[go: up one dir, main page]

US20140147311A1 - Switched reluctance motor assembly - Google Patents

Switched reluctance motor assembly Download PDF

Info

Publication number
US20140147311A1
US20140147311A1 US14/038,593 US201314038593A US2014147311A1 US 20140147311 A1 US20140147311 A1 US 20140147311A1 US 201314038593 A US201314038593 A US 201314038593A US 2014147311 A1 US2014147311 A1 US 2014147311A1
Authority
US
United States
Prior art keywords
guide vane
switched reluctance
reluctance motor
motor assembly
diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/038,593
Inventor
In Yeop Jung
Chang Hwan Park
Se Yeun Hwang
Ji Hae Yang
Sang Ook Jun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Assigned to SAMSUNG ELECTRO-MECHANICS CO., LTD. reassignment SAMSUNG ELECTRO-MECHANICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HWANG, SE YEUN, JUN, SANG OOK, JUNG, IN YEOP, PARK, CHANG HWAN, YANG, JI HAE
Publication of US20140147311A1 publication Critical patent/US20140147311A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • the present invention relates to a switched reluctance motor assembly.
  • a switched reluctance motor called an SR motor
  • SR motor has a structure in which both the stator and the rotor have a magnetic structure that is a salient, the stator is wound with a concentrated type coil, and the rotor is configured of only an iron core without any excitation device (winding or permanent magnet) and therefore, has an excellent competitive price.
  • the switched reluctance motor uses a reluctance torque depending on a change in magnetic reluctance to rotate a rotor and therefore, has low manufacturing cost, hardly requires maintenance, and has substantially permanent lifespan due to high reliability.
  • a structure of the switched reluctance motor is configured to include a stator part that is a stator including a stator yoke and a plurality of stator salients protruded from the stator yoke and a rotor part that is a rotor including a rotor core and a plurality of rotor salients protruded from the rotor core so as to face the stator salient and rotatably received in the stator part.
  • the switched reluctance motor (SRM) may be applied to various fields such as a vacuum cleaner, and the like. However, vibration or noise may occur at the time of driving the switched reluctance motor (SRM). In particular, since the vacuum cleaner using the switched reluctance motor (SRM) requires a high suction power, a flow noise generated from the switched reluctance motor (SRM) may be very large.
  • an impeller and a diffuser helping to improve efficiency of an air flow that is generated from the impeller are used to increase the suction power of the vacuum cleaner.
  • an outer circumferential surface of a body of the diffuser which is divided into an upper portion and a lower portion, is vertically provided with guide vanes that guide the air flow.
  • the guide vanes of the diffuser are individually located through areas divided into the upper and lower portions based on the body of the diffuser.
  • the guide vanes that are each mounted over and under the diffuser as described above hinder the air flow from constantly flowing and disperse the air flow, such that the air flow generated from above the diffuser is dispersed while moving down, thereby increasing loss and noise.
  • Patent Document 1 U.S. Pat. No. 4,011,624
  • Patent Document 2 U.S. Pat. No. 4,920,608
  • Patent Document 3 U.S. Pat. No. 6,125,498
  • the present invention has been made in an effort to provide a switched reluctance motor assembly capable of improving a flow of air passing through a diffuser of a motor assembly by designing guide vanes mounted in the diffuser so as to be vertically integrated, thereby reducing noise at the time of an operation of a motor.
  • a switched reluctance motor assembly including: a rotating shaft forming a rotating center of a motor; a rotor part rotatably coupled on the rotating shaft; a front part mounted over the rotor part to support a first bearing part of the rotating shaft; a diffuser part having a plurality of integrated guide vanes mounted at an outer side thereof while being coupled with an axial upper portion of the front part; and an impeller part coupled with the axial upper portion of diffuser part and coupled with the rotating shaft.
  • the switched reluctance motor assembly may include: a housing enclosing an outer side of the rotor part and formed to include a first bearing part and a second bearing part of the rotating shaft; and a cover member coupled with an axial upper portion of the housing to cover the diffuser part and the impeller part.
  • the guide vane may be formed to guide air sucked by the impeller part into the motor.
  • the guide vane may be protruded outwardly in a circumferential direction in a form in which an upper portion of the guide vane encloses the impeller part.
  • the guide vane may be protruded so as to be inclined axially downwardly in a state in which a lower portion of the guide vane is connected with an upper portion thereof.
  • a connecting part that connects an upper portion of the guide vane with a lower portion thereof may form a curved surface.
  • the guide vane may have an inner side extending axially downwardly from the inner side of the connecting part and formed in a curved surface to guide a flow of sucked air axially downwardly.
  • a flow of air flowing out along the upper portion of the guide vane may continuously flow in the axial lower portion thereof through a connecting part.
  • the diffuser part may include: a disk-shaped diffuser body coupled over the rotating shaft; an upper guide vane protruded over an outer circumferential surface of the diffuser body; and a lower guide vane integrally formed with the lower portion of the upper guide vane.
  • the number of upper guide vanes and the number of lower guide vanes may be the same.
  • the diffuser part may further include a connecting guide vane disposed at a connecting part extending axially from the upper guide vane and the lower guide vane.
  • the connecting guide vane may be connected with the lower guide vane while an outer side of the connecting guide vane contacts an outer diameter of the upper guide vane.
  • a point where an inner surface of the connecting guide vane meets an extension of the lower guide vane may be formed in a curved surface to continuously guide a flow of air.
  • Air flowing out along the upper guide vane may continuously flow through the connecting guide vane and flow in the lower guide vane.
  • FIG. 1 is a cross-sectional view of a switched reluctance motor assembly according to a preferred embodiment of the present invention
  • FIG. 2 is a perspective view of a diffuser of a switched reluctance motor according to the preferred embodiment of the present invention
  • FIG. 3 is a cross-sectional view of the diffuser according to the preferred embodiment of the present invention.
  • FIG. 4 is a state diagram of an air flow of the diffuser according to the preferred embodiment of the present invention.
  • FIG. 5 is a state diagram of an air flow of guide vanes according to the preferred embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a rotor part and a stator part according to the preferred embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a switched reluctance motor assembly according to a preferred embodiment of the present invention
  • FIG. 2 is a perspective view of a diffuser of a switched reluctance motor according to the preferred embodiment of the present invention
  • FIG. 3 is a cross-sectional view of the diffuser according to the preferred embodiment of the present invention
  • FIG. 4 is a state diagram of an air flow of the diffuser according to the preferred embodiment of the present invention
  • FIG. 5 is a state diagram of an air flow of guide vanes according to the preferred embodiment of the present invention.
  • a switched reluctance motor assembly 1 includes a rotating shaft 10 that is a rotating center of the motor, a rotor part 21 that is rotatably coupled on the rotating shaft 10 , a front part 40 that is mounted over the rotor part 21 to support a first bearing part 30 of the rotating shaft 10 , a diffuser part 60 having a plurality of integrated guide vanes 50 mounted at an outside thereof while being coupled with an axial upper portion of the front part 40 , and an impeller part 70 that is coupled with an axial upper portion of the diffuser part 60 and is coupled with the rotating shaft 10 .
  • the rotating shaft 10 forms a rotating center of a motor and extends axially.
  • the axial direction is based on a direction in which the rotating shaft 10 is formed and an upper direction and a lower direction are specified based on the rotating shaft 10 illustrated in FIG. 1 .
  • the rotating shaft 10 forming the rotating center of the motor is coupled with the rotor part 20 , the diffuser part 60 , and the impeller part 70 .
  • the rotor part 21 may include an annular rotor core 21 a and a plurality of rotor poles 21 b that are protruded outwardly from the rotor core 21 a.
  • a central part of the rotor core 21 a is provided with a hollow hole and the hollow hole is fixed with the rotating shaft 10 to transfer a rotation of the rotor part 21 to the outside.
  • the plurality of rotor poles 21 b are protruded outwardly along an outer circumferential surface of the rotor core 21 a and may be formed to correspond to stator salients 22 b to be described below.
  • the stator part 22 includes a stator yoke 22 a and a stator salient 22 b.
  • the stator yoke 22 a may be provided with a hollow hole so as to receive the rotor part 21 and the plurality of stator salients 22 b may formed to be protruded from outer and inner sides of the stator yoke 22 a and correspond to the rotor poles 21 b of the rotor part 21 .
  • Current is applied to the stator salients 22 b of the stator yoke 22 a to form a flux path through the rotor poles 21 b of the rotor part 21 facing the stator salients 22 b, such that the rotor part rotates.
  • the switched reluctance motor assembly 1 further includes the front part 40 that is formed on an axial upper portion of the first bearing part 30 and supports the first bearing part 30 , the diffuser part 60 that is coupled with the axial upper portion of the front part 40 , and the impeller part 70 that is coupled with the axial upper portion of the diffuser part 60 and is coupled with the rotating shaft 10 .
  • the switched reluctance motor assembly 1 further includes a housing 90 that encloses the outer side of the rotor part 21 and is formed to include the first bearing part 30 and a second bearing part 80 of the rotating shaft 10 and a cover member 100 that is coupled with the axial upper portion of the housing 90 to cover the diffuser part 60 and the impeller part 70 .
  • the front part 40 may be formed as a separate member that is coupled with the axial upper portion of the first bearing part 30 and is coupled with the housing 90 so as to support the first bearing part 30 .
  • the diffuser part 60 is coupled with the axial upper portion of the front part 40 .
  • the diffuser part 60 serves to switch a direction of introduced air so as to diffuse air sucked by the impeller part 70 to be described below in both directions of the rotating shaft 10 coupled with the rotor part 20 .
  • the impeller part 70 is coupled with the axial upper portion of the diffuser part 60 and is coupled with the rotating shaft 10 .
  • the impeller part 70 is coupled with the rotating shaft 10 to rotate together at the time of the rotation of the motor, thereby sucking external air.
  • FIG. 1 illustrates a vacuum cleaner including the switched reluctance motor assembly 1 .
  • the impeller part 70 rotates so as to introduce air from the outside at the time of the operation of the cleaner.
  • the impeller part 70 may be manufactured to have a direction and a shape of a blade formed therein for the introduction of external air.
  • the detailed structure of the impeller may be easily designed by those skilled in the art based on the general related art and the detailed illustration thereof will be omitted.
  • the diffuser part 60 guides an air flow generated from the impeller part 70 through the guide vane 50 .
  • the diffuser part 60 constantly guides the flow of air through the guide vane 50 to reduce noise due to the air flow generated at the time of the operation of the vacuum cleaner.
  • the guide vane 50 is protruded in a circumferential direction in a form in which the upper portion of the guide vane 50 encloses the impeller part 70 . Further, the guide vane 50 is protruded to be inclined downwardly in the state in which the lower portion of the guide vane 50 is connected with the upper portion thereof.
  • the guide vane 50 is a wing forming the outer side of the diffuser part 60 and the upper and lower portions thereof are integrally formed to constantly guide the flow of air passing through the diffuser part 60 .
  • a connecting part that connects the upper portion of the guide vane 50 with the lower portion thereof forms a curved surface R and an outer surface of the connecting part of the guide vane 50 is connected with the lower portion thereof while contacting an outer diameter of the upper portion thereof.
  • the guide vane 50 forms a curved surface R at a point where an inner surface of the connecting part meets the lower portion thereof, thereby guiding the flow of air. In this configuration, the flow of air flowing out along the upper portion of the guide vane 50 constantly flows into the lower portion thereof through the connecting part.
  • the flow of air through the curved surface R formed at the connecting part of the guide vane 50 is smooth, such that noise may be reduced. That is, the flow of air passing through the diffuser part 60 is constant and turbulence is reduced, such that noise may be reduced.
  • the switched reluctance motor assembly 1 includes the rotating shaft 10 forming the rotating center of the motor, the rotor part 21 that is rotatably coupled on the rotating shaft 10 , the front part 40 that is mounted over the rotor part 21 to support the first bearing part 30 of the rotating shaft 10 , the diffuser part 60 that is configured of the disk-shaped diffuser body 61 coupled over the rotating shaft 10 , the upper guide vane 52 protruded over the outer circumferential surface of the diffuser body 61 , and the lower guide vane 53 integrally formed with the lower portion of the upper guide vane 52 , and the impeller part 70 that is coupled with the axial upper portion of the diffuser part 60 and coupled with the rotating shaft 10 .
  • the diffuser part 60 is configured of the diffuser body 61 and the upper guide vane 52 and the lower guide vane 53 .
  • the upper guide vane 52 and the lower guide vane 53 are integrally designed, thereby naturally inducing the flow of air passing through the diffuser part 60 from top to bottom.
  • the number of upper guide vanes 52 and the number of lower guide vanes 53 are the same and a connecting guide vane 54 is further mounted at the connecting part between the upper guide vane 52 and the lower guide vane 53 .
  • the air flowing toward the lower portion along the upper guide vane 52 passes through the connecting guide vane 54 and exits down along the lower guide vane 53 .
  • the connecting guide vane 54 is connected with the lower guide vane 53 while the outer surface thereof contacting the outer diameter of the upper guide vane 52 and has the curved surface R formed at a point where the inner surface of the connecting guide vane 54 meets the lower guide vane 53 to guide the flow of air. That is, the flow of air is smoothed due to the curved surface R formed on the connecting guide vane 54 , such that the flow of air passing through the diffuser part 60 is constant, thereby reducing noise.
  • the air flowing downwardly from above the diffuser part 60 is constant and is stably maintained, thereby reducing noise.
  • the air flowing out along the upper guide vane 52 configuring the guide vane 50 constantly flows in the lower guide vane 53 through the connecting guide vane 54 . That is, the noise of the motor driven at the time of the operation of the vacuum cleaner is reduced by improving the flow of air passing through the diffuser part 60 mounted with the plurality of guide vanes 50 is mounted, thereby improving the performance of the switched reluctance motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Electric Suction Cleaners (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Disclosed herein is a switched reluctance motor assembly, including: a rotating shaft forming a rotating center of a motor; a rotor part rotatably coupled on the rotating shaft; a front part mounted over the rotor part to support a first bearing part of the rotating shaft; a diffuser part having a plurality of integrated guide vanes mounted at an outer side thereof while being coupled with the axial upper portion of the front part; and an impeller part coupled with the axial upper portion of the diffuser and coupled with the rotating shaft. According to the preferred embodiments of the present invention, it is possible to reduce the noise generated at the time of driving the motor by manufacturing the guide vanes mounted in the diffuser of the switched reluctance motor so as to be vertically integrated.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of Korean Patent Application No. 10-2012-0134788, filed on Nov. 26, 2012, entitled “Switched Reluctance Motor Assembly” which is hereby incorporated by reference in its entirety into this application.
  • BACKGROUND OF THE INVENTION
  • 1. Technical Field
  • The present invention relates to a switched reluctance motor assembly.
  • 2. Description of the Related Art
  • Generally, a switched reluctance motor (SRM) called an SR motor has a structure in which both the stator and the rotor have a magnetic structure that is a salient, the stator is wound with a concentrated type coil, and the rotor is configured of only an iron core without any excitation device (winding or permanent magnet) and therefore, has an excellent competitive price.
  • In detail, the switched reluctance motor (SRM) uses a reluctance torque depending on a change in magnetic reluctance to rotate a rotor and therefore, has low manufacturing cost, hardly requires maintenance, and has substantially permanent lifespan due to high reliability. A structure of the switched reluctance motor is configured to include a stator part that is a stator including a stator yoke and a plurality of stator salients protruded from the stator yoke and a rotor part that is a rotor including a rotor core and a plurality of rotor salients protruded from the rotor core so as to face the stator salient and rotatably received in the stator part.
  • The switched reluctance motor (SRM) may be applied to various fields such as a vacuum cleaner, and the like. However, vibration or noise may occur at the time of driving the switched reluctance motor (SRM). In particular, since the vacuum cleaner using the switched reluctance motor (SRM) requires a high suction power, a flow noise generated from the switched reluctance motor (SRM) may be very large.
  • In the case of the switched reluctance motor (SRM), an impeller and a diffuser helping to improve efficiency of an air flow that is generated from the impeller are used to increase the suction power of the vacuum cleaner. In this case, an outer circumferential surface of a body of the diffuser, which is divided into an upper portion and a lower portion, is vertically provided with guide vanes that guide the air flow. These technologies that are known well are described in detail in U.S. Pat. Nos. 4,011,624, 4,920,608, and 6,125,498 and therefore, the overlapping description thereof will be omitted.
  • The guide vanes of the diffuser are individually located through areas divided into the upper and lower portions based on the body of the diffuser. However, the guide vanes that are each mounted over and under the diffuser as described above hinder the air flow from constantly flowing and disperse the air flow, such that the air flow generated from above the diffuser is dispersed while moving down, thereby increasing loss and noise.
  • PRIOR ART DOCUMENT Patent Document
  • (Patent Document 1) U.S. Pat. No. 4,011,624
  • (Patent Document 2) U.S. Pat. No. 4,920,608
  • (Patent Document 3) U.S. Pat. No. 6,125,498
  • SUMMARY OF THE INVENTION
  • The present invention has been made in an effort to provide a switched reluctance motor assembly capable of improving a flow of air passing through a diffuser of a motor assembly by designing guide vanes mounted in the diffuser so as to be vertically integrated, thereby reducing noise at the time of an operation of a motor.
  • According to a preferred embodiment of the present invention, there is provided a switched reluctance motor assembly, including: a rotating shaft forming a rotating center of a motor; a rotor part rotatably coupled on the rotating shaft; a front part mounted over the rotor part to support a first bearing part of the rotating shaft; a diffuser part having a plurality of integrated guide vanes mounted at an outer side thereof while being coupled with an axial upper portion of the front part; and an impeller part coupled with the axial upper portion of diffuser part and coupled with the rotating shaft.
  • The switched reluctance motor assembly may include: a housing enclosing an outer side of the rotor part and formed to include a first bearing part and a second bearing part of the rotating shaft; and a cover member coupled with an axial upper portion of the housing to cover the diffuser part and the impeller part.
  • The guide vane may be formed to guide air sucked by the impeller part into the motor.
  • The guide vane may be protruded outwardly in a circumferential direction in a form in which an upper portion of the guide vane encloses the impeller part.
  • The guide vane may be protruded so as to be inclined axially downwardly in a state in which a lower portion of the guide vane is connected with an upper portion thereof.
  • A connecting part that connects an upper portion of the guide vane with a lower portion thereof may form a curved surface.
  • The guide vane may have an inner side extending axially downwardly from the inner side of the connecting part and formed in a curved surface to guide a flow of sucked air axially downwardly.
  • A flow of air flowing out along the upper portion of the guide vane may continuously flow in the axial lower portion thereof through a connecting part.
  • The diffuser part may include: a disk-shaped diffuser body coupled over the rotating shaft; an upper guide vane protruded over an outer circumferential surface of the diffuser body; and a lower guide vane integrally formed with the lower portion of the upper guide vane.
  • The number of upper guide vanes and the number of lower guide vanes may be the same.
  • The diffuser part may further include a connecting guide vane disposed at a connecting part extending axially from the upper guide vane and the lower guide vane.
  • The connecting guide vane may be connected with the lower guide vane while an outer side of the connecting guide vane contacts an outer diameter of the upper guide vane.
  • A point where an inner surface of the connecting guide vane meets an extension of the lower guide vane may be formed in a curved surface to continuously guide a flow of air.
  • Air flowing out along the upper guide vane may continuously flow through the connecting guide vane and flow in the lower guide vane.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a cross-sectional view of a switched reluctance motor assembly according to a preferred embodiment of the present invention;
  • FIG. 2 is a perspective view of a diffuser of a switched reluctance motor according to the preferred embodiment of the present invention;
  • FIG. 3 is a cross-sectional view of the diffuser according to the preferred embodiment of the present invention;
  • FIG. 4 is a state diagram of an air flow of the diffuser according to the preferred embodiment of the present invention;
  • FIG. 5 is a state diagram of an air flow of guide vanes according to the preferred embodiment of the present invention; and
  • FIG. 6 is a schematic cross-sectional view of a rotor part and a stator part according to the preferred embodiment of the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The objects, features and advantages of the present invention will be more clearly understood from the following detailed description of the preferred embodiments taken in conjunction with the accompanying drawings. Throughout the accompanying drawings, the same reference numerals are used to designate the same or similar components, and redundant descriptions thereof are omitted. Further, in the following description, the terms “first,” “second,” “one side,” “the other side” and the like are used to differentiate a certain component from other components, but the configuration of such components should not be construed to be limited by the terms. Further, in the description of the present invention, when it is determined that the detailed description of the related art would obscure the gist of the present invention, the description thereof will be omitted.
  • Hereinafter, preferred embodiments of the present invention are described in detail with reference to the accompanying drawings.
  • FIG. 1 is a cross-sectional view of a switched reluctance motor assembly according to a preferred embodiment of the present invention, FIG. 2 is a perspective view of a diffuser of a switched reluctance motor according to the preferred embodiment of the present invention, FIG. 3 is a cross-sectional view of the diffuser according to the preferred embodiment of the present invention, FIG. 4 is a state diagram of an air flow of the diffuser according to the preferred embodiment of the present invention, and FIG. 5 is a state diagram of an air flow of guide vanes according to the preferred embodiment of the present invention.
  • A switched reluctance motor assembly 1 according to a preferred embodiment of the present invention includes a rotating shaft 10 that is a rotating center of the motor, a rotor part 21 that is rotatably coupled on the rotating shaft 10, a front part 40 that is mounted over the rotor part 21 to support a first bearing part 30 of the rotating shaft 10, a diffuser part 60 having a plurality of integrated guide vanes 50 mounted at an outside thereof while being coupled with an axial upper portion of the front part 40, and an impeller part 70 that is coupled with an axial upper portion of the diffuser part 60 and is coupled with the rotating shaft 10.
  • The rotating shaft 10 forms a rotating center of a motor and extends axially. In particular, in the present invention, the axial direction is based on a direction in which the rotating shaft 10 is formed and an upper direction and a lower direction are specified based on the rotating shaft 10 illustrated in FIG. 1. The rotating shaft 10 forming the rotating center of the motor is coupled with the rotor part 20, the diffuser part 60, and the impeller part 70.
  • As illustrated in FIG. 6, the rotor part 21 may include an annular rotor core 21 a and a plurality of rotor poles 21 b that are protruded outwardly from the rotor core 21 a. A central part of the rotor core 21 a is provided with a hollow hole and the hollow hole is fixed with the rotating shaft 10 to transfer a rotation of the rotor part 21 to the outside. The plurality of rotor poles 21 b are protruded outwardly along an outer circumferential surface of the rotor core 21 a and may be formed to correspond to stator salients 22 b to be described below.
  • The stator part 22 includes a stator yoke 22 a and a stator salient 22 b. The stator yoke 22 a may be provided with a hollow hole so as to receive the rotor part 21 and the plurality of stator salients 22 b may formed to be protruded from outer and inner sides of the stator yoke 22 a and correspond to the rotor poles 21 b of the rotor part 21. Current is applied to the stator salients 22 b of the stator yoke 22 a to form a flux path through the rotor poles 21 b of the rotor part 21 facing the stator salients 22 b, such that the rotor part rotates.
  • As illustrated in FIG. 1, the switched reluctance motor assembly 1 according to the preferred embodiment of the present invention further includes the front part 40 that is formed on an axial upper portion of the first bearing part 30 and supports the first bearing part 30, the diffuser part 60 that is coupled with the axial upper portion of the front part 40, and the impeller part 70 that is coupled with the axial upper portion of the diffuser part 60 and is coupled with the rotating shaft 10.
  • Further, the switched reluctance motor assembly 1 according to the preferred embodiment of the present invention further includes a housing 90 that encloses the outer side of the rotor part 21 and is formed to include the first bearing part 30 and a second bearing part 80 of the rotating shaft 10 and a cover member 100 that is coupled with the axial upper portion of the housing 90 to cover the diffuser part 60 and the impeller part 70.
  • As described above, the front part 40 may be formed as a separate member that is coupled with the axial upper portion of the first bearing part 30 and is coupled with the housing 90 so as to support the first bearing part 30.
  • The diffuser part 60 is coupled with the axial upper portion of the front part 40. The diffuser part 60 serves to switch a direction of introduced air so as to diffuse air sucked by the impeller part 70 to be described below in both directions of the rotating shaft 10 coupled with the rotor part 20.
  • The impeller part 70 is coupled with the axial upper portion of the diffuser part 60 and is coupled with the rotating shaft 10. The impeller part 70 is coupled with the rotating shaft 10 to rotate together at the time of the rotation of the motor, thereby sucking external air. In particular, FIG. 1 illustrates a vacuum cleaner including the switched reluctance motor assembly 1. In this configuration, the impeller part 70 rotates so as to introduce air from the outside at the time of the operation of the cleaner. The impeller part 70 may be manufactured to have a direction and a shape of a blade formed therein for the introduction of external air. The detailed structure of the impeller may be easily designed by those skilled in the art based on the general related art and the detailed illustration thereof will be omitted.
  • As illustrated in FIGS. 2 and 3, the diffuser part 60 guides an air flow generated from the impeller part 70 through the guide vane 50. Here, the diffuser part 60 constantly guides the flow of air through the guide vane 50 to reduce noise due to the air flow generated at the time of the operation of the vacuum cleaner.
  • As illustrated in FIGS. 2 and 3, the guide vane 50 is protruded in a circumferential direction in a form in which the upper portion of the guide vane 50 encloses the impeller part 70. Further, the guide vane 50 is protruded to be inclined downwardly in the state in which the lower portion of the guide vane 50 is connected with the upper portion thereof. In this case, the guide vane 50 is a wing forming the outer side of the diffuser part 60 and the upper and lower portions thereof are integrally formed to constantly guide the flow of air passing through the diffuser part 60.
  • Further, a connecting part that connects the upper portion of the guide vane 50 with the lower portion thereof forms a curved surface R and an outer surface of the connecting part of the guide vane 50 is connected with the lower portion thereof while contacting an outer diameter of the upper portion thereof. The guide vane 50 forms a curved surface R at a point where an inner surface of the connecting part meets the lower portion thereof, thereby guiding the flow of air. In this configuration, the flow of air flowing out along the upper portion of the guide vane 50 constantly flows into the lower portion thereof through the connecting part.
  • Therefore, as described above, the flow of air through the curved surface R formed at the connecting part of the guide vane 50 is smooth, such that noise may be reduced. That is, the flow of air passing through the diffuser part 60 is constant and turbulence is reduced, such that noise may be reduced.
  • According to another preferred embodiment of the present invention, the switched reluctance motor assembly 1 includes the rotating shaft 10 forming the rotating center of the motor, the rotor part 21 that is rotatably coupled on the rotating shaft 10, the front part 40 that is mounted over the rotor part 21 to support the first bearing part 30 of the rotating shaft 10, the diffuser part 60 that is configured of the disk-shaped diffuser body 61 coupled over the rotating shaft 10, the upper guide vane 52 protruded over the outer circumferential surface of the diffuser body 61, and the lower guide vane 53 integrally formed with the lower portion of the upper guide vane 52, and the impeller part 70 that is coupled with the axial upper portion of the diffuser part 60 and coupled with the rotating shaft 10.
  • The diffuser part 60 is configured of the diffuser body 61 and the upper guide vane 52 and the lower guide vane 53. In particular, the upper guide vane 52 and the lower guide vane 53 are integrally designed, thereby naturally inducing the flow of air passing through the diffuser part 60 from top to bottom.
  • As illustrated in FIGS. 2 and 3, in the guide vane 50, the number of upper guide vanes 52 and the number of lower guide vanes 53 are the same and a connecting guide vane 54 is further mounted at the connecting part between the upper guide vane 52 and the lower guide vane 53. Here, the air flowing toward the lower portion along the upper guide vane 52 passes through the connecting guide vane 54 and exits down along the lower guide vane 53.
  • Further, the connecting guide vane 54 is connected with the lower guide vane 53 while the outer surface thereof contacting the outer diameter of the upper guide vane 52 and has the curved surface R formed at a point where the inner surface of the connecting guide vane 54 meets the lower guide vane 53 to guide the flow of air. That is, the flow of air is smoothed due to the curved surface R formed on the connecting guide vane 54, such that the flow of air passing through the diffuser part 60 is constant, thereby reducing noise.
  • Therefore, as illustrated in FIG. 4, the air flowing downwardly from above the diffuser part 60 is constant and is stably maintained, thereby reducing noise.
  • Therefore, as illustrated in FIG. 5, the air flowing out along the upper guide vane 52 configuring the guide vane 50 constantly flows in the lower guide vane 53 through the connecting guide vane 54. That is, the noise of the motor driven at the time of the operation of the vacuum cleaner is reduced by improving the flow of air passing through the diffuser part 60 mounted with the plurality of guide vanes 50 is mounted, thereby improving the performance of the switched reluctance motor.
  • According to the preferred embodiments of the present invention, it is possible to reduce the noise generated at the time of driving the motor by manufacturing the guide vanes mounted in the diffuser of the switched reluctance motor so as to be vertically integrated.
  • Further, it is possible to smooth the air flow passing through the diffuser of the switched reluctance motor to reduce the noise at the time of the driving of the motor, thereby improving the motor operation performance and the operation reliability.
  • In addition, it is possible to simplify the diffuser design of the switched reluctance motor, thereby improving the assembly performance of the diffuser and the reliability of the motor assembly.
  • Moreover, it is possible to design a point where the upper and lower guide vanes mounted in the diffuser of the switched reluctance motor are met in a curved surface to smooth the air flow passing through the diffuser and the guide vanes, thereby improving the operation performance of the motor.
  • Although the embodiments of the present invention have been disclosed for illustrative purposes, it will be appreciated that the present invention is not limited thereto, and those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention.
  • Accordingly, any and all modifications, variations or equivalent arrangements should be considered to be within the scope of the invention, and the detailed scope of the invention will be disclosed by the accompanying claims.

Claims (14)

What is claimed is:
1. A switched reluctance motor assembly, comprising:
a rotating shaft forming a rotating center of a motor;
a rotor part rotatably coupled on the rotating shaft;
a front part mounted over the rotor part to support a first bearing part coupled of the rotating shaft;
a diffuser part having a plurality of integrated guide vanes mounted at an outer side thereof while being coupled with the axial upper portion of the front part; and
an impeller part coupled with the axial upper portion of the diffuser part and coupled with the rotating shaft.
2. The switched reluctance motor assembly of claim 1, further comprising:
a housing enclosing an outer side of the rotor part and formed to include a first bearing part and a second bearing part coupled of bottom of the rotor part; and
a cover member coupled with the axial upper portion of the housing to cover the diffuser part and the impeller part.
3. The switched reluctance motor assembly of claim 1, wherein the guide vane is formed to guide air sucked by the impeller part into the motor.
4. The switched reluctance motor assembly of claim 1, wherein the guide vane is protruded outwardly in a circumferential direction in a form in which an upper portion of the guide vane encloses the impeller part.
5. The switched reluctance motor assembly of claim 1, wherein the guide vane is protruded so as to be inclined axially downwardly in a state in which a lower portion of the guide vane is connected with an upper portion thereof.
6. The switched reluctance motor assembly of claim 1, wherein a connecting part that connects an upper portion of the guide vane with a lower portion thereof forms a curved surface.
7. The switched reluctance motor assembly of claim 6, wherein the guide vane has an inner side extending axially downwardly from the inner side of the connecting part and formed in a curved surface to guide a flow of sucked air axially downwardly.
8. The switched reluctance motor assembly of claim 1, wherein a flow of air flowing out along the upper portion of the guide vane continuously flows in the axial lower portion thereof through a connecting part.
9. The switched reluctance motor assembly of claim 1, wherein the diffuser part includes:
a disk-shaped diffuser body coupled over the rotating shaft;
an upper guide vane protruded over an outer circumferential surface of the diffuser body; and
a lower guide vane integrally formed with the lower portion of the upper guide vane.
10. The switched reluctance motor assembly of claim 9, wherein the number of upper guide vanes and the number of lower guide vanes are the same.
11. The switched reluctance motor assembly of claim 9, wherein the diffuser part further includes a connecting guide vane disposed at a connecting part extending axially from the upper guide vane and the lower guide vane.
12. The switched reluctance motor assembly of claim 11, wherein the connecting guide vane is connected with the lower guide vane while an outer side of the connecting guide vane contacts an outer diameter of the upper guide vane.
13. The switched reluctance motor assembly of claim 11, wherein a point where an inner surface of the connecting guide vane meets an extension of the lower guide vane is formed in a curved surface to continuously guide a flow of air.
14. The switched reluctance motor assembly of claim 9, wherein air flowing out along the upper guide vane continuously flows through the connecting guide vane and flows in the lower guide vane.
US14/038,593 2012-11-26 2013-09-26 Switched reluctance motor assembly Abandoned US20140147311A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120134788 2012-11-26
KR10-2012-0134788 2012-11-26

Publications (1)

Publication Number Publication Date
US20140147311A1 true US20140147311A1 (en) 2014-05-29

Family

ID=50773469

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/038,593 Abandoned US20140147311A1 (en) 2012-11-26 2013-09-26 Switched reluctance motor assembly

Country Status (2)

Country Link
US (1) US20140147311A1 (en)
JP (1) JP2014105706A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980412A1 (en) * 2014-07-31 2016-02-03 Nidec Corporation Electric blower
KR20160019140A (en) * 2014-08-11 2016-02-19 삼성전자주식회사 Vacuum cleaner
EP3133295A1 (en) * 2015-08-21 2017-02-22 Johnson Electric S.A. Diffuser, airflow generating apparatus, and electrical device
US20170314575A1 (en) * 2016-05-02 2017-11-02 Samsung Electronics Co., Ltd. Fan motor and vacuum cleaner having the same
CN108306453A (en) * 2018-03-02 2018-07-20 追觅科技(天津)有限公司 A kind of motor and hair-dryer
CN109662653A (en) * 2019-01-31 2019-04-23 稻津电机(珠海)有限公司 A kind of high speed cleaner motor
CN110994905A (en) * 2019-12-23 2020-04-10 佛山市南海区天洋电机制造有限公司 A noise reduction motor
US11311153B1 (en) * 2020-10-01 2022-04-26 Hokwang Industries Co., Ltd. Wind flow generating device adapted to hand dryer
US11717126B2 (en) 2018-05-03 2023-08-08 Samsung Electronics Co., Ltd. Motor assembly, method of manufacturing the same and a cleaner having the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102330551B1 (en) 2015-03-12 2021-11-24 엘지전자 주식회사 Vacuum suntion unit
WO2021113671A1 (en) * 2019-12-05 2021-06-10 Sharkninja Operating Llc Techniques for sub-micron radial alignment of electric motor components and air flow management to extend motor lifespan

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130171013A1 (en) * 2011-12-29 2013-07-04 Samsung Electro-Mechanics Co., Ltd. Motor assembly for vacuum cleaner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187991A (en) * 1997-12-26 1999-07-13 Hitachi Ltd Electric vacuum cleaner
KR100903519B1 (en) * 2007-09-18 2009-06-19 주식회사 아모텍 Permanent magnet embedded motor and air suction device using same
JP5131242B2 (en) * 2009-04-22 2013-01-30 パナソニック株式会社 Electric blower and electric vacuum cleaner using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130171013A1 (en) * 2011-12-29 2013-07-04 Samsung Electro-Mechanics Co., Ltd. Motor assembly for vacuum cleaner

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9810239B2 (en) 2014-07-31 2017-11-07 Nidec Corporation Electric blower
EP2980412A1 (en) * 2014-07-31 2016-02-03 Nidec Corporation Electric blower
KR20160019140A (en) * 2014-08-11 2016-02-19 삼성전자주식회사 Vacuum cleaner
CN106572773A (en) * 2014-08-11 2017-04-19 三星电子株式会社 Vacuum cleaner
EP3179895A4 (en) * 2014-08-11 2017-08-30 Samsung Electronics Co., Ltd. Vacuum cleaner
AU2015302568B2 (en) * 2014-08-11 2018-03-08 Samsung Electronics Co., Ltd. Vacuum cleaner
US10098515B2 (en) 2014-08-11 2018-10-16 Samsung Electronics Co., Ltd. Vacuum cleaner
KR102274393B1 (en) * 2014-08-11 2021-07-08 삼성전자주식회사 Vacuum cleaner
US10605264B2 (en) 2015-08-21 2020-03-31 Johnson Electric International AG Diffuser, airflow generating apparatus, and electrical device
EP3133295A1 (en) * 2015-08-21 2017-02-22 Johnson Electric S.A. Diffuser, airflow generating apparatus, and electrical device
US20170314575A1 (en) * 2016-05-02 2017-11-02 Samsung Electronics Co., Ltd. Fan motor and vacuum cleaner having the same
CN108306453A (en) * 2018-03-02 2018-07-20 追觅科技(天津)有限公司 A kind of motor and hair-dryer
US11717126B2 (en) 2018-05-03 2023-08-08 Samsung Electronics Co., Ltd. Motor assembly, method of manufacturing the same and a cleaner having the same
CN109662653A (en) * 2019-01-31 2019-04-23 稻津电机(珠海)有限公司 A kind of high speed cleaner motor
CN110994905A (en) * 2019-12-23 2020-04-10 佛山市南海区天洋电机制造有限公司 A noise reduction motor
US11311153B1 (en) * 2020-10-01 2022-04-26 Hokwang Industries Co., Ltd. Wind flow generating device adapted to hand dryer

Also Published As

Publication number Publication date
JP2014105706A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
US20140147311A1 (en) Switched reluctance motor assembly
EP3290716A1 (en) Centrifugal blower and cleaner
US9564787B2 (en) Motor including housing structure with through holes
JP7090767B2 (en) Motors, blowers, vacuum cleaners and hand dryers
KR102631485B1 (en) Rotating electrical machine containing a rotor and stator for passing fluid
JP2020141557A (en) Brushless motor
US20140062226A1 (en) Switched reluctance motor assembly
US20120237373A1 (en) Blower
US11268532B2 (en) Electric blower, electric vacuum cleaner, and hand dryer
US11976666B2 (en) Fan motor
CN105703495A (en) Single-phase brushless motor
KR102797009B1 (en) Motor assembly
US20130076212A1 (en) Switched reluctance motor
JP2015059435A (en) Fuel pump
WO2019167152A1 (en) Motor, electric blower, electric vacuum cleaner and hand dryer
AU2020445869B2 (en) Motor assembly
CN114204703A (en) motor assembly
CN212086044U (en) brushless motor
US20130154406A1 (en) Switched reluctance motor assembly
US20170149318A1 (en) Single Phase Permanent Magnet Brushless Motor
US20140056740A1 (en) Switched reluctance motor assembly
US20140175915A1 (en) Motor of outer rotor type
US20140003972A1 (en) Fan motor structure
US20190207437A1 (en) Electric blower
JP2015059432A (en) Fuel pump

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRO-MECHANICS CO., LTD., KOREA, REPUBL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUNG, IN YEOP;PARK, CHANG HWAN;HWANG, SE YEUN;AND OTHERS;REEL/FRAME:031296/0188

Effective date: 20130828

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION