, 7 to 14 days, 1 to 30 days, 15 to 30 days, 15 to 45 days, 15 to 75 days, 15 to 90 days, 1 to 3 months, 3 to 6 months, 3 to 12 months, or 6 to 12 months.
- an NDV or composition thereof, or oncolysate vaccine or whole cell vaccine is administered to a subject in combination with one or more additional therapies, such as a therapy described in Section 5.6.4, infra.
- the dosage of the other one or more additional therapies will depend upon various factors including, e.g., the therapy, the nature of the cancer, the route of administration, the general health of the subject, etc. and should be decided according to the judgment of a medical practitioner.
- the dose of the other therapy is the dose and/or frequency of administration of the therapy recommended for the therapy for use as a single agent is used in accordance with the methods disclosed herein.
- the dose of the other therapy is a lower dose and/or less frequent administration of the therapy than recommended for the therapy for use as a single agent is used in accordance with the methods disclosed herein.
- Recommended doses for approved therapies can be found in the Physician's Desk Reference.
- an NDV or composition thereof, or oncolysate vaccine or whole cell vaccine is administered to a subject concurrently with the administration of one or more additional therapies.
- an NDV or composition thereof, or oncolysate vaccine or whole cell vaccine is administered to a subject every 3 to 7 days, 1 to 6 weeks, 1 to 5 weeks, 1 to 4 weeks, 2 to 4 weeks, 1 to 3 weeks, or 1 to 2 weeks and one or more additional therapies (such as described in Section 5.6.4, infra) is administered every 3 to 7 days, 1 to 6 weeks, 1 to 5 weeks, 1 to 4 weeks, 1 to 3 weeks, or 1 to 2 weeks.
- an NDV or composition thereof, or oncolysate vaccine or whole cell vaccine is administered to a subject every 1 to 2 weeks and one or more additional therapies (such as described in Section 5.6.4, infra) is administered every 2 to 4 weeks.
- an NDV or composition thereof, or oncolysate vaccine or whole cell vaccine is administered to a subject every week and one or more additional therapies (such as described in Section 5.6.4, infra) is administered every 2 weeks.
- cancers that can be treated in accordance with the methods described herein include, but are not limited to: leukemias, such as but not limited to, acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemias, such as, myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia leukemias and myelodysplastic syndrome; chronic leukemias, such as but not limited to, chronic myelocytic (granulocytic) leukemia, chronic lymphocytic leukemia, hairy cell leukemia; polycythemia vera; lymphomas such as but not limited to Hodgkin's disease, non-Hodgkin's disease; multiple myelomas such as but not limited to smoldering multiple myeloma, nonsecretory myeloma, osteosclerotic myeloma, placancer cell leukemia, s
- cancers include myxosarcoma, osteogenic sarcoma, endotheliosarcoma, lymphangioendotheliosarcoma, mesothelioma, synovioma, hemangioblastoma, epithelial carcinoma, cystadenocarcinoma, bronchogenic carcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma and papillary adenocarcinomas (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia and Murphy et al., 1997, Informed Decisions: The Complete Book of Cancer Diagnosis, Treatment, and Recovery, Viking Penguin, Penguin Books U.S.A., Inc., United States of America).
- the chimeric NDVs described herein or compositions thereof, an oncolysate vaccine described herein, a whole cell vaccine herein, or a combination therapy described herein are useful in the treatment of a variety of cancers and abnormal proliferative diseases, including (but not limited to) the following: carcinoma, including that of the bladder, breast, colon, kidney, liver, lung, ovary, pancreas, stomach, cervix, thyroid and skin; including squamous cell carcinoma; hematopoietic tumors of lymphoid lineage, including leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T cell lymphoma, Burkitt's lymphoma; hematopoietic tumors of myeloid lineage, including acute and chronic myelogenous leukemias and promyelocytic leukemia; tumors of mesenchymal origin, including fibrosarcoma and rhabdomyo
- cancers associated with aberrations in apoptosis are treated in accordance with the methods described herein.
- Such cancers may include, but are not limited to, follicular lymphomas, carcinomas with p53 mutations, hormone dependent tumors of the breast, prostate and ovary, and precancerous lesions such as familial adenomatous polyposis, and myelodysplastic syndromes.
- malignancy or dysproliferative changes such as metaplasias and dysplasias
- hyperproliferative disorders of the skin, lung, liver, bone, brain, stomach, colon, breast, prostate, bladder, kidney, pancreas, ovary, and/or uterus are treated in accordance with the methods described herein.
- a sarcoma or melanoma is treated in accordance with the methods described herein.
- the cancer being treated in accordance with the methods described herein is leukemia, lymphoma or myeloma (e.g., multiple myeloma).
- leukemias and other blood-borne cancers that can be treated in accordance with the methods described herein include, but are not limited to, acute lymphoblastic leukemia “ALL”, acute lymphoblastic B-cell leukemia, acute lymphoblastic T-cell leukemia, acute myeloblastic leukemia “AML”, acute promyelocytic leukemia “APL”, acute monoblastic leukemia, acute erythroleukemic leukemia, acute megakaryoblastic leukemia, acute myelomonocytic leukemia, acute nonlymphocyctic leukemia, acute undifferentiated leukemia, chronic myelocytic leukemia “CML”, chronic lymphocytic leukemia “CLL”, and hairy cell leukemia.
- ALL acute lymphoblastic leukemia
- ALL acute
- lymphomas that can be treated in accordance with the methods described herein include, but are not limited to, Hodgkin's disease, non-Hodgkin's Lymphoma, Multiple myeloma, Waldenström's macroglobulinemia, Heavy chain disease, and Polycythemia vera.
- the cancer being treated in accordance with the methods described herein is a solid tumor.
- solid tumors that can be treated in accordance with the methods described herein include, but are not limited to fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon cancer, colorectal cancer, kidney cancer, pancreatic cancer, bone cancer, breast cancer, ovarian cancer, prostate cancer, esophageal cancer, stomach cancer, oral cancer, nasal cancer, throat cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, pa
- the cancer being treated in accordance with the methods described herein is a cancer that has a poor prognosis and/or has a poor response to conventional therapies, such as chemotherapy and radiation.
- the cancer being treated in accordance with the methods described herein is malignant melanoma, malignant glioma, renal cell carcinoma, pancreatic adenocarcinoma, malignant pleural mesothelioma, lung adenocarcinoma, lung small cell carcinoma, lung squamous cell carcinoma, anaplastic thyroid cancer, and head and neck squamous cell carcinoma.
- Additional therapies that can be used in a combination with an NDV described herein or a composition thereof, an oncolysate vaccine, or a whole cell vaccine for the treatment of cancer include, but are not limited to, small molecules, synthetic drugs, peptides (including cyclic peptides), polypeptides, proteins, nucleic acids (e.g., DNA and RNA nucleotides including, but not limited to, antisense nucleotide sequences, triple helices, RNAi, and nucleotide sequences encoding biologically active proteins, polypeptides or peptides), antibodies, synthetic or natural inorganic molecules, mimetic agents, and synthetic or natural organic molecules.
- the additional therapy is a chemotherapeutic agent.
- an NDV described herein or a composition thereof, an oncolysate vaccine, or a whole cell vaccine is used in combination with radiation therapy comprising the use of x-rays, gamma rays and other sources of radiation to destroy cancer cells.
- the radiation therapy is administered as external beam radiation or teletherapy, wherein the radiation is directed from a remote source.
- the radiation therapy is administered as internal therapy or brachytherapy wherein a radioactive source is placed inside the body close to cancer cells and/or a tumor mass.
- anti-cancer agents that may be used in combination with an NDV described herein or a composition thereof include: hormonal agents (e.g., aromatase inhibitor, selective estrogen receptor modulator (SERM), and estrogen receptor antagonist), chemotherapeutic agents (e.g., microtubule disassembly blocker, antimetabolite, topoisomerase inhibitor, and DNA crosslinker or damaging agent), anti-angiogenic agents (e.g., VEGF antagonist, receptor antagonist, integrin antagonist, vascular targeting agent (VTA)/vascular disrupting agent (VDA)), radiation therapy, and conventional surgery.
- hormonal agents e.g., aromatase inhibitor, selective estrogen receptor modulator (SERM), and estrogen receptor antagonist
- chemotherapeutic agents e.g., microtubule disassembly blocker, antimetabolite, topoisomerase inhibitor, and DNA crosslinker or damaging agent
- anti-angiogenic agents e.g., VEGF antagonist, receptor antagonist, integrin antagonist,
- Non-limiting examples of hormonal agents that may be used in combination with an NDV described herein or a composition thereof include aromatase inhibitors, SERMs, and estrogen receptor antagonists.
- Hormonal agents that are aromatase inhibitors may be steroidal or nonsteroidal.
- Non-limiting examples of nonsteroidal hormonal agents include letrozole, anastrozole, aminoglutethimide, fadrozole, and vorozole.
- Non-limiting examples of steroidal hormonal agents include aromasin (exemestane), formestane, and testolactone.
- Non-limiting examples of hormonal agents that are SERMs include tamoxifen (branded/marketed as Nolvadex®), afimoxifene, arzoxifene, avalycoxifene, clomifene, femarelle, lasofoxifene, ormeloxifene, raloxifene, and toremifene.
- Non-limiting examples of hormonal agents that are estrogen receptor antagonists include fulvestrant.
- Other hormonal agents include but are not limited to abiraterone and lonaprisan.
- Non-limiting examples of chemotherapeutic agents that may be used in combination with an NDV described herein or a composition thereof, an oncolysate vaccine, or a whole cell vaccine include microtubule disasssembly blocker, antimetabolite, topoisomerase inhibitor, and DNA crosslinker or damaging agent.
- Chemotherapeutic agents that are microtubule disassembly blockers include, but are not limited to, taxenes (e.g., paclitaxel (branded/marketed as TAXOL®), docetaxel, abraxane, larotaxel, ortataxel, and tesetaxel); epothilones (e.g., ixabepilone); and vinca alkaloids (e.g., vinorelbine, vinblastine, vindesine, and vincristine (branded/marketed as)) ONCOVIN®.
- taxenes e.g., paclitaxel (branded/marketed as TAXOL®), docetaxel, abraxane, larotaxel, ortataxel, and tesetaxel
- epothilones e.g., ixabepilone
- vinca alkaloids e.g., vinorelbine, vinblastine, vindesine, and
- Chemotherapeutic agents that are antimetabolites include, but are not limited to, folate antimetabolites (e.g., methotrexate, aminopterin, pemetrexed, raltitrexed); purine antimetabolites (e.g., cladribine, clofarabine, fludarabine, mercaptopurine, pentostatin, thioguanine); pyrimidine antimetabolites (e.g., 5-fluorouracil, capecitabine, gemcitabine (GEMZAR®), cytarabine, decitabine, floxuridine, tegafur); and deoxyribonucleotide antimetabolites (e.g., hydroxyurea).
- folate antimetabolites e.g., methotrexate, aminopterin, pemetrexed, raltitrexed
- purine antimetabolites e.g., cladribine, clofarabine, fludarabine, mercaptopur
- Chemotherapeutic agents that are topoisomerase inhibitors include, but are not limited to, class I (camptotheca) topoisomerase inhibitors (e.g., topotecan (branded/marketed as HYCAMTIN®) irinotecan, rubitecan, and belotecan); class II (podophyllum) topoisomerase inhibitors (e.g., etoposide or VP-16, and teniposide); anthracyclines (e.g., doxorubicin, epirubicin, Doxil, aclarubicin, amrubicin, daunorubicin, idarubicin, pirarubicin, valrubicin, and zorubicin); and anthracenediones (e.g., mitoxantrone, and pixantrone).
- class I camptotheca
- topotecan branded/marketed as HYCAMTIN®
- irinotecan ir
- Chemotherapeutic agents that are DNA crosslinkers include, but are not limited to, alkylating agents (e.g., cyclophosphamide, mechlorethamine, ifosfamide (branded/marketed as IFEX®), trofosfamide, chlorambucil, melphalan, prednimustine, bendamustine, uramustine, estramustine, carmustine (branded/marketed as BiCNU®), lomustine, semustine, fotemustine, nimustine, ranimustine, streptozocin, busulfan, mannosulfan, treosulfan, carboquone, N,N′N′-triethylenethiophosphoramide, triaziquone, triethylenemelamine); alkylating-like agents (e.g., carboplatin (branded/marketed as PARAPLATIN®), cisplatin, oxaliplatin, nedaplatin, triplatin tetranit
- an NDV described herein e.g., a chimeric NDV
- a composition thereof, an oncolysate vaccine, or a whole cell vaccine are administered to a subject in combination with one or more of the following: any agonist of a co-stimulatory signal of an immune cell (such as, e.g., a T-lymphocyte, NK cell or antigen-presenting cell (e.g., a dendritic cell or macrophage) and/or any antagonist of an inhibitory signal of an immune cell (such as, e.g., a T-lymphocyte, NK cell or antigen-presenting cell (e.g., a dendritic cell or macrophage), known to one of skill in the art.
- any agonist of a co-stimulatory signal of an immune cell such as, e.g., a T-lymphocyte, NK cell or antigen-presenting cell (e.g., a dendritic cell or macrophage)
- an NDV described herein e.g., a chimeric NDV
- an oncolysate vaccine, or a whole cell vaccine are administered to a subject in combination with one or more of the agonists of a co-stimulatory signal of an immune cell described in Section 5.2.1, supra.
- an NDV described herein e.g., a chimeric NDV
- an oncolysate vaccine, or a whole cell vaccine are administered to a subject in combination with one or more of the antagonists of an inhibitory signal of an immune cell described in Section 5.2.1, supra.
- an NDV described herein e.g., a chimeric NDV
- a composition thereof, an oncolysate vaccine, or a whole cell vaccine are administered to a subject in combination with one or more of the agonists of a co-stimulatory signal of an immune cell and/or one or more of the antagonists of an inhibitory signal of an immune cell described in Section 6, infra (e.g., an anti-CTLA-4 antibody or an ICOS-L)
- Viral assays include those that measure altered viral replication (as determined, e.g., by plaque formation) or the production of viral proteins (as determined, e.g., by western blot analysis) or viral RNAs (as determined, e.g., by RT-PCR or northern blot analysis) in cultured cells in vitro using methods which are well known in the art.
- NDVs described herein can be assessed by any method known in the art or described herein (e.g., in cell culture (e.g., cultures of chicken embryonic kidney cells or cultures of chicken embryonic fibroblasts (CEF)).
- Viral titer may be determined by inoculating serial dilutions of a NDV described herein into cell cultures (e.g., CEF, MDCK, EFK-2 cells, Vero cells, primary human umbilical vein endothelial cells (HUVEC), H292 human epithelial cell line or HeLa cells), chick embryos, or live animals (e.g., avians). After incubation of the virus for a specified time, the virus is isolated using standard methods.
- Physical quantitation of the virus titer can be performed using PCR applied to viral supernatants (Quinn & Trevor, 1997; Morgan et al., 1990), hemagglutination assays, tissue culture infectious doses (TCID50) or egg infectious doses (EID50).
- TCID50 tissue culture infectious doses
- EID50 egg infectious doses
- incorporación of nucleotide sequences encoding a heterologous peptide or protein e.g., a cytokine, a mutated F protein, a mutated V protein, or miRNA target site into the genome of a chimeric NDV described herein can be assessed by any method known in the art or described herein (e.g., in cell culture, an animal model or viral culture in embryonated eggs).
- a heterologous peptide or protein e.g., a cytokine, a mutated F protein, a mutated V protein, or miRNA target site into the genome of a chimeric NDV described herein
- a heterologous peptide or protein e.g., a cytokine, a mutated F protein, a mutated V protein, or miRNA target site into the genome of a chimeric NDV described herein
- viral particles from cell culture of the allantoic fluid of embryonated eggs can be purified by centri
- Immunofluorescence-based approaches may also be used to detect virus and assess viral growth. Such approaches are well known to those of skill in the art, e.g., fluorescence microscopy and flow cytometry (see Section 6, infra).
- Antibodies generated by the NDVs described herein may be characterized in a variety of ways well-known to one of skill in the art (e.g., ELISA, Surface Plasmon resonance display (BIAcore), Western blot, immunofluorescence, immunostaining and/or microneutralization assays).
- antibodies generated by the chimeric NDVs described herein may be assayed for the ability to specifically bind to an antigen of the virus or a heterologous peptide or protein.
- Such an assay may be performed in solution (e.g., Houghten, 1992, Bio/Techniques 13:412 421), on beads (Lam, 1991, Nature 354:82 84), on chips (Fodor, 1993, Nature 364:555 556), on bacteria (U.S. Pat. No. 5,223,409), on spores (U.S. Pat. Nos. 5,571,698; 5,403,484; and 5,223,409), on plasmids (Cull et al., 1992, Proc. Natl. Acad. Sci. USA 89:1865 1869) or on phage (Scott and Smith, 1990, Science 249:386 390; Cwirla et al., 1990, Proc. Natl. Acad. Sci. USA 87:6378 6382; and Felici, 1991, J. Mol. Biol. 222:301 310) (each of these references is incorporated herein in its entirety by reference).
- Antibodies generated by the chimeric NDVs described herein that have been identified to specifically bind to an antigen of the virus or a heterologous peptide or protein can be assayed for their specificity to said antigen of the virus or heterologous peptide or protein.
- the antibodies may be assayed for specific binding to an antigen of the virus or a heterologous peptide or protein and for their cross-reactivity with other antigens by any method known in the art.
- Immunoassays which can be used to analyze specific binding and cross-reactivity include, but are not limited to, competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), “sandwich” immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays, to name but a few.
- competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), “sandwich” immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement
- the binding affinity of an antibody to an antigen and the off-rate of an antibody-antigen interaction can be determined by competitive binding assays.
- a surface plasmon resonance assay e.g., BIAcore kinetic analysis
- KinExA assay Blake, et al., Analytical Biochem., 1999, 272:123-134 may be used to determine the binding on and off rates of antibodies to an antigen of the chimeric NDVs described herein.
- IFN induction and release by an NDV described herein may be determined using techniques known to one of skill in the art or described herein.
- the amount of IFN induced in cells following infection with an NDV described herein may be determined using an immunoassay (e.g., an ELISA or Western blot assay) to measure IFN expression or to measure the expression of a protein whose expression is induced by IFN.
- the amount of IFN induced may be measured at the RNA level by assays, such as Northern blots and quantitative RT-PCR, known to one of skill in the art.
- the amount of IFN released may be measured using an ELISPOT assay. (See, e.g., the methods described in Section 6, below.)
- the NDVs described herein or compositions thereof, oncolysate vaccines described herein, whole cell vaccines described herein, or combination therapies described herein are tested for cytotoxicity in mammalian, preferably human, cell lines (see, e.g., the cytotoxicity assay described in Section 6, infra).
- cytotoxicity is assessed in one or more of the following non-limiting examples of cell lines: U937, a human monocyte cell line; primary peripheral blood mononuclear cells (PBMC); Huh7, a human hepatoblastoma cell line; HL60 cells, HT1080, HEK 293T and 293H, MLPC cells, human embryonic kidney cell lines; human melanoma cell lines, such as SkMel2, SkMel-119 and SkMel-197; THP-1, monocytic cells; a HeLa cell line; and neuroblastoma cells lines, such as MC-IXC, SK-N-MC, SK-N-MC, SK-N-DZ, SH-SY5Y, and BE(2)-C.
- cytotoxicity is assessed in various cancer cells.
- the ToxLite assay is used to assess cytotoxicity.
- cell proliferation can be assayed by measuring Bromodeoxyuridine (BrdU) incorporation, ( 3 H) thymidine incorporation, by direct cell count, or by detecting changes in transcription, translation or activity of known genes such as proto-oncogenes (e.g., fos, myc) or cell cycle markers (Rb, cdc2, cyclin A, D1, D2, D3, E, etc).
- PrdU Bromodeoxyuridine
- 3 H thymidine incorporation
- thymidine incorporation by direct cell count, or by detecting changes in transcription, translation or activity of known genes such as proto-oncogenes (e.g., fos, myc) or cell cycle markers (Rb, cdc2, cyclin A, D1, D2, D3, E, etc).
- the levels of such protein and mRNA and activity can be determined by any method well known in the art.
- protein can be quantitated by known immunodiagnostic methods such as ELISA, Western blotting or immuno
- mRNA can be quantitated using methods that are well known and routine in the art, for example, using northern analysis, RNase protection, or polymerase chain reaction in connection with reverse transcription.
- Cell viability can be assessed by using trypan-blue staining or other cell death or viability markers known in the art.
- the level of cellular ATP is measured to determined cell viability.
- an NDV described herein or composition thereof, oncolysate vaccine, whole cell vaccine, or combination therapy kills cancer cells but does not kill healthy (i.e., non-cancerous) cells.
- an NDV described herein or composition thereof, oncolysate vaccine, whole cell vaccine, or combination therapy preferentially kills cancer cells but does not kill healthy (i.e., non-cancerous) cells.
- cell viability is measured in three-day and seven-day periods using an assay standard in the art, such as the CellTiter-Glo Assay Kit (Promega) which measures levels of intracellular ATP. A reduction in cellular ATP is indicative of a cytotoxic effect.
- cell viability can be measured in the neutral red uptake assay.
- visual observation for morphological changes may include enlargement, granularity, cells with ragged edges, a filmy appearance, rounding, detachment from the surface of the well, or other changes.
- the NDVs described herein or compositions thereof, oncolysate vaccines, whole cell vaccines or combination therapies can be tested for in vivo toxicity in animal models (see, e.g., the animal models described in Section 6, below).
- animal models, described herein and/or others known in the art, used to test the effects of compounds on cancer can also be used to determine the in vivo toxicity of the NDVs described herein or compositions thereof, oncolysate vaccines, whole cell vaccines, or combination therapies.
- animals are administered a range of pfu of an NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra).
- the animals are monitored over time for lethality, weight loss or failure to gain weight, and/or levels of serum markers that may be indicative of tissue damage (e.g., creatine phosphokinase level as an indicator of general tissue damage, level of glutamic oxalic acid transaminase or pyruvic acid transaminase as indicators for possible liver damage).
- tissue damage e.g., creatine phosphokinase level as an indicator of general tissue damage, level of glutamic oxalic acid transaminase or pyruvic acid transaminase as indicators for possible liver damage.
- serum markers e.g., creatine phosphokinase level as an indicator of general tissue damage, level of glutamic oxalic acid transaminase or pyruvic acid transaminase as indicators for possible liver damage.
- the toxicity and/or efficacy of an NDV described herein or a composition thereof, an oncolysate vaccine described herein, a whole cell vaccine described herein, or a combination therapy described herein can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50.
- Therapies that exhibits large therapeutic indices are preferred. While therapies that exhibits toxic side effects may be used, care should be taken to design a delivery system that targets such therapies to the site of affected tissue in order to minimize potential damage to noncancerous cells and, thereby, reduce side effects.
- the data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage of the therapies for use in subjects.
- the dosage of such agents lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity.
- the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
- the therapeutically effective dose can be estimated initially from cell culture assays.
- a dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the 1050 (i.e., the concentration of the chimeric NDV that achieves a half-maximal inhibition of symptoms) as determined in cell culture.
- Such information can be used to more accurately determine useful doses in subjects.
- Levels in plasma may be measured, for example, by high performance liquid chromatography.
- the NDVs described herein or compositions thereof, oncolysate vaccines described herein, whole cell vaccines described herein, or combination therapies described herein can be tested for biological activity using animal models for cancer.
- animal model systems include, but are not limited to, rats, mice, chicken, cows, monkeys, pigs, dogs, rabbits, etc.
- the anti-cancer activity of an NDV described herein or combination therapy is tested in a mouse model system.
- Such model systems are widely used and well-known to the skilled artisan such as the SCID mouse model or transgenic mice.
- the anti-cancer activity of an NDV described herein or a composition thereof, oncolysate vaccine described herein, whole cell vaccine described herein, or a combination therapy described herein can be determined by administering the NDV or composition thereof, oncolysate vaccine, whole cell vaccine, or combination therapy to an animal model and verifying that the NDV or composition thereof, oncolysate vaccine, whole cell vaccine, or combination therapy is effective in reducing the severity of cancer, reducing the symptoms of cancer, reducing cancer metastasis, and/or reducing the size of a tumor in said animal model (see, e.g., Section 6, below).
- animal models for cancer in general include, include, but are not limited to, spontaneously occurring tumors of companion animals (see, e.g., Vail & MacEwen, 2000, Cancer Invest 18(8):781-92).
- animal models for lung cancer include, but are not limited to, lung cancer animal models described by Zhang & Roth (1994, In-vivo 8(5):755-69) and a transgenic mouse model with disrupted p53 function (see, e.g. Morris et al., 1998, J La State Med Soc 150(4): 179-85).
- An example of an animal model for breast cancer includes, but is not limited to, a transgenic mouse that over expresses cyclin D1 (see, e.g., Hosokawa et al., 2001, Transgenic Res 10(5):471-8).
- An example of an animal model for colon cancer includes, but is not limited to, a TCR b and p53 double knockout mouse (see, e.g., Kado et al., 2001, Cancer Res. 61(6):2395-8).
- Examples of animal models for pancreatic cancer include, but are not limited to, a metastatic model of PancO2 murine pancreatic adenocarcinoma (see, e.g., Wang et al., 2001, Int. J.
- Pancreatol. 29(1):37-46) and nu-nu mice generated in subcutaneous pancreatic tumors see, e.g., Ghaneh et al., 2001, Gene Ther. 8(3):199-208.
- animal models for non-Hodgkin's lymphoma include, but are not limited to, a severe combined immunodeficiency (“SCID”) mouse (see, e.g., Bryant et al., 2000, Lab Invest 80(4):553-73) and an IgHmu-HOX11 transgenic mouse (see, e.g., Hough et al., 1998, Proc. Natl. Acad. Sci. USA 95(23):13853-8).
- SCID severe combined immunodeficiency
- an animal model for esophageal cancer includes, but is not limited to, a mouse transgenic for the human papillomavirus type 16 E7 oncogene (see, e.g., Herber et al., 1996, J. Virol. 70(3):1873-81).
- animal models for colorectal carcinomas include, but are not limited to, Apc mouse models (see, e.g., Fodde & Smits, 2001, Trends Mol Med 7(8):369 73 and Kuraguchi et al., 2000).
- the animal models for cancer described in Section 6, infra are used to assess efficacy of an NDV or composition thereof, an oncolysate, a whole cell vaccine, or a combination therapy.
- This example demonstrates the therapeutic efficacy of NDV therapy in combination with immune checkpoint modulators that are immunostimulatory in the treatment of cancer.
- mice BALB/c mice (6-8 weeks old), and WT C57BL/6 mice were purchased from Jackson Laboratory. All mice were maintained in microisolator cages and treated in accordance with the NIH and American Association of Laboratory Animal Care regulations. All mouse procedures and experiments for this study were approved by the Memorial Sloan-Kettering Cancer Center Institutional Animal Care and Use Committee.
- B16-F10 cells were infected in 6-well dishes at MOI 2 in triplicate. Twenty-four hours later, the cells were harvested by mechanical scraping and processed for surface labeling and quantification by flow cytometry. For virus growth curve experiments, B16-F10 cells were incubated at room temperature with the virus in 6-well culture dishes at the indicated MOIs in a total volume of 100 ⁇ l. One hour after the incubation, the infection media was aspirated and the cells were incubated at 37° C. in 1 ml of DMEM with 10% chick allantoic fluid.
- mice received 4 i.p. injections of anti-CTLA-4 antibody (100 ⁇ g) or anti-PD-1 antibody (250 ⁇ g).
- Control groups received a corresponding dose of isotype antibody i.p. and intratumoral injection of PBS. Tumor size and incidence were monitored over time by measurement with a caliper.
- TRAMP-C2 For the TRAMP-C2 model, 5 ⁇ 10 5 cells were implanted in right flank on day 0 and 5 ⁇ 10 5 cells were implanted in the left flank on day 8. Treatment was performed on days 11, 14, 17, and 20 in the similar fashion to above.
- B16F10 tumors were implanted by injection of 2 ⁇ 10 5 B16F10 cells in the right flank i.d. on day 0 and 1 ⁇ 10 5 cells in the left flank on day 4. Treatment was carried out as above.
- tumors were implanted by injection of 1 ⁇ 10 6 CT26 cells in the right flank i.d. on day 0 and 1 ⁇ 10 6 cells in the left flank on day 2. Treatment was carried out as above on days 6, 9, and 12.
- B16F10 tumors were implanted by injection of 2 ⁇ 10 5 B16F10 cells in the right flank i.d. on day 0 and 2 ⁇ 10 5 cells in the left flank on day 4.
- the mice were treated with 3 intratumoral injections of 2 ⁇ 10 7 pfu of NDV, and 100 ⁇ g of i.p. anti-CTLA-4 antibody or 250 ⁇ g of i.p. anti-PD-1 antibody, where specified.
- mice were sacrificed by CO 2 inhalation. Tumors and tumor-draining lymph nodes were removed using forceps and surgical scissors and weighed.
- Tumors from each group were minced with scissors prior to incubation with 1.67 Wünsch U/mL Liberase and 0.2 mg/mL DNase for 30 minutes at 37° C. Tumors were homogenized by repeated pipetting and filtered through a 70- ⁇ m nylon filter. Cell suspensions were washed once with complete RPMI and purified on a Ficoll gradient to eliminate dead cells. Cells from tumor draining lymph nodes were isolated by grinding the lymph nodes through a 70- ⁇ m nylon filter.
- Cells isolated from tumors or tumor-draining lymph nodes were processed for surface labeling with several antibody panels staining CD45, CD3, CD4, CD8, CD44, PD-1, ICOS, CD11c, CD19, NK1.1, CD11b, F4/80, Ly6C and Ly6G.
- Fixable viability dye eFluor780 (eBioscience) was used to distinguish the live cells.
- Cells were further permeabilized using FoxP3 fixation and permeabilization kit (eBioscience) and stained for Ki-67, FoxP3, Granzyme B, CTLA-4, and IFN gamma. Data was acquired using the LSRII Flow cytometer (BD Biosciences) and analyzed using FlowJo software (Treestar).
- T cells Cell suspensions from tumors or tumor-draining lymph nodes were pooled and enriched for T cells using a Miltenyi T-cell purification kit. Isolated T cells were counted and co-cultured for 8 hours with dendritic cells loaded with B16-F10 tumor cell lysates in the presence of 20 U/ml IL-2 (R and D) plus Brefeldin A (BD Bioscience). After restimulation, lymphocytes were processed for flow cytometry as above.
- IL-2 R and D
- Brefeldin A BD Bioscience
- NDV infection In order to characterize the anti-tumor immune response induced by Newcastle disease virus (NDV) infection, the expression of MHC I and MHC II molecules as well as ICAM-1 on the surface of in vitro infected cells was assessed. As shown in FIG. 1 , NDV infection in B16 melanoma cells induces upregulation of MHC class I and II molecules as well as adhesion molecule ICAM-1, all of which are thought to be important for recruitment of tumor-specific lymphocytes and activation of anti-tumor immune response.
- NDV infection in B16 melanoma cells induces upregulation of MHC class I and II molecules as well as adhesion molecule ICAM-1, all of which are thought to be important for recruitment of tumor-specific lymphocytes and activation of anti-tumor immune response.
- the anti-tumor immune response induced by NDV infection in vivo was assessed in a murine melanoma model and an established 2-flank model that allowed us to monitor responses both in the virus-injected tumors as well as distant tumors which do not receive the virus.
- the virus-infected tumors show dramatic infiltration with immune cells such as NK cells, macrophages, and CD8 and CD4 cells, but not regulatory T cells. Since part of this immune response could be a response to virus, rather than tumor, the immune response with respect to contralateral tumors was assessed ( FIG. 3 ). Interestingly, these tumors demonstrated a similar degree of increased CD8 and CD4 effector, but not T reg infiltrate.
- NDV monotherapy was effective in controlling the treated tumors ( FIG. 5A ), but only marginally slowed down the growth of the contralateral tumors ( FIG. 5B ). Mice that cleared the tumors, however, demonstrated some degree of protection against further tumor challenge ( FIG. 5D ), suggesting that NDV therapy can induce a lasting immunity.
- NDV infected tumor cells both in vitro and in vivo had upregulated the expression of the inhibitory PD-L1 ligand on the surface of the cells. This effect was not just a result of a direct virus infection, but was also seen when non-infected cells were treated with UV-inactivated supernatants from the virus infected cells ( FIG. 9B ) and in contralateral, noninfected, tumors ( FIG. 9C ). This prompted testing combination therapy with NDV and anti-PD-1 antibody.
- NDV therapy in combination with anti-PD-1 in the aggressive B16 melanoma model resulted in cures in the majority of animals, an effect that was associated with increased tumor infiltration with activated effector lymphocytes ( FIG. 10 ).
- NDV-ICOSL NDV expressing murine ICOSL
- FIG. 12 In vitro characterization of the virus revealed that it had similar replicative and lytic properties to the parental NDV strain ( FIG. 12 ).
- NDV-ICOSL demonstrated significant advantage over the parental NDV virus when used in combination with CTLA-4 blockade, with long-term survival in the majority of treated animals ( FIG. 13 ). This effect was not limited to B16 melanoma and was demonstrated for CT26 colon carcinoma in the Balb/C mouse strain, suggesting that this therapeutic strategy could be translatable to different tumor types ( FIG. 14 ).
- FIGS. 15 and 16 Analysis of B16 tumors from the treated animals demonstrated significant infiltration with different immune cell subtypes with upregulation of the activation markers. These lymphocytes were tumor-specific and demonstrated secretion of IFN gamma in response to stimulation with dendritic cells loaded with tumor lysates ( FIG. 17 ). Finally, animals that were cured of their B16 or CT26 tumors were re-challenged with tumor cells and demonstrated complete protection against tumor re-challenge ( FIG. 18 ).
- a chimeric protein consisting of the extracellular domain of the ICOSL (amino acids 1-277) and the transmembrane and intracellular domains of the NDV F protein (amino acids 501-554) was generated ( FIG. 19A ).
- Transfection of the resultant construct into B16-F10 cells resulted in increased expression of the chimeric ICOSL-F ligand on the surface of the transfected cells, when compared to the transfected native ICOSL, suggesting that the regulatory mechanisms governing the transport of NDV F protein to the surface can be utilized to increase the surface expression of immune stimulatory ligands.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Virology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Oncology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Endocrinology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
- This application claims priority to U.S. Provisional Application No. 61/782,994, filed on Mar. 14, 2013, which is incorporated by reference herein in its entirety.
- This invention was made, in part, with Government support under award numbers 5T32CA009207-35 and HHSN26620070010C from the National Institutes of Health. The Government has certain rights in this invention.
- Described herein are chimeric Newcastle disease viruses engineered to express an agonist of a co-stimulatory signal of an immune cell and compositions comprising such viruses. Also described herein are chimeric Newcastle disease viruses engineered to express an antagonist of an inhibitory signal of an immune cell and compositions comprising such viruses. The chimeric Newcastle disease viruses and compositions are useful in the treatment of cancer. In addition, described herein are methods for treating cancer comprising administering Newcastle disease viruses in combination with an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell.
- Newcastle Disease Virus (NDV) is a member of the Avulavirus genus in the Paramyxoviridae family, which has been shown to infect a number of avian species (Alexander, D J (1988). Newcastle disease, Newcastle disease virus—an avian paramyxovirus. Kluwer Academic Publishers Dordrecht, The Netherlands. pp 1-22). NDV possesses a single-stranded RNA genome in negative sense and does not undergo recombination with the host genome or with other viruses (Alexander, D J (1988). Newcastle disease, Newcastle disease virus—an avian paramyxovirus. Kluwer Academic Publishers: Dordrecht, The Netherlands. pp 1-22). The genomic RNA contains genes in the order of 3′-NP-P-M-F-HN-L-5′, described in further detail below. Two additional proteins, V and W, are produced by NDV from the P gene by alternative mRNAs that are generated by RNA editing. The genomic RNA also contains a leader sequence at the 3′ end.
- The structural elements of the virion include the virus envelope which is a lipid bilayer derived from the cell plasma membrane. The glycoprotein, hemagglutinin-neuraminidase (HN) protrudes from the envelope allowing the virus to contain both hemagglutinin (e.g., receptor binding/fusogenic) and neuraminidase activities. The fusion glycoprotein (F), which also interacts with the viral membrane, is first produced as an inactive precursor, then cleaved post-translationally to produce two disulfide linked polypeptides. The active F protein is involved in penetration of NDV into host cells by facilitating fusion of the viral envelope with the host cell plasma membrane. The matrix protein (M), is involved with viral assembly, and interacts with both the viral membrane as well as the nucleocapsid proteins.
- The main protein subunit of the nucleocapsid is the nucleocapsid protein (NP) which confers helical symmetry on the capsid. In association with the nucleocapsid are the P and L proteins. The phosphoprotein (P), which is subject to phosphorylation, is thought to play a regulatory role in transcription, and may also be involved in methylation, phosphorylation and polyadenylation. The L gene, which encodes an RNA-dependent RNA polymerase, is required for viral RNA synthesis together with the P protein. The L protein, which takes up nearly half of the coding capacity of the viral genome is the largest of the viral proteins, and plays an important role in both transcription and replication. The V protein has been shown to inhibit interferon-alpha and to contribute to the virulence of NDV (Huang et al. (2003). Newcastle disease virus V protein is associated with viral pathogenesis and functions as an Alpha Interferon Antagonist. Journal of Virology 77: 8676-8685).
- Naturally-occurring NDV has been reported to be an effective oncolytic agent in a variety of animal tumor models (Sinkovics, J G, and Horvath, J C (2000). Newcastle disease virus (NDV): brief history of its oncolytic strains. J Clin Virol 16: 1-15). Naturally-occurring strains of NDV have been used in multiple clinical trials against advanced human cancers (Sinkovics, J G, and Horvath, J C (2000). Newcastle disease virus (NDV): brief history of its oncolytic strains. J Clin Virol 16: 1-15; Lorence et al. (2007).
Phase 1 clinical experience using intravenous administration of PV701, an oncolytic Newcastle disease virus. Curr Cancer Drug Targets 7: 157-167; Hotte et al. (2007). An optimized clinical regimen for the oncolytic virus PV701. Clin Cancer Res 13: 977-985; Freeman et al. (2006). Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol Ther 13: 221-228; Pecora et al. (2002). Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol 20: 2251-2266; Csatary et al. (2004). MTH-68/H oncolytic viral treatment in human high-grade gliomas. J Neurooncol 67: 83-93). However, the success of naturally-occurring strains of NDV in these clinical trials for advanced human cancers was only marginal (Hotte et al. (2007). An optimized clinical regimen for the oncolytic virus PV701. Clin Cancer Res 13: 977-985; Freeman et al. (2006). Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol Ther 13: 221-228; Pecora et al. (2002). Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol 20: 2251-2266). As such, there remains a need for NDV-based therapies useful in the treatment of cancer, especially advanced cancer. - In one aspect, presented herein are chimeric Newcastle disease viruses (NDVs) engineered to express an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell. In a specific embodiment, presented herein are chimeric NDVs, comprising a packaged genome which encodes an agonist of a co-stimulatory signal of an immune cell, wherein the agonist is expressed. In a specific embodiment, presented herein are chimeric NDVs, comprising a packaged genome which encodes an antagonist of an inhibitory signal of an immune cell, wherein the antagonist is expressed.
- In another embodiment, presented herein are chimeric NDVs, comprising a packaged genome which encodes an agonist of a co-stimulatory signal of an immune cell and a mutated F protein that causes the NDV to be highly fusogenic, wherein the agonist and the mutated F protein are expressed. In another embodiment, presented herein are chimeric NDVs, comprising a packaged genome which encodes an agonist of a co-stimulatory signal of an immune cell and a mutated F protein with a mutated cleavage site, wherein the agonist and the mutated F protein are expressed. In a specific embodiment, the chimeric NDVs expressing the mutated F protein have increased fusogenic activity relative to the corresponding virus expressing the counterpart F protein without the mutations to the cleavage site. In another specific embodiment, the modified F protein is incorporated into the virion.
- In another embodiment, presented herein are chimeric NDVs, comprising a packaged genome which encodes an antagonist of an inhibitory signal of an immune cell and a mutated F protein that causes the NDV to be highly fusogenic, wherein the antagonist and the mutated F protein are expressed. In another embodiment, presented herein are chimeric NDVs, comprising a packaged genome which encodes antagonist of an inhibitory signal of an immune cell and a mutated F protein with a mutated cleavage site, wherein the antagonist and the mutated F protein are expressed. In a specific embodiment, the chimeric NDVs expressing the mutated F protein have increased fusogenic activity relative to the corresponding virus expressing the counterpart F protein without the mutations to the cleavage site. In another specific embodiment, the modified F protein is incorporated into the virion.
- In another embodiment, presented herein are chimeric NDVs, comprising a packaged genome which encodes an agonist of a co-stimulatory signal of an immune cell and a cytokine (e.g., interleukin (IL)-2), wherein the agonist and the cytokine are expressed. In another embodiment, presented herein are chimeric NDVs, comprising a packaged genome which encodes an agonist of a co-stimulatory signal of an immune cell, a cytokine (e.g., IL-2) and a mutated F protein that causes the NDV to be highly fusogenic, wherein the agonist, the cytokine and the mutated F protein are expressed. In another embodiment, presented herein are chimeric NDVs, comprising a packaged genome which encodes an agonist of a co-stimulatory signal of an immune cell, a cytokine (e.g., IL-2) and a mutated F protein with a mutated cleavage site, wherein the agonist, the cytokine and the mutated F protein are expressed. In a specific embodiment, the chimeric NDVs expressing the mutated F protein with the mutated cleavage site are highly fusogenic. In another specific embodiment, the mutated F protein is incorporated into the virion.
- In another embodiment, presented herein are chimeric NDVs, comprising a packaged genome which encodes an antagonist of an inhibitory signal of an immune cell of an immune cell and a cytokine (e.g., IL-2), wherein the antagonist and the cytokine are expressed. In another embodiment, presented herein are chimeric NDVs, comprising a packaged genome which encodes an antagonist of an inhibitory signal of an immune cell, a cytokine (e.g., IL-2) and a mutated F protein that causes the NDV to be highly fusogenic, wherein the antagonist, the cytokine and the mutated F protein are expressed. In another embodiment, presented herein are chimeric NDVs, comprising a packaged genome which encodes an antagonist of an inhibitory signal of an immune cell, a cytokine (e.g., IL-2) and a mutated F protein with a mutated cleavage site, wherein the antagonist, the cytokine and the mutated F protein are expressed. In a specific embodiment, the chimeric NDVs expressing the mutated F protein with the mutated cleavage site are highly fusogenic. In another specific embodiment, the mutated F protein is incorporated into the virion.
- In a specific embodiment, the agonist of a co-stimulatory signal of an immune cell is an agonist of a co-stimulatory receptor expressed by an immune cell. Specific examples of co-stimulatory receptors include glucocorticoid-induced tumor necrosis factor receptor (GITR), Inducible T-cell costimulator (ICOS or CD278), OX40 (CD134), CD27, CD28, 4-1BB (CD137), and CD40. In a specific embodiment, the agonist of a co-stimulatory receptor expressed by an immune cell is an antibody (or an antigen-binding fragment thereof) or ligand that specifically binds to the co-stimulatory receptor. In one embodiment, the antibody is a monoclonal antibody. In another embodiment, the antibody is an sc-Fv. In a specific embodiment the antibody is a bispecific antibody that binds to two receptors on an immune cell. In one embodiment, the bispecific antibody binds to a receptor on an immune cell and to another receptor on a cancer cell. In specific embodiments, the antibody is a human or humanized antibody. In other embodiments, the ligand or an antibody is a chimeric protein comprising a NDV F protein or NDV FIN protein. Methods for generating such chimeric proteins are known in the art. See, e.g., U.S. Patent Application Publication No. 2012-0122185, the disclosure of which is herein incorporated by reference in its entirety. Also see Park et al., PNAS 2006; 103:8203-8 and Murawski et al., J Virol 2010; 84:1110-23, the disclosures of which is herein incorporated by reference in their entireties.
- In a specific embodiment, the antagonist of an inhibitory signal of an immune cell is an antagonist of an inhibitory receptor expressed by an immune cell. Specific examples of inhibitory receptors include cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4 or CD52), programmed cell death protein 1 (PD1 or CD279), B and T-lymphocyte attenuator (BTLA), killer cell immunoglobulin-like receptor (KIR), lymphocyte activation gene 3 (LAG3), T-cell membrane protein 3 (TIM3), and adenosine A2a receptor (A2aR). In a specific embodiment, the antagonist of an inhibitory receptor expressed by an immune cell is an antibody (or an antigen-binding fragment thereof) that specifically binds to the co-stimulatory receptor. In one embodiment, the antibody is a monoclonal antibody. In another embodiment, the antibody is an sc-Fv. In specific embodiments, the antibody is a human or humanized antibody. In another specific embodiment, the antagonist of an inhibitory receptor is a soluble receptor or antibody (or an antigen-binding fragment thereof) that specifically binds to a ligand of the inhibitory receptor.
- In another aspect, presented herein are methods for propagating the NDVs described herein (e.g., chimeric NDVs described herein). The NDVs described herein (e.g., chimeric NDVs described herein) can be propagated in any cell, subject, tissue or organ susceptible to a NDV infection. In one embodiment, the NDVs described herein (e.g., chimeric NDVs described herein) may be propagated in a cell line. In another embodiment, the NDVs described herein (e.g., chimeric NDVs described herein) may be propagated in cancer cells. In another embodiment, the NDVs described herein (e.g., chimeric NDVs described herein) may be propagated in an embryonated egg. In certain embodiments, presented herein are isolated cells, tissues or organs infected with an NDV described herein (e.g., a chimeric NDV described herein). See, e.g., Section 5.4, infra, for examples of cells, animals and eggs to infect with an NDV described herein (e.g., a chimeric NDV described herein). In specific embodiments, presented herein are isolated cancer cells infected with an NDV described herein (e.g., a chimeric NDV described herein). In certain embodiments, presented herein are cell lines infected with an NDV described herein (e.g., a chimeric NDV described herein). In other embodiments, presented herein are embryonated eggs infected with an NDV described herein (e.g., a chimeric NDV described herein).
- In another aspect, presented herein are compositions comprising an NDV described herein (e.g., a chimeric NDV described herein). In a specific embodiment, presented herein are pharmaceutical compositions comprising an NDV described herein (e.g., a chimeric NDV described herein) and a pharmaceutically acceptable carrier. In another embodiment, presented herein are pharmaceutical compositions comprising cancer cells infected with an NDV described herein (e.g., a chimeric NDV described herein), and a pharmaceutically acceptable carrier. In specific embodiments, the cancer cells have been treated with gamma radiation prior to incorporation into the pharmaceutical composition. In specific embodiments, the cancer cells have been treated with gamma radiation before infection with the NDV (e.g., chimeric NDV). In other specific embodiments, the cancer cells have been treated with gamma radiation after infection with the NDV (e.g., chimeric NDV). In another embodiment, presented herein are pharmaceutical compositions comprising protein concentrate from lysed NDV-infected cancer cells (e.g., chimeric-NDV infected cancer cells), and a pharmaceutically acceptable carrier.
- In another aspect, presented herein are methods for producing pharmaceutical compositions comprising an NDV described herein (e.g., a chimeric NDV described herein). In one embodiment, a method for producing a pharmaceutical composition comprises: (a) propagating an NDV described herein (e.g., a chimeric NDV described herein) in a cell line that is susceptible to an NDV infection; and (b) collecting the progeny virus, wherein the virus is grown to sufficient quantities and under sufficient conditions that the virus is free from contamination, such that the progeny virus is suitable for formulation into a pharmaceutical composition. In another embodiment, a method for producing a pharmaceutical composition comprises: (a) propagating an NDV described herein (e.g., a chimeric NDV described herein) in an embryonated egg; and (b) collecting the progeny virus, wherein the virus is grown to sufficient quantities and under sufficient conditions that the virus is free from contamination, such that the progeny virus is suitable for formulation into a pharmaceutical composition.
- In another aspect, presented herein are methods for treating cancer utilizing a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra) or a composition comprising such a chimeric NDV. In a specific embodiment, a method for treating cancer comprises infecting a cancer cell in a subject with a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra) or a composition thereof. In another embodiment, a method for treating cancer comprises administering to a subject in need thereof a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra) or a composition thereof. In specific embodiments, an effective amount of a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra) or a composition comprising an effective amount of a chimeric NDV described herein is administered to a subject to treat cancer. In specific embodiments, the chimeric NDV comprises a genome, the genome comprising an agonist of a co-stimulatory signal of an immune cell (e.g., an agonist of a co-stimulatory receptor of an immune cell) and/or an antagonist of an inhibitory signal of an immune cell (e.g., an antagonist of an inhibitory receptor of an immune cell). In certain embodiments, the genome of the NDV also comprises a mutated F protein. In certain embodiments, two or more chimeric NDVs are administered to a subject to treat cancer.
- In another embodiment, a method for treating cancer comprises administering to a subject in need thereof cancer cells infected with a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra) or composition thereof. In specific embodiments, the cancer cells have been treated with gamma radiation prior to administration to the subject or incorporation into the composition. In another embodiment, a method for treating cancer comprises administering to a subject in need thereof a protein concentrate or plasma membrane fragments from cancer cells infected with a chimeric NDV (e.g., a chimeric NDV described in Section 5.2, infra) or a composition thereof. In specific embodiments, the chimeric NDV comprises a genome, the genome comprising an agonist of a co-stimulatory signal of an immune cell (e.g., an agonist of a co-stimulatory receptor of an immune cell) and/or an antagonist of an inhibitory signal of an immune cell (e.g., an antagonist of an inhibitory receptor of an immune cell). In certain embodiments, the genome of the NDV also comprises a mutated F protein.
- In another aspect, presented herein are methods for treating cancer utilizing an NDV described herein (e.g., a chimeric NDV such as described in Section 5.2, infra) or a composition comprising such the NDV in combination with one or more other therapies. In one embodiment, presented herein are methods for treating cancer comprising administering to a subject an NDV described herein (e.g., a chimeric NDV, such as described in Section 5.2.1, infra) and one or more other therapies. In another embodiment, presented herein are methods for treating cancer comprising administering to a subject an effective amount of an NDV described herein or a composition comprising an effective amount of an NDV described herein, and one or more other therapies. The NDV and one or more other therapies can be administered concurrently or sequentially to the subject. In certain embodiments, the NDV and one or more other therapies are administered in the same composition. In other embodiments, the NDV and one or more other therapies are administered in different compositions. The NDV and one or more other therapies can be administered by the same or different routes of administration to the subject.
- Any NDV type or strain may be used in a combination therapy disclosed herein, including, but not limited to, naturally-occurring strains, variants or mutants, mutagenized viruses, reassortants and/or genetically engineered viruses. In a specific embodiment, the NDV used in a combination with one or more other therapies is a naturally-occurring strain. In another embodiment, the NDV used in combination with one or more other therapies is a chimeric NDV. In a specific embodiment, the chimeric NDV comprises a packaged genome, the genome comprising a cytokine (e.g., IL-2, IL-7, IL-15, IL-17, or IL-21). In specific embodiments, the cytokine is expressed by cells infected with the chimeric NDV. In a specific embodiment, the chimeric NDV comprises a packaged genome, the genome comprising a tumor antigen. In specific embodiments, the tumor antigen is expressed by cells infected with the chimeric NDV. In a specific embodiment, the chimeric NDV comprises a packaged genome, the genome comprising a pro-apoptotic molecule or an anti-apoptotic molecule. In specific embodiments, the pro-apoptotic molecule or anti-apoptotic molecule is expressed by cells infected with the chimeric NDV.
- In another specific embodiment, the chimeric NDV comprises a packaged genome, the genome comprising an agonist of a co-stimulatory signal of an immune cell (e.g., an agonist of a co-stimulatory receptor of an immune cell) and/or an antagonist of an inhibitory signal of an immune cell (e.g., an antagonist of an inhibitory receptor of an immune cell). In specific embodiments, the agonist and/or antagonist are expressed by cells infected with the chimeric NDV. In certain embodiments, the genome of the NDV also comprises a mutated F protein. In certain embodiments, the one or more therapies used in combination with an NDV described herein is one or more other therapies described in Section 5.6.4, infra. In particular embodiments, the one or more therapies used in combination with an NDV described herein is an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell (see, e.g., Section 5.6.4.4.1, infra). See, e.g., Section 5.2.1, infra, for examples of agonists of a co-stimulatory signal of an immune cell and antagonists of an inhibitory signal of an immune cell. In a specific embodiment, the antagonist of an inhibitory signal of an immune cell is the anti-CTLA-4 antibody described in Section 6, infra. In another specific embodiment, the agonist of a co-stimulatory signal of an immune cell is the ICOS ligand described in Section 6, infra
- As used herein, the term “about” or “approximately” when used in conjunction with a number refers to any number within 1, 5 or 10% of the referenced number.
- As used herein, the term “agonist(s)” refers to a molecule(s) that binds to another molecule and induces a biological reaction. In a specific embodiment, an agonist is a molecule that binds to a receptor on a cell and triggers one or more signal transduction pathways. For example, an agonist includes an antibody or ligand that binds to a receptor on a cell and induces one or more signal transduction pathways. In certain embodiments, the antibody or ligand binds to a receptor on a cell and induces one or more signal transduction pathways. In other embodiments, the agonist facilitates the interaction of the native ligand with the native receptor.
- As used herein, the term “antagonist(s)” refers to a molecule(s) that inhibits the action of another molecule without provoking a biological response itself. In a specific embodiment, an antagonist is a molecule that binds to a receptor on a cell and blocks or dampens the biological activity of an agonist. For example, an antagonist includes an antibody or ligand that binds to a receptor on a cell and blocks or dampens binding of the native ligand to the cell without inducing one or more signal transduction pathways. Another example of an antagonist includes an antibody or soluble receptor that competes with the native receptor on cells for binding to the native ligand, and thus, blocks or dampens one or more signal transduction pathways induced when the native receptor binds to the native ligand.
- As used herein, the terms “antibody” and “antibodies” refer to molecules that contain an antigen binding site, e.g., immunoglobulins. Antibodies include, but are not limited to, monoclonal antibodies, bispecific antibodies, multispecific antibodies, human antibodies, humanized antibodies, synthetic antibodies, chimeric antibodies, polyclonal antibodies, single domain antibodies, camelized antibodies, single-chain Fvs (scFv), single chain antibodies, Fab fragments, F(ab′) fragments, disulfide-linked bispecific Fvs (sdFv), intrabodies, and anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id and anti-anti-Id antibodies to antibodies), and epitope-binding fragments of any of the above. In particular, antibodies include immunoglobulin molecules and immunologically active fragments of immunoglobulin molecules. Immunoglobulin molecules can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass. In a specific embodiment, an antibody is a human or humanized antibody. In another specific embodiment, an antibody is a monoclonal antibody or scFv. In certain embodiments, an antibody is a human or humanized monoclonal antibody or scFv. In other specific embodiments, the antibody is a bispecific antibody. In certain embodiments, the bispecific antibody specifically binds to a co-stimulatory receptor of an immune cell or an inhibitory receptor of an immune, and a receptor on a cancer cell. In some embodiments, the bispecific antibody specifically binds to two receptors immune cells, e.g., two co-stimulatory receptors on immune cells, two inhibitory receptors on immune cells, or one co-stimulatory receptor on immune cells and one inhibitory receptor on immune cells.
- As used herein, the term “derivative” in the context of proteins or polypeptides refers to: (a) a polypeptide that is at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% or is 40% to 65%, 50% to 90%, 65% to 90%, 70% to 90%, 75% to 95%, 80% to 95%, or 85% to 99% identical to a native polypeptide; (b) a polypeptide encoded by a nucleic acid sequence that is at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% or is 40% to 65%, 50% to 90%, 65% to 90%, 70% to 90%, 75% to 95%, 80% to 95%, or 85% to 99% identical a nucleic acid sequence encoding a native polypeptide; (c) a polypeptide that contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more, or 2 to 5, 2 to 10, 5 to 10, 5 to 15, 5 to 20, 10 to 15, or 15 to 20 amino acid mutations (i.e., additions, deletions and/or substitutions) relative to a native polypeptide; (d) a polypeptide encoded by nucleic acid sequence that can hybridize under high, moderate or typical stringency hybridization conditions to a nucleic acid sequence encoding a native polypeptide; (e) a polypeptide encoded by a nucleic acid sequence that can hybridize under high, moderate or typical stringency hybridization conditions to a nucleic acid sequence encoding a fragment of a native polypeptide of at least 10 contiguous amino acids, at least 12 contiguous amino acids, at least 15 contiguous amino acids, at least 20 contiguous amino acids, at least 30 contiguous amino acids, at least 40 contiguous amino acids, at least 50 contiguous amino acids, at least 75 contiguous amino acids, at least 100 contiguous amino acids, at least 125 contiguous amino acids, at least 150 contiguous amino acids, or 10 to 20, 20 to 50, 25 to 75, 25 to 100, 25 to 150, 50 to 75, 50 to 100, 75 to 100, 50 to 150, 75 to 150, 100 to 150, or 100 to 200 contiguous amino acids; or (f) a fragment of a native polypeptide. Derivatives also include a polypeptide that comprises the amino acid sequence of a naturally occurring mature form of a mammalian polypeptide and a heterologous signal peptide amino acid sequence. In addition, derivatives include polypeptides that have been chemically modified by, e.g., glycosylation, acetylation, pegylation, phosphorylation, amidation, derivitization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein moiety, etc. Further, derivatives include polypeptides comprising one or more non-classical amino acids. In one embodiment, a derivative is isolated. In specific embodiments, a derivative retains one or more functions of the native polypeptide from which it was derived.
- Percent identity can be determined using any method known to one of skill in the art. In a specific embodiment, the percent identity is determined using the “Best Fit” or “Gap” program of the Sequence Analysis Software Package (
Version 10; Genetics Computer Group, Inc., University of Wisconsin Biotechnology Center, Madison, Wis.). Information regarding hybridization conditions (e.g., high, moderate, and typical stringency conditions) have been described, see, e.g., U.S. Patent Application Publication No. US 2005/0048549 (e.g., paragraphs 72-73). - As used herein, the term “fragment” is the context of a fragment of a proteinaceous agent (e.g., a protein) refers to a fragment that is 8 or more contiguous amino acids, 10 or more contiguous amino acids, 15 or more contiguous amino acids, 20 or more contiguous amino acids, 25 or more contiguous amino acids, 50 or more contiguous amino acids, 75 or more contiguous amino acids, 100 or more contiguous amino acids, 150 or more contiguous amino acids, 200 or more contiguous amino acids, or in the range of between 10 to 300 contiguous amino acids, 10 to 200 contiguous amino acids, 10 to 250 contiguous amino acids, 10 to 150 contiguous amino acids, 10 to 100 contiguous amino acids, 10 to 50 contiguous amino acids, 50 to 100 contiguous amino acids, 50 to 150 contiguous amino acids, 50 to 200 contiguous amino acids, 50 to 250 contiguous amino acids, 50 to 300 contiguous amino acids, 25 to 50 contiguous amino acids, 25 to 75 contiguous amino acids, 25 to 100 contiguous amino acids, or 75 to 100 contiguous amino acids of a proteinaceous agent. In a specific embodiment, a fragment of a proteinaceous agent retains one or more functions of the proteinaceous agent—in other words, it is a functional fragment. For example, a fragment of a proteinaceous agent retains the ability to interact with another protein and/or to induce, enhance or activate one or more signal transduction pathways.
- As used herein, the term “functional fragment,” in the context of a proteinaceous agent, refers to a portion of a proteinaceous agent that retains one or more activities or functions of the proteinaceous agent. For example, a functional fragment of an inhibitory receptor may retain the ability to bind one or more of its ligands. A functional fragment of a ligand of a co-stimulatory receptor may retain the ability to bind to the receptor and/or induce, enhance or activate one or more signal transduction pathways mediated by the ligand binding to its co-stimulatory receptor.
- As used herein, the term “heterologous” refers an entity not found in nature to be associated with (e.g., encoded by and/or expressed by the genome of) a naturally occurring NDV.
- As used herein, the term “elderly human” refers to a human 65 years or older.
- As used herein, the term “human adult” refers to a human that is 18 years or older.
- As used herein, the term “human child” refers to a human that is 1 year to 18 years old.
- As used herein, the term “human toddler” refers to a human that is 1 year to 3 years old.
- As used herein, the term “human infant” refers to a newborn to 1 year old year human.
- In certain embodiments, the terms “highly fusogenic” and “increased fusogenic activity”, and the like, as used herein, refers to an increase in the ability of the NDV to form syncytia involving a large number of cells. In a specific embodiment, cells infected with an NDV described herein that is engineered to express a mutated F protein have an increased ability to form syncytia relative to cells infected with the parental virus from which the virus is derived, which parental virus has an unmutated F protein. In another specific embodiment, about 10% to about 25%, about 25% to about 50%, about 25% to about 75%, about 50% to about 75%, about 50% to about 95%, or about 75% to about 99% or about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% more cells infected with an NDV described herein that is engineered to express a mutated F protein form syncytia relative to the number of cells forming syncytia that are infected with the parental virus from the chimeric virus is derived which has an unmutated F protein. In certain embodiments, the syncytia are quantitated microscopically by counting the number of nuclei per syncytium after a certain period of time (e.g., about 8 hours to about 12 hours, about 12 hours to about 24 hours, about 24 hours to about 36 hours, or about 36 hours to about 48 hours).
- As used herein, the term “interferon antagonist” refers to an agent that reduces or inhibits the cellular interferon immune response. In one embodiment, an interferon antagonist is a proteinaceous agent that reduces or inhibits the cellular interferon immune response. In a specific embodiment, an interferon antagonist is a viral protein or polypeptide that reduces or inhibits the cellular interferon response.
- In a specific embodiment, an interferon antagonist is an agent that reduces or inhibits interferon expression and/or activity. In one embodiment, the interferon antagonist reduces or inhibits the expression and/or activity of type I IFN. In another embodiment, the interferon antagonist reduces or inhibits the expression and/or activity of type II IFN. In another embodiment, the interferon antagonist reduces or inhibits the expression and/or activity of type III IFN. In a specific embodiment, the interferon antagonist reduces or inhibits the expression and/or activity of either IFN-α, IFN-β or both. In another specific embodiment, the interferon antagonist reduces or inhibits the expression and/or activity of IFN-γ. In another embodiment, the interferon antagonist reduces or inhibits the expression and/or activity of one, two or all of IFN-α, IFN-β, and IFN-γ.
- In certain embodiments, the expression and/or activity of IFN-α, IFN-β and/or IFN-γ in an embryonated egg or cell is reduced approximately 1 to approximately 100 fold, approximately 5 to approximately 80 fold, approximately 20 to approximately 80 fold, approximately 1 to approximately 10 fold, approximately 1 to approximately 5 fold, approximately 40 to approximately 80 fold, or 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 fold by an interferon antagonist relative to the expression and/or activity of IFN-α, IFN-β, and/or IFN-γ in a control embryonated egg or a cell not expressing or not contacted with such an interferon antagonist as measured by the techniques described herein or known to one skilled in the art. In other embodiments, the expression and/or activity of IFN-α, IFN-β and/or IFN-γ in an embryonated egg or cell is reduced by at least 20% to 25%, at least 25% to 30%, at least 30% to 35%, at least 35% to 40%, at least 40% to 45%, at least 45% to 50%, at least 50% to 55%, at least 55% to 60%, at least 60% to 65%, at least 65% to 70%, at least 70% to 75%, at least 75% to 80%, at least 80% to 85%, at least 85% to 90%, at least 90% to 95%, at least 95% to 99% or by 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% by an interferon antagonist relative to the expression and/or activity of IFN-α, IFN-β, and/or IFN-γ in a control embryonated egg or a cell not expressing or not contacted with such an interferon antagonist as measured by the techniques described herein or known to one skilled in the art.
- As used herein, the phrases “IFN deficient systems” or “IFN-deficient substrates” refer to systems, e.g., cells, cell lines and animals, such as mice, chickens, turkeys, rabbits, rats, horses etc., which do not produce one, two or more types of IFN, or do not produce any type of IFN, or produce low levels of one, two or more types of IFN, or produce low levels of any IFN (i.e., a reduction in any IFN expression of 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, 80-90% or more when compared to IFN-competent systems under the same conditions), do not respond or respond less efficiently to one, two or more types of IFN, or do not respond to any type of IFN, have a delayed response to one, two or more types of IFN, and/or are deficient in the activity of antiviral genes induced by one, two or more types of IFN, or induced by any type of IFN.
- As used herein, the terms “immunospecifically binds,” “immunospecifically recognizes,” “specifically binds,” and “specifically recognizes” are analogous terms in the context of antibodies and refer to molecules that specifically bind to an antigen (e.g., epitope or immune complex) as understood by one skilled in the art. A molecule that specifically binds to an antigen may bind to other peptides or polypeptides with lower affinity as determined by, e.g., immunoassays (e.g., ELISA), surface plasmon resonance (e.g., BIAcore®), a KinEx assay (using, e.g., a KinExA 3000 instrument (Sapidyne Instruments, Boise, Id.)), or other assays known in the art. In a specific embodiment, molecules that specifically bind to an antigen bind to the antigen with a dissociation constant (i.e., Ka) that is at least 2 logs, 2.5 logs, 3 logs, 3.5 logs, 4 logs or greater than the Ka when the molecules bind to another antigen. In a another specific embodiment, molecules that specifically bind to an antigen do not cross react with other proteins.
- As used herein, the term “monoclonal antibody” is a term of the art and generally refers to an antibody obtained from a population of homogenous or substantially homogeneous antibodies, and each monoclonal antibody will typically recognize a single epitope (e.g., single conformation epitope) on the antigen.
- As used herein, the phrase “multiplicity of infection” or “MOI” is the average number of virus per infected cell. The MOI is determined by dividing the number of virus added (ml added×Pfu) by the number of cells added (ml added×cells/ml).
- As used herein, the term “native ligand” refers to any naturally occurring ligand that binds to a naturally occurring receptor. In a specific embodiment, the ligand is a mammalian ligand. In another specific embodiment, the ligand is a human ligand.
- As used herein, the term “native polypeptide(s)” in the context of proteins or polypeptides refers to any naturally occurring amino acid sequence, including immature or precursor and mature forms of a protein. In a specific embodiment, the native polypeptide is a human protein or polypeptide.
- As used herein, the term “native receptor” refers to any naturally occurring receptor that binds to a naturally occurring ligand. In a specific embodiment, the receptor is a mammalian receptor. In another specific embodiment, the receptor is a human receptor.
- As used herein, the terms “subject” or “patient” are used interchangeably. As used herein, the terms “subject” and “subjects” refers to an animal. In some embodiments, the subject is a mammal including a non-primate (e.g., a camel, donkey, zebra, cow, horse, horse, cat, dog, rat, and mouse) and a primate (e.g., a monkey, chimpanzee, and a human). In some embodiments, the subject is a non-human mammal. In certain embodiments, the subject is a pet (e.g., dog or cat) or farm animal (e.g., a horse, pig or cow). In other embodiments the subject is a human. In certain embodiments, the mammal (e.g., human) is 0 to 6 months old, 6 to 12 months old, 1 to 5 years old, 5 to 10 years old, 10 to 15 years old, 15 to 20 years old, 20 to 25 years old, 25 to 30 years old, 30 to 35 years old, 35 to 40 years old, 40 to 45 years old, 45 to 50 years old, 50 to 55 years old, 55 to 60 years old, 60 to 65 years old, 65 to 70 years old, 70 to 75 years old, 75 to 80 years old, 80 to 85 years old, 85 to 90 years old, 90 to 95 years old or 95 to 100 years old. In specific embodiments, the subject is an animal that is not avian.
- As used herein, the terms “treat” and “treating” in the context of the administration of a therapy refers to a treatment/therapy from which a subject receives a beneficial effect, such as the reduction, decrease, attenuation, diminishment, stabilization, remission, suppression, inhibition or arrest of the development or progression of cancer, or a symptom thereof. In certain embodiments, the treatment/therapy that a subject receives results in at least one or more of the following effects: (i) the reduction or amelioration of the severity of cancer and/or a symptom associated therewith; (ii) the reduction in the duration of a symptom associated with cancer; (iii) the prevention in the recurrence of a symptom associated with cancer; (iv) the regression of cancer and/or a symptom associated therewith; (v) the reduction in hospitalization of a subject; (vi) the reduction in hospitalization length; (vii) the increase in the survival of a subject; (viii) the inhibition of the progression of cancer and/or a symptom associated therewith; (ix) the enhancement or improvement the therapeutic effect of another therapy; (x) a reduction or elimination in the cancer cell population; (xi) a reduction in the growth of a tumor or neoplasm; (xii) a decrease in tumor size; (xiii) a reduction in the formation of a tumor; (xiv) eradication, removal, or control of primary, regional and/or metastatic cancer; (xv) a decrease in the number or size of metastases; (xvi) a reduction in mortality; (xvii) an increase in cancer-free survival rate of patients; (xviii) an increase in relapse-free survival; (xix) an increase in the number of patients in remission; (xx) a decrease in hospitalization rate; (xxi) the size of the tumor is maintained and does not increase in size or increases the size of the tumor by less 5% or 10% after administration of a therapy as measured by conventional methods available to one of skill in the art, such as MRI, X-ray, and CAT Scan; (xxii) the prevention of the development or onset of cancer and/or a symptom associated therewith; (xxiii) an increase in the length of remission in patients; (xxiv) the reduction in the number of symptoms associated with cancer; (xxv) an increase in symptom-free survival of cancer patients; and/or (xxvi) limitation of or reduction in metastasis. In some embodiments, the treatment/therapy that a subject receives does not cure cancer, but prevents the progression or worsening of the disease. In certain embodiments, the treatment/therapy that a subject receives does not prevent the onset/development of cancer, but may prevent the onset of cancer symptoms.
- As used herein, the term “in combination” in the context of the administration of (a) therapy(ies) to a subject, refers to the use of more than one therapy. The use of the term “in combination” does not restrict the order in which therapies are administered to a subject. A first therapy can be administered prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapy to a subject.
- As used herein, the terms “therapies” and “therapy” can refer to any protocol(s), method(s), and/or agent(s) that can be used in the treatment of cancer. In certain embodiments, the terms “therapies” and “therapy” refer to biological therapy, supportive therapy, hormonal therapy, chemotherapy, immunotherapy and/or other therapies useful in the treatment of cancer. In a specific embodiment, a therapy includes adjuvant therapy. For example, using a therapy in conjunction with a drug therapy, biological therapy, surgery, and/or supportive therapy. In certain embodiments, the term “therapy” refers to a chimeric NDV described herein. In other embodiments, the term “therapy” refers to an agent that is not a chimeric NDV.
-
FIG. 1 . NDV infection upregulates the expression of MHC I, MHC II, and ICAM-1 on the surface of in vitro infected B16-F10 cells (24 hours post-infection). -
FIGS. 2A-2E . Intratumoral NDV treatment leads to infiltration with macrophages, NK cells, CD8 and CD4 effector cells and decreases the frequency of Tregs. A) Overall study scheme. B) Total CD45+ infiltrates. C) Total immune cell infiltrates. D) Representative flow cytometry dot plots of relative CD4 FoxP3+ and FoxP3− subsets. E) Teff/Treg and CD8/Treg ratios. -
FIGS. 3A-3C . Therapy with NDV exhibits favorable effects on tumor microenvironment of distant tumors. A) Representative flow cytometry dot plots of relative CD4 FoxP3+ and FoxP3− subsets. B) Absolute numbers of CD4 effector, Treg, and CD8 cells per gram of tumor. C) Teff/Treg and CD8/Treg ratios. -
FIGS. 4A-4C . Lymphocytes infiltrating distant tumors upregulate activation, lytic, and proliferation markers. Representative expression plots on CD4 effector cells (top) and the corresponding percentages in the CD4 effector, CD8, Tregs (bottom) are shown for A) CD44, B) Granzyme B, and C) Ki-67. -
FIGS. 5A-5D . NDV Monotherapy delays the growth of distant tumors and provides some protection against tumor rechallenge. Bilateral flank tumors were established as described inFIG. 2A and the animals were treated and followed for survival. A) Growth of right flank (treated) tumors. B) Growth of left flank (non-treated) tumors. C) Overall survival. Numbers in boxes indicate percent of animals free of tumors. D) Survival in animals cured of B16-F10 melanoma by NDV re-challenged on day 75 with B16-F10 melanoma cells. Representative results of two different experiments with 10 mice per group. -
FIGS. 6A-6B . Tumor-infiltrating lymphocytes from both treated and non-treated tumors upregulate CTLA-4 in response to NDV therapy. A) Representative dot plots of CTLA-4 expression in CD8, CD4 effector, and Tregs in right (treated) tumors. B) Representative dot plots of CTLA-4 expression in CD8, CD4 effector, and Tregs in left (non-treated) tumors. -
FIG. 7A-7C . Combination therapy with NDV and CTLA-4 blockade enhances anti-tumor effect in the injected and distant tumors. Bilateral B16 flank tumors were established and the animals were treated as described inFIG. 2A with or without anti-CTLA-4 antibody 9H10. A) Growth of treated tumors. B) Growth of distant tumors. Numbers in boxes represent percentage of mice free of tumors. C) Long-term survival. Representative results of 2 different experiments with 10 mice per group. -
FIG. 8 . Combination therapy with NDV and anti-CTLA-4 is effective systemically against non-virus-permissive prostate TRAMP tumors. Right (day 12) and left (day 3) flank TRAMP tumors were established and the animals were treated with NDV as described inFIG. 2A with or without systemic anti-CTLA-4 antibody. Growth of left flank (non-injected) tumors is shown. Numbers in boxes indicate percent of animals free of tumors. -
FIG. 9A-9C . NDV infection upregulates expression of PD-L1 in B16-F10 tumors. A) Surface PD-L1 expression on B16-F10 cells infected with NDV for 24 hours. B) Surface PD-L1 expression on B16-F10 cells treated with UV-inactivated supernatant from infected B16-F10 cells. C) Upregulation of PD-L1 on the surface of tumor cells isolated from injected and distant tumors from the animals treated as inFIG. 2A (2 left panels-representative flow cytometry plots, right panel—calculated averages of 5 mice per group). -
FIGS. 10A-10F . Combination therapy with NDV and anti-PD-1 is effective systemically against B16 melanoma and results in increased T cell infiltration with upregulation of activation markers. A) Overall survival. Animals were treated as described inFIG. 2A with or without anti-PD-1 antibody. B) Absolute numbers of CD45, CD3, CD8, and CD4 effector cells in tumors. C) Relative percentage of regulatory T cells in tumor-infiltrating lymphocytes. D-E) Tumor-infiltrating lymphocytes from distant tumors were isolated and stained for expression of ICOS (D) and Granzyme B (E). F) Tumor infiltrating lymphocytes were re-stimulated with dendritic cells loaded with tumor lysates and assessed for expression of IFN gamma by intracellular cytokine staining. -
FIG. 11 . Combination therapy with NDV and CTLA-4 induces upregulation of ICOS and CD4 effector cells in distant tumors and tumor-draining lymph nodes (TDLN). -
FIGS. 12A-12D . Generation and in vitro evaluation of NDV-ICOSL virus. A) Viral genomic construct scheme. B) Expression of ICOSL on the surface of B16-F10 cells infected for 24 hours (representative histogram, left and average of 3 samples per group, right). C) Cytolytic activity of NDV in the infected B16-F10 cells determined by LDH assay. D) Replication of recombinant NDV in the B16-F10 cells. -
FIGS. 13A-13C . Combination therapy with NDV-mICOSL and anti-CTLA-4 protects mice from contralateral tumor challenge and results in long-term animal survival. Animals were challenged with a larger tumor dose and treated with NDV as described inFIG. 2A with or without systemic anti-CTLA-4 antibody. Growth of left flank (non-injected) tumors is shown. B) Long-term survival. Numbers in boxes indicate percent of animals protected from tumors. Pooled data of 3 different experiments of 5-10 mice per group. C) Mice treated with combination therapy develop vitiligo at the former tumor sites, but not systemically. -
FIG. 14A-14B . Combination therapy with NDV-mICOSL and anti-CTLA-4 protects mice from contralateral tumor challenge and results in long-term animal survival in the CT26 colon carcinoma model. Animals were challenged with a larger tumor dose and treated with NDV as described inFIG. 2A with or without systemic anti-CTLA-4 antibody. Growth of left flank (non-injected) tumors is shown. Numbers in boxes indicate percent of animals protected from tumors. B) Long-term survival. Representative experiment with 5-10 mice per group (A) and pooled data of 2 different experiments of 5-10 mice per group (B). -
FIGS. 15A-15C . NDV treatment leads to distant B16 tumor infiltration with macrophages, NK cells, CD8 and CD4 effector cells and decreases the frequency of Tregs. A) Total CD45+, CD3+, CD8+, CD4+ FoxP3− (Teff), and CD4+ FoxP3+ (Treg) infiltrates. B) Teff/Treg and CD8/Treg ratios. C) Total macrophage, NK, and NKT cell infiltrates. -
FIG. 16A-16B . Lymphocytes infiltrating distant B16 tumors upregulate activation, lytic, and proliferation markers. A) Representative Ki-67, Granzyme B (GrB) and ICOS expression plots. B) the corresponding percentages in the CD4 effector and CD8 cells. -
FIG. 17 . Tumor infiltrating lymphocytes from treated animals secrete IFN-gamma in response to stimulation with DC's loaded with B16-F10 lysates. Representative dot plots are shown. -
FIGS. 18A-18B . Animals cured by combination therapy are protected from further tumor challenge. A) B16-F10 melanoma,day 120 re-challenge with 1×105 cells. B) CT26 colon carcinoma, day 90 re-challenge with 1×106 cells. Representative results of two different experiments with 10 mice per group. -
FIG. 19A-19B . Recombinant ICOSL-F chimeric protein is efficiently expressed on surface. A) Schematic diagram of the chimeric protein. B) Expression of the chimeric ICOSL-Ftm fusion protein on the surface of transfected cells. - In one aspect, presented herein are chimeric Newcastle disease viruses (NDVs) engineered to express an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell. In a specific embodiment, presented herein are chimeric NDVs, comprising a packaged genome which encodes an agonist of a co-stimulatory signal of an immune cell, wherein the agonist is expressed. In a specific embodiment, presented herein are chimeric NDVs, comprising a packaged genome which encodes an antagonist of an inhibitory signal of an immune cell, wherein the antagonist is expressed.
- In another aspect, presented herein are methods for propagating the NDVs described herein (e.g., chimeric NDVs described herein). The NDVs described herein (e.g., chimeric NDVs described herein) can be propagated in any cell, subject, tissue, organ or animal susceptible to a NDV infection.
- In another aspect, presented herein are compositions comprising an NDV described herein (e.g., a chimeric NDV described herein). In a specific embodiment, presented herein are pharmaceutical compositions comprising an NDV described herein (e.g., a chimeric NDV described herein) and a pharmaceutically acceptable carrier. In another embodiment, presented herein are pharmaceutical compositions comprising cancer cells infected with an NDV described herein (e.g., a chimeric NDV described herein), and a pharmaceutically acceptable carrier. In another embodiment, presented herein are pharmaceutical compositions comprising protein concentrate from lysed NDV-infected cancer cells (e.g., chimeric-NDV infected cancer cells), and a pharmaceutically acceptable carrier.
- In another aspect, presented herein are methods for producing pharmaceutical compositions comprising an NDV described herein (e.g., a chimeric NDV described herein). In one embodiment, a method for producing a pharmaceutical composition comprises: (a) propagating an NDV described herein (e.g., a chimeric NDV described herein) in a cell line that is susceptible to an NDV infection; and (b) collecting the progeny virus, wherein the virus is grown to sufficient quantities and under sufficient conditions that the virus is free from contamination, such that the progeny virus is suitable for formulation into a pharmaceutical composition. In another embodiment, a method for producing a pharmaceutical composition comprises: (a) propagating an NDV described herein (e.g., a chimeric NDV described herein) in an embryonated egg; and (b) collecting the progeny virus, wherein the virus is grown to sufficient quantities and under sufficient conditions that the virus is free from contamination, such that the progeny virus is suitable for formulation into a pharmaceutical composition.
- In another aspect, presented herein are methods for treating cancer utilizing a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra) or a composition comprising such a chimeric NDV. In a specific embodiment, a method for treating cancer comprises infecting a cancer cell in a subject with a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra) or a composition thereof. In another embodiment, a method for treating cancer comprises administering to a subject in need thereof a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra) or a composition thereof. In specific embodiments, an effective amount of a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra) or a composition comprising an effective amount of a chimeric NDV described herein is administered to a subject to treat cancer. In specific embodiments, the chimeric NDV comprises a packaged genome, the genome comprising an agonist of a co-stimulatory signal of an immune cell (e.g., an agonist of a co-stimulatory receptor of an immune cell) and/or an antagonist of an inhibitory signal of an immune cell (e.g., an antagonist of an inhibitory receptor of an immune cell), wherein the agonist and/or antagonist are expressed by the NDV. In certain embodiments, the genome of the NDV also comprises a mutated F protein. In certain embodiments, two or more chimeric NDVs are administered to a subject to treat cancer.
- In another embodiment, a method for treating cancer comprises administering to a subject in need thereof cancer cells infected with a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra) or composition thereof. In specific embodiments, the cancer cells have been treated with gamma radiation prior to administration to the subject or incorporation into the composition. In another embodiment, a method for treating cancer comprises administering to a subject in need thereof a protein concentrate or plasma membrane fragments from cancer cells infected with a chimeric NDV (e.g., a chimeric NDV described in Section 5.2, infra) or a composition thereof. In specific embodiments, the chimeric NDV comprises a packaged genome, the genome comprising an agonist of a co-stimulatory signal of an immune cell (e.g., an agonist of a co-stimulatory receptor of an immune cell) and/or an antagonist of an inhibitory signal of an immune cell (e.g., an antagonist of an inhibitory receptor of an immune cell), wherein the agonist and/or antagonist are expressed by the NDV. In certain embodiments, the genome of the NDV also comprises a mutated F protein, which is expressed by the NDV.
- In another aspect, presented herein are methods for treating cancer utilizing an NDV described herein (e.g., a chimeric NDV such as described in Section 5.2, infra) or a composition comprising such the NDV in combination with one or more other therapies. In one embodiment, presented herein are methods for treating cancer comprising administering to a subject an NDV described herein (e.g., a chimeric NDV, such as described in Section 5.2, infra) and one or more other therapies. In another embodiment, presented herein are methods for treating cancer comprising administering to a subject an effective amount of an NDV described herein or a composition comprising an effective amount of an NDV described herein, and one or more other therapies. The NDV and one or more other therapies can be administered concurrently or sequentially to the subject. In certain embodiments, the NDV and one or more other therapies are administered in the same composition. In other embodiments, the NDV and one or more other therapies are administered in different compositions. The NDV and one or more other therapies can be administered by the same or different routes of administration to the subject.
- Any NDV type or strain may be used in a combination therapy disclosed herein, including, but not limited to, naturally-occurring strains, variants or mutants, mutagenized viruses, reassortants and/or genetically engineered viruses. In a specific embodiment, the NDV used in a combination with one or more other therapies is a naturally-occurring strain. In another embodiment, the NDV used in combination with one or more other therapies is a chimeric NDV. In a specific embodiment, the chimeric NDV comprises a packaged genome, the genome comprising a cytokine (e.g., IL-2, IL-7, IL-15, IL-17 or IL-21). In specific embodiments, the chimeric NDV comprises a packaged genome, the genome comprising a tumor antigen. In specific embodiments, the tumor antigen is expressed by cells infected with the chimeric NDV. In another specific embodiment, the chimeric NDV comprises a packaged genome, the genome comprising a pro-apoptotic molecule (e.g., Bax, Bak, Bad, BID, Bcl-xS, Bim, Noxa, Puma, AIF, FasL, and TRAIL) or an anti-apoptotic molecule (e.g., Bcl-2, Bcl-xL, Mcl-1, and XIAP). In specific embodiments, the pro-apoptotic molecule or anti-apoptotic molecule is expressed by cells infected with the chimeric NDV. In another specific embodiment, the chimeric NDV comprises a packaged genome, the genome comprising an agonist of a co-stimulatory signal of an immune cell (e.g., an agonist of a co-stimulatory receptor of an immune cell) and/or an antagonist of an inhibitory signal of an immune cell (e.g., an antagonist of an inhibitory receptor of an immune cell). In specific embodiments, the agonist and/or antagonist are expressed by cells infected with the chimeric NDV. In certain embodiments, the genome of the NDV also comprises a mutated F protein, a tumor antigen, a heterologous interferon antagonist, a pro-apoptotic molecule and/or an anti-apoptotic molecule. In certain embodiments, the one or more therapies used in combination with an NDV described herein is one or more other therapies described in Section 5.6.4, infra. In particular embodiments, the one or more therapies used in combination with an NDV described herein are an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell. See, e.g., Section 5.2.1, infra, for examples of agonists of a co-stimulatory signal of an immune cell and antagonists of an inhibitory signal of an immune cell. In a specific embodiment, the antagonist of an inhibitory signal of an immune cell is the anti-CTLA-4 antibody described in Section 6, infra. In another specific embodiment, the agonist of a co-stimulatory signal of an immune cell is the ICOS ligand described in Section 6, infra
- 5.1 Newcastle Disease Virus
- Any NDV type or strain may be used in a combination therapy disclosed herein, including, but not limited to, naturally-occurring strains, variants or mutants, mutagenized viruses, reassortants and/or genetically engineered viruses. In a specific embodiment, the NDV used in a combination therapy disclosed herein is a naturally-occurring strain. In certain embodiments, the NDV is a lytic strain. In other embodiments, the NDV used in a combination therapy disclosed herein is a non-lytic strain. In certain embodiments, the NDV used in a combination therapy disclosed herein is lentogenic strain. In some embodiments, the NDV is a mesogenic strain. In other embodiments, the NDV used in a combination therapy disclosed herein is a velogenic strain. Specific examples of NDV strains include, but are not limited to, the 73-T strain, NDV HUJ strain, Ulster strain, MTH-68 strain, Italien strain, Hickman strain, PV701 strain, Hitchner B1 strain (see, e.g., Genbank No. AF309418 or NC—002617), La Sota strain (see, e.g., Genbank No. AY845400), YG97 strain, MET95 strain, Roakin strain, and F48E9 strain. In a specific embodiment, the NDV used in a combination therapy disclosed herein that is the Hitchner B1 strain. In another specific embodiment, the NDV used in a combination therapy disclosed herein is a B1 strain as identified by Genbank No. AF309418 or NC—002617. In another specific embodiment, the NDV used in a combination therapy disclosed herein is the NDV identified by ATCC No. VR2239. In another specific embodiment, the NDV used in a combination therapy disclosed herein is the La Sota strain.
- In specific embodiments, the NDV used in a combination therapy disclosed herein is not pathogenic birds as assessed by a technique known to one of skill. In certain specific embodiments, the NDV used in a combination therapy is no pathogenic as assessed by intracranial injection of 1-day-old chicks with the virus, and disease development and death as scored for 8 days. In some embodiments, the NDV used in a combination therapy disclosed herein has an intracranial pathogenicity index of less than 0.7, less than 0.6, less than 0.5, less than 0.4, less than 0.3, less than 0.2 or less than 0.1. In certain embodiments, the NDV used in a combination therapy disclosed herein has an intracranial pathogenicity index is zero.
- In certain embodiments, the NDV used in a combination therapy disclosed herein is a mesogenic strain that has been genetically engineered so as not be a considered pathogenic in birds as techniques known to one skilled in the art. In certain embodiments, the NDV used in a combination therapy disclosed herein is a velogenic strain that has been genetically engineered so as not be a considered pathogenic in birds as techniques known to one skilled in the art.
- In certain embodiments, the NDV used in a combination therapy disclosed herein expresses a mutated F protein. In a specific embodiment, the NDV used in a combination therapy expresses a mutated F protein is highly fusogenic and able to form syncytia. In another specific embodiment, the mutated F protein is incorporated into the virion.
- In one embodiment, a genome of a NDV used in a combination therapy disclosed herein is engineered to express a mutated F protein with a mutated cleavage site. In a specific embodiment, the NDV used in a combination therapy disclosed herein is engineered to express a mutated F protein in which the cleavage site of the F protein is mutated to produce a polybasic amino acid sequence, which allows the protein to be cleaved by intracellular proteases, which makes the virus more effective in entering cells and forming syncytia. In another specific embodiment, the NDV used in a combination therapy disclosed herein is engineered to express a mutated F protein in which the cleavage site of the F protein is replaced with one containing one or two extra arginine residues, allowing the mutant cleavage site to be activated by ubiquitously expressed proteases of the furin family. Specific examples of NDVs that express such a mutated F protein include, but are not limited to, rNDV/F2aa and rNDV/F3aa. For a description of mutations introduced into a NDV F protein to produce a mutated F protein with a mutated cleavage site, see, e.g., Park et al. (2006) Engineered viral vaccine constructs with dual specificity: avian influenza and Newcastle disease. PNAS USA 103: 8203-2808, which is incorporated herein by reference in its entirety. In some embodiments, the NDV used in a combination therapy disclosed herein is engineered to express a mutated F protein with the amino acid mutation L289A. In specific embodiments the L289A mutated F protein possesses one, two or three arginine residues in the cleavage site. In certain embodiments, the mutated F protein is from a different type or strain of NDV than the backbone NDV. In some embodiments, the mutated F protein is in addition to the backbone NDV F protein. In specific embodiments, the mutated F protein replaces the backbone NDV F protein.
- In certain embodiments, the NDV used in a combination therapy disclosed herein is attenuated such that the NDV remains, at least partially, infectious and can replicate in vivo, but only generate low titers resulting in subclinical levels of infection that are non-pathogenic (see, e.g., Khattar et al., 2009, J. Virol. 83:7779-7782). In a specific embodiment, the NDV is attenuated by deletion of the V protein. Such attenuated NDVs may be especially suited for embodiments wherein the virus is administered to a subject in order to act as an immunogen, e.g., a live vaccine. The viruses may be attenuated by any method known in the art.
- In certain embodiments, the NDV used in a combination therapy disclosed herein does not comprise an NDV V protein encoding sequence. In other embodiments, the NDV used in a combination therapy disclosed herein expresses a mutated V protein. See, e.g., Elankumaran et al., 2010, J. Virol. 84(8): 3835-3844, which is incorporated herein by reference, for examples of mutated V proteins. In certain embodiments, a mesogenic or velogenic NDV strain used in a combination therapy disclosed herein expresses a mutated V protein, such as disclosed by Elankumaran et al., 2010, J. Virol. 84(8): 3835-3844.
- In certain embodiments, the NDV used in a combination therapy disclosed herein is an NDV disclosed in U.S. Pat. No. 7,442,379, U.S. Pat. No. 6,451,323, or U.S. Pat. No. 6,146,642, which is incorporated herein by reference in its entirety. In specific embodiments, the NDV used in a combination therapy disclosed herein is genetically engineered to encode and express a heterologous peptide or protein. In certain embodiments, the NDV used in a combination therapy disclosed herein is a chimeric NDV known to one of skill in the art, or a chimeric NDV disclosed herein (see, e.g., Section 5.2, infra). In some embodiments, the NDV used in a combination therapy disclosed herein is a chimeric NDV comprising a genome engineered to express a tumor antigen (see below for examples of tumor antigens). In certain embodiments, the NDV used in a combination therapy disclosed herein is a chimeric NDV comprising a genome engineered to express a heterologous interferon antagonist (see below for examples of heterologous interferon antagonists). In some embodiments, the NDV used in a combination therapy disclosed herein is a chimeric NDV disclosed in U.S. patent application publication No. 2012/0058141, which is incorporated herein by reference in its entirety. In certain embodiments, the NDV used in a combination therapy disclosed herein is a chimeric NDV disclosed in U.S. patent application publication No. 2012/0122185, which is incorporated herein by reference in its entirety. In some embodiments, the NDV used in a combination therapy disclosed herein is a chimeric NDV comprising a genome engineered to express a cytokine, such as, e.g., IL-2, IL-7, IL-9, IL-15, IL-17, IL-21, IL-22, IFN-gamma, GM-CSF, and TNF-alpha. In some embodiments, the NDV used in a combination therapy disclosed herein is a chimeric NDV comprising a genome engineered to express IL-2.
- 5.2 Chimeric Newcastle Disease Virus
- In one aspect, described herein are chimeric NDVs, comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or Natural Killer (NK) cell. In a specific embodiment, a genome of a NDV is engineered to express an agonist of a co-stimulatory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell. In another specific embodiment, a genome of a NDV is engineered to express an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell. In other words, the NDV serves as the “backbone” that is engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or Natural Killer (NK) cell. Specific examples of agonists of co-stimulatory signals as well as specific examples of antagonists of inhibitory signal are provided below.
- In another aspect, described herein are chimeric NDVs, comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a mutated F protein. In one embodiment, a genome of a NDV is engineered to express an agonist of a co-stimulatory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a mutated F protein. In another embodiment, a genome of a NDV is engineered to express an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a mutated F protein. In a specific embodiment, the mutated F protein is highly fusogenic and able to form syncytia. In another specific embodiment, the mutated F protein is incorporated into the virion. In certain embodiments, the genome of a NDV engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, comprises an NDV V protein encoding sequence.
- In one embodiment, a genome of a NDV is engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a mutated F protein with a mutated cleavage site. In a specific embodiment, the NDV is engineered to express a mutated F protein in which the cleavage site of the F protein is mutated to produce a polybasic amino acid sequence, which allows the protein to be cleaved by intracellular proteases, which makes the virus more effective in entering cells and forming syncytia. In another specific embodiment, the NDV is engineered to express a mutated F protein in which the cleavage site of the F protein is replaced with one containing one or two extra arginine residues, allowing the mutant cleavage site to be activated by ubiquitously expressed proteases of the furin family. Specific examples of NDVs that express such a mutated F protein include, but are not limited to, rNDV/F2aa and rNDV/F3aa. For a description of mutations introduced into a NDV F protein to produce a mutated F protein with a mutated cleavage site, see, e.g., Park et al. (2006) Engineered viral vaccine constructs with dual specificity: avian influenza and Newcastle disease. PNAS USA 103: 8203-2808, which is incorporated herein by reference in its entirety. In some embodiments, the chimeric NDV is engineered to express a mutated F protein with the amino acid mutation L289A. In certain embodiments, the mutated F protein is from a different type or strain of NDV than the backbone NDV. In specific embodiments the L289A mutated F protein possesses one, two or three arginine residues in the cleavage site. In some embodiments, the mutated F protein is in addition to the backbone NDV F protein. In specific embodiments, the mutated F protein replaces the backbone NDV F protein. In specific embodiments, the mutated F protein is incorporated into the virion.
- In some embodiments, the genome of a NDV engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, comprises a mutated NDV V protein encoding sequence, such as disclosed by Elankumaran et al., 2010, J. Virol. 84(8): 3835-3844. In other embodiments, the genome of a NDV engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell does not comprise an NDV V protein encoding sequence. In certain embodiments, parental backbone of the chimeric NDV is a mesogenic or velogenic NDV strain that is engineered to express a mutated V protein, such as disclosed by Elankumaran et al., 2010, J. Virol. 84(8): 3835-3844.
- In another aspect, described herein are chimeric NDVs, comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a cytokine. In a specific embodiment, a genome of a NDV is engineered to express an agonist of a co-stimulatory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a cytokine. In a specific embodiment, a genome of a NDV is engineered to express an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a cytokine Specific examples of cytokines include, but are not limited to, interleukin (IL)-2, IL-7, IL-9, IL-15, IL-17, IL-21, IL-22, interferon (IFN) gamma, GM-CSF, and tumor necrosis factor (TNF)-alpha.
- In another aspect, described herein are chimeric NDVs, comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, a mutated F protein, and a cytokine (e.g., IL-2, IL-7, IL-9, IL-15, IL-17, IL-21, IL-22, IFN-gamma, GM-CSF, and TNF-alpha). In a specific embodiment, the mutated F protein are highly fusogenic. In a specific embodiment, the mutated F protein has a mutant cleavage site (such as described herein). In some embodiments, the mutated F protein comprises the amino acid mutation L289A. In some embodiments, the chimeric NDV is engineered to express a mutated F protein with the amino acid mutation L289A. In certain embodiments, the mutated F protein is from a different type or strain of NDV than the backbone NDV. In specific embodiments the L289A mutated F protein possesses one, two or three arginine residues in the cleavage site. In some embodiments, the mutated F protein is in addition to the backbone NDV F protein. In specific embodiments, the mutated F protein replaces the backbone NDV F protein. In specific embodiments, the mutated F protein is incorporated into the virion.
- In a specific embodiment, described herein are chimeric NDVs, comprising a genome engineered to express (i) an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, and (ii) a tumor antigen. In a specific embodiment, a genome of a NDV is engineered to express an agonist of a co-stimulatory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a tumor antigen. In a specific embodiment, a genome of a NDV is engineered to express an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a tumor antigen.
- Tumor antigens include tumor-associated antigens and tumor-specific antigens. Specific examples of tumor antigens include, but are not limited to, MAGE-1, MAGE-3, BAGE, GAGE-1, GAGE-2, N-acetylglucosaminyltransferase-V, p-15, gp100, MART-1/MelanA, TRP-1 (gp75), Tyrosinase, cyclin-
dependent kinase 4, β-catenin, MUM-1, CDK4, HER-2/neu, human papillomavirus-E6, human papillomavirus E7, CD20, carcinoembryonic antigen (CEA), epidermal growth factor receptor, MUC-1, caspase-8, CD5, mucin-1, Lewisx, CA-125, p185HER2, IL-2R, Fap-α, tenascin, antigens associated with a metalloproteinase, and CAMPATH-1. Other examples include, but are not limited to, KS 1/4 pan-carcinoma antigen, ovarian carcinoma antigen (CA125), prostatic acid phosphate, prostate specific antigen, melanoma-associated antigen p97, melanoma antigen gp75, high molecular weight melanoma antigen (HMW-MAA), prostate specific membrane antigen, CEA, polymorphic epithelial mucin antigen, milk fat globule antigen, colorectal tumor-associated antigens (such as: CEA, TAG-72, CO17-1A, GICA 19-9, CTA-1 and LEA), Burkitt's lymphoma antigen-38.13, CD19, B-lymphoma antigen-CD20, CD33, melanoma specific antigens (such as ganglioside GD2, ganglioside GD3, ganglioside GM2, ganglioside GM3), tumor-specific transplantation type of cell-surface antigen (TSTA) (such as virally-induced tumor antigens including T-antigen DNA tumor viruses and Envelope antigens of RNA tumor viruses), oncofetal antigen-alpha-fetoprotein such as CEA of colon, bladder tumor oncofetal antigen, differentiation antigen (such as human lung carcinoma antigen L6 and L20), antigens of fibrosarcoma, leukemia T cell antigen-Gp37, neoglycoprotein, sphingolipids, breast cancer antigens (such as EGFR (Epidermal growth factor receptor), HER2 antigen (p185.sup.HER2) and HER2 neu epitope), polymorphic epithelial mucin (PEM), malignant human lymphocyte antigen-APO-1, differentiation antigen (such as I antigen found in fetal erythrocytes, primary endoderm, I antigen found in adult erythrocytes, preimplantation embryos, I(Ma) found in gastric adenocarcinomas, M18, M39 found in breast epithelium, SSEA-1 found in myeloid cells, VEP8, VEP9, Myl, VIM-D5, D.sub.156-22 found in colorectal cancer, TRA-1-85 (blood group H), C14 found in colonic adenocarcinoma, F3 found in lung adenocarcinoma, AH6 found in gastric cancer, Y hapten, Le.sup.y found in embryonal carcinoma cells, TL5 (blood group A), EGF receptor found in A431 cells, E1 series (blood group B) found in pancreatic cancer, FC10.2 found in embryonal carcinoma cells, gastric adenocarcinoma antigen, CO-514 (blood group Lea) found in Adenocarcinoma, NS-10 found in adenocarcinomas, CO-43 (blood group Leb), G49 found in EGF receptor of A431 cells, MH2 (blood group ALeb/Ley) found in colonic adenocarcinoma, 19.9 found in colon cancer, gastric cancer mucins, T5A7 found in myeloid cells, R24 found in melanoma, 4.2, GD3, D1.1, OFA-1, GM2, OFA-2, GD2, and M1:22:25:8 found in embryonal carcinoma cells, and SSEA-3 and SSEA-4 found in 4 to 8-cell stage embryos), T cell receptor derived peptide from a Cutaneous T cell Lymphoma, C-reactive protein (CRP), cancer antigen-50 (CA-50), cancer antigen 15-3 (CA15-3) associated with breast cancer, cancer antigen-19 (CA-19) and cancer antigen-242 associated with gastrointestinal cancers, carcinoma associated antigen (CAA), chromogranin A, epithelial mucin antigen (MC5), human epithelium specific antigen (E1A), Lewis(a)antigen, melanoma antigen, melanoma associated antigens 100, 25, and 150, mucin-like carcinoma-associated antigen, multidrug resistance related protein (MRPm6), multidrug resistance related protein (MRP41), Neu oncogene protein (C-erbB-2), neuron specific enolase (NSE), P-glycoprotein (mdr1 gene product), multidrug-resistance-related antigen, p170, multidrug-resistance-related antigen, prostate specific antigen (PSA), CD56, and NCAM. - In another aspect, described herein are chimeric NDVs, comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, a mutated F protein, and a tumor antigen. In a specific embodiment, the mutated F protein are highly fusogenic. In a specific embodiment, the mutated F protein has a mutant cleavage site (such as described herein). In some embodiments, the mutated F protein comprises the amino acid mutation L289A. In some embodiments, the chimeric NDV is engineered to express a mutated F protein with the amino acid mutation L289A. In certain embodiments, the mutated F protein is from a different type or strain of NDV than the backbone NDV. In specific embodiments the L289A mutated F protein possesses one, two or three arginine residues in the cleavage site. In some embodiments, the mutated F protein is in addition to the backbone NDV F protein. In specific embodiments, the mutated F protein replaces the backbone NDV F protein. In specific embodiments, the mutated F protein is incorporated into the virion.
- In another specific embodiment, described herein are chimeric NDVs, comprising a genome engineered to express (i) an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, and (ii) a heterologous interferon antagonist. In a specific embodiment, a genome of a NDV is engineered to express an agonist of a co-stimulatory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a heterologous interferon antagonist. In a specific embodiment, a genome of a NDV is engineered to express an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a heterologous interferon antagonist. See, e.g., U.S. patent application publication No. 2012-0058141, which is incorporated herein by reference, for examples of chimeric NDV engineered to express heterologous interferon antagonists.
- Interferon antagonists may be identified using any technique known to one of skill in the art, including, e.g., the techniques described in U.S. Pat. Nos. 6,635,416; 7,060,430; and 7,442,527; which are incorporated herein by reference in their entirety. In a specific embodiment, the heterologous interferon antagonist is a viral protein. Such viral proteins may be obtained or derived from any virus and the virus may infect any species (e.g., the virus may infect humans or non-human mammals). Exemplary heterologous interferon antagonists include, without limitation, Nipah virus W protein, Nipah V protein, Ebola virus VP35 protein, vaccinia virus E3L protein, influenza virus NS1 protein, respiratory syncytial virus (RSV) NS2 protein, herpes simplex virus (HSV)
type 1 ICP34.5 protein, Hepatitis C virus NS3-4 protease, dominant-negative cellular proteins that block the induction or response to innate immunity (e.g., STAT1, MyD88, IKK and TBK), and cellular regulators of the innate immune response (e.g., SOCS proteins, PIAS proteins, CYLD proteins, IkB protein, AtgS protein, Pin1 protein, IRAK-M protein, and UBP43). See, e.g., U.S. patent application publication No. 2012-0058141, which is incorporated herein by reference in its entirety, for additional information regarding heterologous interferon antagonist. - In another aspect, described herein are chimeric NDVs, comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, a mutated F protein, and a heterologous interferon antagonist. In a specific embodiment, the mutated F protein are highly fusogenic. In a specific embodiment, the mutated F protein has a mutant cleavage site (such as described herein). In some embodiments, the mutated F protein comprises the amino acid mutation L289A. In some embodiments, the chimeric NDV is engineered to express a mutated F protein with the amino acid mutation L289A. In certain embodiments, the mutated F protein is from a different type or strain of NDV than the backbone NDV. In specific embodiments the L289A mutated F protein possesses one, two or three arginine residues in the cleavage site. In some embodiments, the mutated F protein is in addition to the backbone NDV F protein. In specific embodiments, the mutated F protein replaces the backbone NDV F protein. In specific embodiments, the mutated F protein is incorporated into the virion.
- In another aspect, described herein are chimeric NDVs, comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a pro-apoptotic molecule. In a specific embodiment, a genome of a NDV is engineered to express an agonist of a co-stimulatory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a pro-apoptotic molecule. In a specific embodiment, a genome of a NDV is engineered to express an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and a pro-apoptotic molecule. Specific examples of pro-apoptotic molecules include, but are not limited to, Bax, Bak, Bad, BID, Bcl-xS, Bim, Noxa, Puma, AIF, FasL, and TRAIL.
- In another aspect, described herein are chimeric NDVs, comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, a mutated F protein, and a pro-apoptotic molecule. In a specific embodiment, the mutated F protein are highly fusogenic. In a specific embodiment, the mutated F protein has a mutant cleavage site (such as described herein). In some embodiments, the mutated F protein comprises the amino acid mutation L289A. In some embodiments, the chimeric NDV is engineered to express a mutated F protein with the amino acid mutation L289A. In certain embodiments, the mutated F protein is from a different type or strain of NDV than the backbone NDV. In specific embodiments the L289A mutated F protein possesses one, two or three arginine residues in the cleavage site. In some embodiments, the mutated F protein is in addition to the backbone NDV F protein. In specific embodiments, the mutated F protein replaces the backbone NDV F protein. In specific embodiments, the mutated F protein is incorporated into the virion.
- In another aspect, described herein are chimeric NDVs, comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and an anti-apoptotic molecule. In a specific embodiment, a genome of a NDV is engineered to express an agonist of a co-stimulatory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and an anti-apoptotic molecule. In a specific embodiment, a genome of a NDV is engineered to express an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and an anti-apoptotic molecule. Specific examples of anti-apoptotic molecules include, but are not limited to, Bcl-2, Bcl-xL, Mcl-1, and XIAP.
- In another aspect, described herein are chimeric NDVs, comprising a genome engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, a mutated F protein, and an anti-apoptotic molecule. In a specific embodiment, the mutated F protein are highly fusogenic. In a specific embodiment, the mutated F protein has a mutant cleavage site (such as described herein). In some embodiments, the mutated F protein comprises the amino acid mutation L289A. In some embodiments, the chimeric NDV is engineered to express a mutated F protein with the amino acid mutation L289A. In certain embodiments, the mutated F protein is from a different type or strain of NDV than the backbone NDV. In specific embodiments the L289A mutated F protein possesses one, two or three arginine residues in the cleavage site. In some embodiments, the mutated F protein is in addition to the backbone NDV F protein. In specific embodiments, the mutated F protein replaces the backbone NDV F protein. In specific embodiments, the mutated F protein is incorporated into the virion.
- Any NDV type or strain may be used as a backbone that is engineered to express an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and in certain embodiments, engineered to express a cytokine, tumor antigen, heterologous interferon antagonist and/or mutated F protein, including, but not limited to, naturally-occurring strains, variants or mutants, mutagenized viruses, reassortants and/or genetically engineered viruses. In a specific embodiment, the NDV used in a combination therapy disclosed herein is a naturally-occurring strain. In certain embodiments, the NDV that serves as the backbone for genetic engineering is a lytic strain. In other embodiments, the NDV that serves as the backbone for genetic engineering is a non-lytic strain. In certain embodiments, the NDV that serves as the backbone for genetic engineering is lentogenic strain. In some embodiments, the NDV that serves as the backbone for genetic engineering is mesogenic strain. In other embodiments, the NDV that serves as the backbone for genetic engineering is a velogenic strain. Specific examples of NDV strains include, but are not limited to, the 73-T strain, NDV HUJ strain, Ulster strain, MTH-68 strain, Italien strain, Hickman strain, PV701 strain, Hitchner B1 strain, La Sota strain (see, e.g., Genbank No. AY845400), YG97 strain, MET95 strain, Roakin strain, and F48E9 strain. In a specific embodiment, the NDV that serves as the backbone for genetic engineering is the Hitchner B1 strain. In another specific embodiment, the NDV that serves as the backbone for genetic engineering is a B1 strain as identified by Genbank No. AF309418 or NC—002617. In another specific embodiment, the NDV that serves as the backbone for genetic engineering is the NDV identified by ATCC No. VR2239. In another specific embodiment, the NDV that serves as the backbone for genetic engineering is the La Sota strain.
- In certain embodiments, attenuation, or further attenuation, of the chimeric NDV is desired such that the chimeric NDV remains, at least partially, infectious and can replicate in vivo, but only generate low titers resulting in subclinical levels of infection that are non-pathogenic (see, e.g., Khattar et al., 2009, J. Virol. 83:7779-7782). In a specific embodiment, the NDV is attenuated by deletion of the V protein. Such attenuated chimeric NDVs may be especially suited for embodiments wherein the virus is administered to a subject in order to act as an immunogen, e.g., a live vaccine. The viruses may be attenuated by any method known in the art.
- In specific embodiments, in addition to expressing an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and in certain embodiments, a mutated F protein and a cytokine, a chimeric NDV is engineered to express a suicide gene (e.g., thymidine kinase) or another molecule that inhibits NDV replication or function (a gene that makes NDV sensitive to an antibiotic or an anti-viral agent). In some embodiments, in addition to expressing an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte or NK cell, and in certain embodiments, a mutated F protein and a cytokine, a chimeric NDV is engineered to encode tissue-specific microRNA (miRNA) target sites (e.g., sites targeted by miR-21, miR-184, miR-133a/133b, miR-137, and/or miR-193a microRNAs).
- In certain embodiments, the tropism of the chimeric NDV is altered. In a specific embodiment, the tropism of the virus is altered by modification of the F protein cleavage site to be recognized by tissue-specific or tumor-specific proteases such as matrix metalloproteases (MMP) and urokinase. In other embodiments, tropism of the virus is altered by introduction of tissue-specific miRNA target sites. In certain embodiments NDV FIN protein is mutated to recognize tumor-specific receptor.
- In embodiments herein, the agonist of a co-stimulatory signal and/or the antagonist of an inhibitory signal of an immune cell may be inserted into the genome of the backbone NDV between two transcription units. In a specific embodiment, the agonist of a co-stimulatory signal and/or the antagonist of an inhibitory signal of an immune cell is inserted into the genome of the backbone NDV between the M and P transcription units or between the HN and L transcription units. In accordance with other embodiments herein, the cytokine, and/or mutated F protein are inserted into the genome of the backbone NDV between two or more transcription units (e.g., between the M and P transcription units or between the FIN and L transcription units).
- 5.2.1. Immune Cell Stimulatory Agents
- The chimeric NDVs described herein may be engineered to express any agonist of a co-stimulatory signal and/or any antagonist of an inhibitory signal of an immune cell, such as, e.g., a T-lymphocyte, NK cell or antigen-presenting cell (e.g., a dendritic cell or macrophage), known to one of skill in the art. In specific embodiments, the agonist and/or antagonist is an agonist of a human co-stimulatory signal of an immune cell and/or antagonist of a human inhibitory signal of an immune cell. In certain embodiments, the agonist of a co-stimulatory signal is an agonist of a co-stimulatory molecule (e.g., co-stimulatory receptor) found on immune cells, such as, e.g., T-lymphocytes (e.g., CD4+ or CD8+ T-lymphocytes), NK cells and/or antigen-presenting cells (e.g., dendritic cells or macrophages). Specific examples of co-stimulatory molecules include glucocorticoid-induced tumor necrosis factor receptor (GITR), Inducible T-cell costimulator (ICOS or CD278), OX40 (CD134), CD27, CD28, 4-1BB (CD137), CD40, lymphotoxin alpha (LT alpha), and LIGHT (lymphotoxin-like, exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T lymphocytes). In specific embodiments, the agonist is an agonist of a human co-stimulatory receptor of an immune cell. In certain embodiments, the agonist of a co-stimulatory receptor is not an agonist of ICOS. In some embodiments, the antagonist is an antagonist of an inhibitory molecule (e.g., inhibitory receptor) found on immune cells, such as, e.g., T-lymphocytes (e.g., CD4+ or CD8+ T-lymphocytes), NK cells and/or antigen-presenting cells (e.g., dendritic cells or macrophages). Specific examples of inhibitory molecules include cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4 or CD52), programmed cell death protein 1 (PD1 or CD279), B and T-lymphocyte attenuator (BTLA), killer cell immunoglobulin-like receptor (KIR), lymphocyte activation gene 3 (LAG3), T-cell membrane protein 3 (TIM3), CD160, and adenosine A2a receptor (A2aR). In specific embodiments, the antagonist is an antagonist of a human inhibitory receptor of an immune cell.
- In a specific embodiment, the agonist of a co-stimulatory receptor is an antibody or antigen-binding fragment thereof that specifically binds to the co-stimulatory receptor. Specific examples of co-stimulatory receptors include GITR, ICOS, OX40, CD27, CD28, 4-1BB, or CD40. In certain specific embodiments, the antibody is a monoclonal antibody. In other specific embodiments, the antibody is an sc-Fv. In a specific embodiment the antibody is a bispecific antibody that binds to two receptors on an immune cell. In other embodiments, the bispecific antibody binds to a receptor on an immune cell and to another receptor on a cancer cell. In specific embodiments, the antibody is a human or humanized antibody. In other embodiments the ligand or an antibody is a chimeric protein with NDV F protein or NDV FIN protein. See, e.g., U.S. patent application Publication No. 2012/0122185, which is incorporated herein by reference for a description regarding generation of chimeric F or chimeric FIN proteins. In a specific embodiment, the chimeric protein is the chimeric F protein described in Section 6, infra. The techniques described below for generating the chimeric ICOSL-F protein can be used to generate other chimeric F proteins or chimeric FIN proteins.
- In another embodiment, the agonist of a co-stimulatory receptor is a ligand of the co-stimulatory receptor. In certain embodiments, the ligand is fragment of a native ligand. Specific examples of native ligands include B7RP1, CD137L, OX40L, CD70, herpes virus entry mediator (HVEM), CD80, and CD86. The nucleotide sequences encoding native ligands as well as the amino acid sequences of native ligands are known in the art. For example, the nucleotide and amino acid sequences of B7RP1 (GenBank human: NM—015259.4, NP—056074.1 murine: NM—015790.3, NP—056605.1), CD137 L (GenBank human: NM—003811.3, NP—003802.1, murine: NM—009404.3, NP—033430.1), OX40 L (GenBank human: NM—003326.3, NP—003317.1, murine: NM—009452.2, NP—033478.1), CD70 (GenBank human: NM—001252.3, NP—001243.1, murine: NM—011617.2, AAD00274.1), CD80 (GenBank human: NM—005191.3, NP—005182.1, murine: NM—009855.2. NP—033985.3), and CD86 (GenBank human: NM—005191.3, CAG46642.1, murine: NM—019388.3, NP—062261.3) can be found in GenBank. In other embodiments, the ligand is a derivative of a native ligand. In some embodiments, the ligand is a fusion protein comprising at least a portion of the native ligand or a derivative of the native ligand that specifically binds to the co-stimulatory receptor, and a heterologous amino acid sequence. In specific embodiments, the fusion protein comprises at least a portion of the native ligand or a derivative of the native ligand that specifically binds to the co-stimulatory receptor, and the Fc portion of an immunoglobulin or a fragment thereof. An example of a ligand fusion protein is a 4-1BB ligand fused to Fc portion of immunoglobulin (described by Meseck M et al., J Immunother. 2011 34:175-82).
- In another embodiment, the antagonist of an inhibitory receptor is an antibody (or an antigen-binding fragment) or a soluble receptor that specifically binds to the native ligand for the inhibitory receptor and blocks the native ligand from binding to the inhibitory receptor and transducing an inhibitory signal(s). Specific examples of native ligands for inhibitory receptors include PDL-1, PDL-2, B7-H3, B7-H4, HVEM, Gal9 and adenosine. Specific examples of inhibitory receptors that bind to a native ligand include CTLA-4, PD-1, BTLA, KIR, LAG3, TIM3, and A2aR.
- In specific embodiments, the antagonist of an inhibitory receptor is a soluble receptor that specifically binds to the native ligand for the inhibitory receptor and blocks the native ligand from binding to the inhibitory receptor and transducing an inhibitory signal(s). In certain embodiments, the soluble receptor is a fragment of a native inhibitory receptor or a fragment of a derivative of a native inhibitory receptor that specifically binds to native ligand (e.g., the extracellular domain of a native inhibitory receptor or a derivative of an inhibitory receptor). In some embodiments, the soluble receptor is a fusion protein comprising at least a portion of the native inhibitory receptor or a derivative of the native inhibitory receptor (e.g., the extracellular domain of the native inhibitory receptor or a derivative of the native inhibitory receptor), and a heterologous amino acid sequence. In specific embodiments, the fusion protein comprises at least a portion of the native inhibitory receptor or a derivative of the native inhibitory receptor, and the Fc portion of an immunoglobulin or a fragment thereof. An example of a soluble receptor fusion protein is a LAG3-Ig fusion protein (described by Huard B et al., Eur J. Immunol. 1995 25:2718-21).
- In specific embodiments, the antagonist of an inhibitory receptor is an antibody (or an antigen-binding fragment) that specifically binds to the native ligand for the inhibitory receptor and blocks the native ligand from binding to the inhibitory receptor and transducing an inhibitory signal(s). In certain specific embodiments, the antibody is a monoclonal antibody. In other specific embodiments, the antibody is an scFv. In particular embodiments, the antibody is a human or humanized antibody. A specific example of an antibody to inhibitory ligand is anti-PD-L1 antibody (Iwai Y, et al. PNAS 2002; 99:12293-12297).
- In another embodiment, the antagonist of an inhibitory receptor is an antibody (or an antigen-binding fragment) or ligand that binds to the inhibitory receptor, but does not transduce an inhibitory signal(s). Specific examples of inhibitory receptors include CTLA-4, PD1, BTLA, KIR, LAG3, TIM3, and A2aR. In certain specific embodiments, the antibody is a monoclonal antibody. In other specific embodiments, the antibody is an scFv. In particular embodiments, the antibody is a human or humanized antibody. A specific example of an antibody to inhibitory receptor is anti-CTLA-4 antibody (Leach D R, et al. Science 1996; 271: 1734-1736). Another example of an antibody to inhibitory receptor is anti-PD-1 antibody (Topalian S L, NEJM 2012; 28:3167-75).
- In certain embodiments, a chimeric NDV described herein is engineered to an antagonist of CTLA-4, such as, e.g., Ipilimumab or Tremelimumab. In certain embodiments, a chimeric NDV described herein is engineered to an antagonist of PD1, such as, e.g., MDX-1106 (BMS-936558), MK3475, CT-011, AMP-224, or MDX-1105. In certain embodiments, a chimeric NDV described herein is engineered to express an antagonist of LAG3, such as, e.g., IMP321. In certain embodiments, a chimeric NDV described herein is engineered to express an antibody (e.g., a monoclonal antibody or an antigen-binding fragment thereof, or scFv) that binds to B7-H3, such as, e.g., MGA271. In specific embodiments, a chimeric NDV described herein is engineered to express an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell described in Section 6, infra. In specific embodiments, NDV described herein is engineered to express anti-CD28 scvFv, ICOSL, CD40L, OX40L, CD137L, GITRL, and/or CD70.
- In certain embodiments, an agonist of a co-stimulatory signal of an immune cell induces (e.g., selectively) induces one or more of the signal transduction pathways induced by the binding of a co-stimulatory receptor to its ligand. In specific embodiments, an agonist of a co-stimulatory receptor induces one or more of the signal transduction pathways induced by the binding of the co-stimulatory receptor to one or more of its ligands by at least 25%, 30%, 40%, 50%, 60%, 75%, 80%, 85%, 90%, 95%, 98% or 99%, or in the range of between 25% to 50%, 25% to 75%, 50% to 75%, 50% to 95%, 75% to 95%, or 75% to 100% relative to the one or more signal transduction pathways induced by the binding of the co-stimulatory receptor to one or more of its ligands in the absence of the agonist. In specific embodiments, an agonist of a co-stimulatory receptor: (i) induces one or more of the signal transduction pathways induced by the binding of the co-stimulatory receptor to one particular ligand by at least 25%, 30%, 40%, 50%, 60%, 75%, 80%, 85%, 90%, 95%, 98% or 99%, or in the range of between 25% to 50%, 25% to 75%, 50% to 75%, 50% to 95%, 75% to 95%, or 75% to 100% relative to the one or more signal transduction pathways induced by the binding of the co-stimulatory receptor to the particular ligand in the absence of the agonist; and (ii) does not induce, or induces one or more of the signal transduction pathways induced by the binding of the co-stimulatory receptor to one or more other ligands by less than 20%, 15%, 10%, 5%, or 2%, or in the range of between 2% to 5%, 2% to 10%, 5% to 10%, 5% to 15%, 5% to 20%, 10% to 15%, or 15% to 20% relative to the one or more signal transduction pathways induced by the binding of the co-stimulatory receptor to such one or more other ligands in the absence of the agonist.
- In certain embodiments, an agonist of a co-stimulatory signal of an immune cell activates or enhances (e.g., selectively activates or enhances) one or more of the signal transduction pathways induced by the binding of a co-stimulatory receptor to its ligand. In specific embodiments, an agonist of a co-stimulatory receptor activates or enhances one or more of the signal transduction pathways induced by the binding of the co-stimulatory receptor to one or more of its ligands by at least 25%, 30%, 40%, 50%, 60%, 75%, 80%, 85%, 90%, 95%, 98% or 99%, or in the range of between 25% to 50%, 25% to 75%, 50% to 75%, 50% to 95%, 75% to 95%, or 75% to 100% relative to the one or more signal transduction pathways induced by the binding of co-stimulatory receptor to one or more of its ligands in the absence of the agonist. In specific embodiments, an agonist of a co-stimulatory receptor: (i) an agonist of a co-stimulatory signal activates or enhances one or more of the signal transduction pathways induced by the binding of the co-stimulatory receptor to one particular ligand by at least 25%, 30%, 40%, 50%, 60%, 75%, 80%, 85%, 90%, 95%, 98% or 99%, or in the range of between 25% to 50%, 25% to 75%, 50% to 75%, 50% to 95%, 75% to 95%, or 75% to 100% relative to the one or more signal transduction pathways induced by the binding of the co-stimulatory receptor to the particular ligand in the absence of the agonist; and (ii) does not activate or enhance, or activates or enhances one or more of the signal transduction pathways induced by the binding of the co-stimulatory receptor to one or more other ligands by less than 20%, 15%, 10%, 5%, or 2%, or in the range of between 2% to 5%, 2% to 10%, 5% to 10%, 5% to 15%, 5% to 20%, 10% to 15%, or 15% to 20% relative to the one or more signal transduction pathways induced by the binding of the co-stimulatory receptor to such one or more other ligands in the absence of the agonist.
- In some embodiments, an antagonist of an inhibitory signal of an immune cell (e.g., selectively) inhibits or reduces one or more of the signal transduction pathways induced by the binding of an inhibitory receptor to its ligand. In specific embodiments, an antagonist of an inhibitory receptor inhibits or reduces one or more of the signal transduction pathways induced by the binding of the inhibitory receptor to one or more of its ligands by at least 25%, 30%, 40%, 50%, 60%, 75%, 80%, 85%, 90%, 95%, 98% or 99%, or in the range of between 25% to 50%, 25% to 75%, 50% to 75%, 50% to 95%, 75% to 95%, or 75% to 100% relative to the one or more signal transduction pathways induced by the binding of the inhibitory receptor to one or more of its ligands in the absence of the antagonist. In specific embodiments, an antagonist of an inhibitory receptor: (i) inhibits or reduces one or more of the signal transduction pathways induced by the binding of the inhibitory receptor to one particular ligand by at least 25%, 30%, 40%, 50%, 60%, 75%, 80%, 85%, 90%, 95%, 98% or 99%, or in the range of between 25% to 50%, 25% to 75%, 50% to 75%, 50% to 95%, 75% to 95%, or 75% to 100% relative to the one or more signal transduction pathways induced by the binding of the inhibitory receptor to the one particular ligand in the absence of the antagonist; and (ii) does not inhibit or reduce, or inhibits or reduces one or more of the signal transduction pathways induced by the binding of the inhibitory receptor to one or more other ligands by less than 20%, 15%, 10%, 5%, or 2%, or in the range of between 2% to 5%, 2% to 10%, 5% to 10%, 5% to 15%, 5% to 20%, 10% to 15%, or 15% to 20% relative to the one or more signal transduction pathways induced by the binding of inhibitory receptor to such one or more other ligands in the absence of the antagonist.
- In specific embodiments, an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell induces, activates and/or enhances one or more immune activities, functions or responses. The one or more immune activities, functions or responses can be in the form of, e.g., an antibody response (humoral response) or a cellular immune response, e.g., cytokine secretion (e.g., interferon-gamma), helper activity or cellular cytotoxicity. In one embodiment, expression of an activation marker on immune cells (e.g., CD44, Granzyme, or Ki-67), expression of a co-stimulatory receptor on immune cells (e.g., ICOS, CD28, OX40, or CD27), expression of a ligand for a co-stimulatory receptor (e.g., B7HRP1, CD80, CD86, OX40L, or CD70), cytokine secretion, infiltration of immune cells (e.g., T-lymphocytes, B lymphocytes and/or NK cells) to a tumor, antibody production, effector function, T cell activation, T cell differentiation, T cell proliferation, B cell differentiation, B cell proliferation, and/or NK cell proliferation is induced, activated and/or enhanced following contact with an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell. In another embodiment, myeloid-derived suppressor cell (MDSC) tumor infiltration and proliferation, Treg tumor infiltration, activation and proliferation, peripheral blood MDSC and Treg counts are inhibited following contact with an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune cell.
- 5.3 Construction of NDVs
- The NDVs described herein can be generated using the reverse genetics technique. The reverse genetics technique involves the preparation of synthetic recombinant viral RNAs that contain the non-coding regions of the negative-strand, viral RNA which are essential for the recognition by viral polymerases and for packaging signals necessary to generate a mature virion. The recombinant RNAs are synthesized from a recombinant DNA template and reconstituted in vitro with purified viral polymerase complex to form recombinant ribonucleoproteins (RNPs) which can be used to transfect cells. A more efficient transfection is achieved if the viral polymerase proteins are present during transcription of the synthetic RNAs either in vitro or in vivo. The synthetic recombinant RNPs can be rescued into infectious virus particles. The foregoing techniques are described in U.S. Pat. No. 5,166,057 issued Nov. 24, 1992; in U.S. Pat. No. 5,854,037 issued Dec. 29, 1998; in U.S. Pat. No. 6,146,642 issued Nov. 14, 2000; in European Patent Publication EP 0702085A1, published Feb. 20, 1996; in U.S. patent application Ser. No. 09/152,845; in International Patent Publications PCT WO97/12032 published Apr. 3, 1997; WO96/34625 published Nov. 7, 1996; in European Patent Publication EP A780475; WO 99/02657 published Jan. 21, 1999; WO 98/53078 published Nov. 26, 1998; WO 98/02530 published Jan. 22, 1998; WO 99/15672 published Apr. 1, 1999; WO 98/13501 published Apr. 2, 1998; WO 97/06270 published Feb. 20, 1997; and EPO 780 475A1 published Jun. 25, 1997, each of which is incorporated by reference herein in its entirety.
- The helper-free plasmid technology can also be utilized to engineer a NDV described herein. Briefly, a complete cDNA of a NDV (e.g., the Hitchner B1 strain) is constructed, inserted into a plasmid vector and engineered to contain a unique restriction site between two transcription units (e.g., the NDV P and M genes; or the NDV FIN and L genes). A nucleotide sequence encoding a heterologous amino acid sequence (e.g., a nucleotide sequence encoding an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell) may be inserted into the viral genome at the unique restriction site. Alternatively, a nucleotide sequence encoding a heterologous amino acid sequence (e.g., a nucleotide sequence encoding an agonist of a co-stimulatory signal and/or an antagonist of an inhibitory signal of an immune cell) may be engineered into a NDV transcription unit so long as the insertion does not affect the ability of the virus to infect and replicate. The single segment is positioned between a T7 promoter and the hepatitis delta virus ribozyme to produce an exact negative transcript from the T7 polymerase. The plasmid vector and expression vectors comprising the necessary viral proteins are transfected into cells leading to production of recombinant viral particles (see, e.g., International Publication No. WO 01/04333; U.S. Pat. Nos. 7,442,379, 6,146,642, 6,649,372, 6,544,785 and 7,384,774; Swayne et al. (2003). Avian Dis. 47:1047-1050; and Swayne et al. (2001). J. Virol. 11868-11873, each of which is incorporated by reference in its entirety).
- Techniques for the production of a chimeric NDV that express an antibody are known in the art. See, e.g., Puhler et al., Gene Ther. 15(5): 371-283 (2008) for the generation of a recombinant NDV expressing a full IgG from two transgenes.
- Bicistronic techniques to produce multiple proteins from a single mRNA are known to one of skill in the art. Bicistronic techniques allow the engineering of coding sequences of multiple proteins into a single mRNA through the use of IRES sequences. IRES sequences direct the internal recruitment of ribozomes to the RNA molecule and allow downstream translation in a cap independent manner. Briefly, a coding region of one protein is inserted into the ORF of a second protein. The insertion is flanked by an IRES and any untranslated signal sequences necessary for proper expression and/or function. The insertion must not disrupt the open reading frame, polyadenylation or transcriptional promoters of the second protein (see e.g., García-Sastre et al., 1994, J. Virol. 68:6254-6261 and García-Sastre et al., 1994 Dev. Biol. Stand. 82:237-246, each of which are incorporated by reference herein in their entirety).
- 5.4 Propagation of NDVs
- The NDVs described herein (e.g., the chimeric NDVs) can be propagated in any substrate that allows the virus to grow to titers that permit the uses of the viruses described herein. In one embodiment, the substrate allows the NDVs described herein (e.g., the chimeric NDVs) to grow to titers comparable to those determined for the corresponding wild-type viruses.
- The NDVs described herein (e.g., the chimeric NDVs) may be grown in cells (e.g., avian cells, chicken cells, etc.) that are susceptible to infection by the viruses, embryonated eggs (e.g., chicken eggs or quail eggs) or animals (e.g., birds). Such methods are well-known to those skilled in the art. In a specific embodiment, the NDVs described herein (e.g., the chimeric NDVs) may be propagated in cancer cells, e.g., carcinoma cells (e.g., breast cancer cells and prostate cancer cells), sarcoma cells, leukemia cells, lymphoma cells, and germ cell tumor cells (e.g., testicular cancer cells and ovarian cancer cells). In another specific embodiment, the NDVs described herein (e.g., the chimeric NDVs) may be propagated in cell lines, e.g., cancer cell lines such as HeLa cells, MCF7 cells, THP-1 cells, U87 cells, DU145 cells, Lncap cells, and T47D cells. In another embodiment, the NDVs described herein (e.g., the chimeric NDVs) are propagated in chicken cells or embryonated eggs. Representative chicken cells include, but are not limited to, chicken embryo fibroblasts and chicken embryo kidney cells. In a specific embodiment, the NDVs described herein (e.g., the chimeric NDVs) are propagated in Vero cells. In another specific embodiment, the NDVs described herein (e.g., the chimeric NDVs) are propagated in cancer cells in accordance with the methods described in Section 6, infra. In another specific embodiment, the NDVs described herein (e.g., the chimeric NDVs) are propagated in chicken eggs or quail eggs. In certain embodiments, a NDV virus described herein (e.g., a chimeric NDV) is first propagated in embryonated eggs and then propagated in cells (e.g., a cell line).
- The NDVs described herein (e.g., the chimeric NDVs) may be propagated in embryonated eggs, e.g., from 6 to 14 days old, 6 to 12 days old, 6 to 10 days old, 6 to 9 days old, 6 to 8 days old, or 10 to 12 days old. Young or immature embryonated eggs can be used to propagate the NDVs described herein (e.g., the chimeric NDVs). Immature embryonated eggs encompass eggs which are less than ten day old eggs, e.g., eggs 6 to 9 days old or 6 to 8 days old that are IFN-deficient. Immature embryonated eggs also encompass eggs which artificially mimic immature eggs up to, but less than ten day old, as a result of alterations to the growth conditions, e.g., changes in incubation temperatures; treating with drugs; or any other alteration which results in an egg with a retarded development, such that the IFN system is not fully developed as compared with ten to twelve day old eggs. The NDVs described herein (e.g., the chimeric NDVs) can be propagated in different locations of the embryonated egg, e.g., the allantoic cavity. For a detailed discussion on the growth and propagation viruses, see, e.g., U.S. Pat. No. 6,852,522 and U.S. Pat. No. 7,494,808, both of which are hereby incorporated by reference in their entireties.
- For virus isolation, the NDVs described herein (e.g., the chimeric NDVs) can be removed from cell culture and separated from cellular components, typically by well known clarification procedures, e.g., such as gradient centrifugation and column chromatography, and may be further purified as desired using procedures well known to those skilled in the art, e.g., plaque assays.
- 5.5 Compositions & Routes of Administration
- Encompassed herein is the use of a NDV described herein (e.g., the chimeric NDVs) in compositions. Also encompassed herein is the use of plasma membrane fragments from NDV infected cells or whole cancer cells infected with NDV in compositions. In a specific embodiment, the compositions are pharmaceutical compositions, such as immunogenic formulations (e.g., vaccine formulations). The compositions may be used in methods of treating cancer.
- In one embodiment, a pharmaceutical composition comprises a NDV described herein (e.g., the chimeric NDVs), in an admixture with a pharmaceutically acceptable carrier. In some embodiments, the pharmaceutical composition further comprises one or more additional prophylactic or therapeutic agents, such as described in Section 5.6.4, infra. In a specific embodiment, a pharmaceutical composition comprises an effective amount of a NDV described herein (e.g., the chimeric NDVs), and optionally one or more additional prophylactic of therapeutic agents, in a pharmaceutically acceptable carrier. In some embodiments, the NDV (e.g., a chimeric NDV) is the only active ingredient included in the pharmaceutical composition.
- In another embodiment, a pharmaceutical composition (e.g., an oncolysate vaccine) comprises a protein concentrate or a preparation of plasma membrane fragments from NDV infected cancer cells, in an admixture with a pharmaceutically acceptable carrier. In some embodiments, the pharmaceutical composition further comprises one or more additional prophylactic or therapeutic agents, such as described in Section 5.6.4, infra. In another embodiment, a pharmaceutical composition (e.g., a whole cell vaccine) comprises cancer cells infected with NDV, in an admixture with a pharmaceutically acceptable carrier. In some embodiments, the pharmaceutical composition further comprises one or more additional prophylactic or therapeutic agents, such as described in Section 5.6.4, infra.
- The pharmaceutical compositions provided herein can be in any form that allows for the composition to be administered to a subject. In a specific embodiment, the pharmaceutical compositions are suitable for veterinary and/or human administration. As used herein, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeiae for use in animals, and more particularly in humans. The term “carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the pharmaceutical composition is administered. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. Examples of suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin. The formulation should suit the mode of administration.
- In a specific embodiment, the pharmaceutical compositions are formulated to be suitable for the intended route of administration to a subject. For example, the pharmaceutical composition may be formulated to be suitable for parenteral, intrapleural, inhalation, intraperitoneal, oral, intradermal, colorectal, intraperitoneal and intratumoral administration. In a specific embodiment, the pharmaceutical composition may be formulated for intravenous, oral, intraperitoneal, intranasal, intratracheal, subcutaneous, intramuscular, topical, pulmonary, or intratumoral administration.
- 5.6 Anti-Cancer Uses and Other Uses
- In one aspect, a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) may be used in the treatment of cancer. In one embodiment, provided herein are methods for treating cancer, comprising administering to a subject in need thereof a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) or a composition thereof. In a specific embodiment, provided herein is a method for treating cancer, comprising administering to a subject in need thereof an effective amount of a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) or a composition thereof.
- In specific embodiments, a chimeric NDV engineered to express an agonist of a co-stimulatory signal of an immune cell, or a composition thereof is administered to a subject to treat cancer. In another specific embodiments, a chimeric NDV engineered to express an antagonist of an inhibitory signal of an immune cell, or a composition thereof is administered to a subject to treat cancer. In certain embodiments, a chimeric NDV engineered to express an agonist of a co-stimulatory signal of an immune cell and a mutated F protein or a composition thereof is administered to a subject to treat cancer. In certain embodiments, a chimeric NDV engineered to express an antagonist of an inhibitory signal of an immune cell and a mutated F protein or a composition thereof is administered to a subject to treat cancer.
- A chimeric NDV (e.g., a chimeric NDV described in Section 5.2, supra) described herein or a composition thereof, an oncolysate vaccine, or a whole cell cancer vaccine used in a method for treating cancer may be used as any line of therapy (e.g., a first, second, third, fourth or fifth line therapy).
- In certain embodiments, a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) is the only active ingredient administered to treat cancer. In specific embodiments, a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) is the only active ingredient in a composition administered to treat cancer.
- The chimeric NDV (e.g., a chimeric NDV described in Section 5.2, supra) or a composition thereof may be administered locally or systemically to a subject. For example, the chimeric NDV (e.g., a chimeric NDV described in Section 5.2, supra) or composition may be administered parenterally (e.g., intravenously or subcutanously), intratumorally, intrapleurally, intranasally, intraperitoneally, orally, by inhalation, topically or intradermally to a subject.
- In certain embodiments, the methods described herein include the treatment of cancer for which no treatment is available. In some embodiments, a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) or a composition thereof is administered to a subject to treat cancer as an alternative to other conventional therapies.
- In one embodiment, provided herein is a method for treating cancer, comprising administering to a subject in need thereof a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) or a composition thereof and one or more additional therapies, such as described in Section 5.6.4, infra. In a particular embodiment, one or more therapies are administered to a subject in combination with a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) or a composition thereof to treat cancer. In a specific embodiment, the additional therapies are currently being used, have been used or are known to be useful in treating cancer. In another embodiment, a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) or a composition thereof is administered to a subject in combination with a supportive therapy, a pain relief therapy, or other therapy that does not have a therapeutic effect on cancer. In a specific embodiment, the one or more additional therapies administered in combination with a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) is one or more of the therapies described in Section 5.6.4.1, infra. In certain embodiments, a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) and one or more additional therapies are administered in the same composition. In other embodiments, a chimeric NDV and one or more additional therapies are administered in different compositions.
- In certain embodiments, two, three or multiple NDVs (including one, two or more chimeric NDVs described herein, such as one, two or more of the chimeric NDVs described in Section 5.2, supra) are administered to a subject to treat cancer. The second or more chimeric NDVs used in accordance with methods described herein that comprise administration of two, three or multiple NDVs to a subject to treat cancer may be naturally occurring chimeric NDVs or engineered chimeric NDVs that have been engineered to express heterologous amino acid sequence (e.g., a cytokine). The first and second chimeric NDVs may be part of the same pharmaceutical composition or different pharmaceutical compositions. In certain embodiments, the first chimeric NDV and the second chimeric NDV are administered by the same route of administration (e.g., both are administered intratumorally or intravenously). In other embodiments, the first chimeric NDV and the second chimeric NDV are administered by different routes of administration (e.g., one is administered intratumorally and the other is administered intravenously).
- In specific embodiments, a first chimeric NDV engineered to express an agonist of a co-stimulatory signal of an immune cell is administered to a patient to treat cancer in combination with a second chimeric NDV engineered to express an antagonist of an inhibitory signal of an immune cell. In other specific embodiments, a first chimeric NDV engineered to express an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune is administered in combination with a second chimeric NDV engineered to express one, two or more of the following: a cytokine (e.g., IL-2), a heterologous interferon antagonist, a tumor antigen, a pro-apopototic molecule, and/or anti-apoptotic molecule. In a specific embodiment, the first chimeric NDV, the second chimeric NDV, or both express a mutated F protein that increases the fusogenic activity of the chimeric NDV. In another specific embodiment, the first chimeric NDV, the second chimeric NDV or both express a mutated F protein with a mutation in the cleavage site (such as described herein).
- In specific embodiments, a first composition (e.g., a pharmaceutical composition) comprising a first chimeric NDV engineered to express an agonist of a co-stimulatory signal of an immune cell is administered to a patient to treat cancer in combination with a second composition (e.g., a pharmaceutical composition) comprising a second chimeric NDV engineered to express an antagonist of an inhibitory signal of an immune cell. In other specific embodiments, a first composition (e.g., a pharmaceutical composition) comprising a first chimeric NDV engineered to express an agonist of a co-stimulatory signal of an immune cell and/or an antagonist of an inhibitory signal of an immune is administered in combination with a second composition (e.g., a pharmaceutical composition) comprising a second chimeric NDV engineered to express one, two or more of the following: a cytokine (e.g., IL-2), a heterologous interferon antagonist, a tumor antigen, a pro-apopototic molecule, and/or anti-apoptotic molecule. In a specific embodiment, the first chimeric NDV, the second chimeric NDV, or both express a mutated F protein that increases the fusogenic activity of the chimeric NDV. In another specific embodiment, the first chimeric NDV, the second chimeric NDV or both express a mutated F protein with a mutation in the cleavage site (such as described herein).
- In another aspect, an NDV described herein (e.g., an NDV described in Section 5.1, supra) may be used in combination with one or more additional therapies, such as described herein in Section 5.6.4, infra (e.g., Section 5.6.4.1, infra), in the treatment of cancer. In one embodiment, provided herein are methods for treating cancer, comprising administering to a subject in need thereof an NDV described herein (e.g., an NDV described in Section 5.1, supra) or a composition thereof and one or more additional therapies, such as described herein in Section 5.6.4, infra. (e.g., Section 5.6.4.1). In a specific embodiment, provided herein is a method for treating cancer, comprising administering to a subject in need thereof an effective amount of an NDV described herein (e.g., an NDV described in Section 5.1, supra) or a composition thereof and an effective amount of one or more additional therapies, such as described in Section 5.6.4, infra. (e.g., Section 5.6.4.1). In certain embodiments, an NDV described herein (e.g., an NDV described in Section 5.1, supra) and one or more additional therapies, such as described in Section 5.6.4, infra (e.g., Section 5.6.4.1), are administered in the same composition. In other embodiments, an NDV (e.g., an NDV described in Section 5.1, supra) and one or more additional therapies are administered in different compositions.
- An NDV (e.g., an NDV described in Section 5.1, supra) described herein or a composition thereof, an oncolysate vaccine, or a whole cell cancer vaccine in combination with one or more additional therapies, such as described herein in Section 5.6.4, infra, may be used as any line of therapy (e.g., a first, second, third, fourth or fifth line therapy) for treating cancer in accordance with a method described herein.
- In another aspect, whole cancer cells infected with a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) can be used to treat cancer. In a specific embodiment, a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) may be contacted with a cancer cell or a population of cancer cells and the infected cancer cell or population of cancer cells may be administered to a subject to treat cancer. In one embodiment, the cancer cells are subjected to gamma radiation prior to infection with a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra). In another embodiment, the cancer cells are subjected to gamma radiation after infection with a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra). In a particular embodiment, the cancer cells are treated prior to administration to a subject so that the cancer cells cannot multiply in the subject. In a specific embodiment, the cancer cells cannot multiply in the subject and the virus cannot infect the subject. In one embodiment, the cancer cells are subjected to gamma radiation prior to administration to subject. In another embodiment, the cancer cells are sonicated prior to administration to a subject. In another embodiment, the cancer cells are treated with mitomycin C prior to administration to a subject. In another embodiment, the cancer cells are treated by freezing and thawing prior to administration to a subject. In another embodiment, the cancer cells are treated with heat treatment prior to administration to a subject. The cancer cells may be administered locally or systemically to a subject. For example, the cancer cells may be administered parenterally (e.g., intravenously or subcutaneously), intratumorally, intransally, orally, by inhalation, intrapleurally, topically or intradermally to a subject. In a specific embodiment, the cancer cells are administered intratumorally or to the skin (e.g., intradermally) of a subject. The cancer cells used may be autologous or allogeneic. In a specific embodiment, the backbone of the chimeric NDV is a non-lytic strain. The cancer cells may be administered to a subject alone or in combination with an additional therapy. The cancer cells are preferably in a pharmaceutical composition. In certain embodiments, the cancer cells are administered in combination with one or more additional therapies, such as described in Section 5.6.4, infra. In certain embodiments, the cancer cells and one or more additional therapies are administered in the same composition. In other embodiments, the cancer cells and one or more additional therapies are administered in different compositions.
- In another aspect, whole cancer cells infected with an NDV described herein (e.g., an NDV described in Section 5.1, supra) may be used in combination with one or more additional therapies described herein in Section 5.6.4, infra, in the treatment of cancer. In one embodiment, provided herein are methods for treating cancer, comprising administering to a subject in need thereof whole cancer cells infected with an NDV described herein (e.g., an NDV described in Section 5.1, supra) in combination with one or more additional therapies described herein in Section 5.6.4, infra. In a specific embodiment, provided herein is a method for treating cancer, comprising administering to a subject in need thereof an effective amount of whole cancer cells infected with an NDV described herein (e.g., an NDV described in Section 5.1, supra) in combination with an effective amount of one or more additional therapies described in Section 5.6.4, infra. In certain embodiments, whole cancer cells infected with an NDV described herein (e.g., an NDV described in Section 5.1, supra) and one or more additional therapies described in Section 5.6.4, infra, are administered in the same composition. In other embodiments, whole cancer cells infected with an NDV described herein (e.g., an NDV described in Section 5.1, supra) and one or more additional therapies are administered in different compositions.
- In another aspect, a protein concentrate or plasma membrane preparation from lysed cancer cells infected with a chimeric NDV (e.g., a chimeric NDV described in Section 5.2, supra) can be used to treat cancer. In one embodiment, a plasma membrane preparation comprising fragments from cancer cells infected with a chimeric NDV described herein can be used to treat cancer. In another embodiment, a protein concentrate from cancer cells infected with a chimeric NDV described herein can be used to treat cancer. Techniques known to one of skill in the art may be used to produce the protein concentrate or plasma membrane preparation. In a specific embodiment, a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) may be contacted with a cancer cell or a population of cancer cells and the infected cancer cell or population of cancer cells may be lysed using techniques known to one of skill in the art to obtain protein concentrate or plasma membrane fragments of the NDV-infected cancer cells, and the protein concentrate or plasma membrane fragments of the NDV-infected cancer cells may be administered to a subject to treat cancer. The protein concentrate or plasma membrane fragments may be administered locally or systemically to a subject. For example, the protein concentrate or plasma membrane fragments may be administered parenterally, intratumorally, intransally, intrapleurally, orally, by inhalation, topically or intradermally to a subject. In a specific embodiment, such a protein concentrate or plasma membrane preparation is administered intratumorally or to the skin (e.g., intradermally) of a subject. The cancer cells used to produce the protein concentrate or plasma membrane preparation may be autologous or allogeneic. In a specific embodiment, the backbone of the chimeric NDV is a lytic strain. The protein concentrate or plasma membrane preparation may be administered to a subject alone or in combination with an additional therapy. The protein concentrate or plasma membrane preparation is preferably in a pharmaceutical composition. In certain embodiments, the protein concentrate or plasma membrane preparation is administered in combination with one or more additional therapies, such as described in Section 5.6.4, infra (e.g., Section 5.6.4.1) In certain embodiments, the protein concentrate or plasma membrane preparation and one or more additional therapies are administered in the same composition. In other embodiments, the protein concentrate or plasma membrane preparation and one or more additional therapies are administered in different compositions.
- In another aspect, a protein concentrate or plasma membrane preparation from lysed cancer cells infected with an NDV (e.g., an NDV described in Section 5.1, supra) may be used in combination with one or more additional therapies, such as described herein in Section 5.6.4, infra (e.g., Section 5.6.4.1), in the treatment of cancer. In one embodiment, provided herein are methods for treating cancer, comprising administering to a subject in need thereof a protein concentrate or plasma membrane preparation from lysed cancer cells infected with an NDV (e.g., an NDV described in Section 5.1, supra) in combination with one or more additional therapies, such as described herein in Section 5.6.4, infra. (e.g., Section 5.6.4.1). In a specific embodiment, provided herein is a method for treating cancer, comprising administering to a subject in need thereof an effective amount of a protein concentrate or plasma membrane preparation from lysed cancer cells infected with an NDV (e.g., an NDV described in Section 5.1, supra) in combination with an effective amount of one or more additional therapies, such as described in Section 5.6.4, infra. (e.g., Section 5.6.4.1). In certain embodiments, the protein concentrate or plasma membrane preparation and one or more additional therapies, such as described in Section 5.6.4, infra, are administered in the same composition. In other embodiments, the protein concentrate or plasma membrane preparation and one or more additional therapies are administered in different compositions.
- In another aspect, the chimeric NDVs described herein (e.g., a chimeric NDV described in Section 5.2, supra) can be used to produce antibodies which can be used in diagnostic immunoassays, passive immunotherapy, and the generation of antiidiotypic antibodies. For example, a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra) can be administered to a subject (e.g., a mouse, rat, pig, horse, donkey, bird or human) to generate antibodies which can then be isolated and used, e.g., in diagnostic assays, passive immunotherapy and generation of antiidiotypic antibodies. In certain embodiments, an NDV described herein (e.g., an NDV described in Section 5.1 or 5.2, supra) is administered to a subject (e.g., a mouse, rat, pig, horse, donkey, bird, or human) in combination with one or more additional therapies, such as described in Section 5.6.4, infra, to generated antibodies which can then be isolated and used, e.g., in diagnostic assays, passive immunotherapy and generation of antiidiotypic antibodies. The generated antibodies may be isolated by standard techniques known in the art (e.g., immunoaffinity chromatography, centrifugation, precipitation, etc.) and used in diagnostic immunoassays, passive immunotherapy and generation of antiidiotypic antibodies.
- In certain embodiments, the antibodies isolated from subjects administered a chimeric NDV described herein (e.g., a chimeric NDV described in Section 5.2, supra), or isolated from subjects administered an NDV described herein (e.g., an NDV described in Section 5.1 or 5.2, supra) in combination with one or more additional therapies, such as described in Section 5.6.4, infra, are used to assess the expression of NDV proteins, a heterologous peptide or protein expressed by a chimeric NDV, or both. Any immunoassay system known in the art may be used for this purpose including but not limited to competitive and noncompetitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme linked immunosorbent assays), “sandwich” immunoassays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement fixation assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays and immunoelectrophoresis assays, to name but a few.
- 5.6.1. Patient Population
- In some embodiments, an NDV (e.g., a chimeric NDV) described herein or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject suffering from cancer. In other embodiments, an NDV (e.g., a chimeric NDV) described herein or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject predisposed or susceptible to cancer. In some embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject diagnosed with cancer. Specific examples of the types of cancer are described herein. In an embodiment, the subject has metastatic cancer. In another embodiment, the subject has
stage 1,stage 2 orstage 3 cancer. In another embodiment, the subject is in remission. In yet another embodiment, the subject has a recurrence of cancer. - In certain embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a human that is 0 to 6 months old, 6 to 12 months old, 6 to 18 months old, 18 to 36 months old, 1 to 5 years old, 5 to 10 years old, 10 to 15 years old, 15 to 20 years old, 20 to 25 years old, 25 to 30 years old, 30 to 35 years old, 35 to 40 years old, 40 to 45 years old, 45 to 50 years old, 50 to 55 years old, 55 to 60 years old, 60 to 65 years old, 65 to 70 years old, 70 to 75 years old, 75 to 80 years old, 80 to 85 years old, 85 to 90 years old, 90 to 95 years old or 95 to 100 years old. In some embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a human infant. In other embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a human toddler. In other embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a human child. In other embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a human adult. In yet other embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to an elderly human.
- In certain embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject in an immunocompromised state or immunosuppressed state or at risk for becoming immunocompromised or immunosuppressed. In certain embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject receiving or recovering from immunosuppressive therapy. In certain embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject that has or is at risk of getting cancer. In certain embodiments, the subject is, will or has undergone surgery, chemotherapy and/or radiation therapy. In certain embodiments, the patient has undergone surgery to remove the tumor or neoplasm. In specific embodiments, the patient is administered an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein following surgery to remove a tumor or neoplasm. In other embodiment, the patient is administered an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein prior to undergoing surgery to remove a tumor or neoplasm. In certain embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject that has, will have or had a tissue transplant, organ transplant or transfusion.
- In some embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a patient who has proven refractory to therapies other than the chimeric NDV or composition thereof, oncolysate, whole cell vaccine, or a combination therapy but are no longer on these therapies. In a specific embodiment, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a patient who has proven refractory to chemotherapy. In one embodiment, that a cancer is refractory to a therapy means that at least some significant portion of the cancer cells are not killed or their cell division arrested. The determination of whether the cancer cells are refractory can be made either in vivo or in vitro by any method known in the art for assaying the effect of a therapy on cancer cells, using the art-accepted meanings of “refractory” in such a context. In a certain embodiment, refractory patient is a patient refractory to a standard therapy. In certain embodiments, a patient with cancer, is refractory to a therapy when the tumor or neoplasm has not significantly been eradicated and/or the symptoms have not been significantly alleviated. The determination of whether a patient is refractory can be made either in vivo or in vitro by any method known in the art for assaying the effectiveness of a treatment of cancer, using art-accepted meanings of “refractory” in such a context.
- In certain embodiments, the patient to be treated in accordance with the methods described herein is a patient already being treated with antibiotics, anti-virals, anti-fungals, or other biological therapy/immunotherapy or anti-cancer therapy. Among these patients are refractory patients, and patients who are too young for conventional therapies. In some embodiments, the subject being administered an NDV (e.g., a chimeric NDV), an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein has not received therapy prior to the administration of the chimeric NDV or composition, the oncolysate vaccine, or the whole cell vaccine, or the combination therapy.
- In some embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a patient to prevent the onset of cancer in a patient at risk of developing cancer. In some embodiments, compounds are administered to a patient who are susceptible to adverse reactions to conventional therapies.
- In some embodiments, the subject being administered an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein has not received prior therapy. In other embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein is administered to a subject who has received a therapy prior to administration of the NDV (e.g., a chimeric NDV) or composition, the oncolysate vaccine, the whole cell vaccine, or the combination therapy. In some embodiments, the subject administered an NDV (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine described herein, or a whole cell vaccine described herein, or a combination therapy described herein experienced adverse side effects to a prior therapy or a prior therapy was discontinued due to unacceptable levels of toxicity to the subject.
- 5.6.2. Dosage & Frequency
- The amount of an NDV or a composition thereof, an oncolysate vaccine, or a whole cell vaccine which will be effective in the treatment of cancer will depend on the nature of the cancer, the route of administration, the general health of the subject, etc. and should be decided according to the judgment of a medical practitioner. Standard clinical techniques, such as in vitro assays, may optionally be employed to help identify optimal dosage ranges. However, suitable dosage ranges of an NDV for administration are generally about 102, 5×102, 103, 5×103, 104, 5×104, 105, 5×105, 106, 5×106, 107, 5×107, 108, 5×108, 1×109, 5×109, 1×1019, 5×1010, 1×1011, 5×1011 or 1012 pfu, and most preferably about 104 to about 1012, 106 to 1012, 108 to 1012, 109 to 1012 or 109 to 1011, and can be administered to a subject once, twice, three, four or more times with intervals as often as needed. Dosage ranges of oncolysate vaccines for administration may include 0.001 mg, 0.005 mg, 0.01 mg, 0.05 mg. 0.1 mg. 0.5 mg, 1.0 mg, 2.0 mg. 3.0 mg, 4.0 mg, 5.0 mg, 10.0 mg, 0.001 mg to 10.0 mg, 0.01 mg to 1.0 mg, 0.1 mg to 1 mg, and 0.1 mg to 5.0 mg, and can be administered to a subject once, twice, three or more times with intervals as often as needed. Dosage ranges of whole cell vaccines for administration may include 102, 5×102, 103, 5×103, 104, 5×104, 105, 5×105, 106, 5×106, 107, 5×107, 108, 5×108, 1×109, 5×109, 1×1010, 5×1010, 1×1011, 5×1011 or 1012 cells, and can be administered to a subject once, twice, three or more times with intervals as often as needed. In certain embodiments, dosages similar to those currently being used in clinical trials for NDV, oncolysate vaccines or whole cell vaccines are administered to a subject. Effective doses may be extrapolated from dose response curves derived from in vitro or animal model test systems.
- In certain embodiments, an NDV (e.g., a chimeric NDV) or a composition thereof is administered to a subject as a single dose followed by a
second dose 1 to 6 weeks, 1 to 5 weeks, 1 to 4 weeks, 1 to 3 weeks, 1 to 2 weeks later. In accordance with these embodiments, booster inoculations may be administered to the subject at 6 to 12 month intervals following the second inoculation. In certain embodiments, an oncolysate vaccine or a whole cell vaccine is administered to a subject as a single dose followed by asecond dose 1 to 6 weeks, 1 to 5 weeks, 1 to 4 weeks, 1 to 3 weeks, 1 to 2 weeks later. - In certain embodiments, administration of the same NDV (e.g., chimeric NDV) or a composition thereof, oncolysate vaccine, or whole cell vaccine may be repeated and the administrations may be separated by at least 1 day, 2 days, 3 days, 5 days, 6 says, 7 days, 10 days, 14 days, 15 days, 21 days, 28 days, 30 days, 45 days, 2 months, 75 days, 3 months, or at least 6 months. In other embodiments, administration of the same NDV (e.g., a NDV) or a composition thereof, oncolysate vaccine, or whole cell vaccine may be repeated and the administrations may be separated by 1 to 14 days, 1 to 7 days, 7 to 14 days, 1 to 30 days, 15 to 30 days, 15 to 45 days, 15 to 75 days, 15 to 90 days, 1 to 3 months, 3 to 6 months, 3 to 12 months, or 6 to 12 months. In some embodiments, a first NDV (e.g., a first chimeric NDV) or a composition thereof is administered to a subject followed by the administration of a second NDV (e.g., a second chimeric NDV) or a composition thereof. In certain embodiments, the first and second NDVs (e.g., the first and second chimeric NDVs) or compositions thereof may be separated by at least 1 day, 2 days, 3 days, 5 days, 6 days, 7 days, 10 days, 14 days, 15 days, 21 days, 28 days, 30 days, 45 days, 2 months, 75 days, 3 months, or at least 6 months. In other embodiments, the first and second NDVs (e.g., the first and second chimeric NDVs) or compositions thereof may be separated by 1 to 14 days, 1 to 7 days, 7 to 14 days, 1 to 30 days, 15 to 30 days, 15 to 45 days, 15 to 75 days, 15 to 90 days, 1 to 3 months, 3 to 6 months, 3 to 12 months, or 6 to 12 months.
- In certain embodiments, an NDV or composition thereof, or oncolysate vaccine or whole cell vaccine is administered to a subject in combination with one or more additional therapies, such as a therapy described in Section 5.6.4, infra. The dosage of the other one or more additional therapies will depend upon various factors including, e.g., the therapy, the nature of the cancer, the route of administration, the general health of the subject, etc. and should be decided according to the judgment of a medical practitioner. In specific embodiments, the dose of the other therapy is the dose and/or frequency of administration of the therapy recommended for the therapy for use as a single agent is used in accordance with the methods disclosed herein. In other embodiments, the dose of the other therapy is a lower dose and/or less frequent administration of the therapy than recommended for the therapy for use as a single agent is used in accordance with the methods disclosed herein. Recommended doses for approved therapies can be found in the Physician's Desk Reference.
- In certain embodiments, an NDV or composition thereof, or oncolysate vaccine or whole cell vaccine is administered to a subject concurrently with the administration of one or more additional therapies. In other embodiments, an NDV or composition thereof, or oncolysate vaccine or whole cell vaccine is administered to a subject every 3 to 7 days, 1 to 6 weeks, 1 to 5 weeks, 1 to 4 weeks, 2 to 4 weeks, 1 to 3 weeks, or 1 to 2 weeks and one or more additional therapies (such as described in Section 5.6.4, infra) is administered every 3 to 7 days, 1 to 6 weeks, 1 to 5 weeks, 1 to 4 weeks, 1 to 3 weeks, or 1 to 2 weeks. In certain embodiments, an NDV or composition thereof, or oncolysate vaccine or whole cell vaccine is administered to a subject every 1 to 2 weeks and one or more additional therapies (such as described in Section 5.6.4, infra) is administered every 2 to 4 weeks. In some embodiments, an NDV or composition thereof, or oncolysate vaccine or whole cell vaccine is administered to a subject every week and one or more additional therapies (such as described in Section 5.6.4, infra) is administered every 2 weeks.
- 5.6.3. Types of Cancer
- Specific examples of cancers that can be treated in accordance with the methods described herein include, but are not limited to: leukemias, such as but not limited to, acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemias, such as, myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia leukemias and myelodysplastic syndrome; chronic leukemias, such as but not limited to, chronic myelocytic (granulocytic) leukemia, chronic lymphocytic leukemia, hairy cell leukemia; polycythemia vera; lymphomas such as but not limited to Hodgkin's disease, non-Hodgkin's disease; multiple myelomas such as but not limited to smoldering multiple myeloma, nonsecretory myeloma, osteosclerotic myeloma, placancer cell leukemia, solitary placancercytoma and extramedullary placancercytoma; Waldenström's macroglobulinemia; monoclonal gammopathy of undetermined significance; benign monoclonal gammopathy; heavy chain disease; bone and connective tissue sarcomas such as but not limited to bone sarcoma, osteosarcoma, chondrosarcoma, Ewing's sarcoma, malignant giant cell tumor, fibrosarcoma of bone, chordoma, periosteal sarcoma, soft-tissue sarcomas, angiosarcoma (hemangiosarcoma), fibrosarcoma, Kaposi's sarcoma, leiomyosarcoma, liposarcoma, lymphangiosarcoma, neurilemmoma, rhabdomyosarcoma, synovial sarcoma; brain tumors such as but not limited to, glioma, astrocytoma, brain stem glioma, ependymoma, oligodendroglioma, nonglial tumor, glioblastoma multiforme, acoustic neurinoma, craniopharyngioma, medulloblastoma, meningioma, pineocytoma, pineoblastoma, primary brain lymphoma; breast cancer including but not limited to ductal carcinoma, adenocarcinoma, lobular (cancer cell) carcinoma, intraductal carcinoma, medullary breast cancer, mucinous breast cancer, tubular breast cancer, papillary breast cancer, Paget's disease, and inflammatory breast cancer; adrenal cancer such as but not limited to pheochromocytom and adrenocortical carcinoma; thyroid cancer such as but not limited to papillary or follicular thyroid cancer, medullary thyroid cancer and anaplastic thyroid cancer; pancreatic cancer such as but not limited to, insulinoma, gastrinoma, glucagonoma, vipoma, somatostatin-secreting tumor, and carcinoid or islet cell tumor; pituitary cancers such as but limited to Cushing's disease, prolactin-secreting tumor, acromegaly, and diabetes insipidus; eye cancers such as but not limited to ocular melanoma such as iris melanoma, choroidal melanoma, and cilliary body melanoma, and retinoblastoma; vaginal cancers such as squamous cell carcinoma, adenocarcinoma, and melanoma; vulvar cancer such as squamous cell carcinoma, melanoma, adenocarcinoma, basal cell carcinoma, sarcoma, and Paget's disease; cervical cancers such as but not limited to, squamous cell carcinoma, and adenocarcinoma; uterine cancers such as but not limited to endometrial carcinoma and uterine sarcoma; ovarian cancers such as but not limited to, ovarian epithelial carcinoma, borderline tumor, germ cell tumor, and stromal tumor; esophageal cancers such as but not limited to, squamous cancer, adenocarcinoma, adenoid cystic carcinoma, mucoepidermoid carcinoma, adenosquamous carcinoma, sarcoma, melanoma, placancercytoma, verrucous carcinoma, and oat cell (cancer cell) carcinoma; stomach cancers such as but not limited to, adenocarcinoma, fungating (polypoid), ulcerating, superficial spreading, diffusely spreading, malignant lymphoma, liposarcoma, fibrosarcoma, and carcinosarcoma; colon cancers; rectal cancers; liver cancers such as but not limited to hepatocellular carcinoma and hepatoblastoma; gallbladder cancers such as adenocarcinoma; cholangiocarcinomas such as but not limited to papillary, nodular, and diffuse; lung cancers such as non-cancer cell lung cancer, squamous cell carcinoma (epidermoid carcinoma), adenocarcinoma, large-cell carcinoma and cancer-cell lung cancer; testicular cancers such as but not limited to germinal tumor, seminoma, anaplastic, classic (typical), spermatocytic, nonseminoma, embryonal carcinoma, teratoma carcinoma, choriocarcinoma (yolk-sac tumor), prostate cancers such as but not limited to, prostatic intraepithelial neoplasia, adenocarcinoma, leiomyosarcoma, and rhabdomyosarcoma; penal cancers; oral cancers such as but not limited to squamous cell carcinoma; basal cancers; salivary gland cancers such as but not limited to adenocarcinoma, mucoepidermoid carcinoma, and adenoidcystic carcinoma; pharynx cancers such as but not limited to squamous cell cancer, and verrucous; skin cancers such as but not limited to, basal cell carcinoma, squamous cell carcinoma and melanoma, superficial spreading melanoma, nodular melanoma, lentigo malignant melanoma, acral lentiginous melanoma; kidney cancers such as but not limited to renal cell carcinoma, adenocarcinoma, hypernephroma, fibrosarcoma, transitional cell cancer (renal pelvis and/or uterer); Wilms' tumor; bladder cancers such as but not limited to transitional cell carcinoma, squamous cell cancer, adenocarcinoma, carcinosarcoma. In addition, cancers include myxosarcoma, osteogenic sarcoma, endotheliosarcoma, lymphangioendotheliosarcoma, mesothelioma, synovioma, hemangioblastoma, epithelial carcinoma, cystadenocarcinoma, bronchogenic carcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma and papillary adenocarcinomas (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia and Murphy et al., 1997, Informed Decisions: The Complete Book of Cancer Diagnosis, Treatment, and Recovery, Viking Penguin, Penguin Books U.S.A., Inc., United States of America).
- In a specific embodiment, the chimeric NDVs described herein or compositions thereof, an oncolysate vaccine described herein, a whole cell vaccine herein, or a combination therapy described herein are useful in the treatment of a variety of cancers and abnormal proliferative diseases, including (but not limited to) the following: carcinoma, including that of the bladder, breast, colon, kidney, liver, lung, ovary, pancreas, stomach, cervix, thyroid and skin; including squamous cell carcinoma; hematopoietic tumors of lymphoid lineage, including leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T cell lymphoma, Burkitt's lymphoma; hematopoietic tumors of myeloid lineage, including acute and chronic myelogenous leukemias and promyelocytic leukemia; tumors of mesenchymal origin, including fibrosarcoma and rhabdomyoscarcoma; other tumors, including melanoma, seminoma, teratocarcinoma, neuroblastoma and glioma; tumors of the central and peripheral nervous system, including astrocytoma, neuroblastoma, glioma, and schwannomas; tumors of mesenchymal origin, including fibrosarcoma, rhabdomyoscarama, and osteosarcoma; and other tumors, including melanoma, xeroderma pigmentosum, keratoactanthoma, seminoma, thyroid follicular cancer and teratocarcinoma.
- In some embodiments, cancers associated with aberrations in apoptosis are treated in accordance with the methods described herein. Such cancers may include, but are not limited to, follicular lymphomas, carcinomas with p53 mutations, hormone dependent tumors of the breast, prostate and ovary, and precancerous lesions such as familial adenomatous polyposis, and myelodysplastic syndromes. In specific embodiments, malignancy or dysproliferative changes (such as metaplasias and dysplasias), or hyperproliferative disorders of the skin, lung, liver, bone, brain, stomach, colon, breast, prostate, bladder, kidney, pancreas, ovary, and/or uterus are treated in accordance with the methods described herein. In other specific embodiments, a sarcoma or melanoma is treated in accordance with the methods described herein.
- In a specific embodiment, the cancer being treated in accordance with the methods described herein is leukemia, lymphoma or myeloma (e.g., multiple myeloma). Specific examples of leukemias and other blood-borne cancers that can be treated in accordance with the methods described herein include, but are not limited to, acute lymphoblastic leukemia “ALL”, acute lymphoblastic B-cell leukemia, acute lymphoblastic T-cell leukemia, acute myeloblastic leukemia “AML”, acute promyelocytic leukemia “APL”, acute monoblastic leukemia, acute erythroleukemic leukemia, acute megakaryoblastic leukemia, acute myelomonocytic leukemia, acute nonlymphocyctic leukemia, acute undifferentiated leukemia, chronic myelocytic leukemia “CML”, chronic lymphocytic leukemia “CLL”, and hairy cell leukemia.
- Specific examples of lymphomas that can be treated in accordance with the methods described herein include, but are not limited to, Hodgkin's disease, non-Hodgkin's Lymphoma, Multiple myeloma, Waldenström's macroglobulinemia, Heavy chain disease, and Polycythemia vera.
- In another embodiment, the cancer being treated in accordance with the methods described herein is a solid tumor. Examples of solid tumors that can be treated in accordance with the methods described herein include, but are not limited to fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon cancer, colorectal cancer, kidney cancer, pancreatic cancer, bone cancer, breast cancer, ovarian cancer, prostate cancer, esophageal cancer, stomach cancer, oral cancer, nasal cancer, throat cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, uterine cancer, testicular cancer, cancer cell lung carcinoma, bladder carcinoma, lung cancer, epithelial carcinoma, glioma, glioblastoma multiforme, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, skin cancer, melanoma, neuroblastoma, and retinoblastoma. In another embodiment, the cancer being treated in accordance with the methods described herein is a metastatic. In another embodiment, the cancer being treated in accordance with the methods described herein is malignant.
- In a specific embodiment, the cancer being treated in accordance with the methods described herein is a cancer that has a poor prognosis and/or has a poor response to conventional therapies, such as chemotherapy and radiation. In another specific embodiment, the cancer being treated in accordance with the methods described herein is malignant melanoma, malignant glioma, renal cell carcinoma, pancreatic adenocarcinoma, malignant pleural mesothelioma, lung adenocarcinoma, lung small cell carcinoma, lung squamous cell carcinoma, anaplastic thyroid cancer, and head and neck squamous cell carcinoma.
- 5.6.4. Additional Therapies
- Additional therapies that can be used in a combination with an NDV described herein or a composition thereof, an oncolysate vaccine, or a whole cell vaccine for the treatment of cancer include, but are not limited to, small molecules, synthetic drugs, peptides (including cyclic peptides), polypeptides, proteins, nucleic acids (e.g., DNA and RNA nucleotides including, but not limited to, antisense nucleotide sequences, triple helices, RNAi, and nucleotide sequences encoding biologically active proteins, polypeptides or peptides), antibodies, synthetic or natural inorganic molecules, mimetic agents, and synthetic or natural organic molecules. In a specific embodiment, the additional therapy is a chemotherapeutic agent.
- In some embodiments, an NDV described herein or a composition thereof, an oncolysate vaccine, or a whole cell vaccine is used in combination with radiation therapy comprising the use of x-rays, gamma rays and other sources of radiation to destroy cancer cells. In specific embodiments, the radiation therapy is administered as external beam radiation or teletherapy, wherein the radiation is directed from a remote source. In other embodiments, the radiation therapy is administered as internal therapy or brachytherapy wherein a radioactive source is placed inside the body close to cancer cells and/or a tumor mass.
- Currently available cancer therapies and their dosages, routes of administration and recommended usage are known in the art and have been described in such literature as the Physician's Desk Reference (67th ed., 2013).
- Specific examples of anti-cancer agents that may be used in combination with an NDV described herein or a composition thereof include: hormonal agents (e.g., aromatase inhibitor, selective estrogen receptor modulator (SERM), and estrogen receptor antagonist), chemotherapeutic agents (e.g., microtubule disassembly blocker, antimetabolite, topoisomerase inhibitor, and DNA crosslinker or damaging agent), anti-angiogenic agents (e.g., VEGF antagonist, receptor antagonist, integrin antagonist, vascular targeting agent (VTA)/vascular disrupting agent (VDA)), radiation therapy, and conventional surgery.
- Non-limiting examples of hormonal agents that may be used in combination with an NDV described herein or a composition thereof include aromatase inhibitors, SERMs, and estrogen receptor antagonists. Hormonal agents that are aromatase inhibitors may be steroidal or nonsteroidal. Non-limiting examples of nonsteroidal hormonal agents include letrozole, anastrozole, aminoglutethimide, fadrozole, and vorozole. Non-limiting examples of steroidal hormonal agents include aromasin (exemestane), formestane, and testolactone. Non-limiting examples of hormonal agents that are SERMs include tamoxifen (branded/marketed as Nolvadex®), afimoxifene, arzoxifene, bazedoxifene, clomifene, femarelle, lasofoxifene, ormeloxifene, raloxifene, and toremifene. Non-limiting examples of hormonal agents that are estrogen receptor antagonists include fulvestrant. Other hormonal agents include but are not limited to abiraterone and lonaprisan.
- Non-limiting examples of chemotherapeutic agents that may be used in combination with an NDV described herein or a composition thereof, an oncolysate vaccine, or a whole cell vaccine include microtubule disasssembly blocker, antimetabolite, topoisomerase inhibitor, and DNA crosslinker or damaging agent. Chemotherapeutic agents that are microtubule disassembly blockers include, but are not limited to, taxenes (e.g., paclitaxel (branded/marketed as TAXOL®), docetaxel, abraxane, larotaxel, ortataxel, and tesetaxel); epothilones (e.g., ixabepilone); and vinca alkaloids (e.g., vinorelbine, vinblastine, vindesine, and vincristine (branded/marketed as)) ONCOVIN®.
- Chemotherapeutic agents that are antimetabolites include, but are not limited to, folate antimetabolites (e.g., methotrexate, aminopterin, pemetrexed, raltitrexed); purine antimetabolites (e.g., cladribine, clofarabine, fludarabine, mercaptopurine, pentostatin, thioguanine); pyrimidine antimetabolites (e.g., 5-fluorouracil, capecitabine, gemcitabine (GEMZAR®), cytarabine, decitabine, floxuridine, tegafur); and deoxyribonucleotide antimetabolites (e.g., hydroxyurea).
- Chemotherapeutic agents that are topoisomerase inhibitors include, but are not limited to, class I (camptotheca) topoisomerase inhibitors (e.g., topotecan (branded/marketed as HYCAMTIN®) irinotecan, rubitecan, and belotecan); class II (podophyllum) topoisomerase inhibitors (e.g., etoposide or VP-16, and teniposide); anthracyclines (e.g., doxorubicin, epirubicin, Doxil, aclarubicin, amrubicin, daunorubicin, idarubicin, pirarubicin, valrubicin, and zorubicin); and anthracenediones (e.g., mitoxantrone, and pixantrone).
- Chemotherapeutic agents that are DNA crosslinkers (or DNA damaging agents) include, but are not limited to, alkylating agents (e.g., cyclophosphamide, mechlorethamine, ifosfamide (branded/marketed as IFEX®), trofosfamide, chlorambucil, melphalan, prednimustine, bendamustine, uramustine, estramustine, carmustine (branded/marketed as BiCNU®), lomustine, semustine, fotemustine, nimustine, ranimustine, streptozocin, busulfan, mannosulfan, treosulfan, carboquone, N,N′N′-triethylenethiophosphoramide, triaziquone, triethylenemelamine); alkylating-like agents (e.g., carboplatin (branded/marketed as PARAPLATIN®), cisplatin, oxaliplatin, nedaplatin, triplatin tetranitrate, satraplatin, picoplatin); nonclassical DNA crosslinkers (e.g., procarbazine, dacarbazine, temozolomide (branded/marketed as TEMODAR®), altretamine, mitobronitol); and intercalating agents (e.g., actinomycin, bleomycin, mitomycin, and plicamycin).
- 5.6.4.1 Immune Modulators
- In specific embodiments, an NDV described herein (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine, or a whole cell vaccine are administered to a subject in combination with one or more of the following: any agonist of a co-stimulatory signal of an immune cell (such as, e.g., a T-lymphocyte, NK cell or antigen-presenting cell (e.g., a dendritic cell or macrophage) and/or any antagonist of an inhibitory signal of an immune cell (such as, e.g., a T-lymphocyte, NK cell or antigen-presenting cell (e.g., a dendritic cell or macrophage), known to one of skill in the art. In particular embodiments, an NDV described herein (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine, or a whole cell vaccine are administered to a subject in combination with one or more of the agonists of a co-stimulatory signal of an immune cell described in Section 5.2.1, supra. In some embodiments, an NDV described herein (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine, or a whole cell vaccine are administered to a subject in combination with one or more of the antagonists of an inhibitory signal of an immune cell described in Section 5.2.1, supra. In certain embodiments, an NDV described herein (e.g., a chimeric NDV) or a composition thereof, an oncolysate vaccine, or a whole cell vaccine are administered to a subject in combination with one or more of the agonists of a co-stimulatory signal of an immune cell and/or one or more of the antagonists of an inhibitory signal of an immune cell described in Section 6, infra (e.g., an anti-CTLA-4 antibody or an ICOS-L)
- 5.7 Biological Assays
- Viral assays include those that measure altered viral replication (as determined, e.g., by plaque formation) or the production of viral proteins (as determined, e.g., by western blot analysis) or viral RNAs (as determined, e.g., by RT-PCR or northern blot analysis) in cultured cells in vitro using methods which are well known in the art.
- Growth of the NDVs described herein can be assessed by any method known in the art or described herein (e.g., in cell culture (e.g., cultures of chicken embryonic kidney cells or cultures of chicken embryonic fibroblasts (CEF)). Viral titer may be determined by inoculating serial dilutions of a NDV described herein into cell cultures (e.g., CEF, MDCK, EFK-2 cells, Vero cells, primary human umbilical vein endothelial cells (HUVEC), H292 human epithelial cell line or HeLa cells), chick embryos, or live animals (e.g., avians). After incubation of the virus for a specified time, the virus is isolated using standard methods. Physical quantitation of the virus titer can be performed using PCR applied to viral supernatants (Quinn & Trevor, 1997; Morgan et al., 1990), hemagglutination assays, tissue culture infectious doses (TCID50) or egg infectious doses (EID50). An exemplary method of assessing viral titer is described in Section 6, below.
- Incorporation of nucleotide sequences encoding a heterologous peptide or protein (e.g., a cytokine, a mutated F protein, a mutated V protein, or miRNA target site into the genome of a chimeric NDV described herein can be assessed by any method known in the art or described herein (e.g., in cell culture, an animal model or viral culture in embryonated eggs). For example, viral particles from cell culture of the allantoic fluid of embryonated eggs can be purified by centrifugation through a sucrose cushion and subsequently analyzed for fusion protein expression by Western blotting using methods well known in the art.
- Immunofluorescence-based approaches may also be used to detect virus and assess viral growth. Such approaches are well known to those of skill in the art, e.g., fluorescence microscopy and flow cytometry (see Section 6, infra).
- Antibodies generated by the NDVs described herein may be characterized in a variety of ways well-known to one of skill in the art (e.g., ELISA, Surface Plasmon resonance display (BIAcore), Western blot, immunofluorescence, immunostaining and/or microneutralization assays). In particular, antibodies generated by the chimeric NDVs described herein may be assayed for the ability to specifically bind to an antigen of the virus or a heterologous peptide or protein. Such an assay may be performed in solution (e.g., Houghten, 1992, Bio/Techniques 13:412 421), on beads (Lam, 1991, Nature 354:82 84), on chips (Fodor, 1993, Nature 364:555 556), on bacteria (U.S. Pat. No. 5,223,409), on spores (U.S. Pat. Nos. 5,571,698; 5,403,484; and 5,223,409), on plasmids (Cull et al., 1992, Proc. Natl. Acad. Sci. USA 89:1865 1869) or on phage (Scott and Smith, 1990, Science 249:386 390; Cwirla et al., 1990, Proc. Natl. Acad. Sci. USA 87:6378 6382; and Felici, 1991, J. Mol. Biol. 222:301 310) (each of these references is incorporated herein in its entirety by reference).
- Antibodies generated by the chimeric NDVs described herein that have been identified to specifically bind to an antigen of the virus or a heterologous peptide or protein can be assayed for their specificity to said antigen of the virus or heterologous peptide or protein. The antibodies may be assayed for specific binding to an antigen of the virus or a heterologous peptide or protein and for their cross-reactivity with other antigens by any method known in the art. Immunoassays which can be used to analyze specific binding and cross-reactivity include, but are not limited to, competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), “sandwich” immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays, to name but a few. Such assays are routine and well known in the art (see, e.g., Ausubel et al., eds., 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York, which is incorporated by reference herein in its entirety).
- The binding affinity of an antibody to an antigen and the off-rate of an antibody-antigen interaction can be determined by competitive binding assays. Alternatively, a surface plasmon resonance assay (e.g., BIAcore kinetic analysis) or KinExA assay (Blake, et al., Analytical Biochem., 1999, 272:123-134) may be used to determine the binding on and off rates of antibodies to an antigen of the chimeric NDVs described herein.
- IFN induction and release by an NDV described herein may be determined using techniques known to one of skill in the art or described herein. For example, the amount of IFN induced in cells following infection with an NDV described herein may be determined using an immunoassay (e.g., an ELISA or Western blot assay) to measure IFN expression or to measure the expression of a protein whose expression is induced by IFN. Alternatively, the amount of IFN induced may be measured at the RNA level by assays, such as Northern blots and quantitative RT-PCR, known to one of skill in the art. In specific embodiments, the amount of IFN released may be measured using an ELISPOT assay. (See, e.g., the methods described in Section 6, below.)
- Techniques for assessing the expression of activation marker, co-stimulatory molecule, ligand, or inhibitory molecule by immune cells are known to one of skill in the art. For example, the expression of an activation marker, co-stimulatory molecule, ligand, or inhibitory molecule by an immune cell (e.g., T lymphocyte or NK cell) can be assessed by flow cytometry. In a specific embodiment, techniques described in Section 6, infra, are used to assess the expression of an activation marker, co-stimulatory molecule, ligand, or inhibitory molecule by an immune cell.
- Techniques for assessing immune cell infiltration are known to one of skill in the art. In a specific embodiment, techniques described in Section 6, infra, are used to assess immune cell infiltration.
- In some embodiments, the NDVs described herein or compositions thereof, oncolysate vaccines described herein, whole cell vaccines described herein, or combination therapies described herein are tested for cytotoxicity in mammalian, preferably human, cell lines (see, e.g., the cytotoxicity assay described in Section 6, infra). In certain embodiments, cytotoxicity is assessed in one or more of the following non-limiting examples of cell lines: U937, a human monocyte cell line; primary peripheral blood mononuclear cells (PBMC); Huh7, a human hepatoblastoma cell line; HL60 cells, HT1080, HEK 293T and 293H, MLPC cells, human embryonic kidney cell lines; human melanoma cell lines, such as SkMel2, SkMel-119 and SkMel-197; THP-1, monocytic cells; a HeLa cell line; and neuroblastoma cells lines, such as MC-IXC, SK-N-MC, SK-N-MC, SK-N-DZ, SH-SY5Y, and BE(2)-C. In certain embodiments, cytotoxicity is assessed in various cancer cells. In some embodiments, the ToxLite assay is used to assess cytotoxicity.
- Many assays well-known in the art can be used to assess viability of cells or cell lines following infection with an NDV described herein or composition thereof, or treatment with an oncolysate vaccine described herein, a whole cell vaccine described herein, or a combination therapy described herein and, thus, determine the cytotoxicity of the NDV or composition thereof, oncolysate vaccine, whole cell vaccine, or combination therapy. For example, cell proliferation can be assayed by measuring Bromodeoxyuridine (BrdU) incorporation, (3H) thymidine incorporation, by direct cell count, or by detecting changes in transcription, translation or activity of known genes such as proto-oncogenes (e.g., fos, myc) or cell cycle markers (Rb, cdc2, cyclin A, D1, D2, D3, E, etc). The levels of such protein and mRNA and activity can be determined by any method well known in the art. For example, protein can be quantitated by known immunodiagnostic methods such as ELISA, Western blotting or immunoprecipitation using antibodies, including commercially available antibodies. mRNA can be quantitated using methods that are well known and routine in the art, for example, using northern analysis, RNase protection, or polymerase chain reaction in connection with reverse transcription. Cell viability can be assessed by using trypan-blue staining or other cell death or viability markers known in the art. In a specific embodiment, the level of cellular ATP is measured to determined cell viability. In preferred embodiments, an NDV described herein or composition thereof, oncolysate vaccine, whole cell vaccine, or combination therapy kills cancer cells but does not kill healthy (i.e., non-cancerous) cells. In one embodiment, an NDV described herein or composition thereof, oncolysate vaccine, whole cell vaccine, or combination therapy preferentially kills cancer cells but does not kill healthy (i.e., non-cancerous) cells.
- In specific embodiments, cell viability is measured in three-day and seven-day periods using an assay standard in the art, such as the CellTiter-Glo Assay Kit (Promega) which measures levels of intracellular ATP. A reduction in cellular ATP is indicative of a cytotoxic effect. In another specific embodiment, cell viability can be measured in the neutral red uptake assay. In other embodiments, visual observation for morphological changes may include enlargement, granularity, cells with ragged edges, a filmy appearance, rounding, detachment from the surface of the well, or other changes.
- The NDVs described herein or compositions thereof, oncolysate vaccines, whole cell vaccines or combination therapies can be tested for in vivo toxicity in animal models (see, e.g., the animal models described in Section 6, below). For example, animal models, described herein and/or others known in the art, used to test the effects of compounds on cancer can also be used to determine the in vivo toxicity of the NDVs described herein or compositions thereof, oncolysate vaccines, whole cell vaccines, or combination therapies. For example, animals are administered a range of pfu of an NDV described herein (e.g., a chimeric NDV described in Section 5.2, infra). Subsequently, the animals are monitored over time for lethality, weight loss or failure to gain weight, and/or levels of serum markers that may be indicative of tissue damage (e.g., creatine phosphokinase level as an indicator of general tissue damage, level of glutamic oxalic acid transaminase or pyruvic acid transaminase as indicators for possible liver damage). These in vivo assays may also be adapted to test the toxicity of various administration mode and/or regimen in addition to dosages.
- The toxicity and/or efficacy of an NDV described herein or a composition thereof, an oncolysate vaccine described herein, a whole cell vaccine described herein, or a combination therapy described herein can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Therapies that exhibits large therapeutic indices are preferred. While therapies that exhibits toxic side effects may be used, care should be taken to design a delivery system that targets such therapies to the site of affected tissue in order to minimize potential damage to noncancerous cells and, thereby, reduce side effects.
- The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage of the therapies for use in subjects. The dosage of such agents lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any therapy described herein, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the 1050 (i.e., the concentration of the chimeric NDV that achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in subjects. Levels in plasma may be measured, for example, by high performance liquid chromatography.
- The NDVs described herein or compositions thereof, oncolysate vaccines described herein, whole cell vaccines described herein, or combination therapies described herein can be tested for biological activity using animal models for cancer. Such animal model systems include, but are not limited to, rats, mice, chicken, cows, monkeys, pigs, dogs, rabbits, etc. In a specific embodiment, the anti-cancer activity of an NDV described herein or combination therapy is tested in a mouse model system. Such model systems are widely used and well-known to the skilled artisan such as the SCID mouse model or transgenic mice.
- The anti-cancer activity of an NDV described herein or a composition thereof, oncolysate vaccine described herein, whole cell vaccine described herein, or a combination therapy described herein can be determined by administering the NDV or composition thereof, oncolysate vaccine, whole cell vaccine, or combination therapy to an animal model and verifying that the NDV or composition thereof, oncolysate vaccine, whole cell vaccine, or combination therapy is effective in reducing the severity of cancer, reducing the symptoms of cancer, reducing cancer metastasis, and/or reducing the size of a tumor in said animal model (see, e.g., Section 6, below). Examples of animal models for cancer in general include, include, but are not limited to, spontaneously occurring tumors of companion animals (see, e.g., Vail & MacEwen, 2000, Cancer Invest 18(8):781-92). Examples of animal models for lung cancer include, but are not limited to, lung cancer animal models described by Zhang & Roth (1994, In-vivo 8(5):755-69) and a transgenic mouse model with disrupted p53 function (see, e.g. Morris et al., 1998, J La State Med Soc 150(4): 179-85). An example of an animal model for breast cancer includes, but is not limited to, a transgenic mouse that over expresses cyclin D1 (see, e.g., Hosokawa et al., 2001, Transgenic Res 10(5):471-8). An example of an animal model for colon cancer includes, but is not limited to, a TCR b and p53 double knockout mouse (see, e.g., Kado et al., 2001, Cancer Res. 61(6):2395-8). Examples of animal models for pancreatic cancer include, but are not limited to, a metastatic model of PancO2 murine pancreatic adenocarcinoma (see, e.g., Wang et al., 2001, Int. J. Pancreatol. 29(1):37-46) and nu-nu mice generated in subcutaneous pancreatic tumors (see, e.g., Ghaneh et al., 2001, Gene Ther. 8(3):199-208). Examples of animal models for non-Hodgkin's lymphoma include, but are not limited to, a severe combined immunodeficiency (“SCID”) mouse (see, e.g., Bryant et al., 2000, Lab Invest 80(4):553-73) and an IgHmu-HOX11 transgenic mouse (see, e.g., Hough et al., 1998, Proc. Natl. Acad. Sci. USA 95(23):13853-8). An example of an animal model for esophageal cancer includes, but is not limited to, a mouse transgenic for the human papillomavirus type 16 E7 oncogene (see, e.g., Herber et al., 1996, J. Virol. 70(3):1873-81). Examples of animal models for colorectal carcinomas include, but are not limited to, Apc mouse models (see, e.g., Fodde & Smits, 2001, Trends Mol Med 7(8):369 73 and Kuraguchi et al., 2000). In a specific embodiment, the animal models for cancer described in Section 6, infra, are used to assess efficacy of an NDV or composition thereof, an oncolysate, a whole cell vaccine, or a combination therapy.
- This example demonstrates the therapeutic efficacy of NDV therapy in combination with immune checkpoint modulators that are immunostimulatory in the treatment of cancer.
- 6.1 Materials & Methods
- BALB/c mice (6-8 weeks old), and WT C57BL/6 mice were purchased from Jackson Laboratory. All mice were maintained in microisolator cages and treated in accordance with the NIH and American Association of Laboratory Animal Care regulations. All mouse procedures and experiments for this study were approved by the Memorial Sloan-Kettering Cancer Center Institutional Animal Care and Use Committee.
- The murine cancer cell lines for melanoma (B16-F10), and colon carcinoma (CT26 and MC38) were maintained in RPMI medium supplemented with 10% fetal calf serum and penicillin with streptomycin. The murine prostate cancer cell line TRAMP-C2 was maintained in DMEM medium supplemented with 5% fetal calf serum (FCS; Mediatech, Inc.), 5% Nu Serum IV (BD Biosciences) HEPES, 2-ME, pen/strep, L-glut, 5 μg/mL insulin (Sigma), and 10 nmol/L DHT (Sigma).
- Therapeutic anti-CTLA-4 (clone 9H10), anti-PD-1 (clone RMP1-14), and anti-PD-L1 monoclonal antibodies were produced by BioXcell. Antibodies used for flow cytometry were purchased from eBioscience, Biolegend, Invitrogen, and BD Pharmingen.
- Recombinant lentogenic NDV LaSota strain was used for all experiments. To generate NDV virus expressing murine ICOSL, a DNA fragment encoding the murine ICOSL flanked by the appropriate NDV-specific RNA transcriptional signals was inserted into the SacII site created between the P and M genes of pT7NDV/LS. Viruses were rescued from cDNA using methods described previously and sequenced by reverse transcription PCR for insert fidelity. Virus titers were determined by serial dilution and immunofluorescence in Vero cells. Recombinant ICOSL-F fusion construct was generated by PCR amplification of the ICOSL DNA encoding the extracellular domain (amino acids 1-277) with flanking EcoRI and MluI restriction sites, and the NDV F DNA encoding the F transmembrane and intracellular domains (amino acids 501-554) with flanking MluI and XhoI restriction sites. The resultant DNA fragments were assembled in pCAGGS vector utilizing 3-part ligation.
- For evaluation of upregulation of surface MHC-I, MHC-II, and ICAM-1 by NDV, and for evaluation of surface expression of the ICOSL transgene from the NDV-ICOSL virus, B16-F10 cells were infected in 6-well dishes at
MOI 2 in triplicate. Twenty-four hours later, the cells were harvested by mechanical scraping and processed for surface labeling and quantification by flow cytometry. For virus growth curve experiments, B16-F10 cells were incubated at room temperature with the virus in 6-well culture dishes at the indicated MOIs in a total volume of 100 μl. One hour after the incubation, the infection media was aspirated and the cells were incubated at 37° C. in 1 ml of DMEM with 10% chick allantoic fluid. After 24, 48, and 72 hours, the supernatants were collected and virus titers were determined as above. For in vitro cytotoxicity experiments, the infections were carried out in a similar fashion. At 24, 48, 72, and 96 hours post infection the cells were washed and incubated with 1% Triton X-100 at 37° C. for 30 minutes. LDH activity in the lysates was determined using the Promega CytoTox 96 assay kit, according to the manufacturer's instructions. - Bilateral flank tumor models were established to monitor for therapeutic efficacy in both injected and systemic tumors. Treatment schedules and cell doses were established for each tumor model to achieve 10-20% tumor clearance by NDV or anti-CTLA-4/anti-PD-1 as single agents. For experiments evaluating combination therapy of wild-type NDV (NDV-WT) with immune checkpoint blockade, B16F10 tumors were implanted by injection of 2×105 B16F10 cells in the right flank i.d. on
0 and 5×104 cells in the left flank onday day 4. On 7, 10, 13, and 16 the mice were treated with 4 intratumoral injections of 2×107 pfu of NDV in PBS in a total volume of 100 μl. Concurrently, ondays 7, 10, 13, and 16 the mice received 4 i.p. injections of anti-CTLA-4 antibody (100 μg) or anti-PD-1 antibody (250 μg). Control groups received a corresponding dose of isotype antibody i.p. and intratumoral injection of PBS. Tumor size and incidence were monitored over time by measurement with a caliper.days - For the TRAMP-C2 model, 5×105 cells were implanted in right flank on
0 and 5×105 cells were implanted in the left flank onday day 8. Treatment was performed on 11, 14, 17, and 20 in the similar fashion to above.days - For experiments evaluating recombinant NDV expressing ICOSL (NDV-ICOSL), B16F10 tumors were implanted by injection of 2×105 B16F10 cells in the right flank i.d. on
0 and 1×105 cells in the left flank onday day 4. Treatment was carried out as above. - For the CT26 model, tumors were implanted by injection of 1×106 CT26 cells in the right flank i.d. on
0 and 1×106 cells in the left flank onday day 2. Treatment was carried out as above on days 6, 9, and 12. - B16F10 tumors were implanted by injection of 2×105 B16F10 cells in the right flank i.d. on
0 and 2×105 cells in the left flank onday day 4. On 7, 10, and 13 the mice were treated with 3 intratumoral injections of 2×107 pfu of NDV, and 100 μg of i.p. anti-CTLA-4 antibody or 250 μg of i.p. anti-PD-1 antibody, where specified. Ondays day 15, mice were sacrificed by CO2 inhalation. Tumors and tumor-draining lymph nodes were removed using forceps and surgical scissors and weighed. Tumors from each group were minced with scissors prior to incubation with 1.67 Wünsch U/mL Liberase and 0.2 mg/mL DNase for 30 minutes at 37° C. Tumors were homogenized by repeated pipetting and filtered through a 70-μm nylon filter. Cell suspensions were washed once with complete RPMI and purified on a Ficoll gradient to eliminate dead cells. Cells from tumor draining lymph nodes were isolated by grinding the lymph nodes through a 70-μm nylon filter. - Cells isolated from tumors or tumor-draining lymph nodes were processed for surface labeling with several antibody panels staining CD45, CD3, CD4, CD8, CD44, PD-1, ICOS, CD11c, CD19, NK1.1, CD11b, F4/80, Ly6C and Ly6G. Fixable viability dye eFluor780 (eBioscience) was used to distinguish the live cells. Cells were further permeabilized using FoxP3 fixation and permeabilization kit (eBioscience) and stained for Ki-67, FoxP3, Granzyme B, CTLA-4, and IFN gamma. Data was acquired using the LSRII Flow cytometer (BD Biosciences) and analyzed using FlowJo software (Treestar).
- Spleens from naïve mice were isolated and digested with 1.67 Wünsch U/mL Liberase and 0.2 mg/mL DNase for 30 minutes at 37° C. The resulting cell suspensions were filtered through 70 μm nylon filter and washed once with complete RPMI. CD11c+ dendritic cells were purified by positive selection using Miltenyi magnetic beads. Isolated dendritic cells were cultured overnight with recombinant GM-CSF and B16-F10 tumor lysates and were purified on Ficoll gradient.
- Cell suspensions from tumors or tumor-draining lymph nodes were pooled and enriched for T cells using a Miltenyi T-cell purification kit. Isolated T cells were counted and co-cultured for 8 hours with dendritic cells loaded with B16-F10 tumor cell lysates in the presence of 20 U/ml IL-2 (R and D) plus Brefeldin A (BD Bioscience). After restimulation, lymphocytes were processed for flow cytometry as above.
- Data were analyzed by 2-tailed Student's t test, and P<0.05 was considered statistically significant.
- 6.2 Results
- In order to characterize the anti-tumor immune response induced by Newcastle disease virus (NDV) infection, the expression of MHC I and MHC II molecules as well as ICAM-1 on the surface of in vitro infected cells was assessed. As shown in
FIG. 1 , NDV infection in B16 melanoma cells induces upregulation of MHC class I and II molecules as well as adhesion molecule ICAM-1, all of which are thought to be important for recruitment of tumor-specific lymphocytes and activation of anti-tumor immune response. Next, the anti-tumor immune response induced by NDV infection in vivo was assessed in a murine melanoma model and an established 2-flank model that allowed us to monitor responses both in the virus-injected tumors as well as distant tumors which do not receive the virus. As shown inFIG. 2 , the virus-infected tumors show dramatic infiltration with immune cells such as NK cells, macrophages, and CD8 and CD4 cells, but not regulatory T cells. Since part of this immune response could be a response to virus, rather than tumor, the immune response with respect to contralateral tumors was assessed (FIG. 3 ). Interestingly, these tumors demonstrated a similar degree of increased CD8 and CD4 effector, but not T reg infiltrate. Analysis of these cells revealed that they upregulate activation, proliferation, and lytic markers (FIG. 4 ). NDV monotherapy was effective in controlling the treated tumors (FIG. 5A ), but only marginally slowed down the growth of the contralateral tumors (FIG. 5B ). Mice that cleared the tumors, however, demonstrated some degree of protection against further tumor challenge (FIG. 5D ), suggesting that NDV therapy can induce a lasting immunity. - Next, it was assessed whether additional mechanisms could be targeted to enhance the anti-tumor effect generated by NDV. Characterization of tumor-infiltrating lymphocytes from both NDV-injected and non-injected tumors revealed upregulation of the inhibitory receptor CTLA-4 on lymphocytes (
FIG. 6 ). It was then assessed whether inhibition of the CTLA-4 receptor could result in a better therapeutic efficacy of NDV. Strikingly, combination therapy resulted in rejection in bilateral tumors in the majority of the animals, an effect that was not seen with either treatment alone (FIG. 7 ). This effect was present even when the prostate adenocarcinoma TRAMP model was used, which is not susceptible to viral infection (FIG. 8 ), suggesting that the minimal viral replication and the resultant inflammatory response were sufficient for generation of protective anti-tumor immunity. - To determine whether targeting other immune checkpoints in combination with NDV therapy could be beneficial, the effect on the PD-1-PD-L1 pathway following NDV infection was assessed. As shown in
FIG. 9 , NDV infected tumor cells both in vitro and in vivo had upregulated the expression of the inhibitory PD-L1 ligand on the surface of the cells. This effect was not just a result of a direct virus infection, but was also seen when non-infected cells were treated with UV-inactivated supernatants from the virus infected cells (FIG. 9B ) and in contralateral, noninfected, tumors (FIG. 9C ). This prompted testing combination therapy with NDV and anti-PD-1 antibody. Similar to CTLA-4 blockade, NDV therapy in combination with anti-PD-1 in the aggressive B16 melanoma model resulted in cures in the majority of animals, an effect that was associated with increased tumor infiltration with activated effector lymphocytes (FIG. 10 ). - Throughout the studies conducted, the therapeutic efficacy of a combination therapy decreased when larger tumor challenge was used. Next, activation markers that could predict a better response and could be targeted for further improvement in therapeutic efficacy were assessed. Analysis of lymphocytes isolated from the tumors and tumor-draining lymph nodes identified upregulation of the co-stimulatory molecule ICOS as one of the activation markers in the treated animals (
FIG. 11 ). ICOS upregulation has been previously been shown to be associated with more durable therapeutic responses and increased survival in patients treated with anti-CTLA-4 therapy for malignant melanoma. It was assessed whether intratumoral expression of the ICOS ligand (ICOSL) could further boost the therapeutic response of combination therapy. Using reverse-genetics system for NDV, NDV expressing murine ICOSL (NDV-ICOSL) were generated. In vitro characterization of the virus revealed that it had similar replicative and lytic properties to the parental NDV strain (FIG. 12 ). When tested in vivo, however, with a larger B16 tumor challenge, NDV-ICOSL demonstrated significant advantage over the parental NDV virus when used in combination with CTLA-4 blockade, with long-term survival in the majority of treated animals (FIG. 13 ). This effect was not limited to B16 melanoma and was demonstrated for CT26 colon carcinoma in the Balb/C mouse strain, suggesting that this therapeutic strategy could be translatable to different tumor types (FIG. 14 ). Analysis of B16 tumors from the treated animals demonstrated significant infiltration with different immune cell subtypes with upregulation of the activation markers (FIGS. 15 and 16 ). These lymphocytes were tumor-specific and demonstrated secretion of IFN gamma in response to stimulation with dendritic cells loaded with tumor lysates (FIG. 17 ). Finally, animals that were cured of their B16 or CT26 tumors were re-challenged with tumor cells and demonstrated complete protection against tumor re-challenge (FIG. 18 ). - To further improve the expression of the ICOSL in the tumor and to incorporate the ligand into the virion, a chimeric protein consisting of the extracellular domain of the ICOSL (amino acids 1-277) and the transmembrane and intracellular domains of the NDV F protein (amino acids 501-554) was generated (
FIG. 19A ). Transfection of the resultant construct into B16-F10 cells resulted in increased expression of the chimeric ICOSL-F ligand on the surface of the transfected cells, when compared to the transfected native ICOSL, suggesting that the regulatory mechanisms governing the transport of NDV F protein to the surface can be utilized to increase the surface expression of immune stimulatory ligands. - Overall, these studies demonstrate that 1) combination of NDV with immune checkpoint regulatory antibodies can be used as a strategy to circumvent the limitation of both oncolytic virus therapy and antibody therapy; and 2) expression of immunostimulatory ligands by NDV can further improve the therapeutic efficacy of the virus, especially when used in combination with immunoregulatory antibodies. These findings have clinical application.
- The invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.
- All references cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.
Claims (51)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/205,776 US20140271677A1 (en) | 2013-03-14 | 2014-03-12 | Newcastle Disease Viruses and Uses Thereof |
| US15/789,539 US10251922B2 (en) | 2013-03-14 | 2017-10-20 | Newcastle disease viruses and uses thereof |
| US15/789,340 US20180256655A1 (en) | 2013-03-14 | 2017-10-20 | Newcastle Disease Viruses and Uses Thereof |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361782994P | 2013-03-14 | 2013-03-14 | |
| US14/205,776 US20140271677A1 (en) | 2013-03-14 | 2014-03-12 | Newcastle Disease Viruses and Uses Thereof |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/789,340 Division US20180256655A1 (en) | 2013-03-14 | 2017-10-20 | Newcastle Disease Viruses and Uses Thereof |
| US15/789,539 Division US10251922B2 (en) | 2013-03-14 | 2017-10-20 | Newcastle disease viruses and uses thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140271677A1 true US20140271677A1 (en) | 2014-09-18 |
Family
ID=51527979
Family Applications (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/774,962 Abandoned US20160015760A1 (en) | 2013-03-14 | 2014-03-04 | Newcastle disease viruses and uses thereof |
| US14/205,776 Abandoned US20140271677A1 (en) | 2013-03-14 | 2014-03-12 | Newcastle Disease Viruses and Uses Thereof |
| US15/588,251 Abandoned US20180078592A1 (en) | 2013-03-14 | 2017-05-05 | Newcastle Disease Viruses And Uses Thereof |
| US15/789,539 Active US10251922B2 (en) | 2013-03-14 | 2017-10-20 | Newcastle disease viruses and uses thereof |
| US15/789,340 Abandoned US20180256655A1 (en) | 2013-03-14 | 2017-10-20 | Newcastle Disease Viruses and Uses Thereof |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/774,962 Abandoned US20160015760A1 (en) | 2013-03-14 | 2014-03-04 | Newcastle disease viruses and uses thereof |
Family Applications After (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/588,251 Abandoned US20180078592A1 (en) | 2013-03-14 | 2017-05-05 | Newcastle Disease Viruses And Uses Thereof |
| US15/789,539 Active US10251922B2 (en) | 2013-03-14 | 2017-10-20 | Newcastle disease viruses and uses thereof |
| US15/789,340 Abandoned US20180256655A1 (en) | 2013-03-14 | 2017-10-20 | Newcastle Disease Viruses and Uses Thereof |
Country Status (28)
| Country | Link |
|---|---|
| US (5) | US20160015760A1 (en) |
| EP (1) | EP2968525A4 (en) |
| JP (4) | JP6596411B2 (en) |
| KR (1) | KR102222157B1 (en) |
| CN (3) | CN111218429A (en) |
| AP (1) | AP2015008685A0 (en) |
| AU (2) | AU2014241843B2 (en) |
| BR (1) | BR112015021414B1 (en) |
| CA (1) | CA2905272A1 (en) |
| CL (2) | CL2015002532A1 (en) |
| CR (1) | CR20150465A (en) |
| DO (1) | DOP2015000227A (en) |
| EA (1) | EA038981B1 (en) |
| GE (1) | GEP20196976B (en) |
| HK (1) | HK1216618A1 (en) |
| IL (2) | IL241120A0 (en) |
| MA (1) | MA38406B1 (en) |
| MD (1) | MD4655C1 (en) |
| MX (2) | MX375431B (en) |
| MY (1) | MY180687A (en) |
| NI (1) | NI201500131A (en) |
| NZ (1) | NZ711946A (en) |
| PE (1) | PE20151921A1 (en) |
| PH (1) | PH12015502087B1 (en) |
| SG (2) | SG10201802982WA (en) |
| TN (1) | TN2015000353A1 (en) |
| WO (1) | WO2014158811A1 (en) |
| ZA (1) | ZA201506192B (en) |
Cited By (63)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9217136B2 (en) | 2009-02-05 | 2015-12-22 | Icahn School Of Medicine At Mount Sinai | Chimeric Newcastle disease viruses and uses thereof |
| US20160015760A1 (en) * | 2013-03-14 | 2016-01-21 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
| WO2016014565A2 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor |
| WO2016014553A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
| WO2016014530A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
| WO2016025880A1 (en) | 2014-08-14 | 2016-02-18 | Novartis Ag | Treatment of cancer using gfr alpha-4 chimeric antigen receptor |
| WO2016044605A1 (en) | 2014-09-17 | 2016-03-24 | Beatty, Gregory | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
| WO2016057841A1 (en) | 2014-10-08 | 2016-04-14 | Novartis Ag | Compositions and methods of use for augmented immune response and cancer therapy |
| WO2016061142A1 (en) | 2014-10-14 | 2016-04-21 | Novartis Ag | Antibody molecules to pd-l1 and uses thereof |
| WO2016090034A2 (en) | 2014-12-03 | 2016-06-09 | Novartis Ag | Methods for b cell preconditioning in car therapy |
| US9394365B1 (en) | 2014-03-12 | 2016-07-19 | Yeda Research And Development Co., Ltd | Reducing systemic regulatory T cell levels or activity for treatment of alzheimer's disease |
| US20160208222A1 (en) * | 2013-09-03 | 2016-07-21 | Medimmune Limited | Compositions featuring an attenuated newcastle disease virus and methods of use for treating neoplasia |
| WO2016164731A2 (en) | 2015-04-08 | 2016-10-13 | Novartis Ag | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car) - expressing cell |
| US9512227B2 (en) | 2014-03-12 | 2016-12-06 | Yeda Research And Development Co. Ltd | Reducing systemic regulatory T cell levels or activity for treatment of Alzheimer's disease |
| WO2017009842A2 (en) | 2015-07-16 | 2017-01-19 | Biokine Therapeutics Ltd. | Compositions and methods for treating cancer |
| WO2017019894A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to lag-3 |
| WO2017019897A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to tim-3 |
| WO2017106656A1 (en) | 2015-12-17 | 2017-06-22 | Novartis Ag | Antibody molecules to pd-1 and uses thereof |
| WO2017149515A1 (en) | 2016-03-04 | 2017-09-08 | Novartis Ag | Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore |
| WO2018067992A1 (en) | 2016-10-07 | 2018-04-12 | Novartis Ag | Chimeric antigen receptors for the treatment of cancer |
| WO2018087720A1 (en) | 2016-11-14 | 2018-05-17 | Novartis Ag | Compositions, methods, and therapeutic uses related to fusogenic protein minion |
| WO2018187191A1 (en) | 2017-04-03 | 2018-10-11 | Jounce Therapeutics, Inc | Compositions and methods for the treatment of cancer |
| WO2018201056A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
| WO2018201051A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor |
| WO2018209194A2 (en) | 2017-05-12 | 2018-11-15 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
| EP3487878A1 (en) | 2016-07-20 | 2019-05-29 | University of Utah Research Foundation | Cd229 car t cells and methods of use thereof |
| US10308913B2 (en) | 2005-12-02 | 2019-06-04 | Icahn School Of Medicine At Mount Sinai | Chimeric viruses presenting non-native surface proteins and uses thereof |
| WO2019152660A1 (en) | 2018-01-31 | 2019-08-08 | Novartis Ag | Combination therapy using a chimeric antigen receptor |
| WO2019227003A1 (en) | 2018-05-25 | 2019-11-28 | Novartis Ag | Combination therapy with chimeric antigen receptor (car) therapies |
| WO2019241426A1 (en) | 2018-06-13 | 2019-12-19 | Novartis Ag | Bcma chimeric antigen receptors and uses thereof |
| US10513558B2 (en) | 2015-07-13 | 2019-12-24 | Cytomx Therapeutics, Inc. | Anti-PD1 antibodies, activatable anti-PD1 antibodies, and methods of use thereof |
| US10519237B2 (en) | 2014-03-12 | 2019-12-31 | Yeda Research And Development Co. Ltd | Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS |
| US10570377B2 (en) | 2016-01-08 | 2020-02-25 | Replimune Limited | Oncolytic virus strain |
| WO2020069409A1 (en) | 2018-09-28 | 2020-04-02 | Novartis Ag | Cd19 chimeric antigen receptor (car) and cd22 car combination therapies |
| WO2020069405A1 (en) | 2018-09-28 | 2020-04-02 | Novartis Ag | Cd22 chimeric antigen receptor (car) therapies |
| US10618963B2 (en) | 2014-03-12 | 2020-04-14 | Yeda Research And Development Co. Ltd | Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS |
| EP3660042A1 (en) | 2014-07-31 | 2020-06-03 | Novartis AG | Subset-optimized chimeric antigen receptor-containing t-cells |
| WO2020185739A1 (en) | 2019-03-11 | 2020-09-17 | Jounce Therapeutics, Inc. | Anti-icos antibodies for the treatment of cancer |
| EP3712171A1 (en) | 2014-08-19 | 2020-09-23 | Novartis AG | Treatment of cancer using a cd123 chimeric antigen receptor |
| WO2020205662A1 (en) | 2019-03-29 | 2020-10-08 | Myst Therapeutics, Inc. | Ex vivo methods for producing a t cell therapeutic and related compositions and methods |
| EP3722316A1 (en) | 2014-07-21 | 2020-10-14 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
| US10995141B2 (en) | 2019-04-19 | 2021-05-04 | ImmunoBrain Checkpoint, Inc. | Modified anti-PD-L1 antibody and methods and uses for treating a neurodegenerative disease |
| WO2021091960A1 (en) | 2019-11-05 | 2021-05-14 | Jounce Therapeutics, Inc. | Methods of treating cancer with anti-pd-1 antibodies |
| CN112839952A (en) * | 2018-08-29 | 2021-05-25 | 沙塔克实验室有限公司 | Combination therapy comprising PD-1-based chimeric protein |
| WO2021108613A1 (en) | 2019-11-26 | 2021-06-03 | Novartis Ag | Cd19 and cd22 chimeric antigen receptors and uses thereof |
| WO2021108727A1 (en) | 2019-11-27 | 2021-06-03 | Myst Therapeutics, Inc. | Method of producing tumor-reactive t cell composition using modulatory agents |
| WO2021174208A1 (en) | 2020-02-27 | 2021-09-02 | Myst Therapeutics, Llc | Methods for ex vivo enrichment and expansion of tumor reactive t cells and related compositions thereof |
| US11285194B2 (en) * | 2014-10-24 | 2022-03-29 | Calidi Biotherapeutics, Inc. | Combination immunotherapy approach for treatment of cancer |
| WO2022104061A1 (en) | 2020-11-13 | 2022-05-19 | Novartis Ag | Combination therapies with chimeric antigen receptor (car)-expressing cells |
| US11389495B2 (en) | 2014-02-27 | 2022-07-19 | Merck Sharp & Dohme Llc | Combination method for treatment of cancer |
| WO2022254337A1 (en) | 2021-06-01 | 2022-12-08 | Novartis Ag | Cd19 and cd22 chimeric antigen receptors and uses thereof |
| US11607450B2 (en) | 2015-08-11 | 2023-03-21 | Calidi Biotherapeutics, Inc. | Smallpox vaccine for cancer treatment |
| US11684637B2 (en) | 2017-05-25 | 2023-06-27 | University Of Central Florida Research Foundation, Inc. | Oncolytic viruses for sensitizing tumor cells to killing by natural killer cells |
| US11884931B2 (en) | 2021-08-06 | 2024-01-30 | Libentech Co., Ltd. | Oncolytic virus for colorectal cancer treatment using colorectal cancer cell-specific infectious newcastle disease virus and composition for colorectal cancer treatment using same |
| EP4378957A2 (en) | 2015-07-29 | 2024-06-05 | Novartis AG | Combination therapies comprising antibody molecules to pd-1 |
| US12059444B2 (en) | 2017-01-09 | 2024-08-13 | Replimune Limited | Altered virus |
| US12134779B2 (en) | 2021-10-29 | 2024-11-05 | Slingshot Biosciences, Inc. | Hydrogel particles as feeder cells and as synthetic antigen presenting cells |
| US12196661B2 (en) | 2022-10-26 | 2025-01-14 | Slingshot Biosciences, Inc. | Size-tunable synthetic particles with tunable optical properties and methods for using the same for immune cell activation |
| US12352679B2 (en) | 2015-02-09 | 2025-07-08 | Slingshot Biosciences, Inc. | Synthetic human cell mimic particle for cytometric or coulter device |
| US12379387B2 (en) | 2022-05-05 | 2025-08-05 | Slingshot Biosciences, Inc. | Engineered particles as red blood cell mimics and compositions containing same for hematology |
| US12391957B2 (en) | 2018-08-17 | 2025-08-19 | Icahn School Of Medicine At Mount Sinai | Recombinant Newcastle disease viruses and uses thereof for the prevention of RSV disease or human metapneumovirus disease |
| US12461007B2 (en) | 2023-08-29 | 2025-11-04 | Slingshot Biosciences, Inc. | CD34 stem cell mimics |
| EP4643874A2 (en) | 2015-12-22 | 2025-11-05 | Novartis AG | Mesothelin chimeric antigen receptor (car) and antibody against pd-l1 inhibitor for combined use in anticancer therapy |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NZ582150A (en) | 2007-06-18 | 2012-08-31 | Msd Oss Bv | Antibodies to human programmed death receptor pd-1 |
| SI3081576T1 (en) | 2013-12-12 | 2019-12-31 | Shanghai Hengrui Pharmaceutical Co., Ltd., | Pd-1 antibody, antigen-binding fragment thereof, and medical application thereof |
| CN105985966B (en) * | 2015-03-06 | 2024-08-16 | 普莱柯生物工程股份有限公司 | Gene VII type newcastle disease virus strain, vaccine composition, preparation method and application thereof |
| GB201509338D0 (en) | 2015-05-29 | 2015-07-15 | Bergenbio As | Combination therapy |
| EP3820492A4 (en) * | 2018-07-13 | 2022-05-04 | Icahn School of Medicine at Mount Sinai | APMV AND ITS USES IN THE TREATMENT OF CANCER |
| WO2020075672A1 (en) * | 2018-10-09 | 2020-04-16 | バイオコモ株式会社 | Anticancer agent, pharmaceutical composition for cancer treatment, and kit |
| CN109627336A (en) * | 2018-12-20 | 2019-04-16 | 南京昂科利医药科技创新研究院有限公司 | A kind of preparation method and application of newcastle disease oncolytic virus that expressing PD-L1 single-chain antibody |
| US20230193213A1 (en) * | 2019-01-29 | 2023-06-22 | Arno Thaller | Recombinant oncolytic newcastle disease viruses with increased activity |
| CN110564766A (en) * | 2019-09-20 | 2019-12-13 | 华农(肇庆)生物产业技术研究院有限公司 | Preparation method of whole genome expression vector pBR322-DHN3 |
| CN110672844A (en) * | 2019-10-29 | 2020-01-10 | 华中科技大学 | Newcastle disease virus antibody magnetic immunochemiluminescence detection kit and its application |
| US20210386804A1 (en) * | 2020-06-11 | 2021-12-16 | Tibor Bakács | Combination of viral superinfection therapy with subthreshold doses of nivolumab plus ipilimumab in chronic HBV patients |
| US20230321165A1 (en) * | 2020-09-16 | 2023-10-12 | Osaka University | Medicament for treating cancer, immunostimulant, and method for screening for anti-cancer substance |
| CN115197949A (en) * | 2021-04-13 | 2022-10-18 | 江苏康缘瑞翱生物医药科技有限公司 | Recombinant Newcastle disease virus rNDV-OX40L, genome thereof, preparation method and application thereof |
| KR20250083186A (en) * | 2023-11-29 | 2025-06-09 | 주식회사 카브 | Pharmaceutical composition comprising recombinant Newcastle disease virus vector for treating cancer |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120058141A1 (en) * | 2009-02-05 | 2012-03-08 | Peter Palese | Chimeric newcastle disease viruses and uses thereof |
Family Cites Families (101)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3922444A1 (en) | 1988-03-01 | 1991-01-10 | Deutsches Krebsforsch | Virus modified tumour specific vaccine - contains immunostimulating substances, and is used in immuno-therapy of tumours |
| DE3806565A1 (en) | 1988-03-01 | 1989-09-14 | Deutsches Krebsforsch | VIRUS-MODIFIED TUMOR VACCINES FOR THE IMMUNOTHERAPY OF TUMOR METAL KEYS |
| US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
| US5854037A (en) | 1989-08-28 | 1998-12-29 | The Mount Sinai School Of Medicine Of The City University Of New York | Recombinant negative strand RNA virus expression systems and vaccines |
| US5166057A (en) | 1989-08-28 | 1992-11-24 | The Mount Sinai School Of Medicine Of The City University Of New York | Recombinant negative strand rna virus expression-systems |
| US5786199A (en) | 1989-08-28 | 1998-07-28 | The Mount Sinai School Of Medicine Of The City University Of New York | Recombinant negative strand RNA virus expression systems and vaccines |
| ES2196026T3 (en) | 1993-04-30 | 2003-12-16 | Wellstat Biologics Corp | USE OF NDV IN THE MANUFACTURE OF A MEDICINAL PRODUCT TO TREAT CANCER. |
| DK0702085T4 (en) | 1994-07-18 | 2010-04-06 | Conzelmann Karl Klaus Prof Dr | Recombinant infectious non-segmented negative-stranded RNA virus |
| US5891680A (en) | 1995-02-08 | 1999-04-06 | Whitehead Institute For Biomedical Research | Bioactive fusion proteins comprising the p35 and p40 subunits of IL-12 |
| US7153510B1 (en) | 1995-05-04 | 2006-12-26 | Yale University | Recombinant vesiculoviruses and their uses |
| EP0780475B2 (en) | 1995-08-09 | 2006-07-19 | SCHWEIZ. SERUM- & IMPFINSTITUT BERN | Process for the production of infectious negative-strand RNA viruses |
| JPH11512609A (en) | 1995-09-27 | 1999-11-02 | アメリカ合衆国 | Production of infectious respiratory syncytial virus from cloned nucleotide sequence |
| WO1997014433A1 (en) | 1995-10-17 | 1997-04-24 | Wayne State University | Chicken interleukin-15 and uses thereof |
| BRPI9710363B8 (en) | 1996-07-15 | 2021-07-06 | Us Gov Health & Human Serv | attenuated recombinant respiratory syncytial virus (rsv) particle, vaccine to induce protection against recombinant respiratory syncytial virus (rsv), expression vector, and method of producing an infectious recombinant respiratory syncytial virus (rsv). |
| CA2265554A1 (en) | 1996-09-27 | 1998-04-02 | American Cyanamid Company | 3' genomic promoter region and polymerase gene mutations responsible for attenuation in viruses of the order designated mononegavirales |
| JP4237268B2 (en) | 1997-05-23 | 2009-03-11 | アメリカ合衆国 | Production of attenuated parainfluenza virus vaccines from cloned nucleotide sequences. |
| AU731663B2 (en) | 1997-07-11 | 2001-04-05 | Yale University | Rhabdoviruses with reengineered coats |
| CN1273603A (en) | 1997-09-19 | 2000-11-15 | 美国氰胺公司 | Attenuated respiratory syncytial viruses |
| US20030044384A1 (en) | 1997-10-09 | 2003-03-06 | Pro-Virus, Inc. | Treatment of neoplasms with viruses |
| AU9603898A (en) | 1997-10-09 | 1999-05-03 | Pro-Virus, Inc. | Treatment of neoplasms with viruses |
| US7470426B1 (en) | 1997-10-09 | 2008-12-30 | Wellstat Biologics Corporation | Treatment of neoplasms with viruses |
| US7780962B2 (en) | 1997-10-09 | 2010-08-24 | Wellstat Biologics Corporation | Treatment of neoplasms with RNA viruses |
| ES2400445T3 (en) | 1998-06-12 | 2013-04-09 | Mount Sinai School Of Medicine | Attenuated viruses with negative polarity chain with altered interferon antagonist activity for use as vaccines and pharmaceuticals |
| EP0974660A1 (en) | 1998-06-19 | 2000-01-26 | Stichting Instituut voor Dierhouderij en Diergezondheid (ID-DLO) | Newcastle disease virus infectious clones, vaccines and diagnostic assays |
| US6544785B1 (en) | 1998-09-14 | 2003-04-08 | Mount Sinai School Of Medicine Of New York University | Helper-free rescue of recombinant negative strand RNA viruses |
| US6146642A (en) | 1998-09-14 | 2000-11-14 | Mount Sinai School Of Medicine, Of The City University Of New York | Recombinant new castle disease virus RNA expression systems and vaccines |
| US7052685B1 (en) | 1998-10-15 | 2006-05-30 | Trustees Of The University Of Pennsylvania | Methods for treatment of cutaneous T-cell lymphoma |
| AU4246900A (en) | 1999-04-15 | 2000-11-02 | Pro-Virus, Inc. | Treatment of neoplasms with viruses |
| US20030224017A1 (en) | 2002-03-06 | 2003-12-04 | Samal Siba K. | Recombinant Newcastle disease viruses useful as vaccines or vaccine vectors |
| AU4971500A (en) | 1999-05-05 | 2000-11-21 | University Of Maryland | Production of novel newcastle disease virus strains from cdnas and improved liveattenuated newcastle disease vaccines |
| CA2379012C (en) | 1999-07-14 | 2013-07-02 | George Gow Brownlee | In vitro reconstitution of segmented negative-strand rna viruses |
| AU7607900A (en) | 1999-09-22 | 2001-04-24 | Mayo Foundation For Medical Education And Research | Therapeutic methods and compositions using viruses of the recombinant paramyxoviridae family |
| US6896881B1 (en) | 1999-09-24 | 2005-05-24 | Mayo Foundation For Medical Education And Research | Therapeutic methods and compositions using viruses of the recombinant paramyxoviridae family |
| WO2001052874A2 (en) | 2000-01-20 | 2001-07-26 | Universität Zürich Institut für Medizinische Virologie | Intra-tumoral administration of il-12 encoding nucleic acid molecules |
| WO2001077394A1 (en) | 2000-04-10 | 2001-10-18 | Mount Sinai School Of Medicine Of New York University | Screening methods for identifying viral proteins with interferon antagonizing functions and potential antiviral agents |
| US6818444B2 (en) | 2000-08-04 | 2004-11-16 | Heska Corporation | Canine and feline proteins, nucleic acid molecules and uses thereof |
| FR2823222B1 (en) | 2001-04-06 | 2004-02-06 | Merial Sas | VACCINE AGAINST NILE FEVER VIRUS |
| WO2002102404A1 (en) | 2001-06-18 | 2002-12-27 | Institut National De La Recherche Agronomique | Uses of cytokines |
| WO2003092579A2 (en) | 2002-04-29 | 2003-11-13 | Hadasit Medical Research Services And Development Company Ltd. | Compositions and methods for treating cancer with an oncolytic viral agent |
| JPWO2003102183A1 (en) | 2002-06-03 | 2005-09-29 | 株式会社ディナベック研究所 | Paramyxovirus vectors encoding antibodies and uses thereof |
| EP1543418B1 (en) | 2002-08-07 | 2016-03-16 | MMagix Technology Limited | Apparatus, method and system for a synchronicity independent, resource delegating, power and instruction optimizing processor |
| SE0203159D0 (en) | 2002-10-25 | 2002-10-25 | Electrolux Ab | Handle for a motor driven handheld tool |
| US9068234B2 (en) | 2003-01-21 | 2015-06-30 | Ptc Therapeutics, Inc. | Methods and agents for screening for compounds capable of modulating gene expression |
| US20040197312A1 (en) | 2003-04-02 | 2004-10-07 | Marina Moskalenko | Cytokine-expressing cellular vaccine combinations |
| WO2005085282A1 (en) | 2004-02-27 | 2005-09-15 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Il-15 binding site for il15-ralpha and specific il-15 mutants having agonists/antagonists activity |
| CN101056646A (en) | 2004-11-12 | 2007-10-17 | 拜耳先灵医药股份有限公司 | Recombinant newcastle disease virus |
| PT1899364T (en) | 2005-05-17 | 2020-05-20 | Univ Connecticut | Compositions and methods for immunomodulation in an organism |
| US20090214590A1 (en) * | 2005-07-08 | 2009-08-27 | Wayne State University | Virus Vaccines Comprising Envelope-Bound Immunomodulatory Proteins and Methods of Use Thereof |
| EP1777294A1 (en) | 2005-10-20 | 2007-04-25 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | IL-15Ralpha sushi domain as a selective and potent enhancer of IL-15 action through IL-15Rbeta/gamma, and hyperagonist (IL15Ralpha sushi -IL15) fusion proteins |
| JP2007120880A (en) | 2005-10-28 | 2007-05-17 | Mitsubishi Electric Corp | Cross flow fan |
| ES2668464T3 (en) | 2005-12-02 | 2018-05-18 | Icahn School Of Medicine At Mount Sinai | Chimeric Newcastle disease viruses that present unnatural surface proteins and their uses |
| MX357691B (en) | 2006-01-13 | 2018-07-19 | The Government Of The United States As Represented By The Secretary Of The Department Of Health And | Codon optimi zed il- 15 and il- 15r-alpha genes for expression in mammalian cells. |
| CA2647282A1 (en) | 2006-04-05 | 2007-10-11 | Pfizer Products Inc. | Ctla4 antibody combination therapy |
| US20090175826A1 (en) | 2006-06-05 | 2009-07-09 | Elankumaran Subbiah | Genetically-engineered newcastle disease virus as an oncolytic agent, and methods of using same |
| CA2658584A1 (en) | 2006-07-27 | 2008-01-31 | Ottawa Health Research Institute | Staged immune-response modulation in oncolytic therapy |
| WO2008134879A1 (en) | 2007-05-04 | 2008-11-13 | University Health Network | Il-12 immunotherapy for cancer |
| AU2008253720B2 (en) | 2007-05-11 | 2014-01-16 | Altor Bioscience Corporation | Fusion molecules and IL-15 variants |
| NZ582150A (en) | 2007-06-18 | 2012-08-31 | Msd Oss Bv | Antibodies to human programmed death receptor pd-1 |
| JP2010531878A (en) | 2007-06-27 | 2010-09-30 | マリン ポリマー テクノロジーズ,インコーポレーテッド | Complex of IL-15 and IL-15Rα and use thereof |
| EP2085092A1 (en) | 2008-01-29 | 2009-08-05 | Bayer Schering Pharma Aktiengesellschaft | Attenuated oncolytic paramyxoviruses encoding avian cytokines |
| US8313896B2 (en) * | 2008-04-04 | 2012-11-20 | The General Hospital Corporation | Oncolytic herpes simplex virus immunotherapy in the treatment of brain cancer |
| CN102203132A (en) | 2008-08-25 | 2011-09-28 | 安普利穆尼股份有限公司 | Compositions and methods of use of PD-1 antagonists |
| WO2010042433A1 (en) * | 2008-10-06 | 2010-04-15 | Bristol-Myers Squibb Company | Combination of cd137 antibody and ctla-4 antibody for the treatment of proliferative diseases |
| CN101787373B (en) | 2009-01-23 | 2013-06-19 | 中国人民解放军第二军医大学东方肝胆外科医院 | Foreign gene-carrying recombinant virus vector efficiently produced in packaging cell and construction method and application thereof |
| WO2010126766A1 (en) | 2009-04-30 | 2010-11-04 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Inducible interleukin-12 |
| US20100297072A1 (en) * | 2009-05-19 | 2010-11-25 | Depinho Ronald A | Combinations of Immunostimulatory Agents, Oncolytic Virus, and Additional Anticancer Therapy |
| NZ714757A (en) | 2009-08-14 | 2018-07-27 | Us Gov Health & Human Services | Use of il-15 to increase thymic output and to treat lymphopenia |
| BR112012003837B8 (en) | 2009-08-21 | 2022-10-18 | Univ Georgia | RECOMBINANT AVIAN PARAMYXOVIRUS VACCINE AND METHOD TO MAKE AND USE IT |
| AU2010303149B2 (en) | 2009-09-30 | 2016-08-04 | Board Of Regents, The University Of Texas System | Combination immunotherapy for the treatment of cancer |
| US10238734B2 (en) | 2010-03-23 | 2019-03-26 | The Regents Of The University Of California | Compositions and methods for self-adjuvanting vaccines against microbes and tumors |
| WO2012000188A1 (en) | 2010-06-30 | 2012-01-05 | Tot Shanghai Rd Center Co., Ltd. | Recombinant tumor vaccine and method of producing such |
| WO2012040323A2 (en) | 2010-09-21 | 2012-03-29 | Altor Bioscien Corporation | Multimeric il-15 soluble fusion molecules and methods of making and using same |
| US20120082687A1 (en) * | 2010-10-04 | 2012-04-05 | Alex Wah Hin Yeung | Use of cell adhesion inhibitor for the mobilization of antigen presenting cells and immune cells in a cell mixture (AIM) from the peripheral blood and methods of use |
| WO2012142529A2 (en) | 2011-04-15 | 2012-10-18 | Genelux Corporation | Clonal strains of attenuated vaccinia viruses and methods of use thereof |
| EP2537933A1 (en) | 2011-06-24 | 2012-12-26 | Institut National de la Santé et de la Recherche Médicale (INSERM) | An IL-15 and IL-15Ralpha sushi domain based immunocytokines |
| WO2013053775A1 (en) | 2011-10-11 | 2013-04-18 | Universität Zürich Prorektorat Mnw | Combination medicament comprising il-12 and an agent for blockade of t-cell inhibitory molecules for tumour therapy |
| CA2862390A1 (en) | 2012-01-25 | 2013-08-01 | Dnatrix, Inc. | Biomarkers and combination therapies using oncolytic virus and immunomodulation |
| EP2669381A1 (en) | 2012-05-30 | 2013-12-04 | AmVac AG | Method for expression of heterologous proteins using a recombinant negative-strand RNA virus vector comprising a mutated P protein |
| US20150250837A1 (en) | 2012-09-20 | 2015-09-10 | Morningside Technology Ventures Ltd. | Oncolytic virus encoding pd-1 binding agents and uses of the same |
| ES2747997T3 (en) | 2012-10-24 | 2020-03-12 | Novartis Ag | Forms of IL-15R alpha, cells expressing forms of IL-15R alpha, and therapeutic uses of IL-15R alpha and IL-15 / IL-15R alpha complexes |
| MX375431B (en) | 2013-03-14 | 2025-03-06 | Icahn School Med Mount Sinai | NEWCASTLE DISEASE VIRUS AND ITS USES. |
| CA2909576C (en) | 2013-04-19 | 2023-07-18 | Cytune Pharma | Cytokine derived treatment with reduced vascular leak syndrome |
| HUE057598T2 (en) | 2013-08-08 | 2022-05-28 | Cytune Pharma | IL-15 and IL-15R alpha sushi domain-based modulokines |
| ES2760249T3 (en) | 2013-08-08 | 2020-05-13 | Cytune Pharma | Combined pharmaceutical composition |
| EP3041490B1 (en) | 2013-09-03 | 2018-11-14 | Medimmune Limited | Compositions featuring an attenuated newcastle disease virus and methods of use for treating neoplasia |
| US20170000832A1 (en) | 2014-02-27 | 2017-01-05 | Viralytics Limited | Combination method for treatment of cancer |
| EP2915569A1 (en) | 2014-03-03 | 2015-09-09 | Cytune Pharma | IL-15/IL-15Ralpha based conjugates purification method |
| JP6655061B2 (en) | 2014-07-29 | 2020-02-26 | ノバルティス アーゲー | IL-15 and IL-15Ralpha heterodimer dose escalation regimens for treating conditions |
| AU2015321603A1 (en) | 2014-09-22 | 2017-04-13 | Intrexon Corporation | Improved therapeutic control of heterodimeric and single chain forms of interleukin-12 |
| RU2017123117A (en) | 2014-12-09 | 2019-01-10 | Мерк Шарп И Доум Корп. | SYSTEM AND METHODS FOR PRODUCING BIOMARKERS OF GENE SIGNATURES OF RESPONSE TO PD-1 ANTAGONISTS |
| CN106166294A (en) | 2015-05-18 | 2016-11-30 | 国科丹蓝生物科技(北京)有限公司 | A kind of compound for preoperative intervention radiotherapy in the treatment tumor |
| EP3878465A1 (en) | 2015-07-29 | 2021-09-15 | Novartis AG | Combination therapies comprising antibody molecules to tim-3 |
| CN108025051B (en) | 2015-07-29 | 2021-12-24 | 诺华股份有限公司 | Combination therapy comprising anti-PD-1 antibody molecules |
| WO2017019894A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to lag-3 |
| SG11201802912PA (en) | 2015-10-10 | 2018-05-30 | Intrexon Corp | Improved therapeutic control of proteolytically sensitive, destabilized forms of interleukin-12 |
| HK1254128A1 (en) | 2015-11-09 | 2019-07-12 | Immune Design Corp. | Compositions comprising lentiviral vectors expressing il-12 and methods of use thereof |
| CA3010987A1 (en) | 2016-01-08 | 2017-07-13 | Replimune Limited | Oncolytic herpes simplex virus type 1 strain |
| US11612426B2 (en) | 2016-01-15 | 2023-03-28 | Immunsys, Inc. | Immunologic treatment of cancer |
| US10344067B2 (en) | 2016-02-25 | 2019-07-09 | Deutsches Krebsforschungszentrum | RNA viruses expressing IL-12 for immunovirotherapy |
| CN105734023B (en) | 2016-03-28 | 2019-04-26 | 江苏康缘瑞翱生物医药科技有限公司 | Application of a recombinant Newcastle disease virus in the preparation of anti-hepatocellular carcinoma drugs |
| EP3448401B1 (en) | 2016-04-29 | 2021-10-27 | Virogin Biotech Canada Ltd | Hsv vectors with enhanced replication in cancer cells |
-
2014
- 2014-03-04 MX MX2015011886A patent/MX375431B/en active IP Right Grant
- 2014-03-04 PE PE2015001952A patent/PE20151921A1/en unknown
- 2014-03-04 MY MYPI2015002047A patent/MY180687A/en unknown
- 2014-03-04 CN CN202010099385.7A patent/CN111218429A/en active Pending
- 2014-03-04 SG SG10201802982WA patent/SG10201802982WA/en unknown
- 2014-03-04 GE GEAP201413952A patent/GEP20196976B/en unknown
- 2014-03-04 AU AU2014241843A patent/AU2014241843B2/en active Active
- 2014-03-04 WO PCT/US2014/020299 patent/WO2014158811A1/en not_active Ceased
- 2014-03-04 NZ NZ711946A patent/NZ711946A/en not_active IP Right Cessation
- 2014-03-04 CA CA2905272A patent/CA2905272A1/en active Pending
- 2014-03-04 EP EP14774247.2A patent/EP2968525A4/en active Pending
- 2014-03-04 MA MA38406A patent/MA38406B1/en unknown
- 2014-03-04 CN CN202010099565.5A patent/CN111172120A/en active Pending
- 2014-03-04 SG SG11201507412SA patent/SG11201507412SA/en unknown
- 2014-03-04 HK HK16104723.8A patent/HK1216618A1/en unknown
- 2014-03-04 BR BR112015021414-2A patent/BR112015021414B1/en not_active IP Right Cessation
- 2014-03-04 EA EA201591740A patent/EA038981B1/en unknown
- 2014-03-04 MD MDA20150100A patent/MD4655C1/en not_active IP Right Cessation
- 2014-03-04 US US14/774,962 patent/US20160015760A1/en not_active Abandoned
- 2014-03-04 JP JP2016500602A patent/JP6596411B2/en not_active Expired - Fee Related
- 2014-03-04 KR KR1020157027659A patent/KR102222157B1/en not_active Expired - Fee Related
- 2014-03-04 CN CN201480026748.7A patent/CN105188746B/en not_active Expired - Fee Related
- 2014-03-04 AP AP2015008685A patent/AP2015008685A0/en unknown
- 2014-03-12 US US14/205,776 patent/US20140271677A1/en not_active Abandoned
-
2015
- 2015-08-18 TN TN2015000353A patent/TN2015000353A1/en unknown
- 2015-08-25 ZA ZA2015/06192A patent/ZA201506192B/en unknown
- 2015-09-03 IL IL241120A patent/IL241120A0/en unknown
- 2015-09-08 MX MX2019008086A patent/MX2019008086A/en unknown
- 2015-09-08 CR CR20150465A patent/CR20150465A/en unknown
- 2015-09-09 DO DO2015000227A patent/DOP2015000227A/en unknown
- 2015-09-09 CL CL2015002532A patent/CL2015002532A1/en unknown
- 2015-09-10 NI NI201500131A patent/NI201500131A/en unknown
- 2015-09-11 PH PH12015502087A patent/PH12015502087B1/en unknown
-
2017
- 2017-05-05 US US15/588,251 patent/US20180078592A1/en not_active Abandoned
- 2017-10-20 US US15/789,539 patent/US10251922B2/en active Active
- 2017-10-20 US US15/789,340 patent/US20180256655A1/en not_active Abandoned
-
2018
- 2018-02-26 CL CL2018000515A patent/CL2018000515A1/en unknown
- 2018-09-04 JP JP2018165460A patent/JP2018198621A/en active Pending
-
2019
- 2019-01-21 IL IL264385A patent/IL264385B/en unknown
- 2019-07-17 AU AU2019206040A patent/AU2019206040A1/en not_active Abandoned
-
2020
- 2020-08-18 JP JP2020137761A patent/JP2020202850A/en active Pending
-
2022
- 2022-09-28 JP JP2022154392A patent/JP2023002553A/en active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120058141A1 (en) * | 2009-02-05 | 2012-03-08 | Peter Palese | Chimeric newcastle disease viruses and uses thereof |
Non-Patent Citations (9)
| Title |
|---|
| Altomonte et al. Engineered newcastle disease virus as an improved oncolytic agent against hepatocellular carcinoma. Mol Ther. 2010 Feb;18(2):275-84. Epub 2009 Oct 6. * |
| Dias et al. Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Ther. 2012 Oct;19(10):988-98. Epub 2011 Nov 10. * |
| Fecci et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res. 2007 Apr 1;13(7):2158-67. * |
| Gao et al. Expression of transgenes from newcastle disease virus with a segmented genome. J Virol. 2008 Mar;82(6):2692-8. Epub 2008 Jan 16. * |
| Hollinger et al. Engineered antibody fragments and the rise of single domains. Nature Biotech. 2005. 23(9) 1126-1136. * |
| Kim et al. Expression and characterization of a recombinant Fab fragment derived from an anti-human alpha-fetoprotein monoclonal antibody. Mol Cells. 2001 Apr 30;11(2):158-63. * |
| Schirrmacher et al. Newcastle disease virus: a promising vector for viral therapy, immune therapy, and gene therapy of cancer. Methods Mol Biol. 2009;542:565-605. * |
| Vigil et al. Recombinant Newcastle disease virus as a vaccine vector for cancer therapy. Mol Ther. 2008 Nov;16(11):1883-90. Epub 2008 Aug 19. * |
| Walter et al. Two avirulent, lentogenic strains of Newcastle disease virus are cytotoxic for some human pancreatic tumor lines in vitro. JOP. 2012 Sep 10;13(5):502-13. * |
Cited By (111)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10308913B2 (en) | 2005-12-02 | 2019-06-04 | Icahn School Of Medicine At Mount Sinai | Chimeric viruses presenting non-native surface proteins and uses thereof |
| US9217136B2 (en) | 2009-02-05 | 2015-12-22 | Icahn School Of Medicine At Mount Sinai | Chimeric Newcastle disease viruses and uses thereof |
| US10035984B2 (en) | 2009-02-05 | 2018-07-31 | Icahn School Of Medicine At Mount Sinai | Chimeric newcastle disease viruses and uses thereof |
| US20160015760A1 (en) * | 2013-03-14 | 2016-01-21 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
| US10251922B2 (en) | 2013-03-14 | 2019-04-09 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
| US20160208222A1 (en) * | 2013-09-03 | 2016-07-21 | Medimmune Limited | Compositions featuring an attenuated newcastle disease virus and methods of use for treating neoplasia |
| US10519426B2 (en) * | 2013-09-03 | 2019-12-31 | Medimmune Limited | Compositions featuring an attenuated Newcastle disease virus and methods of use for treating neoplasia |
| US11471499B2 (en) * | 2013-09-03 | 2022-10-18 | Medimmune Limited | Compositions featuring an attenuated newcastle disease virus and methods of use for treating neoplasia |
| US11389495B2 (en) | 2014-02-27 | 2022-07-19 | Merck Sharp & Dohme Llc | Combination method for treatment of cancer |
| US9982049B2 (en) | 2014-03-12 | 2018-05-29 | Yeda Research And Development Co. Ltd. | Reducing systemic regulatory T cell levels or activity for treatment of alzheimer's disease |
| US9982050B2 (en) | 2014-03-12 | 2018-05-29 | Yeda Research And Development Co. Ltd. | Reducing systemic regulatory T cell levels or activity for treatment of alzheimer's disease |
| US9394365B1 (en) | 2014-03-12 | 2016-07-19 | Yeda Research And Development Co., Ltd | Reducing systemic regulatory T cell levels or activity for treatment of alzheimer's disease |
| US10961309B2 (en) | 2014-03-12 | 2021-03-30 | Yeda Research And Development Co. Ltd | Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS |
| US9512227B2 (en) | 2014-03-12 | 2016-12-06 | Yeda Research And Development Co. Ltd | Reducing systemic regulatory T cell levels or activity for treatment of Alzheimer's disease |
| US9512225B2 (en) | 2014-03-12 | 2016-12-06 | Yeda Research And Development Co. Ltd | Reducing systemic regulatory T cell levels or activity for treatment of Alzheimer's disease |
| US9534052B2 (en) | 2014-03-12 | 2017-01-03 | Yeda Research And Development Co. Ltd | Reducing systemic regulatory T cell levels or activity for treatment of Alzheimer's disease |
| US10981989B2 (en) | 2014-03-12 | 2021-04-20 | Yeda Research And Development Co. Ltd. | Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS |
| US10618963B2 (en) | 2014-03-12 | 2020-04-14 | Yeda Research And Development Co. Ltd | Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS |
| US10144778B2 (en) | 2014-03-12 | 2018-12-04 | Yeda Research And Development Co. Ltd | Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS |
| US10519237B2 (en) | 2014-03-12 | 2019-12-31 | Yeda Research And Development Co. Ltd | Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS |
| US11884727B2 (en) | 2014-03-12 | 2024-01-30 | Yeda Research And Development Co. Ltd. | Reducing systemic regulatory T cell levels or activity for treatment of amyotrophic lateral sclerosis |
| US9856318B2 (en) | 2014-03-12 | 2018-01-02 | Yeda Research And Development Co., Ltd. | Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS |
| US10214585B2 (en) | 2014-03-12 | 2019-02-26 | Yeda Research And Development Co., Ltd. | Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS |
| US11884728B2 (en) | 2014-03-12 | 2024-01-30 | Yeda Research And Development Co. Ltd. | Reducing systemic regulatory T cell levels or activity for treatment of amyotrophic lateral sclerosis |
| US9982047B2 (en) | 2014-03-12 | 2018-05-29 | Yeda Research And Development Co. Ltd. | Reducing systemic regulatory T cell levels or activity for treatment of Alzheimer's disease |
| US11643464B2 (en) | 2014-03-12 | 2023-05-09 | Yeda Research and Develpment & Co. Ltd | Reducing systemic regulatory T cell levels or activity for treatment of a retinal degeneration disorder |
| US9982048B2 (en) | 2014-03-12 | 2018-05-29 | Yeda Research And Development Co. Ltd. | Reducing systemic regulatory T cell levels or activity for treatment of Alzheimer's disease |
| US11492405B2 (en) | 2014-03-12 | 2022-11-08 | Yeda Research And Development Co. Ltd | Reducing systemic regulatory t cell levels or activity for treatment of disease and injury of the CNS |
| US9982051B2 (en) | 2014-03-12 | 2018-05-29 | Yeda Research And Development Co. Ltd. | Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS |
| WO2016014530A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
| WO2016014553A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
| WO2016014565A2 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor |
| EP3722316A1 (en) | 2014-07-21 | 2020-10-14 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
| EP4205749A1 (en) | 2014-07-31 | 2023-07-05 | Novartis AG | Subset-optimized chimeric antigen receptor-containing cells |
| EP3660042A1 (en) | 2014-07-31 | 2020-06-03 | Novartis AG | Subset-optimized chimeric antigen receptor-containing t-cells |
| WO2016025880A1 (en) | 2014-08-14 | 2016-02-18 | Novartis Ag | Treatment of cancer using gfr alpha-4 chimeric antigen receptor |
| EP3712171A1 (en) | 2014-08-19 | 2020-09-23 | Novartis AG | Treatment of cancer using a cd123 chimeric antigen receptor |
| WO2016044605A1 (en) | 2014-09-17 | 2016-03-24 | Beatty, Gregory | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
| EP3967709A1 (en) | 2014-09-17 | 2022-03-16 | Novartis AG | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
| WO2016057841A1 (en) | 2014-10-08 | 2016-04-14 | Novartis Ag | Compositions and methods of use for augmented immune response and cancer therapy |
| EP4245376A2 (en) | 2014-10-14 | 2023-09-20 | Novartis AG | Antibody molecules to pd-l1 and uses thereof |
| WO2016061142A1 (en) | 2014-10-14 | 2016-04-21 | Novartis Ag | Antibody molecules to pd-l1 and uses thereof |
| US11285194B2 (en) * | 2014-10-24 | 2022-03-29 | Calidi Biotherapeutics, Inc. | Combination immunotherapy approach for treatment of cancer |
| WO2016090034A2 (en) | 2014-12-03 | 2016-06-09 | Novartis Ag | Methods for b cell preconditioning in car therapy |
| US12352679B2 (en) | 2015-02-09 | 2025-07-08 | Slingshot Biosciences, Inc. | Synthetic human cell mimic particle for cytometric or coulter device |
| EP4491715A2 (en) | 2015-04-08 | 2025-01-15 | Novartis AG | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car)- expressing cell |
| EP4056588A1 (en) | 2015-04-08 | 2022-09-14 | Novartis AG | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car)- expressing cell |
| WO2016164731A2 (en) | 2015-04-08 | 2016-10-13 | Novartis Ag | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car) - expressing cell |
| US10513558B2 (en) | 2015-07-13 | 2019-12-24 | Cytomx Therapeutics, Inc. | Anti-PD1 antibodies, activatable anti-PD1 antibodies, and methods of use thereof |
| EP3943098A2 (en) | 2015-07-16 | 2022-01-26 | Biokine Therapeutics Ltd. | Compositions and methods for treating cancer |
| WO2017009842A2 (en) | 2015-07-16 | 2017-01-19 | Biokine Therapeutics Ltd. | Compositions and methods for treating cancer |
| EP3744340A2 (en) | 2015-07-16 | 2020-12-02 | Biokine Therapeutics Ltd. | Compositions and methods for treating cancer |
| WO2017019897A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to tim-3 |
| EP3964528A1 (en) | 2015-07-29 | 2022-03-09 | Novartis AG | Combination therapies comprising antibody molecules to lag-3 |
| WO2017019894A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to lag-3 |
| EP3878465A1 (en) | 2015-07-29 | 2021-09-15 | Novartis AG | Combination therapies comprising antibody molecules to tim-3 |
| EP4378957A2 (en) | 2015-07-29 | 2024-06-05 | Novartis AG | Combination therapies comprising antibody molecules to pd-1 |
| US11607450B2 (en) | 2015-08-11 | 2023-03-21 | Calidi Biotherapeutics, Inc. | Smallpox vaccine for cancer treatment |
| US12036278B2 (en) | 2015-08-11 | 2024-07-16 | Calidi Biotherapeutics (Nevada), Inc. | Smallpox vaccine for cancer treatment |
| WO2017106656A1 (en) | 2015-12-17 | 2017-06-22 | Novartis Ag | Antibody molecules to pd-1 and uses thereof |
| EP4424322A2 (en) | 2015-12-17 | 2024-09-04 | Novartis AG | Antibody molecules to pd-1 and uses thereof |
| EP4643874A2 (en) | 2015-12-22 | 2025-11-05 | Novartis AG | Mesothelin chimeric antigen receptor (car) and antibody against pd-l1 inhibitor for combined use in anticancer therapy |
| US12397053B2 (en) | 2016-01-08 | 2025-08-26 | Replimune Limited | Engineered virus |
| US12465639B2 (en) | 2016-01-08 | 2025-11-11 | Replimune Limited GB | Modified oncolytic virus |
| US12049647B2 (en) | 2016-01-08 | 2024-07-30 | Replimune Limited | Engineered virus |
| US11473063B2 (en) | 2016-01-08 | 2022-10-18 | Replimune Limited | Oncolytic virus strain |
| US12458696B2 (en) | 2016-01-08 | 2025-11-04 | Replimune Limited | Modified oncolytic virus |
| US10626377B2 (en) | 2016-01-08 | 2020-04-21 | Replimune Limited | Use of an oncolytic virus for the treatment of cancer |
| US10612005B2 (en) | 2016-01-08 | 2020-04-07 | Replimune Limited | Modified oncolytic virus |
| US11427810B2 (en) | 2016-01-08 | 2022-08-30 | Replimune Limited | Modified oncolytic virus |
| US10947513B2 (en) | 2016-01-08 | 2021-03-16 | Replimune Limited | Engineered virus |
| US10570377B2 (en) | 2016-01-08 | 2020-02-25 | Replimune Limited | Oncolytic virus strain |
| US12024724B2 (en) | 2016-01-08 | 2024-07-02 | Replimune Limited | Oncolytic virus strain |
| WO2017149515A1 (en) | 2016-03-04 | 2017-09-08 | Novartis Ag | Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore |
| US11365252B2 (en) | 2016-07-20 | 2022-06-21 | University Of Utah Research Foundation | CD229 CAR T cells and methods of use thereof |
| EP3487878A1 (en) | 2016-07-20 | 2019-05-29 | University of Utah Research Foundation | Cd229 car t cells and methods of use thereof |
| WO2018067992A1 (en) | 2016-10-07 | 2018-04-12 | Novartis Ag | Chimeric antigen receptors for the treatment of cancer |
| WO2018087720A1 (en) | 2016-11-14 | 2018-05-17 | Novartis Ag | Compositions, methods, and therapeutic uses related to fusogenic protein minion |
| US12059444B2 (en) | 2017-01-09 | 2024-08-13 | Replimune Limited | Altered virus |
| WO2018187191A1 (en) | 2017-04-03 | 2018-10-11 | Jounce Therapeutics, Inc | Compositions and methods for the treatment of cancer |
| WO2018201056A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
| WO2018201051A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor |
| US12042534B2 (en) | 2017-05-12 | 2024-07-23 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
| WO2018209194A3 (en) * | 2017-05-12 | 2018-12-20 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
| WO2018209194A2 (en) | 2017-05-12 | 2018-11-15 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
| US12312393B2 (en) | 2017-05-25 | 2025-05-27 | University Of Central Florida Research Foundation, Inc. | Oncolytic viruses for sensitizing tumor cells to killing by natural killer cells |
| US11684637B2 (en) | 2017-05-25 | 2023-06-27 | University Of Central Florida Research Foundation, Inc. | Oncolytic viruses for sensitizing tumor cells to killing by natural killer cells |
| WO2019152660A1 (en) | 2018-01-31 | 2019-08-08 | Novartis Ag | Combination therapy using a chimeric antigen receptor |
| WO2019227003A1 (en) | 2018-05-25 | 2019-11-28 | Novartis Ag | Combination therapy with chimeric antigen receptor (car) therapies |
| WO2019241426A1 (en) | 2018-06-13 | 2019-12-19 | Novartis Ag | Bcma chimeric antigen receptors and uses thereof |
| US12391957B2 (en) | 2018-08-17 | 2025-08-19 | Icahn School Of Medicine At Mount Sinai | Recombinant Newcastle disease viruses and uses thereof for the prevention of RSV disease or human metapneumovirus disease |
| CN112839952A (en) * | 2018-08-29 | 2021-05-25 | 沙塔克实验室有限公司 | Combination therapy comprising PD-1-based chimeric protein |
| WO2020069409A1 (en) | 2018-09-28 | 2020-04-02 | Novartis Ag | Cd19 chimeric antigen receptor (car) and cd22 car combination therapies |
| WO2020069405A1 (en) | 2018-09-28 | 2020-04-02 | Novartis Ag | Cd22 chimeric antigen receptor (car) therapies |
| WO2020185739A1 (en) | 2019-03-11 | 2020-09-17 | Jounce Therapeutics, Inc. | Anti-icos antibodies for the treatment of cancer |
| WO2020205662A1 (en) | 2019-03-29 | 2020-10-08 | Myst Therapeutics, Inc. | Ex vivo methods for producing a t cell therapeutic and related compositions and methods |
| US11732046B2 (en) | 2019-04-19 | 2023-08-22 | ImmunoBrain Checkpoint, Inc. | Modified anti-PD-L1 antibody and methods and uses for treating a neurodegenerative disease |
| US10995141B2 (en) | 2019-04-19 | 2021-05-04 | ImmunoBrain Checkpoint, Inc. | Modified anti-PD-L1 antibody and methods and uses for treating a neurodegenerative disease |
| WO2021091960A1 (en) | 2019-11-05 | 2021-05-14 | Jounce Therapeutics, Inc. | Methods of treating cancer with anti-pd-1 antibodies |
| WO2021108613A1 (en) | 2019-11-26 | 2021-06-03 | Novartis Ag | Cd19 and cd22 chimeric antigen receptors and uses thereof |
| WO2021108727A1 (en) | 2019-11-27 | 2021-06-03 | Myst Therapeutics, Inc. | Method of producing tumor-reactive t cell composition using modulatory agents |
| WO2021174208A1 (en) | 2020-02-27 | 2021-09-02 | Myst Therapeutics, Llc | Methods for ex vivo enrichment and expansion of tumor reactive t cells and related compositions thereof |
| EP4512828A2 (en) | 2020-02-27 | 2025-02-26 | Turnstone Biologics Corp. | Methods for ex vivo enrichment and expansion of tumor reactive t cells and related compositions thereof |
| WO2022104061A1 (en) | 2020-11-13 | 2022-05-19 | Novartis Ag | Combination therapies with chimeric antigen receptor (car)-expressing cells |
| WO2022254337A1 (en) | 2021-06-01 | 2022-12-08 | Novartis Ag | Cd19 and cd22 chimeric antigen receptors and uses thereof |
| US11884931B2 (en) | 2021-08-06 | 2024-01-30 | Libentech Co., Ltd. | Oncolytic virus for colorectal cancer treatment using colorectal cancer cell-specific infectious newcastle disease virus and composition for colorectal cancer treatment using same |
| US12312595B2 (en) | 2021-10-29 | 2025-05-27 | Slingshot Biosciences, Inc. | Hydrogel particles as feeder cells and as synthetic antigen presenting cells |
| US12134779B2 (en) | 2021-10-29 | 2024-11-05 | Slingshot Biosciences, Inc. | Hydrogel particles as feeder cells and as synthetic antigen presenting cells |
| US12379387B2 (en) | 2022-05-05 | 2025-08-05 | Slingshot Biosciences, Inc. | Engineered particles as red blood cell mimics and compositions containing same for hematology |
| US12196661B2 (en) | 2022-10-26 | 2025-01-14 | Slingshot Biosciences, Inc. | Size-tunable synthetic particles with tunable optical properties and methods for using the same for immune cell activation |
| US12461007B2 (en) | 2023-08-29 | 2025-11-04 | Slingshot Biosciences, Inc. | CD34 stem cell mimics |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10251922B2 (en) | Newcastle disease viruses and uses thereof | |
| US20250127879A1 (en) | Newcastle disease viruses and uses thereof | |
| US10035984B2 (en) | Chimeric newcastle disease viruses and uses thereof | |
| US20230151070A1 (en) | Vegfr-3-activating agents and oncolytic viruses and uses thereof for the treatment of cancer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PALESE, PETER;GARCIA-SASTRE, ADOLFO;REEL/FRAME:032502/0455 Effective date: 20140129 |
|
| AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI;REEL/FRAME:038906/0156 Effective date: 20140314 |
|
| AS | Assignment |
Owner name: MEMORIAL SLOAN KETTERING CANCER CENTER, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZAMARIN, DMITRIY;ALLISON, JAMES;WOLCHOK, JEDD;SIGNING DATES FROM 20140224 TO 20140304;REEL/FRAME:043915/0862 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: NIH-DEITR, MARYLAND Free format text: CONFIRMATORY LICENSE;ASSIGNOR:ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI;REEL/FRAME:045597/0204 Effective date: 20180420 |