US20140079673A1 - Treatment of ischemia using stem cells - Google Patents
Treatment of ischemia using stem cells Download PDFInfo
- Publication number
- US20140079673A1 US20140079673A1 US14/084,002 US201314084002A US2014079673A1 US 20140079673 A1 US20140079673 A1 US 20140079673A1 US 201314084002 A US201314084002 A US 201314084002A US 2014079673 A1 US2014079673 A1 US 2014079673A1
- Authority
- US
- United States
- Prior art keywords
- usscs
- cells
- expression
- mammal
- heart
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000028867 ischemia Diseases 0.000 title claims abstract description 15
- 210000000130 stem cell Anatomy 0.000 title description 16
- 238000011282 treatment Methods 0.000 title description 8
- 238000000034 method Methods 0.000 claims abstract description 31
- 241000124008 Mammalia Species 0.000 claims abstract description 10
- 210000001988 somatic stem cell Anatomy 0.000 claims abstract description 10
- 210000004700 fetal blood Anatomy 0.000 claims description 15
- 210000002216 heart Anatomy 0.000 claims description 12
- 230000017531 blood circulation Effects 0.000 claims description 8
- 238000001356 surgical procedure Methods 0.000 claims description 7
- 238000002054 transplantation Methods 0.000 claims description 7
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 claims description 6
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 claims description 6
- 210000004204 blood vessel Anatomy 0.000 claims description 5
- 208000010125 myocardial infarction Diseases 0.000 claims description 5
- 230000000747 cardiac effect Effects 0.000 claims description 4
- 102100022749 Aminopeptidase N Human genes 0.000 claims description 3
- 102100032912 CD44 antigen Human genes 0.000 claims description 3
- 108010013996 Fibromodulin Proteins 0.000 claims description 3
- 101000757160 Homo sapiens Aminopeptidase N Proteins 0.000 claims description 3
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 claims description 3
- 101000994369 Homo sapiens Integrin alpha-5 Proteins 0.000 claims description 3
- 101000935043 Homo sapiens Integrin beta-1 Proteins 0.000 claims description 3
- 108090000320 Hyaluronan Synthases Proteins 0.000 claims description 3
- 102100032817 Integrin alpha-5 Human genes 0.000 claims description 3
- 102100025304 Integrin beta-1 Human genes 0.000 claims description 3
- 210000004369 blood Anatomy 0.000 claims description 3
- 239000008280 blood Substances 0.000 claims description 3
- 230000001010 compromised effect Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 230000008439 repair process Effects 0.000 claims description 3
- 102000017177 Fibromodulin Human genes 0.000 claims description 2
- 102000003918 Hyaluronan Synthases Human genes 0.000 claims description 2
- 206010063837 Reperfusion injury Diseases 0.000 claims description 2
- 238000002399 angioplasty Methods 0.000 claims description 2
- 230000004217 heart function Effects 0.000 claims description 2
- 210000004165 myocardium Anatomy 0.000 claims 4
- 230000007423 decrease Effects 0.000 claims 2
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 claims 1
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 claims 1
- 206010028851 Necrosis Diseases 0.000 claims 1
- 210000005003 heart tissue Anatomy 0.000 claims 1
- 230000017074 necrotic cell death Effects 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 45
- 210000000988 bone and bone Anatomy 0.000 description 14
- 238000001802 infusion Methods 0.000 description 14
- 230000000302 ischemic effect Effects 0.000 description 13
- 210000001519 tissue Anatomy 0.000 description 12
- 239000000427 antigen Substances 0.000 description 10
- 102000036639 antigens Human genes 0.000 description 10
- 108091007433 antigens Proteins 0.000 description 10
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 10
- 230000001464 adherent effect Effects 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 210000003205 muscle Anatomy 0.000 description 9
- 230000006378 damage Effects 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 210000005087 mononuclear cell Anatomy 0.000 description 8
- 239000003550 marker Substances 0.000 description 7
- 210000004556 brain Anatomy 0.000 description 6
- 210000003414 extremity Anatomy 0.000 description 6
- 108010034065 fibulin 2 Proteins 0.000 description 6
- 230000003394 haemopoietic effect Effects 0.000 description 6
- 210000004185 liver Anatomy 0.000 description 6
- 108010043471 Core Binding Factor Alpha 2 Subunit Proteins 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 5
- 229960003957 dexamethasone Drugs 0.000 description 5
- 230000001605 fetal effect Effects 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 102100031813 Fibulin-2 Human genes 0.000 description 4
- 102000006354 HLA-DR Antigens Human genes 0.000 description 4
- 108010058597 HLA-DR Antigens Proteins 0.000 description 4
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 4
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 4
- 210000001178 neural stem cell Anatomy 0.000 description 4
- 230000009818 osteogenic differentiation Effects 0.000 description 4
- 238000003757 reverse transcription PCR Methods 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 102000002664 Core Binding Factor Alpha 2 Subunit Human genes 0.000 description 3
- 102100022224 Y-box-binding protein 1 Human genes 0.000 description 3
- RGCKGOZRHPZPFP-UHFFFAOYSA-N alizarin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 210000000845 cartilage Anatomy 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000001506 immunosuppresive effect Effects 0.000 description 3
- 210000003141 lower extremity Anatomy 0.000 description 3
- 230000001537 neural effect Effects 0.000 description 3
- 230000002188 osteogenic effect Effects 0.000 description 3
- 101710135378 pH 6 antigen Proteins 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 210000002460 smooth muscle Anatomy 0.000 description 3
- 230000009182 swimming Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- RSGFPIWWSCWCFJ-VAXZQHAWSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal;phosphoric acid Chemical compound OP(O)(O)=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC(=O)CC(O)(C(O)=O)CC(O)=O RSGFPIWWSCWCFJ-VAXZQHAWSA-N 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 108010081589 Becaplermin Proteins 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 102000012422 Collagen Type I Human genes 0.000 description 2
- 108010022452 Collagen Type I Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 206010062016 Immunosuppression Diseases 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 102000008730 Nestin Human genes 0.000 description 2
- 108010088225 Nestin Proteins 0.000 description 2
- 102000008763 Neurofilament Proteins Human genes 0.000 description 2
- 108010088373 Neurofilament Proteins Proteins 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 102000004067 Osteocalcin Human genes 0.000 description 2
- 108090000573 Osteocalcin Proteins 0.000 description 2
- 102100030485 Platelet-derived growth factor receptor alpha Human genes 0.000 description 2
- 101710148465 Platelet-derived growth factor receptor alpha Proteins 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 102000004874 Synaptophysin Human genes 0.000 description 2
- 108090001076 Synaptophysin Proteins 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229940096422 collagen type i Drugs 0.000 description 2
- 210000001608 connective tissue cell Anatomy 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000004761 fibrosis Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- DHCLVCXQIBBOPH-UHFFFAOYSA-L glycerol 2-phosphate(2-) Chemical compound OCC(CO)OP([O-])([O-])=O DHCLVCXQIBBOPH-UHFFFAOYSA-L 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000007917 intracranial administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 208000037906 ischaemic injury Diseases 0.000 description 2
- 208000023589 ischemic disease Diseases 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 201000002818 limb ischemia Diseases 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 210000005055 nestin Anatomy 0.000 description 2
- 210000005044 neurofilament Anatomy 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- 210000002826 placenta Anatomy 0.000 description 2
- 230000003169 placental effect Effects 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 231100000241 scar Toxicity 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 101800000263 Acidic protein Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 101150082143 CD24 gene Proteins 0.000 description 1
- 102000013925 CD34 antigen Human genes 0.000 description 1
- 108050003733 CD34 antigen Proteins 0.000 description 1
- 241000189662 Calla Species 0.000 description 1
- 102100032925 Chondroadherin Human genes 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 102000000503 Collagen Type II Human genes 0.000 description 1
- 108010041390 Collagen Type II Proteins 0.000 description 1
- 206010069729 Collateral circulation Diseases 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 102100037362 Fibronectin Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 101500025419 Homo sapiens Epidermal growth factor Proteins 0.000 description 1
- 101001034652 Homo sapiens Insulin-like growth factor 1 receptor Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102100039688 Insulin-like growth factor 1 receptor Human genes 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101100437777 Mus musculus Bmpr1a gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 238000011786 NMRI nude mouse Methods 0.000 description 1
- 102000003729 Neprilysin Human genes 0.000 description 1
- 108090000028 Neprilysin Proteins 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 238000010240 RT-PCR analysis Methods 0.000 description 1
- 102100025373 Runt-related transcription factor 1 Human genes 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 108010048626 Y-Box-Binding Protein 1 Proteins 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 210000001188 articular cartilage Anatomy 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000002960 bfu-e Anatomy 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- ROJMAHHOFDIQTI-UHFFFAOYSA-L calcium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate;hydron;piperazine Chemical compound [Ca+2].C1CNCCN1.OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ROJMAHHOFDIQTI-UHFFFAOYSA-L 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 239000002771 cell marker Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 108010059427 chondroadherin Proteins 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 230000002648 chondrogenic effect Effects 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 210000004060 endocardial cushion Anatomy 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000009067 heart development Effects 0.000 description 1
- 229940116978 human epidermal growth factor Drugs 0.000 description 1
- 229940099552 hyaluronan Drugs 0.000 description 1
- KIUKXJAPPMFGSW-MNSSHETKSA-N hyaluronan Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H](C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-MNSSHETKSA-N 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 238000013394 immunophenotyping Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000000185 intracerebroventricular administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000000651 myofibroblast Anatomy 0.000 description 1
- GVUGOAYIVIDWIO-UFWWTJHBSA-N nepidermin Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CS)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CS)NC(=O)[C@H](C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C(C)C)C(C)C)C1=CC=C(O)C=C1 GVUGOAYIVIDWIO-UFWWTJHBSA-N 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 210000001982 neural crest cell Anatomy 0.000 description 1
- 230000024121 nodulation Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 210000001147 pulmonary artery Anatomy 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000004492 retinoid derivatives Chemical class 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 210000002363 skeletal muscle cell Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000003594 spinal ganglia Anatomy 0.000 description 1
- 238000009168 stem cell therapy Methods 0.000 description 1
- 238000009580 stem-cell therapy Methods 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 210000003606 umbilical vein Anatomy 0.000 description 1
- 210000001113 umbilicus Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/48—Reproductive organs
- A61K35/51—Umbilical cord; Umbilical cord blood; Umbilical stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/28—Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/48—Reproductive organs
- A61K35/50—Placenta; Placental stem cells; Amniotic fluid; Amnion; Amniotic stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0607—Non-embryonic pluripotent stem cells, e.g. MASC
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K2035/124—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
Definitions
- U.S. Patents e.g., U.S. Pat. Nos. 5,486,359; 5,591,625; 5,736,396; 5,811,094; 5,827,740; 5,837,539; 5,908,782; 5,908,784; 5,942,225; 5,965,436; 6,010,696; 6,022,540; 6,087,113; 5,858,390; 5,804,446; 5,846,796; 5,654,186; 6,054,121; 5,827,735; 5,906,934 disclose mesenchymal stem cells (MSC), which can be differentiated into several progenitor cells, for example muscle progenitor cells, connective tissue cell progenitors or oval cells. Muscle progenitor cells differentiate further into cardiac, skeletal as well as smooth muscle cells whereas the connective tissue cell progenitor may differentiate into bone.
- MSC mesenchymal stem cells
- USSCs unrestricted somatic stem cells
- USSCs can be derived from human umbilical cord blood, placental blood and/or the blood from a newborn child.
- USSCs are distinct from but capable to differentiate into mesenchymal stem or progenitor cells, hematopoietic lineage stem or progenitor cells, neural stem or progenitor cells, or endothelial stem or liver progenitor cells.
- USSCs represent the progenitor of the hematopoietic lineage, the mesenchymal stem cells as well as neural stem cells.
- the invention features a method for treating or preventing ischemia in a mammal having tissue in which ischemia, or the risk of ischemia, is associated with compromised blood flow to the tissue; the method involves administering unrestricted somatic stem cells (USSCs) to the mammal.
- USSCs unrestricted somatic stem cells
- approximately 1 ⁇ 10 5 to 1 ⁇ 10 9 USSCs are administered to the patient, preferably about 2 ⁇ 10 6 USSCs are administered to the patient.
- the invention is of particular importance in restoring cardiac function following any event or procedure involving the heart in which ischemia has occurred or is likely to occur. The most important use will be found in patients who have recently experienced myocardial infarction. Other cardiac patients include those who can benefit from the administration of USSCs, including patients who have undergone heart surgery and are at risk of reperfusion damage; e.g., patients who have undergone cardiac bypass procedures, valve repairs or replacements, heart transplantation, or balloon angioplasty.
- ischemic conditions that can be treated or prevented according to the invention include ischemic events involving other internal organs such as the lungs, liver, and kidneys; regions containing skeletal muscle, e.g., limbs and trunk muscles; and ischemic conditions involving smooth muscle, e.g. surgeries involving the smooth muscle of the gastrointestinal tract, e.g., surgeries to treat lesions of the organs of the gastrointestinal tract, and surgeries to correct blockages, e.g., intestinal blockages.
- ischemic events involving other internal organs such as the lungs, liver, and kidneys
- regions skeletal muscle e.g., limbs and trunk muscles
- smooth muscle e.g. surgeries involving the smooth muscle of the gastrointestinal tract, e.g., surgeries to treat lesions of the organs of the gastrointestinal tract, and surgeries to correct blockages, e.g., intestinal blockages.
- a preferred method of administering USSCs is to administer the cells intravenously. Following intravenous administration, USSCs home to the site of ischemic damage, and graft in the region of such damage, bringing about the formation of new blood vessels which carry oxygen to the site of ischemic damage, reducing ischemia, thereby reducing the amount of atrophic muscle in the region.
- USSCs can be administered to treat ischemia by administering the cells locally, e.g., intramuscularly, at or near the site of ischemic damage.
- Such local administration of cells may be advantageous in instances where the site of damage has particularly compromised blood flow, e.g., where ischemia in an extremity of a diabetic patient is to be ameliorated.
- USSCs suspended in a pharmaceutically acceptable buffer are administered to the patient intravenously as soon as possible, and preferably within 24 hours, after onset of the myocardial infarction.
- Other appropriate treatment regimens are employed at the same time.
- the blood flow to the heart is evaluated after two weeks; this involves standard oxygenation tests, and can also involve angiography, which can determine that the USSCs have brought about increased collateral blood vessel supply to the heart. If desired, additional USSCs can be administered at this time to further increase collateral circulation.
- USSCs can be isolated and purified by the steps of density gradient isolation, culture of adherent cells, and subculture applying growth factors as described below. After a confluent cell layer has been established, the isolation process to derive USSCs is controlled by morphology (fibroblastoid morphology) and phenotypical analyses using antibodies directed against CD13 (positive) CD45 (negative), and CD29 (positive) surface antigens.
- morphology fibroblastoid morphology
- phenotypical analyses using antibodies directed against CD13 (positive) CD45 (negative), and CD29 (positive) surface antigens.
- USSCs are negative for markers specific for the hematopoietic lineage such as CD45 and hence are distinct from hematopoietic stem cells, which can also be isolated from placental cord blood.
- CD14 and CD106 are two additional surface antigens that cannot be detected on USSCs.
- USSCs can be identified by the expression of one or more of the following cell surface markers: CD13, CD29, CD44, and CD49e.
- USSC preparations are further characterized by the presence of mRNA transcripts for certain receptor molecules like epidermal growth factor receptor (EGF-R), platelet derived growth factor receptor alpha (PDGF-RA), and insulin growth factor receptor (IGF-R).
- EGF-R epidermal growth factor receptor
- PDGF-RA platelet derived growth factor receptor alpha
- IGF-R insulin growth factor receptor
- YB1 Y-box transcription factor 1
- Runx1 run related transcription factor 1
- AML1C acute myeloid leukemia 1 transcription factor
- USSC preparations are typically negative for transcripts for the chondrogenic transcription factor Cart-1 and neural markers such as neurofilament, synaptophysin, tyrosine hydroxylast (TH) and glial fibriallary acidic protein (GFAP).
- YB1 Y-box transcription factor 1
- Runx1 runt related transcription factor 1
- AML1C acute myeloid leukemia 1 transcription factor
- the RAN expression of USSC preparations and bone marrow derived MSCs were directly compared by using quantitative Affymetrix GeneChipTM microarrays.
- the transcript of the fibulin-2 gene (gene bank number X82494) was detected in USSCs at a high expression levels but not in MSCs. Fibulin-2 production was previously demonstrated in fibroblasts (Pan et al., 1993).
- Northern blot analysis of mRNA from various human tissues reveals an abundant 4.5 kb transcript in heart, placenta and ovary tissue (Zhang et al., 1994).
- the protein has been localized at the light microscopical level in human embryos of gestational weeks 4-10, using polyclonal antibodies.
- Fibulin-2 was detected primarily within the neurophithelium, spinal ganglia and peripheral nerves (Misoge et al., 1996).
- rat liver myofibroblasts are localized with fibulin 2. These cells were located in the portal field, the walls of central veins, and only occasionally in the parenchyma. In early stages of fibrosis rMF were detected within the developing scars. In advanced stages of fibrosis rMF accounted for the majority of the cells located within the scar (Knittel et al., 1999).
- mouse Fibulin-2 protein is express during epithelial-mesenchymal transformation in the endocardial cushion matrix during embryonic heart development. Fibulin-2 is also synthesized by the smooth muscle precursor cells of developing aortic arch vessels and the coronary endothelial cells that originate from neural crest cells and epicardial cells, respectively (Tsuda et al., 2001).
- Hyaluronan Synthase gene D84424
- Fibromodulin gene U0 5291
- the transcript 1NFLS W03846
- Northern blot analysis indicated that Hyaluronan Synthase is ubiquitously expressed in human tissues (Itano and Kimata, 1996).
- the product of this enzyme, Hyaluronan serves a variety of functions, including space filling, lubrication of joints, and provision of a matrix through which cells can migrate (Hall et al., 1995).
- Fibromodulin is a member of a family of small interstitial proteoglycans. The protein exhibits a wide tissue distribution, with the highest abundance observed in articular cartilage, tendon, and ligament (Sztrolovics et al., 1994).
- the transcript 1NFLS was cloned from human fetal liver.
- the CD24 gene (L33930) is expressed at a very low level in USSCs, compared with the expression level in the MSCs. CD24 is expressed in may B-lineage cells and on mature granulocytes (Van der Schoot et al., 1989).
- USSCs are characterized by the lack of expression of human leukocyte antigen class I (HLA-class I).
- HLA-class I human leukocyte antigen class I
- MSCs isolated from bone marrow and muscle tissue express very high levels of HLA-class I antigen on their cell surface.
- USSCs also express the stage specific early antigen 4 (SSEA4).
- USSCs show a fibroblastoid cell shape and proliferate in an adherent manner. USSCs are also approximately 30% larger than MSCs. Thus, USSCs can be distinguished from MSCs morphologically.
- USSCs can be present in a plurality of mixtures representing precursors of other somatic stem cells, e.g. of the hematopoietic lineage expressing AC133 and CD34, mesenchymal progenitor somatic stem cells, neuronal progenitor somatic stem cells, or combinations thereof. Such combinations provide high regenerative potential based on the capability to differentiate into other, different somatic stem cells.
- Some medicaments useful in the invention contain USSCs together with other somatic stem cells.
- the medicament may further contain carrier substances or auxiliary substances, which are medically and pharmacologically acceptable.
- USSCs may be administered directly or together with pharmaceutically acceptable carriers or adjuvants. It may be advantageous to add additional therapeutically active substances which treat ischemia.
- MSCs can be applied in an analogous manner when administering USSCs.
- stem cells is described in B. E. Strauer et al. M. “Intrakoronare, humane autologe Stammzelltransplantation für Myokardregeneration nach Herzinfarkt”, Dtsch. Med. Schuschr 2001; 126: 932-938; Quarto R., et al., “Repair of Large Bone Defects with the Use of Autologous Bone Marrow Stromal Cells”. N. Eng. J. Med. 2001; 344:385-386; Vacanti C. A., “Brief Report: Replacement of an Avulsed Phalanx with Tissue-Engineered Bone” N.
- USSCs Various delivery systems are known and can be used to administer the USSCs.
- Methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes.
- the cells may be administered by any convenient route, for example by infusion or bolus injection, and may be administered together with other biologically active agents. Administration can be systemic or local.
- the USSCs may be desirable to administer the USSCs locally to the area in need of treatment for ischemic damage, or the risk thereof; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, by injection, by means of a catheter, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.
- the USSCs can be delivered in a vesicle, in particular a liposome (e.g., an encapsulated liposome).
- USSCs in a single stored sample can be combined to provide the required number of cells.
- the sample can be aliquoted and one or more aliquots administered to the patient.
- the USSCs can be administered by infusion into the patient by, e.g., intracoronary infusion, retrograde venous infusion (see, e.g., Perin and Silva, Curr. Opin. Hematol. 11:399-403, 2004), intraventricular infusion, intracerebroventricular infusion, cerebrospinal infusion, and intracranial infusion.
- infusions of USSCs can be administered over time, e.g., one on day one, a second on day five, and a third on day ten. After the initial ten day period, there can be a period of time, e.g., two weeks to 6 months without cell administration, after which time the ten-day administration protocol can be repeated.
- Another possible administration route for USSCs is via direct surgical injection (e.g., intramyocardial or transendocardial injection, intracranial, intracerebral, or intracisternal injection, intramuscular injection, intrahepatic injection, and intrapancreatic injection) into the tissue or region of the body to be treated (e.g., the brain, muscle, heart, liver, pancreas, and vasculature).
- This method of administration may also require multiple injections with treatment interruption intervals lasting from 2 weeks to 6 months, or as otherwise determined by the attending physician.
- USSCs can also be administered by implantation into a patient at the site of ischemic disease or injury or at a site that will facilitate treatment of the ischemic disease or injury.
- USSCs are adherent cells with a fibroblastoid cell shape and two or three nucleoli obtained after trypsin EDTA-treatment and reseeding under appropriate culture conditions.
- the cells rapidly expand to confluence in a long, stretched morphology.
- the cells plated at low density demonstrate the fibroblastoid morphology of USSCs. These cells can readily be grown over greater than 14 culture passages.
- An almost confluent cell USSC layer shows a parallel orientation of cells. Morphologically, USSCs are approximately 30% larger than MSCs.
- the surface marker phenotype of the primary adherent cell layer as well as all derivatives thereof in subsequent passages are and remain negative for the CD45 marker.
- CD45 a characteristic marker antigen for hematopoietic cell is almost not detectable in USSCs from later passages.
- USSC preparations become positive for the stage-specific early antigen 4 (SSEA4) and show the homogenous expression of this embryonic marker.
- SSEA4 embryonic marker cells strongly show expression of the stage-specific early antigen 4 (SSEA4).
- SSEA4 embryonic marker cells strongly show expression of the stage-specific early antigen 4 (SSEA4).
- USSC cultures are negative for HLA-class I surface antigen expression, HLA-DR antigen expression, and CD14 expression.
- HLA-class I, HLA DR, and CD14 USSCs are negative for HLA-class I antigens. These cells are also negative for the HLA-DR and CD 14 surface antigens, characteristic for antigen presenting cells (HLA-DR) and monocytes (CD14).
- HLA-DR antigen presenting cells
- CD14 monocytes
- cord blood mononuclear cells depleted for CD 14 are cultured in high glucose containing medium, they exhibit the typical characteristics of neural stem cells.
- USSCs cultured in Dulbecco's modified eagle medium (DMEM) high glucose demonstrate an astrocyte-like morphology. After being expanded with PEI, USSCs express the neural stem cell marker nestin.
- DMEM Dulbecco's modified eagle medium
- a first observation indicates that nestin staining is less pronounced after cells have been stimulated with neural inducing agents like retinoid acid (RA), basic fibroblast growth factor bFGF, and nerve growth factor ⁇ (NGF- ⁇ ) (McKay, 1997).
- RA retinoid acid
- bFGF basic fibroblast growth factor
- NGF- ⁇ nerve growth factor ⁇
- All three marker genes of osteogenic differentiation show an increased mRNA expression at day 7 of DAG induction.
- B-actin serves as a positive control.
- Umbilical cord blood was carefully loaded onto Ficoll a solution (density 1.077 g/cm 3 ), and a density gradient centrifugation was performed (450 g, room temperature, 25 min.).
- the mononuclear cells (MNC) of the interphase were collected and washed twice in phosphate buffer saline, pH7,3 (PBS).
- Mononuclear cells were plated out at a density of about 5 ⁇ 10 3 cells/cm 2 in T25 culture flasks (Nunclon) [A.) B.) C.)]. Four different culture methods were used to initiate growth of adherent stem cells:
- CD-derived MNCs were initially cultured in Myelocult H5100 medium (StemCell Technologies, Vancouver, Canada) containing 10 ⁇ 7 M dexamethasone.
- B. CB-derived MNCs were initially cultured in Mesencult (StemCell Technologies, Vancouver, Canada) containing 10 ⁇ 7 M dexamethasone.
- C.) CB-derived MNCs were plated at a density of 5 ⁇ 10 6 /ml in 10 ml Myelocult H5100 Medium (StemCell Technologies, Vancouver, Canada) into 50 ml culture-flasks (Nunclon) without dexamethasone.
- USSCs can be expanded in H5100 medium containing 10 ng/ml IFG I (Insulin-like growth factor-I), 10 ng/ml PDGF-BB (Platelet-derived growth factor-BB) and 10 ng/ml rh-human EGF (Recombinant Human epidermal growth factor) (PEI medium) at a density ranging from 1 ⁇ 10 4 and 1 ⁇ 10 5 cells/ml.
- IFG I Insulin-like growth factor-I
- PDGF-BB Platinum-derived growth factor-BB
- PEI medium Recombinant Human epidermal growth factor
- In situ hybridization analysis revealed engraftment of USSC within the ischemic hind limb, mostly adjacent to vascular wall.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Cell Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Virology (AREA)
- Reproductive Health (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Hematology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Pregnancy & Childbirth (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Cardiology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention features a method for treating or preventing ischemia in a mammal by administering unrestricted somatic stem cells (USSCs) to the mammal.
Description
- A number of U.S. Patents, e.g., U.S. Pat. Nos. 5,486,359; 5,591,625; 5,736,396; 5,811,094; 5,827,740; 5,837,539; 5,908,782; 5,908,784; 5,942,225; 5,965,436; 6,010,696; 6,022,540; 6,087,113; 5,858,390; 5,804,446; 5,846,796; 5,654,186; 6,054,121; 5,827,735; 5,906,934 disclose mesenchymal stem cells (MSC), which can be differentiated into several progenitor cells, for example muscle progenitor cells, connective tissue cell progenitors or oval cells. Muscle progenitor cells differentiate further into cardiac, skeletal as well as smooth muscle cells whereas the connective tissue cell progenitor may differentiate into bone.
- U.S. application Ser. No. 09/985,335 (hereby incorporated by reference), describes somatic stem cells known as unrestricted somatic stem cells (USSCs), which can be derived from human umbilical cord blood, placental blood and/or the blood from a newborn child. USSCs are distinct from but capable to differentiate into mesenchymal stem or progenitor cells, hematopoietic lineage stem or progenitor cells, neural stem or progenitor cells, or endothelial stem or liver progenitor cells. USSCs represent the progenitor of the hematopoietic lineage, the mesenchymal stem cells as well as neural stem cells. This unique multifunctional capacity and the technology to expand these cells, either as cells that remain stem cells, or as committed cells under distinct differentiation protocols, allows precise characterization, standardization and utilization of the cells for the production and implementation of stem cell therapy in regenerative medicine. (Some of the text herein describing the isolation and culture of USSCs is taken from the aforementioned PCT and U.S. applications.)
- We have discovered that USSCs possess the ability to treat and prevent ischemia by reconstituting blood flow.
- Accordingly, the invention features a method for treating or preventing ischemia in a mammal having tissue in which ischemia, or the risk of ischemia, is associated with compromised blood flow to the tissue; the method involves administering unrestricted somatic stem cells (USSCs) to the mammal. In an embodiment, approximately 1×105 to 1×109 USSCs are administered to the patient, preferably about 2×106 USSCs are administered to the patient.
- The invention is of particular importance in restoring cardiac function following any event or procedure involving the heart in which ischemia has occurred or is likely to occur. The most important use will be found in patients who have recently experienced myocardial infarction. Other cardiac patients include those who can benefit from the administration of USSCs, including patients who have undergone heart surgery and are at risk of reperfusion damage; e.g., patients who have undergone cardiac bypass procedures, valve repairs or replacements, heart transplantation, or balloon angioplasty.
- Other ischemic conditions that can be treated or prevented according to the invention include ischemic events involving other internal organs such as the lungs, liver, and kidneys; regions containing skeletal muscle, e.g., limbs and trunk muscles; and ischemic conditions involving smooth muscle, e.g. surgeries involving the smooth muscle of the gastrointestinal tract, e.g., surgeries to treat lesions of the organs of the gastrointestinal tract, and surgeries to correct blockages, e.g., intestinal blockages.
- A preferred method of administering USSCs is to administer the cells intravenously. Following intravenous administration, USSCs home to the site of ischemic damage, and graft in the region of such damage, bringing about the formation of new blood vessels which carry oxygen to the site of ischemic damage, reducing ischemia, thereby reducing the amount of atrophic muscle in the region.
- Alternatively, USSCs can be administered to treat ischemia by administering the cells locally, e.g., intramuscularly, at or near the site of ischemic damage. Such local administration of cells may be advantageous in instances where the site of damage has particularly compromised blood flow, e.g., where ischemia in an extremity of a diabetic patient is to be ameliorated.
- In the case of a patient who has experienced myocardial infarction, between approximately 2×106 and 1×109 USSCs suspended in a pharmaceutically acceptable buffer are administered to the patient intravenously as soon as possible, and preferably within 24 hours, after onset of the myocardial infarction. Other appropriate treatment regimens are employed at the same time. The blood flow to the heart is evaluated after two weeks; this involves standard oxygenation tests, and can also involve angiography, which can determine that the USSCs have brought about increased collateral blood vessel supply to the heart. If desired, additional USSCs can be administered at this time to further increase collateral circulation.
- USSCs can be isolated and purified by the steps of density gradient isolation, culture of adherent cells, and subculture applying growth factors as described below. After a confluent cell layer has been established, the isolation process to derive USSCs is controlled by morphology (fibroblastoid morphology) and phenotypical analyses using antibodies directed against CD13 (positive) CD45 (negative), and CD29 (positive) surface antigens.
- USSCs are negative for markers specific for the hematopoietic lineage such as CD45 and hence are distinct from hematopoietic stem cells, which can also be isolated from placental cord blood. CD14 and CD106 are two additional surface antigens that cannot be detected on USSCs. USSCs can be identified by the expression of one or more of the following cell surface markers: CD13, CD29, CD44, and CD49e. USSC preparations are further characterized by the presence of mRNA transcripts for certain receptor molecules like epidermal growth factor receptor (EGF-R), platelet derived growth factor receptor alpha (PDGF-RA), and insulin growth factor receptor (IGF-R). These cells also typically express transcription factors such as YB1 (Y-box transcription factor 1), Runx1 (runt related transcription factor 1) and AML1C (acute myeloid leukemia 1 transcription factor) as detected by RT-PCR. USSC preparations are typically negative for transcripts for the chondrogenic transcription factor Cart-1 and neural markers such as neurofilament, synaptophysin, tyrosine hydroxylast (TH) and glial fibriallary acidic protein (GFAP).
-
TABLE 1 Analysis of the transcription patterns of USSCs by RT PCR RT-PCR results achieved with predicted oligonucleotide primers and mRNAs from USSCs and positive control mRNAs from other tissues like bone, cartilage, brain or cord blood mononuclear cells. PCR-Result Name USSC PCR-result (other tissue) PDGFR_alpha + + (adult bone) IGFR + + (adult bone) Neurofilament − + (adult liver) CD105 + + (mononuclear cells from CB) GFAP − + (fetal brain) Synaptophysin − + (fetal brain) Tyrosinhydroxylase − + (fetal brain) YB1 + + (fetal brain) Runx1 + + (adult bone) AML1c + + (adult bone) BMPR II + + (adult cartilage) Collagen Type I + + (adult bone) Cart-1 − + (mononuclear cells from CB) Chondroadherin − + (adult bone) CD49e + + (adult bone) - The RAN expression of USSC preparations and bone marrow derived MSCs (Caplan, 1991) were directly compared by using quantitative Affymetrix GeneChip™ microarrays. The transcript of the fibulin-2 gene (gene bank number X82494) was detected in USSCs at a high expression levels but not in MSCs. Fibulin-2 production was previously demonstrated in fibroblasts (Pan et al., 1993). Northern blot analysis of mRNA from various human tissues reveals an abundant 4.5 kb transcript in heart, placenta and ovary tissue (Zhang et al., 1994). The protein has been localized at the light microscopical level in human embryos of gestational weeks 4-10, using polyclonal antibodies. Fibulin-2 was detected primarily within the neurophithelium, spinal ganglia and peripheral nerves (Misoge et al., 1996).
- In the rat animal model, rat liver myofibroblasts (rMF) are localized with fibulin 2. These cells were located in the portal field, the walls of central veins, and only occasionally in the parenchyma. In early stages of fibrosis rMF were detected within the developing scars. In advanced stages of fibrosis rMF accounted for the majority of the cells located within the scar (Knittel et al., 1999). In an other animal model, mouse Fibulin-2 protein is express during epithelial-mesenchymal transformation in the endocardial cushion matrix during embryonic heart development. Fibulin-2 is also synthesized by the smooth muscle precursor cells of developing aortic arch vessels and the coronary endothelial cells that originate from neural crest cells and epicardial cells, respectively (Tsuda et al., 2001).
- The transcripts of the Hyaluronan Synthase gene (D84424), Fibromodulin gene (U0 5291) and the transcript 1NFLS (W03846) were not detected in USSCs, but are detected at high levels in MSCs. Northern blot analysis indicated that Hyaluronan Synthase is ubiquitously expressed in human tissues (Itano and Kimata, 1996). The product of this enzyme, Hyaluronan, serves a variety of functions, including space filling, lubrication of joints, and provision of a matrix through which cells can migrate (Hall et al., 1995). Fibromodulin is a member of a family of small interstitial proteoglycans. The protein exhibits a wide tissue distribution, with the highest abundance observed in articular cartilage, tendon, and ligament (Sztrolovics et al., 1994). The transcript 1NFLS was cloned from human fetal liver.
- The CD24 gene (L33930) is expressed at a very low level in USSCs, compared with the expression level in the MSCs. CD24 is expressed in may B-lineage cells and on mature granulocytes (Van der Schoot et al., 1989).
- USSCs are characterized by the lack of expression of human leukocyte antigen class I (HLA-class I). In contrast to USSCs, the previously described MSCs isolated from bone marrow and muscle tissue, express very high levels of HLA-class I antigen on their cell surface. USSCs also express the stage specific early antigen 4 (SSEA4).
- Typically, USSCs show a fibroblastoid cell shape and proliferate in an adherent manner. USSCs are also approximately 30% larger than MSCs. Thus, USSCs can be distinguished from MSCs morphologically.
- USSCs can be present in a plurality of mixtures representing precursors of other somatic stem cells, e.g. of the hematopoietic lineage expressing AC133 and CD34, mesenchymal progenitor somatic stem cells, neuronal progenitor somatic stem cells, or combinations thereof. Such combinations provide high regenerative potential based on the capability to differentiate into other, different somatic stem cells.
- Some medicaments useful in the invention contain USSCs together with other somatic stem cells. The medicament may further contain carrier substances or auxiliary substances, which are medically and pharmacologically acceptable. USSCs may be administered directly or together with pharmaceutically acceptable carriers or adjuvants. It may be advantageous to add additional therapeutically active substances which treat ischemia.
- Generally, methods known for the administration of MSCs can be applied in an analogous manner when administering USSCs. For example, the administration of stem cells is described in B. E. Strauer et al. M. “Intrakoronare, humane autologe Stammzelltransplantation zur Myokardregeneration nach Herzinfarkt”, Dtsch. Med. Wochenschr 2001; 126: 932-938; Quarto R., et al., “Repair of Large Bone Defects with the Use of Autologous Bone Marrow Stromal Cells”. N. Eng. J. Med. 2001; 344:385-386; Vacanti C. A., “Brief Report: Replacement of an Avulsed Phalanx with Tissue-Engineered Bone” N. Eng. J. Med. 2001; 344:1511-1514, May 17, 2001; Hentz V. R., “Tissue Engineering for Reconstruction of the Thumb”, N. Eng. J. Med. 2001; 344:1547-1548; Brittberg M., “Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation”, N. Eng. J. Med1994; 331:889-895, Oct. 6, 1994; Freed C. R., “Transplantation of a Tissue-Engineered Pulmonary Artery”, N. Eng. J. Med. 2001; 344:532-533. Shapiro A. M. J., Islet Transplantation in Seven Patients with Type 1 Diabetes Mellitus Using a Glucocorticoid-Free Immunosuppressive Regimen N. Eng. Med. 2000; 343:230-238. These references are hereby incorporated by reference.
- Various delivery systems are known and can be used to administer the USSCs. Methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The cells may be administered by any convenient route, for example by infusion or bolus injection, and may be administered together with other biologically active agents. Administration can be systemic or local.
- In a specific embodiment, it may be desirable to administer the USSCs locally to the area in need of treatment for ischemic damage, or the risk thereof; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, by injection, by means of a catheter, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. In another embodiment, the USSCs can be delivered in a vesicle, in particular a liposome (e.g., an encapsulated liposome).
- Systemic Infusions
- In instances where the number of USSCs in a single stored sample is insufficient, several such samples can be combined to provide the required number of cells. Alternatively, if the number of USSCs in a stored sample is more than sufficient, the sample can be aliquoted and one or more aliquots administered to the patient. The USSCs can be administered by infusion into the patient by, e.g., intracoronary infusion, retrograde venous infusion (see, e.g., Perin and Silva, Curr. Opin. Hematol. 11:399-403, 2004), intraventricular infusion, intracerebroventricular infusion, cerebrospinal infusion, and intracranial infusion.
- It is anticipated that human therapy is likely to require one or more infusions of USSCs. Several infusions of USSCs can be administered over time, e.g., one on day one, a second on day five, and a third on day ten. After the initial ten day period, there can be a period of time, e.g., two weeks to 6 months without cell administration, after which time the ten-day administration protocol can be repeated.
- Whether administered as a single infusion therapy or multiple infusion therapies, it is possible that the recipient will require immunosuppression. The protocols followed for this will follow the precedents now used in human transplantation for bone marrow replacement (i.e., cell transplantation), with such agents as cyclosporin A and FK506. Surprisingly, though, we have observed that the administration of USSCs does not usually require such immunosuppression.
- Direct Injection
- Another possible administration route for USSCs is via direct surgical injection (e.g., intramyocardial or transendocardial injection, intracranial, intracerebral, or intracisternal injection, intramuscular injection, intrahepatic injection, and intrapancreatic injection) into the tissue or region of the body to be treated (e.g., the brain, muscle, heart, liver, pancreas, and vasculature). This method of administration may also require multiple injections with treatment interruption intervals lasting from 2 weeks to 6 months, or as otherwise determined by the attending physician.
- Implantation
- USSCs can also be administered by implantation into a patient at the site of ischemic disease or injury or at a site that will facilitate treatment of the ischemic disease or injury.
- USSCs are adherent cells with a fibroblastoid cell shape and two or three nucleoli obtained after trypsin EDTA-treatment and reseeding under appropriate culture conditions. The cells rapidly expand to confluence in a long, stretched morphology. The cells plated at low density demonstrate the fibroblastoid morphology of USSCs. These cells can readily be grown over greater than 14 culture passages. An almost confluent cell USSC layer shows a parallel orientation of cells. Morphologically, USSCs are approximately 30% larger than MSCs.
- The surface marker phenotype of the primary adherent cell layer as well as all derivatives thereof in subsequent passages are and remain negative for the CD45 marker. CD45, a characteristic marker antigen for hematopoietic cell is almost not detectable in USSCs from later passages.
- After in vitro culture, USSC preparations become positive for the stage-specific early antigen 4 (SSEA4) and show the homogenous expression of this embryonic marker. In a FACS analysis for SSEA4 embryonic marker, cells strongly show expression of the stage-specific early antigen 4 (SSEA4). At the same time, USSC cultures are negative for HLA-class I surface antigen expression, HLA-DR antigen expression, and CD14 expression. In a FACS analysis for HLA-class I, HLA DR, and CD14, USSCs are negative for HLA-class I antigens. These cells are also negative for the HLA-DR and CD 14 surface antigens, characteristic for antigen presenting cells (HLA-DR) and monocytes (CD14). USSCs are also negative for the CD 106 surface antigen.
- USSCs were grown in H5100/PEI for over 10 passages. During this culture period a significant increase of CD34 antigen expression was observed. In passage 3 until day 54, no CD34 positive cells can be detected. In contrast, in the seventh passage on day 82 a novel CD34 positive subpopulation appears. In contrast, when such CD34 or/and FIK1 positive progenitors were cultured with cytokine conditioned medium specific for hematopoietic differentiation, the typical mixed or hematopoietic colonies for red and white blood cell precursors (CFU-GM and BFU-E) developed comparable to CD45+ hematopoeitic progenitor cells.
- If cord blood mononuclear cells depleted for CD 14 are cultured in high glucose containing medium, they exhibit the typical characteristics of neural stem cells. USSCs cultured in Dulbecco's modified eagle medium (DMEM) high glucose demonstrate an astrocyte-like morphology. After being expanded with PEI, USSCs express the neural stem cell marker nestin. A first observation indicates that nestin staining is less pronounced after cells have been stimulated with neural inducing agents like retinoid acid (RA), basic fibroblast growth factor bFGF, and nerve growth factor β (NGF-β) (McKay, 1997).
- When USSCs are taken from any of the expansion passages and induced in DAG (dexamethasone, ascorbic acid, B-glycerol phosphate) containing culture conditions or in fibronectin containing medium, differentiation along the osteogenic lineage is induced. As shown in Table 2, bone specific marker genes (alkaline phosphatase, osteocalcin, collagen type I) are readily induced and detectable by RT-PCR.
-
TABLE 2 RT-PCR analysis during osteogenic differentiation of USSCs. control day 7 day 14 β-actin (pos. control) + + + alkaline phosphatase − + + collagen type II − + + osteocalcin + + − - All three marker genes of osteogenic differentiation show an increased mRNA expression at day 7 of DAG induction. B-actin serves as a positive control.
- Mineralized nodule formation was observed after osteogenic induction and after staining with alizarin red. Osteogenic differentiation of nearly confluent USSC layers was induced by addition of dexamethasone, asorbic acid and B-glycerolphosphate to the culture medium H5100. At day 10 of stimulation characteristic bone nodules appear. Mineral deposition of these nodules can be demonstrated by Alizarin Red staining. Under these osteogenic induction conditions, the cells undergo complete osteogenic differentiation as demonstrated by accumulation of mineralized bone in distinct nodules, which can be stained with Alizarin Red. Alternatively, the accumulation of hydroxyapatite in the cell culture can be detected after six days by von Kossa staining.
- Collection of cord blood in a hospital obstetric department was performed with informed consent of the mother. After delivery of the baby with the placenta still in utero, the umbilical cord was doubly clamped and transected 7-10 cm away from the umbilicus. After disinfection of the cord, the umbilical vein was punctured and CB collected into collection bags containing citrate phosphate dextrose (CPD) as the antiocoagulant.
- Isolation of Mononuclear Cells from Cord Blood
- Umbilical cord blood was carefully loaded onto Ficoll a solution (density 1.077 g/cm3), and a density gradient centrifugation was performed (450 g, room temperature, 25 min.). The mononuclear cells (MNC) of the interphase were collected and washed twice in phosphate buffer saline, pH7,3 (PBS).
- Mononuclear cells were plated out at a density of about 5×103 cells/cm2 in T25 culture flasks (Nunclon) [A.) B.) C.)]. Four different culture methods were used to initiate growth of adherent stem cells:
- A.) CD-derived MNCs were initially cultured in Myelocult H5100 medium (StemCell Technologies, Vancouver, Canada) containing 10−7 M dexamethasone.
B.) CB-derived MNCs were initially cultured in Mesencult (StemCell Technologies, Vancouver, Canada) containing 10−7M dexamethasone.
C.) CB-derived MNCs were plated at a density of 5×106/ml in 10 ml Myelocult H5100 Medium (StemCell Technologies, Vancouver, Canada) into 50 ml culture-flasks (Nunclon) without dexamethasone. - All cultures were incubated at 37° C. in 5% CO2 in a fully humidified atmosphere, and were fed once a week by removing the complete medium with the non-adherent cells and adding 10 ml of fresh medium. After several time points the adherent spindle-shaped cells were removed by treatment with 0.05% trypsin and 0.53 mM EDTA for 2 min, rinsed with 50% serum-containing medium, collected by centrifugation at 780 g and analyzed by flow cytometry or RT-PCR. After two to three weeks, adherent cells of fibroblastoid morphology appear in about 30% of all cell cultures.
- USSCs can be expanded in H5100 medium containing 10 ng/ml IFG I (Insulin-like growth factor-I), 10 ng/ml PDGF-BB (Platelet-derived growth factor-BB) and 10 ng/ml rh-human EGF (Recombinant Human epidermal growth factor) (PEI medium) at a density ranging from 1×104 and 1×105 cells/ml. Alternatively, USSC preparations can be expanded in the initial growth medium.
- In order to determine the immunophenotype of USSCs, cells were stained with FITC-conjugated anti-CD45 (Becton Dickinson, Coulter), PE conjugated anti-CD14 (PharMingen, Coulter), anti-SSEA-4 (MC-813-70) labeled with goat F(ab')2 anti-Mouse IgG+IgM (H+L)-FITC (Coulter), anti-CD 10-PE (CALLA, PharMingen), anti-HLA-class I (, Coulter) labeled with goat F(ab')2 anti-Mouse IgG+IgM (H+L)-FITC, andti-CD13-PE (Becton Dickinson, Coulter); anti-CD29 (Coulter), anti CD44 (Coulter), anti-CD49e (Coulter), anti-CD90 (Coulter), anti-HLA-class II-FITC (Coulter). Cells were analyzed using an EPICS XL (Coulter) or a FACS analyzer (Becton Dickinson).
- In order to assess the angiogenic potential of USSCs, the present study evaluated the effect of USSCs on the reconstitution of blood flow in a murine ischemic hind limb model.
- Method: The proximal portion of the femoral artery of athymic NMRI nude mice (18-22 g, n=11) were electrically coagulated. After 24 hours, 2.5×106 USSC and buffer as control were intravenously injected. After two weeks, the ratio of blood flow in the ischemic and non-ischemic limb was determined by using a laser Doppler blood flow imager (LDI) for each individual animal. A swimming test was used to access alterations in the exercise capacity of USSC-treated ischemic limbs. Engraftment of USSCs, number and size of conductant vessels, and reduction of atrophic muscle tissue were examined histologically.
- Two weeks after induction of limb ischemia, LDI revealed a significantly enhanced recovery of limb perfusion in mice treated with USSC (0.60±0.21; P<0.001 versus 0.31±0.14). Consistently, the USSC group showed a significantly greater exercise capacity with a swimming time ratio (swimming time prior and 14 days after induction of ischemia) of 0.89±0.15; P=0.001 versus control (0.48±0.17; n=11). In situ hybridization analysis revealed engraftment of USSC within the ischemic hind limb, mostly adjacent to vascular wall. The number of vessels was significantly increased in USSC group as compared to the control for small (<50 um: 3.7±0.7 versus 4.7±0.3) and larger vessels (>100 um: 0.3±0.3 versus 0.9±0.3) whereas for middle sized vessels (50-100 um; 3.0±1.0 versus 2.9±0.6) no difference was observed. Finally, the proportion of atrophic muscle tissue was significantly lower in USSC treated animals than in the control group (8.1±2.5% versus 22.7±1.7%; P=0.0001).
- These data demonstrate that treatment of tissue ischemia with USSCs in a murine model of hind limb ischemia significantly enhances recovery of limb perfusion and consequently enhances the exercise capacity by maintaining healthy muscle tissue. Therefore, this study suggests that USSCs are a promising candidiate to enhance antiogenesis following acute ischemic tissue, e.g. after myocardial infarction.
Claims (18)
1.-15. (canceled)
16. A method of restoring cardiac function in a mammal following an event or procedure involving the heart in which ischemia has occurred or is likely to occur comprising administering a composition comprising unrestricted somatic stem cells (USSCs) to the mammal.
17. The method of claim 16 , wherein said administering treats myocardial infarction or reperfusion damage.
18. The method of claim 16 , wherein said event or procedure is selected from heart surgery, valve repair or replacement, heart transplantation, and balloon angioplasty.
19. The method of claim 18 , wherein said heart surgery comprises a cardiac bypass procedure
20. The method of claim 16 , wherein said mammal has compromised blood flow to the heart.
21. The method of claim 16 , wherein said composition comprises 1×105 to 1×109 of said USSCs.
22. The method of claim 16 , wherein said USSCs are administered to said mammal systemically or locally.
23. The method of claim 16 , wherein said USSCs are administered to said mammal intravenously or intramuscularly.
24. The method of claim 16 , wherein said USSCs are administered directly into heart tissue.
25. The method of claim 16 , wherein said USSCs are:
i) negative for expression of CD45 and CD14;
ii) positive for expression of CD13 and CD29; and
iii) lack expression of hyaluronan synthase.
26. The method of claim 25 , wherein said USSCs are further characterized as negative for expression of CD106, positive for expression of CD44 and CD49e, and lack expression of fibromodulin, and 1NFLS.
27. The method of claim 16 , wherein said ischemia is treated or prevented by engraftment of said USSCs in cardiac muscle.
28. The method of claim 27 , wherein the number of blood vessels supplying blood to the cardiac muscle is increased.
29. The method of claim 28 , wherein the increase in blood vessel number results in a decrease in necrosis in the cardiac muscle.
30. The method of claim 28 , wherein the increase in blood vessel number decreases the amount of atrophic cardiac muscle.
31. The method of claim 16 , wherein said USSCs are derived from umbilical cord blood.
32. The method of claim 16 , wherein said mammal is a human.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/084,002 US20140079673A1 (en) | 2005-05-27 | 2013-11-19 | Treatment of ischemia using stem cells |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US68561405P | 2005-05-27 | 2005-05-27 | |
| PCT/US2006/020290 WO2006130433A2 (en) | 2005-05-27 | 2006-05-26 | Treatment of ischemia using stem cells |
| US91566009A | 2009-01-27 | 2009-01-27 | |
| US14/084,002 US20140079673A1 (en) | 2005-05-27 | 2013-11-19 | Treatment of ischemia using stem cells |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2006/020290 Continuation WO2006130433A2 (en) | 2005-05-27 | 2006-05-26 | Treatment of ischemia using stem cells |
| US11/915,660 Continuation US8613906B2 (en) | 2005-05-27 | 2006-05-26 | Treatment of ischemia using stem cells |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140079673A1 true US20140079673A1 (en) | 2014-03-20 |
Family
ID=37482164
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/915,660 Active 2030-11-01 US8613906B2 (en) | 2005-05-27 | 2006-05-26 | Treatment of ischemia using stem cells |
| US14/084,002 Abandoned US20140079673A1 (en) | 2005-05-27 | 2013-11-19 | Treatment of ischemia using stem cells |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/915,660 Active 2030-11-01 US8613906B2 (en) | 2005-05-27 | 2006-05-26 | Treatment of ischemia using stem cells |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US8613906B2 (en) |
| EP (2) | EP1888741B1 (en) |
| JP (1) | JP2008545703A (en) |
| WO (1) | WO2006130433A2 (en) |
Families Citing this family (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070298015A1 (en) * | 2004-04-28 | 2007-12-27 | Viacell, Inc. | Treatment of Muscular Dystrophy with Mobilized Peripheral Blood Pluripotent Cells |
| GB0822246D0 (en) | 2008-12-05 | 2009-01-14 | Reneuron Ltd | Composition |
| GB0902034D0 (en) | 2009-02-06 | 2009-03-11 | Reneuron Ltd | Method |
| WO2012048298A2 (en) | 2010-10-08 | 2012-04-12 | Caridianbct, Inc. | Methods and systems of growing and harvesting cells in a hollow fiber bioreactor system with control conditions |
| WO2015073918A1 (en) | 2013-11-16 | 2015-05-21 | Terumo Bct, Inc. | Expanding cells in a bioreactor |
| JP6783143B2 (en) | 2014-03-25 | 2020-11-11 | テルモ ビーシーティー、インコーポレーテッド | Passive replenishment of medium |
| CN106715676A (en) | 2014-09-26 | 2017-05-24 | 泰尔茂比司特公司 | Support according to plan |
| WO2017004592A1 (en) | 2015-07-02 | 2017-01-05 | Terumo Bct, Inc. | Cell growth with mechanical stimuli |
| CN109415696A (en) | 2016-05-25 | 2019-03-01 | 泰尔茂比司特公司 | Cell amplification |
| US11685883B2 (en) | 2016-06-07 | 2023-06-27 | Terumo Bct, Inc. | Methods and systems for coating a cell growth surface |
| US11104874B2 (en) | 2016-06-07 | 2021-08-31 | Terumo Bct, Inc. | Coating a bioreactor |
| US12234441B2 (en) | 2017-03-31 | 2025-02-25 | Terumo Bct, Inc. | Cell expansion |
| US11624046B2 (en) | 2017-03-31 | 2023-04-11 | Terumo Bct, Inc. | Cell expansion |
| US11629332B2 (en) | 2017-03-31 | 2023-04-18 | Terumo Bct, Inc. | Cell expansion |
| TWI825446B (en) * | 2020-08-14 | 2023-12-11 | 中國醫藥大學 | Use of medicinal composition for treating tissue ischemia |
| GB2619893A (en) | 2021-03-23 | 2023-12-20 | Terumo Bct Inc | Cell capture and expansion |
| US12209689B2 (en) | 2022-02-28 | 2025-01-28 | Terumo Kabushiki Kaisha | Multiple-tube pinch valve assembly |
| USD1099116S1 (en) | 2022-09-01 | 2025-10-21 | Terumo Bct, Inc. | Display screen or portion thereof with a graphical user interface for displaying cell culture process steps and measurements of an associated bioreactor device |
Family Cites Families (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5837539A (en) | 1990-11-16 | 1998-11-17 | Osiris Therapeutics, Inc. | Monoclonal antibodies for human mesenchymal stem cells |
| US6010696A (en) | 1990-11-16 | 2000-01-04 | Osiris Therapeutics, Inc. | Enhancing hematopoietic progenitor cell engraftment using mesenchymal stem cells |
| US5811094A (en) | 1990-11-16 | 1998-09-22 | Osiris Therapeutics, Inc. | Connective tissue regeneration using human mesenchymal stem cell preparations |
| US5486359A (en) | 1990-11-16 | 1996-01-23 | Osiris Therapeutics, Inc. | Human mesenchymal stem cells |
| WO1994000484A1 (en) | 1992-06-22 | 1994-01-06 | Young Henry E | Scar inhibitory factor and use thereof |
| US5654186A (en) | 1993-02-26 | 1997-08-05 | The Picower Institute For Medical Research | Blood-borne mesenchymal cells |
| US5804446A (en) | 1993-02-26 | 1998-09-08 | The Picower Institute For Medical Research | Blood-borne mesenchymal cells |
| US6054121A (en) | 1993-02-26 | 2000-04-25 | The Picower Institute For Medical Research | Modulation of immune responses in blood-borne mesenchymal cells |
| US5591625A (en) | 1993-11-24 | 1997-01-07 | Case Western Reserve University | Transduced mesenchymal stem cells |
| US5736396A (en) | 1995-01-24 | 1998-04-07 | Case Western Reserve University | Lineage-directed induction of human mesenchymal stem cell differentiation |
| US5906934A (en) | 1995-03-14 | 1999-05-25 | Morphogen Pharmaceuticals, Inc. | Mesenchymal stem cells for cartilage repair |
| US5908782A (en) | 1995-06-05 | 1999-06-01 | Osiris Therapeutics, Inc. | Chemically defined medium for human mesenchymal stem cells |
| US5591444A (en) | 1995-07-28 | 1997-01-07 | Isolagen Technologies, Inc. | Use of autologous dermal fibroblasts for the repair of skin and soft tissue defects |
| AU713280B2 (en) | 1995-11-16 | 1999-11-25 | Case Western Reserve University | In vitro chondrogenic induction of human mesenchymal stem cells |
| US5827740A (en) | 1996-07-30 | 1998-10-27 | Osiris Therapeutics, Inc. | Adipogenic differentiation of human mesenchymal stem cells |
| AU5436998A (en) | 1996-11-15 | 1998-06-03 | Osiris Therapeutics, Inc. | MSC-megakaryocyte precursor composition and method of isolating MSCs asso ciated with isolated megakaryocytes by isolating megakaryocytes |
| AU9127098A (en) | 1997-09-04 | 1999-03-22 | Osiris Therapeutics, Inc. | Ligands that modulate differentiation of mesenchymal stem cells |
| US7811557B1 (en) | 2000-10-27 | 2010-10-12 | Viacell, Inc. | Methods for improving central nervous system functioning |
| US7560280B2 (en) | 2000-11-03 | 2009-07-14 | Kourion Therapeutics Gmbh | Human cord blood derived unrestricted somatic stem cells (USSC) |
| AU2004308927A1 (en) * | 2003-12-19 | 2005-07-14 | Viacell, Inc. | Use of human cord blood-derived pluripotent cells for the treatment of disease |
-
2006
- 2006-05-26 JP JP2008513716A patent/JP2008545703A/en active Pending
- 2006-05-26 EP EP06771203.4A patent/EP1888741B1/en not_active Revoked
- 2006-05-26 EP EP13001977.1A patent/EP2662439A1/en not_active Withdrawn
- 2006-05-26 US US11/915,660 patent/US8613906B2/en active Active
- 2006-05-26 WO PCT/US2006/020290 patent/WO2006130433A2/en not_active Ceased
-
2013
- 2013-11-19 US US14/084,002 patent/US20140079673A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| EP2662439A1 (en) | 2013-11-13 |
| EP1888741B1 (en) | 2013-04-17 |
| WO2006130433A2 (en) | 2006-12-07 |
| JP2008545703A (en) | 2008-12-18 |
| EP1888741A2 (en) | 2008-02-20 |
| EP1888741A4 (en) | 2011-01-19 |
| US20090214481A1 (en) | 2009-08-27 |
| WO2006130433A3 (en) | 2009-04-30 |
| US8613906B2 (en) | 2013-12-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20140079673A1 (en) | Treatment of ischemia using stem cells | |
| Chachques et al. | Cellular cardiomyoplasty: clinical application | |
| Hou et al. | Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats | |
| Mironov et al. | What is regenerative medicine? Emergence of applied stem cell and developmental biology | |
| Yamada et al. | Stem cell therapy for acute myocardial infarction-focusing on the comparison between Muse cells and mesenchymal stem cells | |
| KR100837167B1 (en) | Composition for treating developmental and/or chronic lung diseases comprising cells separated or proliferated from umbilical cord blood | |
| US20040018174A1 (en) | Cell therapy for regeneration | |
| US20030091547A1 (en) | Platelet-derived growth factor protection of cardiac myocardium | |
| US20060147430A1 (en) | Adipose-derived stem cells for tissue regeneration and wound healing | |
| Beitzel et al. | The future role of mesenchymal stem cells in the management of shoulder disorders | |
| CN102333861A (en) | Methods for isolating very small embryonic-like (vsel) stem cells | |
| JP2013541541A (en) | Composition of adult organ stem cells and use thereof | |
| KR100960173B1 (en) | Medium and its application for self-culture of human progenitor stem cells | |
| US20100022003A1 (en) | Therapeutic cell medicine comprising skin tissue derived stem cell | |
| Premaratne et al. | Repeated implantation is a more effective cell delivery method in skeletal myoblast transplantation for rat myocardial infarction | |
| US20170136152A1 (en) | Gonad-derived side population stem cells | |
| Gulati et al. | Cell therapy for acute myocardial infarction | |
| RU2299073C1 (en) | Biotransplant and method for treating chronic cardiac failure (variants) | |
| US20090148416A1 (en) | Angiogenically induced transplants and methods for their use and manufacture | |
| Andreoletti et al. | In utero allotransplantation of retrovirally transduced fetal hepatocytes in primates: Feasibility and short‐term follow‐up | |
| US20020100065A1 (en) | Production of typed human cells, tissues and organs | |
| JP2018145114A (en) | Vascular endothelial disorder preventive and/or therapeutic agent | |
| Issarachai et al. | Bone marrow-derived CD45+ and CD45− cells reside in skeletal muscle | |
| JP2018087141A (en) | Compositions for revascularization therapy which contain dedifferentiated fat cells as an active ingredient | |
| Umezawa | Prospects of Regenerative Medicine Using Mesenchymal Stem Cells |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |