US20140116965A1 - Separator and method for separating a heterogeneous supply - Google Patents
Separator and method for separating a heterogeneous supply Download PDFInfo
- Publication number
- US20140116965A1 US20140116965A1 US13/666,562 US201213666562A US2014116965A1 US 20140116965 A1 US20140116965 A1 US 20140116965A1 US 201213666562 A US201213666562 A US 201213666562A US 2014116965 A1 US2014116965 A1 US 2014116965A1
- Authority
- US
- United States
- Prior art keywords
- supply
- screen
- solid material
- separator
- casing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 239000011343 solid material Substances 0.000 claims abstract description 93
- 239000007788 liquid Substances 0.000 claims abstract description 72
- 238000012216 screening Methods 0.000 claims abstract description 34
- 230000005484 gravity Effects 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 238000009825 accumulation Methods 0.000 abstract description 6
- 239000007787 solid Substances 0.000 description 22
- 238000007667 floating Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000011344 liquid material Substances 0.000 description 9
- 239000006228 supernatant Substances 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 239000010800 human waste Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000010815 organic waste Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D33/00—Filters with filtering elements which move during the filtering operation
- B01D33/06—Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums
- B01D33/11—Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums arranged for outward flow filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D33/00—Filters with filtering elements which move during the filtering operation
- B01D33/06—Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums
- B01D33/067—Construction of the filtering drums, e.g. mounting or sealing arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D33/00—Filters with filtering elements which move during the filtering operation
- B01D33/44—Regenerating the filter material in the filter
- B01D33/48—Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
- B01D33/50—Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with backwash arms, shoes or nozzles
- B01D33/503—Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with backwash arms, shoes or nozzles the backwash arms, shoes acting on the cake side
Definitions
- the present invention relates to the separation of substantially-liquid mixtures into liquid and solid materials. More particularly, the present invention relates to a separator and a method for separating a heterogeneous supply into a liquid and solid material, and for extracting the solid material.
- Septic tanks collect and store human waste. They are often required where municipal or local sewerage is inadequate or inaccessible.
- the human waste collected and stored in the septic tank usually breaks down into three distinct components: solids that have settled at the bottom of the tank, liquid which constitutes the bulk of the volume of the septic tank (commonly referred to as the “supernatant”), and solids which float on the liquid.
- solids which have settled at the bottom of the tank
- liquid which constitutes the bulk of the volume of the septic tank (commonly referred to as the “supernatant”)
- solids which float on the liquid When emptying the tank, it is often desirous to remove only the settled and floating solids from the tank, and to leave the liquid in the tank, or at least return it. It is known that the liquid contains beneficial bacteria and microorganisms that help to break down the human waste collected and stored in the septic tank.
- U.S. Pat. No. 6,790,368 B1 to VACHON et al. proposes one technique for removing only the solids from the tank.
- This document relates to a method and system for the recuperation of the content of a septic tank where the supernatant is returned to the septic tank after the recuperation of the solid material and of the scum.
- a major portion of the supernatant is recuperated from the top of the septic tank to the bottom thereof, and stored in a first reservoir of the system.
- the solid material, the remainder of the supernatant, and the scum are then recuperated and stored in a second reservoir.
- the supernatant is filtered, either upon its recuperation or before its return to the septic tank. Finally, the filtered supernatant is returned to the septic tank.
- U.S. Pat. No. 5,312,551 to PERRON et al. proposes another technique. This document relates to a mobile multi reservoir unit which aspirates liquid with solids from septic tanks, treats immediately the liquor by a flocculent polymer and dehydrates the product by a low speed vertical centrifugal machine. The liquid is returned to the septic tank and the solid is maintained in a mud state and then transferred to a storage reservoir.
- the object of the present invention is to provide a system which is an improvement over other related separators or methods known in the art.
- a separator for separating a heterogeneous supply into a liquid and a solid material and for extracting the solid material, the separator comprising:
- a casing for containing the supply comprising an inlet for receiving the supply and an outlet for conveying liquid out from the casing;
- a screen mountable within the casing and rotatable relative to the casing comprising at least one perforated section, the at least one perforated section comprising a plurality of perforations disposed thereabout so as to permit passage of liquid therethrough, the screen being positioned, shaped, and sized for receiving the supply from the inlet of the casing such that the supply accumulates within the screen to a supply height, the supply thereby providing a screening pressure acting against the at least one perforated section so as to compact the solid material against the perforations while the liquid passes therethrough, thereby separating the liquid from the solid material;
- the suction unit disposed within the screen, the suction unit comprising a suction head disposed above the supply height and positioned for extracting the solid material from the perforations as the at least one perforated section rotates within an extractable distance from the suction head;
- a supply level regulator mountable within the screen, the supply level regulator regulating a level of the supply within the screen so as to maintain the level of the supply below the supply height.
- the casing can be about 7 feet in diameter.
- the screen can include a notch which projects away from the center of the screen and allows for the passage of solid material underneath the suction unit.
- the suction unit can be a vacuum, and can include a suction extension for forming a sealed contact with the perforated sections.
- a method for separating a heterogeneous supply into a liquid and a solid material including the steps of:
- the screen can be rotated at a speed between about 5 rpm and about 10 rpm. Further optionally, the solid material is extracted from the screen with a suction unit.
- liquid and solid material having been separated with the above-mentioned separator and/or method.
- FIG. 1 is a perspective view of a separator, according to one optional configuration of the present invention.
- FIG. 2 is a perspective view of an interior of the separator of FIG. 1 .
- FIG. 3 is a perspective view of an access door for a separator, according to one optional configuration of the present invention.
- FIG. 4 is a perspective view of a screen and FIG. 4A is a close-up view of a notch provided on the screen, according to one optional configuration of the present invention.
- FIG. 5 is a perspective view of a suction unit and a supply level regulator, according to one optional configuration of the present invention.
- FIG. 6 is a schematic side elevational view of a mobile unit for separating a supply, according to another optional configuration of the present invention.
- FIG. 7 is an exposed side elevational view of the separator of FIG. 1 showing a liquid and a solid material.
- FIG. 8 is a partially exploded perspective view of a perforated section having a mesh, a mesh support, and a filter, according to one optional configuration of the present invention.
- the present invention may be used with a supply of organic waste, for example, and as a result, is sometimes described in the context of its use with a septic tank, it is understood that it may be used with other containers, and in other fields. These other fields include, but are not limited to, the following: mining slurries, food mixtures, pollutant mixtures, etc. For this reason, expressions such as “human waste”, “septic tank”, “sludge”, etc. used herein should not be taken as to limit the scope of the present invention to use with only organic wastes and/or septic tanks in particular. These expressions encompass all other kinds of materials, objects and/or purposes with which the present invention could be used and may be useful.
- a separator 10 for separating a heterogeneous supply into a liquid and a solid material and for extracting the solid material.
- the separator 10 allows for the division of a liquid-solid mixture into its constituent parts, i.e. into separate liquid and solid components.
- the separator 10 can therefore be any filter, sieve, strainer, colander, mesh, etc.
- the separator 10 separates a heterogeneous supply.
- heterogeneous supply refers to any mixture of at least liquid and solid material, but which may contain other materials, and in which the liquid and solid material do not perfectly blend so as to completely lose their individual characteristics.
- a heterogeneous supply can be found in the field of septic tanks. As previously explained, the contents of a septic tank often include solids that are settled on the bottom of the tank, or which float on a volume of liquid. Although high in moisture content, such solids are not completely dissolved in the liquid so as to lose their individual characteristics and can thus be said to be “heterogeneous” with the liquid.
- supply refers to the stock or provision of such a heterogeneous mixture, which can be furnished to the separator 10 by any known means such as pumping, transportation, digging, etc.
- this heterogeneous supply In the field of septic tanks, as but one example, it is often desirable to separate this heterogeneous supply into its constituent elements, which are the liquid, commonly referred to as the “supernatant”, and the solid material.
- the supernatant denotes the liquid lying between the layers of settled and floating solid material. It is often desirable to extract, remove, take out, etc. this settled and floating solid material (or simply “solid material”), which is referred to in the art as “sludge”, from the septic tank altogether, thereby allowing the septic tank to put back to use after it has reached or approached capacity. Once so extracted, this solid material is usually transported by truck to a site where it can be suitably stored or transformed. As previously explained, the supernatant is often returned to the septic tank.
- the separator 10 has a casing 20 which contains the supply.
- the casing 20 receives the supply directly or indirectly from its source (i.e. a septic tank), and holds the supply within itself so that it can collect to a certain volume.
- the casing 20 can thus be mostly impermeable to liquid and solids such that the supply can collect therein.
- the casing 20 is also intended to convey the liquid separated by the separator 10 to wherever it is desired (i.e. return it to a septic tank).
- the casing 20 can thus be any container, box, coffer, chamber, receptacle, etc. which can receive the supply, convey the liquid, and allow the supply to accumulate within itself.
- the shape and/or form of the casing 20 can vary.
- the shape of the casing 20 is shown as “cylindrical”, but any other suitable shape can be used depending on the following non-exhaustive list of factors: volume of supply to process, location where the casing 20 will be mounted, the configuration of components within the casing 20 , etc.
- the casing 20 can be made of any suitable material which can resist the corrosive nature of the matter contained therein, and which can resists the cyclical and/or static forces acting against it while the supply is processed.
- One example of such a material includes an aluminum alloy.
- the casing 20 can also include handles, grips, etc. which are suitably mounted about the casing 20 as to permit hoisting of the casing 20 for the purposes of mounting, transporting, removing, etc.
- the casing 20 receives the supply through an inlet 24 , and conveys the liquid so separated through an outlet 26 (an example of which is provided in FIG. 7 ).
- the inlet 24 can be located about the center of the casing 20 . This allows the supply to enter the casing 20 from a certain height, which can be above or below the supply height, as explained below.
- the supply can enter the inlet 24 so as to impact a wall of the casing opposite the location of a supply level regulator, which is also discussed below.
- this manner of entering the casing 20 via the inlet 24 can allow the supply to accumulate within the casing 20 without impacting the function of the supply level regulator.
- the outlet 26 can be located substantially at the bottom of the casing 20 .
- gravity causes the separated liquid to accumulate at the bottom of the casing 20 . Therefore, and advantageously, by locating the outlet 26 at the bottom of the casing 20 , the separated liquid can be conveyed from the casing 20 , and thus the separator 10 , via unassisted gravity drainage.
- the casing 20 has a removable access door 22 .
- the door 22 can permit access to the inside of the casing 20 so as to allow inspection, repair components, perform maintenance, and/or for any other reason.
- One possible configuration of the access door 22 is provided in FIG. 3 .
- the door 22 can have a covering 22 a which interacts with appropriate flanges 22 b, seals, gaskets, etc. so as to provide a sealed closure once the covering 22 a is brought against the flanges 22 b.
- Such a configuration of the access door 22 can advantageously allow for access to only those parts of the separator 10 which require attention, thus avoiding the necessity of completely uninstalling, dismantling, and/or removing the separator 10 whenever maintenance needs to be performed.
- the separator 10 also has a screen 30 which is mounted within the casing 20 and rotatable relative to the casing 20 .
- the screen 30 allows for the passage of the liquid, and for the retention of the solid material thereon.
- the screen 30 can be any suitable filter, taking any suitable form and/or configuration, which allows for these functions to be accomplished.
- the screen 30 is a substantially hollow cylinder.
- such a configuration of the screen 30 allows for its rotation, and allows for more of the supply to be exposed to the surface of the screen 30 , thus increasing screening capacity.
- the screen 30 consists of a screening surface 30 a, to which are mounted two impermeable walls 30 b on either side of the screening surface 30 a.
- the walls 30 b allow the screen 30 to remain a “closed” system, such that the liquid is intended to only traverse the screening surface 30 a, and is not intended to deviate to the sides of the screening surface 30 a.
- this can allow the supply to more rapidly accumulate within the casing 20 .
- the screen 30 can be made of any suitable material which can resists the cyclical and static forces acting against it, and which can further resist the potentially corrosive nature of the matter it processes.
- a material includes stainless steel, being roughly 3 ⁇ 8′′ thick.
- other suitable materials, material combinations, and/or dimensions can also be used.
- the screen 30 is mounted within the casing 20 . This allows the supply to essentially “immerse” the screen 30 as the supply accumulates within the casing 20 .
- the screen 30 can be separated from an interior surface of the casing 20 by an accumulation distance. This distance can provide spacing between the screen 30 and the casing 20 , thereby allowing the separated liquid to accumulate within the volume defined by the accumulation distance. In some optional configurations, this accumulation distance is about 2 inches, uniformly observed about the screen 30 .
- the screen 30 also rotates with respect to the casing 20 .
- Such a rotation of the screen 30 may advantageously accelerate the processing capacity of the screen 30 , especially when compared to screens that do not rotate.
- the rotation of the screen 30 with respect to the casing 20 can be relative. In one such configuration, the casing 20 is fixed and thus does not rotate, whereas in another possible configuration, the casing 20 can rotate about a fixed screen 30 .
- the speed of rotation can be between about 5 rpm and about 10 rpm. More particularly, the speed of rotation can be about 7 rpm.
- Such a relatively slow rotational speed can advantageously reduce the energy expended to rotate the screen 30 , while still allowing for a methodical and efficient separation of the liquid and solid material.
- the screen 30 has at least one perforated section 32 , an example of which is provided in FIGS. 4 and 4A .
- the screen 30 can also have many perforated sections 32 , such as nine perforated sections 32 , for example, each perforated section 32 being interconnected to another perforated section 32 so as to form a perforated surface.
- Each perforated section 32 allows for the passage of liquid through its surface, while allowing for the retention of the solid material.
- the liquid may pass through, and the solid material may accumulate on, a plurality of perforations 34 .
- the perforations 34 can be any hole, aperture, passage, cavity, etc. through which the liquid may pass, and on which the solid material can accrue.
- the perforations 34 can be of any shape or profile for accomplishing such a function.
- the perforations 34 are substantially rectangular, having dimensions of about 1 inch by 1 inch, and are disposed in a grid-like pattern.
- the layout and/or disposition of the perforations 34 on each perforated section 32 can take any form or configuration.
- FIG. 8 One example of a construction of the perforated sections 32 is provided in FIG. 8 .
- a mesh 32 a containing the perforations 34 can be assembled from a plurality of mesh sections.
- two substantially semi-circular mesh sections are assembled together, and the cylindrical shape is closed with another curved mesh section.
- a cylindrical mesh 32 a consisting of multiple perforations 34 is formed.
- This cylindrical mesh 32 a may be provided with a structural support to enhance its rigidity, for example. Therefore, multiple mesh supports 32 b can be mounted to the outside of the mesh 32 a.
- These mesh supports 32 b can include intersecting cross members 32 c which provide reinforcement to the mesh 32 a in the interior of the mesh supports 32 b.
- a filter 36 can be provided between the mesh 32 a and the mesh supports 32 b. It is understood that the screen 30 and/or perforated sections 32 are not limited to this construction, and any of the mesh 32 a, the mesh supports 32 b, and/or the filter can be removed, interchanged, or substituted for another component.
- a perforated section 32 having such a construction can permit passage of the liquid.
- the mesh 32 a, and thus the perforations 34 are located closest to the interior of the screen 30 , and thus are in contact with the liquid and solid material.
- pressure is applied against the perforations 34 /mesh 32 a, especially as the volume of supply accumulates within the screen 30 , as explained below.
- the mesh supports 32 b may thus advantageously reinforce the mesh 32 a when it is subjected to this pressure, allowing for continuous screening of the supply.
- the screen 30 is positioned, shaped, and sized for receiving the supply from the inlet 24 of the casing 20 such that the supply accumulates within the screen 30 .
- the expression “positioned, shaped, and sized” can mean that the screen 30 is constructed, located within the casing 20 , and/or mounted thereto, so that the supply can accumulate therein.
- One example of such a screen 30 construction is described above, where the screen 30 consists of a screening surface 30 a, to which are mounted two impermeable walls 30 b on either side of the screening surface 30 a.
- the walls 30 b allow the screen 30 to remain a “closed” system, such that the liquid is intended to only traverse the screening surface 30 a, and is not deviated to the sides of the screening surface 30 a.
- a screen 30 location is also described above, where the screen 30 can be separated from an interior surface of the casing 20 by an accumulation distance. This distance can provide spacing between the screen 30 and the casing 20 , thereby allowing the separated liquid to accumulate within the volume defined by the accumulation distance. It is thus apparent that the “closed” nature of the screen 30 and/or casing 20 allows the supply to accumulate within the screen 30 .
- the supply height H s can vary with the level of the supply within the screen 30 .
- the supply thus forms a volume characterised in one dimension by the supply height H s , and in other dimensions by the width and length of the screen 30 .
- the screen 30 can have a diameter of about 7 feet and a width of about 2 feet.
- the volume of fluid collecting over a screen 30 of such dimensions exerts a significant pressure against at least some of the perforated sections 32 , and which is designated herein as a screening pressure P s . Examples of the supply height H s and the screening pressure P s are provided in FIG. 7 .
- the screening pressure P s varies with the volume of supply within the screen 30 .
- the screening pressure P s can also vary depending on the following non-exhaustive list of other factors: the degree of blockage of the perforations 34 , the density of the supply, etc.
- the screening pressure P s can be about 8.5 kPa.
- the screening pressure P s can decrease from this value as the volume of liquid in the supply passes through the screen and is not replaced. Indeed, in the field of septic tanks for example, this may occur as the septic tank is nearly emptied.
- the screening pressure P s can be about 7.0 kPa.
- the screening pressure P s acts against at least one perforated section 32 , thereby compacting the solid material against that perforated section 32 and/or its perforations 34 .
- the screening pressure P s will be greatest when acting against the bottom-most perforated section 32 , and will be of a lower value when acting against those perforated sections 32 elevated from the bottom of the screen 30 .
- the screening pressure P s acting against the perforated sections 32 can vary as the perforated sections 32 are rotated.
- the solid material tends to accumulate near the bottom of the screen 30 , and as previously explained, it is at this point of the screen 30 where it may feel the highest screening pressure P s .
- the screening pressure P s at this location may level out the solid material by compacting it against the perforated sections 32 /perforations 34 , which may press, squeeze, force, etc. the liquid within the solid material out of the solid material as well, further dehydrating the solid material.
- the liquid passes through the perforations 34 , and the solid material accumulates thereon. The liquid is thus separated from the solid material.
- the separator 10 also has a suction unit 40 disposed or located within the screen 30 .
- the suction unit 40 extracts, removes, sucks, etc. the solid material compacted against the screen 30 , thereby unblocking the perforations 34 of the screen 30 so that the liquid may be continuously separated from the supply by the screen 30 .
- the suction unit 40 can be any machine, vacuum, aspirator, etc. which creates a pressure differential allowing for the inhalation or “vacuuming” of the solid material.
- the suction unit 40 can apply between about 5 and about 10 lbs. of pressure.
- One optional configuration of the suction unit 40 is provided in FIG. 5 .
- the suction unit 40 has an elongated suction shaft 42 , which extends a certain distance and which ends in a suction head 44 .
- the suction shaft 42 can be any tube, conduit, duct, flue, etc. which conveys the aspirated solid material from the suction head 44 and out of the screen 30 . As such, it can take any form which can perform such functions.
- the suction shaft 42 is tubular, and includes a substantially 90-degree bend between the portion of the suction shaft 42 connecting to the suction head 44 , and the portion exiting the screen 30 .
- the suction shaft 42 is positioned at an angle ⁇ relative to a vertical line. The value of the angle ⁇ may vary anywhere from between about 84 degrees and about 135 degrees. Indeed, the angle ⁇ need not fall within this range, and can vary provided that the solid material remains within the perforations.
- the suction head 44 can be any cap, crown, tip, etc. which can aspire and/or suck the solid material compacted within the perforations 34 .
- the suction head 44 is located above the supply height H s . In such a location, the suction head 44 is kept above the level of the supply within the screen 30 , and the suction head 44 is thus prevented from extracting the liquid component of the supply, and can thus only extract the solid material.
- the suction head 44 is located within an extractable distance from the perforations 34 of the screen 30 .
- extractable distance refers to any distance of the suction head 44 from the perforations 34 /perforated section 32 at which the suction head 44 can sufficiently extract the solid material from the perforations 34 so as to unblock the perforations 34 and permit the continued screening of the supply.
- the extractable distance can vary, and its value can depend on the following non-exhaustive list of factors: the suction force of the suction unit 40 , the properties of the solid material, the rate of rotation of the screen 30 , the desired extraction rate, etc. Indeed, in some optional configurations, the extractable distance can be substantially zero, such that the suction head 44 is in contact with the perforations 34 /perforated section 32 .
- the suction head 44 has a suction extension 46 , which can be attached to the suction head 44 .
- the suction extension 46 can be made of any suitable substantially rigid material, such as rubber.
- the suction extension 46 can span the extractable distance, thereby creating a sealed contact between an end of the suction head 44 and the surface of the perforated section 32 .
- the suction extension 46 may advantageously allow for the suction unit 40 to maintain and/or enhance the suction pressure applied.
- the suction extension 46 may perform such an operation as the screen 30 rotates.
- At least one perforated section 32 of the screen 30 has a perforated notch 38 .
- the notch 38 can be any indentation, cleft, groove, indent, etc. in the perforated section 32 which projects away from the center and/or inside of the screen 30 , and which allows for the selective passage of liquid.
- the notch 38 can be a V-shaped projection which projects from the perforated section 32 , and which forms an apex.
- the notch 38 can also span some of the width of the perforated section 32 , all of the width, and/or any combination thereof.
- the notch 38 could have a width substantially matching the width of the suction head 44 .
- the width of the notch 38 could exceed that of the suction head 44 . It is apparent that many such notch 38 widths are possible.
- FIGS. 4 and 4A show only one notch 38 , a screen 30 and/or perforated section can have a plurality of notches 38 , if so required. In one such configuration, two notches 38 can be provided on the screen 30 , each notch 38 being located opposite the other.
- the separator 10 has a supply level regulator 50 which is mountable within the screen 30 .
- the supply level regulator 50 can be any device, instrument, tool, sensor, etc. which measures the level of the supply within the screen 30 , and regulates the level such that it is maintained below the supply height H s . In so doing, the level of the supply never surpasses the established supply height H s , thereby ensuring that the suction unit 40 never extracts the liquid of the supply, among other advantages.
- the supply level regulator 50 may regulate the level of the supply is through the use of a float gage 52 , an example of which is shown in FIG. 5 .
- the float gage 52 has a float 54 in contact with the supply.
- the float 54 can form the end of a float arm 56 .
- the float 54 can be positioned lower than the supply height H s .
- the float 54 rises along with it.
- the float arm 56 attached to the float 54 is also raised. The raising of the float arm 56 triggers a mechanism which can stop the flow of supply into the screen 30 via the inlet 24 .
- the raising of the float arm 56 sends a pneumatic “stop” signal to a gate valve through which the supply enters the screen 30 .
- Other examples of trigger techniques are also within the scope of the present invention. This ensures that the level of the supply in the screen 30 does not surpass the supply height H. By stopping the flow of the supply, a delay is created during which the screen 30 can process the volume of supply so as to lower its level. Once the level of the supply lowers, and thus the height of the float 54 , the float arm 56 no longer triggers the mechanism, and flow of supply into the screen 30 can continue. It is apparent that the supply level regulator 50 may regulate the level of the supply in any other suitable manner.
- the supply level regulator 50 operates continuously, such that when it is triggered, it simply reduces the flow rate of the supply to the screen 30 , and then raises the flow rate when not triggered, thereby continuously maintaining the supply at a given level within the screen 30 .
- the mobile unit 100 can be any truck, haul, vehicle, etc. which can self-displace to a location near the source 120 , and which can transport, cart away, remove, etc. the separated solid material to a suitable dumping site.
- the supply 110 can be similar to the one described above.
- the supply 110 can consist of a layer of floating solids 110 a, a layer of settled solids 110 c (both solids 110 a, 110 c being referred to herein as “solid material 110 a, 110 c ”), and a liquid layer 110 b in between.
- the source 120 can be any suitable container or storage for the supply 110 , such as a septic tank.
- the mobile unit 100 includes a separator 10 such as the one described herein.
- the separator 10 can be mounted to the mobile unit 100 , such as via a frame.
- a feed tank 130 receives the supply 110 from the source 120 , and is in fluid communication with the separator 10 so that it may feed the supply 110 to the separator 10 .
- the feed tank 130 is positioned higher than the separator 10 , which allows the feed tank 130 to feed the supply 110 to the separator 10 by gravity.
- the feed tank 130 can feed the separator 10 via a pressurized unit, such as a pump.
- the feed tank 130 can be of any capacity, configuration, and/or shape. In one possible configuration, the feed tank 130 has a capacity to store roughly 750 gallons, which can correspond to the average capacity of a septic tank. This advantageously allows for the entire contents of a septic tank to be emptied into such a feed tank 130 , which can improve processing times.
- the mobile unit 100 also includes a solid material container 140 , which is operatively connected to the suction unit 40 of the separator 10 so as to store the solid material 110 a, 110 c extracted by the suction unit 40 .
- the location of the solid material container 140 can vary depending on numerous factors such as the hauling capacity of the mobile unit 100 , the available space on the mobile unit 100 , the size of the solid material container 140 , etc. In some optional configurations, the solid material container 140 is located just below the feed tank 130 , as exemplified in FIG. 6 . Furthermore, the mobile unit 100 contains at least one pump 150 which is in fluid communication with the feed tank 130 and with the source 120 so as to pump the supply 110 from the source 120 and into the feed tank 130 . The pump 150 may also return the liquid 110 b separated by the separator 10 to the source 120 .
- FIG. 7 Having described some of the optional features and components of the separator 10 , the operation of the separator 10 will now be described in reference to FIG. 7 , and according to another aspect of the present invention, which relates to a method for separating a heterogeneous supply into a liquid and solid material.
- the method includes step a), which relates to accumulating the supply 110 within the rotatable screen 30 .
- the supply 110 can be provided to the screen 30 through the inlet 24 of the casing 20 , which can arrive via gravity drainage from a feed tank, as but one example.
- a suitable tube or other device can direct the supply 110 away from the supply level regulator such that the entering supply 110 does not interfere with the operation of the supply level regulator.
- the level of the supply 110 rises within the screen 30 as the supply 110 is continuously fed into the screen 30 .
- the liquid 110 b may immediately pass through the screen 30 and exit via the outlet 26 of the casing 20 , thus limiting the rise in the level of the supply 110 .
- This separated liquid 110 b can be returned to the source from whence it came, via a pump, for example.
- the supply 110 may separate into its constituent elements, with the settled solids 110 c sinking directly to the bottom of the screen 30 , and the floating solids 110 a floating upon a layer of the liquid 110 b.
- the level of the supply 110 may rise within the screen 30 until it reaches the supply height H s .
- the screening pressure P s may thus increase and compact the solid material 110 a, 110 c against the perforations/perforated sections of the screen 30 , as previously explained.
- the method also includes step b), which relates to maintaining the level of the supply 110 within the screen 30 at or below the supply height H s .
- This can be achieved with a device such as the supply level regulator described above. If the level of the supply 110 rises above the supply height H s and/or a certain trigger height, step a) can be interrupted at least temporarily, and the flow of the supply 110 can be interrupted, thereby permitting the screen 30 to process the supply 110 already within it, and thus lower its level. Once sufficiently lowered, the feeding of the supply 110 can resume.
- the method also includes step c), which relates to rotating the screen 30 and the settled solid 110 c compacted thereon.
- the rotation can occur in the direction indicated by the arrow in FIG. 7 .
- the floating solid 110 a may only contact the screen 30 and/or perforations once all the liquid 110 a has been separated by the screen 30 .
- the floating solid 110 a will be rotated by the screen 30 , along with any remaining settled solid 110 c.
- Such a rotation can be performed at a speed between about 5 rpm and about 10 rpm, or at about 7 rpm.
- the method also includes step d), which relates to extracting the solid material 110 a, 110 c from the rotating screen 30 when the solid material 110 a, 110 c is rotated above the supply height H s .
- step d relates to extracting the solid material 110 a, 110 c from the rotating screen 30 when the solid material 110 a, 110 c is rotated above the supply height H s .
- the screen 30 may be provided with a notch 38 , such as the one described above, which allows such un-extracted solid material 110 a, 110 c to fall within the notch 38 and be secured therein.
- the notch 38 being indented away from the center of the screen 30 , thus allows the un-extracted solid material 110 a, 110 c to nestle therein so as to pass underneath the suction head along with the notch 38 . Once underneath the notch 38 , the un-extracted solid material 110 a, 110 c can then be sucked by the suction unit 40 .
- the notch 38 can thus advantageously self-clean the screen 30 of difficult to extract solid material 110 a, 110 c, and thus improve the screening capacity of the screen 30 .
- separator 10 and method described herein provide certain advantages over the prior art in that, by virtue of their design, steps, and components, the separator 10 and method allow for the rapid emptying of a source, such as a septic tank, and the return of beneficial liquid thereto.
- a source such as a septic tank
- the relatively large size of the screen 30 allows the screen 30 to accept a large volume of supply, which in some instances is the entire capacity of the source.
- the greater size of the screen 30 also results in a greater volume of the supply being exposed to the screen 30 , which can increase screening capacity.
- the rotation of the screen 30 allows for faster screening of the supply when compared to stationary screens. The ability to rotate the screen 30 slowly, for example at about 7 rpm, also procures important energy savings.
- the use of multiple perforated sections 32 , and the access door 22 can allow for more rapid repairs and/or maintenance of the screen 30 . Indeed, should a particular perforation or group of perforations need repairing, the access door 22 provides for easy access to such items without the need to dismantle the separator 10 .
- the use of multiple perforated sections 32 allows for their easy replacement should one so require it, without the need to replace the screen 30 and/or filter 36 as a whole.
- the separator 10 and method described herein allow for the complete emptying, processing, and return of liquid from a septic tank, for example. Indeed, and contrary to some existing systems, there is no need to “pre-filter” the supply coming from the tank by first removing the floating solid layer.
- the separator 10 and method described herein advantageously allow a person to simply empty the supply into the screen 30 so as to separate the liquid therefrom. This further advantageously allows the separator 10 and method to be performed by a non-specialized technician, thus increasing access and potentially lowering costs.
- a standard 750 gallon septic tank can be emptied in under ten minutes, whereas some known systems can take hours.
- Such rapid emptying is further assisted by gravity feeding from the feed tank of a mobile unit, which eliminates the need for additional mechanical components (i.e. pump, piping, etc.), and thus may lower costs.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treatment Of Sludge (AREA)
- Centrifugal Separators (AREA)
Abstract
A separator and method for separating a heterogeneous supply into a liquid and a solid material. The separator includes a casing in which the supply can collect, and which has an inlet for receiving the supply and an outlet for conveying the supply. The separator also includes a screen which rotates relative to the casing. The screen has perforated sections having a plurality of perforations which permit passage of the liquid. The screen allows for the accumulation of the supply within it, which rises to a level corresponding to a supply height. As this supply height, a screening pressure acts against the perforated sections so as to compact the solid material against the perforations while the liquid passes therethrough. A suction unit sucks the compacted solid material from the perforations, and is disposed higher than the supply height. A supply level regulator regulates the level of the supply within the screen.
Description
- The present invention relates to the separation of substantially-liquid mixtures into liquid and solid materials. More particularly, the present invention relates to a separator and a method for separating a heterogeneous supply into a liquid and solid material, and for extracting the solid material.
- Septic tanks collect and store human waste. They are often required where municipal or local sewerage is inadequate or inaccessible.
- When a septic tank reaches its capacity it needs to be emptied. Over time, the human waste collected and stored in the septic tank usually breaks down into three distinct components: solids that have settled at the bottom of the tank, liquid which constitutes the bulk of the volume of the septic tank (commonly referred to as the “supernatant”), and solids which float on the liquid. When emptying the tank, it is often desirous to remove only the settled and floating solids from the tank, and to leave the liquid in the tank, or at least return it. It is known that the liquid contains beneficial bacteria and microorganisms that help to break down the human waste collected and stored in the septic tank.
- U.S. Pat. No. 6,790,368 B1 to VACHON et al. proposes one technique for removing only the solids from the tank. This document relates to a method and system for the recuperation of the content of a septic tank where the supernatant is returned to the septic tank after the recuperation of the solid material and of the scum. A major portion of the supernatant is recuperated from the top of the septic tank to the bottom thereof, and stored in a first reservoir of the system. The solid material, the remainder of the supernatant, and the scum are then recuperated and stored in a second reservoir. The supernatant is filtered, either upon its recuperation or before its return to the septic tank. Finally, the filtered supernatant is returned to the septic tank.
- U.S. Pat. No. 5,312,551 to PERRON et al. proposes another technique. This document relates to a mobile multi reservoir unit which aspirates liquid with solids from septic tanks, treats immediately the liquor by a flocculent polymer and dehydrates the product by a low speed vertical centrifugal machine. The liquid is returned to the septic tank and the solid is maintained in a mud state and then transferred to a storage reservoir.
- Inevitably, some form of separation of the solids and liquids is performed. One technique for doing so is provided in U.S. Pat. No. 3,979,289 to BYKOWSKI et al., which relates to an internal rotary filter system. The filter screen is externally impacted as it rotates with a programmed spray of liquid that is varied from a relatively low to a relatively high pressure.
- The following documents are also known: U.S. Pat. No. 3,515,281; U.S. Pat. No. 4,234,980; U.S. Pat. No. 4,781,763; U.S. Pat. No. 4,933,432; U.S. Pat. No. 5,178,759; JP59066318 A; JP60058218 A; JP03233035; and DE4307297 A1.
- Also known are the following disadvantages associated with some of these techniques: a) they often require pre-filtering whereby a specialized technician first separates the floating solid layer before running the contents through the system, which increases processing times and system complexity; b) they often require many hours to complete the separation of the tank's contents and to return the liquid to the tank which can be inconvenient for the owner of the septic tank; c) they often require skilled technicians to perform, which increases costs and reduces the availability of such techniques to laypeople; d) they often use rotary filters which have insufficient capacity to process the contents of an entire septic tank, further increasing treatment times and costs; e) etc.
- Hence, in light of the aforementioned, there is a need for a system which, by virtue of their design, steps, and/or components, would be able to overcome or at least minimize some of the aforementioned prior art problems.
- The object of the present invention is to provide a system which is an improvement over other related separators or methods known in the art.
- In accordance with the present invention, the above object is achieved, as will be easily understood, with a separator or a method, such as the one(s) briefly described herein and such as the one(s) exemplified in the accompanying drawings.
- In accordance with a first aspect of the invention, there is provided a separator for separating a heterogeneous supply into a liquid and a solid material and for extracting the solid material, the separator comprising:
- a casing for containing the supply, the casing comprising an inlet for receiving the supply and an outlet for conveying liquid out from the casing;
- a screen mountable within the casing and rotatable relative to the casing, the screen comprising at least one perforated section, the at least one perforated section comprising a plurality of perforations disposed thereabout so as to permit passage of liquid therethrough, the screen being positioned, shaped, and sized for receiving the supply from the inlet of the casing such that the supply accumulates within the screen to a supply height, the supply thereby providing a screening pressure acting against the at least one perforated section so as to compact the solid material against the perforations while the liquid passes therethrough, thereby separating the liquid from the solid material;
- a suction unit disposed within the screen, the suction unit comprising a suction head disposed above the supply height and positioned for extracting the solid material from the perforations as the at least one perforated section rotates within an extractable distance from the suction head; and
- a supply level regulator mountable within the screen, the supply level regulator regulating a level of the supply within the screen so as to maintain the level of the supply below the supply height.
- In some optional embodiments, the casing can be about 7 feet in diameter. Further optionally, the screen can include a notch which projects away from the center of the screen and allows for the passage of solid material underneath the suction unit. Further optionally, the suction unit can be a vacuum, and can include a suction extension for forming a sealed contact with the perforated sections.
- In accordance with another aspect of the invention, there is provided a method for separating a heterogeneous supply into a liquid and a solid material, the method including the steps of:
- a) accumulating the supply within a rotatable screen until a level of the supply reaches a supply height, the supply thereby providing a screening pressure acting against the screen so as to compact the solid material against the screen while the liquid passes therethrough;
- b) maintaining the level of the supply within the screen at the supply height;
- c) rotating the screen and the solid material compacted thereon; and
- d) extracting the solid material from the rotating screen upon the solid material being rotated to a height above the supply height.
- In some optional embodiments, the screen can be rotated at a speed between about 5 rpm and about 10 rpm. Further optionally, the solid material is extracted from the screen with a suction unit.
- According to yet another aspect of the present invention, there is also provided a kit with components for assembling the above-mentioned separator.
- According to yet another aspect of the present invention, there is also provided a set of components for interchanging with components of the above-mentioned kit.
- According to yet another aspect of the present invention, there is also provided a method of assembling components of the above-mentioned kit and/or set.
- According to yet another aspect of the present invention, there is also provided liquid and solid material having been separated with the above-mentioned separator and/or method.
- The objects, advantages and other features of the present invention will become more apparent upon reading of the following non-restrictive description of optional embodiments thereof, given for the purpose of exemplification only, with reference to the accompanying drawings.
-
FIG. 1 is a perspective view of a separator, according to one optional configuration of the present invention. -
FIG. 2 is a perspective view of an interior of the separator ofFIG. 1 . -
FIG. 3 is a perspective view of an access door for a separator, according to one optional configuration of the present invention. -
FIG. 4 is a perspective view of a screen andFIG. 4A is a close-up view of a notch provided on the screen, according to one optional configuration of the present invention. -
FIG. 5 is a perspective view of a suction unit and a supply level regulator, according to one optional configuration of the present invention. -
FIG. 6 is a schematic side elevational view of a mobile unit for separating a supply, according to another optional configuration of the present invention. -
FIG. 7 is an exposed side elevational view of the separator ofFIG. 1 showing a liquid and a solid material. -
FIG. 8 is a partially exploded perspective view of a perforated section having a mesh, a mesh support, and a filter, according to one optional configuration of the present invention. - In the following description, the same numerical references refer to similar elements. Furthermore, for the sake of simplicity and clarity, namely so as to not unduly burden the figures with several references numbers, not all figures contain references to all the components and features of the present invention and references to some components and features may be found in only one figure, and components and features of the present invention illustrated in other figures can be easily inferred therefrom. The embodiments, geometrical configurations, materials mentioned and/or dimensions shown in the figures are optional, and are provided for exemplification purposes only.
- Furthermore, although the present invention may be used with a supply of organic waste, for example, and as a result, is sometimes described in the context of its use with a septic tank, it is understood that it may be used with other containers, and in other fields. These other fields include, but are not limited to, the following: mining slurries, food mixtures, pollutant mixtures, etc. For this reason, expressions such as “human waste”, “septic tank”, “sludge”, etc. used herein should not be taken as to limit the scope of the present invention to use with only organic wastes and/or septic tanks in particular. These expressions encompass all other kinds of materials, objects and/or purposes with which the present invention could be used and may be useful.
- In addition, although some of the embodiments of the present invention as illustrated in the accompanying drawings comprises various components and although some of the embodiments of the separator as shown consists of certain geometrical configurations as explained and illustrated herein, not all of these components and geometries are essential to the invention and thus should not be taken in their restrictive sense, i.e. should not be taken as to limit the scope of the present invention. It is to be understood that other suitable components and cooperations thereinbetween, as well as other suitable geometrical configurations may be used for the separator and corresponding parts, according to the present invention, as briefly explained herein, without departing from the scope of the invention.
- According to one aspect of the invention, and referring to
FIG. 1 , there is provided aseparator 10 for separating a heterogeneous supply into a liquid and a solid material and for extracting the solid material. Theseparator 10 allows for the division of a liquid-solid mixture into its constituent parts, i.e. into separate liquid and solid components. Theseparator 10 can therefore be any filter, sieve, strainer, colander, mesh, etc. - The
separator 10 separates a heterogeneous supply. The expression “heterogeneous supply” refers to any mixture of at least liquid and solid material, but which may contain other materials, and in which the liquid and solid material do not perfectly blend so as to completely lose their individual characteristics. One example of such a heterogeneous supply can be found in the field of septic tanks. As previously explained, the contents of a septic tank often include solids that are settled on the bottom of the tank, or which float on a volume of liquid. Although high in moisture content, such solids are not completely dissolved in the liquid so as to lose their individual characteristics and can thus be said to be “heterogeneous” with the liquid. The term “supply” refers to the stock or provision of such a heterogeneous mixture, which can be furnished to theseparator 10 by any known means such as pumping, transportation, digging, etc. - In the field of septic tanks, as but one example, it is often desirable to separate this heterogeneous supply into its constituent elements, which are the liquid, commonly referred to as the “supernatant”, and the solid material. The supernatant denotes the liquid lying between the layers of settled and floating solid material. It is often desirable to extract, remove, take out, etc. this settled and floating solid material (or simply “solid material”), which is referred to in the art as “sludge”, from the septic tank altogether, thereby allowing the septic tank to put back to use after it has reached or approached capacity. Once so extracted, this solid material is usually transported by truck to a site where it can be suitably stored or transformed. As previously explained, the supernatant is often returned to the septic tank.
- Referring to
FIG. 2 , theseparator 10 has acasing 20 which contains the supply. Thecasing 20 receives the supply directly or indirectly from its source (i.e. a septic tank), and holds the supply within itself so that it can collect to a certain volume. Thecasing 20 can thus be mostly impermeable to liquid and solids such that the supply can collect therein. Thecasing 20 is also intended to convey the liquid separated by theseparator 10 to wherever it is desired (i.e. return it to a septic tank). Thecasing 20 can thus be any container, box, coffer, chamber, receptacle, etc. which can receive the supply, convey the liquid, and allow the supply to accumulate within itself. As such, the shape and/or form of thecasing 20 can vary. In the example provided inFIG. 2 , the shape of thecasing 20 is shown as “cylindrical”, but any other suitable shape can be used depending on the following non-exhaustive list of factors: volume of supply to process, location where thecasing 20 will be mounted, the configuration of components within thecasing 20, etc. Thecasing 20 can be made of any suitable material which can resist the corrosive nature of the matter contained therein, and which can resists the cyclical and/or static forces acting against it while the supply is processed. One example of such a material includes an aluminum alloy. Thecasing 20 can also include handles, grips, etc. which are suitably mounted about thecasing 20 as to permit hoisting of thecasing 20 for the purposes of mounting, transporting, removing, etc. - The
casing 20 receives the supply through aninlet 24, and conveys the liquid so separated through an outlet 26 (an example of which is provided inFIG. 7 ). Theinlet 24 can be located about the center of thecasing 20. This allows the supply to enter thecasing 20 from a certain height, which can be above or below the supply height, as explained below. Optionally, the supply can enter theinlet 24 so as to impact a wall of the casing opposite the location of a supply level regulator, which is also discussed below. Advantageously, this manner of entering thecasing 20 via theinlet 24 can allow the supply to accumulate within thecasing 20 without impacting the function of the supply level regulator. Theoutlet 26 can be located substantially at the bottom of thecasing 20. In some embodiments, gravity causes the separated liquid to accumulate at the bottom of thecasing 20. Therefore, and advantageously, by locating theoutlet 26 at the bottom of thecasing 20, the separated liquid can be conveyed from thecasing 20, and thus theseparator 10, via unassisted gravity drainage. - In some embodiments, the
casing 20 has aremovable access door 22. Thedoor 22 can permit access to the inside of thecasing 20 so as to allow inspection, repair components, perform maintenance, and/or for any other reason. One possible configuration of theaccess door 22 is provided inFIG. 3 . Thedoor 22 can have a covering 22 a which interacts withappropriate flanges 22 b, seals, gaskets, etc. so as to provide a sealed closure once the covering 22 a is brought against theflanges 22 b. Such a configuration of theaccess door 22 can advantageously allow for access to only those parts of theseparator 10 which require attention, thus avoiding the necessity of completely uninstalling, dismantling, and/or removing theseparator 10 whenever maintenance needs to be performed. - Returning to
FIG. 2 , theseparator 10 also has ascreen 30 which is mounted within thecasing 20 and rotatable relative to thecasing 20. Thescreen 30 allows for the passage of the liquid, and for the retention of the solid material thereon. As such, thescreen 30 can be any suitable filter, taking any suitable form and/or configuration, which allows for these functions to be accomplished. In some embodiments, and as shown inFIG. 2 , thescreen 30 is a substantially hollow cylinder. Advantageously, such a configuration of thescreen 30 allows for its rotation, and allows for more of the supply to be exposed to the surface of thescreen 30, thus increasing screening capacity. In another possible configuration, thescreen 30 consists of ascreening surface 30 a, to which are mounted twoimpermeable walls 30 b on either side of thescreening surface 30 a. Thewalls 30 b allow thescreen 30 to remain a “closed” system, such that the liquid is intended to only traverse thescreening surface 30 a, and is not intended to deviate to the sides of thescreening surface 30 a. Advantageously, this can allow the supply to more rapidly accumulate within thecasing 20. Thescreen 30 can be made of any suitable material which can resists the cyclical and static forces acting against it, and which can further resist the potentially corrosive nature of the matter it processes. One example of such a material includes stainless steel, being roughly ⅜″ thick. Of course, other suitable materials, material combinations, and/or dimensions can also be used. - The
screen 30 is mounted within thecasing 20. This allows the supply to essentially “immerse” thescreen 30 as the supply accumulates within thecasing 20. Thescreen 30 can be separated from an interior surface of thecasing 20 by an accumulation distance. This distance can provide spacing between thescreen 30 and thecasing 20, thereby allowing the separated liquid to accumulate within the volume defined by the accumulation distance. In some optional configurations, this accumulation distance is about 2 inches, uniformly observed about thescreen 30. - The
screen 30 also rotates with respect to thecasing 20. Such a rotation of thescreen 30 may advantageously accelerate the processing capacity of thescreen 30, especially when compared to screens that do not rotate. The rotation of thescreen 30 with respect to thecasing 20 can be relative. In one such configuration, thecasing 20 is fixed and thus does not rotate, whereas in another possible configuration, thecasing 20 can rotate about a fixedscreen 30. Where thescreen 30 rotates relative to a fixedcasing 20, the speed of rotation can be between about 5 rpm and about 10 rpm. More particularly, the speed of rotation can be about 7 rpm. Such a relatively slow rotational speed can advantageously reduce the energy expended to rotate thescreen 30, while still allowing for a methodical and efficient separation of the liquid and solid material. - The
screen 30 has at least oneperforated section 32, an example of which is provided inFIGS. 4 and 4A . Thescreen 30 can also have manyperforated sections 32, such as nineperforated sections 32, for example, eachperforated section 32 being interconnected to anotherperforated section 32 so as to form a perforated surface. Eachperforated section 32 allows for the passage of liquid through its surface, while allowing for the retention of the solid material. The liquid may pass through, and the solid material may accumulate on, a plurality ofperforations 34. Theperforations 34 can be any hole, aperture, passage, cavity, etc. through which the liquid may pass, and on which the solid material can accrue. As such, theperforations 34 can be of any shape or profile for accomplishing such a function. In the example provided inFIG. 4A , theperforations 34 are substantially rectangular, having dimensions of about 1 inch by 1 inch, and are disposed in a grid-like pattern. Furthermore, the layout and/or disposition of theperforations 34 on eachperforated section 32 can take any form or configuration. - One example of a construction of the
perforated sections 32 is provided inFIG. 8 . In the optional embodiment where thescreen 30 is cylindrical, amesh 32 a containing theperforations 34 can be assembled from a plurality of mesh sections. InFIG. 8 , two substantially semi-circular mesh sections are assembled together, and the cylindrical shape is closed with another curved mesh section. Thus, acylindrical mesh 32 a consisting ofmultiple perforations 34 is formed. Thiscylindrical mesh 32 a may be provided with a structural support to enhance its rigidity, for example. Therefore, multiple mesh supports 32 b can be mounted to the outside of themesh 32 a. These mesh supports 32 b can include intersectingcross members 32 c which provide reinforcement to themesh 32 a in the interior of the mesh supports 32 b. If more screening is desired, or if a screen finer than that provided by theperforations 34 is required, afilter 36 can be provided between themesh 32 a and the mesh supports 32 b. It is understood that thescreen 30 and/orperforated sections 32 are not limited to this construction, and any of themesh 32 a, the mesh supports 32 b, and/or the filter can be removed, interchanged, or substituted for another component. - It is thus apparent how a
perforated section 32 having such a construction can permit passage of the liquid. Indeed, themesh 32 a, and thus theperforations 34, are located closest to the interior of thescreen 30, and thus are in contact with the liquid and solid material. As the liquid and/or solid material accumulates on theperforations 34 of themesh 32 a, pressure is applied against theperforations 34/mesh 32 a, especially as the volume of supply accumulates within thescreen 30, as explained below. The mesh supports 32 b may thus advantageously reinforce themesh 32 a when it is subjected to this pressure, allowing for continuous screening of the supply. - Returning to
FIG. 2 , thescreen 30 is positioned, shaped, and sized for receiving the supply from theinlet 24 of thecasing 20 such that the supply accumulates within thescreen 30. The expression “positioned, shaped, and sized” can mean that thescreen 30 is constructed, located within thecasing 20, and/or mounted thereto, so that the supply can accumulate therein. One example of such ascreen 30 construction is described above, where thescreen 30 consists of ascreening surface 30 a, to which are mounted twoimpermeable walls 30 b on either side of thescreening surface 30 a. Thewalls 30 b allow thescreen 30 to remain a “closed” system, such that the liquid is intended to only traverse thescreening surface 30 a, and is not deviated to the sides of thescreening surface 30 a. One example of such ascreen 30 location is also described above, where thescreen 30 can be separated from an interior surface of thecasing 20 by an accumulation distance. This distance can provide spacing between thescreen 30 and thecasing 20, thereby allowing the separated liquid to accumulate within the volume defined by the accumulation distance. It is thus apparent that the “closed” nature of thescreen 30 and/orcasing 20 allows the supply to accumulate within thescreen 30. - When so accumulating, the supply reaches a height within the
screen 30, which is referred to herein as the supply height Hs. The supply height Hs can vary with the level of the supply within thescreen 30. The supply thus forms a volume characterised in one dimension by the supply height Hs, and in other dimensions by the width and length of thescreen 30. Indeed, in the optional configuration where thescreen 30 a cylinder, thescreen 30 can have a diameter of about 7 feet and a width of about 2 feet. The volume of fluid collecting over ascreen 30 of such dimensions exerts a significant pressure against at least some of theperforated sections 32, and which is designated herein as a screening pressure Ps. Examples of the supply height Hs and the screening pressure Ps are provided inFIG. 7 . - As with the supply height Hs, the screening pressure Ps varies with the volume of supply within the
screen 30. The screening pressure Ps can also vary depending on the following non-exhaustive list of other factors: the degree of blockage of theperforations 34, the density of the supply, etc. In some configurations, where the density of the supply is substantially equal to that of liquid water at standard temperature and atmosphere, and when the supply height Hs is at a maximum height of about 0.9 m, the screening pressure Ps can be about 8.5 kPa. The screening pressure Ps can decrease from this value as the volume of liquid in the supply passes through the screen and is not replaced. Indeed, in the field of septic tanks for example, this may occur as the septic tank is nearly emptied. In one optional configuration, where the supply height Hs descends to about 0.7 m, the screening pressure Ps can be about 7.0 kPa. - The screening pressure Ps acts against at least one
perforated section 32, thereby compacting the solid material against thatperforated section 32 and/or itsperforations 34. In the optional configuration where thescreen 30 is cylindrical in shape, it is understood that the screening pressure Ps will be greatest when acting against the bottom-mostperforated section 32, and will be of a lower value when acting against those perforatedsections 32 elevated from the bottom of thescreen 30. It is further understood that the screening pressure Ps acting against theperforated sections 32 can vary as theperforated sections 32 are rotated. In many optional configurations, the solid material tends to accumulate near the bottom of thescreen 30, and as previously explained, it is at this point of thescreen 30 where it may feel the highest screening pressure Ps. The screening pressure Ps at this location may level out the solid material by compacting it against theperforated sections 32/perforations 34, which may press, squeeze, force, etc. the liquid within the solid material out of the solid material as well, further dehydrating the solid material. Thus, the liquid passes through theperforations 34, and the solid material accumulates thereon. The liquid is thus separated from the solid material. - Returning to
FIG. 2 , theseparator 10 also has asuction unit 40 disposed or located within thescreen 30. Thesuction unit 40 extracts, removes, sucks, etc. the solid material compacted against thescreen 30, thereby unblocking theperforations 34 of thescreen 30 so that the liquid may be continuously separated from the supply by thescreen 30. As such, thesuction unit 40 can be any machine, vacuum, aspirator, etc. which creates a pressure differential allowing for the inhalation or “vacuuming” of the solid material. In some configurations, thesuction unit 40 can apply between about 5 and about 10 lbs. of pressure. One optional configuration of thesuction unit 40 is provided inFIG. 5 . Thesuction unit 40 has an elongatedsuction shaft 42, which extends a certain distance and which ends in asuction head 44. Thesuction shaft 42 can be any tube, conduit, duct, flue, etc. which conveys the aspirated solid material from thesuction head 44 and out of thescreen 30. As such, it can take any form which can perform such functions. In the optional embodiment shown inFIG. 5 , thesuction shaft 42 is tubular, and includes a substantially 90-degree bend between the portion of thesuction shaft 42 connecting to thesuction head 44, and the portion exiting thescreen 30. In some optional embodiments, thesuction shaft 42 is positioned at an angle Θ relative to a vertical line. The value of the angle Θ may vary anywhere from between about 84 degrees and about 135 degrees. Indeed, the angle Θ need not fall within this range, and can vary provided that the solid material remains within the perforations. - The
suction head 44 can be any cap, crown, tip, etc. which can aspire and/or suck the solid material compacted within theperforations 34. Thesuction head 44 is located above the supply height Hs. In such a location, thesuction head 44 is kept above the level of the supply within thescreen 30, and thesuction head 44 is thus prevented from extracting the liquid component of the supply, and can thus only extract the solid material. Thesuction head 44 is located within an extractable distance from theperforations 34 of thescreen 30. The expression “extractable distance” refers to any distance of thesuction head 44 from theperforations 34/perforatedsection 32 at which thesuction head 44 can sufficiently extract the solid material from theperforations 34 so as to unblock theperforations 34 and permit the continued screening of the supply. As such, the extractable distance can vary, and its value can depend on the following non-exhaustive list of factors: the suction force of thesuction unit 40, the properties of the solid material, the rate of rotation of thescreen 30, the desired extraction rate, etc. Indeed, in some optional configurations, the extractable distance can be substantially zero, such that thesuction head 44 is in contact with theperforations 34/perforatedsection 32. In some optional configurations, thesuction head 44 has asuction extension 46, which can be attached to thesuction head 44. Thesuction extension 46 can be made of any suitable substantially rigid material, such as rubber. Thesuction extension 46 can span the extractable distance, thereby creating a sealed contact between an end of thesuction head 44 and the surface of theperforated section 32. In so doing, thesuction extension 46 may advantageously allow for thesuction unit 40 to maintain and/or enhance the suction pressure applied. Thesuction extension 46 may perform such an operation as thescreen 30 rotates. - In some embodiments of the invention, and referring to
FIGS. 4 and 4A , at least oneperforated section 32 of thescreen 30 has a perforatednotch 38. Thenotch 38 can be any indentation, cleft, groove, indent, etc. in theperforated section 32 which projects away from the center and/or inside of thescreen 30, and which allows for the selective passage of liquid. As such, thenotch 38 can be a V-shaped projection which projects from theperforated section 32, and which forms an apex. Thenotch 38 can also span some of the width of theperforated section 32, all of the width, and/or any combination thereof. For example, in some embodiments, thenotch 38 could have a width substantially matching the width of thesuction head 44. Alternatively, the width of thenotch 38 could exceed that of thesuction head 44. It is apparent that manysuch notch 38 widths are possible. Although the embodiments ofFIGS. 4 and 4A show only onenotch 38, ascreen 30 and/or perforated section can have a plurality ofnotches 38, if so required. In one such configuration, twonotches 38 can be provided on thescreen 30, eachnotch 38 being located opposite the other. - Returning to
FIG. 2 , theseparator 10 has asupply level regulator 50 which is mountable within thescreen 30. Thesupply level regulator 50 can be any device, instrument, tool, sensor, etc. which measures the level of the supply within thescreen 30, and regulates the level such that it is maintained below the supply height Hs. In so doing, the level of the supply never surpasses the established supply height Hs, thereby ensuring that thesuction unit 40 never extracts the liquid of the supply, among other advantages. - One possible technique by which the
supply level regulator 50 may regulate the level of the supply is through the use of afloat gage 52, an example of which is shown inFIG. 5 . Thefloat gage 52 has afloat 54 in contact with the supply. Thefloat 54 can form the end of afloat arm 56. Thefloat 54 can be positioned lower than the supply height Hs. As the level of supply rises in thescreen 30, thefloat 54 rises along with it. When thefloat 54 reaches a certain trigger height, which can be lower than the supply height Hs, thefloat arm 56 attached to thefloat 54 is also raised. The raising of thefloat arm 56 triggers a mechanism which can stop the flow of supply into thescreen 30 via theinlet 24. In one example of such a trigger, the raising of thefloat arm 56 sends a pneumatic “stop” signal to a gate valve through which the supply enters thescreen 30. Other examples of trigger techniques are also within the scope of the present invention. This ensures that the level of the supply in thescreen 30 does not surpass the supply height H. By stopping the flow of the supply, a delay is created during which thescreen 30 can process the volume of supply so as to lower its level. Once the level of the supply lowers, and thus the height of thefloat 54, thefloat arm 56 no longer triggers the mechanism, and flow of supply into thescreen 30 can continue. It is apparent that thesupply level regulator 50 may regulate the level of the supply in any other suitable manner. Indeed, in one possible configuration, thesupply level regulator 50 operates continuously, such that when it is triggered, it simply reduces the flow rate of the supply to thescreen 30, and then raises the flow rate when not triggered, thereby continuously maintaining the supply at a given level within thescreen 30. - In one optional configuration, and as exemplified in
FIG. 6 , there is provided amobile unit 100 for separating thesupply 110 provided by asource 120, and which returns thesupply 110 to thesource 120. Themobile unit 100 can be any truck, haul, vehicle, etc. which can self-displace to a location near thesource 120, and which can transport, cart away, remove, etc. the separated solid material to a suitable dumping site. Thesupply 110 can be similar to the one described above. In the particular example of a septic tank, thesupply 110 can consist of a layer of floatingsolids 110 a, a layer of settledsolids 110 c (both 110 a, 110 c being referred to herein as “solids 110 a, 110 c”), and asolid material liquid layer 110 b in between. Thesource 120 can be any suitable container or storage for thesupply 110, such as a septic tank. - The
mobile unit 100 includes aseparator 10 such as the one described herein. Theseparator 10 can be mounted to themobile unit 100, such as via a frame. Afeed tank 130 receives thesupply 110 from thesource 120, and is in fluid communication with theseparator 10 so that it may feed thesupply 110 to theseparator 10. In some optional configurations, thefeed tank 130 is positioned higher than theseparator 10, which allows thefeed tank 130 to feed thesupply 110 to theseparator 10 by gravity. - Alternatively, the
feed tank 130 can feed theseparator 10 via a pressurized unit, such as a pump. Thefeed tank 130 can be of any capacity, configuration, and/or shape. In one possible configuration, thefeed tank 130 has a capacity to store roughly 750 gallons, which can correspond to the average capacity of a septic tank. This advantageously allows for the entire contents of a septic tank to be emptied into such afeed tank 130, which can improve processing times. Themobile unit 100 also includes asolid material container 140, which is operatively connected to thesuction unit 40 of theseparator 10 so as to store the 110 a, 110 c extracted by thesolid material suction unit 40. The location of thesolid material container 140 can vary depending on numerous factors such as the hauling capacity of themobile unit 100, the available space on themobile unit 100, the size of thesolid material container 140, etc. In some optional configurations, thesolid material container 140 is located just below thefeed tank 130, as exemplified inFIG. 6 . Furthermore, themobile unit 100 contains at least onepump 150 which is in fluid communication with thefeed tank 130 and with thesource 120 so as to pump thesupply 110 from thesource 120 and into thefeed tank 130. Thepump 150 may also return the liquid 110 b separated by theseparator 10 to thesource 120. - Having described some of the optional features and components of the
separator 10, the operation of theseparator 10 will now be described in reference toFIG. 7 , and according to another aspect of the present invention, which relates to a method for separating a heterogeneous supply into a liquid and solid material. - The method includes step a), which relates to accumulating the
supply 110 within therotatable screen 30. Thesupply 110 can be provided to thescreen 30 through theinlet 24 of thecasing 20, which can arrive via gravity drainage from a feed tank, as but one example. A suitable tube or other device can direct thesupply 110 away from the supply level regulator such that the enteringsupply 110 does not interfere with the operation of the supply level regulator. - The level of the
supply 110 rises within thescreen 30 as thesupply 110 is continuously fed into thescreen 30. As this occurs, the liquid 110 b may immediately pass through thescreen 30 and exit via theoutlet 26 of thecasing 20, thus limiting the rise in the level of thesupply 110. This separated liquid 110 b can be returned to the source from whence it came, via a pump, for example. Upon entering thescreen 30, thesupply 110 may separate into its constituent elements, with the settledsolids 110 c sinking directly to the bottom of thescreen 30, and the floatingsolids 110 a floating upon a layer of the liquid 110 b. With the addition ofmore supply 110, and the blocking of the perforations by the 110 a, 110 c, the level of thesolid material supply 110 may rise within thescreen 30 until it reaches the supply height Hs. The screening pressure Ps may thus increase and compact the 110 a, 110 c against the perforations/perforated sections of thesolid material screen 30, as previously explained. - The method also includes step b), which relates to maintaining the level of the
supply 110 within thescreen 30 at or below the supply height Hs. This can be achieved with a device such as the supply level regulator described above. If the level of thesupply 110 rises above the supply height Hs and/or a certain trigger height, step a) can be interrupted at least temporarily, and the flow of thesupply 110 can be interrupted, thereby permitting thescreen 30 to process thesupply 110 already within it, and thus lower its level. Once sufficiently lowered, the feeding of thesupply 110 can resume. - The method also includes step c), which relates to rotating the
screen 30 and the settled solid 110 c compacted thereon. The rotation can occur in the direction indicated by the arrow inFIG. 7 . It is understood that the floating solid 110 a may only contact thescreen 30 and/or perforations once all the liquid 110 a has been separated by thescreen 30. At this point, the floating solid 110 a will be rotated by thescreen 30, along with any remaining settled solid 110 c. Such a rotation can be performed at a speed between about 5 rpm and about 10 rpm, or at about 7 rpm. - The method also includes step d), which relates to extracting the
110 a, 110 c from thesolid material rotating screen 30 when the 110 a, 110 c is rotated above the supply height Hs. It is now apparent that thesolid material 110 a, 110 c blocks the perforations and prevents the liquid 110 b from passing through. There is thus a need to unblock the perforations so as to allow the liquid 110 b to continuously be separated. Thesolid material 110 a, 110 c is thus extracted from the perforations/rotatingsolid material screen 30, via techniques such as vacuuming, as described above. This extraction is performed when the 110 a, 110 c is rotated above the supply height Hs, and thus above the level of thesolid material supply 110 within thescreen 30. In a typical operation, as the 110 a, 110 c rotates along with thesolid material screen 30, it eventually exits from thesupply 110 and is brought closer to the suction action of the suction head of thesuction unit 40, at which point the 110 a, 110 c is sucked from the perforations/solid material screen 30, thereby unblocking them. Thescreen 30 and/or perforations are thus significantly unblocked of 110 a, 110 c, and are thus able to continue allowing the liquid 110 b to penetrate therethrough. Thesolid material screen 30 thus continues to rotate, and returns to thesupply 110 in a “cleaned” condition. - It may sometime occur that certain
110 a, 110 c cannot be extracted using this technique. This may be the case where thesolid material 110 a, 110 c consists of small rocks, hardened debris, etc. which are too dense to be compacted into the perforations and/or too large to pass underneath the suction head to be extracted. This may also be the case where thesolid material 110 a, 110 c “rolls up” against itself as it abuts against thesolid material suction head 44 and/orsuction extension 46. In such situations, thescreen 30 may be provided with anotch 38, such as the one described above, which allows such un-extracted 110 a, 110 c to fall within thesolid material notch 38 and be secured therein. Thenotch 38, being indented away from the center of thescreen 30, thus allows the un-extracted 110 a, 110 c to nestle therein so as to pass underneath the suction head along with thesolid material notch 38. Once underneath thenotch 38, the un-extracted 110 a, 110 c can then be sucked by thesolid material suction unit 40. Thenotch 38 can thus advantageously self-clean thescreen 30 of difficult to extract 110 a, 110 c, and thus improve the screening capacity of thesolid material screen 30. - Furthermore, the
separator 10 and method described herein provide certain advantages over the prior art in that, by virtue of their design, steps, and components, theseparator 10 and method allow for the rapid emptying of a source, such as a septic tank, and the return of beneficial liquid thereto. - Indeed, the relatively large size of the screen 30 (about 7 feet in some optional configurations), allows the
screen 30 to accept a large volume of supply, which in some instances is the entire capacity of the source. The greater size of thescreen 30 also results in a greater volume of the supply being exposed to thescreen 30, which can increase screening capacity. Furthermore, the rotation of thescreen 30 allows for faster screening of the supply when compared to stationary screens. The ability to rotate thescreen 30 slowly, for example at about 7 rpm, also procures important energy savings. - Furthermore, the use of multiple
perforated sections 32, and theaccess door 22, can allow for more rapid repairs and/or maintenance of thescreen 30. Indeed, should a particular perforation or group of perforations need repairing, theaccess door 22 provides for easy access to such items without the need to dismantle theseparator 10. The use of multipleperforated sections 32 allows for their easy replacement should one so require it, without the need to replace thescreen 30 and/or filter 36 as a whole. - It can thus be appreciated that the
separator 10 and method described herein allow for the complete emptying, processing, and return of liquid from a septic tank, for example. Indeed, and contrary to some existing systems, there is no need to “pre-filter” the supply coming from the tank by first removing the floating solid layer. Theseparator 10 and method described herein advantageously allow a person to simply empty the supply into thescreen 30 so as to separate the liquid therefrom. This further advantageously allows theseparator 10 and method to be performed by a non-specialized technician, thus increasing access and potentially lowering costs. - This further allows for a quicker emptying of a septic tank when compared to known systems. Indeed, in some optional configurations, a standard 750 gallon septic tank can be emptied in under ten minutes, whereas some known systems can take hours. Such rapid emptying is further assisted by gravity feeding from the feed tank of a mobile unit, which eliminates the need for additional mechanical components (i.e. pump, piping, etc.), and thus may lower costs.
- Of course, numerous modifications could be made to the above-described embodiments without departing from the scope of the invention, as defined in the appended claims.
Claims (21)
1. A separator for separating a heterogeneous supply into a liquid and a solid material and for extracting the solid material, the separator comprising:
a casing for containing the supply, the casing comprising an inlet for receiving the supply and an outlet for conveying liquid out from the casing;
a screen mountable within the casing and rotatable relative to the casing, the screen comprising at least one perforated section, the at least one perforated section comprising a plurality of perforations disposed thereabout so as to permit passage of liquid therethrough, the screen being positioned, shaped, and sized for receiving the supply from the inlet of the casing such that the supply accumulates within the screen to a supply height, the supply thereby providing a screening pressure acting against the at least one perforated section so as to compact the solid material against the perforations while the liquid passes therethrough, thereby separating the liquid from the solid material;
a suction unit disposed within the screen, the suction unit comprising a suction head disposed above the supply height and positioned for extracting the solid material from the perforations as the at least one perforated section rotates within an extractable distance from the suction head; and
a supply level regulator mountable within the screen, the supply level regulator regulating a level of the supply within the screen so as to maintain the level of the supply below the supply height.
2. A separator according to claim 1 , wherein the at least one perforated section comprises a perforated notch.
3. A separator according to claim 2 , wherein the perforated notch spans at least part of a width of the at least one perforated section.
4. A separator according to claim 2 , wherein the perforated notch is a substantially V-shaped projection projecting from the at least one perforated section in a direction away from a center of the screen.
5. A separator according to claim 1 , wherein the at least one perforated section comprises a plurality of interconnectable perforated sections.
6. A separator according to claim 1 , wherein the suction shaft is disposed at an angle between about 84 degrees and about 135 degrees relative to a vertical line.
7. A separator according to claim 1 , wherein the suction head comprises a suction extension extending from an end of the suction head to the at least one perforated section thereby forming a sealed contact between the suction head and the at least one perforation.
8. A separator according to claim 1 , wherein the casing comprises a removable access door for accessing inside the casing.
9. A separator according to claim 1 , wherein the inlet of the casing is disposed about a center of the casing such that the screen receives the supply below the supply height.
10. A separator according to claim 1 , wherein the perforations are substantially rectangular.
11. A separator according to claim 1 , wherein the screen is a substantially hollow cylinder having a diameter of about 7 feet.
12. A separator according to claim 1 , wherein the screen rotates at a rate between about 5 rpm and about 10 rpm.
13. A separator according to claim 1 , wherein a filter is placed upon the at least one perforated section.
14. A separator according to claim 1 , wherein the screening pressure is about 7.0 kPa to about 8.4 kPa.
15. A separator according to claim 1 , wherein the supply level regulator comprises a float gage.
16. A mobile unit for separating the supply provided by a source and for returning the supply to said source, the mobile unit comprising:
a separator according to claim 1 mounted to a frame of the mobile unit;
a feed tank in fluid communication with the separator, the feed tank feeding the supply to the separator;
a solid material container operatively connected to the suction unit of the separator, the solid material container storing the solid material extracted by the suction unit; and
a pump in fluid communication with the feed tank, the pump retrieving the supply from the source and returning the separated liquid to the source.
17. A mobile unit according to claim 16 , wherein the feed tank is positioned higher than the separator so as to feed the supply to the separator via gravity.
18. A method for separating a heterogeneous supply into a liquid and a solid material, the method comprising the steps of:
a) accumulating the supply within a rotatable screen until a level of the supply reaches a supply height, the supply thereby providing a screening pressure acting against the screen so as to compact the solid material against the screen while the liquid passes therethrough;
b) maintaining the level of the supply within the screen at the supply height;
c) rotating the screen and the solid material compacted thereon; and
d) extracting the solid material from the rotating screen upon the solid material being rotated to a height above the supply height.
19. A method according to claim 18 , wherein step d) comprises vacuuming the solid material from the rotating screen.
20. A method according to claim 18 , wherein step c) comprises rotating the drum at a rate between about 5 rpm and about 10 rpm.
21. A method according to claim 18 , further comprising the step of interrupting step a) when the level of the supply is above the supply height.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/666,562 US20140116965A1 (en) | 2012-11-01 | 2012-11-01 | Separator and method for separating a heterogeneous supply |
| US15/797,046 US10583379B2 (en) | 2012-11-01 | 2017-10-30 | Separator and method for separating a heterogeneous supply |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/666,562 US20140116965A1 (en) | 2012-11-01 | 2012-11-01 | Separator and method for separating a heterogeneous supply |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/797,046 Continuation US10583379B2 (en) | 2012-11-01 | 2017-10-30 | Separator and method for separating a heterogeneous supply |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140116965A1 true US20140116965A1 (en) | 2014-05-01 |
Family
ID=50546027
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/666,562 Abandoned US20140116965A1 (en) | 2012-11-01 | 2012-11-01 | Separator and method for separating a heterogeneous supply |
| US15/797,046 Active US10583379B2 (en) | 2012-11-01 | 2017-10-30 | Separator and method for separating a heterogeneous supply |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/797,046 Active US10583379B2 (en) | 2012-11-01 | 2017-10-30 | Separator and method for separating a heterogeneous supply |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US20140116965A1 (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140097145A1 (en) * | 2012-10-09 | 2014-04-10 | Ovivo Luxembourg, S.a.r. I. | Debris filter with splitter box |
| US9061226B2 (en) * | 2010-09-03 | 2015-06-23 | Johnny Leon LOVE | Filtration method with self-cleaning filter assembly |
| US10195549B1 (en) * | 2017-11-21 | 2019-02-05 | Aqua-Aerobic Systems, Inc. | Backwash shoe method and apparatus that increases effective surface area of cloth filter media |
| US10245531B2 (en) * | 2015-06-17 | 2019-04-02 | Tm Industrial Supply, Inc. | High-efficiency automatic self-cleaning strainer |
| US10583379B2 (en) * | 2012-11-01 | 2020-03-10 | Machinerie Agricole Bois-Francs Inc. | Separator and method for separating a heterogeneous supply |
| US10751764B2 (en) * | 2009-11-12 | 2020-08-25 | Filter Safe Ltd. | Filter cleaning system with a movable proximity nozzle |
| CN112007402A (en) * | 2020-09-17 | 2020-12-01 | 广东海洋大学 | Roller suction and drainage type fine filtering device |
| US20210283537A1 (en) * | 2020-03-10 | 2021-09-16 | Grenex Limited | Backwashing suction device for fabric filtration apparatus |
| US11292739B2 (en) * | 2017-06-21 | 2022-04-05 | Biovac Solutions Inc. | Apparatus and methods for dewatering sludge |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019220828A1 (en) * | 2018-05-15 | 2019-11-21 | 株式会社荒井鉄工所 | Shearing member and filtration device |
| IL311297B2 (en) * | 2021-09-10 | 2025-07-01 | Algaecore Tech Ltd | Rotary drum filtration machine for algae filtration |
| CN116983742B (en) * | 2023-09-28 | 2024-01-19 | 山东鑫和供水设备有限公司 | Tap water purifying treatment device |
| WO2025202833A1 (en) * | 2024-03-27 | 2025-10-02 | Ferraro S.P.A. | Apparatus and procedure for water separation and related system for washing a fabric web |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2275958A (en) * | 1939-03-17 | 1942-03-10 | Eugene A Hagel | Fluid strainer |
| US5300225A (en) * | 1992-10-15 | 1994-04-05 | Fischer Harry C | Vacuum cleaned micro-strainer system |
| US20040094470A1 (en) * | 2001-01-18 | 2004-05-20 | Nicholas Jackson | Water filter |
| US20140097145A1 (en) * | 2012-10-09 | 2014-04-10 | Ovivo Luxembourg, S.a.r. I. | Debris filter with splitter box |
Family Cites Families (78)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1002618A (en) * | 1911-04-05 | 1911-09-05 | Hubert Winkler | Air-filter. |
| US1210759A (en) * | 1914-02-07 | 1917-01-02 | Johannes Paul Breddin | Apparatus for purifying sewage-water. |
| GB284403A (en) * | 1926-10-28 | 1928-01-30 | Francis Whitwell Brackett | Improvements in rotary filters or strainers |
| US2066479A (en) * | 1931-06-08 | 1937-01-05 | Vernon W Macisaac | Fluid straining method and apparatus |
| US1995648A (en) * | 1931-06-25 | 1935-03-26 | American Smelting Refining | High temperature filtering |
| US1977601A (en) * | 1932-06-02 | 1934-10-16 | Fred Huettmann | Fluid strainer |
| US1995649A (en) * | 1932-07-09 | 1935-03-26 | American Smelting Refining | Bag filter |
| US2835390A (en) * | 1954-09-27 | 1958-05-20 | William R King | Fluid strainers |
| US3017029A (en) * | 1957-01-30 | 1962-01-16 | Gen Motors Corp | Self-cleaning filter |
| US3074560A (en) * | 1959-01-07 | 1963-01-22 | Kinney Eng Inc S P | Positive pressure backwash strainer |
| US3074556A (en) * | 1960-04-25 | 1963-01-22 | Rosaen Filter Co | Fluid filtering mechanism |
| US3168467A (en) * | 1962-07-20 | 1965-02-02 | George W Dreyer | Self-cleaning strainers |
| US3256995A (en) * | 1963-07-05 | 1966-06-21 | Zurn Ind Inc | Automatic strainer |
| US3357566A (en) * | 1964-06-22 | 1967-12-12 | Zurn Ind Inc | Dual element filter assembly with backwash arms |
| US3377780A (en) * | 1966-08-04 | 1968-04-16 | W C Wiedenmann & Son Inc | Self-cleaning filter apparatus |
| US3574509A (en) * | 1969-02-14 | 1971-04-13 | Zurn Ind Inc | Backwash filter |
| US3635348A (en) * | 1970-06-09 | 1972-01-18 | Kinney Eng Inc S P | Automatic self-cleaning strainers |
| US3734299A (en) * | 1970-12-28 | 1973-05-22 | Kanagawa Kiki Kogyo Co Ltd | Automatic continuously backflow washing-type filter |
| US3784016A (en) * | 1971-06-30 | 1974-01-08 | Kanagawa Kiki Kogyo Co Ltd | Automatic continuously backflow washing-type filter |
| US3757496A (en) * | 1972-07-13 | 1973-09-11 | Cambridge Filter Corp | Apparatus for collecting filtered airborne |
| DE2260461C3 (en) * | 1972-12-11 | 1980-06-04 | Krauss-Maffei Ag, 8000 Muenchen | Filter centrifuge |
| US3837149A (en) * | 1973-06-27 | 1974-09-24 | Deere & Co | Engine enclosure and cooling system with rotary filter |
| US3887344A (en) * | 1973-11-19 | 1975-06-03 | Randall E Smith | Self-cleaning filter |
| DE2605384C3 (en) * | 1976-02-26 | 1981-04-30 | Penzenskij zavod chimičeskogo mašinostroenija, Penza | Liquid filter |
| SU709119A1 (en) * | 1977-01-28 | 1980-01-15 | Производственное Объединение "Техэнергохимпром" | Self-cleaning filter |
| US4154588A (en) * | 1977-09-27 | 1979-05-15 | Herndon Marion E Jr | Cylindrical cell self-cleaning filter |
| US4222754A (en) * | 1978-11-24 | 1980-09-16 | Horvat Ivan J | High efficiency filter for textile waste |
| US4280913A (en) * | 1980-01-23 | 1981-07-28 | Envirex, Inc. | Water purification process |
| US4251237A (en) * | 1980-02-13 | 1981-02-17 | Smith Randall E | Air filter and method of filtering |
| US4702847A (en) * | 1981-03-25 | 1987-10-27 | Kamil Fux | Process for removing solids from a filtering device for the separation of liquids and solids |
| NZ205530A (en) * | 1983-09-08 | 1987-02-20 | Contra Shear Holdings | Rotary drum screen with circumferential wedge-shaped wires |
| US4532036A (en) * | 1983-11-14 | 1985-07-30 | Gaston County Dyeing Machine Company | Self-cleaning filtering apparatus |
| US4875913A (en) * | 1984-05-24 | 1989-10-24 | Filtration Water Filters For Agriculture And Industry, Ltd. | Apparatus for cleaning corrugated filter elements |
| IL71912A (en) * | 1984-05-24 | 1988-05-31 | Filtration Water Filters For A | Fluid filter cleaning system |
| DE3419698C2 (en) * | 1984-05-25 | 1987-04-09 | Taprogge GmbH, 5802 Wetter | Device for mechanical cleaning of liquids |
| IL71999A0 (en) * | 1984-06-04 | 1984-10-31 | Filtration Water Filters For A | Fluid filter system and suction nozzle therefor |
| US4810270A (en) * | 1985-10-24 | 1989-03-07 | Kimberly-Clark Corporation | Separator |
| DE3568258D1 (en) * | 1985-12-11 | 1989-03-23 | Gea Energietechnik Gmbh & Co | Process for separating solid dirt particles from the cooling water of power stations and the like |
| DE3640638C1 (en) * | 1986-11-28 | 1988-05-19 | Taprogge Gmbh | Device for mechanical cleaning of liquids |
| GB8704582D0 (en) * | 1987-02-26 | 1987-04-01 | Dowty Mining Machinery Ltd | Fluid filtering systems |
| US4818402A (en) * | 1987-08-17 | 1989-04-04 | Tm Industrial Supply, Inc. | Self cleaning strainer |
| AT392217B (en) * | 1989-07-18 | 1991-02-25 | Chemiefaser Lenzing Ag | FILTER APPARATUS FOR SEPARATING SOLIDS AND HANGING SUBSTANCES FROM LIQUIDS |
| US5116490A (en) * | 1990-03-21 | 1992-05-26 | Herman Fontenot | Rotary screen apparatus for use with cooling towers |
| IL94630A (en) * | 1990-06-06 | 1993-08-18 | Filtration Ltd Herzliya And Yt | Self-cleaning filter |
| US5152891A (en) * | 1990-09-13 | 1992-10-06 | T/M Industrial Supply, Inc. | Self-cleaning strainer |
| DE4103514C1 (en) * | 1991-02-06 | 1992-11-05 | Josef Dipl.-Ing. 4006 Erkrath De Koller | |
| US5370791A (en) * | 1991-08-22 | 1994-12-06 | G A Industries, Inc. | Backwashable self-cleaning strainer |
| US5401396A (en) * | 1991-08-22 | 1995-03-28 | Ga Industries Inc. | Self-cleaning stationary basket strainer |
| US5735337A (en) * | 1993-03-19 | 1998-04-07 | Advanced Contracting & Hedging, Inc. | Cleaning device internally mounted within a tubular filter |
| IL107457A (en) * | 1993-11-01 | 1996-10-16 | Filtration Ltd | Liquid filter structure |
| DE4339268C2 (en) * | 1993-11-18 | 1996-01-25 | Huber Hans Gmbh Maschinen Und | Method and device for filtering and backwashing solid particles from liquids |
| US5558042A (en) * | 1994-06-01 | 1996-09-24 | Bradley; James E. | Aquaculture filtration system employing a rotating drum filter |
| US5728297A (en) * | 1995-01-30 | 1998-03-17 | Koller; Josef | Apparatus for the mechanical cleaning of liquids |
| US5587074A (en) * | 1995-02-17 | 1996-12-24 | H-Tech, Inc. | Fluid filter with enhanced backflush flow |
| US5632903A (en) * | 1995-06-07 | 1997-05-27 | Infinity Research And Development | High volume self-cleaning filter |
| FR2743505B1 (en) * | 1996-01-15 | 1998-02-13 | Cellier Groupe Sa | SELF-CLEANING FILTRATION DEVICE |
| US5824229A (en) * | 1996-04-19 | 1998-10-20 | Larkey; James G. | Filtration of rolling solutions |
| US6337013B1 (en) * | 1997-12-23 | 2002-01-08 | Ontario Power Generation, Inc. | Removable filter with jack sealing device and vacuum cleaning heads |
| US6572763B2 (en) * | 1998-08-21 | 2003-06-03 | Donald B. Gorshing | Wastewater screening, washing and dewatering system |
| DE19925630A1 (en) * | 1999-06-04 | 2000-12-14 | Josef Koller | Mechanical cleaner for heat exchanger coolant facilitates easy access to lower-cost sieve suction cleaner |
| US6360896B1 (en) * | 2000-02-22 | 2002-03-26 | Taprogge Gmbh, A German Limited Liability Company | Apparatus for cleaning liquid fluids |
| IT1315291B1 (en) * | 2000-02-29 | 2003-02-10 | Donato Massignani | MACHINE FOR MICROFILTRATION OF SOLID PARTICLES SUSPENDED IN A LIQUID CURRENT |
| WO2004007051A1 (en) * | 2002-07-11 | 2004-01-22 | Gea Energy System (India) Ltd | A debris filter with a rotating debris extractor |
| US7297265B1 (en) * | 2006-06-30 | 2007-11-20 | Eaton Corporation | Backwash strainer having a cyclonic flow mechanism |
| US20080053889A1 (en) * | 2006-09-01 | 2008-03-06 | Leath William M | Self-cleaning, continuously operating filter apparatus for fluids |
| US8097050B2 (en) * | 2008-02-26 | 2012-01-17 | Cnh America Llc | Rotary vacuum apparatus for air screen |
| US7946367B2 (en) * | 2008-06-12 | 2011-05-24 | Agco Corporation | Rotating radiator screen having air curtain seal |
| GB0812966D0 (en) * | 2008-07-16 | 2008-08-20 | Cnh Belgium Nv | Cleaning of an air filter screen of an agricultural vehicle |
| SG174635A1 (en) * | 2010-03-08 | 2011-10-28 | Aalborg Ind Water Treat Pte Ltd | Self-cleaning filter module |
| CA2735756A1 (en) * | 2011-03-31 | 2012-09-30 | Craig Hopf | Weed and trash screening apparatus for irrigation systems |
| US8597391B1 (en) * | 2011-04-12 | 2013-12-03 | Osprey, Inc. | Filtration system and method |
| FR2978677B1 (en) * | 2011-08-02 | 2014-10-17 | Beaudrey & Cie | CYLINDRICAL FILTER PANEL SIEVES FOR WATER TAKING |
| US8524075B1 (en) * | 2012-10-25 | 2013-09-03 | Eaton Corporation | Backwashing fluid filter assembly |
| US20140116965A1 (en) * | 2012-11-01 | 2014-05-01 | Machinerie Agricole Bois-Francs Inc. | Separator and method for separating a heterogeneous supply |
| US8679335B1 (en) * | 2012-12-21 | 2014-03-25 | Saniprotex Inc. | Vehicle-mounted vacuum system and method of separating liquid and solids fractions of a sludge-like mixture inside a container |
| NL2012621B1 (en) * | 2014-04-15 | 2016-05-09 | Van Den Berg Bart | Drum filter for water filtration and method thereof. |
| US10245531B2 (en) * | 2015-06-17 | 2019-04-02 | Tm Industrial Supply, Inc. | High-efficiency automatic self-cleaning strainer |
| US10195549B1 (en) * | 2017-11-21 | 2019-02-05 | Aqua-Aerobic Systems, Inc. | Backwash shoe method and apparatus that increases effective surface area of cloth filter media |
-
2012
- 2012-11-01 US US13/666,562 patent/US20140116965A1/en not_active Abandoned
-
2017
- 2017-10-30 US US15/797,046 patent/US10583379B2/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2275958A (en) * | 1939-03-17 | 1942-03-10 | Eugene A Hagel | Fluid strainer |
| US5300225A (en) * | 1992-10-15 | 1994-04-05 | Fischer Harry C | Vacuum cleaned micro-strainer system |
| US20040094470A1 (en) * | 2001-01-18 | 2004-05-20 | Nicholas Jackson | Water filter |
| US20040112846A1 (en) * | 2001-01-18 | 2004-06-17 | Nicholas Jackson | Filter |
| US20140097145A1 (en) * | 2012-10-09 | 2014-04-10 | Ovivo Luxembourg, S.a.r. I. | Debris filter with splitter box |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10751764B2 (en) * | 2009-11-12 | 2020-08-25 | Filter Safe Ltd. | Filter cleaning system with a movable proximity nozzle |
| US9061226B2 (en) * | 2010-09-03 | 2015-06-23 | Johnny Leon LOVE | Filtration method with self-cleaning filter assembly |
| US9561454B2 (en) * | 2012-10-09 | 2017-02-07 | Ovivo Inc. | Debris filter with splitter bar |
| US20140097145A1 (en) * | 2012-10-09 | 2014-04-10 | Ovivo Luxembourg, S.a.r. I. | Debris filter with splitter box |
| US10688419B2 (en) | 2012-10-09 | 2020-06-23 | Ovivo Inc. | Debris filter with filter screen in the form of a spherical section |
| US10583379B2 (en) * | 2012-11-01 | 2020-03-10 | Machinerie Agricole Bois-Francs Inc. | Separator and method for separating a heterogeneous supply |
| US10245531B2 (en) * | 2015-06-17 | 2019-04-02 | Tm Industrial Supply, Inc. | High-efficiency automatic self-cleaning strainer |
| US11292739B2 (en) * | 2017-06-21 | 2022-04-05 | Biovac Solutions Inc. | Apparatus and methods for dewatering sludge |
| US11780757B2 (en) | 2017-06-21 | 2023-10-10 | Biovac Solutions Inc. | Apparatus and methods for dewatering sludge |
| US10195549B1 (en) * | 2017-11-21 | 2019-02-05 | Aqua-Aerobic Systems, Inc. | Backwash shoe method and apparatus that increases effective surface area of cloth filter media |
| US20210283537A1 (en) * | 2020-03-10 | 2021-09-16 | Grenex Limited | Backwashing suction device for fabric filtration apparatus |
| US11504655B2 (en) * | 2020-03-10 | 2022-11-22 | Grenex Limited | Backwashing suction device for fabric filtration apparatus |
| CN112007402A (en) * | 2020-09-17 | 2020-12-01 | 广东海洋大学 | Roller suction and drainage type fine filtering device |
Also Published As
| Publication number | Publication date |
|---|---|
| US20180056214A1 (en) | 2018-03-01 |
| US10583379B2 (en) | 2020-03-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10583379B2 (en) | Separator and method for separating a heterogeneous supply | |
| US8517167B2 (en) | Distribution auger for roll-off box | |
| US7074339B1 (en) | Apparatus for separating solids from a liquid | |
| CN103874532B (en) | Fluid handling devices, systems and methods | |
| US20140374331A1 (en) | Filter system | |
| US6364122B1 (en) | Apparatus for separating liquids from solids | |
| US20180193773A1 (en) | Backflow collection system including a conveyor and method for reclaiming the same | |
| US5766470A (en) | Container, especially for the processing of wet solid, oily and/or watery waste | |
| US20170252674A1 (en) | Backflow collection system and method for reclaiming the same | |
| CN214833010U (en) | River channel dredging integrated device | |
| CA2794969C (en) | Separator and method for separating a heterogeneous supply | |
| CN105903246A (en) | Solid-liquid separation and pollution-absorption device | |
| AU641652B2 (en) | Filter assembly | |
| CN205822442U (en) | Suction-type sewer scavenger | |
| US20160030864A1 (en) | Suspended solids filter system | |
| CN205815238U (en) | Solid-liquid separation soil pick-up equipment | |
| CN204646188U (en) | A kind of drilling mud discarded object does not land receiving system | |
| JPH07227506A (en) | Device for separating mud from sewage in waterway or the like | |
| KR100370712B1 (en) | A device of prevent outflow for waste water | |
| CN210313755U (en) | River sewage outlet sewage treatment device | |
| JP2587791B2 (en) | Bottom floor sludge removal / recovery device for ponds | |
| KR101788788B1 (en) | A debris removal device for an inlet channel | |
| CN116924515B (en) | Oil-water separation device for sewage treatment | |
| CN213527643U (en) | Solid-liquid separation equipment and dirty useless dewatering system of useless | |
| KR102875153B1 (en) | Impurity crush and dehydration transferring implement |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MACHINERIE AGRICOLE BOIS-FRANCS INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COTE, CAMILLE;REEL/FRAME:030788/0259 Effective date: 20130625 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |