US20140017200A1 - Modified two-component gelation systems, methods of use and methods of manufacture - Google Patents
Modified two-component gelation systems, methods of use and methods of manufacture Download PDFInfo
- Publication number
- US20140017200A1 US20140017200A1 US13/941,759 US201313941759A US2014017200A1 US 20140017200 A1 US20140017200 A1 US 20140017200A1 US 201313941759 A US201313941759 A US 201313941759A US 2014017200 A1 US2014017200 A1 US 2014017200A1
- Authority
- US
- United States
- Prior art keywords
- functionalized polymer
- polyethylene glycol
- buffer
- terminated polyethylene
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title abstract description 3
- 238000001879 gelation Methods 0.000 title description 17
- 239000000203 mixture Substances 0.000 claims abstract description 39
- 229920000642 polymer Polymers 0.000 claims abstract description 35
- 239000000872 buffer Substances 0.000 claims abstract description 25
- 239000000126 substance Substances 0.000 claims abstract description 23
- 208000010125 myocardial infarction Diseases 0.000 claims abstract description 19
- 239000003102 growth factor Substances 0.000 claims abstract description 16
- 230000009977 dual effect Effects 0.000 claims abstract description 12
- 238000011282 treatment Methods 0.000 claims abstract description 12
- 230000021164 cell adhesion Effects 0.000 claims abstract description 10
- 229920001223 polyethylene glycol Polymers 0.000 claims description 73
- 239000002202 Polyethylene glycol Substances 0.000 claims description 56
- 239000000499 gel Substances 0.000 claims description 25
- 229920000159 gelatin Polymers 0.000 claims description 20
- 239000008273 gelatin Substances 0.000 claims description 20
- 108010010803 Gelatin Proteins 0.000 claims description 17
- 235000019322 gelatine Nutrition 0.000 claims description 17
- 235000011852 gelatine desserts Nutrition 0.000 claims description 17
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 13
- 102000004169 proteins and genes Human genes 0.000 claims description 11
- 108090000623 proteins and genes Proteins 0.000 claims description 11
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 claims description 9
- 229920002549 elastin Polymers 0.000 claims description 7
- 102000016942 Elastin Human genes 0.000 claims description 6
- 108010014258 Elastin Proteins 0.000 claims description 6
- 108010085895 Laminin Proteins 0.000 claims description 6
- 102000007079 Peptide Fragments Human genes 0.000 claims description 4
- 108010033276 Peptide Fragments Proteins 0.000 claims description 4
- 238000002347 injection Methods 0.000 abstract description 10
- 239000007924 injection Substances 0.000 abstract description 10
- 210000004027 cell Anatomy 0.000 description 17
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 16
- 229940072056 alginate Drugs 0.000 description 16
- 229920000615 alginic acid Polymers 0.000 description 16
- 235000010443 alginic acid Nutrition 0.000 description 16
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 13
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 13
- 230000000269 nucleophilic effect Effects 0.000 description 12
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 12
- 206010061216 Infarction Diseases 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 230000007574 infarction Effects 0.000 description 11
- 229920001436 collagen Polymers 0.000 description 9
- 102000008186 Collagen Human genes 0.000 description 8
- 108010035532 Collagen Proteins 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 102000004196 processed proteins & peptides Human genes 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 7
- 108010049003 Fibrinogen Proteins 0.000 description 6
- 102000008946 Fibrinogen Human genes 0.000 description 6
- -1 cationic amino acids Chemical class 0.000 description 6
- 210000002744 extracellular matrix Anatomy 0.000 description 6
- 229940012952 fibrinogen Drugs 0.000 description 6
- 210000000130 stem cell Anatomy 0.000 description 6
- 108010073385 Fibrin Proteins 0.000 description 5
- 102000009123 Fibrin Human genes 0.000 description 5
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 5
- 235000001014 amino acid Nutrition 0.000 description 5
- 229940024606 amino acid Drugs 0.000 description 5
- 229950003499 fibrin Drugs 0.000 description 5
- 210000005240 left ventricle Anatomy 0.000 description 5
- 238000007634 remodeling Methods 0.000 description 5
- 108010080379 Fibrin Tissue Adhesive Proteins 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- 239000004472 Lysine Substances 0.000 description 4
- 108090000190 Thrombin Proteins 0.000 description 4
- 150000001413 amino acids Chemical group 0.000 description 4
- 210000001367 artery Anatomy 0.000 description 4
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 230000017531 blood circulation Effects 0.000 description 4
- 230000000747 cardiac effect Effects 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 229960004072 thrombin Drugs 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- 206010003210 Arteriosclerosis Diseases 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- 102000007547 Laminin Human genes 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 208000011775 arteriosclerosis disease Diseases 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 210000004351 coronary vessel Anatomy 0.000 description 3
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 3
- 210000000107 myocyte Anatomy 0.000 description 3
- 239000012038 nucleophile Substances 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 231100000241 scar Toxicity 0.000 description 3
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 210000001562 sternum Anatomy 0.000 description 3
- 229920001059 synthetic polymer Polymers 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 2
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 2
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 2
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 2
- 102000014962 Monocyte Chemoattractant Proteins Human genes 0.000 description 2
- 108010064136 Monocyte Chemoattractant Proteins Proteins 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 108010009583 Transforming Growth Factors Proteins 0.000 description 2
- 102000009618 Transforming Growth Factors Human genes 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 2
- 229910001626 barium chloride Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000003683 cardiac damage Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 210000001612 chondrocyte Anatomy 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000012039 electrophile Substances 0.000 description 2
- 210000001671 embryonic stem cell Anatomy 0.000 description 2
- 210000004700 fetal blood Anatomy 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 210000005003 heart tissue Anatomy 0.000 description 2
- 229920002674 hyaluronan Polymers 0.000 description 2
- 229960003160 hyaluronic acid Drugs 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 210000005087 mononuclear cell Anatomy 0.000 description 2
- 210000004165 myocardium Anatomy 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 210000000963 osteoblast Anatomy 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- UCUUFSAXZMGPGH-UHFFFAOYSA-N penta-1,4-dien-3-one Chemical compound C=CC(=O)C=C UCUUFSAXZMGPGH-UHFFFAOYSA-N 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- XEYBRNLFEZDVAW-UHFFFAOYSA-N prostaglandin E2 Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CC=CCCCC(O)=O XEYBRNLFEZDVAW-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 210000004683 skeletal myoblast Anatomy 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 229910001631 strontium chloride Inorganic materials 0.000 description 2
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 210000002417 xiphoid bone Anatomy 0.000 description 2
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- GMVPRGQOIOIIMI-UHFFFAOYSA-N (8R,11R,12R,13E,15S)-11,15-Dihydroxy-9-oxo-13-prostenoic acid Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CCCCCCC(O)=O GMVPRGQOIOIIMI-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- 239000005541 ACE inhibitor Substances 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 101100170173 Caenorhabditis elegans del-1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- AEMOLEFTQBMNLQ-BZINKQHNSA-N D-Guluronic Acid Chemical compound OC1O[C@H](C(O)=O)[C@H](O)[C@@H](O)[C@H]1O AEMOLEFTQBMNLQ-BZINKQHNSA-N 0.000 description 1
- 208000005189 Embolism Diseases 0.000 description 1
- 108010041308 Endothelial Growth Factors Proteins 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016970 Follistatin Human genes 0.000 description 1
- 108010014612 Follistatin Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 206010020880 Hypertrophy Diseases 0.000 description 1
- 206010058558 Hypoperfusion Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000004890 Interleukin-8 Human genes 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 208000021642 Muscular disease Diseases 0.000 description 1
- 201000009623 Myopathy Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Natural products P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 102100031372 Thymidine phosphorylase Human genes 0.000 description 1
- 108700023160 Thymidine phosphorylases Proteins 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 206010047163 Vasospasm Diseases 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 241001433070 Xiphoides Species 0.000 description 1
- VRGWBRLULZUWAJ-XFFXIZSCSA-N [(2s)-2-[(1r,3z,5s,8z,12z,15s)-5,17-dihydroxy-4,8,12,15-tetramethyl-16-oxo-18-bicyclo[13.3.0]octadeca-3,8,12,17-tetraenyl]propyl] acetate Chemical compound C1\C=C(C)/CC\C=C(C)/CC[C@H](O)\C(C)=C/C[C@@H]2C([C@@H](COC(C)=O)C)=C(O)C(=O)[C@]21C VRGWBRLULZUWAJ-XFFXIZSCSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229960000711 alprostadil Drugs 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- AEMOLEFTQBMNLQ-UHFFFAOYSA-N beta-D-galactopyranuronic acid Natural products OC1OC(C(O)=O)C(O)C(O)C1O AEMOLEFTQBMNLQ-UHFFFAOYSA-N 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229940047120 colony stimulating factors Drugs 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 1
- 229960002986 dinoprostone Drugs 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 239000003527 fibrinolytic agent Substances 0.000 description 1
- 239000002350 fibrinopeptide Substances 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- VRGWBRLULZUWAJ-UHFFFAOYSA-N fusaproliferin Natural products C1C=C(C)CCC=C(C)CCC(O)C(C)=CCC2C(C(COC(C)=O)C)=C(O)C(=O)C21C VRGWBRLULZUWAJ-UHFFFAOYSA-N 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 210000001308 heart ventricle Anatomy 0.000 description 1
- PBZROIMXDZTJDF-UHFFFAOYSA-N hepta-1,6-dien-4-one Chemical compound C=CCC(=O)CC=C PBZROIMXDZTJDF-UHFFFAOYSA-N 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- XKTZWUACRZHVAN-VADRZIEHSA-N interleukin-8 Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(C)=O)CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N1[C@H](CCC1)C(=O)N1[C@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC(O)=CC=1)C(=O)N[C@H](CO)C(=O)N1[C@H](CCC1)C(N)=O)C1=CC=CC=C1 XKTZWUACRZHVAN-VADRZIEHSA-N 0.000 description 1
- 229940096397 interleukin-8 Drugs 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 229930185346 proliferin Natural products 0.000 description 1
- GMVPRGQOIOIIMI-DWKJAMRDSA-N prostaglandin E1 Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1CCCCCCC(O)=O GMVPRGQOIOIIMI-DWKJAMRDSA-N 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 230000036573 scar formation Effects 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229960000103 thrombolytic agent Drugs 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/26—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- Ischemic heart disease typically results from an imbalance between the myocardial blood flow and the metabolic demand of the myocardium. Progressive atherosclerosis with increasing occlusion of coronary arteries leads to a reduction in coronary blood flow, which creates ischemic heart tissue.
- Atherosclerosis is a type of arteriosclerosis in which cells including smooth muscle cells and macrophages, fatty substances, cholesterol, cellular waste product, calcium and fibrin build up in the inner lining of a body vessel.
- Arteriosclerosis refers to the thickening and hardening of arteries. Blood flow can be further decreased by additional events such as changes in circulation that lead to hypoperfusion, vasospasm or thrombosis.
- MI Myocardial infarction
- an MI was caused from a slow progression of closure from, for example, 95% then to 100%.
- an MI can also be a result of minor blockages where, for example, there is a rupture of the cholesterol plaque resulting in blood clotting within the artery.
- This damage can cause irregular rhythms that can be fatal, even though the remaining muscle is strong enough to pump a sufficient amount of blood.
- scar tissue tends to naturally form.
- a mechanical procedure includes balloon angioplasty with stenting
- a therapeutic agent application includes administering a thrombolytic agent, such as urokinase.
- a thrombolytic agent such as urokinase.
- Such procedures do not, however, treat actual tissue damage to the heart.
- Other systemic drugs such as ACE-inhibitors and Beta-blockers, may be effective in reducing cardiac load post-MI, although a significant portion of the population that experiences a major MI ultimately develop heart failure.
- An important component in the progression to heart failure is remodeling of the heart due to mismatched mechanical forces between the infarcted region and the healthy tissue resulting in uneven stress and strain distribution in the left ventricle.
- remodeling of the heart begins.
- the principle components of the remodeling event include myocyte death, edema and inflammation, followed by fibroblast infiltration and collagen deposition, and finally scar formation from extra-cellular matrix (ECM) deposition.
- ECM extra-cellular matrix
- the principle component of the scar is collagen which is non-contractile and causes strain on the heart with each beat. Non-contractility causes poor pump performance as seen by low ejection fraction (EF) and akinetic or diskinetic local wall motion.
- compositions, methods of manufacture and methods of treatment for post-myocardial infarction are herein disclosed.
- the composition includes at least two components.
- a first component can include a first functionalized polymer and a substance having at least one cell adhesion site combined in a first buffer at a pH of approximately 6.5.
- a second component can include a second buffer in a pH of between about 7.5 and 9.0.
- a second functionalized polymer can be included in the first or second component.
- the composition can include at least one cell type and/or at least one growth factor.
- the composition(s) of the present invention can be delivered by a dual bore injection device to a treatment area, such as a post-myocardial infarct region.
- FIGS. 1A-1B illustrate the progression of heart damage once the build-up of plaque in an artery induces an infarct to occur.
- FIGS. 2A-2G show examples of chemical structures of a functionalized polyethylene glycol.
- FIG. 3 shows a general formula for the chemical structure of a functionalized polyethylene glycol.
- FIG. 4 illustrates an embodiment of a dual bore delivery device.
- FIGS. 5A-5B illustrate an alternative embodiment of a dual bore delivery device.
- FIGS. 6A-6C illustrate a second alternative embodiment of a dual bore delivery device.
- FIGS. 1A-1B illustrate the progression of heart damage once the build-up of plaque induces an infarct to occur.
- FIG. 1A illustrates a site 10 where blockage and restricted blood flow can occur from, for example, a thrombus or embolus.
- FIG. 1B illustrates resultant damage area 20 to the left ventricle that can result from the lack of oxygen and nutrient flow carried by the blood to the inferior region left of the heart. Damage area 20 will likely undergo remodeling, and eventually scarring, resulting in a non-functional area.
- Bioscaffoldings formed of two components and applied in situ to the left heart ventricle can be used to treat post-myocardial infarction tissue damage.
- Bioscaffolding” and “two-component gelation system” and “gelation system” are hereinafter used interchangeably.
- two-component gelation systems include, but are not limited to, alginate construct systems, fibrin glues and fibrin glue-like systems, self-assembled peptides, synthetic polymer systems and combinations thereof.
- Each component of the two-component gelation system may be co-injected to an infarct region by a dual-lumen delivery device.
- dual-lumen delivery devices include, but are not limited to, dual-needle left-ventricle injection devices, dual-needle transvascular wall injection devices and the like.
- the two-component gelation system includes fibrin glue.
- Fibrin glue consists of two main components, fibrinogen and thrombin.
- Fibrinogen is a plasma glycoprotein of about 340 kiloDaltons (kDa) in its endogenous state.
- Fibrinogen is a symmetrical dimer comprised of six paired polypeptide chains, alpha, beta and gamma chains. On the alpha and beta chains, there is a small peptide sequence called a fibrinopeptide which prevents fibrinogen from spontaneously forming polymers with itself.
- fibrinogen is modified with proteins.
- Thrombin is a coagulation protein.
- thrombin When combined in equal volumes, thrombin converts the fibrinogen to fibrin by enzymatic action at a rate determined by the concentration of thrombin. The result is a biocompatible gel which gelates when combined at the infarct region.
- Fibrin glue can undergo gelation between about 5 to about 60 seconds.
- fibrin glue-like systems include, but are not limited to, TisseelTM (Baxter), Beriplast PTM (Aventis Behring), Biocol® (LFB, France), CrossealTM (Omrix Biopharmaceuticals, Ltd.), Hemaseel HMN® (Haemacure Corp.), Bolheal (Kaketsuken Pharma, Japan) and CoStasis® (Angiotech Pharmaceuticals).
- the two-component gelation system includes self-assembled peptides.
- Self-assembled peptides generally include repeat sequences of alternating hydrophobic and hydrophilic amino acid chains.
- the hydrophilic amino acids are generally charge-bearing and can be anionic, cationic or both.
- Examples of cationic amino acids are lysine and arginine.
- Examples of anionic amino acids are aspartic acid and glutamic acid.
- hydrophobic amino acids are alanine, valine, leucine, isoleucine or phenylalanine.
- Self-assembled peptides can range from 8 to 40 amino acids in length and can assemble into nanoscale fibers under conditions of physiological pH and osmolarity.
- self-assembled peptides typically undergo gelation between several minutes to several hours.
- self-assembled peptides include, but are not limited to: AcN-RARADADARARADADA-CNH 2 (RAD 16-II) wherein R is arginine, A is alanine, D is aspartic acid, and Ac indicates acetylation; VKVKVKVKV-PP-TKVKVKVKV-NH 2 (MAX-1) wherein V is valine, K is lysine and P is proline; and AcN-AEAEAKAKAEAEAKAK-CNH 2 wherein A is alanine, K is lysine and E is glutamic acid (EAK16-II).
- the two-component gelation system is an alginate construct system.
- One component may be an alginate conjugate (or alginate alone) which can include alginate and a protein constituent.
- the second component may be a salt.
- alginate conjugates can include, but are not limited to, alginate-collagen, alginate-laminin, alginate-elastin, alginate-collagen-laminin and alginate-hyaluronic acid in which the collagen, laminin, elastin, collagen-laminin or hyaluronic acid is covalently bonded (or not bonded) to alginate.
- salts which can be used to gel the alginate constructs include, but are not limited to, calcium chloride (CaCl 2 ), barium chloride (BaCl 2 ) or strontium chloride (SrCl 2 ).
- the alginate construct is alginate-gelatin.
- the molecular weight of the gelatin may be in the approximate range of 5 kDa to 100 kDa.
- the relatively low molecular weight of gelatin offers processing advantages in that it is more soluble and has lower viscosity than hydrogels of higher molecular weight.
- Another advantage of gelatin is that it contains from 1 to 4 RGD (arginine-glycine-aspartic acid peptide sequence) sites per molecule.
- RGD is a common cell adhesion ligand and would increase the retention of cells within the infarct zone where the bioscaffolding is formed.
- the cells retained by the RGD sites may be cells co-injected with the bioscaffolding components or dispersed throughout a component of the system.
- the gelatin may be a porcine gelatin or a recombinant human gelatin.
- the porcine gelatin is a hydrolyzed type 1 collagen extracted from porcine skin.
- the molecular weight of the porcine gelatin is approximately 20 kDa.
- the human gelatin is produced by bacteria using human genetic material.
- the human recombinant gelatin is equivalent to the porcine gelatin but may reduce the likelihood of an immune response when injected into an infarct region of a human subject.
- Alginate is a linear polysaccharide derived from seaweed and contains mannuronic (M) and guluronic acid (G), presented in both alternating blocks and alternating individual residues. It is possible to use some of the carboxyl groups of the alginate as sites to graft useful cell adhesion ligands, such as collagen, laminin, elastin and other peptide fragments of the ECM matrix, forming an alginate conjugate, because alginate does not have RGD groups for cell attachment.
- M mannuronic
- G guluronic acid
- the alginate-gelatin conjugate can be formed of approximately 1% to 30% and more particularly approximately 10% to 20% gelatin (either porcine or human recombinant) and approximately 80% to 90% alginate.
- gelatin either porcine or human recombinant
- a relatively lower proportion of gelatin is used in the conjugate to retain gelation capacity of native alginate because the carboxyl groups of alginate that cause the gelation may be bound up in the alginate-gelatin conjugate.
- the two-component gelation system includes polyethylene glycols.
- PEG is a synthetic polymer having the repeating structure (OCH 2 CH 2 ) n .
- a first component may be a polyethylene glycol (PEG) polymer functionalized with at least two nucleophilic groups. Examples of nucleophilic groups include, but are not limited to, thiol (—SH), thiol anion (—S ⁇ ), and amine (—NH 2 ).
- a “nucleophile” is a reagent which is attracted to centers of positive charge. A nucleophile participates in a chemical reaction by donating electrons to an electrophile in order to form a chemical bond.
- a second component may be a PEG polymer functionalized with at least two electrophilic groups.
- electrophilic groups include, but are not limited to, N-hydroxy succinimide ester (—NHS), acrylate, vinyl sulfone, and maleimide.
- —NHS, or succinimidyl is a five-member ring structure represented by the chemical formula —N(COCH 2 ) 2 .
- An “electrophile” is a reagent attracted to electrons that participates in a chemical reaction by accepting an electron pair in order to bond to a nucleophile. The total number of electrophilic and nucleophilic groups should be greater than 4.
- two functionalized PEGs comprising a PEG functionalized with at least two nucleophilic groups and a PEG functionalized with at least two electrophilic groups can be combined in a 1:1 ratio.
- the PEGs can be stored in a 0.01M acidic solution at a pH below about 4.0. At room temperature and standard concentration, reaction and cross-linking between the two functionalized PEGs occurs beginning at approximately pH greater than 6.5. Under these conditions, reaction kinetics are slow. When 0.3 M basic buffer solution at pH about 9.0 is added to the PEGs, gelation occurs in less than 1 minute. This system exhibits poor cytocompatibility due to the low pH of the functionalized PEG solution and the high osmolality pH 9.0 buffer. “Cytocompatibility” refers to the ability of media to provide an environment conducive to cell growth. Additionally, this system does not include any cell adhesion sites.
- a bioscaffolding is formed from combining functionalized polymers (bioscaffolding precursors) with an extra-cellular matrix (ECM) protein at physiological osmolality.
- the resulting bioscaffolding can be in a pH range of between about 6.5 and about 7.5.
- ECM proteins include, but are not limited to, collagen, laminin, elastin and fragments thereof, in addition to, proteins, protein fragments and peptides with cell adhesion ligands such as RGD groups.
- cells can be added to the bioscaffolding precursors.
- Examples of cell types include, but are not limited to, localized cardiac progenitor cells, mesenchymal stem cells (osteoblasts, chondrocytes and fibroblasts), bone marrow derived mononuclear cells, adipose tissue derived stem cells, embryonic stem cells, umbilical-cord-blood-derived stem cells, smooth muscle cells or skeletal myoblasts.
- growth factors can be added to the system. Examples of growth factors include, but are not limited to, isoforms of vasoendothelial growth factor (VEGF), fibroblast growth factor (FGF, e.g.
- VEGF vasoendothelial growth factor
- FGF fibroblast growth factor
- beta-FGF Del 1, hypoxia inducing factor (HIF 1-alpha), monocyte chemoattractant protein (MCP-1), nicotine, platelet derived growth factor (PDGF), insulin-like growth factor 1 (IGF-1), transforming growth factor (TGF alpha), hepatocyte growth factor (HGF), estrogens, follistatin, proliferin, prostaglandin E1 and E2, tumor necrosis factor (TNF-alpha), interleukin 8 (Il-8), hematopoietic growth factors, erythropoietin, granulocyte-colony stimulating factors (G-CSF) and platelet-derived endothelial growth factor (PD-ECGF).
- the polymers can include synthetic polymers, such as polyamino acids, polysaccharides, polyalkylene oxide or polyethylene glycol (PEG).
- the molecular weight of the compounds can vary depending on the desired application. In most instances, the molecular weight (mol. wt.) is about 100 to about 100,000 mol. wt., and more preferably about 1,000 to about 20,000 mol. wt.
- the polymer is polyethylene glycol.
- polyethylene glycol(s) includes modified and/or derivatized polyethylene glycols.
- a first functionalized PEG can be functionalized by at least two reactive groups, such as electrophilic groups. Examples of reactive groups include, but are not limited to, a succinimidyl group (—NHS), a vinyl group, such as acrylate, vinylsulfone, vinyl ether, allyl ether, vinyl ester, vinyl ketone or maleimide, and nitrophenolate or similar leaving group.
- a second functionalized PEG can be functionalized by at least two reactive groups, such as nucleophilic groups.
- Examples of reactive groups include, but are not limited to, a thiol group, an amino group, a hydroxyl group, phosphine radical (PH 2 ) and —CO—NH—NH 2 .
- Representative functionalized PEGs with electrophilic groups are shown in FIGS. 2A through 2G .
- a general representative formula for functionalized PEGs with nucleophilic groups are shown in FIG. 3 .
- a PEG functionalized with electrophilic groups is combined with a PEG functionalized with nucleophilic groups to form a bioscaffolding gel. The total number of electrophilic and nucleophilic groups should be greater than 4.
- the branched conformation of the PEGs represented in FIGS. 2A-2G & 3 is not limiting.
- the combined functionality of the PEGs can be greater than four.
- “Functionality” refers to the number of electrophilic or nucleophilic groups on the polymer core that are capable of reacting with other nucleophilic or electrophilic groups, respectively, to form a gel. That is, as long as the PEGs to be combined are at least difunctional, i.e., each PEG contains at least two nucleophilic or electrophilic groups, the functionalized PEGs can be combined to form a bioscaffolding gel. The total number of electrophilic and nucleophilic groups should therefore be greater than 4.
- a bioscaffolding can include a first component with at least one functionalized PEG and an ECM protein, and a second component of buffer.
- “Component” hereinafter refers to one part of a two-part system and can include multiple constituents (e.g., a mixture).
- the first component can include a mixture of a first functionalized PEG, such as —NHS PEG (or other functionalized PEG with at least two reactive groups), a second functionalized PEG, such as —SH PEG (or other functionalized PEG with at least two reactive groups), and an ECM protein.
- the first component can include first functionalized polymer only, such as —NHS PEG (or other functionalized PEG with at least two reactive groups) and an ECM protein.
- the first functionalized PEG can be combined with the second functionalized PEG in a 1:1 ratio.
- the functionalized PEGs can be combined in a ratio less than 1:1.
- the two PEGs can have different number of functional groups and, as a result, the PEG stoichiometry could be altered.
- the crosslinking density may be altered by varying the polymer ratio.
- the functionalized PEGs are combined in the solid phase.
- the mixture can be suspended in a pH 6.5 buffer at approximately physiological osmolality, i.e., 280-300 mOsm/kg H 2 O.
- buffers include, but are not limited to dilute hydrogen chloride and citrate buffers.
- the second component can include a buffer in a pH range from approximately 7.5 to 9.5 at a concentration from about 140 mM to about 150 mM.
- buffers include sodium phosphate and sodium carbonate buffers.
- the buffer can be at approximately physiological osmolality, i.e., 280-300 mOsm/kg H 2 O.
- the second component can include an —SH PEG and the buffer (or other functionalized PEG with at least two reactive groups).
- a cell type can be added to the first component.
- cell types include, but are not limited to, localized cardiac progenitor cells, mesenchymal stem cells (osteoblasts, chondrocytes and fibroblasts), bone marrow derived mononuclear cells, adipose tissue derived stem cells, embryonic stem cells, umbilical-cord-blood-derived stem cells, smooth muscle cells or skeletal myoblasts.
- hMSC human mesenchymal stem cells
- a growth factor can be added to the first component.
- the functionalized PEGs can react with the growth factors which could stabilize the growth factors, extend their half-life or provide a mode for controlled release of the growth factors.
- the growth factors can act to help survival of injected hMSC or endogenous progenitor cells at the infarct region.
- the growth factors can aid direct endogenous progenitor cells to the injury site.
- cells do not attach to PEG surfaces or gels formed from PEG polymers. That is, PEG polymers do not provide a cytocompatible environment for cells.
- Collagen or gelatin or any other ECM protein such as fibronectin, may be added to improve cytocompatibility.
- the collagen added to the mixture of PEGs can make the mixture very viscous and therefore not conducive with catheter delivery systems. It is anticipated that the pH of the first component and the concentration of the second component, as described in embodiments of the invention, will increase the cytocompatibility of the cell types even with an ECM protein present.
- the first component can be combined with the second component to produce a bioscaffolding at an infarct region.
- the resulting bioscaffolding gel can be at a pH of between 6.8 and 7.4.
- the low buffer concentration of the second component may slow the reaction down, the resulting gel can enable improved cytocompatibility.
- the ECM protein can provide cell adhesion cites to enable cell spreading and migration. “Cell spreading” refers to the naturally occurring morphology that some cells attain when they are allowed to grow on cytocompatible surfaces. In the case of hMSC, the natural morphology is a flattened, spindle-shaped morphology.
- the N-terminus and lysine and arginine side groups of the ECM may react with the —NHS PEG. This may provide better mechanical stability of the gel and reduce the tendency of the gel to swell. This reaction is what forms the gel.
- the —NHS group of the —NHS PEG can be replaced with a vinyl constituent such as acrylate, vinylsulfone, vinyl ketone, allyl ester, allyl ketone or maleimide group(s).
- a vinyl constituent such as acrylate, vinylsulfone, vinyl ketone, allyl ester, allyl ketone or maleimide group(s).
- Michael type reactions are well known by those skilled in the art.
- the reaction could be activated with a buffer in a pH range of between about 6.0 and about 9.0, by a catalytic amount of various amines or a combination thereof.
- the —NHS group of the —NHS PEG can be replaced with a leaving group such as a nitrophenolate.
- the —SH group of the —SH PEG can be replaced with an amino group to form an amide bond when combined with an —NHS or alternatively functionalized PEG.
- Devices which can be used to deliver each component of the gel include, but are not limited to, dual-needle left-ventricle injection devices, dual-needle transvascular wall injection and dual syringes.
- Methods of access to use the minimally invasive (i.e., percutaneous or endoscopic) injection devices include access via the femoral artery or the sub-xiphoid.
- Xiphoid or “xiphoid process” is a pointed cartilage attached to the lower end of the breastbone or sternum, the smallest and lowest division of the sternum. Both methods are known by those skilled in the art.
- FIG. 4 illustrates an embodiment of a dual syringe device which can be used to deliver the compositions of the present invention.
- Dual syringe 400 can include first barrel 410 and second barrel 420 adjacent to one another and connected at a proximal end 455 , distal end 460 and middle region 465 by plates 440 , 445 and 450 , respectively.
- barrels 410 and 420 can be connected by less than three plates.
- Each barrel 410 and 420 includes plunger 415 and plunger 425 , respectively.
- Barrels 410 and 420 can terminate at a distal end into needles 430 and 435 , respectively, for extruding a substance.
- barrels 410 and 420 can terminate into cannula protrusions for extruding a substance. Barrels 410 and 420 should be in close enough proximity to each other such that the substances in each respective barrel are capable of mixing with one another to form a bioscaffolding in the treatment area, e.g., a post-infarct myocardial region.
- Dual syringe 400 can be constructed of any metal or plastic which is minimally reactive or completely unreactive with the formulations described in the present invention. In some embodiments, dual syringe 400 includes a pre-mixing chamber attached to distal end 465 .
- first barrel 410 can include a first component of a two-component polyethylene glycol gelation system and second barrel 420 can include a second component of the system according to any of the embodiments described previously.
- a therapeutic amount of the resulting gel is between about 25 ⁇ L to about 200 ⁇ L, preferably about 50 ⁇ L.
- Dual syringe 400 can be used during, for example, an open chest surgical procedure.
- FIGS. 5A-5B illustrate an embodiment of a dual-needle injection device which can be used to deliver the compositions of the present invention.
- Delivery assembly 500 includes lumen 510 which may house delivery lumens, guidewire lumens and/or other lumens. Lumen 510 , in this example, extends between distal portion 505 and proximal end 515 of delivery assembly 500 .
- delivery assembly 500 includes first needle 520 movably disposed within delivery lumen 530 .
- Delivery lumen 530 is, for example, a polymer tubing of a suitable material (e.g., polyamides, polyolefins, polyurethanes, etc.).
- First needle 520 is, for example, a stainless steel hypotube that extends a length of the delivery assembly.
- First needle 520 includes a lumen with an inside diameter of, for example, 0.08 inches (0.20 centimeters).
- first needle 520 has a needle length on the order of about 40 inches (about 1.6 meters) from distal portion 505 to proximal portion 515 .
- Lumen 510 also includes auxiliary lumen 540 extending, in this example, co-linearly along the length of the catheter (from a distal portion 505 to proximal portion 515 ).
- Auxiliary lumen 540 is, for example, a polymer tubing of a suitable material (e.g., polyamides, polyolefins, polyurethanes, etc.).
- auxiliary lumen 540 is terminated at a delivery end of second needle 550 and co-linearly aligned with a delivery end of needle 520 .
- Auxiliary lumen 540 may be terminated to a delivery end of second needle 550 with a radiation-curable adhesive, such as an ultraviolet curable adhesive.
- Second needle 550 is, for example, a stainless steel hypotube that is joined co-linearly to the end of main needle 520 by, for example, solder (illustrated as joint 555 ). Second needle 550 has a length on the order of about 0.08 inches (0.20 centimeters).
- FIG. 5B shows a cross-sectional front view through line A-A′ of delivery assembly 500 .
- FIG. 5B shows main needle 520 and second needle 550 in a co-linear alignment.
- auxiliary lumen 540 is terminated to auxiliary side arm 460 .
- Auxiliary side arm 560 includes a portion extending co-linearly with main needle 520 .
- Auxiliary side arm 560 is, for example, a stainless steel hypotube material that may be soldered to main needle 520 (illustrated as joint 565 ).
- Auxiliary side arm 560 has a co-linear length on the order of about, in one example, 1.2 inches (3 centimeters).
- the proximal end of main needle 520 includes adaptor 570 for accommodating a substance delivery device (e.g., a component of a two-component bioerodable gel material).
- Adaptor 570 is, for example, a molded female luer housing.
- a proximal end of auxiliary side arm 560 includes adaptor 580 to accommodate a substance delivery device (e.g., a female luer housing).
- a gel may be formed by a combination (mixing, contact, etc.) of a first component and a second component.
- a first component may be introduced by a one cubic centimeters syringe at adaptor 570 through main needle 520 .
- second component including a silk protein and optionally a least one cell type may be introduced with a one cubic centimeter syringe at adaptor 580 .
- FIGS. 6A-6C illustrate an alternative embodiment of a dual-needle injection device which can be used to deliver two-component gel compositions of the present invention.
- the catheter assembly 600 provides a system for delivering substances, such as two-component gel compositions, to or through a desired area of a blood vessel (a physiological lumen) or tissue in order to treat a myocardial infarct region.
- the catheter assembly 600 is similar to the catheter assembly 600 described in commonly-owned, U.S. Pat. No. 6,554,801, titled “Directional Needle Injection Drug Delivery Device”, which is incorporated herein by reference.
- catheter assembly 600 is defined by elongated catheter body 650 having proximal portion 620 and distal portion 610 .
- Guidewire cannula 670 is formed within catheter body (from proximal portion 610 to distal portion 620 ) for allowing catheter assembly 600 to be fed and maneuvered over guidewire 680 .
- Balloon 630 is incorporated at distal portion 610 of catheter assembly 600 and is in fluid communication with inflation cannula 660 of catheter assembly 600 .
- Balloon 630 can be formed from balloon wall or membrane 635 which is selectively inflatable to dilate from a collapsed configuration to a desired and controlled expanded configuration. Balloon 630 can be selectively dilated (inflated) by supplying a fluid into inflation cannula 660 at a predetermined rate of pressure through inflation port 665 (located at proximal end 620 ). Balloon wall 635 is selectively deflatable, after inflation, to return to the collapsed configuration or a deflated profile. Balloon 630 may be dilated (inflated) by the introduction of a liquid into inflation cannula 660 . Liquids containing treatment and/or diagnostic agents may also be used to inflate balloon 630 .
- balloon 630 may be made of a material that is permeable to such treatment and/or diagnostic liquids.
- the fluid can be supplied into inflation cannula 660 at a predetermined pressure, for example, between about one and 20 atmospheres.
- the specific pressure depends on various factors, such as the thickness of balloon wall 635 , the material from which balloon wall 635 is made, the type of substance employed and the flow-rate that is desired.
- Catheter assembly 600 also includes at least two substance delivery assemblies 605 a and 605 b (not shown; see FIGS. 6B-6C ) for injecting a substance into a myocardial infarct region.
- substance delivery assembly 605 a includes needle 615 a movably disposed within hollow delivery lumen 625 a .
- Delivery assembly 605 b includes needle 615 b movably disposed within hollow delivery lumen 625 b (not shown; see FIGS. 6B-6C ). Delivery lumen 625 a and delivery lumen 625 b each extend between distal portion 610 and proximal portion 620 .
- Delivery lumen 625 a and delivery lumen 625 b can be made from any suitable material, such as polymers and copolymers of polyamides, polyolefins, polyurethanes and the like. Access to the proximal end of delivery lumen 625 a or delivery lumen 625 b for insertion of needle 615 a or 615 b , respectively is provided through hub 635 (located at proximal end 620 ). Delivery lumens 625 a and 625 b may be used to deliver first and second components of a two-component gel composition to a post-myocardial infarct region.
- FIG. 6B shows a cross-section of catheter assembly 600 through line A-A′ of FIG. 6A (at distal portion 610 ).
- FIG. 6C shows a cross-section of catheter assembly 600 through line B-B′ of FIG. 6A .
- delivery assemblies 605 a and 605 b are adjacent to each other. The proximity of delivery assemblies 605 a and 605 b allows each component of the two-component gelation system to rapidly gel when delivered to a treatment site, such as a post-myocardial infarct region.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Biomedical Technology (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Cell Biology (AREA)
- Zoology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Developmental Biology & Embryology (AREA)
- Botany (AREA)
- Neurosurgery (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Virology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Inorganic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Materials For Medical Uses (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Surgical Instruments (AREA)
Abstract
Compositions, methods of manufacture and methods of treatment for post-myocardial infarction are herein disclosed. In some embodiments, the composition includes at least two components. In one embodiment, a first component can include a first functionalized polymer and a substance having at least one cell adhesion site combined in a first buffer at a pH of approximately 6.5. A second component can include a second buffer in a pH of between about 7.5 and 9.0. A second functionalized polymer can be included in the first or second component. In some embodiments, the composition can include at least one cell type and/or at least one growth factor. In some embodiments, the composition(s) of the present invention can be delivered by a dual bore injection device to a treatment area, such as a post-myocardial infarct region.
Description
- The application is a continuation of U.S. patent application Ser. No. 12/756,092, filed Apr. 7, 2010 (issued as U.S. Pat. No. 8,486,386), and U.S. patent application Ser. No. 12/756,119, filed Apr. 7, 2010 (issued as U.S. Pat. No. 8,486,387), which are divisional applications of U.S. patent application Ser. No. 11/496,824, filed Jul. 31, 2006 (issued as U.S. Pat. No. 7,732,190) and incorporated herein by reference.
- Post-myocardial infarction treatments and compositions.
- Ischemic heart disease typically results from an imbalance between the myocardial blood flow and the metabolic demand of the myocardium. Progressive atherosclerosis with increasing occlusion of coronary arteries leads to a reduction in coronary blood flow, which creates ischemic heart tissue. “Atherosclerosis” is a type of arteriosclerosis in which cells including smooth muscle cells and macrophages, fatty substances, cholesterol, cellular waste product, calcium and fibrin build up in the inner lining of a body vessel. “Arteriosclerosis” refers to the thickening and hardening of arteries. Blood flow can be further decreased by additional events such as changes in circulation that lead to hypoperfusion, vasospasm or thrombosis.
- Myocardial infarction (MI) is one form of heart disease that results from the sudden lack of supply of oxygen and other nutrients. The lack of blood supply is a result of a closure of the coronary artery (or any other artery feeding the heart) which nourishes a particular part of the heart muscle. The cause of this event is generally attributed to arteriosclerosis in coronary vessels.
- Formerly, it was believed that an MI was caused from a slow progression of closure from, for example, 95% then to 100%. However, an MI can also be a result of minor blockages where, for example, there is a rupture of the cholesterol plaque resulting in blood clotting within the artery. Thus, the flow of blood is blocked and downstream cellular damage occurs. This damage can cause irregular rhythms that can be fatal, even though the remaining muscle is strong enough to pump a sufficient amount of blood. As a result of this insult to the heart tissue, scar tissue tends to naturally form.
- Various procedures, including mechanical and therapeutic agent application procedures, are known for reopening blocked arties. An example of a mechanical procedure includes balloon angioplasty with stenting, while an example of a therapeutic agent application includes administering a thrombolytic agent, such as urokinase. Such procedures do not, however, treat actual tissue damage to the heart. Other systemic drugs, such as ACE-inhibitors and Beta-blockers, may be effective in reducing cardiac load post-MI, although a significant portion of the population that experiences a major MI ultimately develop heart failure.
- An important component in the progression to heart failure is remodeling of the heart due to mismatched mechanical forces between the infarcted region and the healthy tissue resulting in uneven stress and strain distribution in the left ventricle. Once an MI occurs, remodeling of the heart begins. The principle components of the remodeling event include myocyte death, edema and inflammation, followed by fibroblast infiltration and collagen deposition, and finally scar formation from extra-cellular matrix (ECM) deposition. The principle component of the scar is collagen which is non-contractile and causes strain on the heart with each beat. Non-contractility causes poor pump performance as seen by low ejection fraction (EF) and akinetic or diskinetic local wall motion. Low EF leads to high residual blood volume in the ventricle, causes additional wall stress and leads to eventual infarct expansion via scar stretching and thinning and border-zone cell apoptosis. In addition, the remote-zone thickens as a result of higher stress which impairs systolic pumping while the infarct region experiences significant thinning because mature myocytes of an adult are not regenerated. Myocyte loss is a major etiologic factor of wall thinning and chamber dilation that may ultimately lead to progression of cardiac myopathy. In other areas, remote regions experience hypertrophy (thickening) resulting in an overall enlargement of the left ventricle. This is the end result of the remodeling cascade. These changes also correlate with physiological changes that result in increase in blood pressure and worsening systolic and diastolic performance.
- Compositions, methods of manufacture and methods of treatment for post-myocardial infarction are herein disclosed. In some embodiments, the composition includes at least two components. In one embodiment, a first component can include a first functionalized polymer and a substance having at least one cell adhesion site combined in a first buffer at a pH of approximately 6.5. A second component can include a second buffer in a pH of between about 7.5 and 9.0. A second functionalized polymer can be included in the first or second component. In some embodiments, the composition can include at least one cell type and/or at least one growth factor. In some embodiments, the composition(s) of the present invention can be delivered by a dual bore injection device to a treatment area, such as a post-myocardial infarct region.
-
FIGS. 1A-1B illustrate the progression of heart damage once the build-up of plaque in an artery induces an infarct to occur. -
FIGS. 2A-2G show examples of chemical structures of a functionalized polyethylene glycol. -
FIG. 3 shows a general formula for the chemical structure of a functionalized polyethylene glycol. -
FIG. 4 illustrates an embodiment of a dual bore delivery device. -
FIGS. 5A-5B illustrate an alternative embodiment of a dual bore delivery device. -
FIGS. 6A-6C illustrate a second alternative embodiment of a dual bore delivery device. -
FIGS. 1A-1B illustrate the progression of heart damage once the build-up of plaque induces an infarct to occur.FIG. 1A illustrates asite 10 where blockage and restricted blood flow can occur from, for example, a thrombus or embolus.FIG. 1B illustratesresultant damage area 20 to the left ventricle that can result from the lack of oxygen and nutrient flow carried by the blood to the inferior region left of the heart.Damage area 20 will likely undergo remodeling, and eventually scarring, resulting in a non-functional area. - Bioscaffoldings formed of two components and applied in situ to the left heart ventricle can be used to treat post-myocardial infarction tissue damage. “Bioscaffolding” and “two-component gelation system” and “gelation system” are hereinafter used interchangeably. Examples of two-component gelation systems include, but are not limited to, alginate construct systems, fibrin glues and fibrin glue-like systems, self-assembled peptides, synthetic polymer systems and combinations thereof. Each component of the two-component gelation system may be co-injected to an infarct region by a dual-lumen delivery device. Examples of dual-lumen delivery devices include, but are not limited to, dual-needle left-ventricle injection devices, dual-needle transvascular wall injection devices and the like.
- In some applications, the two-component gelation system includes fibrin glue. Fibrin glue consists of two main components, fibrinogen and thrombin. Fibrinogen is a plasma glycoprotein of about 340 kiloDaltons (kDa) in its endogenous state. Fibrinogen is a symmetrical dimer comprised of six paired polypeptide chains, alpha, beta and gamma chains. On the alpha and beta chains, there is a small peptide sequence called a fibrinopeptide which prevents fibrinogen from spontaneously forming polymers with itself. In some embodiments, fibrinogen is modified with proteins. Thrombin is a coagulation protein. When combined in equal volumes, thrombin converts the fibrinogen to fibrin by enzymatic action at a rate determined by the concentration of thrombin. The result is a biocompatible gel which gelates when combined at the infarct region. Fibrin glue can undergo gelation between about 5 to about 60 seconds. Examples of fibrin glue-like systems include, but are not limited to, Tisseel™ (Baxter), Beriplast P™ (Aventis Behring), Biocol® (LFB, France), Crosseal™ (Omrix Biopharmaceuticals, Ltd.), Hemaseel HMN® (Haemacure Corp.), Bolheal (Kaketsuken Pharma, Japan) and CoStasis® (Angiotech Pharmaceuticals).
- In some applications, the two-component gelation system includes self-assembled peptides. Self-assembled peptides generally include repeat sequences of alternating hydrophobic and hydrophilic amino acid chains. The hydrophilic amino acids are generally charge-bearing and can be anionic, cationic or both. Examples of cationic amino acids are lysine and arginine. Examples of anionic amino acids are aspartic acid and glutamic acid. Examples of hydrophobic amino acids are alanine, valine, leucine, isoleucine or phenylalanine. Self-assembled peptides can range from 8 to 40 amino acids in length and can assemble into nanoscale fibers under conditions of physiological pH and osmolarity. In sufficient concentration and over time, the fibers can assemble into an interconnected structure that appears macroscopically as a gel. Self-assembled peptides typically undergo gelation between several minutes to several hours. Examples of self-assembled peptides include, but are not limited to: AcN-RARADADARARADADA-CNH2 (RAD 16-II) wherein R is arginine, A is alanine, D is aspartic acid, and Ac indicates acetylation; VKVKVKVKV-PP-TKVKVKVKV-NH2 (MAX-1) wherein V is valine, K is lysine and P is proline; and AcN-AEAEAKAKAEAEAKAK-CNH2 wherein A is alanine, K is lysine and E is glutamic acid (EAK16-II).
- In some applications, the two-component gelation system is an alginate construct system. One component may be an alginate conjugate (or alginate alone) which can include alginate and a protein constituent. The second component may be a salt. Examples of alginate conjugates can include, but are not limited to, alginate-collagen, alginate-laminin, alginate-elastin, alginate-collagen-laminin and alginate-hyaluronic acid in which the collagen, laminin, elastin, collagen-laminin or hyaluronic acid is covalently bonded (or not bonded) to alginate. Examples of salts which can be used to gel the alginate constructs include, but are not limited to, calcium chloride (CaCl2), barium chloride (BaCl2) or strontium chloride (SrCl2).
- In one embodiment, the alginate construct is alginate-gelatin. The molecular weight of the gelatin may be in the approximate range of 5 kDa to 100 kDa. The relatively low molecular weight of gelatin offers processing advantages in that it is more soluble and has lower viscosity than hydrogels of higher molecular weight. Another advantage of gelatin is that it contains from 1 to 4 RGD (arginine-glycine-aspartic acid peptide sequence) sites per molecule. RGD is a common cell adhesion ligand and would increase the retention of cells within the infarct zone where the bioscaffolding is formed. The cells retained by the RGD sites may be cells co-injected with the bioscaffolding components or dispersed throughout a component of the system.
- The gelatin may be a porcine gelatin or a recombinant human gelatin. The porcine gelatin is a hydrolyzed
type 1 collagen extracted from porcine skin. In one embodiment, the molecular weight of the porcine gelatin is approximately 20 kDa. The human gelatin is produced by bacteria using human genetic material. The human recombinant gelatin is equivalent to the porcine gelatin but may reduce the likelihood of an immune response when injected into an infarct region of a human subject. - Alginate is a linear polysaccharide derived from seaweed and contains mannuronic (M) and guluronic acid (G), presented in both alternating blocks and alternating individual residues. It is possible to use some of the carboxyl groups of the alginate as sites to graft useful cell adhesion ligands, such as collagen, laminin, elastin and other peptide fragments of the ECM matrix, forming an alginate conjugate, because alginate does not have RGD groups for cell attachment.
- The alginate-gelatin conjugate can be formed of approximately 1% to 30% and more particularly approximately 10% to 20% gelatin (either porcine or human recombinant) and approximately 80% to 90% alginate. A relatively lower proportion of gelatin is used in the conjugate to retain gelation capacity of native alginate because the carboxyl groups of alginate that cause the gelation may be bound up in the alginate-gelatin conjugate.
- In some embodiments, the two-component gelation system includes polyethylene glycols. PEG is a synthetic polymer having the repeating structure (OCH2CH2)n. A first component may be a polyethylene glycol (PEG) polymer functionalized with at least two nucleophilic groups. Examples of nucleophilic groups include, but are not limited to, thiol (—SH), thiol anion (—S−), and amine (—NH2). A “nucleophile” is a reagent which is attracted to centers of positive charge. A nucleophile participates in a chemical reaction by donating electrons to an electrophile in order to form a chemical bond. A second component may be a PEG polymer functionalized with at least two electrophilic groups. Examples of electrophilic groups include, but are not limited to, N-hydroxy succinimide ester (—NHS), acrylate, vinyl sulfone, and maleimide. —NHS, or succinimidyl, is a five-member ring structure represented by the chemical formula —N(COCH2)2. An “electrophile” is a reagent attracted to electrons that participates in a chemical reaction by accepting an electron pair in order to bond to a nucleophile. The total number of electrophilic and nucleophilic groups should be greater than 4.
- In some embodiments, two functionalized PEGs comprising a PEG functionalized with at least two nucleophilic groups and a PEG functionalized with at least two electrophilic groups can be combined in a 1:1 ratio. The PEGs can be stored in a 0.01M acidic solution at a pH below about 4.0. At room temperature and standard concentration, reaction and cross-linking between the two functionalized PEGs occurs beginning at approximately pH greater than 6.5. Under these conditions, reaction kinetics are slow. When 0.3 M basic buffer solution at pH about 9.0 is added to the PEGs, gelation occurs in less than 1 minute. This system exhibits poor cytocompatibility due to the low pH of the functionalized PEG solution and the high osmolality pH 9.0 buffer. “Cytocompatibility” refers to the ability of media to provide an environment conducive to cell growth. Additionally, this system does not include any cell adhesion sites.
- In some embodiments, a bioscaffolding is formed from combining functionalized polymers (bioscaffolding precursors) with an extra-cellular matrix (ECM) protein at physiological osmolality. The resulting bioscaffolding can be in a pH range of between about 6.5 and about 7.5. Examples of ECM proteins include, but are not limited to, collagen, laminin, elastin and fragments thereof, in addition to, proteins, protein fragments and peptides with cell adhesion ligands such as RGD groups. In some embodiments, cells can be added to the bioscaffolding precursors. Examples of cell types include, but are not limited to, localized cardiac progenitor cells, mesenchymal stem cells (osteoblasts, chondrocytes and fibroblasts), bone marrow derived mononuclear cells, adipose tissue derived stem cells, embryonic stem cells, umbilical-cord-blood-derived stem cells, smooth muscle cells or skeletal myoblasts. In some embodiments, growth factors can be added to the system. Examples of growth factors include, but are not limited to, isoforms of vasoendothelial growth factor (VEGF), fibroblast growth factor (FGF, e.g. beta-FGF),
Del 1, hypoxia inducing factor (HIF 1-alpha), monocyte chemoattractant protein (MCP-1), nicotine, platelet derived growth factor (PDGF), insulin-like growth factor 1 (IGF-1), transforming growth factor (TGF alpha), hepatocyte growth factor (HGF), estrogens, follistatin, proliferin, prostaglandin E1 and E2, tumor necrosis factor (TNF-alpha), interleukin 8 (Il-8), hematopoietic growth factors, erythropoietin, granulocyte-colony stimulating factors (G-CSF) and platelet-derived endothelial growth factor (PD-ECGF). - The polymers can include synthetic polymers, such as polyamino acids, polysaccharides, polyalkylene oxide or polyethylene glycol (PEG). The molecular weight of the compounds can vary depending on the desired application. In most instances, the molecular weight (mol. wt.) is about 100 to about 100,000 mol. wt., and more preferably about 1,000 to about 20,000 mol. wt.
- In some embodiments, the polymer is polyethylene glycol. As used herein, the term “polyethylene glycol(s)” includes modified and/or derivatized polyethylene glycols. According to some embodiments, a first functionalized PEG can be functionalized by at least two reactive groups, such as electrophilic groups. Examples of reactive groups include, but are not limited to, a succinimidyl group (—NHS), a vinyl group, such as acrylate, vinylsulfone, vinyl ether, allyl ether, vinyl ester, vinyl ketone or maleimide, and nitrophenolate or similar leaving group. According to some embodiments, a second functionalized PEG can be functionalized by at least two reactive groups, such as nucleophilic groups. Examples of reactive groups include, but are not limited to, a thiol group, an amino group, a hydroxyl group, phosphine radical (PH2) and —CO—NH—NH2. Representative functionalized PEGs with electrophilic groups are shown in
FIGS. 2A through 2G . A general representative formula for functionalized PEGs with nucleophilic groups are shown inFIG. 3 . In some embodiments a PEG functionalized with electrophilic groups is combined with a PEG functionalized with nucleophilic groups to form a bioscaffolding gel. The total number of electrophilic and nucleophilic groups should be greater than 4. - The branched conformation of the PEGs represented in
FIGS. 2A-2G & 3 is not limiting. In some embodiments, the combined functionality of the PEGs can be greater than four. “Functionality” refers to the number of electrophilic or nucleophilic groups on the polymer core that are capable of reacting with other nucleophilic or electrophilic groups, respectively, to form a gel. That is, as long as the PEGs to be combined are at least difunctional, i.e., each PEG contains at least two nucleophilic or electrophilic groups, the functionalized PEGs can be combined to form a bioscaffolding gel. The total number of electrophilic and nucleophilic groups should therefore be greater than 4. - In some embodiments, a bioscaffolding can include a first component with at least one functionalized PEG and an ECM protein, and a second component of buffer. “Component” hereinafter refers to one part of a two-part system and can include multiple constituents (e.g., a mixture). In one embodiment, the first component can include a mixture of a first functionalized PEG, such as —NHS PEG (or other functionalized PEG with at least two reactive groups), a second functionalized PEG, such as —SH PEG (or other functionalized PEG with at least two reactive groups), and an ECM protein. In some embodiments, the first component can include first functionalized polymer only, such as —NHS PEG (or other functionalized PEG with at least two reactive groups) and an ECM protein.
- In some embodiments, the first functionalized PEG can be combined with the second functionalized PEG in a 1:1 ratio. In some embodiments, e.g., the functionalized PEGs can be combined in a ratio less than 1:1. For example, the two PEGs can have different number of functional groups and, as a result, the PEG stoichiometry could be altered. Alternatively, the crosslinking density may be altered by varying the polymer ratio. In some embodiments, the functionalized PEGs are combined in the solid phase. When preparing to deliver to a treatment site, the mixture can be suspended in a pH 6.5 buffer at approximately physiological osmolality, i.e., 280-300 mOsm/kg H2O. Examples of buffers include, but are not limited to dilute hydrogen chloride and citrate buffers.
- The second component can include a buffer in a pH range from approximately 7.5 to 9.5 at a concentration from about 140 mM to about 150 mM. Examples of buffers include sodium phosphate and sodium carbonate buffers. The buffer can be at approximately physiological osmolality, i.e., 280-300 mOsm/kg H2O. In some embodiments, the second component can include an —SH PEG and the buffer (or other functionalized PEG with at least two reactive groups).
- In some embodiments, a cell type can be added to the first component. Examples of cell types include, but are not limited to, localized cardiac progenitor cells, mesenchymal stem cells (osteoblasts, chondrocytes and fibroblasts), bone marrow derived mononuclear cells, adipose tissue derived stem cells, embryonic stem cells, umbilical-cord-blood-derived stem cells, smooth muscle cells or skeletal myoblasts. For example, human mesenchymal stem cells (hMSC) can be added to the first component. In some embodiments, a growth factor can be added to the first component. In some applications, the functionalized PEGs can react with the growth factors which could stabilize the growth factors, extend their half-life or provide a mode for controlled release of the growth factors. The growth factors can act to help survival of injected hMSC or endogenous progenitor cells at the infarct region. In addition, the growth factors can aid direct endogenous progenitor cells to the injury site.
- In general, cells do not attach to PEG surfaces or gels formed from PEG polymers. That is, PEG polymers do not provide a cytocompatible environment for cells. Collagen or gelatin or any other ECM protein such as fibronectin, may be added to improve cytocompatibility. However, in the case of collagen, for example, the collagen added to the mixture of PEGs can make the mixture very viscous and therefore not conducive with catheter delivery systems. It is anticipated that the pH of the first component and the concentration of the second component, as described in embodiments of the invention, will increase the cytocompatibility of the cell types even with an ECM protein present.
- In some embodiments, the first component can be combined with the second component to produce a bioscaffolding at an infarct region. When combined, the resulting bioscaffolding gel can be at a pH of between 6.8 and 7.4. Although the low buffer concentration of the second component may slow the reaction down, the resulting gel can enable improved cytocompatibility. The ECM protein can provide cell adhesion cites to enable cell spreading and migration. “Cell spreading” refers to the naturally occurring morphology that some cells attain when they are allowed to grow on cytocompatible surfaces. In the case of hMSC, the natural morphology is a flattened, spindle-shaped morphology. In some embodiments, the N-terminus and lysine and arginine side groups of the ECM may react with the —NHS PEG. This may provide better mechanical stability of the gel and reduce the tendency of the gel to swell. This reaction is what forms the gel.
- In some embodiments, the —NHS group of the —NHS PEG can be replaced with a vinyl constituent such as acrylate, vinylsulfone, vinyl ketone, allyl ester, allyl ketone or maleimide group(s). When mixed with an —SH PEG at appropriate conditions, these groups can react with the thiol group(s) of the —SH PEG through a Michael type reaction. Michael type reactions are well known by those skilled in the art. In some embodiments, the reaction could be activated with a buffer in a pH range of between about 6.0 and about 9.0, by a catalytic amount of various amines or a combination thereof. It is anticipated that a Michael type reaction would contribute to the long term stability of the resulting gel since thioether bonds are formed as compared to the more hydrolytically labile thioester bonds formed from the reaction of thiols with activated esters. In some embodiments, the —NHS group of the —NHS PEG can be replaced with a leaving group such as a nitrophenolate.
- In some embodiments, the —SH group of the —SH PEG can be replaced with an amino group to form an amide bond when combined with an —NHS or alternatively functionalized PEG.
- Devices which can be used to deliver each component of the gel include, but are not limited to, dual-needle left-ventricle injection devices, dual-needle transvascular wall injection and dual syringes. Methods of access to use the minimally invasive (i.e., percutaneous or endoscopic) injection devices include access via the femoral artery or the sub-xiphoid. “Xiphoid” or “xiphoid process” is a pointed cartilage attached to the lower end of the breastbone or sternum, the smallest and lowest division of the sternum. Both methods are known by those skilled in the art.
-
FIG. 4 illustrates an embodiment of a dual syringe device which can be used to deliver the compositions of the present invention.Dual syringe 400 can includefirst barrel 410 andsecond barrel 420 adjacent to one another and connected at aproximal end 455,distal end 460 andmiddle region 465 by 440, 445 and 450, respectively. In some embodiments,plates 410 and 420 can be connected by less than three plates. Eachbarrels 410 and 420 includesbarrel plunger 415 andplunger 425, respectively. 410 and 420 can terminate at a distal end intoBarrels 430 and 435, respectively, for extruding a substance. In some embodiments,needles 410 and 420 can terminate into cannula protrusions for extruding a substance.barrels 410 and 420 should be in close enough proximity to each other such that the substances in each respective barrel are capable of mixing with one another to form a bioscaffolding in the treatment area, e.g., a post-infarct myocardial region.Barrels Dual syringe 400 can be constructed of any metal or plastic which is minimally reactive or completely unreactive with the formulations described in the present invention. In some embodiments,dual syringe 400 includes a pre-mixing chamber attached todistal end 465. - In some applications,
first barrel 410 can include a first component of a two-component polyethylene glycol gelation system andsecond barrel 420 can include a second component of the system according to any of the embodiments described previously. A therapeutic amount of the resulting gel is between about 25 μL to about 200 μL, preferably about 50 μL.Dual syringe 400 can be used during, for example, an open chest surgical procedure. -
FIGS. 5A-5B illustrate an embodiment of a dual-needle injection device which can be used to deliver the compositions of the present invention.Delivery assembly 500 includeslumen 510 which may house delivery lumens, guidewire lumens and/or other lumens.Lumen 510, in this example, extends betweendistal portion 505 andproximal end 515 ofdelivery assembly 500. - In one embodiment,
delivery assembly 500 includesfirst needle 520 movably disposed withindelivery lumen 530.Delivery lumen 530 is, for example, a polymer tubing of a suitable material (e.g., polyamides, polyolefins, polyurethanes, etc.).First needle 520 is, for example, a stainless steel hypotube that extends a length of the delivery assembly.First needle 520 includes a lumen with an inside diameter of, for example, 0.08 inches (0.20 centimeters). In one example for a retractable needle catheter,first needle 520 has a needle length on the order of about 40 inches (about 1.6 meters) fromdistal portion 505 toproximal portion 515.Lumen 510 also includesauxiliary lumen 540 extending, in this example, co-linearly along the length of the catheter (from adistal portion 505 to proximal portion 515).Auxiliary lumen 540 is, for example, a polymer tubing of a suitable material (e.g., polyamides, polyolefins, polyurethanes, etc.). Atdistal portion 505,auxiliary lumen 540 is terminated at a delivery end ofsecond needle 550 and co-linearly aligned with a delivery end ofneedle 520.Auxiliary lumen 540 may be terminated to a delivery end ofsecond needle 550 with a radiation-curable adhesive, such as an ultraviolet curable adhesive.Second needle 550 is, for example, a stainless steel hypotube that is joined co-linearly to the end ofmain needle 520 by, for example, solder (illustrated as joint 555).Second needle 550 has a length on the order of about 0.08 inches (0.20 centimeters).FIG. 5B shows a cross-sectional front view through line A-A′ ofdelivery assembly 500.FIG. 5B showsmain needle 520 andsecond needle 550 in a co-linear alignment. - Referring to
FIG. 5A , atproximal portion 515,auxiliary lumen 540 is terminated toauxiliary side arm 460.Auxiliary side arm 560 includes a portion extending co-linearly withmain needle 520.Auxiliary side arm 560 is, for example, a stainless steel hypotube material that may be soldered to main needle 520 (illustrated as joint 565).Auxiliary side arm 560 has a co-linear length on the order of about, in one example, 1.2 inches (3 centimeters). - The proximal end of
main needle 520 includes adaptor 570 for accommodating a substance delivery device (e.g., a component of a two-component bioerodable gel material). Adaptor 570 is, for example, a molded female luer housing. Similarly, a proximal end ofauxiliary side arm 560 includesadaptor 580 to accommodate a substance delivery device (e.g., a female luer housing). - The design configuration described above with respect to
FIGS. 5A-5B is suitable for introducing two-component gel compositions of the present invention. For example, a gel may be formed by a combination (mixing, contact, etc.) of a first component and a second component. Representatively, a first component may be introduced by a one cubic centimeters syringe at adaptor 570 throughmain needle 520. At the same time or shortly before or after, second component including a silk protein and optionally a least one cell type may be introduced with a one cubic centimeter syringe atadaptor 580. When the first and second components combine at the exit of delivery assembly 500 (at an infarct region), the materials combine (mix, contact) to form a bioerodable gel. -
FIGS. 6A-6C illustrate an alternative embodiment of a dual-needle injection device which can be used to deliver two-component gel compositions of the present invention. In general, thecatheter assembly 600 provides a system for delivering substances, such as two-component gel compositions, to or through a desired area of a blood vessel (a physiological lumen) or tissue in order to treat a myocardial infarct region. Thecatheter assembly 600 is similar to thecatheter assembly 600 described in commonly-owned, U.S. Pat. No. 6,554,801, titled “Directional Needle Injection Drug Delivery Device”, which is incorporated herein by reference. - In one embodiment,
catheter assembly 600 is defined byelongated catheter body 650 havingproximal portion 620 anddistal portion 610.Guidewire cannula 670 is formed within catheter body (fromproximal portion 610 to distal portion 620) for allowingcatheter assembly 600 to be fed and maneuvered overguidewire 680.Balloon 630 is incorporated atdistal portion 610 ofcatheter assembly 600 and is in fluid communication withinflation cannula 660 ofcatheter assembly 600. -
Balloon 630 can be formed from balloon wall ormembrane 635 which is selectively inflatable to dilate from a collapsed configuration to a desired and controlled expanded configuration.Balloon 630 can be selectively dilated (inflated) by supplying a fluid intoinflation cannula 660 at a predetermined rate of pressure through inflation port 665 (located at proximal end 620).Balloon wall 635 is selectively deflatable, after inflation, to return to the collapsed configuration or a deflated profile.Balloon 630 may be dilated (inflated) by the introduction of a liquid intoinflation cannula 660. Liquids containing treatment and/or diagnostic agents may also be used to inflateballoon 630. In one embodiment,balloon 630 may be made of a material that is permeable to such treatment and/or diagnostic liquids. To inflateballoon 630, the fluid can be supplied intoinflation cannula 660 at a predetermined pressure, for example, between about one and 20 atmospheres. The specific pressure depends on various factors, such as the thickness ofballoon wall 635, the material from whichballoon wall 635 is made, the type of substance employed and the flow-rate that is desired. -
Catheter assembly 600 also includes at least two substance delivery assemblies 605 a and 605 b (not shown; seeFIGS. 6B-6C ) for injecting a substance into a myocardial infarct region. In one embodiment, substance delivery assembly 605 a includes needle 615 a movably disposed within hollow delivery lumen 625 a. Delivery assembly 605 b includes needle 615 b movably disposed within hollow delivery lumen 625 b (not shown; seeFIGS. 6B-6C ). Delivery lumen 625 a and delivery lumen 625 b each extend betweendistal portion 610 andproximal portion 620. Delivery lumen 625 a and delivery lumen 625 b can be made from any suitable material, such as polymers and copolymers of polyamides, polyolefins, polyurethanes and the like. Access to the proximal end of delivery lumen 625 a or delivery lumen 625 b for insertion of needle 615 a or 615 b, respectively is provided through hub 635 (located at proximal end 620). Delivery lumens 625 a and 625 b may be used to deliver first and second components of a two-component gel composition to a post-myocardial infarct region. -
FIG. 6B shows a cross-section ofcatheter assembly 600 through line A-A′ ofFIG. 6A (at distal portion 610).FIG. 6C shows a cross-section ofcatheter assembly 600 through line B-B′ ofFIG. 6A . In some embodiments, delivery assemblies 605 a and 605 b are adjacent to each other. The proximity of delivery assemblies 605 a and 605 b allows each component of the two-component gelation system to rapidly gel when delivered to a treatment site, such as a post-myocardial infarct region. - From the foregoing detailed description, it will be evident that there are a number of changes, adaptations and modifications of the present invention which come within the province of those skilled in the part. The scope of the invention includes any combination of the elements from the different species and embodiments disclosed herein, as well as subassemblies, assemblies and methods thereof. However, it is intended that all such variations not departing from the spirit of the invention be considered as within the scope thereof.
Claims (20)
1. A composition comprising:
a first mixture comprising a first functionalized polymer in a first buffer at approximately physiological osmolality;
a second buffer at approximately physiological osmolality;
a second functionalized polymer, wherein the second functionalized polymer is combined with one of the first mixture or the second buffer; and
a substance having at least one cell-adhesion site combined with the first mixture,
wherein the first mixture and the second buffer comprise a gel at pH 7.2 when combined.
2. The composition of claim 1 , wherein the first functionalized polymer is one of an activated ester-terminated polyethylene glycol or a vinyl-terminated polyethylene glycol.
3. The composition of claim 1 , wherein the second functionalized polymer is one of a thiol-terminated polyethylene glycol or an amino-terminated polyethylene glycol.
4. The composition of claim 1 , wherein the substance is a protein selected from the group consisting of gelatin, laminin, elastin, arginine-glycine-aspartic acid peptide sequence and peptide fragments thereof.
5. The composition of claim 1 , wherein the first mixture further comprises one of a cell type, a growth factor or a combination thereof.
6. The composition of claim 1 , wherein the first functionalized polymer and the second functionalized polymer has a functionality greater than four.
7. A kit comprising:
a first syringe including a first functionalized polymer and a substance having at least one cell-adhesion site in a first buffer at physiological osmolality; and
a second syringe including a second buffer at physiological osmolality.
8. The kit of claim 7 , wherein the first functionalized polymer is one of an activated ester-terminated polyethylene glycol or a vinyl-terminated polyethylene glycol.
9. The kit of claim 7 , wherein the second functionalized polymer is one of a thiol-terminated polyethylene glycol or an amino-terminated polyethylene glycol.
10. The kit of claim 7 , wherein the substance is a protein selected from the group consisting of gelatin, laminin, elastin, arginine-glycine-aspartic acid peptide sequence and peptide fragments thereof.
11. The kit of claim 7 , wherein the first mixture further comprises one of a cell type, a growth factor or a combination thereof.
12. A method of treatment comprising:
simultaneously injecting from a dual bore delivery device (a) a first mixture comprising a first functionalized polymer and a substance having at least one cell-adhesion site in a first buffer at physiological osmolality and (b) a second buffer at physiological osmolality to a post-myocardial infarct region.
13. The method of claim 12 , further comprising a second functionalized polymer, wherein the second functionalized polymer is combined with one of the first mixture or the second buffer.
14. The method of claim 12 , wherein the first functionalized polymer r is one of an activated ester-terminated polyethylene glycol or a vinyl-terminated polyethylene glycol.
15. The method of claim 13 , wherein the second functionalized polymer is one of a thiol-terminated polyethylene glycol or an amino-terminated polyethylene glycol.
16. The method of claim 12 , wherein the substance is a protein selected from the group consisting of gelatin, laminin, elastin, arginine-glycine-aspartic acid peptide sequence and peptide fragments thereof.
17. The method of claim 12 , wherein the first mixture further comprises one of a cell type, a growth factor or a combination thereof.
18. The method of claim 17 , wherein the cell type, the growth factor, or the combination thereof is combined with the first mixture.
19. The method of claim 13 , wherein the first functionalized polymer and the second functionalized polymer has a functionality greater than four.
20. The method of claim 13 , wherein the first mixture and the second buffer comprise a gel at pH 7.2 when combined.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/941,759 US20140017200A1 (en) | 2006-07-31 | 2013-07-15 | Modified two-component gelation systems, methods of use and methods of manufacture |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/496,824 US7732190B2 (en) | 2006-07-31 | 2006-07-31 | Modified two-component gelation systems, methods of use and methods of manufacture |
| US12/756,092 US8486386B2 (en) | 2006-07-31 | 2010-04-07 | Modified two-component gelation systems, methods of use and methods of manufacture |
| US12/756,119 US8486387B2 (en) | 2006-07-31 | 2010-04-07 | Modified two-component gelation systems, methods of use and methods of manufacture |
| US13/941,759 US20140017200A1 (en) | 2006-07-31 | 2013-07-15 | Modified two-component gelation systems, methods of use and methods of manufacture |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/756,092 Continuation US8486386B2 (en) | 2006-07-31 | 2010-04-07 | Modified two-component gelation systems, methods of use and methods of manufacture |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140017200A1 true US20140017200A1 (en) | 2014-01-16 |
Family
ID=38673478
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/496,824 Expired - Fee Related US7732190B2 (en) | 2006-07-31 | 2006-07-31 | Modified two-component gelation systems, methods of use and methods of manufacture |
| US12/756,092 Expired - Fee Related US8486386B2 (en) | 2006-07-31 | 2010-04-07 | Modified two-component gelation systems, methods of use and methods of manufacture |
| US12/756,119 Expired - Fee Related US8486387B2 (en) | 2006-07-31 | 2010-04-07 | Modified two-component gelation systems, methods of use and methods of manufacture |
| US13/941,759 Abandoned US20140017200A1 (en) | 2006-07-31 | 2013-07-15 | Modified two-component gelation systems, methods of use and methods of manufacture |
Family Applications Before (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/496,824 Expired - Fee Related US7732190B2 (en) | 2006-07-31 | 2006-07-31 | Modified two-component gelation systems, methods of use and methods of manufacture |
| US12/756,092 Expired - Fee Related US8486386B2 (en) | 2006-07-31 | 2010-04-07 | Modified two-component gelation systems, methods of use and methods of manufacture |
| US12/756,119 Expired - Fee Related US8486387B2 (en) | 2006-07-31 | 2010-04-07 | Modified two-component gelation systems, methods of use and methods of manufacture |
Country Status (4)
| Country | Link |
|---|---|
| US (4) | US7732190B2 (en) |
| EP (2) | EP2455065A1 (en) |
| JP (2) | JP2009545372A (en) |
| WO (1) | WO2008016490A2 (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10722631B2 (en) | 2018-02-01 | 2020-07-28 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
| US11185677B2 (en) | 2017-06-07 | 2021-11-30 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
| US11511103B2 (en) | 2017-11-13 | 2022-11-29 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
| US11654275B2 (en) | 2019-07-22 | 2023-05-23 | Shifamed Holdings, Llc | Intravascular blood pumps with struts and methods of use and manufacture |
| US11724089B2 (en) | 2019-09-25 | 2023-08-15 | Shifamed Holdings, Llc | Intravascular blood pump systems and methods of use and control thereof |
| US11964145B2 (en) | 2019-07-12 | 2024-04-23 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of manufacture and use |
| US12102815B2 (en) | 2019-09-25 | 2024-10-01 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible pump housings |
| US12121713B2 (en) | 2019-09-25 | 2024-10-22 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible blood conduits |
| US12161857B2 (en) | 2018-07-31 | 2024-12-10 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use |
| US12220570B2 (en) | 2018-10-05 | 2025-02-11 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use |
| US12409310B2 (en) | 2019-12-11 | 2025-09-09 | Shifamed Holdings, Llc | Descending aorta and vena cava blood pumps |
| US12465748B2 (en) | 2019-08-07 | 2025-11-11 | Supira Medical, Inc. | Catheter blood pumps and collapsible pump housings |
Families Citing this family (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1041032C (en) * | 1993-04-03 | 1998-12-02 | 施内德电气公司 | Unit for connecting of model low voltage breaker |
| US6702744B2 (en) | 2001-06-20 | 2004-03-09 | Advanced Cardiovascular Systems, Inc. | Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery |
| US8608661B1 (en) | 2001-11-30 | 2013-12-17 | Advanced Cardiovascular Systems, Inc. | Method for intravascular delivery of a treatment agent beyond a blood vessel wall |
| US7361368B2 (en) | 2002-06-28 | 2008-04-22 | Advanced Cardiovascular Systems, Inc. | Device and method for combining a treatment agent and a gel |
| US8038991B1 (en) | 2003-04-15 | 2011-10-18 | Abbott Cardiovascular Systems Inc. | High-viscosity hyaluronic acid compositions to treat myocardial conditions |
| US8821473B2 (en) | 2003-04-15 | 2014-09-02 | Abbott Cardiovascular Systems Inc. | Methods and compositions to treat myocardial conditions |
| US8383158B2 (en) * | 2003-04-15 | 2013-02-26 | Abbott Cardiovascular Systems Inc. | Methods and compositions to treat myocardial conditions |
| US8828433B2 (en) * | 2005-04-19 | 2014-09-09 | Advanced Cardiovascular Systems, Inc. | Hydrogel bioscaffoldings and biomedical device coatings |
| US8187621B2 (en) | 2005-04-19 | 2012-05-29 | Advanced Cardiovascular Systems, Inc. | Methods and compositions for treating post-myocardial infarction damage |
| US9539410B2 (en) | 2005-04-19 | 2017-01-10 | Abbott Cardiovascular Systems Inc. | Methods and compositions for treating post-cardial infarction damage |
| US20080125745A1 (en) * | 2005-04-19 | 2008-05-29 | Shubhayu Basu | Methods and compositions for treating post-cardial infarction damage |
| US8303972B2 (en) * | 2005-04-19 | 2012-11-06 | Advanced Cardiovascular Systems, Inc. | Hydrogel bioscaffoldings and biomedical device coatings |
| US7732190B2 (en) * | 2006-07-31 | 2010-06-08 | Advanced Cardiovascular Systems, Inc. | Modified two-component gelation systems, methods of use and methods of manufacture |
| US9242005B1 (en) | 2006-08-21 | 2016-01-26 | Abbott Cardiovascular Systems Inc. | Pro-healing agent formulation compositions, methods and treatments |
| US9005672B2 (en) | 2006-11-17 | 2015-04-14 | Abbott Cardiovascular Systems Inc. | Methods of modifying myocardial infarction expansion |
| US8741326B2 (en) | 2006-11-17 | 2014-06-03 | Abbott Cardiovascular Systems Inc. | Modified two-component gelation systems, methods of use and methods of manufacture |
| US8192760B2 (en) | 2006-12-04 | 2012-06-05 | Abbott Cardiovascular Systems Inc. | Methods and compositions for treating tissue using silk proteins |
| US9358369B1 (en) | 2008-08-13 | 2016-06-07 | Abbott Cardiovascular Systems Inc. | Reduced profile and enhanced flexibility delivery catheters for light activated agents |
| US8170657B1 (en) | 2008-08-13 | 2012-05-01 | Abbott Cadiovascular Systems Inc. | Delivery catheters for light activated agents |
| US9370306B1 (en) | 2008-08-13 | 2016-06-21 | Abbott Cardiovascular System Inc. | Methods and devices for in vivo targeted light therapy |
| US9445795B2 (en) * | 2009-10-16 | 2016-09-20 | Confluent Surgical, Inc. | Prevention of premature gelling of delivery devices for pH dependent forming materials |
| US8372054B2 (en) * | 2009-10-27 | 2013-02-12 | Medtronic Vascular, Inc. | Over-the-wire balloon catheter for efficient targeted cell delivery |
| ES3005334T3 (en) | 2010-07-09 | 2025-03-14 | Gid Bio Inc | Apparatus and methods relating to collecting and processing human biological material containing adipose |
| US9296984B2 (en) | 2010-07-09 | 2016-03-29 | The Gid Group, Inc. | Tissue processing apparatus and method for processing adipose tissue |
| WO2013106655A1 (en) | 2012-01-11 | 2013-07-18 | The Gid Group, Inc. | Method for processing adipose tissue and processing apparatus |
| US9206387B2 (en) | 2010-07-09 | 2015-12-08 | The Gid Group, Inc. | Method and apparatus for processing adipose tissue |
| US8524215B2 (en) | 2010-08-02 | 2013-09-03 | Janssen Biotech, Inc. | Absorbable PEG-based hydrogels |
| US8377033B2 (en) | 2010-09-08 | 2013-02-19 | Abbott Cardiovascular Systems Inc. | Methods of modifying myocardial infarction expansion |
| JP6188285B2 (en) * | 2012-07-13 | 2017-08-30 | キヤノン株式会社 | Image processing apparatus, image processing apparatus control method, and program |
| BR112015004003B1 (en) | 2012-09-06 | 2020-05-19 | The Gid Group, Inc. | apparatus for processing human biological material containing fibrous tissue and method for processing adipose tissue |
| CN105007896B (en) | 2012-12-28 | 2019-04-09 | 雅培心血管系统公司 | Therapeutic compositions comprising antibodies |
| US20150064143A1 (en) * | 2013-09-04 | 2015-03-05 | Industry-University Cooperation Foundation Hanyang University | Ionically cross-linkable alginate-grafted hyaluronate compound |
| US10336980B2 (en) | 2013-09-05 | 2019-07-02 | The Gid Group, Inc. | Tissue processing apparatus and method for processing adipose tissue |
| BR112016025266A2 (en) | 2014-05-02 | 2017-08-15 | Lifecell Corp | surgical instruments and adipose tissue transplantation method |
| EP3365430B1 (en) | 2015-10-21 | 2019-12-04 | LifeCell Corporation | Systems and methods for tube management |
| CN108291201A (en) | 2015-10-21 | 2018-07-17 | 生命细胞公司 | System and method for medical treatment device control |
| WO2017112755A1 (en) | 2015-12-22 | 2017-06-29 | Lifecell Corporation | Syringe filling device for fat transfer |
| WO2018044791A1 (en) | 2016-08-30 | 2018-03-08 | Lifecell Corporation | Systems and methods for medical device control |
| US20180085555A1 (en) * | 2016-09-26 | 2018-03-29 | Boston Scientific Scimed, Inc. | Injection catheter |
| USD851777S1 (en) | 2017-01-30 | 2019-06-18 | Lifecell Corporation | Canister-type device for tissue processing |
| WO2019018002A1 (en) | 2017-07-18 | 2019-01-24 | The Gid Group, Inc. | Adipose tissue digestion system and tissue processing method |
| KR20210089406A (en) | 2020-01-08 | 2021-07-16 | 주식회사 에스앤에스텍 | Reflective type Blankmask for EUV, and Method for manufacturing the same |
Family Cites Families (268)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2194144B (en) | 1986-08-22 | 1990-04-25 | American Cyanamid Co | Stable pharmaceutical gel preparation |
| US2512569A (en) | 1947-09-26 | 1950-06-20 | Jacob A Saffir | Hypodermic needle |
| US3144868A (en) | 1960-10-21 | 1964-08-18 | Mario E Jascalevich | Drainage and feeding cannulae |
| US3584624A (en) | 1969-02-24 | 1971-06-15 | Vincent L De Ciutiis | Flexible intravenous catheter provided with cutting tip means |
| US3780733A (en) | 1972-07-24 | 1973-12-25 | Manzor M Martinez | Catheter |
| US3890976A (en) | 1972-10-26 | 1975-06-24 | Medical Products Corp | Catheter tip assembly |
| US3804097A (en) | 1972-12-14 | 1974-04-16 | P Rudie | Method of irrigating and treating an abcess |
| US6436135B1 (en) | 1974-10-24 | 2002-08-20 | David Goldfarb | Prosthetic vascular graft |
| US4141973A (en) | 1975-10-17 | 1979-02-27 | Biotrics, Inc. | Ultrapure hyaluronic acid and the use thereof |
| JPS60126170A (en) | 1983-12-14 | 1985-07-05 | テルモ株式会社 | Catheter and its production |
| US5128326A (en) | 1984-12-06 | 1992-07-07 | Biomatrix, Inc. | Drug delivery systems based on hyaluronans derivatives thereof and their salts and methods of producing same |
| US4617186A (en) | 1984-12-28 | 1986-10-14 | Alcon Laboratories, Inc. | Sustained release drug delivery system utilizing bioadhesive polymers |
| US5000185A (en) | 1986-02-28 | 1991-03-19 | Cardiovascular Imaging Systems, Inc. | Method for intravascular two-dimensional ultrasonography and recanalization |
| US4794931A (en) | 1986-02-28 | 1989-01-03 | Cardiovascular Imaging Systems, Inc. | Catheter apparatus, system and method for intravascular two-dimensional ultrasonography |
| US5026350A (en) | 1986-10-09 | 1991-06-25 | Hakko Electric Machine Works Co., Ltd. | Set of double needles for injecting liquid medicine |
| CH673117A5 (en) | 1986-12-10 | 1990-02-15 | Ajinomoto Kk | |
| FR2627984B1 (en) | 1988-03-03 | 1990-08-17 | Sanofi Sa | PULVERULENT COMPOSITION BASED ON ALGINATE FOR DENTAL IMPRESSIONS |
| US5372138A (en) | 1988-03-21 | 1994-12-13 | Boston Scientific Corporation | Acousting imaging catheters and the like |
| US5588432A (en) | 1988-03-21 | 1996-12-31 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
| US5116317A (en) | 1988-06-16 | 1992-05-26 | Optimed Technologies, Inc. | Angioplasty catheter with integral fiber optic assembly |
| US5575815A (en) | 1988-08-24 | 1996-11-19 | Endoluminal Therapeutics, Inc. | Local polymeric gel therapy |
| US5843156A (en) | 1988-08-24 | 1998-12-01 | Endoluminal Therapeutics, Inc. | Local polymeric gel cellular therapy |
| AU4191989A (en) | 1988-08-24 | 1990-03-23 | Marvin J. Slepian | Biodegradable polymeric endoluminal sealing |
| US5634946A (en) | 1988-08-24 | 1997-06-03 | Focal, Inc. | Polymeric endoluminal paving process |
| US5092848A (en) | 1988-10-13 | 1992-03-03 | Deciutiis Vincent L | Intravenous catheter with built-in cutting tip and method for making the same |
| US5162430A (en) | 1988-11-21 | 1992-11-10 | Collagen Corporation | Collagen-polymer conjugates |
| US5049130A (en) | 1988-12-23 | 1991-09-17 | Cardiovascular Imaging Systems, Inc. | System and method for pressure filling of catheters |
| DE3908183C5 (en) | 1989-03-14 | 2005-01-05 | Kiekert Ag | Motor vehicle door lock |
| US5109859A (en) | 1989-10-04 | 1992-05-05 | Beth Israel Hospital Association | Ultrasound guided laser angioplasty |
| US5024234A (en) | 1989-10-17 | 1991-06-18 | Cardiovascular Imaging Systems, Inc. | Ultrasonic imaging catheter with guidewire channel |
| US5485486A (en) | 1989-11-07 | 1996-01-16 | Qualcomm Incorporated | Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system |
| WO1991007154A1 (en) | 1989-11-13 | 1991-05-30 | President And Fellows Of Harvard College | EXTRALUMINAL REGULATION OF THE GROWTH AND REPAIR OF TUBULAR STRUCTURES ιIN VIVO |
| US5674192A (en) | 1990-12-28 | 1997-10-07 | Boston Scientific Corporation | Drug delivery |
| US5811533A (en) * | 1990-06-11 | 1998-09-22 | Nexstar Pharmaceuticals, Inc. | High-affinity oligonucleotide ligands to vascular endothelial growth factor (VEGF) |
| FR2668698B1 (en) | 1990-11-06 | 1997-06-06 | Ethnor | SURGICAL INSTRUMENT FORMING TROCART. |
| US5202745A (en) | 1990-11-07 | 1993-04-13 | Hewlett-Packard Company | Polarization independent optical coherence-domain reflectometry |
| ATE157269T1 (en) | 1990-12-17 | 1997-09-15 | Cardiovascular Imaging Systems | VASCULAR CATHETER HAVING A LOW PROFILE DISTAL END |
| US5171217A (en) | 1991-02-28 | 1992-12-15 | Indiana University Foundation | Method for delivery of smooth muscle cell inhibitors |
| US6134003A (en) | 1991-04-29 | 2000-10-17 | Massachusetts Institute Of Technology | Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope |
| DE69227902T3 (en) | 1991-04-29 | 2010-04-22 | Massachusetts Institute Of Technology, Cambridge | DEVICE FOR OPTICAL IMAGING AND MEASUREMENT |
| US5465147A (en) | 1991-04-29 | 1995-11-07 | Massachusetts Institute Of Technology | Method and apparatus for acquiring images using a ccd detector array and no transverse scanner |
| SE9101853D0 (en) | 1991-06-17 | 1991-06-17 | Jonas Wadstroem | IMPROVED TISSUE ASHESIVE |
| US5270300A (en) | 1991-09-06 | 1993-12-14 | Robert Francis Shaw | Methods and compositions for the treatment and repair of defects or lesions in cartilage or bone |
| US5291267A (en) | 1992-01-22 | 1994-03-01 | Hewlett-Packard Company | Optical low-coherence reflectometry using optical amplification |
| DE69333482T2 (en) | 1992-02-21 | 2005-03-24 | Boston Scientific Ltd., Barbados | Catheter for imaging by means of ultrasound |
| US6231881B1 (en) | 1992-02-24 | 2001-05-15 | Anton-Lewis Usala | Medium and matrix for long-term proliferation of cells |
| US5573934A (en) | 1992-04-20 | 1996-11-12 | Board Of Regents, The University Of Texas System | Gels for encapsulation of biological materials |
| MX9301823A (en) | 1992-03-30 | 1994-01-31 | Alza Corp | COMPOSITION FOR THE SUPPLY OF CONTROLLED RELEASE OF A BIOLOGICALLY ACTIVE AGENT. |
| US5306250A (en) | 1992-04-02 | 1994-04-26 | Indiana University Foundation | Method and apparatus for intravascular drug delivery |
| JP3063935B2 (en) | 1992-05-12 | 2000-07-12 | 宇部興産株式会社 | Polyimide siloxane composition having adhesiveness, heat resistance and curl resistance |
| US5336252A (en) | 1992-06-22 | 1994-08-09 | Cohen Donald M | System and method for implanting cardiac electrical leads |
| US5365325A (en) | 1992-08-10 | 1994-11-15 | Hitachi, Ltd. | Method of multi-color recording using electro-photography process and apparatus therefor wherein mixed colors generation is prevented |
| US5672153A (en) | 1992-08-12 | 1997-09-30 | Vidamed, Inc. | Medical probe device and method |
| DE4235506A1 (en) | 1992-10-21 | 1994-04-28 | Bavaria Med Tech | Drug injection catheter |
| US5981568A (en) | 1993-01-28 | 1999-11-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
| US6689608B1 (en) | 1993-02-01 | 2004-02-10 | Massachusetts Institute Of Technology | Porous biodegradable polymeric materials for cell transplantation |
| EP2025353A2 (en) | 1993-04-30 | 2009-02-18 | Massachusetts Institute of Technology | Injectable polysaccharide-cell compositions |
| US5709854A (en) | 1993-04-30 | 1998-01-20 | Massachusetts Institute Of Technology | Tissue formation by injecting a cell-polymeric solution that gels in vivo |
| US5437632A (en) | 1993-06-02 | 1995-08-01 | Target Therapeutics, Inc. | Variable stiffness balloon catheter |
| US5725551A (en) | 1993-07-26 | 1998-03-10 | Myers; Gene | Method and apparatus for arteriotomy closure |
| US5527322A (en) | 1993-11-08 | 1996-06-18 | Perclose, Inc. | Device and method for suturing of internal puncture sites |
| JP2833456B2 (en) | 1993-11-22 | 1998-12-09 | 株式会社東芝 | Insertable ultrasound system |
| US5380292A (en) | 1993-12-22 | 1995-01-10 | Wilson-Cook Medical, Inc. | Gastrointestinal needle mechanism |
| US5795331A (en) | 1994-01-24 | 1998-08-18 | Micro Therapeutics, Inc. | Balloon catheter for occluding aneurysms of branch vessels |
| FR2715855A1 (en) | 1994-02-10 | 1995-08-11 | Floch Serge | Protector for syringe used with beta-radiation emitter |
| US6334872B1 (en) | 1994-02-18 | 2002-01-01 | Organogenesis Inc. | Method for treating diseased or damaged organs |
| DE4408108A1 (en) | 1994-03-10 | 1995-09-14 | Bavaria Med Tech | Catheter for injecting a fluid or a drug |
| US5464395A (en) | 1994-04-05 | 1995-11-07 | Faxon; David P. | Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway |
| DE69535752D1 (en) | 1994-04-13 | 2008-06-26 | Biotransplant Inc | ALPHA (1,3) GALACTOSYL TRANSFERASE NEGATIVE PIG |
| ATE219343T1 (en) | 1994-04-29 | 2002-07-15 | Scimed Life Systems Inc | STENT WITH COLLAGEN |
| US6056744A (en) | 1994-06-24 | 2000-05-02 | Conway Stuart Medical, Inc. | Sphincter treatment apparatus |
| US5621610A (en) | 1994-06-30 | 1997-04-15 | Compaq Computer Corporation | Collapsible computer keyboard structure with associated collapsible pointing stick |
| US5580856A (en) | 1994-07-15 | 1996-12-03 | Prestrelski; Steven J. | Formulation of a reconstituted protein, and method and kit for the production thereof |
| IL110367A (en) | 1994-07-19 | 2007-05-15 | Colbar Lifescience Ltd | Collagen-based matrix |
| US6152141A (en) | 1994-07-28 | 2000-11-28 | Heartport, Inc. | Method for delivery of therapeutic agents to the heart |
| US5516532A (en) | 1994-08-05 | 1996-05-14 | Children's Medical Center Corporation | Injectable non-immunogenic cartilage and bone preparation |
| US5740808A (en) | 1996-10-28 | 1998-04-21 | Ep Technologies, Inc | Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions |
| WO1996011671A1 (en) | 1994-10-12 | 1996-04-25 | Focal, Inc. | Targeted delivery via biodegradable polymers |
| US6099864A (en) | 1994-12-02 | 2000-08-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | In situ activation of microcapsules |
| FR2727692A1 (en) | 1994-12-05 | 1996-06-07 | Europ Propulsion | GAS EXTRACTION DEVICE FOR A CHEMICAL STEAM INFILTRATION OVEN OR VAPOR DEPOSIT IN A PLANT FOR MANUFACTURING PARTS OF COMPOSITE MATERIAL |
| US5810885A (en) | 1994-12-28 | 1998-09-22 | Omrix Biopharm Sa | Device for applying one or several fluids |
| US5919570A (en) | 1995-02-01 | 1999-07-06 | Schneider Inc. | Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices |
| US5551427A (en) | 1995-02-13 | 1996-09-03 | Altman; Peter A. | Implantable device for the effective elimination of cardiac arrhythmogenic sites |
| US5869127A (en) | 1995-02-22 | 1999-02-09 | Boston Scientific Corporation | Method of providing a substrate with a bio-active/biocompatible coating |
| US5580714A (en) * | 1995-03-08 | 1996-12-03 | Celox Laboratories, Inc. | Cryopreservation solution |
| US5906934A (en) | 1995-03-14 | 1999-05-25 | Morphogen Pharmaceuticals, Inc. | Mesenchymal stem cells for cartilage repair |
| US5554389A (en) | 1995-04-07 | 1996-09-10 | Purdue Research Foundation | Urinary bladder submucosa derived tissue graft |
| US5669883A (en) | 1995-04-12 | 1997-09-23 | Symbiosis Corporation | Veress needle and cannula assembly |
| US6251104B1 (en) | 1995-05-10 | 2001-06-26 | Eclipse Surgical Technologies, Inc. | Guiding catheter system for ablating heart tissue |
| US5919449A (en) | 1995-05-30 | 1999-07-06 | Diacrin, Inc. | Porcine cardiomyocytes and their use in treatment of insufficient cardiac function |
| US5900433A (en) | 1995-06-23 | 1999-05-04 | Cormedics Corp. | Vascular treatment method and apparatus |
| US6102904A (en) | 1995-07-10 | 2000-08-15 | Interventional Technologies, Inc. | Device for injecting fluid into a wall of a blood vessel |
| US5693029A (en) | 1995-07-10 | 1997-12-02 | World Medical Manufacturing Corporation | Pro-cell intra-cavity therapeutic agent delivery device |
| US6143211A (en) | 1995-07-21 | 2000-11-07 | Brown University Foundation | Process for preparing microparticles through phase inversion phenomena |
| AU7254896A (en) | 1995-10-05 | 1997-04-28 | Genentech Inc. | Improved angiogenesis using hepatocyte growth factor |
| IL124038A (en) | 1995-10-13 | 2004-02-19 | Transvascular Inc | A device for bypassing arterial blockages and / or performing transcendental processes |
| US6726677B1 (en) | 1995-10-13 | 2004-04-27 | Transvascular, Inc. | Stabilized tissue penetrating catheters |
| US5642234A (en) | 1995-10-30 | 1997-06-24 | Lumatec Industries, Inc. | Illuminated magnifying lens assembly |
| US6482231B1 (en) | 1995-11-20 | 2002-11-19 | Giovanni Abatangelo | Biological material for the repair of connective tissue defects comprising mesenchymal stem cells and hyaluronic acid derivative |
| US6458889B1 (en) | 1995-12-18 | 2002-10-01 | Cohesion Technologies, Inc. | Compositions and systems for forming crosslinked biomaterials and associated methods of preparation and use |
| EP1704878B1 (en) * | 1995-12-18 | 2013-04-10 | AngioDevice International GmbH | Crosslinked polymer compositions and methods for their use |
| US5941868A (en) | 1995-12-22 | 1999-08-24 | Localmed, Inc. | Localized intravascular delivery of growth factors for promotion of angiogenesis |
| US6632436B2 (en) | 1996-01-25 | 2003-10-14 | Genitrix Llc | Vaccine compositions and method of modulating immune responses |
| AU737078C (en) | 1996-05-24 | 2002-05-02 | Angiotech Pharmaceuticals, Inc. | Compositions and methods for treating or preventing diseases of body passageways |
| EP0907721A1 (en) | 1996-05-28 | 1999-04-14 | Brown University Research Foundation | Hyaluronan based biodegradable scaffolds for tissue repair |
| US5785689A (en) | 1996-07-18 | 1998-07-28 | Act Medical, Inc. | Endoscopic catheter sheath position control |
| US5655548A (en) | 1996-09-16 | 1997-08-12 | Circulation, Inc. | Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion |
| US5957941A (en) | 1996-09-27 | 1999-09-28 | Boston Scientific Corporation | Catheter system and drive assembly thereof |
| US5827313A (en) | 1996-09-27 | 1998-10-27 | Boston Scientific Corporation | Device for controlled longitudinal movement of an operative element within a catheter sheath and method |
| US5722403A (en) | 1996-10-28 | 1998-03-03 | Ep Technologies, Inc. | Systems and methods using a porous electrode for ablating and visualizing interior tissue regions |
| US5980887A (en) | 1996-11-08 | 1999-11-09 | St. Elizabeth's Medical Center Of Boston | Methods for enhancing angiogenesis with endothelial progenitor cells |
| EP0842640A1 (en) | 1996-11-13 | 1998-05-20 | Sulzer Osypka GmbH | Heart catheter with electrode positioned on a distensible element |
| ZA9710342B (en) | 1996-11-25 | 1998-06-10 | Alza Corp | Directional drug delivery stent and method of use. |
| US6102926A (en) | 1996-12-02 | 2000-08-15 | Angiotrax, Inc. | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use |
| US6120520A (en) | 1997-05-27 | 2000-09-19 | Angiotrax, Inc. | Apparatus and methods for stimulating revascularization and/or tissue growth |
| US5730732A (en) | 1996-12-04 | 1998-03-24 | Ethicon, Inc. | Non-magnetic stainless steel surgical needle |
| US5935160A (en) | 1997-01-24 | 1999-08-10 | Cardiac Pacemakers, Inc. | Left ventricular access lead for heart failure pacing |
| JP3134287B2 (en) | 1997-01-30 | 2001-02-13 | 株式会社ニッショー | Catheter assembly for endocardial suture surgery |
| US5980551A (en) | 1997-02-07 | 1999-11-09 | Endovasc Ltd., Inc. | Composition and method for making a biodegradable drug delivery stent |
| US5968064A (en) | 1997-02-28 | 1999-10-19 | Lumend, Inc. | Catheter system for treating a vascular occlusion |
| US6045565A (en) | 1997-11-04 | 2000-04-04 | Scimed Life Systems, Inc. | Percutaneous myocardial revascularization growth factor mediums and method |
| US6093177A (en) | 1997-03-07 | 2000-07-25 | Cardiogenesis Corporation | Catheter with flexible intermediate section |
| US6416510B1 (en) | 1997-03-13 | 2002-07-09 | Biocardia, Inc. | Drug delivery catheters that attach to tissue and methods for their use |
| US6443949B2 (en) | 1997-03-13 | 2002-09-03 | Biocardia, Inc. | Method of drug delivery to interstitial regions of the myocardium |
| US6086582A (en) | 1997-03-13 | 2000-07-11 | Altman; Peter A. | Cardiac drug delivery system |
| WO1998043555A1 (en) | 1997-04-03 | 1998-10-08 | Point Biomedical Corporation | Intravesical drug delivery system |
| US5984908A (en) | 1997-04-10 | 1999-11-16 | Chase Medical Inc | Venous return catheter having integral support member |
| US6099832A (en) | 1997-05-28 | 2000-08-08 | Genzyme Corporation | Transplants for myocardial scars |
| DE19734220C2 (en) | 1997-08-07 | 2000-01-13 | Pulsion Verwaltungs Gmbh & Co | Catheter system with an insertion wire |
| EP1009317A4 (en) | 1997-08-28 | 2001-01-24 | Boston Scient Corp | System for implanting a cross-linked polysaccharide fiber and methods of forming and inserting the fiber |
| WO1999011287A1 (en) | 1997-09-04 | 1999-03-11 | Osiris Therapeutics, Inc. | Ligands that modulate differentiation of mesenchymal stem cells |
| US6050949A (en) | 1997-09-22 | 2000-04-18 | Scimed Life Systems, Inc. | Catheher system having connectable distal and proximal portions |
| US6183444B1 (en) | 1998-05-16 | 2001-02-06 | Microheart, Inc. | Drug delivery module |
| US6179809B1 (en) | 1997-09-24 | 2001-01-30 | Eclipse Surgical Technologies, Inc. | Drug delivery catheter with tip alignment |
| US6371935B1 (en) | 1999-01-22 | 2002-04-16 | Cardeon Corporation | Aortic catheter with flow divider and methods for preventing cerebral embolization |
| WO1999017784A1 (en) | 1997-10-07 | 1999-04-15 | Regents Of The University Of California Corporation | Treating occlusive peripheral vascular disease and coronary disease with combinations of heparin and an adenoside a2 agonist, or with adenosine |
| IL122153A (en) * | 1997-11-10 | 2005-03-20 | Alomone Labs Ltd | Biocompatible polymeric coating material |
| US6391311B1 (en) | 1998-03-17 | 2002-05-21 | Genentech, Inc. | Polypeptides having homology to vascular endothelial cell growth factor and bone morphogenetic protein 1 |
| US6146373A (en) | 1997-10-17 | 2000-11-14 | Micro Therapeutics, Inc. | Catheter system and method for injection of a liquid embolic composition and a solidification agent |
| US6458095B1 (en) | 1997-10-22 | 2002-10-01 | 3M Innovative Properties Company | Dispenser for an adhesive tissue sealant having a housing with multiple cavities |
| US6749617B1 (en) | 1997-11-04 | 2004-06-15 | Scimed Life Systems, Inc. | Catheter and implants for the delivery of therapeutic agents to tissues |
| US6151525A (en) | 1997-11-07 | 2000-11-21 | Medtronic, Inc. | Method and system for myocardial identifier repair |
| US6183432B1 (en) | 1997-11-13 | 2001-02-06 | Lumend, Inc. | Guidewire and catheter with rotating and reciprocating symmetrical or asymmetrical distal tip |
| US6197324B1 (en) | 1997-12-18 | 2001-03-06 | C. R. Bard, Inc. | System and methods for local delivery of an agent |
| US6217527B1 (en) | 1998-09-30 | 2001-04-17 | Lumend, Inc. | Methods and apparatus for crossing vascular occlusions |
| US6371992B1 (en) | 1997-12-19 | 2002-04-16 | The Regents Of The University Of California | Acellular matrix grafts: preparation and use |
| US6231546B1 (en) | 1998-01-13 | 2001-05-15 | Lumend, Inc. | Methods and apparatus for crossing total occlusions in blood vessels |
| US6187330B1 (en) | 1998-01-30 | 2001-02-13 | Scios Inc. | Controlled release delivery of peptide or protein |
| US6221425B1 (en) | 1998-01-30 | 2001-04-24 | Advanced Cardiovascular Systems, Inc. | Lubricious hydrophilic coating for an intracorporeal medical device |
| DE69838526T2 (en) | 1998-02-05 | 2008-07-03 | Biosense Webster, Inc., Diamond Bar | Device for releasing a drug in the heart |
| EP0938871A3 (en) | 1998-02-27 | 2001-03-07 | ECLIPSE SURGICAL TECHNOLOGIES, Inc. | Surgical apparatus |
| US6201608B1 (en) | 1998-03-13 | 2001-03-13 | Optical Biopsy Technologies, Inc. | Method and apparatus for measuring optical reflectivity and imaging through a scattering medium |
| US6175669B1 (en) | 1998-03-30 | 2001-01-16 | The Regents Of The Universtiy Of California | Optical coherence domain reflectometry guidewire |
| IL138666A0 (en) | 1998-03-31 | 2001-10-31 | Transvascular Inc | Catheters, systems and methods for percutaneous in situ arterio-venous bypass |
| US5979449A (en) | 1998-04-09 | 1999-11-09 | Steer; Eugene Lyle | Oral appliance device and method for use thereof for appetite suppression |
| US6206914B1 (en) | 1998-04-30 | 2001-03-27 | Medtronic, Inc. | Implantable system with drug-eluting cells for on-demand local drug delivery |
| ATE358456T1 (en) | 1998-05-05 | 2007-04-15 | Boston Scient Ltd | STENT WITH SMOOTH ENDS |
| US6447504B1 (en) | 1998-07-02 | 2002-09-10 | Biosense, Inc. | System for treatment of heart tissue using viability map |
| US6102887A (en) | 1998-08-11 | 2000-08-15 | Biocardia, Inc. | Catheter drug delivery system and method for use |
| CA2339330A1 (en) | 1998-08-13 | 2000-02-24 | University Of Southern California | Methods to increase blood flow to ischemic tissue |
| US6632457B1 (en) | 1998-08-14 | 2003-10-14 | Incept Llc | Composite hydrogel drug delivery systems |
| US6191144B1 (en) | 1998-08-17 | 2001-02-20 | Warner-Lambert Company | Method of using angiotensin converting enzyme inhibitor to stimulate angiogenesis |
| CA2340652C (en) | 1998-08-20 | 2013-09-24 | Cook Incorporated | Coated implantable medical device comprising paclitaxel |
| JP2002524425A (en) | 1998-09-04 | 2002-08-06 | サイオス インコーポレイテッド | Hydrogel compositions for sustained release administration of growth factors |
| US6044298A (en) | 1998-10-13 | 2000-03-28 | Cardiac Pacemakers, Inc. | Optimization of pacing parameters based on measurement of integrated acoustic noise |
| US6162202A (en) | 1998-10-26 | 2000-12-19 | Sicurelli; Robert | Flexible syringe needle |
| CA2349168C (en) | 1998-11-10 | 2009-01-06 | Denki Kagaku Kogyo Kabushiki Kaisha | Hyaluronic acid gel, method of its production and medical material containing it |
| US6761887B1 (en) | 1998-11-16 | 2004-07-13 | Osiris Therapeutics, Inc. | Alginate layer system for chondrogenic differentiation of human mesenchymal stem cells |
| DE19855890A1 (en) | 1998-12-03 | 2000-06-08 | Nerlich Michael | Porous composite matrix, its production and use |
| KR20010040761A (en) | 1998-12-09 | 2001-05-15 | 쿡 인코포레이티드 | Hollow, Curved, Superelastic Medical Needle |
| US6193763B1 (en) | 1998-12-17 | 2001-02-27 | Robert A. Mackin | Apparatus and method for contemporaneous treatment and fluoroscopic mapping of body tissue |
| US6328229B1 (en) | 1998-12-18 | 2001-12-11 | Cohesion Technologies, Inc. | Low volume mixing spray head for mixing and dispensing of two reactive fluid components |
| US6338717B1 (en) | 1998-12-22 | 2002-01-15 | Asahi Kogaku Kogyo Kabushiki Kaisha | Tip of ultrasonic endoscope |
| US6210392B1 (en) | 1999-01-15 | 2001-04-03 | Interventional Technologies, Inc. | Method for treating a wall of a blood vessel |
| WO2000041732A1 (en) | 1999-01-19 | 2000-07-20 | The Children's Hospital Of Philadelphia | Hydrogel compositions for controlled delivery of virus vectors and methods of use thereof |
| US6217528B1 (en) * | 1999-02-11 | 2001-04-17 | Scimed Life Systems, Inc. | Loop structure having improved tissue contact capability |
| US6217554B1 (en) | 1999-02-12 | 2001-04-17 | Pharmaspec Corporation | Methods and apparatus for delivering substances into extravascular tissue |
| US20020090725A1 (en) | 2000-11-17 | 2002-07-11 | Simpson David G. | Electroprocessed collagen |
| US20020081732A1 (en) | 2000-10-18 | 2002-06-27 | Bowlin Gary L. | Electroprocessing in drug delivery and cell encapsulation |
| US7615373B2 (en) | 1999-02-25 | 2009-11-10 | Virginia Commonwealth University Intellectual Property Foundation | Electroprocessed collagen and tissue engineering |
| US6777231B1 (en) | 1999-03-10 | 2004-08-17 | The Regents Of The University Of California | Adipose-derived stem cells and lattices |
| US6432119B1 (en) | 1999-03-17 | 2002-08-13 | Angiotrax, Inc. | Apparatus and methods for performing percutaneous myocardial revascularization and stimulating angiogenesis using autologous materials |
| US6296602B1 (en) | 1999-03-17 | 2001-10-02 | Transfusion Technologies Corporation | Method for collecting platelets and other blood components from whole blood |
| JP3678602B2 (en) * | 1999-03-17 | 2005-08-03 | 住友ベークライト株式会社 | Syringe fixed injection device |
| US6312725B1 (en) | 1999-04-16 | 2001-11-06 | Cohesion Technologies, Inc. | Rapid gelling biocompatible polymer composition |
| US6192271B1 (en) | 1999-04-20 | 2001-02-20 | Michael Hayman | Radiotherapy stent |
| US6858229B1 (en) | 1999-04-26 | 2005-02-22 | California Institute Of Technology | In situ forming hydrogels |
| US6159443A (en) | 1999-04-29 | 2000-12-12 | Vanderbilt University | X-ray guided drug delivery |
| JP3063935U (en) * | 1999-05-17 | 1999-12-10 | 川澄化学工業株式会社 | Two-component simultaneous mixing dispenser and plunger coupling member |
| US6283947B1 (en) | 1999-07-13 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Local drug delivery injection catheter |
| US6494862B1 (en) | 1999-07-13 | 2002-12-17 | Advanced Cardiovascular Systems, Inc. | Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway |
| MXPA02000667A (en) * | 1999-07-22 | 2003-07-21 | Schlumberger Technology Bv | Components and methods for use with explosives. |
| US7815590B2 (en) | 1999-08-05 | 2010-10-19 | Broncus Technologies, Inc. | Devices for maintaining patency of surgically created channels in tissue |
| WO2001016210A1 (en) * | 1999-08-27 | 2001-03-08 | Cohesion Technologies, Inc. | Compositions that form interpenetrating polymer networks for use as high strength medical sealants |
| US6358258B1 (en) | 1999-09-14 | 2002-03-19 | Abbott Laboratories | Device and method for performing end-to-side anastomosis |
| US6368285B1 (en) | 1999-09-21 | 2002-04-09 | Biosense, Inc. | Method and apparatus for mapping a chamber of a heart |
| DE60008001T2 (en) | 1999-09-21 | 2004-09-02 | Institut De Cardiologie De Montreal, Montreal | LOCAL ADMINISTRATION OF 17-BETA ESTRADIOL TO IMPROVE VASCULAR ENDOTHELIAL FUNCTION AFTER Vascular Injuries |
| US20040229856A1 (en) | 1999-09-21 | 2004-11-18 | Baskaran Chandrasekar | Local delivery of 17-beta estradiol for preventing vascular intimal hyperplasia and for improving vascular endothelium function after vascular injury |
| US6385476B1 (en) | 1999-09-21 | 2002-05-07 | Biosense, Inc. | Method and apparatus for intracardially surveying a condition of a chamber of a heart |
| US6916488B1 (en) | 1999-11-05 | 2005-07-12 | Biocure, Inc. | Amphiphilic polymeric vesicles |
| US6748258B1 (en) | 1999-11-05 | 2004-06-08 | Scimed Life Systems, Inc. | Method and devices for heart treatment |
| US6992172B1 (en) | 1999-11-12 | 2006-01-31 | Fibrogen, Inc. | Recombinant gelatins |
| US6360129B1 (en) | 1999-12-13 | 2002-03-19 | Cardiac Pacemakers, Inc. | Mannitol/hydrogel cap for tissue-insertable connections |
| US6241710B1 (en) | 1999-12-20 | 2001-06-05 | Tricardia Llc | Hypodermic needle with weeping tip and method of use |
| US6706034B1 (en) | 1999-12-30 | 2004-03-16 | Advanced Cardiovascular Systems, Inc. | Process for agent retention in biological tissues |
| US6346098B1 (en) | 2000-03-07 | 2002-02-12 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and kits for locally administering an active agent to an interstitial space of a host |
| AUPQ618400A0 (en) | 2000-03-13 | 2000-04-06 | Baramy Engineering Pty Ltd | A gross pollutant trap |
| US6458098B1 (en) | 2000-03-17 | 2002-10-01 | Nozomu Kanesaka | Vascular therapy device |
| ATE281785T1 (en) * | 2000-03-21 | 2004-11-15 | Radi Medical Systems | PASSIVE BIOTELEMETRY |
| US6478776B1 (en) | 2000-04-05 | 2002-11-12 | Biocardia, Inc. | Implant delivery catheter system and methods for its use |
| US6589549B2 (en) | 2000-04-27 | 2003-07-08 | Macromed, Incorporated | Bioactive agent delivering system comprised of microparticles within a biodegradable to improve release profiles |
| WO2002000173A2 (en) | 2000-06-26 | 2002-01-03 | Rxkinetix, Inc. | Methods for use of delivery composition for expanding, activating, committing or mobilizing one or more pluripotent, self-renewing and committed stem cells |
| US6548081B2 (en) | 2000-07-28 | 2003-04-15 | Anika Therapeutics, Inc. | Bioabsorbable composites of derivatized hyaluronic acid and other biodegradable, biocompatible polymers |
| US6478775B1 (en) | 2000-10-02 | 2002-11-12 | Genyx Medical Inc. | Device for delivering non-biodegradable bulking composition to a urological site |
| US6554801B1 (en) | 2000-10-26 | 2003-04-29 | Advanced Cardiovascular Systems, Inc. | Directional needle injection drug delivery device and method of use |
| US20020072706A1 (en) | 2000-12-11 | 2002-06-13 | Thomas Hiblar | Transluminal drug delivery catheter |
| US6692466B1 (en) | 2000-12-21 | 2004-02-17 | Advanced Cardiovascular Systems, Inc. | Drug delivery catheter with retractable needle |
| US6599267B1 (en) | 2000-12-22 | 2003-07-29 | Advanced Cardiovascular Systems, Inc. | Transluminal injection device for intravascular drug delivery |
| US6602241B2 (en) | 2001-01-17 | 2003-08-05 | Transvascular, Inc. | Methods and apparatus for acute or chronic delivery of substances or apparatus to extravascular treatment sites |
| US6612977B2 (en) * | 2001-01-23 | 2003-09-02 | American Medical Systems Inc. | Sling delivery system and method of use |
| US6777000B2 (en) | 2001-02-28 | 2004-08-17 | Carrington Laboratories, Inc. | In-situ gel formation of pectin |
| WO2002067796A1 (en) | 2001-02-28 | 2002-09-06 | Rex Medical, L.P. | Apparatus for delivering ablation fluid to treat neoplasms |
| US20020124855A1 (en) | 2001-03-12 | 2002-09-12 | Chachques Juan C. | Method of providing a dynamic cellular cardiac support |
| WO2002072166A1 (en) * | 2001-03-13 | 2002-09-19 | Biocure, Inc. | Compositions for drug delivery |
| US7029838B2 (en) | 2001-03-30 | 2006-04-18 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Prevascularized contructs for implantation to provide blood perfusion |
| US7396582B2 (en) | 2001-04-06 | 2008-07-08 | Advanced Cardiovascular Systems, Inc. | Medical device chemically modified by plasma polymerization |
| US6628988B2 (en) | 2001-04-27 | 2003-09-30 | Cardiac Pacemakers, Inc. | Apparatus and method for reversal of myocardial remodeling with electrical stimulation |
| US7311731B2 (en) | 2001-04-27 | 2007-12-25 | Richard C. Satterfield | Prevention of myocardial infarction induced ventricular expansion and remodeling |
| US20020188170A1 (en) | 2001-04-27 | 2002-12-12 | Santamore William P. | Prevention of myocardial infarction induced ventricular expansion and remodeling |
| US6660034B1 (en) * | 2001-04-30 | 2003-12-09 | Advanced Cardiovascular Systems, Inc. | Stent for increasing blood flow to ischemic tissues and a method of using the same |
| US6702744B2 (en) | 2001-06-20 | 2004-03-09 | Advanced Cardiovascular Systems, Inc. | Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery |
| US6723067B2 (en) | 2001-07-26 | 2004-04-20 | David H. Nielson | Apparatus for delivering aerosolized fibrin endoscopically to a wound |
| CA2456806C (en) | 2001-08-08 | 2011-10-18 | Brown University Research Foundation | Methods for micronization of hydrophobic drugs |
| US6663596B2 (en) | 2001-08-13 | 2003-12-16 | Scimed Life Systems, Inc. | Delivering material to a patient |
| JP2003062089A (en) | 2001-08-24 | 2003-03-04 | Sumitomo Bakelite Co Ltd | Connector for medical application |
| US7037289B2 (en) | 2001-09-12 | 2006-05-02 | 3M Innovative Properties Company | Apparatus and methods for dispensing an adhesive tissue sealant |
| US6790455B2 (en) | 2001-09-14 | 2004-09-14 | The Research Foundation At State University Of New York | Cell delivery system comprising a fibrous matrix and cells |
| US7112587B2 (en) | 2001-09-21 | 2006-09-26 | Reddy Us Therapeutics, Inc. | Methods and compositions of novel triazine compounds |
| EP1446453A1 (en) | 2001-11-07 | 2004-08-18 | Universität Zürich | Synthetic matrix for controlled cell ingrowth and tissue regeneration and endometriosis |
| US7035092B2 (en) | 2001-11-08 | 2006-04-25 | Apple Computer, Inc. | Computer controlled display device |
| US6973349B2 (en) | 2001-12-05 | 2005-12-06 | Cardiac Pacemakers, Inc. | Method and apparatus for minimizing post-infarct ventricular remodeling |
| US7169127B2 (en) | 2002-02-21 | 2007-01-30 | Boston Scientific Scimed, Inc. | Pressure apron direct injection catheter |
| JP4229621B2 (en) | 2002-03-05 | 2009-02-25 | 修 加藤 | Chemical injection catheter |
| WO2003079985A2 (en) | 2002-03-18 | 2003-10-02 | Carnegie Mellon University | Method and apparatus for preparing biomimetic scaffold |
| US7008411B1 (en) | 2002-09-30 | 2006-03-07 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for treating vulnerable plaque |
| US7438692B2 (en) | 2002-10-18 | 2008-10-21 | Mark Tsonton | Localization mechanism for an MRI compatible biopsy device |
| CA2511521C (en) * | 2002-12-30 | 2012-02-07 | Angiotech International Ag | Drug delivery from rapid gelling polymer composition |
| US7393339B2 (en) | 2003-02-21 | 2008-07-01 | C. R. Bard, Inc. | Multi-lumen catheter with separate distal tips |
| US7250041B2 (en) | 2003-03-12 | 2007-07-31 | Abbott Cardiovascular Systems Inc. | Retrograde pressure regulated infusion |
| US20050015048A1 (en) | 2003-03-12 | 2005-01-20 | Chiu Jessica G. | Infusion treatment agents, catheters, filter devices, and occlusion devices, and use thereof |
| US8383158B2 (en) | 2003-04-15 | 2013-02-26 | Abbott Cardiovascular Systems Inc. | Methods and compositions to treat myocardial conditions |
| MXPA05011896A (en) * | 2003-05-05 | 2006-05-25 | Univ Ben Gurion | Injectable cross-linked polymeric preparations and uses thereof. |
| WO2005010172A2 (en) * | 2003-07-16 | 2005-02-03 | Boston Scientific Limited | Aligned scaffolds for improved myocardial regeneration |
| US7129210B2 (en) | 2003-07-23 | 2006-10-31 | Covalent Medical, Inc. | Tissue adhesive sealant |
| CA2535346A1 (en) | 2003-08-13 | 2005-03-03 | Medtronic, Inc. | Active agent delivery systems, including a single layer of a miscible polymer blend, medical devices, and methods |
| US7998112B2 (en) | 2003-09-30 | 2011-08-16 | Abbott Cardiovascular Systems Inc. | Deflectable catheter assembly and method of making same |
| KR20060130580A (en) | 2003-12-10 | 2006-12-19 | 셀룰라 바이오엔지니어링 인코포레이티드 | Compositions and Methods for Soft Tissue Morphology Restoration |
| US7273469B1 (en) | 2003-12-31 | 2007-09-25 | Advanced Cardiovascular Systems, Inc. | Modified needle catheter for directional orientation delivery |
| US20050186240A1 (en) | 2004-02-23 | 2005-08-25 | Ringeisen Timothy A. | Gel suitable for implantation and delivery system |
| US8067031B2 (en) | 2004-04-28 | 2011-11-29 | Angiodevice International Gmbh | Compositions and systems for forming crosslinked biomaterials and associated methods of preparation and use |
| GB0419653D0 (en) | 2004-09-04 | 2004-10-06 | Psimedica Ltd | Needle assembly |
| US20060149392A1 (en) | 2004-12-07 | 2006-07-06 | Kuo-Huang Hsieh | Biomaterials for guided tissue regeneration and drug delivery |
| US8187621B2 (en) | 2005-04-19 | 2012-05-29 | Advanced Cardiovascular Systems, Inc. | Methods and compositions for treating post-myocardial infarction damage |
| US8303972B2 (en) | 2005-04-19 | 2012-11-06 | Advanced Cardiovascular Systems, Inc. | Hydrogel bioscaffoldings and biomedical device coatings |
| JP4762785B2 (en) | 2005-06-02 | 2011-08-31 | 西川ゴム工業株式会社 | Gelatin sponge |
| EP2623116A1 (en) | 2005-07-27 | 2013-08-07 | Eli Lilly and Company | A method of treating cancer cells to create a modified cancer cell that provokes an immunogenic response |
| US7732190B2 (en) | 2006-07-31 | 2010-06-08 | Advanced Cardiovascular Systems, Inc. | Modified two-component gelation systems, methods of use and methods of manufacture |
| US8192760B2 (en) | 2006-12-04 | 2012-06-05 | Abbott Cardiovascular Systems Inc. | Methods and compositions for treating tissue using silk proteins |
-
2006
- 2006-07-31 US US11/496,824 patent/US7732190B2/en not_active Expired - Fee Related
-
2007
- 2007-07-19 EP EP12155231A patent/EP2455065A1/en not_active Withdrawn
- 2007-07-19 EP EP07810637A patent/EP2068830A2/en not_active Withdrawn
- 2007-07-19 WO PCT/US2007/016433 patent/WO2008016490A2/en not_active Ceased
- 2007-07-19 JP JP2009522776A patent/JP2009545372A/en active Pending
-
2010
- 2010-04-07 US US12/756,092 patent/US8486386B2/en not_active Expired - Fee Related
- 2010-04-07 US US12/756,119 patent/US8486387B2/en not_active Expired - Fee Related
-
2013
- 2013-07-15 US US13/941,759 patent/US20140017200A1/en not_active Abandoned
- 2013-09-09 JP JP2013186628A patent/JP2014001236A/en active Pending
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11185677B2 (en) | 2017-06-07 | 2021-11-30 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
| US11717670B2 (en) | 2017-06-07 | 2023-08-08 | Shifamed Holdings, LLP | Intravascular fluid movement devices, systems, and methods of use |
| US11511103B2 (en) | 2017-11-13 | 2022-11-29 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
| US11229784B2 (en) | 2018-02-01 | 2022-01-25 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
| US10722631B2 (en) | 2018-02-01 | 2020-07-28 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
| US12076545B2 (en) | 2018-02-01 | 2024-09-03 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
| US12161857B2 (en) | 2018-07-31 | 2024-12-10 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use |
| US12220570B2 (en) | 2018-10-05 | 2025-02-11 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use |
| US11964145B2 (en) | 2019-07-12 | 2024-04-23 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of manufacture and use |
| US11654275B2 (en) | 2019-07-22 | 2023-05-23 | Shifamed Holdings, Llc | Intravascular blood pumps with struts and methods of use and manufacture |
| US12465748B2 (en) | 2019-08-07 | 2025-11-11 | Supira Medical, Inc. | Catheter blood pumps and collapsible pump housings |
| US11724089B2 (en) | 2019-09-25 | 2023-08-15 | Shifamed Holdings, Llc | Intravascular blood pump systems and methods of use and control thereof |
| US12121713B2 (en) | 2019-09-25 | 2024-10-22 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible blood conduits |
| US12102815B2 (en) | 2019-09-25 | 2024-10-01 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible pump housings |
| US12409310B2 (en) | 2019-12-11 | 2025-09-09 | Shifamed Holdings, Llc | Descending aorta and vena cava blood pumps |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2014001236A (en) | 2014-01-09 |
| EP2455065A1 (en) | 2012-05-23 |
| US7732190B2 (en) | 2010-06-08 |
| US8486386B2 (en) | 2013-07-16 |
| US20100196313A1 (en) | 2010-08-05 |
| EP2068830A2 (en) | 2009-06-17 |
| WO2008016490A2 (en) | 2008-02-07 |
| US20100196314A1 (en) | 2010-08-05 |
| WO2008016490A3 (en) | 2008-10-30 |
| US8486387B2 (en) | 2013-07-16 |
| JP2009545372A (en) | 2009-12-24 |
| US20080025943A1 (en) | 2008-01-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8486387B2 (en) | Modified two-component gelation systems, methods of use and methods of manufacture | |
| US8465773B2 (en) | Methods and compositions for treating tissue using silk proteins | |
| JP5313154B2 (en) | Modified two-component gelation system, method of use and method of manufacture | |
| US9775930B2 (en) | Composition for modifying myocardial infarction expansion | |
| US8187621B2 (en) | Methods and compositions for treating post-myocardial infarction damage | |
| US8377033B2 (en) | Methods of modifying myocardial infarction expansion | |
| HK1169043A (en) | Modified two-component gelation systems, methods of use and methods of manufacture |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |