US20140250605A1 - Fluorescent whitening agent compositions - Google Patents
Fluorescent whitening agent compositions Download PDFInfo
- Publication number
- US20140250605A1 US20140250605A1 US13/834,509 US201313834509A US2014250605A1 US 20140250605 A1 US20140250605 A1 US 20140250605A1 US 201313834509 A US201313834509 A US 201313834509A US 2014250605 A1 US2014250605 A1 US 2014250605A1
- Authority
- US
- United States
- Prior art keywords
- weight
- compositions
- formula
- urea
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 51
- 239000006081 fluorescent whitening agent Substances 0.000 title description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000004202 carbamide Substances 0.000 claims abstract description 27
- 150000001875 compounds Chemical class 0.000 claims abstract description 14
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims abstract description 5
- 239000001257 hydrogen Substances 0.000 claims abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 5
- 239000003513 alkali Substances 0.000 claims abstract description 3
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 3
- 125000005210 alkyl ammonium group Chemical group 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 17
- 239000007844 bleaching agent Substances 0.000 claims description 16
- 239000011734 sodium Chemical group 0.000 claims description 13
- 239000012074 organic phase Substances 0.000 claims description 11
- 239000000654 additive Substances 0.000 claims description 8
- 239000000123 paper Substances 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical group NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 4
- 239000011111 cardboard Substances 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 239000008346 aqueous phase Substances 0.000 claims description 3
- 239000002738 chelating agent Substances 0.000 claims description 3
- 239000003599 detergent Substances 0.000 claims description 3
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical group OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 3
- 239000000835 fiber Substances 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 239000011087 paperboard Substances 0.000 claims description 3
- 239000011591 potassium Chemical group 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000003755 preservative agent Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 239000004094 surface-active agent Substances 0.000 claims description 3
- 229920002994 synthetic fiber Polymers 0.000 claims description 3
- 239000004753 textile Substances 0.000 claims description 3
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical group CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 claims description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical group OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 229960002887 deanol Drugs 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- 238000004381 surface treatment Methods 0.000 claims description 2
- 238000004061 bleaching Methods 0.000 claims 2
- 238000000746 purification Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 description 49
- YJHDFAAFYNRKQE-YHPRVSEPSA-L disodium;5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 YJHDFAAFYNRKQE-YHPRVSEPSA-L 0.000 description 18
- 239000000047 product Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 14
- 230000008033 biological extinction Effects 0.000 description 12
- 239000007864 aqueous solution Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- REJHVSOVQBJEBF-UHFFFAOYSA-N 5-azaniumyl-2-[2-(4-azaniumyl-2-sulfonatophenyl)ethenyl]benzenesulfonate Chemical class OS(=O)(=O)C1=CC(N)=CC=C1C=CC1=CC=C(N)C=C1S(O)(=O)=O REJHVSOVQBJEBF-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000002087 whitening effect Effects 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910001504 inorganic chloride Inorganic materials 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 3
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 235000021286 stilbenes Nutrition 0.000 description 3
- WBCNGLLSKWCJAX-UHFFFAOYSA-N 2-[1,2-diamino-2-[2-sulfo-4-(1,3,5-triazin-2-yl)phenyl]ethenyl]-5-(1,3,5-triazin-2-yl)benzenesulfonic acid Chemical group C=1C=C(C=2N=CN=CN=2)C=C(S(O)(=O)=O)C=1C(N)=C(N)C(C(=C1)S(O)(=O)=O)=CC=C1C1=NC=NC=N1 WBCNGLLSKWCJAX-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- XFPPTHBWGPRNKS-OUKQBFOZSA-N COS(=O)(=O)C1=CC(NC2=NC(NC3=CC=CC=C3)=NC(N(CCO)CCO)=N2)=CC=C1/C=C/C1=C(CS(=O)(=O)O)C=C(NC2=NC(NC3=CC=CC=C3)=NC(N(CCO)CCO)=N2)C=C1 Chemical compound COS(=O)(=O)C1=CC(NC2=NC(NC3=CC=CC=C3)=NC(N(CCO)CCO)=N2)=CC=C1/C=C/C1=C(CS(=O)(=O)O)C=C(NC2=NC(NC3=CC=CC=C3)=NC(N(CCO)CCO)=N2)C=C1 XFPPTHBWGPRNKS-OUKQBFOZSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 0 *C.*C.C.C.[1*]N(CC([2*])NC=O)C1=NC(NC2=CC(C)=C(C=CC3=CC=C(NC4=NC(N([1*])CC([2*])C(N)=O)=NC(NC5=CC=CC=C5)=N4)C=C3S(=O)(=O)[O-])C=C2)=NC(NC2=CC=CC=C2)=N1 Chemical compound *C.*C.C.C.[1*]N(CC([2*])NC=O)C1=NC(NC2=CC(C)=C(C=CC3=CC=C(NC4=NC(N([1*])CC([2*])C(N)=O)=NC(NC5=CC=CC=C5)=N4)C=C3S(=O)(=O)[O-])C=C2)=NC(NC2=CC=CC=C2)=N1 0.000 description 1
- VUWCWMOCWKCZTA-UHFFFAOYSA-N 1,2-thiazol-4-one Chemical class O=C1CSN=C1 VUWCWMOCWKCZTA-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- LVDKZNITIUWNER-UHFFFAOYSA-N Bronopol Chemical compound OCC(Br)(CO)[N+]([O-])=O LVDKZNITIUWNER-UHFFFAOYSA-N 0.000 description 1
- ZXNOASBSHWEVRN-LKZNWTOYSA-N C/C=C/C1=C(CS(=O)(=O)O)C=C(NC2=NC(NC3=CC=CC=C3)=NC(N(CCO)CCO)=N2)C=C1.COS(=O)(=O)C1=CC(NC2=NC(NC3=CC=CC=C3)=NC(N(CCO)CCO)=N2)=CC=C1C Chemical compound C/C=C/C1=C(CS(=O)(=O)O)C=C(NC2=NC(NC3=CC=CC=C3)=NC(N(CCO)CCO)=N2)C=C1.COS(=O)(=O)C1=CC(NC2=NC(NC3=CC=CC=C3)=NC(N(CCO)CCO)=N2)=CC=C1C ZXNOASBSHWEVRN-LKZNWTOYSA-N 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical group CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 244000166124 Eucalyptus globulus Species 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical class CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- -1 amino compound Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 229920000417 polynaphthalene Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000007686 potassium Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229940080818 propionamide Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- UZVUJVFQFNHRSY-OUTKXMMCSA-J tetrasodium;(2s)-2-[bis(carboxylatomethyl)amino]pentanedioate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CC[C@@H](C([O-])=O)N(CC([O-])=O)CC([O-])=O UZVUJVFQFNHRSY-OUTKXMMCSA-J 0.000 description 1
Classifications
-
- D06L3/025—
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06L—DRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
- D06L4/00—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
- D06L4/60—Optical bleaching or brightening
- D06L4/614—Optical bleaching or brightening in aqueous solvents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/26—Organic compounds containing nitrogen
- C11D3/32—Amides; Substituted amides
- C11D3/323—Amides; Substituted amides urea or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/40—Dyes ; Pigments
- C11D3/42—Brightening agents ; Blueing agents
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06L—DRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
- D06L4/00—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
- D06L4/60—Optical bleaching or brightening
- D06L4/614—Optical bleaching or brightening in aqueous solvents
- D06L4/621—Optical bleaching or brightening in aqueous solvents with anionic brighteners
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/30—Luminescent or fluorescent substances, e.g. for optical bleaching
Definitions
- the present invention relates to fluorescent whitening compositions, processes for the preparation of said compositions, stable aqueous solutions of said compositions and the use of said compositions to bleach textile fibres and paper and in detergents.
- whitening agents to impart a higher degree of whiteness to products like paper, cardboard, fabrics and non-woven fabrics.
- the whitening agents most commonly used in the paper and cardboard industry are derivatives of 4,4′-bis-[1,3,5-triazinyl]-diaminostilbene-2,2′-disulphonic acid substituted at the triazine ring with anilino and alkanolamino groups.
- the anilino groups can in turn contain other sulphonic groups, but as they increase the solubility in water of the corresponding molecules, they reduce the affinity of said molecules for the cellulose fibres constituting paper and fabric, leading to lower performance in terms of whiteness.
- said whitening agents to be supplied in the fluid liquid forms of aqueous dispersion or, much more preferably, of solutions which are stable for at least a few months at temperatures ranging from 5 to 40° C.
- stilbene whitening agents deriving from 4,4′-bis-[1,3,5-triazinyl]-diaminostilbene-2,2′-disulphonic acid substituted at the triazine ring with anilino groups and alkanolamino groups which are preferred by said industry are not readily water-soluble, the production of the corresponding concentrated, stable aqueous solutions formerly required the addition of significant amounts (up to 25% and over) of solubilising additives such as urea, caprolactam, ethylene glycol and polyglycols.
- solubilising additives just described certainly have the function of allowing the production of stable aqueous solutions of optical brighteners. However, their presence is undesirable, because when the brightener solution has been used, they are discharged into the waste water, and are consequently pollutants.
- RU2223957 discloses a method for the preparation of derivatives of 4,4′-diaminostilbene-2,2′-disulphonic acid in the form of aqueous solutions useful as optical brighteners.
- the method requires the conversion of the molecule of optical brightener to the corresponding acid form, its isolation, subsequent neutralisation with another base, and the addition of solubilising additives.
- CS208507 discloses a stable liquid form of 4,4′-bis-(6-anilino-4-diethanolaminotriazin-2-ylamino)stilbene-2,2′-disulphonic acid ammonium salt in dilute solution containing urea as solubilising additive. Once again, the process involves conversion of the optical brightener from the acid form.
- CN102093750 discloses a method of preparing disulphonic optical brighteners in a stable liquid form wherein the optical brightener is dissolved in water in the simultaneous presence of numerous solubilising additives such as cellosolve, polyethylene glycol, polyols and urea.
- solubilising additives such as cellosolve, polyethylene glycol, polyols and urea.
- cellosolve cellosolve
- polyethylene glycol polyethylene glycol
- polyols polyols and urea
- U.S. Pat. No. 3,012,971 describes paper whitening compositions consisting of concentrated aqueous solutions of 4,4′-bis-[2-phenylamino-4-diethanolamino-1,3,5-triazinyl]-diaminostilbene-2,2′-disulphonic acid or a salt thereof mixed with alkanolamines.
- WO2005/028749 discloses aqueous compositions comprising stilbene whitening agents and alkanolamines.
- US2010/0159763 discloses aqueous compositions of fluorescent whitening agents, substituted at the triazine rings with propionamide amino groups, having the following formula:
- a further problem derives from the inevitable presence in the whitening agent solutions of inorganic chlorides such as sodium chloride, which derive from the whitening agent synthesis processes.
- inorganic chlorides such as sodium chloride
- all the industrial processes for the production of stilbene whitening agents substituted with triazine involve the use of cyanuryl chloride as reagent, whose reaction in successive steps with the various necessary amine products inevitably leads to the generation of large amounts of inorganic chlorides which are difficult to eliminate.
- U.S. Pat. No. 5,976,410 discloses aqueous dispersions, but not stable aqueous solutions, of optical brighteners: in column 1 from line 10 to line 23, to justify the production of concentrated dispersions, it is stated that stable aqueous solutions of optical brightener cannot be produced at concentrations exceeding 22% by weight because the content of solubilising agent must remain within an acceptable ratio compared with the content of brightener, and that after application, said solubilising agents, especially urea, are undesirable in the waste water resulting from the application process because they only act as pollutants.
- compositions in stable solution described so far suffer from the drawback of being too dilute. For example, they do not exceed active ingredient contents of 25% by weight. Moreover, if any form of instability arises, said solutions produce sediments of packed product which are very difficult to recover, especially if the solution is in a container that cannot be stirred, like an ordinary tank. Finally, in view of the low concentration of optical brightener, their transport is uneconomical.
- the purpose of the present invention is to provide a concentrated composition of whitening agents which is particularly stable in aqueous solution, even in the presence of the small amounts of inorganic chlorides that usually remain at the end of synthesis, is easy to produce, fluid and not excessively pollutant, or contains a proportion of solubilising additive lower than that of the optical brightener or comparable with that already used for the same systems as described, and more dilute.
- the concentrated compositions of the invention are even more environment-friendly than the corresponding more dilute stable compositions already known, as the proportion of solubilising agent required to stabilise a more concentrated solution of optical brightener according to the invention is significantly reduced.
- compositions of the invention remain in the form of clear viscous liquids or solidify into a vitreous, homogenous mass which easily returns to the liquid state and can therefore be completely regenerated simply by heating it to temperatures above 0 degrees centigrade.
- the concentrated compositions of the invention are therefore particularly suitable for transport, even in environments with temperatures below 0° C., as they are stable or regeneratable, and easily diluted with water.
- optical brighteners used in the compositions of the invention are represented by compounds of formula (I);
- X is hydrogen or an alkali or alkaline-earth metal, ammonium, alkylammonium, alkanolalkylammonium or alkanolammonium.
- X is preferably hydrogen, sodium, potassium, ammonium, ethanolamine, diethanolamine, triethanolamine or dimethylaminoethanol; more preferably, X is sodium.
- optical brighteners which can be used in the compositions of the invention are also hydrates of the compounds of formula (I).
- the sodium salt of the compound of formula (I) is the most commercially widespread, and is identified by CAS number 4193-55-9.
- compositions of the invention comprise:
- compositions of the invention preferably comprise:
- compositions of the invention can easily be produced by simple mixing of the three ingredients added in any order at temperatures from 1° C. to 150° C., if necessary under pressure. It is preferable to operate under heating, generally from 50 to 100° C., at atmospheric pressure, and under stirring, to accelerate the dissolution of the optical brightener.
- optical brighteners The process of synthesising optical brighteners is well known, and can be effected in a liquid system, consisting of one or more solvents, preferably selected from polar solvents such as ethers, ketones and mixtures thereof with water.
- solvents such as ethers, ketones and mixtures thereof with water.
- Acetone, methyl ethyl ketone, acetone/water and methyl ethyl ketone/water can preferably be used. Even more preferably, mixtures of acetone and water wherein the acetone content ranges from 20% to 70% can be used.
- the process generally comprises three reaction steps, wherein the cyanuryl chloride is reacted in succession, under different conditions and in the presence of bases, with three amino compounds, the most important of which is 4,4′-diaminostilbene-2,2′-disulphonic acid (DAS).
- DAS 4,4′-diaminostilbene-2,2′-disulphonic acid
- the order of said three reactions can be changed, or one amino compound can be reacted first instead of another, and vice versa.
- an organic phase is obtained consisting of optical brightener which can be separated from a salt-rich aqueous phase.
- cyanuryl chloride is reacted with 4,4′-diaminostilbene-2,2′-disulphonic acid (DAS) in a suitable solvent medium.
- DAS 4,4′-diaminostilbene-2,2′-disulphonic acid
- Said reaction takes place at temperatures ranging from ⁇ 20° C. to +20° C., and in the presence of bases such as sodium bicarbonate or sodium hydroxide, so that the pH of the system is from 1 to 7.
- bases such as sodium bicarbonate or sodium hydroxide
- one mole of the product obtained from said first step is reacted with about 2 moles of aniline in the presence of bases such as sodium hydroxide, sodium bicarbonate or sodium carbonate, to maintain the reaction mixture at a pH preferably from 4 to 8.
- bases such as sodium hydroxide, sodium bicarbonate or sodium carbonate
- the product obtained from said second step is reacted at a pH from 7 to 11 with at least 2 moles of alkanolamine, and preferably diethanolamine.
- Said third step preferably takes place at temperatures from 40° C. to 100° C. in the presence of bases such as sodium hydroxide, sodium carbonate or sodium bicarbonate, to maintain the pH from 7 to 11.
- bases such as sodium hydroxide, sodium carbonate or sodium bicarbonate
- the solvent is eliminated, for example by distillation, thus obtaining an aqueous suspension of the compound of formula (I), which separates.
- the organic liquid phase containing the product is separated under heating, for example from 80 to 100° C., from the lower aqueous phase consisting of a concentrated solution of salts.
- the organic liquid phase consisting of optical brightener and smaller amounts of saline solution
- the organic liquid phase can preferably be directly formulated with urea and water to obtain the compositions according to the invention, with no need for particular operations to purify the optical brightener such as osmosis or precipitation of the acid form followed by re-neutralisation.
- compositions of the invention can also include further ingredients such as other whitening agents, inorganic salts, surfactants, preservatives, chelating agents, other solubilising agents or organic solvents.
- optical whitening agents are optical tetra- and/or hexasulphonated stilbene brighteners.
- inorganic salts are sodium sulphate, ammonium chloride and potassium chloride.
- surfactants are sodium polynaphthalene sulphonates and ethoxylated fatty alcohols.
- preservatives examples include glutaraldehyde, isothiazolinones and 2-bromo-2-nitropropane-1,3-diol.
- Examples of usable chelating agents are EDTA and GLDA.
- solubilising agents are polyethylene glycols and caprotactam.
- organic solvents examples include ethylene and propylene glycols.
- compositions of the invention can be used to bleach natural, semisynthetic or synthetic fibres or paper, in the textile and detergent industries.
- solutions according to the invention can be used to bleach paper and cardboard at any point in the manufacturing process, either added directly to the fibre dispersion or in subsequent surface treatments such as coating and sizing.
- the concentrations of the optical whitening agent solutions are characterised by the E 1% 1cm parameter, which corresponds to the specific extinction value measured at the wavelength of maximum absorption of a solution containing 1% of the product in question, measured with an optical path of 1 cm.
- the extinction was measured with a Perkin-Elmer Lambda UV-VIS spectrophotometer with an optical path of 1 cm.
- the E 1% 1cm value of the compound with CAS number 4193-55-9 purified powdered product, free of chlorides and moisture is 568.
- Optical brightener CAS 4193-55-9 30.1% by weight
- Brookfield viscosity at 25° C. 1700 cps (RV3, 20 rpm)
- Brookfield viscosity at 25° C. 90 cps (RV3, 100 rpm)
- the sample was maintained at a temperature of about 95° C., 11.67 kg of urea was added, and the mixture was homogenised for about 15 minutes to obtain 46.67 kg of a composition with the following characteristics:
- Samples 3, 4 and 5 were placed at an average temperature of ⁇ 15° C. for 10 days.
- compositions of the invention can be used to bleach natural, semisynthetic or synthetic fibres or paper; the use of optical whitening agents considerably improves the optical properties of the paper treated, resulting in a high degree of whiteness.
- An application test in a mixture of virgin cellulose and precipitated calcium carbonate (PCC) is described below.
- PCC precipitated calcium carbonate
- the samples thus obtained were homogenised under stirring for 15 minutes, and then used to form laboratory sheets with a Rapid-Koethen sheet former and dryer.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Detergent Compositions (AREA)
- Paper (AREA)
Abstract
Description
- The present invention relates to fluorescent whitening compositions, processes for the preparation of said compositions, stable aqueous solutions of said compositions and the use of said compositions to bleach textile fibres and paper and in detergents.
- The use of whitening agents to impart a higher degree of whiteness to products like paper, cardboard, fabrics and non-woven fabrics is well known. The whitening agents most commonly used in the paper and cardboard industry are derivatives of 4,4′-bis-[1,3,5-triazinyl]-diaminostilbene-2,2′-disulphonic acid substituted at the triazine ring with anilino and alkanolamino groups. The anilino groups can in turn contain other sulphonic groups, but as they increase the solubility in water of the corresponding molecules, they reduce the affinity of said molecules for the cellulose fibres constituting paper and fabric, leading to lower performance in terms of whiteness.
- For reasons of ease of processing, the industry requires said whitening agents to be supplied in the fluid liquid forms of aqueous dispersion or, much more preferably, of solutions which are stable for at least a few months at temperatures ranging from 5 to 40° C.
- As the stilbene whitening agents deriving from 4,4′-bis-[1,3,5-triazinyl]-diaminostilbene-2,2′-disulphonic acid substituted at the triazine ring with anilino groups and alkanolamino groups which are preferred by said industry are not readily water-soluble, the production of the corresponding concentrated, stable aqueous solutions formerly required the addition of significant amounts (up to 25% and over) of solubilising additives such as urea, caprolactam, ethylene glycol and polyglycols.
- The solubilising additives just described certainly have the function of allowing the production of stable aqueous solutions of optical brighteners. However, their presence is undesirable, because when the brightener solution has been used, they are discharged into the waste water, and are consequently pollutants.
- RU2223957 discloses a method for the preparation of derivatives of 4,4′-diaminostilbene-2,2′-disulphonic acid in the form of aqueous solutions useful as optical brighteners. To obtain the solutions according to the invention, the method requires the conversion of the molecule of optical brightener to the corresponding acid form, its isolation, subsequent neutralisation with another base, and the addition of solubilising additives.
- CS208507 discloses a stable liquid form of 4,4′-bis-(6-anilino-4-diethanolaminotriazin-2-ylamino)stilbene-2,2′-disulphonic acid ammonium salt in dilute solution containing urea as solubilising additive. Once again, the process involves conversion of the optical brightener from the acid form.
- CN102093750 discloses a method of preparing disulphonic optical brighteners in a stable liquid form wherein the optical brightener is dissolved in water in the simultaneous presence of numerous solubilising additives such as cellosolve, polyethylene glycol, polyols and urea. The potential pollutant content of these formulations is very high and undesirable.
- U.S. Pat. No. 3,012,971 describes paper whitening compositions consisting of concentrated aqueous solutions of 4,4′-bis-[2-phenylamino-4-diethanolamino-1,3,5-triazinyl]-diaminostilbene-2,2′-disulphonic acid or a salt thereof mixed with alkanolamines.
- WO2005/028749 discloses aqueous compositions comprising stilbene whitening agents and alkanolamines.
- US2010/0159763 discloses aqueous compositions of fluorescent whitening agents, substituted at the triazine rings with propionamide amino groups, having the following formula:
- wherein at least 25% of the ions [M+] associated with the sulphonic group are substituted with (CH3)2NH+CH 2CH2OH ions.
- A further problem derives from the inevitable presence in the whitening agent solutions of inorganic chlorides such as sodium chloride, which derive from the whitening agent synthesis processes. In fact, all the industrial processes for the production of stilbene whitening agents substituted with triazine involve the use of cyanuryl chloride as reagent, whose reaction in successive steps with the various necessary amine products inevitably leads to the generation of large amounts of inorganic chlorides which are difficult to eliminate.
- As the residual inorganic chlorides generate instability in the concentrated aqueous solutions of whitening agents, it has been essential to date to reduce their content significantly, inevitably using expensive osmotic separation techniques to obtain aqueous solutions which are stable over time.
- Finally, U.S. Pat. No. 5,976,410 discloses aqueous dispersions, but not stable aqueous solutions, of optical brighteners: in column 1 from line 10 to line 23, to justify the production of concentrated dispersions, it is stated that stable aqueous solutions of optical brightener cannot be produced at concentrations exceeding 22% by weight because the content of solubilising agent must remain within an acceptable ratio compared with the content of brightener, and that after application, said solubilising agents, especially urea, are undesirable in the waste water resulting from the application process because they only act as pollutants.
- All the compositions in stable solution described so far suffer from the drawback of being too dilute. For example, they do not exceed active ingredient contents of 25% by weight. Moreover, if any form of instability arises, said solutions produce sediments of packed product which are very difficult to recover, especially if the solution is in a container that cannot be stirred, like an ordinary tank. Finally, in view of the low concentration of optical brightener, their transport is uneconomical.
- The purpose of the present invention is to provide a concentrated composition of whitening agents which is particularly stable in aqueous solution, even in the presence of the small amounts of inorganic chlorides that usually remain at the end of synthesis, is easy to produce, fluid and not excessively pollutant, or contains a proportion of solubilising additive lower than that of the optical brightener or comparable with that already used for the same systems as described, and more dilute.
- It has now been found that in many cases, the concentrated compositions of the invention are even more environment-friendly than the corresponding more dilute stable compositions already known, as the proportion of solubilising agent required to stabilise a more concentrated solution of optical brightener according to the invention is significantly reduced.
- It has also been found that the concentrated compositions of the invention are more resistant to low temperatures than the corresponding more dilute compositions.
- In particular, unlike known compositions, which on cooling generate a precipitate that is not easily recoverable, the compositions of the invention remain in the form of clear viscous liquids or solidify into a vitreous, homogenous mass which easily returns to the liquid state and can therefore be completely regenerated simply by heating it to temperatures above 0 degrees centigrade.
- The concentrated compositions of the invention are therefore particularly suitable for transport, even in environments with temperatures below 0° C., as they are stable or regeneratable, and easily diluted with water.
- The optical brighteners used in the compositions of the invention are represented by compounds of formula (I);
- wherein X is hydrogen or an alkali or alkaline-earth metal, ammonium, alkylammonium, alkanolalkylammonium or alkanolammonium.
- X is preferably hydrogen, sodium, potassium, ammonium, ethanolamine, diethanolamine, triethanolamine or dimethylaminoethanol; more preferably, X is sodium.
- The optical brighteners which can be used in the compositions of the invention are also hydrates of the compounds of formula (I).
- The sodium salt of the compound of formula (I) is the most commercially widespread, and is identified by CAS number 4193-55-9.
- The compositions of the invention comprise:
- a) 25-60% by weight of compounds of formula (I);
- b) min. 25% by weight of urea;
- c) max. 50% by weight of water.
- The compositions of the invention preferably comprise:
- a) 30-50% by weight of compounds of formula (I);
- b) min. 30% by weight of urea;
- c) max. 40% by weight of water.
- The compositions of the invention can easily be produced by simple mixing of the three ingredients added in any order at temperatures from 1° C. to 150° C., if necessary under pressure. It is preferable to operate under heating, generally from 50 to 100° C., at atmospheric pressure, and under stirring, to accelerate the dissolution of the optical brightener.
- The process of synthesising optical brighteners is well known, and can be effected in a liquid system, consisting of one or more solvents, preferably selected from polar solvents such as ethers, ketones and mixtures thereof with water. Acetone, methyl ethyl ketone, acetone/water and methyl ethyl ketone/water can preferably be used. Even more preferably, mixtures of acetone and water wherein the acetone content ranges from 20% to 70% can be used.
- The process generally comprises three reaction steps, wherein the cyanuryl chloride is reacted in succession, under different conditions and in the presence of bases, with three amino compounds, the most important of which is 4,4′-diaminostilbene-2,2′-disulphonic acid (DAS). The order of said three reactions can be changed, or one amino compound can be reacted first instead of another, and vice versa. In any event, at the end of the reactions, an organic phase is obtained consisting of optical brightener which can be separated from a salt-rich aqueous phase.
- A very common process is the following:
- At a first step of the process, cyanuryl chloride is reacted with 4,4′-diaminostilbene-2,2′-disulphonic acid (DAS) in a suitable solvent medium. Said reaction takes place at temperatures ranging from −20° C. to +20° C., and in the presence of bases such as sodium bicarbonate or sodium hydroxide, so that the pH of the system is from 1 to 7. The ratio of the moles of cyanuryl chloride to 4,4′-diaminostilbene-2,2′-disulphonic acid (DAS) at said step is about 2.00.
- At a second step of the process, which usually takes place at temperatures ranging from +10° C. to +60° C., one mole of the product obtained from said first step is reacted with about 2 moles of aniline in the presence of bases such as sodium hydroxide, sodium bicarbonate or sodium carbonate, to maintain the reaction mixture at a pH preferably from 4 to 8. The suspension obtained in the first step is preferably used in the second step, without isolating the product.
- At a third step of the process, the product obtained from said second step is reacted at a pH from 7 to 11 with at least 2 moles of alkanolamine, and preferably diethanolamine. Said third step preferably takes place at temperatures from 40° C. to 100° C. in the presence of bases such as sodium hydroxide, sodium carbonate or sodium bicarbonate, to maintain the pH from 7 to 11. At the end of the reaction the solvent is eliminated, for example by distillation, thus obtaining an aqueous suspension of the compound of formula (I), which separates. The organic liquid phase containing the product is separated under heating, for example from 80 to 100° C., from the lower aqueous phase consisting of a concentrated solution of salts.
- At this point, the organic liquid phase, consisting of optical brightener and smaller amounts of saline solution, can preferably be directly formulated with urea and water to obtain the compositions according to the invention, with no need for particular operations to purify the optical brightener such as osmosis or precipitation of the acid form followed by re-neutralisation.
- The compositions of the invention can also include further ingredients such as other whitening agents, inorganic salts, surfactants, preservatives, chelating agents, other solubilising agents or organic solvents.
- Examples of optical whitening agents are optical tetra- and/or hexasulphonated stilbene brighteners.
- Examples of inorganic salts are sodium sulphate, ammonium chloride and potassium chloride.
- Examples of surfactants are sodium polynaphthalene sulphonates and ethoxylated fatty alcohols.
- Examples of preservatives are glutaraldehyde, isothiazolinones and 2-bromo-2-nitropropane-1,3-diol.
- Examples of usable chelating agents are EDTA and GLDA.
- Examples of solubilising agents are polyethylene glycols and caprotactam.
- Examples of organic solvents are ethylene and propylene glycols.
- The compositions of the invention can be used to bleach natural, semisynthetic or synthetic fibres or paper, in the textile and detergent industries.
- In particular, the solutions according to the invention can be used to bleach paper and cardboard at any point in the manufacturing process, either added directly to the fibre dispersion or in subsequent surface treatments such as coating and sizing.
- The invention will be illustrated by reference to the following examples.
- The concentrations of the optical whitening agent solutions are characterised by the E1% 1cm parameter, which corresponds to the specific extinction value measured at the wavelength of maximum absorption of a solution containing 1% of the product in question, measured with an optical path of 1 cm.
- In all examples, the extinction was measured with a Perkin-Elmer Lambda UV-VIS spectrophotometer with an optical path of 1 cm. The E1% 1cm value of the compound with CAS number 4193-55-9 (purified powdered product, free of chlorides and moisture) is 568.
- 200 kg of end-of-reaction organic phase having a specific extinction of 350 and containing 61.6% by weight of optical brightener of formula (I), wherein X=Na, identified by CAS number 4193-55-9, was maintained at a temperature from 85° C. to 100° C., and then mixed with 123 kg of urea and 86 kg of water. The product was homogenised for about 15 minutes to obtain 409 kg of a stable, homogenous aqueous composition with the following characteristics:
- E1% 1cm=171.15
- Optical brightener CAS 4193-55-9=30.1% by weight
- Urea=30.1%
- Water=39.8%
- 200 kg of end-of-reaction organic phase having a specific extinction of 346.5 and containing 61.0% by weight of optical brightener of formula (I), wherein X=Na, identified by CAS number 4193-55-9, was maintained at a temperature from 85° C. to 100° C., and then mixed with 92 kg of urea and 15 kg of water. The product was homogenised for about 15 minutes to obtain 307 kg of a stable, homogenous aqueous composition with the following characteristics:
- E1% 1cm=225.5
- Optical brightener CAS 4193-55-9=39.7% by weight
- Urea=30.0%
- Water=30.3%
- 200 kg of end-of-reaction organic phase having a specific extinction of 350.0 and containing 61.6% by weight of optical brightener of formula (I), wherein X=Na, identified by CAS number 4193-55-9, was maintained at a temperature from 85° C. to 100° C., and then mixed with 86.07 kg of urea and 0.82 kg of water. The product was homogenised for about 15 minutes to obtain 286.89 kg of a stable, homogenous aqueous composition with the following characteristics:
- E1% 1cm=144.0
- Brookfield viscosity at 25° C.=1700 cps (RV3, 20 rpm)
- Optical brightener CAS 4193-55-9=43.0% by weight
- Urea=30.0%
- Water 27.0%
- 200 kg of end-of-reaction organic phase having a specific extinction of 350.0 and containing 61.6% by weight of optical brightener of formula (I), wherein X=Na, identified by CAS number 4193-55-9, was maintained at a temperature from 85° C. to 100° C., and then mixed with 66.5 kg of urea. The product was homogenised for about 15 minutes to obtain 266.5 kg of a stable, homogenous aqueous composition with the following characteristics:
- E1% 1cm=262.7
- Optical brightener CAS 4193-55-9=46.2% by weight
- Urea=25.0% by weight
- Water=28.8% by weight.
- 40.0 kg of end-of-reaction organic phase having a specific extinction of 394.0 and containing 69.4% by weight of optical brightener of formula (I), wherein X=Na, identified by CAS no. 4193-55-9, was maintained at a temperature from 85° C. to 100° C., and then mixed with 25.78 kg of urea and 20.15 kg of water. The product was homogenised for about 15 minutes to obtain 85.93 kg of a stable, homogenous aqueous composition with the following characteristics:
- E1% 1cm=183.4
- Brookfield viscosity at 25° C.=90 cps (RV3, 100 rpm)
- Optical brightener CAS 4193-55-9=32.3% by weight
- Urea=30.0%
- Water 37.7%.
- 20 kg of end-of-reaction organic phase haying a specific extinction of 366.7 and containing 64.6% by weight of optical brightener of formula (I), wherein X=Na, identified by CAS number 4193-55-9, was maintained at a temperature from 85° C. to 100° C., and then mixed with 6.0 kg of urea and 14.0 kg of water. The product was homogenised for about 15 minutes to obtain 40.0 kg of a homogenous aqueous composition with the following characteristics:
- E1% 1cm=183.4
- Optical brightener CAS 4193-55-9=32.3% by weight
- Urea=15.0% by weight
- Water=52.7% by weight.
- 50 kg of end-of-reaction organic phase haying a specific extinction of 343.5 and containing 60.5% by weight of optical brightener of formula wherein X=Na, identified by CAS number 4193-55-9, was maintained at a temperature from 95° C. to 100° C., and then mixed with 21.98 kg of urea and 65.42 kg of water. The product was homogenised for about 15 minutes to obtain 137.40 kg of a homogenous aqueous composition with the following characteristics:
- E1% 1cm=125.0
- Optical brightener CAS 4193-55-9=22.0% by weight
- Urea=16.0% by weight
- Water=62.0% by weight.
- 6.46 kg of water was eliminated by evaporation from 41.46 kg of end-of-reaction organic phase having a specific extinction of 394.0 and containing 69.4% by weight of optical brightener of formula (I), wherein X=Na, identified by CAS number 4193-55-9, to obtain 35.00 kg of oil with a specific extinction of 466.7, corresponding to 82.2% of active ingredient.
- The sample was maintained at a temperature of about 95° C., 11.67 kg of urea was added, and the mixture was homogenised for about 15 minutes to obtain 46.67 kg of a composition with the following characteristics:
- E1% 1cm=350.0
- Optical brightener CAS 4193-55-9=61.6% by weight
- Urea=25.0% by weight
- Water=13.4% by weight.
- Evaluation of Stability at 5° C.
- All the samples 1 to 8 were subjected to T=5° C. for 40 days to assess their stability; surprisingly, samples 1, 2, 3, 4 and 5 remained clear and homogenous, and consequently stable, until the end of the test.
- Samples 6, 7 and 8 (comparators) exhibited evident stability problems:
-
- sample 6 formed a precipitate within 1 day, and therefore proved unstable.
- sample 7 formed a precipitate within 10 days.
- sample 8 completely solidified on simple cooling to below 50° C.
- In all these cases it was impossible to regenerate and recover, by simple heating at room temperature, samples 6, 7 and 8 which had deteriorated following treatment at 5° C.
- Evaluation of Stability at −15° C.
- Samples 3, 4 and 5 were placed at an average temperature of −15° C. for 10 days.
- Surprisingly, all the samples remained stable, in the form of clear, viscous liquids.
- When heated to room temperature, all the samples returned to the fluid state and to the same viscosity values as recorded before the treatment.
- Use—Application Example
- The compositions of the invention can be used to bleach natural, semisynthetic or synthetic fibres or paper; the use of optical whitening agents considerably improves the optical properties of the paper treated, resulting in a high degree of whiteness. An application test in a mixture of virgin cellulose and precipitated calcium carbonate (PCC) is described below.
- 2.059 g of precipitated calcium carbonate (PCC) was added to 457.50 g of a mixture of short-fibre bleached eucalyptus cellulose with 38° SR (Schopper-Riegler) refinement and 3.00% dry matter, and divided into 5 parts.
- The following amounts of a solution of sample 5 (optical brightener with specific extinction of 183.4) in demineralised water with a concentration of 2.00 g/l were added to the samples thus obtained, each of which contained 2.745 grams of dry cellulose:
- 0.00 (sample without optical whitening agent),
- 3.50 ml (equal to 0.26% of optical brightener in the dry paste)
- 7.00 ml (equal to 0.51% of optical brightener in the dry paste)
- 10.50 ml (equal to 0.77% of optical brightener in the dry paste)
- 14.00 ml (equal to 1.02% of optical brightener in the dry paste).
- The samples thus obtained were homogenised under stirring for 15 minutes, and then used to form laboratory sheets with a Rapid-Koethen sheet former and dryer.
- The degree of whiteness and colour coordinates of the samples thus obtained were recorded with an ELREPHO LWE450-X Datacolor reflectometer. The values obtained are set out in the table below:
-
dose of optical optical brightener D65/10° D65/10° CIE brightener (% p) brightness whiteness L* a* b* Sample 5 0.00 90.7 85.86 97.13 0.65 1.56 0.26 102.9 121.73 97.82 2.81 −6.20 0.51 106.3 130.09 98.14 3.18 −7.96 0.77 107.9 133.52 98.28 3.28 −8.68 1.02 109.0 135.89 98.35 3.36 −9.20
Claims (12)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| ITMI2013A000365 | 2013-03-11 | ||
| IT000365A ITMI20130365A1 (en) | 2013-03-11 | 2013-03-11 | COMPOSITIONS OF FLUORESCENT BLEACHING AGENTS |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20140250605A1 true US20140250605A1 (en) | 2014-09-11 |
| US8845761B1 US8845761B1 (en) | 2014-09-30 |
Family
ID=48096032
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/834,509 Expired - Fee Related US8845761B1 (en) | 2013-03-11 | 2013-03-15 | Fluorescent whitening agent compositions |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US8845761B1 (en) |
| EP (1) | EP2778162A1 (en) |
| IT (1) | ITMI20130365A1 (en) |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005028749A1 (en) * | 2003-09-19 | 2005-03-31 | Ciba Specialty Chemicals Holding Inc. | Aqueous solutions of fluorescent whitening agents |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3012971A (en) | 1959-04-07 | 1961-12-12 | Du Pont | Whitening composition for paper |
| CS208507B1 (en) | 1980-05-16 | 1981-09-15 | Jaromir Pirkl | Process for preparing a stable liquid form of 4,4 ' -bis [6-anilino-4-diethylaminolaminotriazin-2-ylamino] stilbene-2,2 ' -disulfonate |
| EP0835906B1 (en) | 1996-10-10 | 2003-11-05 | Ciba SC Holding AG | Dispersions of optical brightening agents |
| RU2223957C2 (en) * | 2001-11-28 | 2004-02-20 | Открытое акционерное общество "Пигмент" | Method for preparing derivatives of 4,4'-diaminostilbene-2,2'-disulfoacid |
| EP1752453A1 (en) | 2005-08-04 | 2007-02-14 | Clariant International Ltd. | Storage stable solutions of optical brighteners |
| CN102093750B (en) * | 2010-11-26 | 2014-07-16 | 山西青山化工有限公司 | Method for preparing disulfonic acid liquid fluorescent brightening agent with low temperature stability |
| ITMI20111449A1 (en) * | 2011-07-29 | 2013-01-30 | 3V Sigma Spa | AQUEOUS SOLUTIONS OF FLUORESCENT BLEACHING AGENTS |
| CN102924972B (en) * | 2012-11-16 | 2015-03-18 | 山西青山化工有限公司 | Highly water-soluble disulfonic acid fluorescent whitening agent composition |
-
2013
- 2013-03-11 IT IT000365A patent/ITMI20130365A1/en unknown
- 2013-03-15 US US13/834,509 patent/US8845761B1/en not_active Expired - Fee Related
-
2014
- 2014-03-10 EP EP14158635.4A patent/EP2778162A1/en not_active Withdrawn
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005028749A1 (en) * | 2003-09-19 | 2005-03-31 | Ciba Specialty Chemicals Holding Inc. | Aqueous solutions of fluorescent whitening agents |
Non-Patent Citations (1)
| Title |
|---|
| STIC Search Report dated 5/2/2014. * |
Also Published As
| Publication number | Publication date |
|---|---|
| ITMI20130365A1 (en) | 2014-09-12 |
| US8845761B1 (en) | 2014-09-30 |
| EP2778162A1 (en) | 2014-09-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3360479A (en) | Liquid optical brightening concentrate | |
| US7714124B2 (en) | Methods for modifying cellulosic polymers in ionic liquids | |
| EP2478153B1 (en) | Disulfo-type fluorescent whitening agent compositions | |
| EP1912955B1 (en) | Storage stable solutions of optical brighteners | |
| JP3286358B2 (en) | Storage stable formulations of optical brightening mixtures | |
| CA2238163C (en) | Triazinylaminostilbene compounds | |
| US20030089888A1 (en) | Use of aqueous brightener preparations for brightening natural and synthetic materials | |
| EP2431519B1 (en) | Fluorescent whitening agent compositions | |
| EP2222652B1 (en) | Storage stable solutions of optical brighteners | |
| US8163688B2 (en) | Storage-stable fluorescent whitener formulations | |
| US8845761B1 (en) | Fluorescent whitening agent compositions | |
| US8940058B2 (en) | Fluorescent whitening agent aqueous solutions | |
| WO2014009479A1 (en) | Stilbene compounds | |
| CN103571220B (en) | A kind of tetrasulfonic acid amphoteric flourescent whitening agents and preparation method thereof | |
| US8864851B2 (en) | Compositions of fluorescent whitening agents | |
| NO165318B (en) | PROCEDURE BY CONNECTING THE LEADERS IN TWO ELECTRICAL CABLES, AND SHOULD BE MANUFACTURED ACCORDING TO THE PROCEDURE. | |
| CN114380760A (en) | Novel compound for synthesizing stilbene bistriazine fluorescent whitening agent | |
| CN114380759A (en) | Fluorescent whitening agent with novel chemical structure and composition thereof | |
| CN1293658A (en) | Process for preparation of sulphonated distyryl-biphenyl compounds | |
| PL187594B1 (en) | Method for the production of optically brightening agents which are compounds or mixtures of compounds of bis- (s-triazinyl) - diaminodisulfostilbene derivatives |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: 3V SIGMA S.P.A., ITALY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SECCOMANDI, CARLO;BALESTRA, IVAN;ALIOLI, PAOLO;REEL/FRAME:030365/0287 Effective date: 20130315 |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20180930 |