US20140051977A9 - Optimal Respiratory Gating In Medical Imaging - Google Patents
Optimal Respiratory Gating In Medical Imaging Download PDFInfo
- Publication number
- US20140051977A9 US20140051977A9 US13/248,089 US201113248089A US2014051977A9 US 20140051977 A9 US20140051977 A9 US 20140051977A9 US 201113248089 A US201113248089 A US 201113248089A US 2014051977 A9 US2014051977 A9 US 2014051977A9
- Authority
- US
- United States
- Prior art keywords
- amplitude measurement
- threshold value
- respiration
- correlated amplitude
- respiration correlated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000241 respiratory effect Effects 0.000 title claims description 32
- 238000002059 diagnostic imaging Methods 0.000 title claims description 7
- 230000029058 respiratory gaseous exchange Effects 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 34
- 230000002596 correlated effect Effects 0.000 claims abstract description 23
- 238000002603 single-photon emission computed tomography Methods 0.000 claims abstract description 9
- 238000005259 measurement Methods 0.000 claims description 44
- 238000002600 positron emission tomography Methods 0.000 claims description 37
- 238000002595 magnetic resonance imaging Methods 0.000 claims description 11
- 230000000747 cardiac effect Effects 0.000 claims description 8
- 238000002591 computed tomography Methods 0.000 claims description 8
- 230000003068 static effect Effects 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 abstract description 3
- 230000033001 locomotion Effects 0.000 description 12
- 238000003384 imaging method Methods 0.000 description 8
- 210000000038 chest Anatomy 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000700 radioactive tracer Substances 0.000 description 3
- 210000001015 abdomen Anatomy 0.000 description 2
- 230000005251 gamma ray Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000012217 radiopharmaceutical Substances 0.000 description 2
- 229940121896 radiopharmaceutical Drugs 0.000 description 2
- 230000002799 radiopharmaceutical effect Effects 0.000 description 2
- 206010021079 Hypopnoea Diseases 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7285—Specific aspects of physiological measurement analysis for synchronizing or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
- A61B5/7292—Prospective gating, i.e. predicting the occurrence of a physiological event for use as a synchronisation signal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/113—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing
- A61B5/1135—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing by monitoring thoracic expansion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/541—Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4808—Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
- G01R33/481—MR combined with positron emission tomography [PET] or single photon emission computed tomography [SPECT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/567—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution gated by physiological signals, i.e. synchronization of acquired MR data with periodical motion of an object of interest, e.g. monitoring or triggering system for cardiac or respiratory gating
- G01R33/5676—Gating or triggering based on an MR signal, e.g. involving one or more navigator echoes for motion monitoring and correction
Definitions
- Embodiments of the present invention generally relate to diagnostic imaging systems. More particularly, the present invention relates to a method for performing emission computed tomography (“ECT”) scanning, including positron emission tomography (PET) scanning and single photon emission tomography (SPECT). Embodiments of the present invention also provide for improved methods of gating medical images.
- ECT emission computed tomography
- PET positron emission tomography
- SPECT single photon emission tomography
- Embodiments of the present invention also provide for improved methods of gating medical images.
- Computed tomography (“CT”) scanning i.e., using an external X-ray source
- PET positron emission tomography
- CT scanning employs multiple X-ray images taken in multiple directions to generate a 3-dimensional image or multiple tomographic image “slices.”
- PET scanning employs a gamma-emitting radiopharmaceutical ingested by a patient or injected into a patient. Multiple gamma ray images are taken in multiple directions to generate a 3-dimensional PET image or multiple slices.
- PET scanning requires a relatively long duration data acquisition period lasting several minutes per patient bed position. Typically, a large number of PET data acquisitions are acquired at many different angles during this period. Consequently, patient movement is a problem in PET scanning Excessive motion of a patient can result in reduced image fidelity, including an incorrect impression of the pattern of tracer uptake, and quantitative errors in which the wrong estimate of tracer concentration is made. Thoracic cage movement caused by breathing is a significant problem in PET scanning.
- CT scanning is relatively fast and can typically be performed during one breath-hold by a patient.
- Part of the solution to the problem of respiration related image degradation is to provide gating of PET scanning based on measurement of certain triggering parameters associated with respiratory motion.
- a strain gauge to measure the tension in a strap placed around the abdomen or chest of a patient.
- the time-varying strain measurement is interpreted as a measure of respiratory amplitude and as such is used to develop information that can be used to gate or trigger the operation of imaging apparatus.
- the respiratory amplitudes are used to generate trigger signals, or gates, which indicate that a particular phase in the respiratory cycle has been reached.
- triggers are generated at the end of each full breath, or end-inspiration, and the phase angle is assumed to vary smoothly from trigger to trigger.
- the phase-based approach has a limited ability to identify the actual state of breathing, since patient breathing patterns change over the time period involved in performing the diagnostic scan. This problem is illustrated in the strain gauge traces of FIG. 1 .
- the traces show that deep, irregular breathing at one point in time can be followed by a more regular, shallower breathing pattern ten minutes later.
- the horizontal axis represents time, with a one minute interval between the left and right sides of each plot.
- the vertical axis represents the strain measurement value. Smaller values correspond to a more relaxed chest or shallow breathing. Larger values correspond to a more expanded chest or deep breathing.
- An aspect of the present invention generally includes a method for positron emission tomography (PET) imaging that overcomes the problems in the prior art.
- Optimal gating criteria are calculated based on the strain gauge levels, and a PET image is made in accordance with the optimal gating criteria.
- An aspect of the present invention is also applicable to SPECT.
- Methods are provided for obtaining an optimally gated medical image.
- the method acquires a respiration correlated amplitude measurement S(t) at the same time that medical image measurements are acquired. Thereafter, the method determines an optimal pair of upper amplitude threshold value and lower amplitude threshold value by selecting the pair that has the narrowest possible interval between the upper and lower values.
- the respiratory amplitude measurements are synchronized with the medical image measurements, and these are used to create an optimally gated medical image.
- the disclosed optimal gating can be utilized in positron emission tomography (“PET”) systems, and in other embodiments the disclosed optimal gating can be utilized in single photon emission computed tomography (“SPECT”) systems.
- PET positron emission tomography
- SPECT single photon emission computed tomography
- optical tracking devices use optical tracking devices, a pneumatic sensor, ultrasound, or magnetic resonance imaging systems (“MRI”) to acquire patient respiration data.
- MRI magnetic resonance imaging systems
- FIG. 1 shows strain gauge measurements of a patient's respiration over a period of time corresponding to an image scanning procedure in accordance with the prior art
- FIG. 2 shows an imaging device for sequentially performing CT and PET scanning, which can be used in accordance with embodiments of the present invention
- FIG. 3 is a flow diagram of a process for determining an upper and lower strain level pair to be used for developing a PET gating criterion.
- FIG. 4 shows a strain measurement constructed in accordance with the process of FIG. 3 (the top two panels) and the corresponding histogram of strain measurements;
- FIG. 5 depicts an embodiment of a high-level block diagram of a general-purpose computer architecture 500 for providing optimal gating in accordance with embodiments of the invention.
- Embodiments of the present invention provide a method for positron emission tomography (“PET”) scanning with compensation for patient respiratory motion.
- PET positron emission tomography
- optical gating improved gating
- Optimal gating can be applied to radionuclide imaging modalities (e.g., PET and SPECT).
- radionuclide imaging modalities e.g., PET and SPECT.
- present application incorporates by reference all of the material in U.S. patent application Ser. No. 11/714,405 filed on Mar. 6, 2007.
- Embodiments of the invention can be performed using a PET scanner that can acquire image data in list mode.
- FIG. 2 shows one example of a combination PET/CT apparatus that can be used with the present invention.
- the CT scanner provides a three dimensional image of patient anatomy, which is used to estimate the attenuation of the annihilation radiation imaged by the PET scanner, a well-understood procedure.
- the apparatus includes a CT scanner 16 a (having detectors 12 ) and a PET scanner 16 b (having detectors 14 ) in a common gantry (although not shown, it is appreciated that in other embodiments of the invention, the CT scanner 16 a and the PET scanner 16 b can be in separate gantries).
- a patient 17 lies on a patient bed 18 , that is movable between the CT 16 a and PET 16 b scanners.
- the patient's respiration is monitored by a strain gauge 19 which is held against the patient's thorax with a belt 20 .
- Electrical signals from the strain gauge 19 are communicated through a cable 21 to a respiratory monitoring system 22 .
- the respiratory monitoring system is also shown as processor 510 in FIG. 5 .
- the processor periodically samples and digitizes the strain measurements and inserts the digitized measurement into the PET data stream. Synchronization of the respiratory amplitude measurements with the medical image measurements is essential. The latency associated with measurement insertion must be a small fraction of the respiratory cycle. This condition is realized routinely in modern PET and PET/CT systems, where the latency is a small fraction of one second.
- step 301 a histogram of respiratory amplitude measurements is compiled, as shown in FIG. 4 .
- a specified fraction parameter is defined, which is some major fraction of the entire histogram.
- step 305 each lower respiratory amplitude level is considered, and a respiratory amplitude upper level is determined such that the interval defined by the lower and upper levels contains the predefined fraction of the entire histogram. This process is repeated for all lower strain levels.
- the lower and upper level pair is selected that has the narrowest range of level values, i.e., the lower-upper level combination that minimizes the difference between the two levels.
- This process leads to an automatic recommendation of a strain levels pair that encompasses a high fraction of the total PET acquisition time, while at the same time corresponding to a relatively small amount of chest excursion.
- Equation (1) below represents an equation used in an algorithm that considers upper and lower strain levels. The algorithm considers all possible L values, and for each one it chooses a U(L) value which makes the sum between L and U(L) as close as possible to F. That is
- H (S) represents a respiratory signal level (i.e., amplitude) in a histogram.
- the operator is allowed to modify the recommended strain levels pair, by adjusting if desired either the lower level, upper level, both lower and upper level, or no level adjustment.
- the gate is either open or closed depending on the value of S(t).
- the gate is open if L ⁇ S ⁇ U, closed otherwise.
- Medical image measurements made when the gate is open i.e., PET events that occur when LSU are used to form the optimally gated medical image.
- the optimally gated medical image can be one of three types.
- the first type of optimally gated image is a static respiratory gated image, which uses events acquired when the respiratory gate is open but no other requirements are imposed. This type of image is made with no need to issue breathing instructions to the patient.
- the second type of optimally gated image additionally is a cardiac and respiratory gated image. This type of image is based on cardiac trigger signals present in the data list. It is well known in the state of the art that cardiac gated images can be formed by dividing the interval from one trigger to the next into several cardiac gates. Data from a large number of heartbeats are combined into a single image. Although this state of the art provides the ability to select just one phase of cardiac motion, all states of respiratory motion are present, which causes image blurring.
- the third type of optimally gated image is a dynamic respiratory gated image.
- dynamic imaging is used to separately frame data acquired in different time periods of the acquisition, so that one can observe changes in tracer distribution from the beginning to the end of the scan.
- the first frame is based on all events acquired in the first two-minute period of the scan
- the second frame is based on all events acquired in the second two-minute period of the scan, and so on.
- each dynamic frame is degraded by breathing motion.
- time framing and respiratory gating criteria By combining time framing and respiratory gating criteria, a good image can be made in which image blurring due to breathing motions is largely eliminated.
- FIG. 5 depicts an embodiment of a high-level block diagram of a general-purpose computer architecture 500 for providing optimal gating in accordance with embodiments of the invention.
- the general-purpose computer of FIG. 5 includes a processor 510 as well as a memory 504 for storing control programs and the like.
- memory 504 also includes programs (e.g., depicted as an “optimal gating module” 512 for creating PET images) for performing the embodiments described herein.
- the processor 510 cooperates with conventional support circuitry 508 such as power supplies, clock circuits, cache memory and the like as well as circuits that assist in executing the software routines 506 stored in the memory 504 .
- the general-purpose computer 500 also contains input-output circuitry 502 that forms an interface between the various functional elements communicating with the general-purpose computer 500 .
- FIG. 5 depicts a general-purpose computer 500 that is programmed to perform various control functions in accordance with the present invention
- the term computer is not limited to just those integrated circuits referred to in the art as computers, but broadly refers to computers, processors, microcontrollers, microcomputers, programmable logic controllers, application specific integrated circuits, and other programmable circuits, and these terms are used interchangeably herein.
- one general-purpose computer 500 is depicted, that depiction is for brevity on. It is appreciated that each of the methods described herein can be utilized in separate computers.
- the respiratory amplitude is measured by an instrument other than a strain gauge.
- devices commonly used in radiation therapy use digital cameras to optically track of the position of a marker placed on the patient's abdomen. Associated circuitry and computers in these devices supply a respiratory amplitude measurement which is communicated to the imaging system.
- MRI magnetic resonance imaging scanner examinations
- MRI magnetic resonance imaging scanner examinations
- Another example occurs in the case of a PET scanner operating in the field of view of an MRI scanner.
- MRI imaging sequences and image processing hardware software provide many images per second of anatomical landmarks that move with the patient's respiration.
- Computerized methods identify the positional coordinates of the anatomical landmark in each image and convert this information to a respiration-correlated amplitude measurement that varies with time as the patient breathes.
- a familiar version of this technology is the so-called MRI navigator, which follows the respiratory motions of the patient's diaphragm.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Physiology (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Nuclear Medicine (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
- 1. Field of the Invention
- Embodiments of the present invention generally relate to diagnostic imaging systems. More particularly, the present invention relates to a method for performing emission computed tomography (“ECT”) scanning, including positron emission tomography (PET) scanning and single photon emission tomography (SPECT). Embodiments of the present invention also provide for improved methods of gating medical images.
- 2. Description of the Related Art
- Computed tomography (“CT”) scanning (i.e., using an external X-ray source) and positron emission tomography (“PET”) scanning using an infused radiopharmaceutical as a source of gamma ray emissions) are well known methods for diagnostic medical imaging. CT scanning employs multiple X-ray images taken in multiple directions to generate a 3-dimensional image or multiple tomographic image “slices.” PET scanning employs a gamma-emitting radiopharmaceutical ingested by a patient or injected into a patient. Multiple gamma ray images are taken in multiple directions to generate a 3-dimensional PET image or multiple slices.
- PET scanning requires a relatively long duration data acquisition period lasting several minutes per patient bed position. Typically, a large number of PET data acquisitions are acquired at many different angles during this period. Consequently, patient movement is a problem in PET scanning Excessive motion of a patient can result in reduced image fidelity, including an incorrect impression of the pattern of tracer uptake, and quantitative errors in which the wrong estimate of tracer concentration is made. Thoracic cage movement caused by breathing is a significant problem in PET scanning.
- By comparison, CT scanning is relatively fast and can typically be performed during one breath-hold by a patient.
- Part of the solution to the problem of respiration related image degradation is to provide gating of PET scanning based on measurement of certain triggering parameters associated with respiratory motion. In particular, it is known in the art to use a strain gauge to measure the tension in a strap placed around the abdomen or chest of a patient. The time-varying strain measurement is interpreted as a measure of respiratory amplitude and as such is used to develop information that can be used to gate or trigger the operation of imaging apparatus.
- In the state of the art, the respiratory amplitudes are used to generate trigger signals, or gates, which indicate that a particular phase in the respiratory cycle has been reached. Commonly, triggers are generated at the end of each full breath, or end-inspiration, and the phase angle is assumed to vary smoothly from trigger to trigger. However, the phase-based approach has a limited ability to identify the actual state of breathing, since patient breathing patterns change over the time period involved in performing the diagnostic scan. This problem is illustrated in the strain gauge traces of
FIG. 1 . The traces show that deep, irregular breathing at one point in time can be followed by a more regular, shallower breathing pattern ten minutes later. InFIG. 1 , the horizontal axis represents time, with a one minute interval between the left and right sides of each plot. The vertical axis represents the strain measurement value. Smaller values correspond to a more relaxed chest or shallow breathing. Larger values correspond to a more expanded chest or deep breathing. - Accordingly, there is a need in the art for improved methods for gating of medical images. It would be particularly beneficial to provide methods of creating medical images that can correct for inaccuracies caused by respiration.
- An aspect of the present invention generally includes a method for positron emission tomography (PET) imaging that overcomes the problems in the prior art. Optimal gating criteria are calculated based on the strain gauge levels, and a PET image is made in accordance with the optimal gating criteria. An aspect of the present invention is also applicable to SPECT.
- Methods are provided for obtaining an optimally gated medical image. The method acquires a respiration correlated amplitude measurement S(t) at the same time that medical image measurements are acquired. Thereafter, the method determines an optimal pair of upper amplitude threshold value and lower amplitude threshold value by selecting the pair that has the narrowest possible interval between the upper and lower values. The respiratory amplitude measurements are synchronized with the medical image measurements, and these are used to create an optimally gated medical image. In various embodiments, the disclosed optimal gating can be utilized in positron emission tomography (“PET”) systems, and in other embodiments the disclosed optimal gating can be utilized in single photon emission computed tomography (“SPECT”) systems.
- Other embodiments use optical tracking devices, a pneumatic sensor, ultrasound, or magnetic resonance imaging systems (“MRI”) to acquire patient respiration data.
- Other embodiments of the invention are also provided that utilize computer-readable mediums which provide features similar to the above methods.
- So that the manner in which the above recited features of embodiments of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
-
FIG. 1 shows strain gauge measurements of a patient's respiration over a period of time corresponding to an image scanning procedure in accordance with the prior art; -
FIG. 2 shows an imaging device for sequentially performing CT and PET scanning, which can be used in accordance with embodiments of the present invention; -
FIG. 3 is a flow diagram of a process for determining an upper and lower strain level pair to be used for developing a PET gating criterion. -
FIG. 4 shows a strain measurement constructed in accordance with the process ofFIG. 3 (the top two panels) and the corresponding histogram of strain measurements; and -
FIG. 5 depicts an embodiment of a high-level block diagram of a general-purpose computer architecture 500 for providing optimal gating in accordance with embodiments of the invention. - To facilitate understanding, identical reference numerals have been used, wherever possible, to designate identical elements that are common to the figures.
- Embodiments of the present invention provide a method for positron emission tomography (“PET”) scanning with compensation for patient respiratory motion.
- Other embodiments of the invention also provide for improved gating (referred to hereinafter as “optimal gating”) of medical images. Optimal gating, as disclosed herein, can be applied to radionuclide imaging modalities (e.g., PET and SPECT). The present application incorporates by reference all of the material in U.S. patent application Ser. No. 11/714,405 filed on Mar. 6, 2007.
- Embodiments of the invention can be performed using a PET scanner that can acquire image data in list mode.
FIG. 2 shows one example of a combination PET/CT apparatus that can be used with the present invention. The CT scanner provides a three dimensional image of patient anatomy, which is used to estimate the attenuation of the annihilation radiation imaged by the PET scanner, a well-understood procedure. The apparatus includes aCT scanner 16 a (having detectors 12) and aPET scanner 16 b (having detectors 14) in a common gantry (although not shown, it is appreciated that in other embodiments of the invention, theCT scanner 16 a and thePET scanner 16 b can be in separate gantries). Apatient 17 lies on apatient bed 18, that is movable between theCT 16 a andPET 16 b scanners. The patient's respiration is monitored by astrain gauge 19 which is held against the patient's thorax with abelt 20. Electrical signals from thestrain gauge 19 are communicated through acable 21 to arespiratory monitoring system 22. - The respiratory monitoring system is also shown as
processor 510 inFIG. 5 . The processor periodically samples and digitizes the strain measurements and inserts the digitized measurement into the PET data stream. Synchronization of the respiratory amplitude measurements with the medical image measurements is essential. The latency associated with measurement insertion must be a small fraction of the respiratory cycle. This condition is realized routinely in modern PET and PET/CT systems, where the latency is a small fraction of one second. - After the PET list mode data and strain level measurement data are acquired, the procedure advances to a computational process as shown in
FIG. 3 . Instep 301, a histogram of respiratory amplitude measurements is compiled, as shown inFIG. 4 . Atstep 303, a specified fraction parameter is defined, which is some major fraction of the entire histogram. Next, atstep 305 each lower respiratory amplitude level is considered, and a respiratory amplitude upper level is determined such that the interval defined by the lower and upper levels contains the predefined fraction of the entire histogram. This process is repeated for all lower strain levels. - At
step 307, the lower and upper level pair is selected that has the narrowest range of level values, i.e., the lower-upper level combination that minimizes the difference between the two levels. This process leads to an automatic recommendation of a strain levels pair that encompasses a high fraction of the total PET acquisition time, while at the same time corresponding to a relatively small amount of chest excursion. For example, Equation (1) below represents an equation used in an algorithm that considers upper and lower strain levels. The algorithm considers all possible L values, and for each one it chooses a U(L) value which makes the sum between L and U(L) as close as possible to F. That is -
- where F represents the user selected percentage and H (S) represents a respiratory signal level (i.e., amplitude) in a histogram.
- This is illustrated in the PET scan respiration traces shown in
FIG. 4 . - At
step 309, the operator is allowed to modify the recommended strain levels pair, by adjusting if desired either the lower level, upper level, both lower and upper level, or no level adjustment. - At any point in time, the gate is either open or closed depending on the value of S(t). The gate is open if L≦S≦U, closed otherwise. Medical image measurements made when the gate is open (i.e., PET events that occur when LSU) are used to form the optimally gated medical image.
- The optimally gated medical image can be one of three types. The first type of optimally gated image is a static respiratory gated image, which uses events acquired when the respiratory gate is open but no other requirements are imposed. This type of image is made with no need to issue breathing instructions to the patient. The second type of optimally gated image additionally is a cardiac and respiratory gated image. This type of image is based on cardiac trigger signals present in the data list. It is well known in the state of the art that cardiac gated images can be formed by dividing the interval from one trigger to the next into several cardiac gates. Data from a large number of heartbeats are combined into a single image. Although this state of the art provides the ability to select just one phase of cardiac motion, all states of respiratory motion are present, which causes image blurring. It is possible in principle to arrest the respiratory motions by imaging only during a breath hold, but patients cannot hold their breath long enough to make a good image by PET or SPECT. By combining cardiac and respiratory gating criteria, a good image can be made in which image blurring due to breathing motions is largely eliminated, and breathing instructions are not needed. The third type of optimally gated image is a dynamic respiratory gated image. In the state of the art, dynamic imaging is used to separately frame data acquired in different time periods of the acquisition, so that one can observe changes in tracer distribution from the beginning to the end of the scan. For example, in a ten-minute scan with two-minute time frames, the first frame is based on all events acquired in the first two-minute period of the scan, the second frame is based on all events acquired in the second two-minute period of the scan, and so on. However, in this state of the art, each dynamic frame is degraded by breathing motion. By combining time framing and respiratory gating criteria, a good image can be made in which image blurring due to breathing motions is largely eliminated.
-
FIG. 5 depicts an embodiment of a high-level block diagram of a general-purpose computer architecture 500 for providing optimal gating in accordance with embodiments of the invention. The general-purpose computer ofFIG. 5 includes aprocessor 510 as well as amemory 504 for storing control programs and the like. In various embodiments,memory 504 also includes programs (e.g., depicted as an “optimal gating module” 512 for creating PET images) for performing the embodiments described herein. Theprocessor 510 cooperates withconventional support circuitry 508 such as power supplies, clock circuits, cache memory and the like as well as circuits that assist in executing thesoftware routines 506 stored in thememory 504. As such, it is contemplated that some of the process steps discussed herein as software processes can be loaded from a storage device (e.g., an optical drive, floppy drive, disk drive, etc.) and implemented within thememory 504 and operated by theprocessor 510. Thus, various steps and methods of the present invention can be stored on a computer readable medium. The general-purpose computer 500 also contains input-output circuitry 502 that forms an interface between the various functional elements communicating with the general-purpose computer 500. - Although
FIG. 5 depicts a general-purpose computer 500 that is programmed to perform various control functions in accordance with the present invention, the term computer is not limited to just those integrated circuits referred to in the art as computers, but broadly refers to computers, processors, microcontrollers, microcomputers, programmable logic controllers, application specific integrated circuits, and other programmable circuits, and these terms are used interchangeably herein. In addition, although one general-purpose computer 500 is depicted, that depiction is for brevity on. It is appreciated that each of the methods described herein can be utilized in separate computers. - In other embodiments of the invention, the respiratory amplitude is measured by an instrument other than a strain gauge. For example, devices commonly used in radiation therapy use digital cameras to optically track of the position of a marker placed on the patient's abdomen. Associated circuitry and computers in these devices supply a respiratory amplitude measurement which is communicated to the imaging system. Another example, commonly used in standalone magnetic resonance imaging scanner examinations (MRI), is a pneumatic device which generates an electronic signal corresponding to the air pressure in a flexible bladder held against the thorax and held tightly in place with a strap. Another example occurs in the case of a PET scanner operating in the field of view of an MRI scanner. In this case, routinely available MRI imaging sequences and image processing hardware software provide many images per second of anatomical landmarks that move with the patient's respiration. Computerized methods identify the positional coordinates of the anatomical landmark in each image and convert this information to a respiration-correlated amplitude measurement that varies with time as the patient breathes. A familiar version of this technology is the so-called MRI navigator, which follows the respiratory motions of the patient's diaphragm.
- While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Claims (16)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/248,089 US9579070B2 (en) | 2006-03-06 | 2011-09-29 | Optimal respiratory gating in medical imaging |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US77962806P | 2006-03-06 | 2006-03-06 | |
| US11/714,405 US8060177B2 (en) | 2006-03-06 | 2007-03-06 | Registration of computed tomography (CT) and positron emission tomography (PET) image scans with automatic patient motion correction |
| US13/248,089 US9579070B2 (en) | 2006-03-06 | 2011-09-29 | Optimal respiratory gating in medical imaging |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/714,405 Continuation-In-Part US8060177B2 (en) | 2006-03-06 | 2007-03-06 | Registration of computed tomography (CT) and positron emission tomography (PET) image scans with automatic patient motion correction |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| US20130085375A1 US20130085375A1 (en) | 2013-04-04 |
| US20140051977A9 true US20140051977A9 (en) | 2014-02-20 |
| US9579070B2 US9579070B2 (en) | 2017-02-28 |
Family
ID=47993245
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/248,089 Active 2030-02-10 US9579070B2 (en) | 2006-03-06 | 2011-09-29 | Optimal respiratory gating in medical imaging |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US9579070B2 (en) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8699771B2 (en) * | 2009-11-19 | 2014-04-15 | General Electric Company | Method and apparatus for reducing motion-related imaging artifacts |
| DE102011085399A1 (en) * | 2011-10-28 | 2013-05-02 | Siemens Aktiengesellschaft | Method for recording magnetic resonance image data using a respiratory device |
| US9510800B2 (en) | 2014-01-23 | 2016-12-06 | Siemens Medical Solutions Usa, Inc. | Method and apparatus for reducing motion induced blur in medical images using time gate processing |
| US11633166B2 (en) | 2015-09-23 | 2023-04-25 | Siemens Medical Solutions Usa, Inc. | Spatial registration of positron emission tomography and computed tomography acquired during respiration |
| CN116650309B (en) * | 2016-06-03 | 2024-04-05 | Qfix系统有限责任公司 | Apparatus and method for promoting shallow breathing of a patient |
| JP6941180B2 (en) | 2017-03-24 | 2021-09-29 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Noise robust real-time extraction of respiratory movement signals from PET list data |
| WO2018192890A1 (en) * | 2017-04-21 | 2018-10-25 | Koninklijke Philips N.V. | Respiratory gating using pulse oximeters for tomographic imaging |
| CN109381203B (en) * | 2017-08-07 | 2022-06-24 | 辽宁开普医疗系统有限公司 | DR (digital radiography) synchronous exposure control processing method and device for neonates |
| CN109157765B (en) * | 2018-10-23 | 2020-12-04 | 上海联影医疗科技股份有限公司 | respiratory gating device |
| CN109480881A (en) * | 2018-12-29 | 2019-03-19 | 上海联影医疗科技有限公司 | PET-MR synchronous gating method, device, PET-MR detection equipment and storage medium |
| CN115429250B (en) * | 2022-11-10 | 2023-04-14 | 北京肿瘤医院(北京大学肿瘤医院) | MRI (magnetic resonance imaging) gating method and system based on multi-channel pressure induction |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6937696B1 (en) * | 1998-10-23 | 2005-08-30 | Varian Medical Systems Technologies, Inc. | Method and system for predictive physiological gating |
| US7574249B2 (en) | 2005-02-08 | 2009-08-11 | General Electric Company | Device-less gating of physiological movement for improved image detection |
| US8060177B2 (en) | 2006-03-06 | 2011-11-15 | Siemens Medical Solutions Usa, Inc. | Registration of computed tomography (CT) and positron emission tomography (PET) image scans with automatic patient motion correction |
| WO2009060348A1 (en) | 2007-11-09 | 2009-05-14 | Koninklijke Philips Electronics, N.V. | Mr-pet cyclic motion gating and correction |
| EP2163201A1 (en) | 2008-09-15 | 2010-03-17 | Westfälische Wilhelms-Universität Münster | List mode-based respiratory and cardiac gating in positron emission tomography |
| US8532357B2 (en) | 2009-01-23 | 2013-09-10 | General Electric Company | Method and apparatus for reducing image artifacts |
-
2011
- 2011-09-29 US US13/248,089 patent/US9579070B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| US20130085375A1 (en) | 2013-04-04 |
| US9579070B2 (en) | 2017-02-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9579070B2 (en) | Optimal respiratory gating in medical imaging | |
| US8060177B2 (en) | Registration of computed tomography (CT) and positron emission tomography (PET) image scans with automatic patient motion correction | |
| US11730440B2 (en) | Method for controlling a medical imaging examination of a subject, medical imaging system and computer-readable data storage medium | |
| Dawood et al. | Respiratory gating in positron emission tomography: a quantitative comparison of different gating schemes | |
| US11633166B2 (en) | Spatial registration of positron emission tomography and computed tomography acquired during respiration | |
| CN102908144B (en) | Magnetic resonance imaging for treatment plan | |
| US9451926B2 (en) | Respiratory motion correction with internal-external motion correlation, and associated systems and methods | |
| CN102846326B (en) | For the treatment of the method and system of gating view data | |
| CN101352350B (en) | Method for recording measured data from a patient by taking movements into account, and associated medical device | |
| US20120278055A1 (en) | Motion correction in radiation therapy | |
| Bettinardi et al. | Detection and compensation of organ/lesion motion using 4D-PET/CT respiratory gated acquisition techniques | |
| US8658979B2 (en) | Nuclear image reconstruction | |
| US10255684B2 (en) | Motion correction for PET medical imaging based on tracking of annihilation photons | |
| US20090245457A1 (en) | Image generation method and device for emission computed tomography | |
| US9002079B2 (en) | Systems and methods for motion detecting for medical imaging | |
| US20070286331A1 (en) | Method And System Of Adaptive Control For Reducing Motion Artifacts And Patient Dose In Four Dimensional Computed Tomography | |
| JP2021528659A (en) | A system that improves the radiographic image of the moving volume | |
| Wang et al. | Motion-correction strategies for enhancing whole-body PET imaging | |
| US20240237961A1 (en) | A Surface Audio-Visual Biofeedback (SAVB) System for Motion Management | |
| US20210290977A1 (en) | Irradiation control apparatus, radiotherapy system, and irradiation control method | |
| EP3707677B1 (en) | Attenuation correction of pet data of moving object | |
| KR101548613B1 (en) | Method of acquiring and processing medical image | |
| Koshino et al. | Development of motion correction technique for cardiac 15O-water PET study using an optical motion tracking system | |
| KR20140037780A (en) | Method for generating a pet image data record of a moved examination object and facility therefor | |
| Jin | Event-by-Event Motion Correction in Positron Emission Tomography: Development, Evaluation, and Applications |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SIEMENS MEDICAL SOLUTIONS USA, INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAMILL, JAMES J.;LE MEUNIER, LUDOVIC;REEL/FRAME:027093/0657 Effective date: 20111014 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |