US20130340754A1 - Powder dispersion devices and methods - Google Patents
Powder dispersion devices and methods Download PDFInfo
- Publication number
- US20130340754A1 US20130340754A1 US13/776,558 US201313776558A US2013340754A1 US 20130340754 A1 US20130340754 A1 US 20130340754A1 US 201313776558 A US201313776558 A US 201313776558A US 2013340754 A1 US2013340754 A1 US 2013340754A1
- Authority
- US
- United States
- Prior art keywords
- chamber
- bead
- flow
- powdered medicament
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000843 powder Substances 0.000 title claims abstract description 170
- 239000006185 dispersion Substances 0.000 title claims abstract description 99
- 238000000034 method Methods 0.000 title claims description 23
- 239000003814 drug Substances 0.000 claims abstract description 125
- 229940112141 dry powder inhaler Drugs 0.000 claims abstract description 39
- 238000003860 storage Methods 0.000 claims abstract description 15
- 239000011324 bead Substances 0.000 claims description 216
- 239000002245 particle Substances 0.000 claims description 61
- 239000002775 capsule Substances 0.000 claims description 32
- 239000012530 fluid Substances 0.000 claims description 28
- 230000010355 oscillation Effects 0.000 claims description 22
- 238000009826 distribution Methods 0.000 claims description 20
- 238000004891 communication Methods 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims description 4
- 230000000153 supplemental effect Effects 0.000 claims 3
- 229940079593 drug Drugs 0.000 description 60
- 210000004072 lung Anatomy 0.000 description 31
- 239000003795 chemical substances by application Substances 0.000 description 30
- 230000007246 mechanism Effects 0.000 description 28
- 239000000203 mixture Substances 0.000 description 22
- 238000000151 deposition Methods 0.000 description 21
- 230000008021 deposition Effects 0.000 description 18
- 238000009472 formulation Methods 0.000 description 18
- 230000008901 benefit Effects 0.000 description 17
- -1 cydobarbital Chemical compound 0.000 description 17
- 230000008878 coupling Effects 0.000 description 12
- 238000010168 coupling process Methods 0.000 description 12
- 238000005859 coupling reaction Methods 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 230000009286 beneficial effect Effects 0.000 description 10
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 9
- 229960001375 lactose Drugs 0.000 description 8
- 239000000546 pharmaceutical excipient Substances 0.000 description 8
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 7
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 7
- 239000008101 lactose Substances 0.000 description 7
- 229940057282 albuterol sulfate Drugs 0.000 description 6
- BNPSSFBOAGDEEL-UHFFFAOYSA-N albuterol sulfate Chemical compound OS(O)(=O)=O.CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1.CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 BNPSSFBOAGDEEL-UHFFFAOYSA-N 0.000 description 6
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 6
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 6
- WOFMFGQZHJDGCX-ZULDAHANSA-N mometasone furoate Chemical compound O([C@]1([C@@]2(C)C[C@H](O)[C@]3(Cl)[C@@]4(C)C=CC(=O)C=C4CC[C@H]3[C@@H]2C[C@H]1C)C(=O)CCl)C(=O)C1=CC=CO1 WOFMFGQZHJDGCX-ZULDAHANSA-N 0.000 description 6
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 5
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 5
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 5
- KWGRBVOPPLSCSI-WPRPVWTQSA-N (-)-ephedrine Chemical compound CN[C@@H](C)[C@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WPRPVWTQSA-N 0.000 description 4
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 4
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 4
- BRUQQQPBMZOVGD-XFKAJCMBSA-N Oxycodone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C BRUQQQPBMZOVGD-XFKAJCMBSA-N 0.000 description 4
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 4
- 229960001138 acetylsalicylic acid Drugs 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- HJJPJSXJAXAIPN-UHFFFAOYSA-N arecoline Chemical compound COC(=O)C1=CCCN(C)C1 HJJPJSXJAXAIPN-UHFFFAOYSA-N 0.000 description 4
- BLFLLBZGZJTVJG-UHFFFAOYSA-N benzocaine Chemical compound CCOC(=O)C1=CC=C(N)C=C1 BLFLLBZGZJTVJG-UHFFFAOYSA-N 0.000 description 4
- VQFAIAKCILWQPZ-UHFFFAOYSA-N bromoacetone Chemical compound CC(=O)CBr VQFAIAKCILWQPZ-UHFFFAOYSA-N 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 4
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 4
- WMWTYOKRWGGJOA-CENSZEJFSA-N fluticasone propionate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(OC(=O)CC)[C@@]2(C)C[C@@H]1O WMWTYOKRWGGJOA-CENSZEJFSA-N 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 4
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 4
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 4
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 4
- DHHVAGZRUROJKS-UHFFFAOYSA-N phentermine Chemical compound CC(C)(N)CC1=CC=CC=C1 DHHVAGZRUROJKS-UHFFFAOYSA-N 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 4
- 229930000680 A04AD01 - Scopolamine Natural products 0.000 description 3
- 229930003347 Atropine Natural products 0.000 description 3
- KPYSYYIEGFHWSV-UHFFFAOYSA-N Baclofen Chemical compound OC(=O)CC(CN)C1=CC=C(Cl)C=C1 KPYSYYIEGFHWSV-UHFFFAOYSA-N 0.000 description 3
- PJFHZKIDENOSJB-UHFFFAOYSA-N Budesonide/formoterol Chemical compound C1=CC(OC)=CC=C1CC(C)NCC(O)C1=CC=C(O)C(NC=O)=C1.C1CC2=CC(=O)C=CC2(C)C2C1C1CC3OC(CCC)OC3(C(=O)CO)C1(C)CC2O PJFHZKIDENOSJB-UHFFFAOYSA-N 0.000 description 3
- GJSURZIOUXUGAL-UHFFFAOYSA-N Clonidine Chemical compound ClC1=CC=CC(Cl)=C1NC1=NCCN1 GJSURZIOUXUGAL-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- RKUNBYITZUJHSG-UHFFFAOYSA-N Hyosciamin-hydrochlorid Natural products CN1C(C2)CCC1CC2OC(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-UHFFFAOYSA-N 0.000 description 3
- STECJAGHUSJQJN-GAUPFVANSA-N Hyoscine Natural products C1([C@H](CO)C(=O)OC2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-GAUPFVANSA-N 0.000 description 3
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 3
- 108090001061 Insulin Proteins 0.000 description 3
- PWWVAXIEGOYWEE-UHFFFAOYSA-N Isophenergan Chemical compound C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 PWWVAXIEGOYWEE-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- STECJAGHUSJQJN-UHFFFAOYSA-N N-Methyl-scopolamin Natural products C1C(C2C3O2)N(C)C3CC1OC(=O)C(CO)C1=CC=CC=C1 STECJAGHUSJQJN-UHFFFAOYSA-N 0.000 description 3
- YYAZJTUGSQOFHG-IAVNQIGZSA-N [(6s,8s,10s,11s,13s,14s,16r,17r)-6,9-difluoro-17-(fluoromethylsulfanylcarbonyl)-11-hydroxy-10,13,16-trimethyl-3-oxo-6,7,8,11,12,14,15,16-octahydrocyclopenta[a]phenanthren-17-yl] propanoate;2-(hydroxymethyl)-4-[1-hydroxy-2-[6-(4-phenylbutoxy)hexylamino]eth Chemical compound C1=C(O)C(CO)=CC(C(O)CNCCCCCCOCCCCC=2C=CC=CC=2)=C1.C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)C1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(OC(=O)CC)[C@@]2(C)C[C@@H]1O YYAZJTUGSQOFHG-IAVNQIGZSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229940090167 advair Drugs 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- POJWUDADGALRAB-UHFFFAOYSA-N allantoin Chemical compound NC(=O)NC1NC(=O)NC1=O POJWUDADGALRAB-UHFFFAOYSA-N 0.000 description 3
- KRMDCWKBEZIMAB-UHFFFAOYSA-N amitriptyline Chemical compound C1CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 KRMDCWKBEZIMAB-UHFFFAOYSA-N 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 229940053670 asmanex Drugs 0.000 description 3
- 229960000396 atropine Drugs 0.000 description 3
- RKUNBYITZUJHSG-SPUOUPEWSA-N atropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-SPUOUPEWSA-N 0.000 description 3
- 229960000794 baclofen Drugs 0.000 description 3
- 229940125388 beta agonist Drugs 0.000 description 3
- DGBIGWXXNGSACT-UHFFFAOYSA-N clonazepam Chemical compound C12=CC([N+](=O)[O-])=CC=C2NC(=O)CN=C1C1=CC=CC=C1Cl DGBIGWXXNGSACT-UHFFFAOYSA-N 0.000 description 3
- 229960002896 clonidine Drugs 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229960004126 codeine Drugs 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000003246 corticosteroid Substances 0.000 description 3
- JURKNVYFZMSNLP-UHFFFAOYSA-N cyclobenzaprine Chemical compound C1=CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 JURKNVYFZMSNLP-UHFFFAOYSA-N 0.000 description 3
- KWGRBVOPPLSCSI-UHFFFAOYSA-N d-ephedrine Natural products CNC(C)C(O)C1=CC=CC=C1 KWGRBVOPPLSCSI-UHFFFAOYSA-N 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 229960003529 diazepam Drugs 0.000 description 3
- 230000003292 diminished effect Effects 0.000 description 3
- HCUYBXPSSCRKRF-UHFFFAOYSA-N diphosgene Chemical compound ClC(=O)OC(Cl)(Cl)Cl HCUYBXPSSCRKRF-UHFFFAOYSA-N 0.000 description 3
- 229940085861 flovent Drugs 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 229940125396 insulin Drugs 0.000 description 3
- LZCOQTDXKCNBEE-IKIFYQGPSA-N methscopolamine Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3[N+]([C@H](C2)[C@@H]2[C@H]3O2)(C)C)=CC=CC=C1 LZCOQTDXKCNBEE-IKIFYQGPSA-N 0.000 description 3
- 229960001383 methylscopolamine Drugs 0.000 description 3
- 229960002744 mometasone furoate Drugs 0.000 description 3
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 3
- 210000005036 nerve Anatomy 0.000 description 3
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 3
- 230000002685 pulmonary effect Effects 0.000 description 3
- 229960002646 scopolamine Drugs 0.000 description 3
- STECJAGHUSJQJN-FWXGHANASA-N scopolamine Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-FWXGHANASA-N 0.000 description 3
- 229940035073 symbicort Drugs 0.000 description 3
- 229940035289 tobi Drugs 0.000 description 3
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QCHFTSOMWOSFHM-WPRPVWTQSA-N (+)-Pilocarpine Chemical compound C1OC(=O)[C@@H](CC)[C@H]1CC1=CN=CN1C QCHFTSOMWOSFHM-WPRPVWTQSA-N 0.000 description 2
- DNXHEGUUPJUMQT-UHFFFAOYSA-N (+)-estrone Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 DNXHEGUUPJUMQT-UHFFFAOYSA-N 0.000 description 2
- JWZZKOKVBUJMES-UHFFFAOYSA-N (+-)-Isoprenaline Chemical compound CC(C)NCC(O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-UHFFFAOYSA-N 0.000 description 2
- RJMIEHBSYVWVIN-LLVKDONJSA-N (2r)-2-[4-(3-oxo-1h-isoindol-2-yl)phenyl]propanoic acid Chemical compound C1=CC([C@H](C(O)=O)C)=CC=C1N1C(=O)C2=CC=CC=C2C1 RJMIEHBSYVWVIN-LLVKDONJSA-N 0.000 description 2
- RDJGLLICXDHJDY-NSHDSACASA-N (2s)-2-(3-phenoxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](C)C1=CC=CC(OC=2C=CC=CC=2)=C1 RDJGLLICXDHJDY-NSHDSACASA-N 0.000 description 2
- DIWRORZWFLOCLC-HNNXBMFYSA-N (3s)-7-chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-1,4-benzodiazepin-2-one Chemical compound N([C@H](C(NC1=CC=C(Cl)C=C11)=O)O)=C1C1=CC=CC=C1Cl DIWRORZWFLOCLC-HNNXBMFYSA-N 0.000 description 2
- KWTSXDURSIMDCE-QMMMGPOBSA-N (S)-amphetamine Chemical compound C[C@H](N)CC1=CC=CC=C1 KWTSXDURSIMDCE-QMMMGPOBSA-N 0.000 description 2
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- AMGNHZVUZWILSB-UHFFFAOYSA-N 1,2-bis(2-chloroethylsulfanyl)ethane Chemical compound ClCCSCCSCCCl AMGNHZVUZWILSB-UHFFFAOYSA-N 0.000 description 2
- CNIIGCLFLJGOGP-UHFFFAOYSA-N 2-(1-naphthalenylmethyl)-4,5-dihydro-1H-imidazole Chemical compound C=1C=CC2=CC=CC=C2C=1CC1=NCCN1 CNIIGCLFLJGOGP-UHFFFAOYSA-N 0.000 description 2
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 2
- TVYLLZQTGLZFBW-UHFFFAOYSA-N 2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol Chemical compound COC1=CC=CC(C2(O)C(CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-UHFFFAOYSA-N 0.000 description 2
- FDAYLTPAFBGXAB-UHFFFAOYSA-N 2-chloro-n,n-bis(2-chloroethyl)ethanamine Chemical compound ClCCN(CCCl)CCCl FDAYLTPAFBGXAB-UHFFFAOYSA-N 0.000 description 2
- UQZPGHOJMQTOHB-UHFFFAOYSA-N 2-chloro-n-(2-chloroethyl)-n-ethylethanamine Chemical compound ClCCN(CC)CCCl UQZPGHOJMQTOHB-UHFFFAOYSA-N 0.000 description 2
- QSAVEGSLJISCDF-UHFFFAOYSA-N 2-hydroxy-2-phenylacetic acid (1,2,2,6-tetramethyl-4-piperidinyl) ester Chemical compound C1C(C)(C)N(C)C(C)CC1OC(=O)C(O)C1=CC=CC=C1 QSAVEGSLJISCDF-UHFFFAOYSA-N 0.000 description 2
- LVYLCBNXHHHPSB-UHFFFAOYSA-N 2-hydroxyethyl salicylate Chemical compound OCCOC(=O)C1=CC=CC=C1O LVYLCBNXHHHPSB-UHFFFAOYSA-N 0.000 description 2
- GIKNHHRFLCDOEU-UHFFFAOYSA-N 4-(2-aminopropyl)phenol Chemical compound CC(N)CC1=CC=C(O)C=C1 GIKNHHRFLCDOEU-UHFFFAOYSA-N 0.000 description 2
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- JZUFKLXOESDKRF-UHFFFAOYSA-N Chlorothiazide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NCNS2(=O)=O JZUFKLXOESDKRF-UHFFFAOYSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- PLDUPXSUYLZYBN-UHFFFAOYSA-N Fluphenazine Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 PLDUPXSUYLZYBN-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- ZTVIKZXZYLEVOL-MCOXGKPRSA-N Homatropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(=O)C(O)C1=CC=CC=C1 ZTVIKZXZYLEVOL-MCOXGKPRSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- DOMWKUIIPQCAJU-LJHIYBGHSA-N Hydroxyprogesterone caproate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)CCCCC)[C@@]1(C)CC2 DOMWKUIIPQCAJU-LJHIYBGHSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 2
- OCJYIGYOJCODJL-UHFFFAOYSA-N Meclizine Chemical compound CC1=CC=CC(CN2CCN(CC2)C(C=2C=CC=CC=2)C=2C=CC(Cl)=CC=2)=C1 OCJYIGYOJCODJL-UHFFFAOYSA-N 0.000 description 2
- GZHFODJQISUKAY-UHFFFAOYSA-N Methantheline Chemical compound C1=CC=C2C(C(=O)OCC[N+](C)(CC)CC)C3=CC=CC=C3OC2=C1 GZHFODJQISUKAY-UHFFFAOYSA-N 0.000 description 2
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- RGCVKNLCSQQDEP-UHFFFAOYSA-N Perphenazine Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 RGCVKNLCSQQDEP-UHFFFAOYSA-N 0.000 description 2
- CXOFVDLJLONNDW-UHFFFAOYSA-N Phenytoin Chemical compound N1C(=O)NC(=O)C1(C=1C=CC=CC=1)C1=CC=CC=C1 CXOFVDLJLONNDW-UHFFFAOYSA-N 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- QCHFTSOMWOSFHM-UHFFFAOYSA-N SJ000285536 Natural products C1OC(=O)C(CC)C1CC1=CN=CN1C QCHFTSOMWOSFHM-UHFFFAOYSA-N 0.000 description 2
- GIIZNNXWQWCKIB-UHFFFAOYSA-N Serevent Chemical compound C1=C(O)C(CO)=CC(C(O)CNCCCCCCOCCCCC=2C=CC=CC=2)=C1 GIIZNNXWQWCKIB-UHFFFAOYSA-N 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- DQHNAVOVODVIMG-UHFFFAOYSA-M Tiotropium bromide Chemical compound [Br-].C1C(C2C3O2)[N+](C)(C)C3CC1OC(=O)C(O)(C=1SC=CC=1)C1=CC=CS1 DQHNAVOVODVIMG-UHFFFAOYSA-M 0.000 description 2
- BGDKAVGWHJFAGW-UHFFFAOYSA-N Tropicamide Chemical compound C=1C=CC=CC=1C(CO)C(=O)N(CC)CC1=CC=NC=C1 BGDKAVGWHJFAGW-UHFFFAOYSA-N 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 description 2
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 2
- 229960004538 alprazolam Drugs 0.000 description 2
- 229960000836 amitriptyline Drugs 0.000 description 2
- VIROVYVQCGLCII-UHFFFAOYSA-N amobarbital Chemical compound CC(C)CCC1(CC)C(=O)NC(=O)NC1=O VIROVYVQCGLCII-UHFFFAOYSA-N 0.000 description 2
- 230000003178 anti-diabetic effect Effects 0.000 description 2
- 230000003388 anti-hormonal effect Effects 0.000 description 2
- 229940121363 anti-inflammatory agent Drugs 0.000 description 2
- 239000002260 anti-inflammatory agent Substances 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- 239000002249 anxiolytic agent Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229960005274 benzocaine Drugs 0.000 description 2
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- YKPUWZUDDOIDPM-SOFGYWHQSA-N capsaicin Chemical compound COC1=CC(CNC(=O)CCCC\C=C\C(C)C)=CC=C1O YKPUWZUDDOIDPM-SOFGYWHQSA-N 0.000 description 2
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- SOYKEARSMXGVTM-UHFFFAOYSA-N chlorphenamine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Cl)C=C1 SOYKEARSMXGVTM-UHFFFAOYSA-N 0.000 description 2
- 229960003291 chlorphenamine Drugs 0.000 description 2
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 2
- 229960001076 chlorpromazine Drugs 0.000 description 2
- 229960001747 cinchocaine Drugs 0.000 description 2
- PUFQVTATUTYEAL-UHFFFAOYSA-N cinchocaine Chemical compound C1=CC=CC2=NC(OCCCC)=CC(C(=O)NCCN(CC)CC)=C21 PUFQVTATUTYEAL-UHFFFAOYSA-N 0.000 description 2
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 2
- 229960003120 clonazepam Drugs 0.000 description 2
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 2
- 229960003572 cyclobenzaprine Drugs 0.000 description 2
- 229960001815 cyclopentolate Drugs 0.000 description 2
- SKYSRIRYMSLOIN-UHFFFAOYSA-N cyclopentolate Chemical compound C1CCCC1(O)C(C(=O)OCCN(C)C)C1=CC=CC=C1 SKYSRIRYMSLOIN-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- LQSFEOMOHFPNEB-UHFFFAOYSA-N dichloro(ethyl)arsane Chemical compound CC[As](Cl)Cl LQSFEOMOHFPNEB-UHFFFAOYSA-N 0.000 description 2
- 229960001259 diclofenac Drugs 0.000 description 2
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 2
- HESHRHUZIWVEAJ-JGRZULCMSA-N dihydroergotamine Chemical compound C([C@H]1C(=O)N2CCC[C@H]2[C@]2(O)O[C@@](C(N21)=O)(C)NC(=O)[C@H]1CN([C@H]2[C@@H](C3=CC=CC4=NC=C([C]34)C2)C1)C)C1=CC=CC=C1 HESHRHUZIWVEAJ-JGRZULCMSA-N 0.000 description 2
- 229960004704 dihydroergotamine Drugs 0.000 description 2
- YHHKGKCOLGRKKB-UHFFFAOYSA-N diphenylchlorarsine Chemical compound C=1C=CC=CC=1[As](Cl)C1=CC=CC=C1 YHHKGKCOLGRKKB-UHFFFAOYSA-N 0.000 description 2
- BDHNJKLLVSRGDK-UHFFFAOYSA-N diphenylcyanoarsine Chemical compound C=1C=CC=CC=1[As](C#N)C1=CC=CC=C1 BDHNJKLLVSRGDK-UHFFFAOYSA-N 0.000 description 2
- DLNKOYKMWOXYQA-UHFFFAOYSA-N dl-pseudophenylpropanolamine Natural products CC(N)C(O)C1=CC=CC=C1 DLNKOYKMWOXYQA-UHFFFAOYSA-N 0.000 description 2
- 229960003638 dopamine Drugs 0.000 description 2
- 239000013583 drug formulation Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002895 emetic Substances 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 229960002179 ephedrine Drugs 0.000 description 2
- 229960003276 erythromycin Drugs 0.000 description 2
- 229960005309 estradiol Drugs 0.000 description 2
- 229940011871 estrogen Drugs 0.000 description 2
- 239000000262 estrogen Substances 0.000 description 2
- 229950002420 eucatropine Drugs 0.000 description 2
- 239000004794 expanded polystyrene Substances 0.000 description 2
- 229960001395 fenbufen Drugs 0.000 description 2
- ZPAKPRAICRBAOD-UHFFFAOYSA-N fenbufen Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=CC=C1 ZPAKPRAICRBAOD-UHFFFAOYSA-N 0.000 description 2
- 229960001419 fenoprofen Drugs 0.000 description 2
- 229960002428 fentanyl Drugs 0.000 description 2
- PJMPHNIQZUBGLI-UHFFFAOYSA-N fentanyl Chemical compound C=1C=CC=CC=1N(C(=O)CC)C(CC1)CCN1CCC1=CC=CC=C1 PJMPHNIQZUBGLI-UHFFFAOYSA-N 0.000 description 2
- 229960002690 fluphenazine Drugs 0.000 description 2
- 229960002390 flurbiprofen Drugs 0.000 description 2
- SYTBZMRGLBWNTM-UHFFFAOYSA-N flurbiprofen Chemical compound FC1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC=C1 SYTBZMRGLBWNTM-UHFFFAOYSA-N 0.000 description 2
- 229940107791 foradil Drugs 0.000 description 2
- BPZSYCZIITTYBL-UHFFFAOYSA-N formoterol Chemical compound C1=CC(OC)=CC=C1CC(C)NCC(O)C1=CC=C(O)C(NC=O)=C1 BPZSYCZIITTYBL-UHFFFAOYSA-N 0.000 description 2
- 229960003883 furosemide Drugs 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229960003878 haloperidol Drugs 0.000 description 2
- 229960000857 homatropine Drugs 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 2
- 229950000801 hydroxyprogesterone caproate Drugs 0.000 description 2
- 229960000930 hydroxyzine Drugs 0.000 description 2
- ZQDWXGKKHFNSQK-UHFFFAOYSA-N hydroxyzine Chemical compound C1CN(CCOCCO)CCN1C(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 ZQDWXGKKHFNSQK-UHFFFAOYSA-N 0.000 description 2
- 229960001680 ibuprofen Drugs 0.000 description 2
- 229960000905 indomethacin Drugs 0.000 description 2
- 229960004187 indoprofen Drugs 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 230000003434 inspiratory effect Effects 0.000 description 2
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 2
- 229960000991 ketoprofen Drugs 0.000 description 2
- GIKLTQKNOXNBNY-OWOJBTEDSA-N lewisite Chemical compound Cl\C=C\[As](Cl)Cl GIKLTQKNOXNBNY-OWOJBTEDSA-N 0.000 description 2
- 229960004194 lidocaine Drugs 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229960004391 lorazepam Drugs 0.000 description 2
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 2
- 229960001474 meclozine Drugs 0.000 description 2
- 229960003464 mefenamic acid Drugs 0.000 description 2
- HYYBABOKPJLUIN-UHFFFAOYSA-N mefenamic acid Chemical compound CC1=CC=CC(NC=2C(=CC=CC=2)C(O)=O)=C1C HYYBABOKPJLUIN-UHFFFAOYSA-N 0.000 description 2
- 229960000582 mepyramine Drugs 0.000 description 2
- YECBIJXISLIIDS-UHFFFAOYSA-N mepyramine Chemical compound C1=CC(OC)=CC=C1CN(CCN(C)C)C1=CC=CC=N1 YECBIJXISLIIDS-UHFFFAOYSA-N 0.000 description 2
- LMOINURANNBYCM-UHFFFAOYSA-N metaproterenol Chemical compound CC(C)NCC(O)C1=CC(O)=CC(O)=C1 LMOINURANNBYCM-UHFFFAOYSA-N 0.000 description 2
- 229960001470 methantheline Drugs 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- OJLOPKGSLYJEMD-URPKTTJQSA-N methyl 7-[(1r,2r,3r)-3-hydroxy-2-[(1e)-4-hydroxy-4-methyloct-1-en-1-yl]-5-oxocyclopentyl]heptanoate Chemical compound CCCCC(C)(O)C\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1CCCCCCC(=O)OC OJLOPKGSLYJEMD-URPKTTJQSA-N 0.000 description 2
- 229960001047 methyl salicylate Drugs 0.000 description 2
- VXRMBBLRHSRVDK-UHFFFAOYSA-N methyldichloroarsine Chemical compound C[As](Cl)Cl VXRMBBLRHSRVDK-UHFFFAOYSA-N 0.000 description 2
- IUBSYMUCCVWXPE-UHFFFAOYSA-N metoprolol Chemical compound COCCC1=CC=C(OCC(O)CNC(C)C)C=C1 IUBSYMUCCVWXPE-UHFFFAOYSA-N 0.000 description 2
- 229960005249 misoprostol Drugs 0.000 description 2
- 229960002009 naproxen Drugs 0.000 description 2
- 229960000381 omeprazole Drugs 0.000 description 2
- 229960002657 orciprenaline Drugs 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- XQYZDYMELSJDRZ-UHFFFAOYSA-N papaverine Chemical compound C1=C(OC)C(OC)=CC=C1CC1=NC=CC2=CC(OC)=C(OC)C=C12 XQYZDYMELSJDRZ-UHFFFAOYSA-N 0.000 description 2
- 229960005489 paracetamol Drugs 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 229960000762 perphenazine Drugs 0.000 description 2
- IMACFCSSMIZSPP-UHFFFAOYSA-N phenacyl chloride Chemical compound ClCC(=O)C1=CC=CC=C1 IMACFCSSMIZSPP-UHFFFAOYSA-N 0.000 description 2
- 150000002990 phenothiazines Chemical class 0.000 description 2
- 229960003562 phentermine Drugs 0.000 description 2
- 229960002895 phenylbutazone Drugs 0.000 description 2
- VYMDGNCVAMGZFE-UHFFFAOYSA-N phenylbutazonum Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 VYMDGNCVAMGZFE-UHFFFAOYSA-N 0.000 description 2
- UDHDFEGCOJAVRE-UHFFFAOYSA-N phenyldichloroarsine Chemical compound Cl[As](Cl)C1=CC=CC=C1 UDHDFEGCOJAVRE-UHFFFAOYSA-N 0.000 description 2
- 229960001802 phenylephrine Drugs 0.000 description 2
- SONNWYBIRXJNDC-VIFPVBQESA-N phenylephrine Chemical compound CNC[C@H](O)C1=CC=CC(O)=C1 SONNWYBIRXJNDC-VIFPVBQESA-N 0.000 description 2
- 229960000395 phenylpropanolamine Drugs 0.000 description 2
- DLNKOYKMWOXYQA-APPZFPTMSA-N phenylpropanolamine Chemical compound C[C@@H](N)[C@H](O)C1=CC=CC=C1 DLNKOYKMWOXYQA-APPZFPTMSA-N 0.000 description 2
- 229960001416 pilocarpine Drugs 0.000 description 2
- 229960002702 piroxicam Drugs 0.000 description 2
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 2
- IENZQIKPVFGBNW-UHFFFAOYSA-N prazosin Chemical compound N=1C(N)=C2C=C(OC)C(OC)=CC2=NC=1N(CC1)CCN1C(=O)C1=CC=CO1 IENZQIKPVFGBNW-UHFFFAOYSA-N 0.000 description 2
- 229960001289 prazosin Drugs 0.000 description 2
- 229960004618 prednisone Drugs 0.000 description 2
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 2
- 229960004919 procaine Drugs 0.000 description 2
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229960003910 promethazine Drugs 0.000 description 2
- YREYEVIYCVEVJK-UHFFFAOYSA-N rabeprazole Chemical compound COCCCOC1=CC=NC(CS(=O)C=2NC3=CC=CC=C3N=2)=C1C YREYEVIYCVEVJK-UHFFFAOYSA-N 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 229960002052 salbutamol Drugs 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- MEZLKOACVSPNER-GFCCVEGCSA-N selegiline Chemical compound C#CCN(C)[C@H](C)CC1=CC=CC=C1 MEZLKOACVSPNER-GFCCVEGCSA-N 0.000 description 2
- 229940090585 serevent Drugs 0.000 description 2
- 229940046810 spiriva Drugs 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 229960000894 sulindac Drugs 0.000 description 2
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 2
- 229960001603 tamoxifen Drugs 0.000 description 2
- BYJAVTDNIXVSPW-UHFFFAOYSA-N tetryzoline Chemical compound N1CCN=C1C1C2=CC=CC=C2CCC1 BYJAVTDNIXVSPW-UHFFFAOYSA-N 0.000 description 2
- 229960001017 tolmetin Drugs 0.000 description 2
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 2
- 229960003991 trazodone Drugs 0.000 description 2
- PHLBKPHSAVXXEF-UHFFFAOYSA-N trazodone Chemical compound ClC1=CC=CC(N2CCN(CCCN3C(N4C=CC=CC4=N3)=O)CC2)=C1 PHLBKPHSAVXXEF-UHFFFAOYSA-N 0.000 description 2
- 229960004791 tropicamide Drugs 0.000 description 2
- 229960001722 verapamil Drugs 0.000 description 2
- 229910001868 water Inorganic materials 0.000 description 2
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 description 1
- WWYNJERNGUHSAO-XUDSTZEESA-N (+)-Norgestrel Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 WWYNJERNGUHSAO-XUDSTZEESA-N 0.000 description 1
- DBGIVFWFUFKIQN-UHFFFAOYSA-N (+-)-Fenfluramine Chemical compound CCNC(C)CC1=CC=CC(C(F)(F)F)=C1 DBGIVFWFUFKIQN-UHFFFAOYSA-N 0.000 description 1
- XWTYSIMOBUGWOL-UHFFFAOYSA-N (+-)-Terbutaline Chemical compound CC(C)(C)NCC(O)C1=CC(O)=CC(O)=C1 XWTYSIMOBUGWOL-UHFFFAOYSA-N 0.000 description 1
- NOOLISFMXDJSKH-KXUCPTDWSA-N (-)-Menthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1O NOOLISFMXDJSKH-KXUCPTDWSA-N 0.000 description 1
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- AGSIRJFXAANBMW-UHFFFAOYSA-N (1-hydroxynaphthalen-2-yl)iminourea Chemical compound NC(=O)N=NC1=C(O)C2=CC=CC=C2C=C1 AGSIRJFXAANBMW-UHFFFAOYSA-N 0.000 description 1
- PROQIPRRNZUXQM-UHFFFAOYSA-N (16alpha,17betaOH)-Estra-1,3,5(10)-triene-3,16,17-triol Natural products OC1=CC=C2C3CCC(C)(C(C(O)C4)O)C4C3CCC2=C1 PROQIPRRNZUXQM-UHFFFAOYSA-N 0.000 description 1
- IGLYMJRIWWIQQE-QUOODJBBSA-N (1S,2R)-2-phenylcyclopropan-1-amine (1R,2S)-2-phenylcyclopropan-1-amine Chemical compound N[C@H]1C[C@@H]1C1=CC=CC=C1.N[C@@H]1C[C@H]1C1=CC=CC=C1 IGLYMJRIWWIQQE-QUOODJBBSA-N 0.000 description 1
- KTGRHKOEFSJQNS-BDQAORGHSA-N (1s)-1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-3h-2-benzofuran-5-carbonitrile;oxalic acid Chemical compound OC(=O)C(O)=O.C1([C@]2(C3=CC=C(C=C3CO2)C#N)CCCN(C)C)=CC=C(F)C=C1 KTGRHKOEFSJQNS-BDQAORGHSA-N 0.000 description 1
- GUHPRPJDBZHYCJ-SECBINFHSA-N (2s)-2-(5-benzoylthiophen-2-yl)propanoic acid Chemical compound S1C([C@H](C(O)=O)C)=CC=C1C(=O)C1=CC=CC=C1 GUHPRPJDBZHYCJ-SECBINFHSA-N 0.000 description 1
- MDKGKXOCJGEUJW-VIFPVBQESA-N (2s)-2-[4-(thiophene-2-carbonyl)phenyl]propanoic acid Chemical compound C1=CC([C@@H](C(O)=O)C)=CC=C1C(=O)C1=CC=CS1 MDKGKXOCJGEUJW-VIFPVBQESA-N 0.000 description 1
- DNXIKVLOVZVMQF-UHFFFAOYSA-N (3beta,16beta,17alpha,18beta,20alpha)-17-hydroxy-11-methoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-yohimban-16-carboxylic acid, methyl ester Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(C(=O)OC)C(O)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 DNXIKVLOVZVMQF-UHFFFAOYSA-N 0.000 description 1
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 1
- GMVPRGQOIOIIMI-UHFFFAOYSA-N (8R,11R,12R,13E,15S)-11,15-Dihydroxy-9-oxo-13-prostenoic acid Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CCCCCCC(O)=O GMVPRGQOIOIIMI-UHFFFAOYSA-N 0.000 description 1
- BFPYWIDHMRZLRN-SWBPCFCJSA-N (8r,9s,13s,14s,17s)-17-ethynyl-13-methyl-7,8,9,11,12,14,15,16-octahydro-6h-cyclopenta[a]phenanthrene-3,17-diol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SWBPCFCJSA-N 0.000 description 1
- PXGPLTODNUVGFL-BRIYLRKRSA-N (E,Z)-(1R,2R,3R,5S)-7-(3,5-Dihydroxy-2-((3S)-(3-hydroxy-1-octenyl))cyclopentyl)-5-heptenoic acid Chemical compound CCCCC[C@H](O)C=C[C@H]1[C@H](O)C[C@H](O)[C@@H]1CC=CCCCC(O)=O PXGPLTODNUVGFL-BRIYLRKRSA-N 0.000 description 1
- METKIMKYRPQLGS-GFCCVEGCSA-N (R)-atenolol Chemical compound CC(C)NC[C@@H](O)COC1=CC=C(CC(N)=O)C=C1 METKIMKYRPQLGS-GFCCVEGCSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 description 1
- TVYLLZQTGLZFBW-ZBFHGGJFSA-N (R,R)-tramadol Chemical compound COC1=CC=CC([C@]2(O)[C@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-ZBFHGGJFSA-N 0.000 description 1
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- TWBNMYSKRDRHAT-RCWTXCDDSA-N (S)-timolol hemihydrate Chemical compound O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 TWBNMYSKRDRHAT-RCWTXCDDSA-N 0.000 description 1
- BFUXUGOZJVHVMR-UHFFFAOYSA-N 1,1-dioxo-3,4-dihydro-2h-1$l^{6},2,4-benzothiadiazine-7-sulfonamide Chemical compound N1CNS(=O)(=O)C2=CC(S(=O)(=O)N)=CC=C21 BFUXUGOZJVHVMR-UHFFFAOYSA-N 0.000 description 1
- AKHXXQAIVSMYIS-UHFFFAOYSA-N 1,1-dioxo-3-pentyl-6-(trifluoromethyl)-3,4-dihydro-2h-1$l^{6},2,4-benzothiadiazine-7-sulfonamide Chemical compound FC(F)(F)C1=C(S(N)(=O)=O)C=C2S(=O)(=O)NC(CCCCC)NC2=C1 AKHXXQAIVSMYIS-UHFFFAOYSA-N 0.000 description 1
- YHRGRBPJIRKFND-UHFFFAOYSA-N 1,3-bis(2-chloroethylsulfanyl)propane Chemical compound ClCCSCCCSCCCl YHRGRBPJIRKFND-UHFFFAOYSA-N 0.000 description 1
- AQJNKLADFCYHNW-UHFFFAOYSA-N 1,3-dichloro-1-(1,3-dichloropropylsulfanyl)propane Chemical compound ClCCC(Cl)SC(Cl)CCCl AQJNKLADFCYHNW-UHFFFAOYSA-N 0.000 description 1
- AYSIRJGVBLMLAS-UHFFFAOYSA-N 1,4-bis(2-chloroethylsulfanyl)butane Chemical compound ClCCSCCCCSCCCl AYSIRJGVBLMLAS-UHFFFAOYSA-N 0.000 description 1
- CUJOZMZOOCTTAZ-UHFFFAOYSA-N 1,5-bis(2-chloroethylsulfanyl)pentane Chemical compound ClCCSCCCCCSCCCl CUJOZMZOOCTTAZ-UHFFFAOYSA-N 0.000 description 1
- FWVCSXWHVOOTFJ-UHFFFAOYSA-N 1-(2-chloroethylsulfanyl)-2-[2-(2-chloroethylsulfanyl)ethoxy]ethane Chemical compound ClCCSCCOCCSCCCl FWVCSXWHVOOTFJ-UHFFFAOYSA-N 0.000 description 1
- SSMSBSWKLKKXGG-UHFFFAOYSA-N 1-(2-chlorophenyl)-2-isopropylaminoethanol Chemical compound CC(C)NCC(O)C1=CC=CC=C1Cl SSMSBSWKLKKXGG-UHFFFAOYSA-N 0.000 description 1
- WFNAKBGANONZEQ-UHFFFAOYSA-N 1-[(4-chlorophenyl)-phenylmethyl]-4-methylpiperazine Chemical compound C1CN(C)CCN1C(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 WFNAKBGANONZEQ-UHFFFAOYSA-N 0.000 description 1
- OZOMQRBLCMDCEG-CHHVJCJISA-N 1-[(z)-[5-(4-nitrophenyl)furan-2-yl]methylideneamino]imidazolidine-2,4-dione Chemical compound C1=CC([N+](=O)[O-])=CC=C1C(O1)=CC=C1\C=N/N1C(=O)NC(=O)C1 OZOMQRBLCMDCEG-CHHVJCJISA-N 0.000 description 1
- WIHMBLDNRMIGDW-UHFFFAOYSA-N 1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-3h-2-benzofuran-5-carbonitrile;hydron;bromide Chemical compound [Br-].O1CC2=CC(C#N)=CC=C2C1(CCC[NH+](C)C)C1=CC=C(F)C=C1 WIHMBLDNRMIGDW-UHFFFAOYSA-N 0.000 description 1
- CCXQVBSQUQCEEO-UHFFFAOYSA-N 1-bromobutan-2-one Chemical compound CCC(=O)CBr CCXQVBSQUQCEEO-UHFFFAOYSA-N 0.000 description 1
- LEBVLXFERQHONN-UHFFFAOYSA-N 1-butyl-N-(2,6-dimethylphenyl)piperidine-2-carboxamide Chemical compound CCCCN1CCCCC1C(=O)NC1=C(C)C=CC=C1C LEBVLXFERQHONN-UHFFFAOYSA-N 0.000 description 1
- IJGBNRTYNRKNHS-UHFFFAOYSA-N 1-chloro-2-(2-chloroethylsulfanylmethoxymethylsulfanyl)ethane Chemical compound ClCCSCOCSCCCl IJGBNRTYNRKNHS-UHFFFAOYSA-N 0.000 description 1
- RKTJTTAEKCRXNL-UHFFFAOYSA-N 1-chloro-2-(2-chloroethylsulfanylmethylsulfanyl)ethane Chemical compound ClCCSCSCCCl RKTJTTAEKCRXNL-UHFFFAOYSA-N 0.000 description 1
- SZLZWPPUNLXJEA-UHFFFAOYSA-N 11,17-dimethoxy-18-[3-(3,4,5-trimethoxy-phenyl)-acryloyloxy]-yohimbane-16-carboxylic acid methyl ester Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(C(=O)OC)C(OC)C1OC(=O)C=CC1=CC(OC)=C(OC)C(OC)=C1 SZLZWPPUNLXJEA-UHFFFAOYSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- DBPWSSGDRRHUNT-UHFFFAOYSA-N 17alpha-hydroxy progesterone Natural products C1CC2=CC(=O)CCC2(C)C2C1C1CCC(C(=O)C)(O)C1(C)CC2 DBPWSSGDRRHUNT-UHFFFAOYSA-N 0.000 description 1
- GCKMFJBGXUYNAG-UHFFFAOYSA-N 17alpha-methyltestosterone Natural products C1CC2=CC(=O)CCC2(C)C2C1C1CCC(C)(O)C1(C)CC2 GCKMFJBGXUYNAG-UHFFFAOYSA-N 0.000 description 1
- NVUUMOOKVFONOM-GPBSYSOESA-N 19-Norprogesterone Chemical compound C1CC2=CC(=O)CC[C@@H]2[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 NVUUMOOKVFONOM-GPBSYSOESA-N 0.000 description 1
- XETLOFNELZCXMX-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-(4-hexoxyphenyl)-2-hydroxy-2-phenylacetate;hydrochloride Chemical compound Cl.C1=CC(OCCCCCC)=CC=C1C(O)(C(=O)OCCN(CC)CC)C1=CC=CC=C1 XETLOFNELZCXMX-UHFFFAOYSA-N 0.000 description 1
- JJNZXLAFIPKXIG-UHFFFAOYSA-N 2-Chlorobenzylidenemalononitrile Chemical compound ClC1=CC=CC=C1C=C(C#N)C#N JJNZXLAFIPKXIG-UHFFFAOYSA-N 0.000 description 1
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 1
- YFGHCGITMMYXAQ-UHFFFAOYSA-N 2-[(diphenylmethyl)sulfinyl]acetamide Chemical compound C=1C=CC=CC=1C(S(=O)CC(=O)N)C1=CC=CC=C1 YFGHCGITMMYXAQ-UHFFFAOYSA-N 0.000 description 1
- JIEKMACRVQTPRC-UHFFFAOYSA-N 2-[4-(4-chlorophenyl)-2-phenyl-5-thiazolyl]acetic acid Chemical compound OC(=O)CC=1SC(C=2C=CC=CC=2)=NC=1C1=CC=C(Cl)C=C1 JIEKMACRVQTPRC-UHFFFAOYSA-N 0.000 description 1
- YMJMZFPZRVMNCH-FMIVXFBMSA-N 2-[methyl-[(e)-3-phenylprop-2-enyl]amino]-1-phenylpropan-1-ol Chemical compound C=1C=CC=CC=1/C=C/CN(C)C(C)C(O)C1=CC=CC=C1 YMJMZFPZRVMNCH-FMIVXFBMSA-N 0.000 description 1
- QXISTPDUYKNPLU-UHFFFAOYSA-N 2-bromo-1,4-dimethylbenzene Chemical compound CC1=CC=C(C)C(Br)=C1 QXISTPDUYKNPLU-UHFFFAOYSA-N 0.000 description 1
- FSKFPVLPFLJRQB-UHFFFAOYSA-N 2-methyl-1-(4-methylphenyl)-3-(1-piperidinyl)-1-propanone Chemical compound C=1C=C(C)C=CC=1C(=O)C(C)CN1CCCCC1 FSKFPVLPFLJRQB-UHFFFAOYSA-N 0.000 description 1
- PYSICVOJSJMFKP-UHFFFAOYSA-N 3,5-dibromo-2-chloropyridine Chemical compound ClC1=NC=C(Br)C=C1Br PYSICVOJSJMFKP-UHFFFAOYSA-N 0.000 description 1
- HGMITUYOCPPQLE-UHFFFAOYSA-N 3-quinuclidinyl benzilate Chemical compound C1N(CC2)CCC2C1OC(=O)C(O)(C=1C=CC=CC=1)C1=CC=CC=C1 HGMITUYOCPPQLE-UHFFFAOYSA-N 0.000 description 1
- UYNVMODNBIQBMV-UHFFFAOYSA-N 4-[1-hydroxy-2-[4-(phenylmethyl)-1-piperidinyl]propyl]phenol Chemical compound C1CC(CC=2C=CC=CC=2)CCN1C(C)C(O)C1=CC=C(O)C=C1 UYNVMODNBIQBMV-UHFFFAOYSA-N 0.000 description 1
- 150000005011 4-aminoquinolines Chemical class 0.000 description 1
- LSLYOANBFKQKPT-DIFFPNOSSA-N 5-[(1r)-1-hydroxy-2-[[(2r)-1-(4-hydroxyphenyl)propan-2-yl]amino]ethyl]benzene-1,3-diol Chemical compound C([C@@H](C)NC[C@H](O)C=1C=C(O)C=C(O)C=1)C1=CC=C(O)C=C1 LSLYOANBFKQKPT-DIFFPNOSSA-N 0.000 description 1
- RSDQHEMTUCMUPQ-UHFFFAOYSA-N 5-[1-hydroxy-2-(propan-2-ylamino)ethyl]quinolin-8-ol Chemical compound C1=CC=C2C(C(O)CNC(C)C)=CC=C(O)C2=N1 RSDQHEMTUCMUPQ-UHFFFAOYSA-N 0.000 description 1
- XKFPYPQQHFEXRZ-UHFFFAOYSA-N 5-methyl-N'-(phenylmethyl)-3-isoxazolecarbohydrazide Chemical compound O1C(C)=CC(C(=O)NNCC=2C=CC=CC=2)=N1 XKFPYPQQHFEXRZ-UHFFFAOYSA-N 0.000 description 1
- USSIQXCVUWKGNF-UHFFFAOYSA-N 6-(dimethylamino)-4,4-diphenylheptan-3-one Chemical compound C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 USSIQXCVUWKGNF-UHFFFAOYSA-N 0.000 description 1
- 229930008281 A03AD01 - Papaverine Natural products 0.000 description 1
- POJWUDADGALRAB-PVQJCKRUSA-N Allantoin Natural products NC(=O)N[C@@H]1NC(=O)NC1=O POJWUDADGALRAB-PVQJCKRUSA-N 0.000 description 1
- 235000002961 Aloe barbadensis Nutrition 0.000 description 1
- 244000186892 Aloe vera Species 0.000 description 1
- ITPDYQOUSLNIHG-UHFFFAOYSA-N Amiodarone hydrochloride Chemical compound [Cl-].CCCCC=1OC2=CC=CC=C2C=1C(=O)C1=CC(I)=C(OCC[NH+](CC)CC)C(I)=C1 ITPDYQOUSLNIHG-UHFFFAOYSA-N 0.000 description 1
- 229930183010 Amphotericin Natural products 0.000 description 1
- QGGFZZLFKABGNL-UHFFFAOYSA-N Amphotericin A Natural products OC1C(N)C(O)C(C)OC1OC1C=CC=CC=CC=CCCC=CC=CC(C)C(O)C(C)C(C)OC(=O)CC(O)CC(O)CCC(O)C(O)CC(O)CC(O)(CC(O)C2C(O)=O)OC2C1 QGGFZZLFKABGNL-UHFFFAOYSA-N 0.000 description 1
- CEUORZQYGODEFX-UHFFFAOYSA-N Aripirazole Chemical compound ClC1=CC=CC(N2CCN(CCCCOC=3C=C4NC(=O)CCC4=CC=3)CC2)=C1Cl CEUORZQYGODEFX-UHFFFAOYSA-N 0.000 description 1
- XPCFTKFZXHTYIP-PMACEKPBSA-N Benazepril Chemical compound C([C@@H](C(=O)OCC)N[C@@H]1C(N(CC(O)=O)C2=CC=CC=C2CC1)=O)CC1=CC=CC=C1 XPCFTKFZXHTYIP-PMACEKPBSA-N 0.000 description 1
- QVZCXCJXTMIDME-UHFFFAOYSA-N Biopropazepan Trimethoxybenzoate Chemical compound COC1=C(OC)C(OC)=CC(C(=O)OCCCN2CCN(CCCOC(=O)C=3C=C(OC)C(OC)=C(OC)C=3)CCC2)=C1 QVZCXCJXTMIDME-UHFFFAOYSA-N 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 241000219193 Brassicaceae Species 0.000 description 1
- RKLNONIVDFXQRX-UHFFFAOYSA-N Bromperidol Chemical compound C1CC(O)(C=2C=CC(Br)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 RKLNONIVDFXQRX-UHFFFAOYSA-N 0.000 description 1
- VOVIALXJUBGFJZ-KWVAZRHASA-N Budesonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(CCC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O VOVIALXJUBGFJZ-KWVAZRHASA-N 0.000 description 1
- 239000004072 C09CA03 - Valsartan Substances 0.000 description 1
- QWOJMRHUQHTCJG-UHFFFAOYSA-N CC([CH2-])=O Chemical compound CC([CH2-])=O QWOJMRHUQHTCJG-UHFFFAOYSA-N 0.000 description 1
- 229940127291 Calcium channel antagonist Drugs 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- UDKCHVLMFQVBAA-UHFFFAOYSA-M Choline salicylate Chemical compound C[N+](C)(C)CCO.OC1=CC=CC=C1C([O-])=O UDKCHVLMFQVBAA-UHFFFAOYSA-M 0.000 description 1
- 102000003914 Cholinesterases Human genes 0.000 description 1
- 108090000322 Cholinesterases Proteins 0.000 description 1
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 1
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- HZZVJAQRINQKSD-UHFFFAOYSA-N Clavulanic acid Natural products OC(=O)C1C(=CCO)OC2CC(=O)N21 HZZVJAQRINQKSD-UHFFFAOYSA-N 0.000 description 1
- OIRAEJWYWSAQNG-UHFFFAOYSA-N Clidanac Chemical compound ClC=1C=C2C(C(=O)O)CCC2=CC=1C1CCCCC1 OIRAEJWYWSAQNG-UHFFFAOYSA-N 0.000 description 1
- ACTIUHUUMQJHFO-UHFFFAOYSA-N Coenzym Q10 Natural products COC1=C(OC)C(=O)C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UHFFFAOYSA-N 0.000 description 1
- OMFXVFTZEKFJBZ-UHFFFAOYSA-N Corticosterone Natural products O=C1CCC2(C)C3C(O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 OMFXVFTZEKFJBZ-UHFFFAOYSA-N 0.000 description 1
- 102400000739 Corticotropin Human genes 0.000 description 1
- 101800000414 Corticotropin Proteins 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- HCYAFALTSJYZDH-UHFFFAOYSA-N Desimpramine Chemical compound C1CC2=CC=CC=C2N(CCCNC)C2=CC=CC=C21 HCYAFALTSJYZDH-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 240000001879 Digitalis lutea Species 0.000 description 1
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 1
- LVHOURKCKUYIGK-RGUJTQARSA-N Dimethisterone Chemical compound C1([C@@H](C)C2)=CC(=O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@](C#CC)(O)[C@@]2(C)CC1 LVHOURKCKUYIGK-RGUJTQARSA-N 0.000 description 1
- 108010061435 Enalapril Proteins 0.000 description 1
- RHAXSHUQNIEUEY-UHFFFAOYSA-N Epirizole Chemical compound COC1=CC(C)=NN1C1=NC(C)=CC(OC)=N1 RHAXSHUQNIEUEY-UHFFFAOYSA-N 0.000 description 1
- WKRLQDKEXYKHJB-UHFFFAOYSA-N Equilin Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3=CCC2=C1 WKRLQDKEXYKHJB-UHFFFAOYSA-N 0.000 description 1
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Estrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 description 1
- VTUSIVBDOCDNHS-UHFFFAOYSA-N Etidocaine Chemical compound CCCN(CC)C(CC)C(=O)NC1=C(C)C=CC=C1C VTUSIVBDOCDNHS-UHFFFAOYSA-N 0.000 description 1
- PNVJTZOFSHSLTO-UHFFFAOYSA-N Fenthion Chemical compound COP(=S)(OC)OC1=CC=C(SC)C(C)=C1 PNVJTZOFSHSLTO-UHFFFAOYSA-N 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- POPFMWWJOGLOIF-XWCQMRHXSA-N Flurandrenolide Chemical compound C1([C@@H](F)C2)=CC(=O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O POPFMWWJOGLOIF-XWCQMRHXSA-N 0.000 description 1
- UGJMXCAKCUNAIE-UHFFFAOYSA-N Gabapentin Chemical compound OC(=O)CC1(CN)CCCCC1 UGJMXCAKCUNAIE-UHFFFAOYSA-N 0.000 description 1
- VPNYRYCIDCJBOM-UHFFFAOYSA-M Glycopyrronium bromide Chemical compound [Br-].C1[N+](C)(C)CCC1OC(=O)C(O)(C=1C=CC=CC=1)C1CCCC1 VPNYRYCIDCJBOM-UHFFFAOYSA-M 0.000 description 1
- HSRJKNPTNIJEKV-UHFFFAOYSA-N Guaifenesin Chemical compound COC1=CC=CC=C1OCC(O)CO HSRJKNPTNIJEKV-UHFFFAOYSA-N 0.000 description 1
- WYCLKVQLVUQKNZ-UHFFFAOYSA-N Halazepam Chemical compound N=1CC(=O)N(CC(F)(F)F)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 WYCLKVQLVUQKNZ-UHFFFAOYSA-N 0.000 description 1
- MUQNGPZZQDCDFT-JNQJZLCISA-N Halcinonide Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CCl)[C@@]1(C)C[C@@H]2O MUQNGPZZQDCDFT-JNQJZLCISA-N 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 102000001399 Kallikrein Human genes 0.000 description 1
- 108060005987 Kallikrein Proteins 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- XUIIKFGFIJCVMT-LBPRGKRZSA-N L-thyroxine Chemical compound IC1=CC(C[C@H]([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-LBPRGKRZSA-N 0.000 description 1
- MKXZASYAUGDDCJ-SZMVWBNQSA-N LSM-2525 Chemical compound C1CCC[C@H]2[C@@]3([H])N(C)CC[C@]21C1=CC(OC)=CC=C1C3 MKXZASYAUGDDCJ-SZMVWBNQSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 description 1
- 108010007859 Lisinopril Proteins 0.000 description 1
- DIWRORZWFLOCLC-UHFFFAOYSA-N Lorazepam Chemical compound C12=CC(Cl)=CC=C2NC(=O)C(O)N=C1C1=CC=CC=C1Cl DIWRORZWFLOCLC-UHFFFAOYSA-N 0.000 description 1
- YNVGQYHLRCDXFQ-XGXHKTLJSA-N Lynestrenol Chemical compound C1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 YNVGQYHLRCDXFQ-XGXHKTLJSA-N 0.000 description 1
- VAYOSLLFUXYJDT-RDTXWAMCSA-N Lysergic acid diethylamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N(CC)CC)C2)=C3C2=CNC3=C1 VAYOSLLFUXYJDT-RDTXWAMCSA-N 0.000 description 1
- ZPXSCAKFGYXMGA-UHFFFAOYSA-N Mazindol Chemical compound N12CCN=C2C2=CC=CC=C2C1(O)C1=CC=C(Cl)C=C1 ZPXSCAKFGYXMGA-UHFFFAOYSA-N 0.000 description 1
- GZENKSODFLBBHQ-ILSZZQPISA-N Medrysone Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@H](C(C)=O)CC[C@H]21 GZENKSODFLBBHQ-ILSZZQPISA-N 0.000 description 1
- UDKABVSQKJNZBH-DWNQPYOZSA-N Melengestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC(=C)[C@](OC(=O)C)(C(C)=O)[C@@]1(C)CC2 UDKABVSQKJNZBH-DWNQPYOZSA-N 0.000 description 1
- ZRVUJXDFFKFLMG-UHFFFAOYSA-N Meloxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=NC=C(C)S1 ZRVUJXDFFKFLMG-UHFFFAOYSA-N 0.000 description 1
- NPPQSCRMBWNHMW-UHFFFAOYSA-N Meprobamate Chemical compound NC(=O)OCC(C)(CCC)COC(N)=O NPPQSCRMBWNHMW-UHFFFAOYSA-N 0.000 description 1
- IMWZZHHPURKASS-UHFFFAOYSA-N Metaxalone Chemical compound CC1=CC(C)=CC(OCC2OC(=O)NC2)=C1 IMWZZHHPURKASS-UHFFFAOYSA-N 0.000 description 1
- CESYKOGBSMNBPD-UHFFFAOYSA-N Methyclothiazide Chemical compound ClC1=C(S(N)(=O)=O)C=C2S(=O)(=O)N(C)C(CCl)NC2=C1 CESYKOGBSMNBPD-UHFFFAOYSA-N 0.000 description 1
- FQISKWAFAHGMGT-SGJOWKDISA-M Methylprednisolone sodium succinate Chemical compound [Na+].C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(=O)CCC([O-])=O)CC[C@H]21 FQISKWAFAHGMGT-SGJOWKDISA-M 0.000 description 1
- GCKMFJBGXUYNAG-HLXURNFRSA-N Methyltestosterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)CC2 GCKMFJBGXUYNAG-HLXURNFRSA-N 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- KLPWJLBORRMFGK-UHFFFAOYSA-N Molindone Chemical compound O=C1C=2C(CC)=C(C)NC=2CCC1CN1CCOCC1 KLPWJLBORRMFGK-UHFFFAOYSA-N 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- UQOFGTXDASPNLL-XHNCKOQMSA-N Muscarine Chemical compound C[C@@H]1O[C@H](C[N+](C)(C)C)C[C@H]1O UQOFGTXDASPNLL-XHNCKOQMSA-N 0.000 description 1
- 208000007101 Muscle Cramp Diseases 0.000 description 1
- 208000008238 Muscle Spasticity Diseases 0.000 description 1
- 235000009421 Myristica fragrans Nutrition 0.000 description 1
- IJHNSHDBIRRJRN-UHFFFAOYSA-N N,N-dimethyl-3-phenyl-3-(2-pyridinyl)-1-propanamine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=CC=C1 IJHNSHDBIRRJRN-UHFFFAOYSA-N 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- VMXUWOKSQNHOCA-UHFFFAOYSA-N N1'-[2-[[5-[(dimethylamino)methyl]-2-furanyl]methylthio]ethyl]-N1-methyl-2-nitroethene-1,1-diamine Chemical compound [O-][N+](=O)C=C(NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-UHFFFAOYSA-N 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- ZBBHBTPTTSWHBA-UHFFFAOYSA-N Nicardipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCCN(C)CC=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ZBBHBTPTTSWHBA-UHFFFAOYSA-N 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- IMONTRJLAWHYGT-ZCPXKWAGSA-N Norethindrone Acetate Chemical compound C1CC2=CC(=O)CC[C@@H]2[C@@H]2[C@@H]1[C@@H]1CC[C@](C#C)(OC(=O)C)[C@@]1(C)CC2 IMONTRJLAWHYGT-ZCPXKWAGSA-N 0.000 description 1
- ICTXHFFSOAJUMG-SLHNCBLASA-N Norethynodrel Chemical compound C1CC(=O)CC2=C1[C@H]1CC[C@](C)([C@](CC3)(O)C#C)[C@@H]3[C@@H]1CC2 ICTXHFFSOAJUMG-SLHNCBLASA-N 0.000 description 1
- PHVGLTMQBUFIQQ-UHFFFAOYSA-N Nortryptiline Chemical compound C1CC2=CC=CC=C2C(=CCCNC)C2=CC=CC=C21 PHVGLTMQBUFIQQ-UHFFFAOYSA-N 0.000 description 1
- UQGKUQLKSCSZGY-UHFFFAOYSA-N Olmesartan medoxomil Chemical compound C=1C=C(C=2C(=CC=CC=2)C2=NNN=N2)C=CC=1CN1C(CCC)=NC(C(C)(C)O)=C1C(=O)OCC=1OC(=O)OC=1C UQGKUQLKSCSZGY-UHFFFAOYSA-N 0.000 description 1
- FCKLFGKATYPJPG-SSTBVEFVSA-N Oxendolone Chemical compound C1CC2=CC(=O)CC[C@@H]2[C@@H]2[C@@H]1[C@@H]1C[C@H](CC)[C@H](O)[C@@]1(C)CC2 FCKLFGKATYPJPG-SSTBVEFVSA-N 0.000 description 1
- 239000004100 Oxytetracycline Substances 0.000 description 1
- 102400000050 Oxytocin Human genes 0.000 description 1
- 101800000989 Oxytocin Proteins 0.000 description 1
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- MKPDWECBUAZOHP-AFYJWTTESA-N Paramethasone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]2(C)C[C@@H]1O MKPDWECBUAZOHP-AFYJWTTESA-N 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- TZRXHJWUDPFEEY-UHFFFAOYSA-N Pentaerythritol Tetranitrate Chemical compound [O-][N+](=O)OCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O TZRXHJWUDPFEEY-UHFFFAOYSA-N 0.000 description 1
- 239000000026 Pentaerythritol tetranitrate Substances 0.000 description 1
- RMUCZJUITONUFY-UHFFFAOYSA-N Phenelzine Chemical compound NNCCC1=CC=CC=C1 RMUCZJUITONUFY-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- TVQZAMVBTVNYLA-UHFFFAOYSA-N Pranoprofen Chemical compound C1=CC=C2CC3=CC(C(C(O)=O)C)=CC=C3OC2=N1 TVQZAMVBTVNYLA-UHFFFAOYSA-N 0.000 description 1
- MWQCHHACWWAQLJ-UHFFFAOYSA-N Prazepam Chemical compound O=C1CN=C(C=2C=CC=CC=2)C2=CC(Cl)=CC=C2N1CC1CC1 MWQCHHACWWAQLJ-UHFFFAOYSA-N 0.000 description 1
- VVWYOYDLCMFIEM-UHFFFAOYSA-N Propantheline Chemical compound C1=CC=C2C(C(=O)OCC[N+](C)(C(C)C)C(C)C)C3=CC=CC=C3OC2=C1 VVWYOYDLCMFIEM-UHFFFAOYSA-N 0.000 description 1
- KNAHARQHSZJURB-UHFFFAOYSA-N Propylthiouracile Chemical compound CCCC1=CC(=O)NC(=S)N1 KNAHARQHSZJURB-UHFFFAOYSA-N 0.000 description 1
- SZLZWPPUNLXJEA-FMCDHCOASA-N Rescinnamine Natural products O=C(O[C@H]1[C@@H](OC)[C@@H](C(=O)OC)[C@@H]2[C@H](C1)CN1[C@@H](c3[nH]c4c(c3CC1)ccc(OC)c4)C2)/C=C/c1cc(OC)c(OC)c(OC)c1 SZLZWPPUNLXJEA-FMCDHCOASA-N 0.000 description 1
- LCQMZZCPPSWADO-UHFFFAOYSA-N Reserpilin Natural products COC(=O)C1COCC2CN3CCc4c([nH]c5cc(OC)c(OC)cc45)C3CC12 LCQMZZCPPSWADO-UHFFFAOYSA-N 0.000 description 1
- QEVHRUUCFGRFIF-SFWBKIHZSA-N Reserpine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cc(OC)cc3 QEVHRUUCFGRFIF-SFWBKIHZSA-N 0.000 description 1
- SKZKKFZAGNVIMN-UHFFFAOYSA-N Salicilamide Chemical compound NC(=O)C1=CC=CC=C1O SKZKKFZAGNVIMN-UHFFFAOYSA-N 0.000 description 1
- DYAHQFWOVKZOOW-UHFFFAOYSA-N Sarin Chemical compound CC(C)OP(C)(F)=O DYAHQFWOVKZOOW-UHFFFAOYSA-N 0.000 description 1
- GRXKLBBBQUKJJZ-UHFFFAOYSA-N Soman Chemical compound CC(C)(C)C(C)OP(C)(F)=O GRXKLBBBQUKJJZ-UHFFFAOYSA-N 0.000 description 1
- 208000005392 Spasm Diseases 0.000 description 1
- NHUHCSRWZMLRLA-UHFFFAOYSA-N Sulfisoxazole Chemical compound CC1=NOC(NS(=O)(=O)C=2C=CC(N)=CC=2)=C1C NHUHCSRWZMLRLA-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000000150 Sympathomimetic Substances 0.000 description 1
- ZCDNRPPFBQDQHR-SSYATKPKSA-N Syrosingopine Chemical compound C1=C(OC)C(OC(=O)OCC)=C(OC)C=C1C(=O)O[C@H]1[C@H](OC)[C@@H](C(=O)OC)[C@H]2C[C@@H]3C(NC=4C5=CC=C(OC)C=4)=C5CCN3C[C@H]2C1 ZCDNRPPFBQDQHR-SSYATKPKSA-N 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- GUGOEEXESWIERI-UHFFFAOYSA-N Terfenadine Chemical compound C1=CC(C(C)(C)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 GUGOEEXESWIERI-UHFFFAOYSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- KLBQZWRITKRQQV-UHFFFAOYSA-N Thioridazine Chemical compound C12=CC(SC)=CC=C2SC2=CC=CC=C2N1CCC1CCCCN1C KLBQZWRITKRQQV-UHFFFAOYSA-N 0.000 description 1
- GFBKORZTTCHDGY-UWVJOHFNSA-N Thiothixene Chemical compound C12=CC(S(=O)(=O)N(C)C)=CC=C2SC2=CC=CC=C2\C1=C\CCN1CCN(C)CC1 GFBKORZTTCHDGY-UWVJOHFNSA-N 0.000 description 1
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 1
- KJADKKWYZYXHBB-XBWDGYHZSA-N Topiramic acid Chemical compound C1O[C@@]2(COS(N)(=O)=O)OC(C)(C)O[C@H]2[C@@H]2OC(C)(C)O[C@@H]21 KJADKKWYZYXHBB-XBWDGYHZSA-N 0.000 description 1
- GSNOZLZNQMLSKJ-UHFFFAOYSA-N Trapidil Chemical compound CCN(CC)C1=CC(C)=NC2=NC=NN12 GSNOZLZNQMLSKJ-UHFFFAOYSA-N 0.000 description 1
- UHWVSEOVJBQKBE-UHFFFAOYSA-N Trimetazidine Chemical compound COC1=C(OC)C(OC)=CC=C1CN1CCNCC1 UHWVSEOVJBQKBE-UHFFFAOYSA-N 0.000 description 1
- UFLGIAIHIAPJJC-UHFFFAOYSA-N Tripelennamine Chemical compound C=1C=CC=NC=1N(CCN(C)C)CC1=CC=CC=C1 UFLGIAIHIAPJJC-UHFFFAOYSA-N 0.000 description 1
- 208000003443 Unconsciousness Diseases 0.000 description 1
- NIJJYAXOARWZEE-UHFFFAOYSA-N Valproic acid Chemical compound CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- ANGKOCUUWGHLCE-HKUYNNGSSA-N [(3s)-1,1-dimethylpyrrolidin-1-ium-3-yl] (2r)-2-cyclopentyl-2-hydroxy-2-phenylacetate Chemical compound C1[N+](C)(C)CC[C@@H]1OC(=O)[C@](O)(C=1C=CC=CC=1)C1CCCC1 ANGKOCUUWGHLCE-HKUYNNGSSA-N 0.000 description 1
- PJVJTCIRVMBVIA-JTQLQIEISA-N [dimethylamino(ethoxy)phosphoryl]formonitrile Chemical compound CCO[P@@](=O)(C#N)N(C)C PJVJTCIRVMBVIA-JTQLQIEISA-N 0.000 description 1
- AMZWNNKNOQSBOP-UHFFFAOYSA-M [n'-(2,5-dioxoimidazolidin-4-yl)carbamimidoyl]oxyaluminum;dihydrate Chemical compound O.O.NC(=O)NC1N=C(O[Al])NC1=O AMZWNNKNOQSBOP-UHFFFAOYSA-M 0.000 description 1
- 229940056213 abilify Drugs 0.000 description 1
- 229960000276 acetophenazine Drugs 0.000 description 1
- WNTYBHLDCKXEOT-UHFFFAOYSA-N acetophenazine Chemical compound C12=CC(C(=O)C)=CC=C2SC2=CC=CC=C2N1CCCN1CCN(CCO)CC1 WNTYBHLDCKXEOT-UHFFFAOYSA-N 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 229940062327 aciphex Drugs 0.000 description 1
- ASMXXROZKSBQIH-VITNCHFBSA-N aclidinium Chemical compound C([C@@H](C(CC1)CC2)OC(=O)C(O)(C=3SC=CC=3)C=3SC=CC=3)[N+]21CCCOC1=CC=CC=C1 ASMXXROZKSBQIH-VITNCHFBSA-N 0.000 description 1
- 229940019903 aclidinium Drugs 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- PBNSPNYJYOYWTA-UHFFFAOYSA-N adamsite Chemical compound C1=CC=C2[As](Cl)C3=CC=CC=C3NC2=C1 PBNSPNYJYOYWTA-UHFFFAOYSA-N 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 239000000048 adrenergic agonist Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 229960005142 alclofenac Drugs 0.000 description 1
- ARHWPKZXBHOEEE-UHFFFAOYSA-N alclofenac Chemical compound OC(=O)CC1=CC=C(OCC=C)C(Cl)=C1 ARHWPKZXBHOEEE-UHFFFAOYSA-N 0.000 description 1
- 229960004220 alcloxa Drugs 0.000 description 1
- 229940015825 aldioxa Drugs 0.000 description 1
- 229960000458 allantoin Drugs 0.000 description 1
- 235000011399 aloe vera Nutrition 0.000 description 1
- CJCSPKMFHVPWAR-JTQLQIEISA-N alpha-methyl-L-dopa Chemical compound OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1 CJCSPKMFHVPWAR-JTQLQIEISA-N 0.000 description 1
- 229960000711 alprostadil Drugs 0.000 description 1
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 1
- 229960003805 amantadine Drugs 0.000 description 1
- 229940094070 ambien Drugs 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 229960005260 amiodarone Drugs 0.000 description 1
- HTIQEAQVCYTUBX-UHFFFAOYSA-N amlodipine Chemical compound CCOC(=O)C1=C(COCCN)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1Cl HTIQEAQVCYTUBX-UHFFFAOYSA-N 0.000 description 1
- 229960001301 amobarbital Drugs 0.000 description 1
- 229960002519 amoxapine Drugs 0.000 description 1
- QWGDMFLQWFTERH-UHFFFAOYSA-N amoxapine Chemical compound C12=CC(Cl)=CC=C2OC2=CC=CC=C2N=C1N1CCNCC1 QWGDMFLQWFTERH-UHFFFAOYSA-N 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- 229940025084 amphetamine Drugs 0.000 description 1
- 229940009444 amphotericin Drugs 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 229940005553 analgesics and anesthetics Drugs 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- BBDAGFIXKZCXAH-CCXZUQQUSA-N ancitabine Chemical compound N=C1C=CN2[C@@H]3O[C@H](CO)[C@@H](O)[C@@H]3OC2=N1 BBDAGFIXKZCXAH-CCXZUQQUSA-N 0.000 description 1
- 229950000242 ancitabine Drugs 0.000 description 1
- 230000001548 androgenic effect Effects 0.000 description 1
- 229940118324 anisotropine Drugs 0.000 description 1
- 230000001539 anorectic effect Effects 0.000 description 1
- 229960002469 antazoline Drugs 0.000 description 1
- REYFJDPCWQRWAA-UHFFFAOYSA-N antazoline Chemical compound N=1CCNC=1CN(C=1C=CC=CC=1)CC1=CC=CC=C1 REYFJDPCWQRWAA-UHFFFAOYSA-N 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000049 anti-anxiety effect Effects 0.000 description 1
- 230000001773 anti-convulsant effect Effects 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 230000001387 anti-histamine Effects 0.000 description 1
- 230000003276 anti-hypertensive effect Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 230000000078 anti-malarial effect Effects 0.000 description 1
- 230000001022 anti-muscarinic effect Effects 0.000 description 1
- 230000001754 anti-pyretic effect Effects 0.000 description 1
- 230000002921 anti-spasmodic effect Effects 0.000 description 1
- 230000000767 anti-ulcer Effects 0.000 description 1
- 239000000043 antiallergic agent Substances 0.000 description 1
- 239000003416 antiarrhythmic agent Substances 0.000 description 1
- 229940125681 anticonvulsant agent Drugs 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 229940030600 antihypertensive agent Drugs 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 229940033495 antimalarials Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000000164 antipsychotic agent Substances 0.000 description 1
- 229940005529 antipsychotics Drugs 0.000 description 1
- 239000002221 antipyretic Substances 0.000 description 1
- 229940125716 antipyretic agent Drugs 0.000 description 1
- 229940124575 antispasmodic agent Drugs 0.000 description 1
- 239000003699 antiulcer agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 229960004046 apomorphine Drugs 0.000 description 1
- VMWNQDUVQKEIOC-CYBMUJFWSA-N apomorphine Chemical compound C([C@H]1N(C)CC2)C3=CC=C(O)C(O)=C3C3=C1C2=CC=C3 VMWNQDUVQKEIOC-CYBMUJFWSA-N 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 229960002274 atenolol Drugs 0.000 description 1
- 229940072698 ativan Drugs 0.000 description 1
- FQCKMBLVYCEXJB-MNSAWQCASA-L atorvastatin calcium Chemical compound [Ca+2].C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC([O-])=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1.C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC([O-])=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 FQCKMBLVYCEXJB-MNSAWQCASA-L 0.000 description 1
- 229940098164 augmentin Drugs 0.000 description 1
- 229940062316 avelox Drugs 0.000 description 1
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 1
- 229940098166 bactrim Drugs 0.000 description 1
- 231100001125 band 2 compound Toxicity 0.000 description 1
- 229960000945 bencyclane Drugs 0.000 description 1
- FYJJXENSONZJRG-UHFFFAOYSA-N bencyclane Chemical compound C=1C=CC=CC=1CC1(OCCCN(C)C)CCCCCC1 FYJJXENSONZJRG-UHFFFAOYSA-N 0.000 description 1
- 229960005149 bendazac Drugs 0.000 description 1
- BYFMCKSPFYVMOU-UHFFFAOYSA-N bendazac Chemical compound C12=CC=CC=C2C(OCC(=O)O)=NN1CC1=CC=CC=C1 BYFMCKSPFYVMOU-UHFFFAOYSA-N 0.000 description 1
- 229940055053 benicar Drugs 0.000 description 1
- CPFJLLXFNPCTDW-BWSPSPBFSA-N benzatropine mesylate Chemical compound CS([O-])(=O)=O.O([C@H]1C[C@H]2CC[C@@H](C1)[NH+]2C)C(C=1C=CC=CC=1)C1=CC=CC=C1 CPFJLLXFNPCTDW-BWSPSPBFSA-N 0.000 description 1
- RVSGRNKUJJUAPV-UHFFFAOYSA-N benzo[d][1,2]benzoxazepine Chemical compound O1N=CC2=CC=CC=C2C2=CC=CC=C12 RVSGRNKUJJUAPV-UHFFFAOYSA-N 0.000 description 1
- 229940049706 benzodiazepine Drugs 0.000 description 1
- 150000001557 benzodiazepines Chemical class 0.000 description 1
- 229940024774 benztropine mesylate Drugs 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- UUQMNUMQCIQDMZ-UHFFFAOYSA-N betahistine Chemical compound CNCCC1=CC=CC=N1 UUQMNUMQCIQDMZ-UHFFFAOYSA-N 0.000 description 1
- 229960004536 betahistine Drugs 0.000 description 1
- 229960002537 betamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 description 1
- NZUPCNDJBJXXRF-UHFFFAOYSA-O bethanechol Chemical compound C[N+](C)(C)CC(C)OC(N)=O NZUPCNDJBJXXRF-UHFFFAOYSA-O 0.000 description 1
- 229960000910 bethanechol Drugs 0.000 description 1
- 229940110331 bextra Drugs 0.000 description 1
- 229940087430 biaxin Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- XUHFBOUSHUEAQZ-UHFFFAOYSA-N bromobenzyl cyanide Chemical compound N#CC(Br)C1=CC=CC=C1 XUHFBOUSHUEAQZ-UHFFFAOYSA-N 0.000 description 1
- 229960002802 bromocriptine Drugs 0.000 description 1
- OZVBMTJYIDMWIL-AYFBDAFISA-N bromocriptine Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@]2(C(=O)N3[C@H](C(N4CCC[C@H]4[C@]3(O)O2)=O)CC(C)C)C(C)C)C2)=C3C2=C(Br)NC3=C1 OZVBMTJYIDMWIL-AYFBDAFISA-N 0.000 description 1
- 229960004037 bromperidol Drugs 0.000 description 1
- ZDIGNSYAACHWNL-UHFFFAOYSA-N brompheniramine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Br)C=C1 ZDIGNSYAACHWNL-UHFFFAOYSA-N 0.000 description 1
- 229960000725 brompheniramine Drugs 0.000 description 1
- 229960004436 budesonide Drugs 0.000 description 1
- 229960000962 bufexamac Drugs 0.000 description 1
- MXJWRABVEGLYDG-UHFFFAOYSA-N bufexamac Chemical compound CCCCOC1=CC=C(CC(=O)NO)C=C1 MXJWRABVEGLYDG-UHFFFAOYSA-N 0.000 description 1
- 229960003150 bupivacaine Drugs 0.000 description 1
- RMRJXGBAOAMLHD-IHFGGWKQSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-IHFGGWKQSA-N 0.000 description 1
- 229960001736 buprenorphine Drugs 0.000 description 1
- SNPPWIUOZRMYNY-UHFFFAOYSA-N bupropion Chemical compound CC(C)(C)NC(C)C(=O)C1=CC=CC(Cl)=C1 SNPPWIUOZRMYNY-UHFFFAOYSA-N 0.000 description 1
- 229940015273 buspar Drugs 0.000 description 1
- QWCRAEMEVRGPNT-UHFFFAOYSA-N buspirone Chemical compound C1C(=O)N(CCCCN2CCN(CC2)C=2N=CC=CN=2)C(=O)CC21CCCC2 QWCRAEMEVRGPNT-UHFFFAOYSA-N 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229960002504 capsaicin Drugs 0.000 description 1
- 235000017663 capsaicin Nutrition 0.000 description 1
- 229960004484 carbachol Drugs 0.000 description 1
- AIXAANGOTKPUOY-UHFFFAOYSA-N carbachol Chemical compound [Cl-].C[N+](C)(C)CCOC(N)=O AIXAANGOTKPUOY-UHFFFAOYSA-N 0.000 description 1
- 229960004205 carbidopa Drugs 0.000 description 1
- TZFNLOMSOLWIDK-JTQLQIEISA-N carbidopa (anhydrous) Chemical compound NN[C@@](C(O)=O)(C)CC1=CC=C(O)C(O)=C1 TZFNLOMSOLWIDK-JTQLQIEISA-N 0.000 description 1
- OJFSXZCBGQGRNV-UHFFFAOYSA-N carbinoxamine Chemical compound C=1C=CC=NC=1C(OCCN(C)C)C1=CC=C(Cl)C=C1 OJFSXZCBGQGRNV-UHFFFAOYSA-N 0.000 description 1
- 229960000428 carbinoxamine Drugs 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229960001386 carbuterol Drugs 0.000 description 1
- KEMXXQOFIRIICG-UHFFFAOYSA-N carbuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(NC(N)=O)=C1 KEMXXQOFIRIICG-UHFFFAOYSA-N 0.000 description 1
- 239000000496 cardiotonic agent Substances 0.000 description 1
- 230000003177 cardiotonic effect Effects 0.000 description 1
- OFZCIYFFPZCNJE-UHFFFAOYSA-N carisoprodol Chemical compound NC(=O)OCC(C)(CCC)COC(=O)NC(C)C OFZCIYFFPZCNJE-UHFFFAOYSA-N 0.000 description 1
- 229960004587 carisoprodol Drugs 0.000 description 1
- 229960000603 cefalotin Drugs 0.000 description 1
- 229940047495 celebrex Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 229940047493 celexa Drugs 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 229940106164 cephalexin Drugs 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- VUFGUVLLDPOSBC-XRZFDKQNSA-M cephalothin sodium Chemical compound [Na+].N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C([O-])=O)C(=O)CC1=CC=CS1 VUFGUVLLDPOSBC-XRZFDKQNSA-M 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- XGGHHHBGPSNXFE-ZSHCYNCHSA-N chembl1186610 Chemical compound C1[C@H](OC(=O)C(CCC)CCC)C[C@@H]2CC[C@H]1[N+]2(C)C XGGHHHBGPSNXFE-ZSHCYNCHSA-N 0.000 description 1
- FUFVKLQESJNNAN-RIMUKSHESA-M chembl1200851 Chemical compound [Br-].O([C@H]1C[C@H]2CC[C@@H](C1)[N+]2(C)C)C(=O)C(O)C1=CC=CC=C1 FUFVKLQESJNNAN-RIMUKSHESA-M 0.000 description 1
- 229960004831 chlorcyclizine Drugs 0.000 description 1
- 229960004782 chlordiazepoxide Drugs 0.000 description 1
- ANTSCNMPPGJYLG-UHFFFAOYSA-N chlordiazepoxide Chemical compound O=N=1CC(NC)=NC2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 ANTSCNMPPGJYLG-UHFFFAOYSA-N 0.000 description 1
- 229960003996 chlormadinone Drugs 0.000 description 1
- VUHJZBBCZGVNDZ-TTYLFXKOSA-N chlormadinone Chemical compound C1=C(Cl)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2 VUHJZBBCZGVNDZ-TTYLFXKOSA-N 0.000 description 1
- JYWJULGYGOLCGW-UHFFFAOYSA-N chloromethyl chloroformate Chemical compound ClCOC(Cl)=O JYWJULGYGOLCGW-UHFFFAOYSA-N 0.000 description 1
- LFHISGNCFUNFFM-UHFFFAOYSA-N chloropicrin Chemical compound [O-][N+](=O)C(Cl)(Cl)Cl LFHISGNCFUNFFM-UHFFFAOYSA-N 0.000 description 1
- 229960003677 chloroquine Drugs 0.000 description 1
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 1
- 229960002155 chlorothiazide Drugs 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960002688 choline salicylate Drugs 0.000 description 1
- 239000000064 cholinergic agonist Substances 0.000 description 1
- 239000000812 cholinergic antagonist Substances 0.000 description 1
- 229940048961 cholinesterase Drugs 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 229960001750 cinnamedrine Drugs 0.000 description 1
- DERZBLKQOCDDDZ-JLHYYAGUSA-N cinnarizine Chemical compound C1CN(C(C=2C=CC=CC=2)C=2C=CC=CC=2)CCN1C\C=C\C1=CC=CC=C1 DERZBLKQOCDDDZ-JLHYYAGUSA-N 0.000 description 1
- 229960000876 cinnarizine Drugs 0.000 description 1
- 229940088516 cipro Drugs 0.000 description 1
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 229960002626 clarithromycin Drugs 0.000 description 1
- 229940088529 claritin Drugs 0.000 description 1
- 229950010886 clidanac Drugs 0.000 description 1
- 229960002227 clindamycin Drugs 0.000 description 1
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 1
- 229960003140 clofezone Drugs 0.000 description 1
- 229950011462 clorprenaline Drugs 0.000 description 1
- 229960004022 clotrimazole Drugs 0.000 description 1
- VNFPBHJOKIVQEB-UHFFFAOYSA-N clotrimazole Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1 VNFPBHJOKIVQEB-UHFFFAOYSA-N 0.000 description 1
- 229960003920 cocaine Drugs 0.000 description 1
- 235000017471 coenzyme Q10 Nutrition 0.000 description 1
- ACTIUHUUMQJHFO-UPTCCGCDSA-N coenzyme Q10 Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UPTCCGCDSA-N 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- 229940000425 combination drug Drugs 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 229940112502 concerta Drugs 0.000 description 1
- 229940035811 conjugated estrogen Drugs 0.000 description 1
- 239000003218 coronary vasodilator agent Substances 0.000 description 1
- OMFXVFTZEKFJBZ-HJTSIMOOSA-N corticosterone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@H](CC4)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OMFXVFTZEKFJBZ-HJTSIMOOSA-N 0.000 description 1
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 1
- 229960000258 corticotropin Drugs 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 229940072645 coumadin Drugs 0.000 description 1
- 229940066901 crestor Drugs 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- QPJDMGCKMHUXFD-UHFFFAOYSA-N cyanogen chloride Chemical compound ClC#N QPJDMGCKMHUXFD-UHFFFAOYSA-N 0.000 description 1
- 229960003564 cyclizine Drugs 0.000 description 1
- UVKZSORBKUEBAZ-UHFFFAOYSA-N cyclizine Chemical compound C1CN(C)CCN1C(C=1C=CC=CC=1)C1=CC=CC=C1 UVKZSORBKUEBAZ-UHFFFAOYSA-N 0.000 description 1
- SNTRKUOVAPUGAY-UHFFFAOYSA-N cyclosarin Chemical compound CP(F)(=O)OC1CCCCC1 SNTRKUOVAPUGAY-UHFFFAOYSA-N 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 229960001987 dantrolene Drugs 0.000 description 1
- 229960003710 dantrolene sodium Drugs 0.000 description 1
- LTWQNYPDAUSXBC-CDJGKPBYSA-L dantrolene sodium hemiheptahydrate Chemical compound O.O.O.O.O.O.O.[Na+].[Na+].C1=CC([N+](=O)[O-])=CC=C1C(O1)=CC=C1\C=N\N1C(=O)[N-]C(=O)C1.C1=CC([N+](=O)[O-])=CC=C1C(O1)=CC=C1\C=N\N1C(=O)[N-]C(=O)C1 LTWQNYPDAUSXBC-CDJGKPBYSA-L 0.000 description 1
- 229940078435 darvocet Drugs 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 239000000850 decongestant Substances 0.000 description 1
- 229940124581 decongestants Drugs 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 206010061428 decreased appetite Diseases 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 229960001853 demegestone Drugs 0.000 description 1
- JWAHBTQSSMYISL-MHTWAQMVSA-N demegestone Chemical compound C1CC2=CC(=O)CCC2=C2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(C)[C@@]1(C)CC2 JWAHBTQSSMYISL-MHTWAQMVSA-N 0.000 description 1
- 229940075925 depakote Drugs 0.000 description 1
- 229960003914 desipramine Drugs 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960000632 dexamfetamine Drugs 0.000 description 1
- 229960001985 dextromethorphan Drugs 0.000 description 1
- 229960004193 dextropropoxyphene Drugs 0.000 description 1
- XLMALTXPSGQGBX-GCJKJVERSA-N dextropropoxyphene Chemical compound C([C@](OC(=O)CC)([C@H](C)CN(C)C)C=1C=CC=CC=1)C1=CC=CC=C1 XLMALTXPSGQGBX-GCJKJVERSA-N 0.000 description 1
- CURUTKGFNZGFSE-UHFFFAOYSA-N dicyclomine Chemical compound C1CCCCC1C1(C(=O)OCCN(CC)CC)CCCCC1 CURUTKGFNZGFSE-UHFFFAOYSA-N 0.000 description 1
- 229960002777 dicycloverine Drugs 0.000 description 1
- XXEPPPIWZFICOJ-UHFFFAOYSA-N diethylpropion Chemical compound CCN(CC)C(C)C(=O)C1=CC=CC=C1 XXEPPPIWZFICOJ-UHFFFAOYSA-N 0.000 description 1
- 229960004890 diethylpropion Drugs 0.000 description 1
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 1
- 229960000452 diethylstilbestrol Drugs 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 1
- 229960005156 digoxin Drugs 0.000 description 1
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 1
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 1
- XYYVYLMBEZUESM-UHFFFAOYSA-N dihydrocodeine Natural products C1C(N(CCC234)C)C2C=CC(=O)C3OC2=C4C1=CC=C2OC XYYVYLMBEZUESM-UHFFFAOYSA-N 0.000 description 1
- ADYPXRFPBQGGAH-WVVAGBSPSA-N dihydroergotoxine Chemical compound CS(O)(=O)=O.C([C@H]1C(=O)N2CCC[C@H]2[C@]2(O)O[C@@](C(N21)=O)(C)NC(=O)[C@H]1CN([C@H]2C(C=3C=CC=C4NC=C(C=34)C2)C1)C)C1=CC=CC=C1 ADYPXRFPBQGGAH-WVVAGBSPSA-N 0.000 description 1
- 229940120500 dihydroergotoxine Drugs 0.000 description 1
- 229940064790 dilantin Drugs 0.000 description 1
- 229960001079 dilazep Drugs 0.000 description 1
- 229960004166 diltiazem Drugs 0.000 description 1
- HSUGRBWQSSZJOP-RTWAWAEBSA-N diltiazem Chemical compound C1=CC(OC)=CC=C1[C@H]1[C@@H](OC(C)=O)C(=O)N(CCN(C)C)C2=CC=CC=C2S1 HSUGRBWQSSZJOP-RTWAWAEBSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229960004993 dimenhydrinate Drugs 0.000 description 1
- MZDOIJOUFRQXHC-UHFFFAOYSA-N dimenhydrinate Chemical compound O=C1N(C)C(=O)N(C)C2=NC(Cl)=N[C]21.C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 MZDOIJOUFRQXHC-UHFFFAOYSA-N 0.000 description 1
- 229950006690 dimethisterone Drugs 0.000 description 1
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 1
- 229940074619 diovan Drugs 0.000 description 1
- 229960000520 diphenhydramine Drugs 0.000 description 1
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical compound C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 1
- IZEKFCXSFNUWAM-UHFFFAOYSA-N dipyridamole Chemical compound C=12N=C(N(CCO)CCO)N=C(N3CCCCC3)C2=NC(N(CCO)CCO)=NC=1N1CCCCC1 IZEKFCXSFNUWAM-UHFFFAOYSA-N 0.000 description 1
- 229960002768 dipyridamole Drugs 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 229960005426 doxepin Drugs 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229960000385 dyclonine Drugs 0.000 description 1
- BZEWSEKUUPWQDQ-UHFFFAOYSA-N dyclonine Chemical compound C1=CC(OCCCC)=CC=C1C(=O)CCN1CCCCC1 BZEWSEKUUPWQDQ-UHFFFAOYSA-N 0.000 description 1
- 229960004913 dydrogesterone Drugs 0.000 description 1
- JGMOKGBVKVMRFX-HQZYFCCVSA-N dydrogesterone Chemical compound C1=CC2=CC(=O)CC[C@@]2(C)[C@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 JGMOKGBVKVMRFX-HQZYFCCVSA-N 0.000 description 1
- 229940098766 effexor Drugs 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 229940011681 elavil Drugs 0.000 description 1
- 229960000873 enalapril Drugs 0.000 description 1
- GBXSMTUPTTWBMN-XIRDDKMYSA-N enalapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)CC1=CC=CC=C1 GBXSMTUPTTWBMN-XIRDDKMYSA-N 0.000 description 1
- 229940073987 endocet Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229960003559 enprostil Drugs 0.000 description 1
- 229950003801 epirizole Drugs 0.000 description 1
- WKRLQDKEXYKHJB-HFTRVMKXSA-N equilin Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4C3=CCC2=C1 WKRLQDKEXYKHJB-HFTRVMKXSA-N 0.000 description 1
- SNFOERUNNSHUGP-ZXZARUISSA-N erythrityl tetranitrate Chemical compound [O-][N+](=O)OC[C@@H](O[N+]([O-])=O)[C@@H](O[N+]([O-])=O)CO[N+]([O-])=O SNFOERUNNSHUGP-ZXZARUISSA-N 0.000 description 1
- KWORUUGOSLYAGD-YPPDDXJESA-N esomeprazole magnesium Chemical compound [Mg+2].C([S@](=O)C=1[N-]C2=CC=C(C=C2N=1)OC)C1=NC=C(C)C(OC)=C1C.C([S@](=O)C=1[N-]C2=CC=C(C=C2N=1)OC)C1=NC=C(C)C(OC)=C1C KWORUUGOSLYAGD-YPPDDXJESA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229960001348 estriol Drugs 0.000 description 1
- PROQIPRRNZUXQM-ZXXIGWHRSA-N estriol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H]([C@H](O)C4)O)[C@@H]4[C@@H]3CCC2=C1 PROQIPRRNZUXQM-ZXXIGWHRSA-N 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- 229960003399 estrone Drugs 0.000 description 1
- JKKFKPJIXZFSSB-CBZIJGRNSA-N estrone 3-sulfate Chemical compound OS(=O)(=O)OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 JKKFKPJIXZFSSB-CBZIJGRNSA-N 0.000 description 1
- 229940081345 estropipate Drugs 0.000 description 1
- HZEQBCVBILBTEP-ZFINNJDLSA-N estropipate Chemical compound C1CNCCN1.OS(=O)(=O)OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 HZEQBCVBILBTEP-ZFINNJDLSA-N 0.000 description 1
- CHNXZKVNWQUJIB-CEGNMAFCSA-N ethisterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 CHNXZKVNWQUJIB-CEGNMAFCSA-N 0.000 description 1
- 229960000445 ethisterone Drugs 0.000 description 1
- MFFXVVHUKRKXCI-UHFFFAOYSA-N ethyl iodoacetate Chemical compound CCOC(=O)CI MFFXVVHUKRKXCI-UHFFFAOYSA-N 0.000 description 1
- 229940012028 ethynodiol diacetate Drugs 0.000 description 1
- ONKUMRGIYFNPJW-KIEAKMPYSA-N ethynodiol diacetate Chemical compound C1C[C@]2(C)[C@@](C#C)(OC(C)=O)CC[C@H]2[C@@H]2CCC3=C[C@@H](OC(=O)C)CC[C@@H]3[C@H]21 ONKUMRGIYFNPJW-KIEAKMPYSA-N 0.000 description 1
- 229960003976 etidocaine Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- ZXUMUPVQYAFTLF-UHFFFAOYSA-N etryptamine Chemical compound C1=CC=C2C(CC(N)CC)=CNC2=C1 ZXUMUPVQYAFTLF-UHFFFAOYSA-N 0.000 description 1
- OLNTVTPDXPETLC-XPWALMASSA-N ezetimibe Chemical compound N1([C@@H]([C@H](C1=O)CC[C@H](O)C=1C=CC(F)=CC=1)C=1C=CC(O)=CC=1)C1=CC=C(F)C=C1 OLNTVTPDXPETLC-XPWALMASSA-N 0.000 description 1
- 229960001582 fenfluramine Drugs 0.000 description 1
- YMTINGFKWWXKFG-UHFFFAOYSA-N fenofibrate Chemical compound C1=CC(OC(C)(C)C(=O)OC(C)C)=CC=C1C(=O)C1=CC=C(Cl)C=C1 YMTINGFKWWXKFG-UHFFFAOYSA-N 0.000 description 1
- 229960001022 fenoterol Drugs 0.000 description 1
- 229960002679 fentiazac Drugs 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 229940099283 flexeril Drugs 0.000 description 1
- 229940093334 flomax Drugs 0.000 description 1
- AAXVEMMRQDVLJB-BULBTXNYSA-N fludrocortisone Chemical compound O=C1CC[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 AAXVEMMRQDVLJB-BULBTXNYSA-N 0.000 description 1
- 229960002011 fludrocortisone Drugs 0.000 description 1
- 229960004511 fludroxycortide Drugs 0.000 description 1
- 229960004369 flufenamic acid Drugs 0.000 description 1
- LPEPZBJOKDYZAD-UHFFFAOYSA-N flufenamic acid Chemical compound OC(=O)C1=CC=CC=C1NC1=CC=CC(C(F)(F)F)=C1 LPEPZBJOKDYZAD-UHFFFAOYSA-N 0.000 description 1
- 229940043075 fluocinolone Drugs 0.000 description 1
- FEBLZLNTKCEFIT-VSXGLTOVSA-N fluocinolone acetonide Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O FEBLZLNTKCEFIT-VSXGLTOVSA-N 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229960002464 fluoxetine Drugs 0.000 description 1
- YLRFCQOZQXIBAB-RBZZARIASA-N fluoxymesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)C[C@@H]2O YLRFCQOZQXIBAB-RBZZARIASA-N 0.000 description 1
- 229960001751 fluoxymesterone Drugs 0.000 description 1
- 229960003528 flurazepam Drugs 0.000 description 1
- SAADBVWGJQAEFS-UHFFFAOYSA-N flurazepam Chemical compound N=1CC(=O)N(CCN(CC)CC)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1F SAADBVWGJQAEFS-UHFFFAOYSA-N 0.000 description 1
- 229960000289 fluticasone propionate Drugs 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- PGBHMTALBVVCIT-VCIWKGPPSA-N framycetin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CN)O2)N)O[C@@H]1CO PGBHMTALBVVCIT-VCIWKGPPSA-N 0.000 description 1
- 229960004580 glibenclamide Drugs 0.000 description 1
- ZNNLBTZKUZBEKO-UHFFFAOYSA-N glyburide Chemical compound COC1=CC=C(Cl)C=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZNNLBTZKUZBEKO-UHFFFAOYSA-N 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- 229960002389 glycol salicylate Drugs 0.000 description 1
- 229940015042 glycopyrrolate Drugs 0.000 description 1
- 229960002462 glycopyrronium bromide Drugs 0.000 description 1
- 229960002146 guaifenesin Drugs 0.000 description 1
- 229960002158 halazepam Drugs 0.000 description 1
- 229960002383 halcinonide Drugs 0.000 description 1
- 229960003246 homatropine methylbromide Drugs 0.000 description 1
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 1
- 229960002003 hydrochlorothiazide Drugs 0.000 description 1
- LLPOLZWFYMWNKH-CMKMFDCUSA-N hydrocodone Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)CC(=O)[C@@H]1OC1=C2C3=CC=C1OC LLPOLZWFYMWNKH-CMKMFDCUSA-N 0.000 description 1
- 229960000240 hydrocodone Drugs 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- JUMYIBMBTDDLNG-OJERSXHUSA-N hydron;methyl (2r)-2-phenyl-2-[(2r)-piperidin-2-yl]acetate;chloride Chemical compound Cl.C([C@@H]1[C@H](C(=O)OC)C=2C=CC=CC=2)CCCN1 JUMYIBMBTDDLNG-OJERSXHUSA-N 0.000 description 1
- 229950005360 hydroxyamfetamine Drugs 0.000 description 1
- 239000003326 hypnotic agent Substances 0.000 description 1
- 230000000147 hypnotic effect Effects 0.000 description 1
- 229960004716 idoxuridine Drugs 0.000 description 1
- 229960003998 ifenprodil Drugs 0.000 description 1
- 229960004801 imipramine Drugs 0.000 description 1
- BCGWQEUPMDMJNV-UHFFFAOYSA-N imipramine Chemical compound C1CC2=CC=CC=C2N(CCCN(C)C)C2=CC=CC=C21 BCGWQEUPMDMJNV-UHFFFAOYSA-N 0.000 description 1
- 229940095990 inderal Drugs 0.000 description 1
- 230000000053 inderal effect Effects 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- OEXHQOGQTVQTAT-JRNQLAHRSA-N ipratropium Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)[N@@+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 OEXHQOGQTVQTAT-JRNQLAHRSA-N 0.000 description 1
- 229960001888 ipratropium Drugs 0.000 description 1
- 229960001361 ipratropium bromide Drugs 0.000 description 1
- KEWHKYJURDBRMN-ZEODDXGYSA-M ipratropium bromide hydrate Chemical compound O.[Br-].O([C@H]1C[C@H]2CC[C@@H](C1)[N@@+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 KEWHKYJURDBRMN-ZEODDXGYSA-M 0.000 description 1
- 229960002672 isocarboxazid Drugs 0.000 description 1
- 229960001317 isoprenaline Drugs 0.000 description 1
- 229940039009 isoproterenol Drugs 0.000 description 1
- 229960004130 itraconazole Drugs 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 229940090589 keflex Drugs 0.000 description 1
- 229940073092 klonopin Drugs 0.000 description 1
- 229940072170 lamictal Drugs 0.000 description 1
- PYZRQGJRPPTADH-UHFFFAOYSA-N lamotrigine Chemical compound NC1=NC(N)=NN=C1C1=CC=CC(Cl)=C1Cl PYZRQGJRPPTADH-UHFFFAOYSA-N 0.000 description 1
- MJIHNNLFOKEZEW-UHFFFAOYSA-N lansoprazole Chemical compound CC1=C(OCC(F)(F)F)C=CN=C1CS(=O)C1=NC2=CC=CC=C2N1 MJIHNNLFOKEZEW-UHFFFAOYSA-N 0.000 description 1
- 229940063711 lasix Drugs 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 229940089519 levaquin Drugs 0.000 description 1
- 229960004502 levodopa Drugs 0.000 description 1
- 229960004400 levonorgestrel Drugs 0.000 description 1
- 229940054157 lexapro Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229940002661 lipitor Drugs 0.000 description 1
- 229960002394 lisinopril Drugs 0.000 description 1
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 229940125389 long-acting beta agonist Drugs 0.000 description 1
- JCCNYMKQOSZNPW-UHFFFAOYSA-N loratadine Chemical compound C1CN(C(=O)OCC)CCC1=C1C2=NC=CC=C2CCC2=CC(Cl)=CC=C21 JCCNYMKQOSZNPW-UHFFFAOYSA-N 0.000 description 1
- 229940089568 lortab Drugs 0.000 description 1
- 229940080288 lotrel Drugs 0.000 description 1
- 229960000423 loxapine Drugs 0.000 description 1
- XJGVXQDUIWGIRW-UHFFFAOYSA-N loxapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2OC2=CC=C(Cl)C=C12 XJGVXQDUIWGIRW-UHFFFAOYSA-N 0.000 description 1
- 229950002454 lysergide Drugs 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 239000001115 mace Substances 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229940041033 macrolides Drugs 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229960004090 maprotiline Drugs 0.000 description 1
- QSLMDECMDJKHMQ-GSXCWMCISA-N maprotiline Chemical compound C12=CC=CC=C2[C@@]2(CCCNC)C3=CC=CC=C3[C@@H]1CC2 QSLMDECMDJKHMQ-GSXCWMCISA-N 0.000 description 1
- 229960000299 mazindol Drugs 0.000 description 1
- 229960005321 mecobalamin Drugs 0.000 description 1
- 229960002985 medroxyprogesterone acetate Drugs 0.000 description 1
- PSGAAPLEWMOORI-PEINSRQWSA-N medroxyprogesterone acetate Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 PSGAAPLEWMOORI-PEINSRQWSA-N 0.000 description 1
- 229960001011 medrysone Drugs 0.000 description 1
- 229960004296 megestrol acetate Drugs 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 229960004805 melengestrol Drugs 0.000 description 1
- 229960002409 mepivacaine Drugs 0.000 description 1
- INWLQCZOYSRPNW-UHFFFAOYSA-N mepivacaine Chemical compound CN1CCCCC1C(=O)NC1=C(C)C=CC=C1C INWLQCZOYSRPNW-UHFFFAOYSA-N 0.000 description 1
- 229960004815 meprobamate Drugs 0.000 description 1
- SLVMESMUVMCQIY-UHFFFAOYSA-N mesoridazine Chemical compound CN1CCCCC1CCN1C2=CC(S(C)=O)=CC=C2SC2=CC=CC=C21 SLVMESMUVMCQIY-UHFFFAOYSA-N 0.000 description 1
- 229960000300 mesoridazine Drugs 0.000 description 1
- IMSSROKUHAOUJS-MJCUULBUSA-N mestranol Chemical compound C1C[C@]2(C)[C@@](C#C)(O)CC[C@H]2[C@@H]2CCC3=CC(OC)=CC=C3[C@H]21 IMSSROKUHAOUJS-MJCUULBUSA-N 0.000 description 1
- 229960001390 mestranol Drugs 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 1
- 229960003105 metformin Drugs 0.000 description 1
- NZWOPGCLSHLLPA-UHFFFAOYSA-N methacholine Chemical compound C[N+](C)(C)CC(C)OC(C)=O NZWOPGCLSHLLPA-UHFFFAOYSA-N 0.000 description 1
- 229960002329 methacholine Drugs 0.000 description 1
- 229960001797 methadone Drugs 0.000 description 1
- 229960001252 methamphetamine Drugs 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229960001869 methapyrilene Drugs 0.000 description 1
- HNJJXZKZRAWDPF-UHFFFAOYSA-N methapyrilene Chemical compound C=1C=CC=NC=1N(CCN(C)C)CC1=CC=CS1 HNJJXZKZRAWDPF-UHFFFAOYSA-N 0.000 description 1
- 229960003739 methyclothiazide Drugs 0.000 description 1
- PTOJVMZPWPAXER-VFJVYMGBSA-N methyl 7-[(1r,2r,3r)-3-hydroxy-2-[(e,3r)-3-hydroxy-4-phenoxybut-1-enyl]-5-oxocyclopentyl]hepta-4,5-dienoate Chemical compound O[C@@H]1CC(=O)[C@H](CC=C=CCCC(=O)OC)[C@H]1\C=C\[C@@H](O)COC1=CC=CC=C1 PTOJVMZPWPAXER-VFJVYMGBSA-N 0.000 description 1
- JEWJRMKHSMTXPP-BYFNXCQMSA-M methylcobalamin Chemical compound C[Co+]N([C@]1([H])[C@H](CC(N)=O)[C@]\2(CCC(=O)NC[C@H](C)OP(O)(=O)OC3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)C)C/2=C(C)\C([C@H](C/2(C)C)CCC(N)=O)=N\C\2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O JEWJRMKHSMTXPP-BYFNXCQMSA-M 0.000 description 1
- 235000007672 methylcobalamin Nutrition 0.000 description 1
- 239000011585 methylcobalamin Substances 0.000 description 1
- JUMYIBMBTDDLNG-UHFFFAOYSA-N methylphenidate hydrochloride Chemical compound [Cl-].C=1C=CC=CC=1C(C(=O)OC)C1CCCC[NH2+]1 JUMYIBMBTDDLNG-UHFFFAOYSA-N 0.000 description 1
- 229960004584 methylprednisolone Drugs 0.000 description 1
- 229960001566 methyltestosterone Drugs 0.000 description 1
- IRQVJPHZDYMXNW-UHFFFAOYSA-N metoclopramide dihydrochloride monohydrate Chemical compound O.[Cl-].[Cl-].CC[NH+](CC)CCNC(=O)C1=CC(Cl)=C([NH3+])C=C1OC IRQVJPHZDYMXNW-UHFFFAOYSA-N 0.000 description 1
- AQCHWTWZEMGIFD-UHFFFAOYSA-N metolazone Chemical compound CC1NC2=CC(Cl)=C(S(N)(=O)=O)C=C2C(=O)N1C1=CC=CC=C1C AQCHWTWZEMGIFD-UHFFFAOYSA-N 0.000 description 1
- 229960002817 metolazone Drugs 0.000 description 1
- 229960002237 metoprolol Drugs 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 229960002509 miconazole Drugs 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 230000003547 miosis Effects 0.000 description 1
- 239000003604 miotic agent Substances 0.000 description 1
- RONZAEMNMFQXRA-UHFFFAOYSA-N mirtazapine Chemical compound C1C2=CC=CN=C2N2CCN(C)CC2C2=CC=CC=C21 RONZAEMNMFQXRA-UHFFFAOYSA-N 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229940112801 mobic Drugs 0.000 description 1
- 229960004938 molindone Drugs 0.000 description 1
- 229960004027 molsidomine Drugs 0.000 description 1
- XLFWDASMENKTKL-UHFFFAOYSA-N molsidomine Chemical compound O1C(N=C([O-])OCC)=C[N+](N2CCOCC2)=N1 XLFWDASMENKTKL-UHFFFAOYSA-N 0.000 description 1
- FABPRXSRWADJSP-MEDUHNTESA-N moxifloxacin Chemical compound COC1=C(N2C[C@H]3NCCC[C@H]3C2)C(F)=CC(C(C(C(O)=O)=C2)=O)=C1N2C1CC1 FABPRXSRWADJSP-MEDUHNTESA-N 0.000 description 1
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 1
- 230000003551 muscarinic effect Effects 0.000 description 1
- 229940035363 muscle relaxants Drugs 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 239000002637 mydriatic agent Substances 0.000 description 1
- 230000002911 mydriatic effect Effects 0.000 description 1
- 239000003158 myorelaxant agent Substances 0.000 description 1
- HHRNQOGXBRYCHF-UHFFFAOYSA-N n-[2-hydroxy-5-[1-hydroxy-2-(propan-2-ylamino)ethyl]phenyl]methanesulfonamide Chemical compound CC(C)NCC(O)C1=CC=C(O)C(NS(C)(=O)=O)=C1 HHRNQOGXBRYCHF-UHFFFAOYSA-N 0.000 description 1
- 229960004127 naloxone Drugs 0.000 description 1
- UZHSEJADLWPNLE-GRGSLBFTSA-N naloxone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C UZHSEJADLWPNLE-GRGSLBFTSA-N 0.000 description 1
- 229960005016 naphazoline Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 239000003176 neuroleptic agent Substances 0.000 description 1
- 229940072228 neurontin Drugs 0.000 description 1
- 229940112641 nexium Drugs 0.000 description 1
- 229960001783 nicardipine Drugs 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 229960001597 nifedipine Drugs 0.000 description 1
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 description 1
- 229960001454 nitrazepam Drugs 0.000 description 1
- KJONHKAYOJNZEC-UHFFFAOYSA-N nitrazepam Chemical compound C12=CC([N+](=O)[O-])=CC=C2NC(=O)CN=C1C1=CC=CC=C1 KJONHKAYOJNZEC-UHFFFAOYSA-N 0.000 description 1
- IAIWVQXQOWNYOU-FPYGCLRLSA-N nitrofural Chemical compound NC(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 IAIWVQXQOWNYOU-FPYGCLRLSA-N 0.000 description 1
- 229960001907 nitrofurazone Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 229940099678 norco Drugs 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- 229940053934 norethindrone Drugs 0.000 description 1
- 229960001652 norethindrone acetate Drugs 0.000 description 1
- VIKNJXKGJWUCNN-XGXHKTLJSA-N norethisterone Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 VIKNJXKGJWUCNN-XGXHKTLJSA-N 0.000 description 1
- 229960001858 norethynodrel Drugs 0.000 description 1
- 229960001158 nortriptyline Drugs 0.000 description 1
- 229940036132 norvasc Drugs 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229940082615 organic nitrates used in cardiac disease Drugs 0.000 description 1
- ADIMAYPTOBDMTL-UHFFFAOYSA-N oxazepam Chemical compound C12=CC(Cl)=CC=C2NC(=O)C(O)N=C1C1=CC=CC=C1 ADIMAYPTOBDMTL-UHFFFAOYSA-N 0.000 description 1
- 229960004535 oxazepam Drugs 0.000 description 1
- CTRLABGOLIVAIY-UHFFFAOYSA-N oxcarbazepine Chemical compound C1C(=O)C2=CC=CC=C2N(C(=O)N)C2=CC=CC=C21 CTRLABGOLIVAIY-UHFFFAOYSA-N 0.000 description 1
- 229950006827 oxendolone Drugs 0.000 description 1
- 229960002085 oxycodone Drugs 0.000 description 1
- 229940105606 oxycontin Drugs 0.000 description 1
- 229960000649 oxyphenbutazone Drugs 0.000 description 1
- HFHZKZSRXITVMK-UHFFFAOYSA-N oxyphenbutazone Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=C(O)C=C1 HFHZKZSRXITVMK-UHFFFAOYSA-N 0.000 description 1
- 229960000625 oxytetracycline Drugs 0.000 description 1
- IWVCMVBTMGNXQD-PXOLEDIWSA-N oxytetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-PXOLEDIWSA-N 0.000 description 1
- 235000019366 oxytetracycline Nutrition 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 1
- 229960001723 oxytocin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- YNWDKZIIWCEDEE-UHFFFAOYSA-N pantoprazole sodium Chemical compound [Na+].COC1=CC=NC(CS(=O)C=2[N-]C3=CC=C(OC(F)F)C=C3N=2)=C1OC YNWDKZIIWCEDEE-UHFFFAOYSA-N 0.000 description 1
- 229960001789 papaverine Drugs 0.000 description 1
- 229960002858 paramethasone Drugs 0.000 description 1
- 229960002296 paroxetine Drugs 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 150000002960 penicillins Chemical class 0.000 description 1
- 229960004321 pentaerithrityl tetranitrate Drugs 0.000 description 1
- 229960005301 pentazocine Drugs 0.000 description 1
- VOKSWYLNZZRQPF-GDIGMMSISA-N pentazocine Chemical compound C1C2=CC=C(O)C=C2[C@@]2(C)[C@@H](C)[C@@H]1N(CC=C(C)C)CC2 VOKSWYLNZZRQPF-GDIGMMSISA-N 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 229940011043 percocet Drugs 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 229950010883 phencyclidine Drugs 0.000 description 1
- 229960000964 phenelzine Drugs 0.000 description 1
- 229940107333 phenergan Drugs 0.000 description 1
- 229960001190 pheniramine Drugs 0.000 description 1
- DDBREPKUVSBGFI-UHFFFAOYSA-N phenobarbital Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NC(=O)NC1=O DDBREPKUVSBGFI-UHFFFAOYSA-N 0.000 description 1
- 229960002695 phenobarbital Drugs 0.000 description 1
- 229960002036 phenytoin Drugs 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 229960002508 pindolol Drugs 0.000 description 1
- PHUTUTUABXHXLW-UHFFFAOYSA-N pindolol Chemical compound CC(C)NCC(O)COC1=CC=CC2=NC=C[C]12 PHUTUTUABXHXLW-UHFFFAOYSA-N 0.000 description 1
- 229960004572 pizotifen Drugs 0.000 description 1
- FIADGNVRKBPQEU-UHFFFAOYSA-N pizotifen Chemical compound C1CN(C)CCC1=C1C2=CC=CC=C2CCC2=C1C=CS2 FIADGNVRKBPQEU-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 108010001062 polysaccharide-K Proteins 0.000 description 1
- 229960003101 pranoprofen Drugs 0.000 description 1
- 229940089484 pravachol Drugs 0.000 description 1
- VWBQYTRBTXKKOG-IYNICTALSA-M pravastatin sodium Chemical compound [Na+].C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC([O-])=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 VWBQYTRBTXKKOG-IYNICTALSA-M 0.000 description 1
- 229960004856 prazepam Drugs 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229940063238 premarin Drugs 0.000 description 1
- 229940032668 prevacid Drugs 0.000 description 1
- 229960001807 prilocaine Drugs 0.000 description 1
- MVFGUOIZUNYYSO-UHFFFAOYSA-N prilocaine Chemical compound CCCNC(C)C(=O)NC1=CC=CC=C1C MVFGUOIZUNYYSO-UHFFFAOYSA-N 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229960005360 procyclidine hydrochloride Drugs 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 229960001584 promegestone Drugs 0.000 description 1
- QFFCYTLOTYIJMR-XMGTWHOFSA-N promegestone Chemical compound C1CC2=CC(=O)CCC2=C2[C@@H]1[C@@H]1CC[C@@](C(=O)CC)(C)[C@@]1(C)CC2 QFFCYTLOTYIJMR-XMGTWHOFSA-N 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229960000697 propantheline Drugs 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 229960000786 propylhexedrine Drugs 0.000 description 1
- JCRIVQIOJSSCQD-UHFFFAOYSA-N propylhexedrine Chemical compound CNC(C)CC1CCCCC1 JCRIVQIOJSSCQD-UHFFFAOYSA-N 0.000 description 1
- GMVPRGQOIOIIMI-DWKJAMRDSA-N prostaglandin E1 Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1CCCCCCC(O)=O GMVPRGQOIOIIMI-DWKJAMRDSA-N 0.000 description 1
- 150000003165 prostaglandin E1 derivatives Chemical class 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 229940061276 protonix Drugs 0.000 description 1
- 229960002601 protriptyline Drugs 0.000 description 1
- BWPIARFWQZKAIA-UHFFFAOYSA-N protriptyline Chemical compound C1=CC2=CC=CC=C2C(CCCNC)C2=CC=CC=C21 BWPIARFWQZKAIA-UHFFFAOYSA-N 0.000 description 1
- 229940117394 provigil Drugs 0.000 description 1
- KWGRBVOPPLSCSI-WCBMZHEXSA-N pseudoephedrine Chemical compound CN[C@@H](C)[C@@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WCBMZHEXSA-N 0.000 description 1
- 229960003908 pseudoephedrine Drugs 0.000 description 1
- 230000003236 psychic effect Effects 0.000 description 1
- 238000012383 pulmonary drug delivery Methods 0.000 description 1
- WKSAUQYGYAYLPV-UHFFFAOYSA-N pyrimethamine Chemical compound CCC1=NC(N)=NC(N)=C1C1=CC=C(Cl)C=C1 WKSAUQYGYAYLPV-UHFFFAOYSA-N 0.000 description 1
- 229960000611 pyrimethamine Drugs 0.000 description 1
- ZTHJULTYCAQOIJ-WXXKFALUSA-N quetiapine fumarate Chemical compound [H+].[H+].[O-]C(=O)\C=C\C([O-])=O.C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12.C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12 ZTHJULTYCAQOIJ-WXXKFALUSA-N 0.000 description 1
- 229960000620 ranitidine Drugs 0.000 description 1
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 229940080693 reglan Drugs 0.000 description 1
- 229940023942 remeron Drugs 0.000 description 1
- 229960001965 rescinnamine Drugs 0.000 description 1
- SMSAPZICLFYVJS-QEGASFHISA-N rescinnamine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C([C]5C=CC(OC)=CC5=N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)\C=C\C1=CC(OC)=C(OC)C(OC)=C1 SMSAPZICLFYVJS-QEGASFHISA-N 0.000 description 1
- 229960003147 reserpine Drugs 0.000 description 1
- BJOIZNZVOZKDIG-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C([C]5C=CC(OC)=CC5=N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 BJOIZNZVOZKDIG-MDEJGZGSSA-N 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229960001457 rimiterol Drugs 0.000 description 1
- IYMMESGOJVNCKV-SKDRFNHKSA-N rimiterol Chemical compound C([C@@H]1[C@@H](O)C=2C=C(O)C(O)=CC=2)CCCN1 IYMMESGOJVNCKV-SKDRFNHKSA-N 0.000 description 1
- 229940106887 risperdal Drugs 0.000 description 1
- RAPZEAPATHNIPO-UHFFFAOYSA-N risperidone Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCCC4=NC=3C)=NOC2=C1 RAPZEAPATHNIPO-UHFFFAOYSA-N 0.000 description 1
- 229940099204 ritalin Drugs 0.000 description 1
- 229960001634 ritodrine Drugs 0.000 description 1
- IOVGROKTTNBUGK-SJCJKPOMSA-N ritodrine Chemical compound N([C@@H](C)[C@H](O)C=1C=CC(O)=CC=1)CCC1=CC=C(O)C=C1 IOVGROKTTNBUGK-SJCJKPOMSA-N 0.000 description 1
- MDMGHDFNKNZPAU-UHFFFAOYSA-N roserpine Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(OC(C)=O)C(OC)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 MDMGHDFNKNZPAU-UHFFFAOYSA-N 0.000 description 1
- LALFOYNTGMUKGG-BGRFNVSISA-L rosuvastatin calcium Chemical compound [Ca+2].CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O.CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O LALFOYNTGMUKGG-BGRFNVSISA-L 0.000 description 1
- 229960000581 salicylamide Drugs 0.000 description 1
- KQPKPCNLIDLUMF-UHFFFAOYSA-N secobarbital Chemical compound CCCC(C)C1(CC=C)C(=O)NC(=O)NC1=O KQPKPCNLIDLUMF-UHFFFAOYSA-N 0.000 description 1
- 229960002060 secobarbital Drugs 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 229940125723 sedative agent Drugs 0.000 description 1
- 229960003946 selegiline Drugs 0.000 description 1
- 229940035004 seroquel Drugs 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229940105580 skelaxin Drugs 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229940105648 soma Drugs 0.000 description 1
- 229950010289 soterenol Drugs 0.000 description 1
- 208000018198 spasticity Diseases 0.000 description 1
- LXMSZDCAJNLERA-ZHYRCANASA-N spironolactone Chemical compound C([C@@H]1[C@]2(C)CC[C@@H]3[C@@]4(C)CCC(=O)C=C4C[C@H]([C@@H]13)SC(=O)C)C[C@@]21CCC(=O)O1 LXMSZDCAJNLERA-ZHYRCANASA-N 0.000 description 1
- 229960002256 spironolactone Drugs 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229960002673 sulfacetamide Drugs 0.000 description 1
- SKIVFJLNDNKQPD-UHFFFAOYSA-N sulfacetamide Chemical compound CC(=O)NS(=O)(=O)C1=CC=C(N)C=C1 SKIVFJLNDNKQPD-UHFFFAOYSA-N 0.000 description 1
- 229960004306 sulfadiazine Drugs 0.000 description 1
- SEEPANYCNGTZFQ-UHFFFAOYSA-N sulfadiazine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=NC=CC=N1 SEEPANYCNGTZFQ-UHFFFAOYSA-N 0.000 description 1
- 229960002135 sulfadimidine Drugs 0.000 description 1
- 229960000654 sulfafurazole Drugs 0.000 description 1
- 229960002597 sulfamerazine Drugs 0.000 description 1
- QPPBRPIAZZHUNT-UHFFFAOYSA-N sulfamerazine Chemical compound CC1=CC=NC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 QPPBRPIAZZHUNT-UHFFFAOYSA-N 0.000 description 1
- ASWVTGNCAZCNNR-UHFFFAOYSA-N sulfamethazine Chemical compound CC1=CC(C)=NC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 ASWVTGNCAZCNNR-UHFFFAOYSA-N 0.000 description 1
- 229960005158 sulfamethizole Drugs 0.000 description 1
- VACCAVUAMIDAGB-UHFFFAOYSA-N sulfamethizole Chemical compound S1C(C)=NN=C1NS(=O)(=O)C1=CC=C(N)C=C1 VACCAVUAMIDAGB-UHFFFAOYSA-N 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- JLKIGFTWXXRPMT-UHFFFAOYSA-N sulphamethoxazole Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 JLKIGFTWXXRPMT-UHFFFAOYSA-N 0.000 description 1
- 229960004492 suprofen Drugs 0.000 description 1
- 230000001975 sympathomimetic effect Effects 0.000 description 1
- 229940064707 sympathomimetics Drugs 0.000 description 1
- 229940099268 synthroid Drugs 0.000 description 1
- 229950006534 syrosingopine Drugs 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- ZZIZZTHXZRDOFM-XFULWGLBSA-N tamsulosin hydrochloride Chemical compound [H+].[Cl-].CCOC1=CC=CC=C1OCCN[C@H](C)CC1=CC=C(OC)C(S(N)(=O)=O)=C1 ZZIZZTHXZRDOFM-XFULWGLBSA-N 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 239000003491 tear gas Substances 0.000 description 1
- 229960002876 tegaserod Drugs 0.000 description 1
- CPDDZSSEAVLMRY-FEQFWAPWSA-N tegaserod maleate Chemical compound [H+].[H+].[O-]C(=O)\C=C/C([O-])=O.C1=C(OC)C=C2C(/C=N/NC(=N)NCCCCC)=CNC2=C1 CPDDZSSEAVLMRY-FEQFWAPWSA-N 0.000 description 1
- 229940090016 tegretol Drugs 0.000 description 1
- 229960000195 terbutaline Drugs 0.000 description 1
- 229960000351 terfenadine Drugs 0.000 description 1
- IWVCMVBTMGNXQD-UHFFFAOYSA-N terramycin dehydrate Natural products C1=CC=C2C(O)(C)C3C(O)C4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 229960002372 tetracaine Drugs 0.000 description 1
- GKCBAIGFKIBETG-UHFFFAOYSA-N tetracaine Chemical compound CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 GKCBAIGFKIBETG-UHFFFAOYSA-N 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940040944 tetracyclines Drugs 0.000 description 1
- 229960000337 tetryzoline Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229960004728 thiopropazate Drugs 0.000 description 1
- AIUHRQHVWSUTGJ-UHFFFAOYSA-N thiopropazate Chemical compound C1CN(CCOC(=O)C)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 AIUHRQHVWSUTGJ-UHFFFAOYSA-N 0.000 description 1
- 229960002784 thioridazine Drugs 0.000 description 1
- 239000005495 thyroid hormone Substances 0.000 description 1
- 229940036555 thyroid hormone Drugs 0.000 description 1
- 229960001312 tiaprofenic acid Drugs 0.000 description 1
- 229960004605 timolol Drugs 0.000 description 1
- 229960005013 tiotixene Drugs 0.000 description 1
- LERNTVKEWCAPOY-DZZGSBJMSA-N tiotropium Chemical compound O([C@H]1C[C@@H]2[N+]([C@H](C1)[C@@H]1[C@H]2O1)(C)C)C(=O)C(O)(C=1SC=CC=1)C1=CC=CS1 LERNTVKEWCAPOY-DZZGSBJMSA-N 0.000 description 1
- 229940110309 tiotropium Drugs 0.000 description 1
- XFYDIVBRZNQMJC-UHFFFAOYSA-N tizanidine Chemical compound ClC=1C=CC2=NSN=C2C=1NC1=NCCN1 XFYDIVBRZNQMJC-UHFFFAOYSA-N 0.000 description 1
- 229960005334 tolperisone Drugs 0.000 description 1
- 229940035305 topamax Drugs 0.000 description 1
- 229940041492 toprol Drugs 0.000 description 1
- 229960004380 tramadol Drugs 0.000 description 1
- TVYLLZQTGLZFBW-GOEBONIOSA-N tramadol Natural products COC1=CC=CC([C@@]2(O)[C@@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-GOEBONIOSA-N 0.000 description 1
- 239000003204 tranquilizing agent Substances 0.000 description 1
- 230000002936 tranquilizing effect Effects 0.000 description 1
- LLPOLZWFYMWNKH-UHFFFAOYSA-N trans-dihydrocodeinone Natural products C1C(N(CCC234)C)C2CCC(=O)C3OC2=C4C1=CC=C2OC LLPOLZWFYMWNKH-UHFFFAOYSA-N 0.000 description 1
- 229960003741 tranylcypromine Drugs 0.000 description 1
- 229960000363 trapidil Drugs 0.000 description 1
- 229960005294 triamcinolone Drugs 0.000 description 1
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 1
- JOFWLTCLBGQGBO-UHFFFAOYSA-N triazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1Cl JOFWLTCLBGQGBO-UHFFFAOYSA-N 0.000 description 1
- 229960003386 triazolam Drugs 0.000 description 1
- 229960004813 trichlormethiazide Drugs 0.000 description 1
- LMJSLTNSBFUCMU-UHFFFAOYSA-N trichlormethiazide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NC(C(Cl)Cl)NS2(=O)=O LMJSLTNSBFUCMU-UHFFFAOYSA-N 0.000 description 1
- HFFLGKNGCAIQMO-UHFFFAOYSA-N trichloroacetaldehyde Chemical compound ClC(Cl)(Cl)C=O HFFLGKNGCAIQMO-UHFFFAOYSA-N 0.000 description 1
- 229940055755 tricor Drugs 0.000 description 1
- 229960002324 trifluoperazine Drugs 0.000 description 1
- ZEWQUBUPAILYHI-UHFFFAOYSA-N trifluoperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 ZEWQUBUPAILYHI-UHFFFAOYSA-N 0.000 description 1
- XSCGXQMFQXDFCW-UHFFFAOYSA-N triflupromazine Chemical compound C1=C(C(F)(F)F)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 XSCGXQMFQXDFCW-UHFFFAOYSA-N 0.000 description 1
- 229960003904 triflupromazine Drugs 0.000 description 1
- QDWJJTJNXAKQKD-UHFFFAOYSA-N trihexyphenidyl hydrochloride Chemical compound Cl.C1CCCCC1C(C=1C=CC=CC=1)(O)CCN1CCCCC1 QDWJJTJNXAKQKD-UHFFFAOYSA-N 0.000 description 1
- 229960004479 trihexyphenidyl hydrochloride Drugs 0.000 description 1
- 229940061414 trileptal Drugs 0.000 description 1
- 229960001177 trimetazidine Drugs 0.000 description 1
- 229960002431 trimipramine Drugs 0.000 description 1
- ZSCDBOWYZJWBIY-UHFFFAOYSA-N trimipramine Chemical compound C1CC2=CC=CC=C2N(CC(CN(C)C)C)C2=CC=CC=C21 ZSCDBOWYZJWBIY-UHFFFAOYSA-N 0.000 description 1
- UHLOVGKIEARANS-QZHINBJYSA-N tripamide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(=O)NN2C[C@@H]3[C@H]4CC[C@H](C4)[C@@H]3C2)=C1 UHLOVGKIEARANS-QZHINBJYSA-N 0.000 description 1
- 229950004678 tripamide Drugs 0.000 description 1
- 229960003223 tripelennamine Drugs 0.000 description 1
- CBEQULMOCCWAQT-WOJGMQOQSA-N triprolidine Chemical compound C1=CC(C)=CC=C1C(\C=1N=CC=CC=1)=C/CN1CCCC1 CBEQULMOCCWAQT-WOJGMQOQSA-N 0.000 description 1
- 229960001128 triprolidine Drugs 0.000 description 1
- 229960004747 ubidecarenone Drugs 0.000 description 1
- 229940051156 ultracet Drugs 0.000 description 1
- 229940054370 ultram Drugs 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- LNPDTQAFDNKSHK-UHFFFAOYSA-N valdecoxib Chemical compound CC=1ON=C(C=2C=CC=CC=2)C=1C1=CC=C(S(N)(=O)=O)C=C1 LNPDTQAFDNKSHK-UHFFFAOYSA-N 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- 229940072690 valium Drugs 0.000 description 1
- ACWBQPMHZXGDFX-QFIPXVFZSA-N valsartan Chemical compound C1=CC(CN(C(=O)CCCC)[C@@H](C(C)C)C(O)=O)=CC=C1C1=CC=CC=C1C1=NN=NN1 ACWBQPMHZXGDFX-QFIPXVFZSA-N 0.000 description 1
- 239000005526 vasoconstrictor agent Substances 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- PNVNVHUZROJLTJ-UHFFFAOYSA-N venlafaxine Chemical compound C1=CC(OC)=CC=C1C(CN(C)C)C1(O)CCCCC1 PNVNVHUZROJLTJ-UHFFFAOYSA-N 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229940000146 vicodin Drugs 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019156 vitamin B Nutrition 0.000 description 1
- 239000011720 vitamin B Substances 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 235000001892 vitamin D2 Nutrition 0.000 description 1
- 150000003703 vitamin D2 derivatives Chemical class 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 235000019168 vitamin K Nutrition 0.000 description 1
- 239000011712 vitamin K Substances 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 1
- 229940009065 wellbutrin Drugs 0.000 description 1
- 229940000119 zanaflex Drugs 0.000 description 1
- 229940108322 zantac Drugs 0.000 description 1
- 229940051223 zetia Drugs 0.000 description 1
- 229940072251 zithromax Drugs 0.000 description 1
- ZAFYATHCZYHLPB-UHFFFAOYSA-N zolpidem Chemical compound N1=C2C=CC(C)=CN2C(CC(=O)N(C)C)=C1C1=CC=C(C)C=C1 ZAFYATHCZYHLPB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0028—Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
- A61M15/0045—Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using multiple prepacked dosages on a same carrier, e.g. blisters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0028—Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
- A61M15/003—Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using capsules, e.g. to be perforated or broken-up
- A61M15/0033—Details of the piercing or cutting means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0086—Inhalation chambers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0091—Inhalators mechanically breath-triggered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/08—Inhaling devices inserted into the nose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0028—Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0065—Inhalators with dosage or measuring devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2202/00—Special media to be introduced, removed or treated
- A61M2202/06—Solids
- A61M2202/064—Powder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/07—General characteristics of the apparatus having air pumping means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2206/00—Characteristics of a physical parameter; associated device therefor
- A61M2206/10—Flow characteristics
- A61M2206/14—Static flow deviators in tubes disturbing laminar flow in tubes, e.g. archimedes screws
Definitions
- inhalers with relatively uncomplicated flow paths may be characterized by poor efficiency, as generally less than 30% of the nominal dose is delivered to the deep lung.
- inhalers with relatively more complex internal flow paths may provide increased efficiency, such as less than or equal to 40% of the nominal dose, though the increased complexity of the internal flow path may lead to increased deposition within the inhaler, effectively lowering the overall dose delivered to the patient and contaminating the device.
- a powder dispersion mechanism that is compact, breath-actuated, and effective or sufficient at promoting efficient particle dispersion across a range of doses such as from, for example, low microgram doses to doses requiring many milligrams.
- a powder dispersion mechanism employs a bead contained within a “small” volume dispersion chamber, with a straight flow path, and that is breath-actuated.
- the bead may oscillate, generally linearly in certain embodiments, along an axis of the dispersion chamber when the patient inhales through the device, such that it does not require an energy source other than a patient's inspiratory maneuver to function.
- bead activation may be “active,” where an external energy source is coupled with the patients inhalation flow stream to induce oscillation.
- a dry powder inhaler may include a powder storage that is configured to hold a powdered medicament.
- the dry powder inhaler may include an inlet channel that is adapted to receive air and powdered medicament from the powder storage.
- the dry powder inhaler may include a dispersion chamber that is adapted to receive air and powdered medicament from the inlet channel, the chamber holding an actuator that is movable within the dispersion chamber.
- the dry powder inhaler may include an outlet channel through which air and powdered medicament exit the inhaler to be delivered to a patient.
- Geometry of the inhaler may be such that a flow profile is generated within the dispersion chamber that causes the actuator to oscillate, thus enabling the oscillating actuator to deaggregate the powdered medicament passing through the dispersion chamber to be entrained by the air and delivered to the patient through the outlet channel.
- a method for aerosolizing a powdered medicament may include providing an inhaler comprising an inlet channel, a chamber that is adapted to receive air and powdered medicament from the inlet channel, an actuator disposed in the chamber, and an outlet channel.
- the method may include supplying a powdered medicament to the inlet channel.
- the method may include inducing air to flow through the outlet channel to cause air and the powdered medicament to enter into the chamber through the inlet channel, and to cause the actuator to oscillate within the chamber to effectively disperse powdered medicament passing through the chamber to be entrained by the air and delivered to the patient through the outlet channel.
- a powder dispersion device may include a housing having a central, longitudinal axis.
- the housing may include a chamber, a flow inlet in fluid communication with the chamber and a flow outlet in fluid communication with the chamber.
- the powder dispersion device may include a powder storage compartment that is configured to store a powdered medicament for introduction into the chamber through the flow inlet.
- the powder dispersion device may include a bead positioned within the chamber such that it may rapidly move back and forth within the chamber along the longitudinal axis. The bead may be sized in dimension so that the bead when oscillating deagglomerates the powdered medicament so that a desired aerodynamic particle size distribution is achieved upon exit from the flow outlet.
- a method for aerosolizing a powder may include providing a powder dispersion device including a housing having a central, longitudinal axis, the housing may include a chamber, a flow inlet in fluid communication with the chamber and a flow outlet in fluid communication with the chamber, and an actuator positioned within the chamber.
- the actuator may be selected to have a size such that upon oscillation it produces a desired range of aerodynamic particle sizes of the powdered medicament.
- the method may include introducing the amount of powdered medicament into the chamber.
- the method may include inducing a flow through the chamber and out the flow outlet. The flow may enter the chamber from the flow inlet and rapidly expand when entering the chamber.
- the flow through the chamber may cause the actuator to oscillate within the chamber along the longitudinal axis to aerosolize and deagglomerate the powdered medicament to the desired range of aerodynamic particle sizes so that a desired aerodynamic particle size distribution is achieved upon exit from the flow outlet.
- FIG. 1 shows a cross-section of an example tubular body having an inlet and a dispersion chamber.
- FIG. 2 shows the tubular body of FIG. 1 in multiple views.
- FIG. 3 shows a bead positioned within a chamber of the tubular body of FIG. 1 .
- FIG. 4 shows a first view of an example powder dispersion device in cross-section.
- FIG. 5 shows a perspective view of the device of FIG. 4 .
- FIG. 6 shows a first example experimental set-up in accordance with the present disclosure.
- FIG. 7 shows a second example experimental set-up in accordance with the present disclosure.
- FIG. 8 shows a second view of the device of FIG. 4 in cross-section.
- FIG. 9 shows a third view of the device of FIG. 4 in cross-section.
- FIG. 10 shows the device of FIG. 4 incorporated internally into an existing inhaler system.
- FIG. 11 shows a simplified, conceptual, example schematic diagram of the device of FIG. 4 in multiple configurations.
- FIG. 12 shows a first stage-by-stage particle deposition distribution profile.
- FIG. 13 shows a second stage-by-stage particle deposition distribution profile.
- FIG. 14 shows a first perspective view of a first example powder dispersion device.
- FIG. 15 shows a second perspective view of the device of FIG. 14 .
- FIG. 16 shows a first end view of the device of FIG. 14 .
- FIG. 17 shows a second end view of the device of FIG. 14 .
- FIG. 18 shows a first perspective view of a second housing of the device of FIG. 14 .
- FIG. 19 shows a second perspective view of the housing of FIG. 18 .
- FIG. 20 shows a first end view of the housing of FIG. 18 .
- FIG. 21 shows a second end view of the housing of FIG. 18 .
- FIG. 22 shows a first perspective view of a first housing of the device of FIG. 14 .
- FIG. 23 shows a second perspective view of the housing of FIG. 22 .
- FIG. 24 shows a first end view of the housing of FIG. 22 .
- FIG. 25 shows a second end view of the housing of FIG. 22 .
- FIG. 26 shows a first perspective view of a second example powder dispersion device.
- FIG. 27 shows a second perspective view of the device of FIG. 26 .
- FIG. 28 shows a first end view of the device of FIG. 26 .
- FIG. 29 shows a second end view of the device of FIG. 26 .
- FIG. 30 shows a first perspective view of a second housing of the device of FIG. 26 .
- FIG. 31 shows a second perspective view of the housing of FIG. 30 .
- FIG. 32 shows a first end view of the housing of FIG. 30 .
- FIG. 33 shows a second end view of the housing of FIG. 30 .
- FIG. 34 shows a first perspective view of a first housing of the device of FIG. 26 .
- FIG. 35 shows a second perspective view of the housing of FIG. 34 .
- FIG. 36 shows a first end view of the housing of FIG. 34 .
- FIG. 37 shows a second end view of the housing of FIG. 34 .
- FIG. 38 shows a first perspective view of a third example powder dispersion device.
- FIG. 39 shows a second perspective view of the device of FIG. 38 .
- FIG. 40 shows a third perspective view of the device of FIG. 38 .
- FIG. 41 shows a fourth perspective view of the device of FIG. 38 .
- FIG. 42 shows a fifth perspective view of the device of FIG. 38 .
- FIG. 43 shows a sixth perspective view of the device of FIG. 38 .
- a powder dispersion mechanism may comprise of a bead positioned within a chamber that is arranged and configured to induce a sudden, rapid, or otherwise abrupt expansion of a flow stream upon entering the chamber.
- the chamber may be coupled to any form or type of dose containment system or source that supplies powdered medicament into the chamber.
- the dose containment source may comprise or be incorporated within, for example, a powder dispersion device such as the TOBI® Podhaler®, the FORADIL® Aerolizer®, the SPIRIVA® HandiHaler®, the FLOVENT® Diskus®, the SEREVENT® Diskus®, the ADVAIR® Diskus®, the ASMANEX® Twisthaler®, the SYMBICORT® Turbuhaler®, the Budelin® Novolizer®, and many others.
- the bead when oscillating within the chamber may then disrupt and aerosolize powder agglomerates within the chamber, as passed from the source, to provide for more effective deposition of medicament into the lungs of a patient. Still other embodiments are possible.
- a cross-section of an example tubular body 100 having an inlet 102 and a dispersion chamber 104 is shown according to the principles of the present disclosure.
- a fluid (e.g., air) flow path of the inlet 102 is defined by a first internal diameter 106
- a fluid flow path of the chamber 104 is defined by a second internal diameter 108 .
- at least one of the first internal diameter 106 and the second internal diameter 108 may vary in dimension as defined with respect to a longitudinal axis L of the tubular body 100 .
- these configurable dimensions may be defined such as to provide for a draft angle for injection molding.
- the first internal diameter 106 may taper inwardly, towards and as measured with reference to the longitudinal axis L, beginning approximately at a reference point L 1 of the longitudinal axis L and ending approximately at a reference point L 2 of the longitudinal axis L.
- the first internal diameter 106 may taper inwardly towards the longitudinal axis L beginning approximately at the reference point L 2 , and ending approximately at the reference point L 1 .
- the second internal diameter 108 may taper inwardly, towards and as measured with reference to the longitudinal axis L, beginning approximately at the reference point L 2 , and ending approximately at a reference point L 3 of the longitudinal axis L.
- the second internal diameter 108 may taper inwardly towards the longitudinal axis L beginning approximately at the reference point L 3 and ending approximately at the reference point L 2 . Still other embodiments are possible.
- an internal structural profile of at least one of the inlet 102 and the chamber 104 may be defined, as desired, such as to obtain or otherwise realize particular fluid flow characteristics within the tubular body 100 .
- the tubular body 100 may be arranged and configured such that a sudden flow stream expansion may occur when the relatively “small” cross-sectional fluid flow path of or defined by the inlet 102 opens abruptly into a “larger” cross-sectional fluid flow path of or defined by the chamber 104 .
- high-energy forces may develop by within the chamber 104 .
- this may be due to relatively “low” pressure regions induced by relatively “high” velocity fluid entering the chamber 104 , where a portion of the flow stream detaches.
- Other mechanisms may contribute to the development of high-energy fluid flow within the chamber 104 as well. Further, such high-energy fluid flow, along with mechanical impact forces, may disrupt and aerosolize medicament powder agglomerates within the chamber 104 to provide for more effective deposition of medicament into the lungs of a patient.
- the example tubular body 100 may consist only of the chamber 104 .
- the tubular body 100 may consist of an “inlet hole.”
- the tubular body 100 of FIG. 1 is shown in multiple views.
- the tubular body 100 of FIG. 1 is shown in perspective view 202 , side view 204 , and cross-section view 206 .
- the cross-section view 206 is taken along an axis A-A of the side view 204 .
- the fluid flow path of or defined by the inlet 102 is coaxially aligned with the fluid flow path of or defined by the chamber 104 . This is in contrast with a substantially “off-axis” alignment of the inlet 102 and the chamber 104 , illustrated conceptually in FIG. 2 by a finite angle B defined with respect to the longitudinal axis L.
- a coaxial alignment may provide a number of advantages over such an “off-axis” alignment, such as facilitating or otherwise assisting in the development of high-energy forces within the chamber 104 .
- the coaxial alignment may further enable the efficient transfer of powder into the chamber 104 .
- a central longitudinal axis of the inlet 102 may be at least slightly offset yet parallel to a central longitudinal axis of the chamber 104 .
- Other benefits and/or advantages associated with the alignment of the inlet 102 and the chamber 104 may be understood from the preceding description provided in connection with FIGS. 1-2 , and from the following description provided in connection with FIGS. 3-42 .
- a bead 302 may be positioned within the chamber 104 of the tubular body 100 of FIGS. 1-2 .
- the bead 302 may be approximately spherical, at least on the macroscale, and oscillate in a manner similar to that described in U.S. application Ser. No. 13/469,963, filed 11 May 2012, and entitled “Bead-Containing Dry Powder Inhaler,” the complete disclosure of which is herein incorporated by reference.
- a relationship between the diameter 304 of the bead 302 , the first internal diameter 106 of the inlet 102 , and the second internal diameter 108 of the chamber 104 may be of the form: d bead 2 ⁇ (d inlet )(d chamber ).
- this relationship may hold in scenarios where d bead and d inlet and d chamber are of similar order of magnitude.
- d bead may be about 5 mm
- d inlet may be about 3.39 mm
- d chamber may be about 7.37 mm, within manufacturing tolerance.
- a length of the chamber 104 , l chamber such as defined by a distance approximately between the reference point L 2 and the reference point L 3 of the longitudinal axis L (see FIG. 1 ), may be less than or equal to about less than twice the diameter 304 of the bead 302 .
- a preferred diameter of the bead 302 may be within a range of about 0.5 mm to about 15 mm.
- the relationship d bead 2 ⁇ (d inlet )(d chamber ) may then be used to determine d inlet and d chamber .
- a preferred diameter of the bead 302 may be within a range of about 1.5 mm to about 6 mm. Still other embodiments are possible.
- a preferred ratio of the diameter of the chamber 104 to that of the inlet 102 may be within a range of about 1.1 to about 3.0.
- the relationship d bead 2 ⁇ (d inlet )(d chamber ) may thus be rewritten as, based on substitution, d bead 2 ⁇ (d chamber ) 2 /1.1 and d bead 2 ⁇ (d chamber ) 2 /3.
- the length of the chamber 104 , l chamber is about 1.2 times to about 5 times the diameter of the bead 302 . In other embodiments, it may be preferred that the length of the chamber 104 , l chamber , is about 1.5 times to about 3 times the diameter of the bead 302 . In other embodiments, it may be preferred that the length of the chamber 104 , l chamber , is about 2 times to about 2.5 times the diameter of the bead 302 .
- the length of the chamber 104 may determine whether the bead 302 freely oscillates, without physical interaction with ends of the chamber 104 . In this manner, the length of the chamber 302 may facilitate free oscillation of the bead 302 . A substantially “freely” oscillating bead 302 may even more effectively disrupt and aerosolize powder agglomerates within the chamber 104 , as passed from the source, to provide for more effective deposition of medicament into the lungs of a patient.
- a study was performed to evaluate the length of the chamber 104 and to determine whether a particular length of chamber 104 would allow the bead 302 to “freely” oscillate within the chamber 104 .
- a bead of fixed diameter about 4 mm, was used across the study.
- the length of the chamber however was varied as 1.5 ⁇ , 2.0 ⁇ , 3.0 ⁇ , 3.5 ⁇ , 4.0 ⁇ , and 9.8 ⁇ diameter of the bead.
- the study included evaluating at least six different device configurations.
- oscillation of the bead within the chamber was similar for lengths up to and including 3.5 ⁇ diameter of the bead, yet varied for lengths 4.0 ⁇ and 9.8 ⁇ diameter of the bead.
- a similar flow rate through the device was needed to allow the bead to “freely” oscillate within the chamber at least for chamber lengths of 2.0 ⁇ and 3.0 ⁇ diameter of the bead.
- a “higher” or “greater” flow rate was needed to allow the bead to “freely” oscillate within the chamber for a chamber length of 4.0 ⁇ diameter of the bead.
- the bead did not appear to “freely” oscillate within the chamber for a chamber length of 9.8 ⁇ diameter of the bead, for any flow rate through the device. At this chamber length, the bead may not be fully influenced by pressure at the inlet of the device. Other mechanisms may be possible as well.
- a study was performed to evaluate the length of the chamber 104 and to determine whether a particular diameter of the bead 302 , for a fixed length of the chamber 104 , would allow the bead 302 to “freely” oscillate within the chamber 104 .
- a chamber of fixed length and diameter about 10 mm length and about 6 mm diameter, was used across the study.
- the diameter of the bead was varied as 3.7 mm, 4 mm, and 4.7 mm.
- the study included evaluating at least three different device configurations.
- oscillation of the bead within the chamber for a 3.7 mm bead did “freely” oscillate within the chamber 104 at or about the first particular flow rate.
- a flow rate greater than the first particular flow rate was needed to observe an audible pitch similar to the distinct audible pitch produced by oscillation of the bead within the chamber for the 4 mm bead.
- a greater flow rate may be required to produce the audible pitch due to a reduced effective cross-sectional area of the 3.7 mm bead, as compared to the 4 mm bead.
- Other mechanisms may be possible as well.
- the length of the chamber 104 may thus be about 10 mm.
- the bead 302 may oscillate within the chamber 104 generally without experiencing continuous physical collisions with either end of the chamber 104 .
- Such an arrangement may further facilitate development of high energy forces within the chamber 104 to more efficiently disrupt and aerosolize medicament powder agglomerates within the chamber 104 for more effective deposition of medicament into the lungs of a patient.
- high-energy forces may refer to dispersive forces that may strip drug from the bead 302 , and deaggregation or deagglomeration forces that may break-up or break-apart aggregates in powder fed into the chamber 104 .
- deaggregation or deagglomeration and aggregation or agglomeration may be used interchangeably.
- the high-energy forces may be generated by the bead 302 when rapidly oscillating within the chamber 104 via formation of turbulence and eddies within the chamber 104 , compression and decompression zones within the chamber 104 , and the like.
- a DPF (Dry Powder Formulation)
- these high frequency oscillations of the bead 302 may produce high-energy forces within the chamber 104 .
- This may disrupt agglomerates of drug particles that may be held together at least by cohesive forces, such as by van der Waals forces, static electrical forces, etc.
- physical collisions between the bead 302 when rapidly oscillating, and potentially aggregated or agglomerated powder particles as they pass through the chamber 104 may promote de-aggregation of the agglomerates.
- the oscillation frequency may typically be between about 1 to about 1,000 Hz, and may preferably be between about 25 to about 500 Hz, although other frequencies may also occur. However, in some cases, the oscillation frequency could be up to about 2,000 Hz.
- APIs Active Pharmaceuticals Ingredients
- active agents that may be used with any of the mechanisms described within the context of the present disclosure may include analgesic anti-inflammatory agents such as, acetaminophen, aspirin, salicylic acid, methyl salicylate, choline salicylate, glycol salicylate, 1-menthol, camphor, mefenamic acid, fluphenamic acid, indomethacin, diclofenac, alclofenac, ibuprofen, ketoprofen, naproxene, pranoprofen, fenoprofen, sulindac, fenbufen, clidanac, flurbiprofen, indoprofen, protizidic acid, fentiazac, tolmetin, tiaprofenic acid, bendazac, bufexamac, piroxicam, pheny
- analgesic anti-inflammatory agents such as, acetaminophen, aspirin, salicy
- drugs having an action on the central nervous system, for example sedatives, hypnotics, antianxiety agents, analgesics and anesthetics, such as, chloral, buprenorphine, naloxone, haloperidol, fluphenazine, pentobarbital, phenobarbital, secobarbital, amobarbital, cydobarbital, codeine, lidocaine, tetracaine, dyclonine, dibucaine, cocaine, procaine, mepivacaine, bupivacaine, etidocaine, prilocaine, benzocaine, fentanyl, nicotine, and the like.
- drugs having an action on the central nervous system for example sedatives, hypnotics, antianxiety agents, analgesics and anesthetics, such as, chloral, buprenorphine, naloxone, haloperidol, fluphenazine, pen
- Local anesthetics such as, benzocaine, procaine, dibucaine, lidocaine, and the like.
- Still other drugs include antihistaminics or antiallergic agents such as, diphenhydramine, dimenhydrinate, perphenazine, triprolidine, pyrilamine, chlorcyclizine, promethazine, carbinoxamine, tripelennamine, brompheniramine, hydroxyzine, cyclizine, meclizine, clorprenaline, terfenadine, chlorpheniramine, and the like.
- Anti-allergenics such as, antazoline, methapyrilene, chlorpheniramine, pyrilamine, pheniramine, and the like.
- Decongestants such as, phenylephrine, ephedrine, naphazoline, tetrahydrozoline, and the like.
- drugs include antipyretics such as, aspirin, salicylamide, non-steroidal anti-inflammatory agents, and the like.
- Antimigrane agents such as, dihydroergotamine, pizotyline, and the like.
- Acetonide anti-inflammatory agents such as hydrocortisone, cortisone, dexamethasone, fluocinolone, triamcinolone, medrysone, prednisolone, flurandrenolide, prednisone, halcinonide, methylprednisolone, fludrocortisone, corticosterone, paramethasone, betamethasone, ibuprophen, naproxen, fenoprofen, fenbufen, flurbiprofen, indoprofen, ketoprofen, suprofen, indomethacin, piroxicam, aspirin, salicylic acid, diflunisal, methyl salicylate, phenylbutazone, sulindac, mefenamic acid, meclofenamate sodium, tolmetin, and the like.
- Muscle relaxants such as, tolperisone, baclofen, dantrolene sodium, cyclobenzaprine, and the like.
- Steroids may also be used, including androgenic steroids, such as, testosterone, methyltestosterone, fluoxymesterone, estrogens such as, conjugated estrogens, esterified estrogens, estropipate, 17- ⁇ estradiol, 17- ⁇ estradiol valerate, equilin, mestranol, estrone, estriol, 17 ⁇ ethinyl estradiol, diethylstilbestrol, progestational agents, such as, progesterone, 19-norprogesterone, norethindrone, norethindrone acetate, melengestrol, chlormadinone, ethisterone, medroxyprogesterone acetate, hydroxyprogesterone caproate, ethynodiol diacetate, norethynodrel, 17- ⁇ hydroxyprogesterone, dydrogesterone, dimethisterone, ethinylestrenol, norgestre
- Respiratory agents that may be used include: theophilline and ⁇ 2-adrenergic agonists, such as, albuterol, terbutaline, metaproterenol, ritodrine, carbuterol, fenoterol, quinterenol, rimiterol, solmefamol, soterenol, tetroquinol, tacrolimus, and the like.
- theophilline and ⁇ 2-adrenergic agonists such as, albuterol, terbutaline, metaproterenol, ritodrine, carbuterol, fenoterol, quinterenol, rimiterol, solmefamol, soterenol, tetroquinol, tacrolimus, and the like.
- Sympathomimetics such as, dopamine, norepinephrine, phenylpropanolamine, phenylephrine, pseudoephedrine, amphetamine, propylhexedrine, arecoline, and the like.
- Antimicrobial agents that may be used include antibacterial agents, antifungal agents, antimycotic agents and antiviral agents; tetracyclines such as, oxytetracycline, penicillins, such as, ampicillin, cephalosporins such as, cefalotin, aminoglycosides, such as, kanamycin, macrolides such as, erythromycin, chloramphenicol, iodides, nitrochanoin, nystatin, amphotericin, fradiomycin, sulfonamides, purrolnitrin, clotrimazole, itraconazole, miconazole chloramphenicol, sulfacetamide, sulfamethazine, sulfadiazine, sulfamerazine, sulfamethizole and sulfisoxazole; antivirals, including idoxuridine; clarithromycin; and other anti-infectives including nitrofurazone,
- Antihypertensive agents that may be used include clonidine, a-methyldopa, reserpine, syrosingopine, rescinnamine, cinnarizine, hydrazine, prazosin, and the like.
- antihypertensive diuretics such as, chlorothiazide, hydrochlorothrazide, bendoflumethazide, trichlormethiazide, furosemide, tripamide, methylclothiazide, penfluzide, hydrothiazide, spironolactone, metolazone, and the like.
- Cardiotonics such as, digitalis, ubidecarenone, dopamine, and the like.
- Coronary vasodilators such as, organic nitrates such as, nitroglycerine, isosorbitol dinitrate, erythritol tetranitrate, and pentaerythritol tetranitrate, dipyridamole, dilazep, trapidil, trimetazidine, and the like.
- Vasoconstrictors such as, dihydroergotamine, dihydroergotoxine, and the like.
- ⁇ -blockers or antiarrhythmic agents such as, timolol pindolol, propranolol, and the like.
- Humoral agents such as, the prostaglandins, natural and synthetic, for example PGE1, PGE2 ⁇ , and PGF2 ⁇ , and the PGE1 analog misoprostol, and the like.
- Antispasmodics such as, atropine, methantheline, papaverine, cinnamedrine, methscopolamine, and the like.
- drugs that may be used include calcium antagonists and other circulatory organ agents, such as, aptopril, diltiazem, nifedipine, nicardipine, verapamil, bencyclane, ifenprodil tartarate, molsidomine, clonidine, prazosin, and the like.
- Anti-convulsants such as, nitrazepam, meprobamate, phenytoin, and the like.
- Agents for dizziness such as, isoprenaline, betahistine, scopolamine, and the like.
- Tranquilizers such as, reserprine, chlorpromazine, and antianxiety benzodiazepines such as, alprazolam, chlordiazepoxide, clorazeptate, halazepam, oxazepam, prazepam, clonazepam, flurazepam, triazolam, lorazepam, diazepam, and the like.
- Antipsychotics such as, phenothiazines including thiopropazate, chlorpromazine, triflupromazine, mesoridazine, piperracetazine, thioridazine, acetophenazine, fluphenazine, perphenazine, trifluoperazine, and other major tranquilizers such as, chlorprathixene, thiothixene, haloperidol, bromperidol, loxapine, and molindone, as well as, those agents used at lower doses in the treatment of nausea, vomiting, and the like.
- phenothiazines including thiopropazate, chlorpromazine, triflupromazine, mesoridazine, piperracetazine, thioridazine, acetophenazine, fluphenazine, perphenazine, trifluoperazine
- major tranquilizers such as, chlorprathixene, thiothixene
- Drugs for Parkinson's disease, spasticity, and acute muscle spasms such as levodopa, carbidopa, amantadine, apomorphine, bromocriptine, selegiline (deprenyl), trihexyphenidyl hydrochloride, benztropine mesylate, procyclidine hydrochloride, baclofen, diazepam, dantrolene, and the like.
- Respiratory agents such as, codeine, ephedrine, isoproterenol, dextromethorphan, orciprenaline, ipratropium bromide, cromglycic acid, and the like.
- Non-steroidal hormones or antihormones such as, corticotropin, oxytocin, vasopressin, salivary hormone, thyroid hormone, adrenal hormone, kallikrein, insulin, oxendolone, and the like.
- Vitamins such as, vitamins A, B, C, D, E and K and derivatives thereof, calciferols, mecobalamin, and the like, for use dermatologically for example.
- Enzymes such as, lysozyme, urokinaze, and the like.
- Herb medicines or crude extracts such as, Aloe vera, and the like.
- Antitumor agents such as, 5-fluorouracil and derivatives thereof, krestin, picibanil, ancitabine, cytarabine, and the like.
- Anti-estrogen or anti-hormone agents such as, tamoxifen or human chorionic gonadotropin, and the like.
- Miotics such as pilocarpine, and the like.
- Cholinergic agonists such as, choline, acetylcholine, methacholine, carbachol, bethanechol, pilocarpine, muscarine, arecoline, and the like.
- Antimuscarinic or muscarinic cholinergic blocking agents such as, atropine, scopolamine, homatropine, methscopolamine, homatropine methylbromide, methantheline, cyclopentolate, tropicamide, propantheline, anisotropine, dicyclomine, eucatropine, and the like.
- Mydriatics such as, atropine, cyclopentolate, homatropine, scopolamine, tropicamide, eucatropine, hydroxyamphetamine, and the like.
- Psychic energizers such as 3-(2-aminopropy)indole, 3-(2-aminobutyl)indole, and the like, such as ipratropium, tiotropium, glycopyrrolate (glycopyrronium), aclidinium, and the like.
- Antidepressant drugs such as, isocarboxazid, phenelzine, tranylcypromine, imipramine, amitriptyline, trimipramine, doxepin, desipramine, nortriptyline, protriptyline, amoxapine, maprotiline, trazodone, and the like.
- Anti-diabetics such as, insulin, and anticancer drugs such as, tamoxifen, methotrexate, and the like.
- Anorectic drugs such as, dextroamphetamine, methamphetamine, phenylpropanolamine, fenfluramine, diethylpropion, mazindol, phentermine, and the like.
- Anti-malarials such as, the 4-aminoquinolines, alphaaminoquinolines, chloroquine, pyrimethamine, and the like.
- Anti-ulcerative agents such as, misoprostol, omeprazole, enprostil, and the like.
- Antiulcer agents such as, allantoin, aldioxa, alcloxa, N-methylscopolamine methylsuflate, and the like.
- Antidiabetics such as insulin, and the like.
- Anti-cancer agent such as, cis-platin, actinomycin D, doxorubicin, vincristine, vinblastine, etoposide, amsacrine, mitoxantrone, tenipaside, taxol, colchicine, cyclosporin A, phenothiazines or thioxantheres, and the like.
- antigens such as, natural, heat-killer, inactivated, synthetic, peptides and even T cell epitopes (e.g., GADE, DAGE, MAGE, etc.), and the like.
- Example therapeutic or active agents also include drugs of molecular weight from about 40 to about 1,100 including the following: Hydrocodone, Lexapro, Vicodin, Effexor, Paxil, Wellbutrin, Bextra, Neurontin, Lipitor, Percocet, Oxycodone, Valium, Naproxen, Tramadol, Ambien, Oxycontin, Celebrex, Prednisone, Celexa, Ultracet, Protonix, Soma, Atenolol, Lisinopril, Lortab, Darvocet, Cipro, Levaquin, Ativan, Nexium, Cyclobenzaprine, Ultram, Alprazolam, Trazodone, Norvasc, Biaxin, Codeine, Clonazepam, Toprol, Zithromax, Diovan, Skelaxin, Klonopin, Lorazepam, Depakote, Diazepam, Albuterol, Topamax, Seroquel, Amoxicillin, Ritalin, Methad
- Monospecific antibodies such as monoclonal antibodies and phages, and the like.
- Cholinesterase family of enzymes such as acetalcholinesterase and butyryl acetalcholinesterase, and the like
- BCS Class II agents such as Glibenclamide for example, and the like.
- the active agents mentioned above may be used in combination as required.
- the above drugs may be used either in the free form or, if capable of forming salts, in the form of a salt with a suitable acid or base.
- their esters may be employed.
- This may include, but is not limited to, pure micronized drug formulations, no excipients are included (e.g., drug particles may or may not be crystalline, the formulation may include one or more drugs, co-crystals—multiple APIs in a single crystalline particle); binary, ternary, etc., formulations where the drug is but one component of the formulation, two or more drugs are blended together, and which also may or may not include one or more excipients; and engineered powders including low density powders, spray-dried powder, etc., designed to be dispersed effectively relative to traditional micronized formulations, the PulmoSphere® technology used in the TOBI® Podhaler®.
- oscillating bead dispersion mechanism as described throughout the present disclosure may be used with other aerosol dispersion methods, not just powders, including but not limited to, aqueous and/or propellant-based inhalers, such as liquid or powder nebulizers, pMDIs and powder or liquid nasal sprays. Still other embodiments are possible.
- dry powder formulations for pulmonary delivery in accordance with the present disclosure may be used to counter effects of various types of agents that may at least initially affect the respiratory system including, but are not limited to: harassing agents such as tear agents and vomiting agents; incapacitating agents such as psychological agents; and lethal agents such as blister agents, blood agents, choking (pulmonary) agents, and nerve agents.
- harassing agents such as tear agents and vomiting agents
- incapacitating agents such as psychological agents
- lethal agents such as blister agents, blood agents, choking (pulmonary) agents, and nerve agents.
- tear agents may include a-Chlorotoluene, Benzyl bromide, Bromoacetone (BA), Bromobenzylcyanide (CA), Bromomethylethyl ketone, Capsaicin (OC), Chloracetophenone (MACE; CN), Chloromethyl chloroformate, Dibenzoxazepine (CR), Ethyl iodoacetate, Ortho-chlorobenzylidene malononitrile (Super tear gas; CS), Trichloromethyl chloroformate, Xylyl bromide, and the like.
- vomiting agents may include Adamsite (DM), Diphenylchloroarsine (DA), Diphenylcyanoarsine (DC), and the like.
- Examples of psychological agents may include 3-Quinuclidinyl benzilate (BZ), Phencyclidine (SN), Lysergic acid diethylamide (K), and the like.
- blister agents may include nitrogen mustards such as Bis(2-chloroethyl)ethylamine (HN1), Bis(2-chloroethyl)methylamine (HN2), Tris(2-chloroethyl)amine (HN3), Sulfur Mustards such as 1,2-Bis(2-chloroethylthio) ethane (Sesquimustard; Q), 1,3-Bis(2-chloro ethylthio)-n-propane, 1,4-Bis(2-chloroethylthio)-n-butane, 1,5-Bis(2-chloroethylthio)-n-pentane, 2-Chloroethylchloromethylsulfide, Bis(2-chloroethyl)sulfide (Mustard gas; HD), Bis(2-chloroethylthio) methane, Bis(2-chloroethylthiomethyl)ether, Bis
- Examples of blood agents may include Cyanogen chloride (CK), Hydrogen cyanide (AC), Arsine (SA), and the like.
- CK Cyanogen chloride
- AC Hydrogen cyanide
- SA Arsine
- choking agents may include but are not limited to, Chlorine (CL); Chloropicrin (PS), Diphosgene (DP), Phosgene (CG), and the like.
- nerve agents may include G series such as Tabun (GA), Sarin (GB), Soman (GD), Cyclosarin (GF), GV series such as Novichok agents, GV (nerve agent), V series such as VE, VG, VM, and the like.
- G series such as Tabun (GA), Sarin (GB), Soman (GD), Cyclosarin (GF), GV series such as Novichok agents, GV (nerve agent), V series such as VE, VG, VM, and the like.
- the example bead 302 disposed within the example chamber 104 may oscillate in a manner similar to that described in U.S. application Ser. No. 13/469,963, filed 11 May 2012, entitled “Bead-Containing Dry Powder Inhaler.”
- the bead 302 may not include a pre-coated powder on its surface. Rather, powder may be separately introduced into the chamber 104 from a receptacle such as dose containment or dosing chamber, or other temporary holding compartment or region, or from another dry powder inhaler, as described further below. With this configuration, the powder may be initially placed into a dose containment chamber.
- the bead 302 may be coated with drug. This may act as a detachment platform for the drug coated on its surface, as well as a dispersion mechanism for drug formulation located and introduced upstream of the bead.
- a combination drug product such as delivering two or more drugs in a single inhalation maneuver, where one drug is delivered in a larger dose, such as an inhaled corticosteroid, than the other drug, such as a long-acting beta-agonist
- the lower dose drug may be coated onto the surface of the bead 302 , while the larger dose drug is located in a dose containment container, such as a capsule, blister, reservoir, etc., upstream of the chamber 104 containing the drug-coated bead.
- oscillation of the bead 302 may serve as a detachment platform to the drug adhered to its surface, and as a dispersion mechanism to the powder that is located upstream.
- the bead 302 may be coated with a layer of durable material.
- a layer of durable material may include, but is not limited to, gelatin, sugars, any pharmaceutically acceptable film coating materials, including polymers, metallic coatings, anti-static coatings, plasma coatings, etc. This may be beneficial for example when bead material can erode or fragment.
- the layer thickness may depend on the density of the material to be added, such that the addition of the coated layer does not eliminate or substantially impair or inhibit the ability of the bead 302 to oscillate within the dispersion chamber 104 .
- Using the bead 302 as a dispersion mechanism may provide a number of advantages. For example, by employing the oscillating bead in the capacity of a dispersion engine, large doses such as, for example, about 1 mg to about 25 mg or greater, may be delivered by storing them in capsules or blisters. However, it will be appreciated that smaller doses may also be delivered. For example, doses greater than about 1 ⁇ g of active drug may be delivered. In some cases, the active drug may be blended with a carrier, such as lactose. Also, when the bead 302 is not coated with drug and used as a dispersion mechanism, there is no retention mechanism required to hold the bead 302 tightly within the inhaler, decreasing the complexity of the DPF.
- the bead 302 as a dispersion mechanism may require no additional or complicated processing steps for the DPF formulations, as the powder may be produced by traditionally employed methods. Additionally, the bead 302 in the present disclosure may oscillate generally within the center of the chamber 104 , along the longitudinal axis L, where physical contact between the bead 302 and inner walls of the chamber 104 , and possibly ends of the chamber 104 , may occur infrequently, if at all.
- This type of dispersion mechanism may be beneficial as collisions between walls of the chamber 104 and the bead 302 could serve to rub powder onto either the surface of the bead 302 or inner walls of the chamber 104 when powder is caught therebetween during a physical collision, thereby decreasing an amount of powder available for transfer into the lungs of a patient.
- the frequent collision of the bead 302 with the walls of the chamber 104 may act to scrub off any drug adhered to the wall(s), thus increasing an amount of powder available for transfer into the lungs of a patient.
- the tubular body 100 of the present disclosure may produce an approximately symmetrical flow stream expansion that drives oscillation of the bead 302 .
- Such a configuration may enable a powder dispersion device, or dry powder inhaler, incorporating aspects of the tubular body 100 , to be constructed with minimal bulk.
- FIGS. 4-5 an example powder dispersion device or inhaler 400 is shown in accordance with the principles of the present disclosure.
- FIG. 4 shows a first view of the device 400 of FIG. 4 in cross-section.
- FIG. 5 shows a perspective view of the device 400 of FIG. 4 .
- the device 400 may generally incorporate aspects of the example tubular body 100 described above in connection with FIGS. 1-3 .
- the device 400 may include a first housing 402 comprising the inlet 102 and the chamber 104 of the tubular body 100 .
- the bead 302 may be positioned within the chamber 104 , such as shown in FIG. 3 .
- the device 400 may further include a second housing 404 comprising a sheath flow channel 406 that surrounds and is not in fluid connection with a primary or main powder flow channel 408 .
- the first housing 402 may be integrally formed with the second housing 404 .
- the chamber 104 and the main powder flow channel 408 may have at least one common structural dimension, such as internal diameter for example.
- the second housing 404 may itself comprise of, be coupled to, or otherwise incorporated within, a mouthpiece adapted to be placed within the mouth of a patient, or in a nasal adapter adapted to conform to the nostrils of a patient.
- the device 400 may further include a plurality of flow bypass channels 410 that are formed within the second housing 404 .
- the flow bypass channels 410 may be in fluid connection with the sheath flow channel 406 .
- the device 400 may further include a dosing chamber 412 , a retaining member 416 , and a piercing member 418 disposed at an end of the chamber opposite the inlet 102 .
- the piercing member 418 may puncture or otherwise perforate a capsule, blister, or powder reservoir 414 as arranged or positioned within the dosing chamber 412 .
- the retaining member 416 may include at least one opening or aperture sized to permit air and powdered or otherwise aerosolized medicament to pass through the retaining member 416 , and to prevent the possibility of the bead 302 from exiting the chamber 104 .
- the at least one opening or aperture may, in some embodiments, be arranged and configured (e.g., diameter, pattern, etc.) to maintain desired fluid flow characteristics with the device 400 , such that the bead 302 may disrupt and aerosolize medicament powder agglomerates within the chamber 104 to provide for more effective deposition of medicament into the lungs of a patient.
- a patient may prime the device 400 by puncturing the capsule, blister, or transfer of a dose from a powder reservoir 414 , and then inhale, drawing air through the chamber 104 which in turn draws the DPF from the dosing chamber 412 into the adjacent chamber 104 via the inlet 102 , where the bead 302 is rapidly oscillating, creating high-energy forces that may strip drug from the surface of carrier particles in the DPF, or when the bead 302 is drug-covered, and/or de-agglomerate drug powder aggregates and drug-on-drug aggregates.
- Drug particles may then be deposited in lungs and airways of a patient from the primary or main powder flow channel 408 based on direction of air flow through the device such as shown in FIG. 4 .
- Such a “self-dosing” scenario may be useful for effectively dispensing both traditional binary or ternary DPF formulations, drug and carrier/excipient particles, and pure drug-powder formulations where there are no carrier particles are present.
- Other embodiments having similar effects are possible, as discussed further below in connection with FIG. 9 .
- the resistance to flow of the device 400 may be adjusted by altering the geometry and/or arrangement of at least one of the inlet 102 , the bead 302 , the sheath flow channel 406 , the main powder flow channel 408 , and the flow bypass channel(s) 410 .
- the flow bypass channels 410 may be located radially around the body of the second housing 404 , and fluidly connected to the sheath flow channel 406 .
- the device 400 may not include any flow bypass channels.
- the flow bypass channels 410 may comprise of twelve individual channels located radially around the body of the second housing 404 . However, other embodiments are possible.
- the flow bypass channels 410 may comprise of different numbers and diameters of individual channels and entry points into the sheath flow channel 406 . Further, one or more of the flow bypass channels 410 may be parallel through the main powder flow channel 408 , or may be in fluid connection with, and then diverge from, the main powder flow channel 408 . Still other embodiments are possible.
- One or more of the flow bypass channels 410 may be “opened” or “closed” such as by removal or insertion of a resilient material therein to “unplug” or “plug” the same. This may result in changes in the overall resistance of the device 400 , thereby influencing flow rate through the device 400 . For example, a person may inhale through a “high” resistance inhaler with a lower inspiratory flow rate than they would through a “low” resistance inhaler, despite inhaling with the same inhalation effort. In this manner, the device 400 may be “tuned” to respond “optimally” to the needs of a patient. In other words, the device 400 in accordance with the present disclosure may be tailored to suit particular patient needs.
- resistance of the device 400 may be approximately inversely proportional to diameter of the bead 302 .
- one or more of the flow bypass channels 410 may be “closed” to increase resistance of the device such that a patient may receive a proper dose of medicament irrespective of possibly diminished inhalation capacity.
- Performance of the example powder dispersion device or inhaler 400 of FIG. 4 was evaluated to assess how the bead 302 as an oscillating mechanism functions to disperse drug powder within the chamber 104 .
- no powder was coated onto the surface of the bead 302 .
- powder travels from a dosing chamber 412 (see FIG. 4 ), where the powder is stored, into the chamber 104 , where the bead 302 when oscillating creates high-energy forces that may strip the drug particles from, for example, a lactose carrier, and/or disrupt aggregated particles and disperse them into sizes that may more easily penetrate patient airways.
- physical collisions between the bead 302 and coarse “carrier” particles and/or aggregates may also promote drug dispersion, and increased physical collisions between lactose carrier particles.
- the bead 302 may comprise of an uncoated “low” density expanded polystyrene bead, with the chamber 104 being downstream of the dosing chamber 412 , where the powder may be contained in the powder reservoir 414 .
- a density of the bead 302 may be selected as desired, where the density of bead 302 may or may not affect performance of the device 400 .
- capsule material may include gelatin or HPMC (hydroxypropylmethylcellulose). Examples of commercial dry powder inhaler products where the powder is stored in capsules include the FORADIL® Aerolizer® and the SPIRIVA® HandiHaler®.
- the capsules may each contain one dose, or multiple capsules can be used to contain the equivalent of one dose, as with the TOBI® Podhaler®, where each dose consists of four capsules, each containing 28 mg of powder for example.
- one blister may contain one dose.
- commercial dry powder inhaler products where the powder is stored in blisters include the FLOVENT® Diskus®, SEREVENT® Diskus®, and the ADVAIR® Diskus®.
- a particular reservoir may contains sufficient powder for multiple doses.
- Examples of commercial dry powder inhaler products where the powder is stored in reservoirs include the ASMANEX® Twisthaler®, SYMBICORT® Turbuhaler® and the Budelin® Novolizer®. Still other embodiments are possible.
- a patient may prime the device 400 by puncturing the capsule/blister contained within the powder reservoir 414 or transferring drug from the powder reservoir 414 , and then inhale, drawing powder into the adjacent chamber 104 via the inlet 102 where the bead 302 is rapidly oscillating, creating high-energy forces that may strip the drug from the surface of carrier particles (e.g., when the bead 302 is drug-covered), and/or de-agglomerate powder aggregates.
- carrier particles e.g., when the bead 302 is drug-covered
- the capsule chamber of the Handihaler® (see e.g., FIG. 6 ) as described generally in U.S. Pat. No. 7,252,087, was employed to puncture an HPMC capsule containing 20 mg ( ⁇ 1 mg) of a 2% binary blend of micronized budesonide and inhalation-grade lactose (Respitose® ML006).
- the powder was dispersed only from the Handihaler®, with no bead-dispersion chamber downstream.
- the chamber 104 was included downstream of the Handihaler® capsule chamber with a single 4 mm expanded polystyrene bead, placed inside.
- the experimental configurations were: Handihaler® alone (herein referred to as “No Attachment”); and Handihaler® with the example device 400 as an attachment (herein referred to as “Attachment”).
- the resistance of the “Attachment” was relatively “high,” with a 4 kPa pressure drop of approximately 26 LPM.
- the flow bypass channels 410 of the device 400 were used to lower the resistance, making the 4 kPa pressure drop flow rate at approximately 70 LPM; the cutoff of Stage 2 is about 4.1 ⁇ m, and the cutoff of Stage 1 is about 7.4 ⁇ m.
- the Stage 2 cutoff of 39 LPM is about 5.6 ⁇ m.
- the FPF increased at Stage 2 cutoff from 48.2%, using the “No Attachment” arrangement or configuration, to 70.9%, using the “Attachment” arrangement or configuration.
- the “Attachment” arrangement or configuration more efficiently deaggregated powder passing through arrangement or configuration, such that a greater percentage of “smaller” particles were created that would then be available to penetrate into a patients lung.
- Stage 2 when Stage 2 was also included in the FPF, changing the cutoff size to ⁇ about 7.4 ⁇ m), the FPF would increase to 77.7% (1.0%).
- the device 400 a compact device, having straight powder flow path containing a breath-actuated, approximately linearly oscillating, bead as the dispersion mechanism, may serve as an effective powder dispersion mechanism for at least dry powder formulations. This may be beneficial in many respects. For example, since it has been found that FPF output increases using the “Attachment” arrangement or configuration, a patient may be more capable of obtaining a proper dosage of medicament. Other benefits are possible as well.
- Performance of the example powder dispersion device or inhaler 400 of FIG. 4 was evaluated to assess the influence of size of the bead 302 on the example device 400 .
- a particular powder dispersion device configured to incorporate a bead of a particular size was produced via stereolithography from the material DSM Somos® NeXT.
- a particular powder dispersion device was attached to the capsule chamber of the HandiHaler® dry powder inhaler. This allowed testing the dispersion of powder from capsules that could be perforated by the piercing mechanism of the HandiHaler®.
- FIG. 6 shows a first example experimental set-up in accordance with the present disclosure.
- FIG. 6 shows the example device 400 of FIG. 4 attached to a capsule chamber (e.g., dosing chamber 412 ) of the HandiHaler® dry powder inhaler 602 .
- element 602 may generally be any type of dose containment system or powder source.
- FIG. 6 further shows the device 400 arranged and configured to incorporate or otherwise exhibit a 3.2 mm bead, a 4.0 mm bead, and a 5.2 mm bead. Powder contained in a capsule was punctured using the piercing mechanism of the HandiHaler® dry powder inhaler.
- powder is pulled or otherwise caused to flow out from the perforations in the capsule wall, traveling into the chamber 104 of the device 400 , where forces created by the bead 302 , when the bead is rapidly oscillating, at least disrupts powder agglomerates.
- the resistance of the device 400 varied inversely with bead size.
- the device 400 was tested at a constant 4 kPa pressure drop across the device 400 by altering the volumetric flow rate through the device 400 to compensate for difference in device resistance, summarized in the following Table 1:
- Performance of the example powder dispersion device or inhaler 400 of FIG. 4 was evaluated to assess the influence of size of the bead 302 in delivering a high dose of a pure micronized beta agonist, not containing any excipients.
- the devices were activated or otherwise actuated for a time interval that allowed 4 L of air to flow therethrough. Following actuation, the drug depositing on the different regions of the experimental setup was collected by rinsing each region with deionized water, and quantified by UV-VIS spectrophotometry at 230 nm.
- the FPF of the emitted dose which may refer to the fraction of a dose that leaves the inhaler that deposits in the lungs, because if its size, for each configuration is summarized in the following Table 2:
- the FPF increased from about 24%, using the “No Attachment” arrangement or configuration, to between about 73% to 76%, using the “Attachment” arrangement or configuration. Similar to the above-conclusion (see Experimental Study A), it may be understood that the “Attachment” arrangement or configuration more efficiently deaggregated powder passing through arrangement or configuration, such that a greater percentage of “smaller” particles were created that would then be available to penetrate into a patients lung.
- Performance of the example powder dispersion device or inhaler 400 of FIG. 4 was evaluated to assess the influence of size of the bead 302 in delivering a high dose of a pure inhaled corticosteroid, no excipients.
- the devices were actuated for a time interval that allowed 4 L of air to flow through the inhaler.
- the drug depositing on the different regions of the experimental setup was collected by rinsing each region with methanol and quantified by UV-VIS spectrophotometry at 250 nm.
- Other preferred solvents may be used depending on type of studied drug.
- N 3 No Attachment 31.5% (4.0 +/ ⁇ 1 std deviation) Attachment/3.2 mm bead 75.6% (2.8 +/ ⁇ 1 std deviation) Attachment/5.2 mm bead 70.3% (1.7 +/ ⁇ 1 std deviation)
- the FPF increased from about 32%, using the “No Attachment” arrangement or configuration, to between about 70% to 76%, using the “Attachment” arrangement or configuration. Similar to the above-conclusion (see Experimental Study A), it may be understood that the “Attachment” arrangement or configuration more efficiently deaggregated powder passing through arrangement or configuration, such that a greater percentage of “smaller” particles were created that would then be available to penetrate into a patients lung.
- Performance of the example powder dispersion device or inhaler 400 of FIG. 4 was evaluated to assess the influence of size of the bead 302 in delivering a low dose of beta-agonist delivered from a traditional DPF formulation, with coarse lactose particles as an excipient.
- a 2% (w/w) binary blend of albuterol sulfate in lactose was prepared by blending 490 mg of inhalation-grade lactose (LactoHale 300) with 10 mg of pure micronized albuterol sulfate via geometric dilution in a 25 mL glass scintillation vial. The vial was then placed into a Turbula® Orbital blender for 40 minutes at 46 RPM. 20 mg ( ⁇ 1 mg) of the 2% albuterol sulfate blend was placed into Size 3 HPMC capsules.
- Powder was dispersed via the “No Attachment” or “Attachment” configuration as discussed above, with the device 400 including either a 3.2 mm bead, a 4.0 mm bead, or 5.2 mm bead, and attached to the capsule chamber of the HandiHaler® dry powder inhaler 602 (see FIG. 6 ) through a next generation cascade impactor connected to a high vacuum pump.
- the volumetric flow rate through the different configurations was adjusted such that a pressure drop of approximately 4 kPa was produced across the respective device 400 , such as listed in Table 1 above.
- the devices were actuated for a time interval that allowed 4 L of air to flow through the inhaler. Following actuation, the drug depositing on the different regions of the experimental setup was collected by rinsing each region with deionized H 2 O and quantified by UV-VIS spectrophotometry at 230 nm.
- N 3 No Attachment 29.7% (2.8 +/ ⁇ 1 std deviation) Attachment/3.2 mm bead 72.7% (0.9 +/ ⁇ 1 std deviation) Attachment/4.0 mm bead 71.8% (2.6 +/ ⁇ 1 std deviation) Attachment/5.2 mm bead 71.6% (4.3 +/ ⁇ 1 std deviation)
- the FPF increased from about 30%, using the “No Attachment” arrangement or configuration, to between about 72% to 73%, using the “Attachment” arrangement or configuration. Similar to the above-conclusion (see Experimental Study A), it may be understood that the “Attachment” arrangement or configuration more efficiently deaggregated powder passing through arrangement or configuration, such that a greater percentage of “smaller” particles were created that would then be available to penetrate into a patients lung.
- powder was dispersed via the “Attachment” configuration as discussed above, with the device 400 including a 3.2 mm bead, and attached to the capsule chamber of the HandiHaler® dry powder inhaler 602 (see FIG. 6 ) through a next generation cascade impactor connected to a high vacuum pump.
- 1, 5, 10 or 25 mg of pure micronized albuterol sulfate were dispersed with volumetric flow rate set to produce a 4 kPa pressure across the device 400 , about 81 LPM.
- the device 400 was actuated for a time period to allow 4 L of air to flow through the device 400 .
- N 3 Attachment/3.2 mm bead 1 mg 83.7% (2.0 +/ ⁇ 1 std deviation) Attachment/3.2 mm bead 5 mg 85.4% (2.8 +/ ⁇ 1 std deviation) Attachment/3.2 mm bead 10 mg 83.7% (2.6 +/ ⁇ 1 std deviation) Attachment/3.2 mm bead 25 mg 78.0% (1.9 +/ ⁇ 1 std deviation)
- beads of lower mass may oscillate with greater frequency than heavier beads.
- smaller beads may have a greater oscillation frequency than larger beads.
- particle size distributions differ between bead sizes, and with smaller beads, due to the greater oscillation frequency of the smaller beads, higher energy localized eddies may be produced, which may be more effective at de-aggregating powder particles than lower energy localized eddies produced by larger beads that oscillate with a lower frequency.
- larger beads may travel a greater distance during their oscillation, by the power law relation governing bead diameter described above, and coupled with the greater diameter, may displace a larger volume of air when they move.
- FIG. 7 shows the example device 400 of FIG. 4 attached to a mouthpiece 704 of a particular commercial dry powder inhaler 702 , namely the Flovent® Diskus® inhaler.
- element 702 may generally be any type of dose containment system or powder source
- the device 400 was connected directly to the capsule chamber of the HandiHaler®, bypassing the mouthpiece of the HandiHaler®, which powder may flow through under “normal” operation.
- the example device 400 of FIG. 4 is coupled to the mouthpiece 704 of the inhaler 702 by a coupling 706 , thereby allowing powder to flow through the inhaler 702 as during “normal” operation, and then into the chamber 304 containing the bead 302 (see e.g., FIG. 3 ).
- powder is pulled or otherwise caused to flow out through the inhaler 702 , traveling into the chamber 104 of the device 400 , where forces created by the bead 302 , as rapidly oscillating, at least disrupts powder agglomerates.
- Performance of the example powder dispersion device or inhaler 400 of FIG. 4 was evaluated to assess the ability of the example device 400 in increasing FPD (Fine Particle Dose) and emitted FPF (Fine Particle Fraction) when coupled in series with the inhaler 702 .
- FPD Food Particle Dose
- FPF Fine Particle Fraction
- the fraction of a dose that leaves the inhaler that deposits in the lungs, because of its size, may be referred to as the (FPF), or FPD when expressed in terms of mass.
- flow rate through the inhaler 702 with API (Active Pharmaceutical Ingredient) Fluticasone propionate, with and without the example device 400 coupled to the mouthpiece 704 was set to produce a 4 kPa pressure drop across the device 400 of 49 LPM when coupled to the inhaler 702 (referred to as “No Attachment”), and 83 LPM when decoupled from the inhaler 702 (referred to as “Attachment”).
- Samples were collected via rinsing with ethanol and analyzed by UV-VIS spectrophotometer at 238 nm.
- the example device 400 when coupled in series with the inhaler 702 improved the FPD by 33 mcg (49%), and improved FPF by 52%, summarized in the following Table 6:
- the device or inhaler 400 of FIG. 4 may enhance the performance (FPF emitted) of a commercial inhaler. This may be beneficial since the device or inhaler 400 of FIG. 4 may be considered as an “add-on,” such that a patient may not be required to purchase another device when a particular commercial inhaler does not provide the performance required or desired by the patient. This may be because the device or inhaler 400 of FIG. 4 is configured to more efficiently break-up powder agglomerates, and reduce or otherwise minimize the resistance of an or other device that the device or inhaler 400 is coupled to. Other benefits are possible as well.
- FIG. 8 a second view of the device 400 of FIG. 4 is shown in cross-section.
- a cross section of the second example experimental set-up of FIG. 7 is shown.
- the example device 400 of FIG. 4 is coupled to the mouthpiece 704 of the inhaler 702 by the coupling 706 , thereby allowing powder to flow through the inhaler 702 as during “normal” operation, and then into the chamber 304 containing the bead 302 (see also FIG. 3 ).
- a piercing member 712 may puncture or otherwise perforate a capsule, blister, or powder reservoir 714 as contained within a dosing chamber 716 of the inhaler 702 .
- Powder may then be caused to flow through the inhaler 702 into the chamber 304 containing the bead 302 via the mouthpiece 704 and coupling 706 .
- the bead 302 may then disrupt and aerosolize medicament powder agglomerates within the chamber 104 to provide for more effective deposition of medicament into the lungs of a patient in a manner such as described above.
- Other embodiments are possible.
- the coupling 706 may be a rigid or flexible coupling formed of any material, or combination thereof, such as thermoplastic/thermosetting plastics, metals, glasses, elastomers, etc., and may be coupled to the mouthpiece 704 of the inhaler 702 on a first end 708 , and to the device 400 on a second end 710 .
- the material has surface properties that do not attract powder particles.
- the coupling 706 may be permanently fastened to, such as being integrally formed therewith, at least one of the inhaler 702 and the device 400 , or may be removable fastened with least one of the inhaler 702 and the device 400 .
- the coupling 706 may be fastened to the inhaler 702 by one of a “snap-fit” or a “pressure-fit” or a “twist-to-fit” mechanism, etc., such as in a “quick” connect/disconnect implementation.
- a “snap-fit” or a “pressure-fit” or a “twist-to-fit” mechanism, etc. such as in a “quick” connect/disconnect implementation.
- the device 400 may not be limited to being “clipped” or otherwise “coupled” to other inhalers.
- aspects of the present disclosure may be used in combination with any type of dose containment system, and may not be limited to a capsule, blister, or reservoir.
- a patient may prime the device 400 by puncturing the capsule, blister, or powder reservoir 414 , and then inhale, drawing the powder from the dosing chamber 412 into the adjacent chamber 104 via the inlet 102 , where the bead 302 is rapidly oscillating, creating high-energy forces that may strip drug from the surface of carrier particles (e.g., when the bead 302 is drug-covered), and/or de-agglomerate powder aggregates. Drug particles may then be deposited in lungs and airways of a patient from the primary or main powder flow channel 408 based on direction of air flow through the device such as shown in FIG. 4 .
- Such a “self-dosing” scenario may at least be useful for effectively dispensing both traditional binary or ternary DPF formulations, drug and carrier/excipient particles, and pure drug-powder formulations where there are no carrier particles are present.
- Other embodiments are however possible.
- FIG. 9 a “forced-dosing” scenario is described in accordance with the present disclosure.
- a coupling 902 is shown that is removably coupled to the first housing 402 of the device 400 .
- the coupling 902 includes an inlet 904 that is removably coupled to an air source 906 .
- an individual other than a patient may prime the device 400 by puncturing a capsule, blister, or reservoir 908 of the coupling 902 using a piercing member 910 .
- the source 906 may then be employed to force air through the device 400 , drawing powder from the reservoir 908 into the adjacent chamber 104 via the inlet 102 , where the bead 302 is rapidly oscillating, creating high-energy forces that may strip drug from the surface of carrier particles (e.g., when the bead 302 is drug-covered), and/or de-agglomerate powder aggregates. Drug particles may then be deposited in lungs and airways of the patient from the primary or main powder flow channel 408 based on direction of air flow through the device such as shown in FIG. 9 .
- the device 400 may enable a responder to administer treatment agent to the lungs of a patient.
- the second housing 404 may itself comprise of, be coupled to, or otherwise incorporated within, a mouthpiece adapted to be placed within the mouth of a patient, or in a nasal adapter adapted to conform to the nostrils of a patient.
- the second housing 404 of the device 400 may be securely positioned within or on the mouth or nasal passages of a patient.
- the device 400 may be activated or actuated such as to deposit a treatment agent into the lungs and airways of the patient.
- the source 906 corresponds to the lungs of an individual.
- the source 906 may comprise of a ventilation bag, mechanical ventilator, mechanical pump, etc. Still other embodiments are possible.
- FIGS. 6-9 illustrate a scenario in which the example device 400 is coupled to, or fitted onto, an external feature of a dose containment system or powder source 602 .
- Other embodiments are however possible.
- FIG. 10 a scenario is illustrated in which the example device 400 is coupled to, or fitted onto, an internal feature of a dose containment system or powder source.
- the device 400 may replace a powder dispersion mechanism internal to an existing inhaler.
- An example of an existing inhaler may include the HandiHaler®, ASMANEX® Twisthaler®, SYMBICORT® Turbuhaler® and the Budelin® Novolizer® dry powder inhalers and others. Other embodiments are possible.
- a dose containment system or powder source 912 may generally include a dose module 914 that holds a portion of DPF, a powder dispersion module 916 , and a mouthpiece module 918 that would in practice be used to deliver a dose of the DPF to a patient.
- the powder dispersion module 916 may exhibit a tortuous path the DPF needs to navigate between its introduction into the flow path and release from the mouthpiece module 918 .
- the tortuous path may possibly deaggregate DPF aggregates to some degree, but may also add flow resistance.
- the dose containment system or powder source 912 may be modified to replace the powder dispersion module 916 with the device 400 , or subassemblies of the device 400 , including an inlet, chamber with a bead, and an outlet similar to the device 400 . Further, this may or may not include the second housing 404 of the device 400 , where an existing element of an inhaler being modified may instead be used.
- the device 400 may enhance the efficiency of de-aggregation of DPF of the dose containment system or powder source 912 , and may lower the resistance to flow within the dose containment system or powder source 912 . Other benefits and advantages are possible as well.
- FIG. 11 a simplified, conceptual, example schematic diagram of the example device 400 of FIG. 4 in multiple configurations is shown.
- the chamber 104 of the device 400 is shown in a series configuration 1002 with another chamber 104 , and in a parallel configuration 1004 with another chamber 104 .
- multiple drugs in each their own (e.g., two or more) dispersion chambers e.g., in addition to other elements of the example device 400 as desired
- the series configuration 1002 may be coupled in series with the parallel configuration 1004 .
- the parallel configuration 1004 may be coupled in series with a single particular chamber 104 , and etc.
- the type and configuration of the bead 302 may vary in the context of FIG. 11 .
- one or more of the respective dispersion chambers may have similar bead sizes, different bead sizes, similar bead materials, different bead materials, and etc.
- any desired series/parallel combination may be formed.
- type and configuration of the bead 302 may vary as desired.
- Such an implementation may be beneficial in many respects.
- one drug may pass through a particular dispersion chamber and another other drug may pass through a separate dispersion chamber, or both drugs can pass through the same dispersion chamber.
- downstream of the dispersion chambers may merge into a single dispersion chamber, or be kept separate throughout the length of the device 400 , such that the powders do not mix until they are emitted from the device. Still other benefits and/or advantages are possible as well.
- FIG. 12 a first example stage-by-stage particle deposition distribution profile 1100 is shown.
- FIG. 12 shows an example of a simulated stage-by-stage particle distribution profile of the 15 mg pure micronized albuterol sulfate formulation discussed above in connection with Experimental study B1, for powder emitted from the “No Attachment” configuration, or the “Attachment” configuration, as described above.
- the stage-by-stage particle distribution profile is simulated because an experimental set-up or particle sizing apparatus using a number of meshed screens arranged to pass a particular range of particles size were positioned with respect to each other such as to model the lungs of a patient.
- the first or leftmost bar in each category is associated with the “No Attachment” configuration
- the second or middle bar in each category is associated with the “Attachment” configuration using a 3.2 mm bead
- the third bar or rightmost bar in each category is associated with the “Attachment” configuration using a 5.2 mm bead.
- particle sizes become smaller as the stage number increases. Accordingly, Stage 1 will contain the largest particles at a greater concentration than Stage 2, then Stage 2, Stage 3, etc.
- Stage 1, Stage 2, and Stage 3 show a greater deposition for the 5.2 mm bead relative to its 3.2 mm counterpart, which then switches at Stage 5 and Stage 6, where the 3.2 mm bead exhibits greater deposition than the larger bead.
- the Stages may correspond to particle deposition locations within the human anatomy where induction port, preseparator, Stage 1, and Stage 2 may approximate deposition within the mouth, throat, and upper airways, and Stages 3-8 may approximate deposition within the lung.
- FIG. 13 a second example stage-by-stage particle deposition distribution profile 1200 is shown.
- FIG. 13 shows an example of a simulated stage-by-stage particle distribution profile of the 10 mg ( ⁇ 0.5 mg) of pure micronized mometasone furoate, discussed above in connection with Experimental study B2, for powder emitted from the “No Attachment” configuration, or the “Attachment” configuration, as described above.
- FIG. 13 shows an example of a simulated stage-by-stage particle distribution profile of the 10 mg ( ⁇ 0.5 mg) of pure micronized mometasone furoate, discussed above in connection with Experimental study B2, for powder emitted from the “No Attachment” configuration, or the “Attachment” configuration, as described above.
- the first or leftmost bar in each category is associated with the “No Attachment” configuration
- the second or middle bar in each category is associated with the “Attachment” configuration using a 3.2 mm bead
- the third bar or rightmost bar in each category is associated with the “Attachment” configuration using a 5.2 mm bead.
- the term particle size distribution may refer to an aerodynamic particle size distribution.
- an aerodynamic particle size may equal the diameter of a sphere that has the same or similar drag coefficient as a given particle.
- the bead 302 may be selected to have a size such that upon oscillation it produces a desired aerodynamic particle size distribution of powdered medicament. Further, a desired aerodynamic particle size distribution may obtained as a function of a diameter of the bead 302 .
- Altering the bead size can influence the aerodynamic particle size distribution profile of the emitted drug and thus may enable regional targeting of the lung by altering the diameter of the bead size, while maintaining the chamber and inlet diameters proportional, rather than by altering the formulation, which can be a more costly and time intensive process.
- the proportions of the inlet and dispersion chamber diameters were kept constant to the diameter of the bead as: d bead 2 ⁇ (d inlet )(d chamber ), where the ratio of the diameter of the dispersion chamber (chamber 104 ) to that of the inlet is approximately or about 2.1.
- other embodiments are possible.
- the ratio of the diameter of the dispersion chamber to that of the inlet may be within a range of about greater than 1.1 to about 3.0. In other embodiments, the ratio of the diameter of the dispersion chamber to that of the inlet may be within a range of about 1.5 to about 2.5. Still other embodiments are possible.
- FIGS. 14-17 a first example powder dispersion device or inhaler 1300 is shown in accordance with the principles of the present disclosure.
- the device 1300 may be configured to be coupled to another inhaler device.
- FIG. 14 shows a first perspective view of the device 1300 .
- FIG. 15 shows a second perspective view of the device 1300 .
- FIG. 16 shows a first end view of the device 1300 .
- FIG. 17 shows a second end view of the device 1300 .
- the device 1300 may be similar to or otherwise correspond to the device 400 discussed above in connection with FIGS. 1-13 .
- the device 1300 may include a first housing 1302 comprising an inlet 1304 and a chamber 1306 .
- the inlet 1304 and a chamber 1306 may be arranged and/or configured in a manner similar to the inlet 102 and chamber 104 of the device 400 .
- the bead 302 may be positioned within the chamber 1306 , such as shown in FIG. 3 .
- the device 1300 may further include a second housing 1308 comprising a sheath flow channel 1310 that surrounds a primary or main powder flow channel 1312 .
- the device 400 may further include a plurality of flow bypass channels 1314 that are formed within the second housing 1308 .
- the flow bypass channels 1314 may be in fluid connection with the sheath flow channel 1310 .
- FIGS. 18-21 show the second housing 1308 of the device 1300 in multiple views.
- FIG. 18 shows a first perspective view of the second housing 1308 .
- FIG. 19 shows a second perspective view of the second housing 1308 .
- FIG. 20 shows a first end view of the second housing 1308 .
- FIG. 21 shows a second end view of the second housing 1308 .
- FIGS. 22-25 show the first housing 1302 of the device 1300 in multiple views.
- FIG. 22 shows a first perspective view of the first housing 1302 .
- FIG. 23 shows a second perspective view of the first housing 1302 .
- FIG. 24 shows a first end view of the first housing 1302 .
- FIG. 25 shows a second end view of the first housing 1302 .
- a locking mechanism that may be used to couple or otherwise fasten the first housing 1302 with the second housing 1308 may be understood upon inspection of at least FIGS. 18-25 .
- the second housing 1308 may include a first locking member 1316 and a second locking member 1318 .
- the first housing 1302 may include a first bar 1320 and a second bar 1322 .
- the first housing 1302 and the second housing 1308 may be positioned or orientated with respect to each other and manipulated such that the first bar 1320 is engaged with a first stop surface 1324 of the first locking member 1316 (see FIG. 18 ), and the second bar 1322 is engaged with a first stop surface 1326 of the second locking member 1318 .
- the first housing 1302 and the second housing 1308 may then be manipulated such as to rotate the first housing 1302 with respect to the second housing 1308 (or vice versa) until the first bar 1320 is engaged with a second stop surface 1328 of the first locking member 1316 , and the second bar 1322 is engaged with a second stop surface 1330 of the second locking member 1318 .
- the first bar 1320 may be secured by compression fitting with the first locking member 1316
- the second bar 1322 may be secured by compression fitting with the second locking member 1318 , thereby coupling the first housing 1302 with the second housing 1308 .
- a reverse process may be implemented to decouple the first housing 1302 from the second housing 1308 .
- Such interchangeability may be beneficial in many respects. For example, when a bead 302 of different size is desired, the first housing 1302 may be removed and replaced with another first housing 1302 having a bead 302 of different size than the original housing. Other benefits are possible as well.
- a retaining member 1332 of the second housing 1308 may include one or more openings sized to permit air and powdered or otherwise aerosolized medicament to pass through the retaining member 1332 , and to prevent the bead 302 from passing through the retaining member 1332 .
- Other embodiments are possible.
- a different mechanism may be used and to prevent the bead 302 from exiting the chamber 1306 into the second housing 1308 .
- FIGS. 26-29 a second example powder dispersion device or inhaler 2500 is shown in accordance with the principles of the present disclosure.
- the device 2500 may be configured to be coupled to another inhaler device.
- FIG. 26 shows a first perspective view of the device 2500 .
- FIG. 27 shows a second perspective view of the device 2500 .
- FIG. 28 shows a first end view of the device 2500 .
- FIG. 29 shows a second end view of the device 2500 .
- the device 2500 may be similar to or otherwise correspond to the powder dispersion device or inhaler 400 discussed above in connection with FIGS. 1-13 .
- the device 2500 may include a first housing 2502 comprising an inlet 2504 and a chamber 2506 .
- the bead 302 may be positioned within the chamber 2506 , such as shown in FIG. 3 .
- the device 2500 may further include a second housing 2508 comprising a sheath flow channel 2510 that surrounds a primary or main powder flow channel 2512 .
- the device 2500 may further include a plurality of flow bypass channels 2514 that are formed within the second housing 2508 or enter the sheath flow channel 2510 parallel to a longitudinal axis of the main powder flow channel 2512 .
- the flow bypass channels 2514 may be in fluid connection with the sheath flow channel 2510 .
- the flow bypass channels 2514 may be formed anywhere along a length 2513 of the second housing 2508 .
- the flow bypass channels 2514 may be formed at any predetermined and desired angle C within the second housing 2508 as measured with reference to a central axis D, and an axis E perpendicular to the central axis D, of the device 2500 . For example, in FIG.
- the flow bypass channels 2514 may be angled with respect to the central axis D (as measured with respect to the axis E). Angled flow bypass channels 2514 may in some instances be more easily fabricated via an injection molding process. Other ones of the devices 400 , 1300 , etc., of the present disclosure may exhibit such characteristics as well.
- FIGS. 30-33 show the second housing 2508 of the device 2500 in multiple views.
- FIG. 30 shows a first perspective view of the second housing 2508 .
- FIG. 31 shows a second perspective view of the second housing 2508 .
- FIG. 32 shows a first end view of the second housing 2508 .
- FIG. 33 shows a second end view of the second housing 2508 .
- FIGS. 34-37 show the first housing 2502 of the device 2500 in multiple views.
- FIG. 34 shows a first perspective view of the first housing 2502 .
- FIG. 35 shows a second perspective view of the first housing 2502 .
- FIG. 36 shows a first end view of the first housing 2502 .
- FIG. 37 shows a second end view of the first housing 2502 .
- a coupling mechanism that may be used to fasten the first housing 2502 with the second housing 2508 may be understood upon inspection of at least FIGS. 30-37 .
- the second housing 2508 may include a first locking member 2516 and a second locking member 2518 (see FIG. 30 ).
- the first housing 2502 may include a first bar 2520 and a second bar 2522 .
- the first locking member 2516 may also include a first stop surface 2524 and a second stop surface 2528
- the second locking member 2518 may also include a first stop surface 2526 and a second stop surface 2530 .
- the first housing 205 and the second housing 2508 may be coupled and decoupled in manner similar to that described above in connection with the first example powder dispersion device or inhaler 1300 .
- first housing 2502 may be removed and replaced with another first housing 2502 having a bead 302 of different size than the original housing.
- Other benefits are possible as well.
- a retaining member 2532 of the second housing 2508 may include one or more openings sized to permit air and powdered or otherwise aerosolized medicament to pass through the retaining member 2532 , and to prevent the bead 302 from passing through the retaining member 2532 .
- Other embodiments are possible.
- a different mechanism may be used and to prevent the bead 302 from exiting the chamber 2506 into the second housing 2508 .
- FIGS. 38-43 a third example powder dispersion device or inhaler 3700 is shown in accordance with the principles of the present disclosure.
- the device 3700 may be configured to be coupled to another inhaler device.
- FIG. 38 shows a first perspective view of the device 3700 .
- FIG. 39 shows a second perspective view of the device 3700 .
- FIG. 40 shows a third perspective view of the device 3700 .
- FIG. 41 shows a fourth perspective view of the device 3700 .
- FIG. 42 shows a fifth perspective view of the device 3700 .
- FIG. 43 shows a sixth perspective view of the device 3700 .
- the device 3700 may be similar to the device 400 , the device 1300 , and/or the device 2500 , respectively, as discussed above in connection with FIGS. 1-37 .
- the device 3700 may be similar to or otherwise correspond to the first housing 402 of the device 400 , the first housing 1302 of the device 1300 , and/or the first housing 2502 of the device 2500 .
- the device 3700 may include a housing 3702 comprising an inlet 3704 and a chamber 3706 .
- the bead 302 may be positioned within the chamber 3706 , such as shown in FIG. 3 .
- the device 3700 may be coupled to either of the second housing 404 of the device 400 , the second housing 1308 of the device 1300 , and the second housing 2508 of the device 2500 .
- the housing 3702 may include a first bar 3708 and a second bar 3710 .
- the housing 3704 may be, for example, coupled and decoupled to the second housing 2508 of the device 2500 in manner similar to that described above in connection with the device 1300 .
- Such interchangeability may be beneficial in many respects. For example, when a bead 302 of different size is desired, the first housing 2502 may be removed and replaced with another first housing 2502 having a bead 302 of different size than the original housing. Other benefits are possible as well.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Preparation (AREA)
- Otolaryngology (AREA)
Abstract
A dry powder inhaler may include a powder storage, an inlet channel, a dispersion chamber, and an outlet channel. A geometry of the inhaler may be such that a flow profile is generated within the dispersion chamber that causes an actuator to oscillate, enabling the actuator when oscillating to deaggregate powdered medicament within the dispersion chamber to be aerosolized and entrained by the air and delivered to a patient through the outlet channel.
Description
- This application claims the benefit of U.S. Provisional Patent Application No. 61/664,013, filed 25 Jun. 2012, entitled “Powder Dispersion Devices and Method,” the entirety of which is hereby incorporated by reference for all purposes.
- This application is related to U.S. Nonprovisional patent application Ser. No. ______, attorney docket number 93933-863197, filed on even dated herewith, entitled “Powder Dispersion Devices and Method,” the entirety of which is hereby incorporated by reference for all purposes.
- In the field of dry powder inhalers, there is generally a trade-off between performance, as defined by the efficiency of the nominal or loaded dose in the inhaler that is delivered to the lung, and device complexity, in terms of the internal geometry, specifically, the powder flow path that the dose travels as it exits the device. In many instances, inhalers with relatively uncomplicated flow paths may be characterized by poor efficiency, as generally less than 30% of the nominal dose is delivered to the deep lung. Alternatively, inhalers with relatively more complex internal flow paths, may provide increased efficiency, such as less than or equal to 40% of the nominal dose, though the increased complexity of the internal flow path may lead to increased deposition within the inhaler, effectively lowering the overall dose delivered to the patient and contaminating the device.
- This Summary does not in any way limit the scope of the claimed subject matter.
- The present disclosure is directed to a powder dispersion mechanism that is compact, breath-actuated, and effective or sufficient at promoting efficient particle dispersion across a range of doses such as from, for example, low microgram doses to doses requiring many milligrams. Accordingly, in some embodiments, a powder dispersion mechanism is disclosed that employs a bead contained within a “small” volume dispersion chamber, with a straight flow path, and that is breath-actuated. The bead may oscillate, generally linearly in certain embodiments, along an axis of the dispersion chamber when the patient inhales through the device, such that it does not require an energy source other than a patient's inspiratory maneuver to function. This may be referred to as “passive” bead activation or actuation. However, the present disclosure is not so limiting. For example, bead activation may be “active,” where an external energy source is coupled with the patients inhalation flow stream to induce oscillation.
- In an aspect, a dry powder inhaler is disclosed. The dry powder inhaler may include a powder storage that is configured to hold a powdered medicament. The dry powder inhaler may include an inlet channel that is adapted to receive air and powdered medicament from the powder storage. The dry powder inhaler may include a dispersion chamber that is adapted to receive air and powdered medicament from the inlet channel, the chamber holding an actuator that is movable within the dispersion chamber. The dry powder inhaler may include an outlet channel through which air and powdered medicament exit the inhaler to be delivered to a patient. Geometry of the inhaler may be such that a flow profile is generated within the dispersion chamber that causes the actuator to oscillate, thus enabling the oscillating actuator to deaggregate the powdered medicament passing through the dispersion chamber to be entrained by the air and delivered to the patient through the outlet channel.
- In an aspect, a method for aerosolizing a powdered medicament is disclosed. The method may include providing an inhaler comprising an inlet channel, a chamber that is adapted to receive air and powdered medicament from the inlet channel, an actuator disposed in the chamber, and an outlet channel. The method may include supplying a powdered medicament to the inlet channel. The method may include inducing air to flow through the outlet channel to cause air and the powdered medicament to enter into the chamber through the inlet channel, and to cause the actuator to oscillate within the chamber to effectively disperse powdered medicament passing through the chamber to be entrained by the air and delivered to the patient through the outlet channel.
- In an aspect, a powder dispersion device is disclosed. The powder dispersion device may include a housing having a central, longitudinal axis. The housing may include a chamber, a flow inlet in fluid communication with the chamber and a flow outlet in fluid communication with the chamber. The powder dispersion device may include a powder storage compartment that is configured to store a powdered medicament for introduction into the chamber through the flow inlet. The powder dispersion device may include a bead positioned within the chamber such that it may rapidly move back and forth within the chamber along the longitudinal axis. The bead may be sized in dimension so that the bead when oscillating deagglomerates the powdered medicament so that a desired aerodynamic particle size distribution is achieved upon exit from the flow outlet.
- In an aspect, a method for aerosolizing a powder is disclosed. The method may include providing a powder dispersion device including a housing having a central, longitudinal axis, the housing may include a chamber, a flow inlet in fluid communication with the chamber and a flow outlet in fluid communication with the chamber, and an actuator positioned within the chamber. The actuator may be selected to have a size such that upon oscillation it produces a desired range of aerodynamic particle sizes of the powdered medicament. The method may include introducing the amount of powdered medicament into the chamber. The method may include inducing a flow through the chamber and out the flow outlet. The flow may enter the chamber from the flow inlet and rapidly expand when entering the chamber. The flow through the chamber may cause the actuator to oscillate within the chamber along the longitudinal axis to aerosolize and deagglomerate the powdered medicament to the desired range of aerodynamic particle sizes so that a desired aerodynamic particle size distribution is achieved upon exit from the flow outlet.
- A further understanding of the nature and advantages of various embodiments may be realized by reference to the following figures. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. When only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
-
FIG. 1 shows a cross-section of an example tubular body having an inlet and a dispersion chamber. -
FIG. 2 shows the tubular body ofFIG. 1 in multiple views. -
FIG. 3 shows a bead positioned within a chamber of the tubular body ofFIG. 1 . -
FIG. 4 shows a first view of an example powder dispersion device in cross-section. -
FIG. 5 shows a perspective view of the device ofFIG. 4 . -
FIG. 6 shows a first example experimental set-up in accordance with the present disclosure. -
FIG. 7 shows a second example experimental set-up in accordance with the present disclosure. -
FIG. 8 shows a second view of the device ofFIG. 4 in cross-section. -
FIG. 9 shows a third view of the device ofFIG. 4 in cross-section. -
FIG. 10 shows the device ofFIG. 4 incorporated internally into an existing inhaler system. -
FIG. 11 shows a simplified, conceptual, example schematic diagram of the device ofFIG. 4 in multiple configurations. -
FIG. 12 shows a first stage-by-stage particle deposition distribution profile. -
FIG. 13 shows a second stage-by-stage particle deposition distribution profile. -
FIG. 14 shows a first perspective view of a first example powder dispersion device. -
FIG. 15 shows a second perspective view of the device ofFIG. 14 . -
FIG. 16 shows a first end view of the device ofFIG. 14 . -
FIG. 17 shows a second end view of the device ofFIG. 14 . -
FIG. 18 shows a first perspective view of a second housing of the device ofFIG. 14 . -
FIG. 19 shows a second perspective view of the housing ofFIG. 18 . -
FIG. 20 shows a first end view of the housing ofFIG. 18 . -
FIG. 21 shows a second end view of the housing ofFIG. 18 . -
FIG. 22 shows a first perspective view of a first housing of the device ofFIG. 14 . -
FIG. 23 shows a second perspective view of the housing ofFIG. 22 . -
FIG. 24 shows a first end view of the housing ofFIG. 22 . -
FIG. 25 shows a second end view of the housing ofFIG. 22 . -
FIG. 26 shows a first perspective view of a second example powder dispersion device. -
FIG. 27 shows a second perspective view of the device ofFIG. 26 . -
FIG. 28 shows a first end view of the device ofFIG. 26 . -
FIG. 29 shows a second end view of the device ofFIG. 26 . -
FIG. 30 shows a first perspective view of a second housing of the device ofFIG. 26 . -
FIG. 31 shows a second perspective view of the housing ofFIG. 30 . -
FIG. 32 shows a first end view of the housing ofFIG. 30 . -
FIG. 33 shows a second end view of the housing ofFIG. 30 . -
FIG. 34 shows a first perspective view of a first housing of the device ofFIG. 26 . -
FIG. 35 shows a second perspective view of the housing ofFIG. 34 . -
FIG. 36 shows a first end view of the housing ofFIG. 34 . -
FIG. 37 shows a second end view of the housing ofFIG. 34 . -
FIG. 38 shows a first perspective view of a third example powder dispersion device. -
FIG. 39 shows a second perspective view of the device ofFIG. 38 . -
FIG. 40 shows a third perspective view of the device ofFIG. 38 . -
FIG. 41 shows a fourth perspective view of the device ofFIG. 38 . -
FIG. 42 shows a fifth perspective view of the device ofFIG. 38 . -
FIG. 43 shows a sixth perspective view of the device ofFIG. 38 . - The present disclosure relates to the field of pulmonary drug delivery, and more specifically to dry powder inhalers that deliver a medicament into the lungs of a patient. In example embodiments, such a powder dispersion mechanism may comprise of a bead positioned within a chamber that is arranged and configured to induce a sudden, rapid, or otherwise abrupt expansion of a flow stream upon entering the chamber.
- In general, the chamber may be coupled to any form or type of dose containment system or source that supplies powdered medicament into the chamber. For example, in one embodiment, the dose containment source may comprise or be incorporated within, for example, a powder dispersion device such as the TOBI® Podhaler®, the FORADIL® Aerolizer®, the SPIRIVA® HandiHaler®, the FLOVENT® Diskus®, the SEREVENT® Diskus®, the ADVAIR® Diskus®, the ASMANEX® Twisthaler®, the SYMBICORT® Turbuhaler®, the Budelin® Novolizer®, and many others. The bead when oscillating within the chamber may then disrupt and aerosolize powder agglomerates within the chamber, as passed from the source, to provide for more effective deposition of medicament into the lungs of a patient. Still other embodiments are possible.
- Referring now to
FIG. 1 , a cross-section of an exampletubular body 100 having aninlet 102 and adispersion chamber 104 is shown according to the principles of the present disclosure. In this example, a fluid (e.g., air) flow path of theinlet 102 is defined by a firstinternal diameter 106, and a fluid flow path of thechamber 104 is defined by a secondinternal diameter 108. Although shown approximately constant inFIG. 1 , at least one of the firstinternal diameter 106 and the secondinternal diameter 108 may vary in dimension as defined with respect to a longitudinal axis L of thetubular body 100. In addition to providing desirable fluid flow characteristics, as discussed further below, these configurable dimensions may be defined such as to provide for a draft angle for injection molding. - For example, the first
internal diameter 106 may taper inwardly, towards and as measured with reference to the longitudinal axis L, beginning approximately at a reference point L1 of the longitudinal axis L and ending approximately at a reference point L2 of the longitudinal axis L. Other embodiments are possible. For example, the firstinternal diameter 106 may taper inwardly towards the longitudinal axis L beginning approximately at the reference point L2, and ending approximately at the reference point L1. In a similar manner, the secondinternal diameter 108 may taper inwardly, towards and as measured with reference to the longitudinal axis L, beginning approximately at the reference point L2, and ending approximately at a reference point L3 of the longitudinal axis L. In another embodiment, the secondinternal diameter 108 may taper inwardly towards the longitudinal axis L beginning approximately at the reference point L3 and ending approximately at the reference point L2. Still other embodiments are possible. - For example, it is contemplated that an internal structural profile of at least one of the
inlet 102 and thechamber 104 may be defined, as desired, such as to obtain or otherwise realize particular fluid flow characteristics within thetubular body 100. For example, as depicted inFIG. 1 , thetubular body 100 may be arranged and configured such that a sudden flow stream expansion may occur when the relatively “small” cross-sectional fluid flow path of or defined by theinlet 102 opens abruptly into a “larger” cross-sectional fluid flow path of or defined by thechamber 104. In this example, and as discussed in further detail below, high-energy forces may develop by within thechamber 104. In one aspect, this may be due to relatively “low” pressure regions induced by relatively “high” velocity fluid entering thechamber 104, where a portion of the flow stream detaches. Other mechanisms may contribute to the development of high-energy fluid flow within thechamber 104 as well. Further, such high-energy fluid flow, along with mechanical impact forces, may disrupt and aerosolize medicament powder agglomerates within thechamber 104 to provide for more effective deposition of medicament into the lungs of a patient. - Still other embodiments of the example
tubular body 100 are possible as well. For example, in some embodiments, a difference between the reference point L1 of the longitudinal axis L and the reference point L2 may approach zero (0). In this example, thetubular body 100 may consist only of thechamber 104. Here, instead of an “inlet tube,” thetubular body 100 may consist of an “inlet hole.” - Referring now additionally to
FIG. 2 , thetubular body 100 ofFIG. 1 is shown in multiple views. In particular, thetubular body 100 ofFIG. 1 is shown inperspective view 202,side view 204, andcross-section view 206. In this example, thecross-section view 206 is taken along an axis A-A of theside view 204. Additionally, and as illustrated inFIG. 1 , the fluid flow path of or defined by theinlet 102 is coaxially aligned with the fluid flow path of or defined by thechamber 104. This is in contrast with a substantially “off-axis” alignment of theinlet 102 and thechamber 104, illustrated conceptually inFIG. 2 by a finite angle B defined with respect to the longitudinal axis L. A coaxial alignment may provide a number of advantages over such an “off-axis” alignment, such as facilitating or otherwise assisting in the development of high-energy forces within thechamber 104. The coaxial alignment may further enable the efficient transfer of powder into thechamber 104. However, other embodiments are possible. For example, in some embodiments, a central longitudinal axis of theinlet 102 may be at least slightly offset yet parallel to a central longitudinal axis of thechamber 104. Other benefits and/or advantages associated with the alignment of theinlet 102 and thechamber 104 may be understood from the preceding description provided in connection withFIGS. 1-2 , and from the following description provided in connection withFIGS. 3-42 . - For example, referring now additionally to
FIG. 3 , abead 302 may be positioned within thechamber 104 of thetubular body 100 ofFIGS. 1-2 . In this example, thebead 302 may be approximately spherical, at least on the macroscale, and oscillate in a manner similar to that described in U.S. application Ser. No. 13/469,963, filed 11 May 2012, and entitled “Bead-Containing Dry Powder Inhaler,” the complete disclosure of which is herein incorporated by reference. - Further, a relationship between the
diameter 304 of thebead 302, the firstinternal diameter 106 of theinlet 102, and the secondinternal diameter 108 of thechamber 104 may be of the form: dbead 2≅(dinlet)(dchamber). In general, this relationship may hold in scenarios where dbead and dinlet and dchamber are of similar order of magnitude. For example, in one embodiment dbead may be about 5 mm, dinlet may be about 3.39 mm, and dchamber may be about 7.37 mm, within manufacturing tolerance. In this example, a length of thechamber 104, lchamber, such as defined by a distance approximately between the reference point L2 and the reference point L3 of the longitudinal axis L (seeFIG. 1 ), may be less than or equal to about less than twice thediameter 304 of thebead 302. - In some embodiments, a preferred diameter of the
bead 302 may be within a range of about 0.5 mm to about 15 mm. The relationship dbead 2≅(dinlet)(dchamber) may then be used to determine dinlet and dchamber. In some embodiments, a preferred diameter of thebead 302 may be within a range of about 1.5 mm to about 6 mm. Still other embodiments are possible. - In some embodiments, a preferred ratio of the diameter of the
chamber 104 to that of theinlet 102 may be within a range of about 1.1 to about 3.0. At respective extremes, the relationship dbead 2≅(dinlet)(dchamber) may thus be rewritten as, based on substitution, dbead 2≅(dchamber)2/1.1 and dbead 2≅(dchamber)2/3. - In some embodiments, it may be preferred that the length of the
chamber 104, lchamber, is about 1.2 times to about 5 times the diameter of thebead 302. In other embodiments, it may be preferred that the length of thechamber 104, lchamber, is about 1.5 times to about 3 times the diameter of thebead 302. In other embodiments, it may be preferred that the length of thechamber 104, lchamber, is about 2 times to about 2.5 times the diameter of thebead 302. - In example embodiments, the length of the
chamber 104 may determine whether thebead 302 freely oscillates, without physical interaction with ends of thechamber 104. In this manner, the length of thechamber 302 may facilitate free oscillation of thebead 302. A substantially “freely” oscillatingbead 302 may even more effectively disrupt and aerosolize powder agglomerates within thechamber 104, as passed from the source, to provide for more effective deposition of medicament into the lungs of a patient. - For example, a study was performed to evaluate the length of the
chamber 104 and to determine whether a particular length ofchamber 104 would allow thebead 302 to “freely” oscillate within thechamber 104. In particular, using a device similar to thedevice 400, a bead of fixed diameter, about 4 mm, was used across the study. The length of the chamber however was varied as 1.5×, 2.0×, 3.0×, 3.5×, 4.0×, and 9.8× diameter of the bead. In this manner, the study included evaluating at least six different device configurations. In general, it was found that oscillation of the bead within the chamber was similar for lengths up to and including 3.5× diameter of the bead, yet varied for lengths 4.0× and 9.8× diameter of the bead. For example, a similar flow rate through the device was needed to allow the bead to “freely” oscillate within the chamber at least for chamber lengths of 2.0× and 3.0× diameter of the bead. However, a “higher” or “greater” flow rate was needed to allow the bead to “freely” oscillate within the chamber for a chamber length of 4.0× diameter of the bead. Further the bead did not appear to “freely” oscillate within the chamber for a chamber length of 9.8× diameter of the bead, for any flow rate through the device. At this chamber length, the bead may not be fully influenced by pressure at the inlet of the device. Other mechanisms may be possible as well. - In another example, a study was performed to evaluate the length of the
chamber 104 and to determine whether a particular diameter of thebead 302, for a fixed length of thechamber 104, would allow thebead 302 to “freely” oscillate within thechamber 104. In particular, using a device similar to thedevice 400, a chamber of fixed length and diameter, about 10 mm length and about 6 mm diameter, was used across the study. The diameter of the bead however was varied as 3.7 mm, 4 mm, and 4.7 mm. In this manner, the study included evaluating at least three different device configurations. In general, it was found that oscillation of the bead within the chamber for a 4 mm bead did “freely” oscillate within the chamber at a first particular flow rate. At this flow rate for this device configuration, a distinct audible pitch produced by oscillation of the bead within the chamber may be observed. Operation and characteristics of thedevice 400 having a 4 mm bead diameter is discussed in further detail below. - Further, it was found that oscillation of the bead within the chamber for a 3.7 mm bead did “freely” oscillate within the
chamber 104 at or about the first particular flow rate. However, a flow rate greater than the first particular flow rate was needed to observe an audible pitch similar to the distinct audible pitch produced by oscillation of the bead within the chamber for the 4 mm bead. Here, a greater flow rate may be required to produce the audible pitch due to a reduced effective cross-sectional area of the 3.7 mm bead, as compared to the 4 mm bead. Other mechanisms may be possible as well. Further, it was found that oscillation of the bead within the chamber for a 4.7 mm bead did not “freely” oscillate within the chamber at or about the first particular flow rate. Here, the effective cross-sectional area of the 4.7 mm bead may be too large such as to prohibit “free” oscillation within the chamber. Other mechanisms may be possible as well. - Continuing with the above dimensional example, the length of the
chamber 104 may thus be about 10 mm. In this example, and when the power law relationship between the diameters of thebead 302, theinlet 102, and thechamber 104 is observed, thebead 302 may oscillate within thechamber 104 generally without experiencing continuous physical collisions with either end of thechamber 104. Such an arrangement may further facilitate development of high energy forces within thechamber 104 to more efficiently disrupt and aerosolize medicament powder agglomerates within thechamber 104 for more effective deposition of medicament into the lungs of a patient. - In general, high-energy forces may refer to dispersive forces that may strip drug from the
bead 302, and deaggregation or deagglomeration forces that may break-up or break-apart aggregates in powder fed into thechamber 104. Here, the terms deaggregation or deagglomeration, and aggregation or agglomeration may be used interchangeably. The high-energy forces may be generated by thebead 302 when rapidly oscillating within thechamber 104 via formation of turbulence and eddies within thechamber 104, compression and decompression zones within thechamber 104, and the like. - When a DPF (Dry Powder Formulation) is passed through the
chamber 104 containing thebead 302, which is oscillating “rapidly” such as, for example, at a frequency greater than about 100 Hz, these high frequency oscillations of thebead 302 may produce high-energy forces within thechamber 104. This may disrupt agglomerates of drug particles that may be held together at least by cohesive forces, such as by van der Waals forces, static electrical forces, etc. Additionally, physical collisions between thebead 302, when rapidly oscillating, and potentially aggregated or agglomerated powder particles as they pass through thechamber 104 may promote de-aggregation of the agglomerates. Details associated with interaction(s) between thebead 302 and powder particles as transferred through thechamber 104 are discussed further below. The oscillation frequency may typically be between about 1 to about 1,000 Hz, and may preferably be between about 25 to about 500 Hz, although other frequencies may also occur. However, in some cases, the oscillation frequency could be up to about 2,000 Hz. - The powder dispersion devices and methods in accordance with the present disclosure may be applicable in many scenarios. For example, APIs (Active Pharmaceuticals Ingredients), or active agents, that may be used with any of the mechanisms described within the context of the present disclosure may include analgesic anti-inflammatory agents such as, acetaminophen, aspirin, salicylic acid, methyl salicylate, choline salicylate, glycol salicylate, 1-menthol, camphor, mefenamic acid, fluphenamic acid, indomethacin, diclofenac, alclofenac, ibuprofen, ketoprofen, naproxene, pranoprofen, fenoprofen, sulindac, fenbufen, clidanac, flurbiprofen, indoprofen, protizidic acid, fentiazac, tolmetin, tiaprofenic acid, bendazac, bufexamac, piroxicam, phenylbutazone, oxyphenbutazone, clofezone, pentazocine, mepirizole, and the like.
- Other drugs that may be used include drugs having an action on the central nervous system, for example sedatives, hypnotics, antianxiety agents, analgesics and anesthetics, such as, chloral, buprenorphine, naloxone, haloperidol, fluphenazine, pentobarbital, phenobarbital, secobarbital, amobarbital, cydobarbital, codeine, lidocaine, tetracaine, dyclonine, dibucaine, cocaine, procaine, mepivacaine, bupivacaine, etidocaine, prilocaine, benzocaine, fentanyl, nicotine, and the like.
- Local anesthetics such as, benzocaine, procaine, dibucaine, lidocaine, and the like.
- Still other drugs include antihistaminics or antiallergic agents such as, diphenhydramine, dimenhydrinate, perphenazine, triprolidine, pyrilamine, chlorcyclizine, promethazine, carbinoxamine, tripelennamine, brompheniramine, hydroxyzine, cyclizine, meclizine, clorprenaline, terfenadine, chlorpheniramine, and the like.
- Anti-allergenics such as, antazoline, methapyrilene, chlorpheniramine, pyrilamine, pheniramine, and the like.
- Decongestants such as, phenylephrine, ephedrine, naphazoline, tetrahydrozoline, and the like.
- Other drugs include antipyretics such as, aspirin, salicylamide, non-steroidal anti-inflammatory agents, and the like.
- Antimigrane agents such as, dihydroergotamine, pizotyline, and the like.
- Acetonide anti-inflammatory agents, such as hydrocortisone, cortisone, dexamethasone, fluocinolone, triamcinolone, medrysone, prednisolone, flurandrenolide, prednisone, halcinonide, methylprednisolone, fludrocortisone, corticosterone, paramethasone, betamethasone, ibuprophen, naproxen, fenoprofen, fenbufen, flurbiprofen, indoprofen, ketoprofen, suprofen, indomethacin, piroxicam, aspirin, salicylic acid, diflunisal, methyl salicylate, phenylbutazone, sulindac, mefenamic acid, meclofenamate sodium, tolmetin, and the like.
- Muscle relaxants such as, tolperisone, baclofen, dantrolene sodium, cyclobenzaprine, and the like.
- Steroids may also be used, including androgenic steroids, such as, testosterone, methyltestosterone, fluoxymesterone, estrogens such as, conjugated estrogens, esterified estrogens, estropipate, 17-β estradiol, 17-β estradiol valerate, equilin, mestranol, estrone, estriol, 17β ethinyl estradiol, diethylstilbestrol, progestational agents, such as, progesterone, 19-norprogesterone, norethindrone, norethindrone acetate, melengestrol, chlormadinone, ethisterone, medroxyprogesterone acetate, hydroxyprogesterone caproate, ethynodiol diacetate, norethynodrel, 17-α hydroxyprogesterone, dydrogesterone, dimethisterone, ethinylestrenol, norgestrel, demegestone, promegestone, megestrol acetate, and the like.
- Respiratory agents that may be used include: theophilline and β2-adrenergic agonists, such as, albuterol, terbutaline, metaproterenol, ritodrine, carbuterol, fenoterol, quinterenol, rimiterol, solmefamol, soterenol, tetroquinol, tacrolimus, and the like.
- Sympathomimetics such as, dopamine, norepinephrine, phenylpropanolamine, phenylephrine, pseudoephedrine, amphetamine, propylhexedrine, arecoline, and the like.
- Antimicrobial agents that may be used include antibacterial agents, antifungal agents, antimycotic agents and antiviral agents; tetracyclines such as, oxytetracycline, penicillins, such as, ampicillin, cephalosporins such as, cefalotin, aminoglycosides, such as, kanamycin, macrolides such as, erythromycin, chloramphenicol, iodides, nitrofrantoin, nystatin, amphotericin, fradiomycin, sulfonamides, purrolnitrin, clotrimazole, itraconazole, miconazole chloramphenicol, sulfacetamide, sulfamethazine, sulfadiazine, sulfamerazine, sulfamethizole and sulfisoxazole; antivirals, including idoxuridine; clarithromycin; and other anti-infectives including nitrofurazone, and the like.
- Antihypertensive agents that may be used include clonidine, a-methyldopa, reserpine, syrosingopine, rescinnamine, cinnarizine, hydrazine, prazosin, and the like.
- Other possible drugs include antihypertensive diuretics such as, chlorothiazide, hydrochlorothrazide, bendoflumethazide, trichlormethiazide, furosemide, tripamide, methylclothiazide, penfluzide, hydrothiazide, spironolactone, metolazone, and the like.
- Cardiotonics such as, digitalis, ubidecarenone, dopamine, and the like.
- Coronary vasodilators such as, organic nitrates such as, nitroglycerine, isosorbitol dinitrate, erythritol tetranitrate, and pentaerythritol tetranitrate, dipyridamole, dilazep, trapidil, trimetazidine, and the like.
- Vasoconstrictors such as, dihydroergotamine, dihydroergotoxine, and the like.
- β-blockers or antiarrhythmic agents such as, timolol pindolol, propranolol, and the like.
- Humoral agents such as, the prostaglandins, natural and synthetic, for example PGE1, PGE2α, and PGF2α, and the PGE1 analog misoprostol, and the like.
- Antispasmodics such as, atropine, methantheline, papaverine, cinnamedrine, methscopolamine, and the like.
- Other drugs that may be used include calcium antagonists and other circulatory organ agents, such as, aptopril, diltiazem, nifedipine, nicardipine, verapamil, bencyclane, ifenprodil tartarate, molsidomine, clonidine, prazosin, and the like.
- Anti-convulsants such as, nitrazepam, meprobamate, phenytoin, and the like.
- Agents for dizziness such as, isoprenaline, betahistine, scopolamine, and the like.
- Tranquilizers such as, reserprine, chlorpromazine, and antianxiety benzodiazepines such as, alprazolam, chlordiazepoxide, clorazeptate, halazepam, oxazepam, prazepam, clonazepam, flurazepam, triazolam, lorazepam, diazepam, and the like.
- Antipsychotics such as, phenothiazines including thiopropazate, chlorpromazine, triflupromazine, mesoridazine, piperracetazine, thioridazine, acetophenazine, fluphenazine, perphenazine, trifluoperazine, and other major tranquilizers such as, chlorprathixene, thiothixene, haloperidol, bromperidol, loxapine, and molindone, as well as, those agents used at lower doses in the treatment of nausea, vomiting, and the like.
- Drugs for Parkinson's disease, spasticity, and acute muscle spasms such as levodopa, carbidopa, amantadine, apomorphine, bromocriptine, selegiline (deprenyl), trihexyphenidyl hydrochloride, benztropine mesylate, procyclidine hydrochloride, baclofen, diazepam, dantrolene, and the like.
- Respiratory agents such as, codeine, ephedrine, isoproterenol, dextromethorphan, orciprenaline, ipratropium bromide, cromglycic acid, and the like.
- Non-steroidal hormones or antihormones such as, corticotropin, oxytocin, vasopressin, salivary hormone, thyroid hormone, adrenal hormone, kallikrein, insulin, oxendolone, and the like.
- Vitamins such as, vitamins A, B, C, D, E and K and derivatives thereof, calciferols, mecobalamin, and the like, for use dermatologically for example.
- Enzymes such as, lysozyme, urokinaze, and the like.
- Herb medicines or crude extracts such as, Aloe vera, and the like.
- Antitumor agents such as, 5-fluorouracil and derivatives thereof, krestin, picibanil, ancitabine, cytarabine, and the like.
- Anti-estrogen or anti-hormone agents such as, tamoxifen or human chorionic gonadotropin, and the like.
- Miotics such as pilocarpine, and the like.
- Cholinergic agonists such as, choline, acetylcholine, methacholine, carbachol, bethanechol, pilocarpine, muscarine, arecoline, and the like.
- Antimuscarinic or muscarinic cholinergic blocking agents such as, atropine, scopolamine, homatropine, methscopolamine, homatropine methylbromide, methantheline, cyclopentolate, tropicamide, propantheline, anisotropine, dicyclomine, eucatropine, and the like. Mydriatics such as, atropine, cyclopentolate, homatropine, scopolamine, tropicamide, eucatropine, hydroxyamphetamine, and the like.
- Psychic energizers such as 3-(2-aminopropy)indole, 3-(2-aminobutyl)indole, and the like, such as ipratropium, tiotropium, glycopyrrolate (glycopyrronium), aclidinium, and the like.
- Antidepressant drugs such as, isocarboxazid, phenelzine, tranylcypromine, imipramine, amitriptyline, trimipramine, doxepin, desipramine, nortriptyline, protriptyline, amoxapine, maprotiline, trazodone, and the like.
- Anti-diabetics such as, insulin, and anticancer drugs such as, tamoxifen, methotrexate, and the like.
- Anorectic drugs such as, dextroamphetamine, methamphetamine, phenylpropanolamine, fenfluramine, diethylpropion, mazindol, phentermine, and the like. Anti-malarials such as, the 4-aminoquinolines, alphaaminoquinolines, chloroquine, pyrimethamine, and the like.
- Anti-ulcerative agents such as, misoprostol, omeprazole, enprostil, and the like.
- Antiulcer agents such as, allantoin, aldioxa, alcloxa, N-methylscopolamine methylsuflate, and the like.
- Antidiabetics such as insulin, and the like. Anti-cancer agent such as, cis-platin, actinomycin D, doxorubicin, vincristine, vinblastine, etoposide, amsacrine, mitoxantrone, tenipaside, taxol, colchicine, cyclosporin A, phenothiazines or thioxantheres, and the like.
- Other possibilities include those for use with vaccines, one or more antigens, such as, natural, heat-killer, inactivated, synthetic, peptides and even T cell epitopes (e.g., GADE, DAGE, MAGE, etc.), and the like.
- Example therapeutic or active agents also include drugs of molecular weight from about 40 to about 1,100 including the following: Hydrocodone, Lexapro, Vicodin, Effexor, Paxil, Wellbutrin, Bextra, Neurontin, Lipitor, Percocet, Oxycodone, Valium, Naproxen, Tramadol, Ambien, Oxycontin, Celebrex, Prednisone, Celexa, Ultracet, Protonix, Soma, Atenolol, Lisinopril, Lortab, Darvocet, Cipro, Levaquin, Ativan, Nexium, Cyclobenzaprine, Ultram, Alprazolam, Trazodone, Norvasc, Biaxin, Codeine, Clonazepam, Toprol, Zithromax, Diovan, Skelaxin, Klonopin, Lorazepam, Depakote, Diazepam, Albuterol, Topamax, Seroquel, Amoxicillin, Ritalin, Methadone, Augmentin, Zetia, Cephalexin, Prevacid, Flexeril, Synthroid, Promethazine, Phentermine, Metformin, Doxycycline, Aspirin, Remeron, Metoprolol, Amitriptyline, Advair, Ibuprofen, Hydrochlorothiazide, Crestor, Acetaminophen, Concerta, Clonidine, Norco, Elavil, Abilify, Risperdal, Mobic, Ranitidine, Lasix, Fluoxetine, Coumadin, Diclofenac, Hydroxyzine, Phenergan, Lamictal, Verapamil, Guaifenesin, Aciphex, Furosemide, Entex, Metronidazole, Carisoprodol, Propoxyphene, Digoxin, Zanaflex, Clindamycin, Trileptal, Buspar, Keflex, Bactrim, Dilantin, Flomax, Benicar, Baclofen, Endocet, Avelox, Lotrel, Inderal, Provigil, Zantac, Fentanyl, Premarin, Penicillin, Claritin, Reglan, Enalapril, Tricor, Methotrexate, Pravachol, Amiodarone, Zelnorm, Erythromycin, Tegretol, Omeprazole, and Meclizine.
- Monospecific antibodies, such as monoclonal antibodies and phages, and the like.
- Cholinesterase family of enzymes, such as acetalcholinesterase and butyryl acetalcholinesterase, and the like
- Other active agents include those listed as BCS Class II agents, such as Glibenclamide for example, and the like.
- The active agents mentioned above may be used in combination as required. Moreover, the above drugs may be used either in the free form or, if capable of forming salts, in the form of a salt with a suitable acid or base. When the drugs have a carboxyl group, their esters may be employed.
- It is contemplated that at least all possible types of dry powder formulations for pulmonary delivery are within the scope of the present disclosure.
- This may include, but is not limited to, pure micronized drug formulations, no excipients are included (e.g., drug particles may or may not be crystalline, the formulation may include one or more drugs, co-crystals—multiple APIs in a single crystalline particle); binary, ternary, etc., formulations where the drug is but one component of the formulation, two or more drugs are blended together, and which also may or may not include one or more excipients; and engineered powders including low density powders, spray-dried powder, etc., designed to be dispersed effectively relative to traditional micronized formulations, the PulmoSphere® technology used in the TOBI® Podhaler®. However, the oscillating bead dispersion mechanism as described throughout the present disclosure may be used with other aerosol dispersion methods, not just powders, including but not limited to, aqueous and/or propellant-based inhalers, such as liquid or powder nebulizers, pMDIs and powder or liquid nasal sprays. Still other embodiments are possible.
- Further it is contemplated that the dry powder formulations for pulmonary delivery in accordance with the present disclosure may be used to counter effects of various types of agents that may at least initially affect the respiratory system including, but are not limited to: harassing agents such as tear agents and vomiting agents; incapacitating agents such as psychological agents; and lethal agents such as blister agents, blood agents, choking (pulmonary) agents, and nerve agents.
- Examples of tear agents may include a-Chlorotoluene, Benzyl bromide, Bromoacetone (BA), Bromobenzylcyanide (CA), Bromomethylethyl ketone, Capsaicin (OC), Chloracetophenone (MACE; CN), Chloromethyl chloroformate, Dibenzoxazepine (CR), Ethyl iodoacetate, Ortho-chlorobenzylidene malononitrile (Super tear gas; CS), Trichloromethyl chloroformate, Xylyl bromide, and the like.
- Examples of vomiting agents may include Adamsite (DM), Diphenylchloroarsine (DA), Diphenylcyanoarsine (DC), and the like.
- Examples of psychological agents may include 3-Quinuclidinyl benzilate (BZ), Phencyclidine (SN), Lysergic acid diethylamide (K), and the like.
- Examples of blister agents may include nitrogen mustards such as Bis(2-chloroethyl)ethylamine (HN1), Bis(2-chloroethyl)methylamine (HN2), Tris(2-chloroethyl)amine (HN3), Sulfur Mustards such as 1,2-Bis(2-chloroethylthio) ethane (Sesquimustard; Q), 1,3-Bis(2-chloro ethylthio)-n-propane, 1,4-Bis(2-chloroethylthio)-n-butane, 1,5-Bis(2-chloroethylthio)-n-pentane, 2-Chloroethylchloromethylsulfide, Bis(2-chloroethyl)sulfide (Mustard gas; HD), Bis(2-chloroethylthio) methane, Bis(2-chloroethylthiomethyl)ether, Bis(2-chloroethylthioethyl)ether (O Mustard; T), and the like, and Arsenicals such as Ethyldichloroarsine (ED), Methyldichloroarsine (MD), Phenyldichloroarsine (PD), 2-Chlorovinyldichloroarsine (Lewisite; L), and the like.
- Examples of blood agents may include Cyanogen chloride (CK), Hydrogen cyanide (AC), Arsine (SA), and the like.
- Examples of choking agents may include but are not limited to, Chlorine (CL); Chloropicrin (PS), Diphosgene (DP), Phosgene (CG), and the like.
- Examples of nerve agents may include G series such as Tabun (GA), Sarin (GB), Soman (GD), Cyclosarin (GF), GV series such as Novichok agents, GV (nerve agent), V series such as VE, VG, VM, and the like.
- As mentioned above, the
example bead 302 disposed within theexample chamber 104 may oscillate in a manner similar to that described in U.S. application Ser. No. 13/469,963, filed 11 May 2012, entitled “Bead-Containing Dry Powder Inhaler.” However, in accordance with the present disclosure, thebead 302 may not include a pre-coated powder on its surface. Rather, powder may be separately introduced into thechamber 104 from a receptacle such as dose containment or dosing chamber, or other temporary holding compartment or region, or from another dry powder inhaler, as described further below. With this configuration, the powder may be initially placed into a dose containment chamber. When a patient inhales from a mouthpiece, air may be drawn through the dose containment chamber which moves the powder into thechamber 104, where it encounters thebead 302 oscillating primarily along the longitudinal axis L (see e.g.,FIG. 3 ). - In some embodiments, however, the
bead 302 may be coated with drug. This may act as a detachment platform for the drug coated on its surface, as well as a dispersion mechanism for drug formulation located and introduced upstream of the bead. For example, for a combination drug product, such as delivering two or more drugs in a single inhalation maneuver, where one drug is delivered in a larger dose, such as an inhaled corticosteroid, than the other drug, such as a long-acting beta-agonist, the lower dose drug may be coated onto the surface of thebead 302, while the larger dose drug is located in a dose containment container, such as a capsule, blister, reservoir, etc., upstream of thechamber 104 containing the drug-coated bead. Thus, during inhalation, oscillation of thebead 302 may serve as a detachment platform to the drug adhered to its surface, and as a dispersion mechanism to the powder that is located upstream. - Additionally, the
bead 302 may be coated with a layer of durable material. An example of such a material may include, but is not limited to, gelatin, sugars, any pharmaceutically acceptable film coating materials, including polymers, metallic coatings, anti-static coatings, plasma coatings, etc. This may be beneficial for example when bead material can erode or fragment. In this example, the layer thickness may depend on the density of the material to be added, such that the addition of the coated layer does not eliminate or substantially impair or inhibit the ability of thebead 302 to oscillate within thedispersion chamber 104. - Using the
bead 302 as a dispersion mechanism may provide a number of advantages. For example, by employing the oscillating bead in the capacity of a dispersion engine, large doses such as, for example, about 1 mg to about 25 mg or greater, may be delivered by storing them in capsules or blisters. However, it will be appreciated that smaller doses may also be delivered. For example, doses greater than about 1 μg of active drug may be delivered. In some cases, the active drug may be blended with a carrier, such as lactose. Also, when thebead 302 is not coated with drug and used as a dispersion mechanism, there is no retention mechanism required to hold thebead 302 tightly within the inhaler, decreasing the complexity of the DPF. Still further, using thebead 302 as a dispersion mechanism may require no additional or complicated processing steps for the DPF formulations, as the powder may be produced by traditionally employed methods. Additionally, thebead 302 in the present disclosure may oscillate generally within the center of thechamber 104, along the longitudinal axis L, where physical contact between thebead 302 and inner walls of thechamber 104, and possibly ends of thechamber 104, may occur infrequently, if at all. This type of dispersion mechanism may be beneficial as collisions between walls of thechamber 104 and thebead 302 could serve to rub powder onto either the surface of thebead 302 or inner walls of thechamber 104 when powder is caught therebetween during a physical collision, thereby decreasing an amount of powder available for transfer into the lungs of a patient. Alternatively the frequent collision of thebead 302 with the walls of thechamber 104 may act to scrub off any drug adhered to the wall(s), thus increasing an amount of powder available for transfer into the lungs of a patient. - Referring now back to
FIGS. 1-3 , and as mentioned above, alignment of theinlet 102 and thechamber 104, may provide significant advantages over inhalers having an “off-axis” alignment. In particular, thetubular body 100 of the present disclosure may produce an approximately symmetrical flow stream expansion that drives oscillation of thebead 302. Such a configuration may enable a powder dispersion device, or dry powder inhaler, incorporating aspects of thetubular body 100, to be constructed with minimal bulk. For example, thechamber 104 in example embodiments of the present disclosure may be modeled as a cylinder of the dimensions detailed above (e.g., dchamber˜7.37 mm, lchamber˜10 mm) for a similar 5 mm bead. Accordingly, a maximum volume occupied by thechamber 104 is about 427 cubic mm based on the expression vcylinder=πr2l. - Referring now to
FIGS. 4-5 , an example powder dispersion device orinhaler 400 is shown in accordance with the principles of the present disclosure. In particular,FIG. 4 shows a first view of thedevice 400 ofFIG. 4 in cross-section.FIG. 5 shows a perspective view of thedevice 400 ofFIG. 4 . - The
device 400 may generally incorporate aspects of the exampletubular body 100 described above in connection withFIGS. 1-3 . For example, thedevice 400 may include afirst housing 402 comprising theinlet 102 and thechamber 104 of thetubular body 100. Additionally, although not expressly shown, thebead 302 may be positioned within thechamber 104, such as shown inFIG. 3 . Thedevice 400 may further include asecond housing 404 comprising asheath flow channel 406 that surrounds and is not in fluid connection with a primary or mainpowder flow channel 408. In some embodiments, thefirst housing 402 may be integrally formed with thesecond housing 404. In one embodiment, thechamber 104 and the mainpowder flow channel 408 may have at least one common structural dimension, such as internal diameter for example. Additionally, thesecond housing 404 may itself comprise of, be coupled to, or otherwise incorporated within, a mouthpiece adapted to be placed within the mouth of a patient, or in a nasal adapter adapted to conform to the nostrils of a patient. Thedevice 400 may further include a plurality offlow bypass channels 410 that are formed within thesecond housing 404. Theflow bypass channels 410 may be in fluid connection with thesheath flow channel 406. - The
device 400 may further include adosing chamber 412, a retainingmember 416, and a piercingmember 418 disposed at an end of the chamber opposite theinlet 102. The piercingmember 418 may puncture or otherwise perforate a capsule, blister, orpowder reservoir 414 as arranged or positioned within thedosing chamber 412. In general, the retainingmember 416 may include at least one opening or aperture sized to permit air and powdered or otherwise aerosolized medicament to pass through the retainingmember 416, and to prevent the possibility of thebead 302 from exiting thechamber 104. The at least one opening or aperture may, in some embodiments, be arranged and configured (e.g., diameter, pattern, etc.) to maintain desired fluid flow characteristics with thedevice 400, such that thebead 302 may disrupt and aerosolize medicament powder agglomerates within thechamber 104 to provide for more effective deposition of medicament into the lungs of a patient. - In one example, referring specifically to
FIG. 4 , a patient may prime thedevice 400 by puncturing the capsule, blister, or transfer of a dose from apowder reservoir 414, and then inhale, drawing air through thechamber 104 which in turn draws the DPF from thedosing chamber 412 into theadjacent chamber 104 via theinlet 102, where thebead 302 is rapidly oscillating, creating high-energy forces that may strip drug from the surface of carrier particles in the DPF, or when thebead 302 is drug-covered, and/or de-agglomerate drug powder aggregates and drug-on-drug aggregates. Drug particles may then be deposited in lungs and airways of a patient from the primary or mainpowder flow channel 408 based on direction of air flow through the device such as shown inFIG. 4 . Such a “self-dosing” scenario may be useful for effectively dispensing both traditional binary or ternary DPF formulations, drug and carrier/excipient particles, and pure drug-powder formulations where there are no carrier particles are present. Other embodiments having similar effects are possible, as discussed further below in connection withFIG. 9 . - In general, the resistance to flow of the
device 400 may be adjusted by altering the geometry and/or arrangement of at least one of theinlet 102, thebead 302, thesheath flow channel 406, the mainpowder flow channel 408, and the flow bypass channel(s) 410. Additionally, as shown inFIG. 5 , theflow bypass channels 410 may be located radially around the body of thesecond housing 404, and fluidly connected to thesheath flow channel 406. In some embodiments however, thedevice 400 may not include any flow bypass channels. In one embodiment, theflow bypass channels 410 may comprise of twelve individual channels located radially around the body of thesecond housing 404. However, other embodiments are possible. For example, theflow bypass channels 410 may comprise of different numbers and diameters of individual channels and entry points into thesheath flow channel 406. Further, one or more of theflow bypass channels 410 may be parallel through the mainpowder flow channel 408, or may be in fluid connection with, and then diverge from, the mainpowder flow channel 408. Still other embodiments are possible. - One or more of the
flow bypass channels 410 may be “opened” or “closed” such as by removal or insertion of a resilient material therein to “unplug” or “plug” the same. This may result in changes in the overall resistance of thedevice 400, thereby influencing flow rate through thedevice 400. For example, a person may inhale through a “high” resistance inhaler with a lower inspiratory flow rate than they would through a “low” resistance inhaler, despite inhaling with the same inhalation effort. In this manner, thedevice 400 may be “tuned” to respond “optimally” to the needs of a patient. In other words, thedevice 400 in accordance with the present disclosure may be tailored to suit particular patient needs. For example, resistance of thedevice 400 may be approximately inversely proportional to diameter of thebead 302. Thus, for a “larger”diameter bead 302, one or more of theflow bypass channels 410 may be “closed” to increase resistance of the device such that a patient may receive a proper dose of medicament irrespective of possibly diminished inhalation capacity. - Experimental Study A
- Performance of the example powder dispersion device or
inhaler 400 ofFIG. 4 was evaluated to assess how thebead 302 as an oscillating mechanism functions to disperse drug powder within thechamber 104. In this example, no powder was coated onto the surface of thebead 302. During inhalation, powder travels from a dosing chamber 412 (seeFIG. 4 ), where the powder is stored, into thechamber 104, where thebead 302 when oscillating creates high-energy forces that may strip the drug particles from, for example, a lactose carrier, and/or disrupt aggregated particles and disperse them into sizes that may more easily penetrate patient airways. Additionally, physical collisions between thebead 302 and coarse “carrier” particles and/or aggregates may also promote drug dispersion, and increased physical collisions between lactose carrier particles. - In general, the
bead 302 may comprise of an uncoated “low” density expanded polystyrene bead, with thechamber 104 being downstream of thedosing chamber 412, where the powder may be contained in thepowder reservoir 414. Other embodiments are possible. For example, a density of thebead 302 may be selected as desired, where the density ofbead 302 may or may not affect performance of thedevice 400. In the example of a capsule, capsule material may include gelatin or HPMC (hydroxypropylmethylcellulose). Examples of commercial dry powder inhaler products where the powder is stored in capsules include the FORADIL® Aerolizer® and the SPIRIVA® HandiHaler®. In general, the capsules may each contain one dose, or multiple capsules can be used to contain the equivalent of one dose, as with the TOBI® Podhaler®, where each dose consists of four capsules, each containing 28 mg of powder for example. In the example of an individual blister, one blister may contain one dose. Examples of commercial dry powder inhaler products where the powder is stored in blisters include the FLOVENT® Diskus®, SEREVENT® Diskus®, and the ADVAIR® Diskus®. In the example of a reservoir, a particular reservoir may contains sufficient powder for multiple doses. Examples of commercial dry powder inhaler products where the powder is stored in reservoirs include the ASMANEX® Twisthaler®, SYMBICORT® Turbuhaler® and the Budelin® Novolizer®. Still other embodiments are possible. - In practice, a patient may prime the
device 400 by puncturing the capsule/blister contained within thepowder reservoir 414 or transferring drug from thepowder reservoir 414, and then inhale, drawing powder into theadjacent chamber 104 via theinlet 102 where thebead 302 is rapidly oscillating, creating high-energy forces that may strip the drug from the surface of carrier particles (e.g., when thebead 302 is drug-covered), and/or de-agglomerate powder aggregates. Thus, this approach may be useful for effectively dispersing both traditional binary or ternary DPF formulations, drug and carrier/excipient particles, and pure drug-powder formulations where there are no carrier particles are present. - In the example study, the capsule chamber of the Handihaler® (see e.g.,
FIG. 6 ) as described generally in U.S. Pat. No. 7,252,087, was employed to puncture an HPMC capsule containing 20 mg (±1 mg) of a 2% binary blend of micronized budesonide and inhalation-grade lactose (Respitose® ML006). As a control, the powder was dispersed only from the Handihaler®, with no bead-dispersion chamber downstream. For the experimental sets, thechamber 104 was included downstream of the Handihaler® capsule chamber with a single 4 mm expanded polystyrene bead, placed inside. Thus the experimental configurations were: Handihaler® alone (herein referred to as “No Attachment”); and Handihaler® with theexample device 400 as an attachment (herein referred to as “Attachment”). - Due to placing of “narrow” inlets in series, the resistance of the “Attachment” was relatively “high,” with a 4 kPa pressure drop of approximately 26 LPM. In this example, the
flow bypass channels 410 of thedevice 400 were used to lower the resistance, making the 4 kPa pressure drop flow rate at approximately 70 LPM; the cutoff ofStage 2 is about 4.1 μm, and the cutoff ofStage 1 is about 7.4 μm. TheStage 2 cutoff of 39 LPM is about 5.6 μm. - The results with N=3 (+/−stdev):
- “No Attachment”: FPF (Fine Particle Fraction) (<5.6 μm)=48.2% (3.0%); and
- “Attachment”: FPF (<4.1 μm)=70.9% (1.2%).
- Here, it may be understood that the FPF increased at
Stage 2 cutoff from 48.2%, using the “No Attachment” arrangement or configuration, to 70.9%, using the “Attachment” arrangement or configuration. Thus, it may be understood that the “Attachment” arrangement or configuration more efficiently deaggregated powder passing through arrangement or configuration, such that a greater percentage of “smaller” particles were created that would then be available to penetrate into a patients lung. - Additionally, when
Stage 2 was also included in the FPF, changing the cutoff size to <about 7.4 μm), the FPF would increase to 77.7% (1.0%). - It was expected there would be significant drop-off in measurable or otherwise recovered dose due to loss in the
chamber 104. There was however no noticeable difference in recovered dose. This surprising and unexpected result may indicate that thedevice 400, a compact device, having straight powder flow path containing a breath-actuated, approximately linearly oscillating, bead as the dispersion mechanism, may serve as an effective powder dispersion mechanism for at least dry powder formulations. This may be beneficial in many respects. For example, since it has been found that FPF output increases using the “Attachment” arrangement or configuration, a patient may be more capable of obtaining a proper dosage of medicament. Other benefits are possible as well. - Experimental Study B
- Performance of the example powder dispersion device or
inhaler 400 ofFIG. 4 was evaluated to assess the influence of size of thebead 302 on theexample device 400. In this example, a particular powder dispersion device configured to incorporate a bead of a particular size was produced via stereolithography from the material DSM Somos® NeXT. A particular powder dispersion device was attached to the capsule chamber of the HandiHaler® dry powder inhaler. This allowed testing the dispersion of powder from capsules that could be perforated by the piercing mechanism of the HandiHaler®. -
FIG. 6 shows a first example experimental set-up in accordance with the present disclosure. In particular,FIG. 6 shows theexample device 400 ofFIG. 4 attached to a capsule chamber (e.g., dosing chamber 412) of the HandiHaler®dry powder inhaler 602. Although, it will be appreciated thatelement 602 may generally be any type of dose containment system or powder source.FIG. 6 further shows thedevice 400 arranged and configured to incorporate or otherwise exhibit a 3.2 mm bead, a 4.0 mm bead, and a 5.2 mm bead. Powder contained in a capsule was punctured using the piercing mechanism of the HandiHaler® dry powder inhaler. During inhalation, powder is pulled or otherwise caused to flow out from the perforations in the capsule wall, traveling into thechamber 104 of thedevice 400, where forces created by thebead 302, when the bead is rapidly oscillating, at least disrupts powder agglomerates. - In general, the resistance of the
device 400 varied inversely with bead size. Thedevice 400 was tested at a constant 4 kPa pressure drop across thedevice 400 by altering the volumetric flow rate through thedevice 400 to compensate for difference in device resistance, summarized in the following Table 1: -
Device Resistance (cmH20)0.5/ Configuration Bead Size 4 kPa Flow Rate L min−1 No Attachment No Attachment 39 L min−1 0.173 Attachment 3.2 mm 81 L min−1 0.079 Attachment 4.0 mm 86 L min−1 0.073 Attachment 5.2 mm 95 L min−1 0.069 - Here, it may be understood that even though an “Attachment” in accordance with the present disclosure is being coupled to an inhaler, device resistance including the “Attachment” does not increase. Rather, device resistance decreases. This may be beneficial in many respects. For example, a patient with decreased or otherwise diminished lung capacity may be more capable of using the “Attachment” arrangement or configuration. Further, since it has been found that FPF output increases using the “Attachment” arrangement or configuration (see Experimental Study A), a patient of decreased or otherwise diminished lung capacity may be more capable of obtaining a proper dosage of medicament. Other benefits are possible as well.
- Experimental Study B1
- Performance of the example powder dispersion device or
inhaler 400 ofFIG. 4 was evaluated to assess the influence of size of thebead 302 in delivering a high dose of a pure micronized beta agonist, not containing any excipients. - In this example study, 15 mg (±1 mg) of pure micronized albuterol sulfate (beta-agonist) was placed into
Size 3 HPMC capsules. Powder was dispersed via the “No Attachment” or “Attachment” configurations as discussed above, with thedevice 400 including either a 3.2 mm bead, 4.0 mm bead, or 5.2 mm bead, and attached to the capsule chamber of the HandiHaler® dry powder inhaler 602 (seeFIG. 6 ) through a next generation cascade impactor connected to a high vacuum pump. The volumetric flow rate through the different configurations was adjusted such that a pressure drop of approximately 4 kPa was produced across therespective device 400, such as listed in Table 1 above. The devices were activated or otherwise actuated for a time interval that allowed 4 L of air to flow therethrough. Following actuation, the drug depositing on the different regions of the experimental setup was collected by rinsing each region with deionized water, and quantified by UV-VIS spectrophotometry at 230 nm. - The FPF of the emitted dose, which may refer to the fraction of a dose that leaves the inhaler that deposits in the lungs, because if its size, for each configuration is summarized in the following Table 2:
-
Configuration/Bead Size FPF (emitted), N = 3 No Attachment 24.1% (3.4 +/− 1 std deviation) Attachment/3.2 mm bead 75.3% (2.9 +/− 1 std deviation) Attachment/4.0 mm bead 75.8% (3.1 +/− 1 std deviation) Attachment/5.2 mm bead 73.0% (5.5 +/− 1 std deviation) - Here, it may be understood that the FPF increased from about 24%, using the “No Attachment” arrangement or configuration, to between about 73% to 76%, using the “Attachment” arrangement or configuration. Similar to the above-conclusion (see Experimental Study A), it may be understood that the “Attachment” arrangement or configuration more efficiently deaggregated powder passing through arrangement or configuration, such that a greater percentage of “smaller” particles were created that would then be available to penetrate into a patients lung.
- Experimental Study B2
- Performance of the example powder dispersion device or
inhaler 400 ofFIG. 4 was evaluated to assess the influence of size of thebead 302 in delivering a high dose of a pure inhaled corticosteroid, no excipients. - In this example study, 10 mg (±0.5 mg) of pure micronized mometasone furoate (inhaled corticosteroid) was placed into
Size 3 HPMC capsules. Powder was dispersed via the “No Attachment” or “Attachment” configuration as discussed above, with thedevice 400 including either a 3.2 mm bead or 5.2 mm bead, and attached to the capsule chamber of the HandiHaler® dry powder inhaler 602 (seeFIG. 6 ) through a next generation cascade impactor connected to a high vacuum pump. The volumetric flow rate through the different configurations was adjusted such that a pressure drop of approximately 4 kPa was produced across therespective device 400, such as listed in Table 1 above. The devices were actuated for a time interval that allowed 4 L of air to flow through the inhaler. Following actuation, the drug depositing on the different regions of the experimental setup was collected by rinsing each region with methanol and quantified by UV-VIS spectrophotometry at 250 nm. Other preferred solvents may be used depending on type of studied drug. - The FPF of the emitted dose for each configuration is summarized in the following Table 3:
-
Device Configuration/Bead Size FPF (emitted), N = 3 No Attachment 31.5% (4.0 +/− 1 std deviation) Attachment/3.2 mm bead 75.6% (2.8 +/− 1 std deviation) Attachment/5.2 mm bead 70.3% (1.7 +/− 1 std deviation) - Here, it may be understood that the FPF increased from about 32%, using the “No Attachment” arrangement or configuration, to between about 70% to 76%, using the “Attachment” arrangement or configuration. Similar to the above-conclusion (see Experimental Study A), it may be understood that the “Attachment” arrangement or configuration more efficiently deaggregated powder passing through arrangement or configuration, such that a greater percentage of “smaller” particles were created that would then be available to penetrate into a patients lung.
- Experimental Study B3
- Performance of the example powder dispersion device or
inhaler 400 ofFIG. 4 was evaluated to assess the influence of size of thebead 302 in delivering a low dose of beta-agonist delivered from a traditional DPF formulation, with coarse lactose particles as an excipient. - In this example study, a 2% (w/w) binary blend of albuterol sulfate in lactose was prepared by blending 490 mg of inhalation-grade lactose (LactoHale 300) with 10 mg of pure micronized albuterol sulfate via geometric dilution in a 25 mL glass scintillation vial. The vial was then placed into a Turbula® Orbital blender for 40 minutes at 46 RPM. 20 mg (±1 mg) of the 2% albuterol sulfate blend was placed into
Size 3 HPMC capsules. Powder was dispersed via the “No Attachment” or “Attachment” configuration as discussed above, with thedevice 400 including either a 3.2 mm bead, a 4.0 mm bead, or 5.2 mm bead, and attached to the capsule chamber of the HandiHaler® dry powder inhaler 602 (seeFIG. 6 ) through a next generation cascade impactor connected to a high vacuum pump. The volumetric flow rate through the different configurations was adjusted such that a pressure drop of approximately 4 kPa was produced across therespective device 400, such as listed in Table 1 above. The devices were actuated for a time interval that allowed 4 L of air to flow through the inhaler. Following actuation, the drug depositing on the different regions of the experimental setup was collected by rinsing each region with deionized H2O and quantified by UV-VIS spectrophotometry at 230 nm. - The fine particle fraction of the emitted dose for each configuration is summarized in the following Table 4:
-
Device Configuration/Bead Size FPF (emitted), N = 3 No Attachment 29.7% (2.8 +/− 1 std deviation) Attachment/3.2 mm bead 72.7% (0.9 +/− 1 std deviation) Attachment/4.0 mm bead 71.8% (2.6 +/− 1 std deviation) Attachment/5.2 mm bead 71.6% (4.3 +/− 1 std deviation) - Here, it may be understood that the FPF increased from about 30%, using the “No Attachment” arrangement or configuration, to between about 72% to 73%, using the “Attachment” arrangement or configuration. Similar to the above-conclusion (see Experimental Study A), it may be understood that the “Attachment” arrangement or configuration more efficiently deaggregated powder passing through arrangement or configuration, such that a greater percentage of “smaller” particles were created that would then be available to penetrate into a patients lung.
- Experimental Study C
- To evaluate the influence of drug dose on the powder dispersion performance of the
device 400, powder was dispersed via the “Attachment” configuration as discussed above, with thedevice 400 including a 3.2 mm bead, and attached to the capsule chamber of the HandiHaler® dry powder inhaler 602 (seeFIG. 6 ) through a next generation cascade impactor connected to a high vacuum pump. In particular, 1, 5, 10 or 25 mg of pure micronized albuterol sulfate were dispersed with volumetric flow rate set to produce a 4 kPa pressure across thedevice 400, about 81 LPM. Thedevice 400 was actuated for a time period to allow 4 L of air to flow through thedevice 400. Samples were rinsed with deionized H2O and analyzed via UV-VIS Spectroscopy at 230 nm. Results showed that the drug delivery efficiency as measured by FPF of the emitted dose was both “high” and relatively consistent, even as the dose increased to 25 mg of pure micronized drug powder, summarized in the following Table 5: -
Device Configuration/Bead Size Dose FPF (emitted), N = 3 Attachment/3.2 mm bead 1 mg 83.7% (2.0 +/− 1 std deviation) Attachment/3.2 mm bead 5 mg 85.4% (2.8 +/− 1 std deviation) Attachment/3.2 mm bead 10 mg 83.7% (2.6 +/− 1 std deviation) Attachment/3.2 mm bead 25 mg 78.0% (1.9 +/− 1 std deviation) - For a bead of approximately equal density, changing the bead diameter will change the bead mass. It is contemplated that beads of lower mass may oscillate with greater frequency than heavier beads. Thus, smaller beads may have a greater oscillation frequency than larger beads. It is contemplated that particle size distributions differ between bead sizes, and with smaller beads, due to the greater oscillation frequency of the smaller beads, higher energy localized eddies may be produced, which may be more effective at de-aggregating powder particles than lower energy localized eddies produced by larger beads that oscillate with a lower frequency. However, larger beads may travel a greater distance during their oscillation, by the power law relation governing bead diameter described above, and coupled with the greater diameter, may displace a larger volume of air when they move. Accordingly, overall force produced by a larger bead may be much greater than that produced by a smaller bead, despite the higher energy eddies produced by the smaller beads, such that a larger bead may influence a greater proportion of powder passing through the
dispersion chamber 104, but to a lesser extent than the smaller beads. This may be summarized as: smaller beads→greater oscillation frequency→more effective dispersion, influences less powder; and larger beads→lower oscillation frequency→less effective dispersion, influence more powder. The above description may be one possible explanation as to the operation of thedevice 400 in accordance with the present disclosure and other mechanisms of action may be possible. - Referring now to
FIG. 7 , a second example experimental set-up is shown in accordance with the present disclosure. In particular,FIG. 7 shows theexample device 400 ofFIG. 4 attached to amouthpiece 704 of a particular commercialdry powder inhaler 702, namely the Flovent® Diskus® inhaler. Although, it will be appreciated thatelement 702 may generally be any type of dose containment system or powder source - In previous examples, the
device 400 was connected directly to the capsule chamber of the HandiHaler®, bypassing the mouthpiece of the HandiHaler®, which powder may flow through under “normal” operation. In contrast, as shown inFIG. 7 , theexample device 400 ofFIG. 4 is coupled to themouthpiece 704 of theinhaler 702 by acoupling 706, thereby allowing powder to flow through theinhaler 702 as during “normal” operation, and then into thechamber 304 containing the bead 302 (see e.g.,FIG. 3 ). During inhalation, powder is pulled or otherwise caused to flow out through theinhaler 702, traveling into thechamber 104 of thedevice 400, where forces created by thebead 302, as rapidly oscillating, at least disrupts powder agglomerates. - Experimental Study D
- Performance of the example powder dispersion device or
inhaler 400 ofFIG. 4 was evaluated to assess the ability of theexample device 400 in increasing FPD (Fine Particle Dose) and emitted FPF (Fine Particle Fraction) when coupled in series with theinhaler 702. The fraction of a dose that leaves the inhaler that deposits in the lungs, because of its size, may be referred to as the (FPF), or FPD when expressed in terms of mass. In particular, flow rate through theinhaler 702, with API (Active Pharmaceutical Ingredient) Fluticasone propionate, with and without theexample device 400 coupled to themouthpiece 704 was set to produce a 4 kPa pressure drop across thedevice 400 of 49 LPM when coupled to the inhaler 702 (referred to as “No Attachment”), and 83 LPM when decoupled from the inhaler 702 (referred to as “Attachment”). Samples were collected via rinsing with ethanol and analyzed by UV-VIS spectrophotometer at 238 nm. Theexample device 400 when coupled in series with theinhaler 702 improved the FPD by 33 mcg (49%), and improved FPF by 52%, summarized in the following Table 6: -
Device Fine Particle Configuration Dose, N = 5 FPF (emitted), N = 5 No Attachment 68.2 (2.7) mcg 26.4% (1.0 +/− 1 std deviation) Attachment 101.5 (4.3) mcg 40.0% (1.4 +/− 1 std deviation) - Here, it may be understood that the device or
inhaler 400 ofFIG. 4 may enhance the performance (FPF emitted) of a commercial inhaler. This may be beneficial since the device orinhaler 400 ofFIG. 4 may be considered as an “add-on,” such that a patient may not be required to purchase another device when a particular commercial inhaler does not provide the performance required or desired by the patient. This may be because the device orinhaler 400 ofFIG. 4 is configured to more efficiently break-up powder agglomerates, and reduce or otherwise minimize the resistance of an or other device that the device orinhaler 400 is coupled to. Other benefits are possible as well. - Referring now to
FIG. 8 , a second view of thedevice 400 ofFIG. 4 is shown in cross-section. In particular, a cross section of the second example experimental set-up ofFIG. 7 is shown. Similar toFIG. 7 , theexample device 400 ofFIG. 4 is coupled to themouthpiece 704 of theinhaler 702 by thecoupling 706, thereby allowing powder to flow through theinhaler 702 as during “normal” operation, and then into thechamber 304 containing the bead 302 (see alsoFIG. 3 ). In particular, a piercingmember 712 may puncture or otherwise perforate a capsule, blister, orpowder reservoir 714 as contained within adosing chamber 716 of theinhaler 702. Powder may then be caused to flow through theinhaler 702 into thechamber 304 containing thebead 302 via themouthpiece 704 andcoupling 706. Thebead 302 may then disrupt and aerosolize medicament powder agglomerates within thechamber 104 to provide for more effective deposition of medicament into the lungs of a patient in a manner such as described above. Other embodiments are possible. - In general, the
coupling 706 may be a rigid or flexible coupling formed of any material, or combination thereof, such as thermoplastic/thermosetting plastics, metals, glasses, elastomers, etc., and may be coupled to themouthpiece 704 of theinhaler 702 on afirst end 708, and to thedevice 400 on asecond end 710. Here, it may be preferred that the material has surface properties that do not attract powder particles. Thecoupling 706 may be permanently fastened to, such as being integrally formed therewith, at least one of theinhaler 702 and thedevice 400, or may be removable fastened with least one of theinhaler 702 and thedevice 400. For example, thecoupling 706 may be fastened to theinhaler 702 by one of a “snap-fit” or a “pressure-fit” or a “twist-to-fit” mechanism, etc., such as in a “quick” connect/disconnect implementation. Still other embodiments are possible. For example, it will be appreciated that thedevice 400 may not be limited to being “clipped” or otherwise “coupled” to other inhalers. Further, aspects of the present disclosure may be used in combination with any type of dose containment system, and may not be limited to a capsule, blister, or reservoir. - As discussed above in connection with
FIG. 4 , a patient may prime thedevice 400 by puncturing the capsule, blister, orpowder reservoir 414, and then inhale, drawing the powder from thedosing chamber 412 into theadjacent chamber 104 via theinlet 102, where thebead 302 is rapidly oscillating, creating high-energy forces that may strip drug from the surface of carrier particles (e.g., when thebead 302 is drug-covered), and/or de-agglomerate powder aggregates. Drug particles may then be deposited in lungs and airways of a patient from the primary or mainpowder flow channel 408 based on direction of air flow through the device such as shown inFIG. 4 . Such a “self-dosing” scenario may at least be useful for effectively dispensing both traditional binary or ternary DPF formulations, drug and carrier/excipient particles, and pure drug-powder formulations where there are no carrier particles are present. Other embodiments are however possible. - For example, referring now specifically to
FIG. 9 , a “forced-dosing” scenario is described in accordance with the present disclosure. In particular, a third view of thedevice 400 ofFIG. 4 is shown in cross-section inFIG. 9 . In this example, acoupling 902 is shown that is removably coupled to thefirst housing 402 of thedevice 400. Thecoupling 902 includes aninlet 904 that is removably coupled to anair source 906. In one embodiment, an individual other than a patient may prime thedevice 400 by puncturing a capsule, blister, orreservoir 908 of thecoupling 902 using a piercing member 910. Thesource 906 may then be employed to force air through thedevice 400, drawing powder from thereservoir 908 into theadjacent chamber 104 via theinlet 102, where thebead 302 is rapidly oscillating, creating high-energy forces that may strip drug from the surface of carrier particles (e.g., when thebead 302 is drug-covered), and/or de-agglomerate powder aggregates. Drug particles may then be deposited in lungs and airways of the patient from the primary or mainpowder flow channel 408 based on direction of air flow through the device such as shown inFIG. 9 . - Such a “forced-dosing” scenario may beneficial when, for example, emergency treatment of unconscious or otherwise unresponsive personnel may be necessary. For example, the
device 400 may enable a responder to administer treatment agent to the lungs of a patient. Additionally, thesecond housing 404 may itself comprise of, be coupled to, or otherwise incorporated within, a mouthpiece adapted to be placed within the mouth of a patient, or in a nasal adapter adapted to conform to the nostrils of a patient. In the example ofFIG. 9 , thesecond housing 404 of thedevice 400 may be securely positioned within or on the mouth or nasal passages of a patient. With air expelled from the lungs of a responder into the inlet 604, thedevice 400 may be activated or actuated such as to deposit a treatment agent into the lungs and airways of the patient. In this example, thesource 906 corresponds to the lungs of an individual. Other embodiment are possible. For example, in some embodiments. thesource 906 may comprise of a ventilation bag, mechanical ventilator, mechanical pump, etc. Still other embodiments are possible. - At least
FIGS. 6-9 illustrate a scenario in which theexample device 400 is coupled to, or fitted onto, an external feature of a dose containment system orpowder source 602. Other embodiments are however possible. For example, referring now toFIG. 10 , a scenario is illustrated in which theexample device 400 is coupled to, or fitted onto, an internal feature of a dose containment system or powder source. In particular, thedevice 400 may replace a powder dispersion mechanism internal to an existing inhaler. An example of an existing inhaler may include the HandiHaler®, ASMANEX® Twisthaler®, SYMBICORT® Turbuhaler® and the Budelin® Novolizer® dry powder inhalers and others. Other embodiments are possible. - For example, a dose containment system or
powder source 912 may generally include adose module 914 that holds a portion of DPF, apowder dispersion module 916, and amouthpiece module 918 that would in practice be used to deliver a dose of the DPF to a patient. In general, thepowder dispersion module 916 may exhibit a tortuous path the DPF needs to navigate between its introduction into the flow path and release from themouthpiece module 918. The tortuous path may possibly deaggregate DPF aggregates to some degree, but may also add flow resistance. In accordance with the principles of the present disclosure, the dose containment system orpowder source 912 may be modified to replace thepowder dispersion module 916 with thedevice 400, or subassemblies of thedevice 400, including an inlet, chamber with a bead, and an outlet similar to thedevice 400. Further, this may or may not include thesecond housing 404 of thedevice 400, where an existing element of an inhaler being modified may instead be used. In this example, thedevice 400 may enhance the efficiency of de-aggregation of DPF of the dose containment system orpowder source 912, and may lower the resistance to flow within the dose containment system orpowder source 912. Other benefits and advantages are possible as well. - Referring now to
FIG. 11 , a simplified, conceptual, example schematic diagram of theexample device 400 ofFIG. 4 in multiple configurations is shown. In particular, thechamber 104 of thedevice 400 is shown in aseries configuration 1002 with anotherchamber 104, and in aparallel configuration 1004 with anotherchamber 104. In this example, it is contemplated that multiple drugs in each their own (e.g., two or more) dispersion chambers (e.g., in addition to other elements of theexample device 400 as desired) configured in accordance with the principles of the present disclosure may be coupled in series or parallel. Further, it is contemplated that any desired series/parallel combination may also be formed. For example, theseries configuration 1002 may be coupled in series with theparallel configuration 1004. In another example, theparallel configuration 1004 may be coupled in series with a singleparticular chamber 104, and etc. - In addition, it is contemplated that the type and configuration of the
bead 302 may vary in the context ofFIG. 11 . For example, when multiple ones of thechamber 104 are connected in series and/or parallel, one or more of the respective dispersion chambers may have similar bead sizes, different bead sizes, similar bead materials, different bead materials, and etc. Further, it is contemplated that any desired series/parallel combination may be formed. In general, type and configuration of thebead 302 may vary as desired. - Such an implementation may be beneficial in many respects. For example, for combination therapies, one drug may pass through a particular dispersion chamber and another other drug may pass through a separate dispersion chamber, or both drugs can pass through the same dispersion chamber. Additionally, “downstream” of the dispersion chambers may merge into a single dispersion chamber, or be kept separate throughout the length of the
device 400, such that the powders do not mix until they are emitted from the device. Still other benefits and/or advantages are possible as well. - Referring now to
FIG. 12 , a first example stage-by-stage particledeposition distribution profile 1100 is shown. In particular,FIG. 12 shows an example of a simulated stage-by-stage particle distribution profile of the 15 mg pure micronized albuterol sulfate formulation discussed above in connection with Experimental study B1, for powder emitted from the “No Attachment” configuration, or the “Attachment” configuration, as described above. The stage-by-stage particle distribution profile is simulated because an experimental set-up or particle sizing apparatus using a number of meshed screens arranged to pass a particular range of particles size were positioned with respect to each other such as to model the lungs of a patient. - In
FIG. 12 , the first or leftmost bar in each category is associated with the “No Attachment” configuration, the second or middle bar in each category is associated with the “Attachment” configuration using a 3.2 mm bead, and the third bar or rightmost bar in each category is associated with the “Attachment” configuration using a 5.2 mm bead. In general, particle sizes become smaller as the stage number increases. Accordingly,Stage 1 will contain the largest particles at a greater concentration thanStage 2, thenStage 2,Stage 3, etc. As seen within theprofile 1100,Stage 1,Stage 2, andStage 3 show a greater deposition for the 5.2 mm bead relative to its 3.2 mm counterpart, which then switches atStage 5 andStage 6, where the 3.2 mm bead exhibits greater deposition than the larger bead. The Stages may correspond to particle deposition locations within the human anatomy where induction port, preseparator,Stage 1, andStage 2 may approximate deposition within the mouth, throat, and upper airways, and Stages 3-8 may approximate deposition within the lung. - Referring now to
FIG. 13 , a second example stage-by-stage particledeposition distribution profile 1200 is shown. In particular,FIG. 13 shows an example of a simulated stage-by-stage particle distribution profile of the 10 mg (±0.5 mg) of pure micronized mometasone furoate, discussed above in connection with Experimental study B2, for powder emitted from the “No Attachment” configuration, or the “Attachment” configuration, as described above. InFIG. 13 , the first or leftmost bar in each category is associated with the “No Attachment” configuration, the second or middle bar in each category is associated with the “Attachment” configuration using a 3.2 mm bead, and the third bar or rightmost bar in each category is associated with the “Attachment” configuration using a 5.2 mm bead. As may be understood upon inspection of theprofile 1200, a similar trend as observed in theprofile 1100 is observed with the pure micronized mometasone furoate. Further it may be understood from theprofile 1200, and theprofile 1100, that using the diameter of thebead 302 the particle size distribution may be tailored to a particular target profile. As an example, certain drugs may require central lung deposition, whereas other drugs may require more peripheral lung deposition. In one example, the term particle size distribution may refer to an aerodynamic particle size distribution. In general, an aerodynamic particle size may equal the diameter of a sphere that has the same or similar drag coefficient as a given particle. In this example, thebead 302 may be selected to have a size such that upon oscillation it produces a desired aerodynamic particle size distribution of powdered medicament. Further, a desired aerodynamic particle size distribution may obtained as a function of a diameter of thebead 302. - Altering the bead size can influence the aerodynamic particle size distribution profile of the emitted drug and thus may enable regional targeting of the lung by altering the diameter of the bead size, while maintaining the chamber and inlet diameters proportional, rather than by altering the formulation, which can be a more costly and time intensive process. In the above example experimental studies, the proportions of the inlet and dispersion chamber diameters were kept constant to the diameter of the bead as: dbead 2≅(dinlet)(dchamber), where the ratio of the diameter of the dispersion chamber (chamber 104) to that of the inlet is approximately or about 2.1. However, other embodiments are possible. For example, the ratio of the diameter of the dispersion chamber to that of the inlet may be within a range of about greater than 1.1 to about 3.0. In other embodiments, the ratio of the diameter of the dispersion chamber to that of the inlet may be within a range of about 1.5 to about 2.5. Still other embodiments are possible.
- Referring now to
FIGS. 14-17 , a first example powder dispersion device orinhaler 1300 is shown in accordance with the principles of the present disclosure. In general, thedevice 1300 may be configured to be coupled to another inhaler device. In particular,FIG. 14 shows a first perspective view of thedevice 1300.FIG. 15 shows a second perspective view of thedevice 1300.FIG. 16 shows a first end view of thedevice 1300.FIG. 17 shows a second end view of thedevice 1300. - In general, the
device 1300 may be similar to or otherwise correspond to thedevice 400 discussed above in connection withFIGS. 1-13 . For example, thedevice 1300 may include afirst housing 1302 comprising aninlet 1304 and achamber 1306. Theinlet 1304 and achamber 1306 may be arranged and/or configured in a manner similar to theinlet 102 andchamber 104 of thedevice 400. Additionally, although not expressly shown, thebead 302 may be positioned within thechamber 1306, such as shown inFIG. 3 . Thedevice 1300 may further include asecond housing 1308 comprising asheath flow channel 1310 that surrounds a primary or mainpowder flow channel 1312. Thedevice 400 may further include a plurality offlow bypass channels 1314 that are formed within thesecond housing 1308. Theflow bypass channels 1314 may be in fluid connection with thesheath flow channel 1310. -
FIGS. 18-21 show thesecond housing 1308 of thedevice 1300 in multiple views. In particular,FIG. 18 shows a first perspective view of thesecond housing 1308.FIG. 19 shows a second perspective view of thesecond housing 1308.FIG. 20 shows a first end view of thesecond housing 1308.FIG. 21 shows a second end view of thesecond housing 1308. -
FIGS. 22-25 show thefirst housing 1302 of thedevice 1300 in multiple views. In particular,FIG. 22 shows a first perspective view of thefirst housing 1302.FIG. 23 shows a second perspective view of thefirst housing 1302.FIG. 24 shows a first end view of thefirst housing 1302.FIG. 25 shows a second end view of thefirst housing 1302. - A locking mechanism that may be used to couple or otherwise fasten the
first housing 1302 with thesecond housing 1308 may be understood upon inspection of at leastFIGS. 18-25 . In particular, thesecond housing 1308 may include afirst locking member 1316 and asecond locking member 1318. Thefirst housing 1302 may include afirst bar 1320 and asecond bar 1322. In practice, thefirst housing 1302 and thesecond housing 1308 may be positioned or orientated with respect to each other and manipulated such that thefirst bar 1320 is engaged with afirst stop surface 1324 of the first locking member 1316 (seeFIG. 18 ), and thesecond bar 1322 is engaged with afirst stop surface 1326 of thesecond locking member 1318. Thefirst housing 1302 and thesecond housing 1308 may then be manipulated such as to rotate thefirst housing 1302 with respect to the second housing 1308 (or vice versa) until thefirst bar 1320 is engaged with asecond stop surface 1328 of thefirst locking member 1316, and thesecond bar 1322 is engaged with asecond stop surface 1330 of thesecond locking member 1318. In this position, thefirst bar 1320 may be secured by compression fitting with thefirst locking member 1316, and thesecond bar 1322 may be secured by compression fitting with thesecond locking member 1318, thereby coupling thefirst housing 1302 with thesecond housing 1308. A reverse process may be implemented to decouple thefirst housing 1302 from thesecond housing 1308. Such interchangeability may be beneficial in many respects. For example, when abead 302 of different size is desired, thefirst housing 1302 may be removed and replaced with anotherfirst housing 1302 having abead 302 of different size than the original housing. Other benefits are possible as well. - Additionally, referring specifically to
FIG. 18 , a retainingmember 1332 of thesecond housing 1308 may include one or more openings sized to permit air and powdered or otherwise aerosolized medicament to pass through the retainingmember 1332, and to prevent thebead 302 from passing through the retainingmember 1332. Other embodiments are possible. For example, in some embodiments, a different mechanism may be used and to prevent thebead 302 from exiting thechamber 1306 into thesecond housing 1308. - Referring now to
FIGS. 26-29 , a second example powder dispersion device orinhaler 2500 is shown in accordance with the principles of the present disclosure. In general, thedevice 2500 may be configured to be coupled to another inhaler device. In particular,FIG. 26 shows a first perspective view of thedevice 2500.FIG. 27 shows a second perspective view of thedevice 2500.FIG. 28 shows a first end view of thedevice 2500.FIG. 29 shows a second end view of thedevice 2500. - In general, the
device 2500 may be similar to or otherwise correspond to the powder dispersion device orinhaler 400 discussed above in connection withFIGS. 1-13 . For example, thedevice 2500 may include afirst housing 2502 comprising aninlet 2504 and achamber 2506. Additionally, although not expressly shown, thebead 302 may be positioned within thechamber 2506, such as shown inFIG. 3 . Thedevice 2500 may further include asecond housing 2508 comprising asheath flow channel 2510 that surrounds a primary or mainpowder flow channel 2512. Thedevice 2500 may further include a plurality offlow bypass channels 2514 that are formed within thesecond housing 2508 or enter thesheath flow channel 2510 parallel to a longitudinal axis of the mainpowder flow channel 2512. Theflow bypass channels 2514 may be in fluid connection with thesheath flow channel 2510. Further, referring specifically toFIG. 26 , in some embodiments, theflow bypass channels 2514 may be formed anywhere along alength 2513 of thesecond housing 2508. Still further, theflow bypass channels 2514 may be formed at any predetermined and desired angle C within thesecond housing 2508 as measured with reference to a central axis D, and an axis E perpendicular to the central axis D, of thedevice 2500. For example, inFIG. 26 , while theflow bypass channels 2514 are illustrated as approximately normal to the central axis D, theflow bypass channels 2514 may be angled with respect to the central axis D (as measured with respect to the axis E). Angledflow bypass channels 2514 may in some instances be more easily fabricated via an injection molding process. Other ones of the 400, 1300, etc., of the present disclosure may exhibit such characteristics as well.devices -
FIGS. 30-33 show thesecond housing 2508 of thedevice 2500 in multiple views. In particular,FIG. 30 shows a first perspective view of thesecond housing 2508.FIG. 31 shows a second perspective view of thesecond housing 2508.FIG. 32 shows a first end view of thesecond housing 2508.FIG. 33 shows a second end view of thesecond housing 2508. -
FIGS. 34-37 show thefirst housing 2502 of thedevice 2500 in multiple views. In particular,FIG. 34 shows a first perspective view of thefirst housing 2502.FIG. 35 shows a second perspective view of thefirst housing 2502.FIG. 36 shows a first end view of thefirst housing 2502.FIG. 37 shows a second end view of thefirst housing 2502. - A coupling mechanism that may be used to fasten the
first housing 2502 with thesecond housing 2508 may be understood upon inspection of at leastFIGS. 30-37 . In particular, thesecond housing 2508 may include afirst locking member 2516 and a second locking member 2518 (seeFIG. 30 ). Thefirst housing 2502 may include afirst bar 2520 and asecond bar 2522. Thefirst locking member 2516 may also include afirst stop surface 2524 and asecond stop surface 2528, and thesecond locking member 2518 may also include afirst stop surface 2526 and asecond stop surface 2530. In practice, the first housing 205 and thesecond housing 2508 may be coupled and decoupled in manner similar to that described above in connection with the first example powder dispersion device orinhaler 1300. Such interchangeability may be beneficial in many respects. For example, when abead 302 of different size is desired, thefirst housing 2502 may be removed and replaced with anotherfirst housing 2502 having abead 302 of different size than the original housing. Other benefits are possible as well. - Additionally, referring specifically to
FIG. 30 , a retainingmember 2532 of thesecond housing 2508 may include one or more openings sized to permit air and powdered or otherwise aerosolized medicament to pass through the retainingmember 2532, and to prevent thebead 302 from passing through the retainingmember 2532. Other embodiments are possible. For example, in some embodiments, a different mechanism may be used and to prevent thebead 302 from exiting thechamber 2506 into thesecond housing 2508. - Referring now to
FIGS. 38-43 , a third example powder dispersion device orinhaler 3700 is shown in accordance with the principles of the present disclosure. In general, thedevice 3700 may be configured to be coupled to another inhaler device. In particular,FIG. 38 shows a first perspective view of thedevice 3700.FIG. 39 shows a second perspective view of thedevice 3700.FIG. 40 shows a third perspective view of thedevice 3700.FIG. 41 shows a fourth perspective view of thedevice 3700.FIG. 42 shows a fifth perspective view of thedevice 3700.FIG. 43 shows a sixth perspective view of thedevice 3700. - In general, the
device 3700 may be similar to thedevice 400, thedevice 1300, and/or thedevice 2500, respectively, as discussed above in connection withFIGS. 1-37 . In particular, thedevice 3700 may be similar to or otherwise correspond to thefirst housing 402 of thedevice 400, thefirst housing 1302 of thedevice 1300, and/or thefirst housing 2502 of thedevice 2500. For example, thedevice 3700 may include ahousing 3702 comprising aninlet 3704 and achamber 3706. Additionally, although not expressly shown, thebead 302 may be positioned within thechamber 3706, such as shown inFIG. 3 . In this example, thedevice 3700 may be coupled to either of thesecond housing 404 of thedevice 400, thesecond housing 1308 of thedevice 1300, and thesecond housing 2508 of thedevice 2500. For example, thehousing 3702 may include afirst bar 3708 and asecond bar 3710. In practice, thehousing 3704 may be, for example, coupled and decoupled to thesecond housing 2508 of thedevice 2500 in manner similar to that described above in connection with thedevice 1300. Such interchangeability may be beneficial in many respects. For example, when abead 302 of different size is desired, thefirst housing 2502 may be removed and replaced with anotherfirst housing 2502 having abead 302 of different size than the original housing. Other benefits are possible as well. - Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Claims (32)
1. A dry powder inhaler, comprising:
a powder storage that is configured to hold a powdered medicament;
an inlet channel that is adapted to receive air and powdered medicament from the powder storage;
a dispersion chamber that is adapted to receive air and powdered medicament from the inlet channel, the chamber holding an actuator that is movable within the dispersion chamber; and
an outlet channel through which air and powdered medicament exit the inhaler to be delivered to a patient;
wherein the geometry of the inhaler is such that a flow profile is generated within the dispersion chamber that causes the actuator to oscillate, thus enabling the oscillating actuator to deaggregate the powdered medicament passing through the dispersion chamber to be entrained by the air and delivered to the patient through the outlet channel.
2. The dry powder inhaler of claim 1 , wherein a cross-sectional area of a flow path through the inhaler undergoes a step increase at the entrance to the dispersion chamber.
3. The dry powder inhaler of claim 1 , wherein a ratio of the diameter of the dispersion chamber to that of the inlet channel is within a range of about greater than 1.0 to about 3.0.
4. The dry powder inhaler of claim 1 , wherein the inlet channel comprises a tube.
5. The dry powder inhaler of claim 1 , wherein the inlet channel comprises a tube with a cross-section that varies along the length of the tube.
6. The dry powder inhaler of claim 1 , wherein the outlet channel comprises a tube with a cross-section that varies along the length of the tube.
7. The dry powder inhaler of claim 1 , wherein the outlet channel is integral to a mouthpiece adapted to be placed within the mouth of the patient.
8. The dry powder inhaler of claim 1 , wherein the outlet channel is integral to a nasal adapter adapted to conform to at least one nostril of the patient.
9. The dry powder inhaler of claim 1 , further comprising one or more bypass channels that receive supplemental air from external the inhaler, and deliver the supplemental air to the patient without the supplemental air having passed through at least one of a powder storage chamber and the dispersion chamber.
10. The dry powder inhaler of claim 1 , further comprising a second chamber in fluid connection with the dispersion chamber.
11. The dry powder inhaler of claim 1 , further comprising a second chamber in fluid connection with the dispersion chamber, wherein air and powdered medicament exiting the dispersion and second chambers are delivered to the outlet channel.
12. The dry powder inhaler of claim 1 , further comprising a second chamber in fluid connection with the dispersion chamber, and wherein the dispersion and second chambers are similar in at least one dimension.
13. The dry powder inhaler of claim 1 , wherein the powder storage is a receptacle containing an amount of the powdered medicament.
14. The dry powder inhaler system of claim 1 , further comprising a piercing member configured to perforate the powder storage, containing an amount of the powdered medicament, to transfer air and powdered medicament to the inlet channel.
15. The dry powder inhaler system of claim 1 , wherein the powder storage is selected from one of: a capsule; a blister; and a powder reservoir.
16. The dry powder inhaler system of claim 1 , wherein the actuator comprises a second powdered medicament adhered thereto.
17. The dry powder inhaler system of claim 1 , wherein the actuator comprises a second powdered medicament adhered thereto, and wherein the geometry of the inhaler is such that a flow profile is generated within the chamber that causes the actuator to oscillate, thus enabling the oscillating actuator to effectively disperse powdered medicament passing through the chamber, and the second powdered medicament, to be entrained by the air and delivered to the patient through the outlet channel.
18. The dry powder inhaler system of claim 1 , further comprising a retaining member disposed at an end of the dispersion chamber opposite the inlet channel, the retaining member having one or more openings sized to permit air and powdered medicament to pass through the retaining member, and to prevent the actuator from passing through the retaining member.
19. A method for aerosolizing a powdered medicament, comprising:
providing an inhaler comprising an inlet channel, a chamber that is adapted to receive air and powdered medicament from the inlet channel, an actuator disposed in the chamber, and an outlet channel;
supplying a powdered medicament to the inlet channel; and
inducing air to flow through the outlet channel to cause air and the powdered medicament to enter into the chamber through the inlet channel, and to cause the actuator to oscillate within the chamber to effectively disperse powdered medicament passing through the chamber to be entrained by the air and delivered to the patient through the outlet channel.
20. A method as in claim 19 , wherein the powdered medicament is stored within a storage compartment, and wherein the powdered medicament is transferred from the storage compartment through the inlet channel and into the chamber as flow is induced through the chamber.
21. A method as in claim 19 , further comprising inhaling from a mouthpiece to induce the flow through the chamber.
22. A powder dispersion device, comprising:
a housing having a central, longitudinal axis, wherein the housing includes a chamber, a flow inlet in fluid communication with the chamber and a flow outlet in fluid communication with the chamber;
a powder storage compartment that is configured to store a powdered medicament for introduction into the chamber through the flow inlet; and
a bead positioned within the chamber such that it may rapidly move back and forth within the chamber along the longitudinal axis, wherein the bead is sized in dimension so that the bead when oscillating deagglomerates the powdered medicament so that a desired aerodynamic particle size distribution is achieved upon exit from the flow outlet.
23. A powder dispersion device as in claim 22 , wherein the desired aerodynamic particle size distribution is obtained as a function of a diameter of the bead.
24. A powder dispersion device as in claim 22 , wherein an inner diameter of the flow inlet is less than an inner diameter of the chamber.
25. A powder dispersion device as in claim 22 , wherein the flow inlet is one of cylindrical and tapered in geometry.
26. A powder dispersion device as in claim 22 , wherein the inlet is axially aligned with the chamber along the longitudinal axis.
27. A powder dispersion device as in claim 22 , wherein the bead is approximately spherical.
28. A powder dispersion device as in claim 22 , wherein the chamber has a volume flow path that is larger than that of the inlet so as to induce a sudden expansion of a flow stream entering into the chamber from the inlet.
29. A method for aerosolizing a powder, comprising:
providing a powder dispersion device comprising: a housing having a central, longitudinal axis, wherein the housing includes a chamber, a flow inlet in fluid communication with the chamber and a flow outlet in fluid communication with the chamber; and an actuator positioned within the chamber, wherein the actuator is selected to have a size such that upon oscillation it produces a desired range of aerodynamic particle sizes of the powdered medicament;
introducing the amount of powdered medicament into the chamber; and
inducing a flow through the chamber and out the flow outlet, wherein the flow enters the chamber from the flow inlet and rapidly expands when entering the chamber, wherein the flow through the chamber causes the actuator to oscillate within the chamber along the longitudinal axis to aerosolize and deagglomerate the powdered medicament to the desired range of aerodynamic particle sizes so that a desired aerodynamic particle size distribution is achieved upon exit from the flow outlet.
30. A method as in claim 29 , wherein the desired aerodynamic particle size distribution is obtained as a function of a diameter of the bead.
31. A method as in claim 29 , wherein the powdered medicament is stored within a storage compartment, and wherein the powdered medicament is transferred from the storage compartment through the inlet channel and into the chamber as flow is induced through the chamber.
32. A method as in claim 29 , further comprising inhaling from one of a mouthpiece and a nasal adaptor to induce the flow through the chamber.
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/776,558 US20150246189A9 (en) | 2010-12-07 | 2013-02-25 | Powder dispersion devices and methods |
| JP2015520314A JP2015525111A (en) | 2012-06-25 | 2013-06-20 | Powder dispersion device and method |
| PCT/US2013/046779 WO2014004250A1 (en) | 2012-06-25 | 2013-06-20 | Powder dispersion devices and methods |
| CA2877483A CA2877483A1 (en) | 2012-06-25 | 2013-06-20 | Powder dispersion devices and methods |
| ES13808599T ES2729566T3 (en) | 2012-06-25 | 2013-06-20 | Dust dispersion devices |
| EP13808599.8A EP2863972B1 (en) | 2012-06-25 | 2013-06-20 | Powder dispersion devices |
| IN408DEN2015 IN2015DN00408A (en) | 2012-06-25 | 2015-01-16 |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US42063910P | 2010-12-07 | 2010-12-07 | |
| US201161442872P | 2011-02-15 | 2011-02-15 | |
| US13/313,778 US8561609B2 (en) | 2010-12-07 | 2011-12-07 | Dry powder inhaler |
| US13/469,963 US8651104B2 (en) | 2010-12-07 | 2012-05-11 | Bead-containing dry powder inhaler |
| US201261664013P | 2012-06-25 | 2012-06-25 | |
| US13/776,558 US20150246189A9 (en) | 2010-12-07 | 2013-02-25 | Powder dispersion devices and methods |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/469,963 Continuation-In-Part US8651104B2 (en) | 2010-12-07 | 2012-05-11 | Bead-containing dry powder inhaler |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20130340754A1 true US20130340754A1 (en) | 2013-12-26 |
| US20150246189A9 US20150246189A9 (en) | 2015-09-03 |
Family
ID=49773340
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/773,325 Active 2035-05-25 US10463815B2 (en) | 2012-02-21 | 2013-02-21 | Inhaler to deliver substances for prophylaxis or prevention of disease or injury caused by the inhalation of biological or chemical agents |
| US13/776,558 Abandoned US20150246189A9 (en) | 2010-12-07 | 2013-02-25 | Powder dispersion devices and methods |
| US13/776,546 Active 2035-01-26 US10441733B2 (en) | 2012-02-21 | 2013-02-25 | Powder dispersion devices and methods |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/773,325 Active 2035-05-25 US10463815B2 (en) | 2012-02-21 | 2013-02-21 | Inhaler to deliver substances for prophylaxis or prevention of disease or injury caused by the inhalation of biological or chemical agents |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/776,546 Active 2035-01-26 US10441733B2 (en) | 2012-02-21 | 2013-02-25 | Powder dispersion devices and methods |
Country Status (7)
| Country | Link |
|---|---|
| US (3) | US10463815B2 (en) |
| EP (2) | EP2863973A4 (en) |
| JP (2) | JP6735012B2 (en) |
| CA (2) | CA2877483A1 (en) |
| ES (1) | ES2729566T3 (en) |
| IN (2) | IN2015DN00405A (en) |
| WO (2) | WO2014004256A1 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160199598A1 (en) * | 2012-02-21 | 2016-07-14 | Respira Therapeutics, Inc. | Powder dispersion methods and devices |
| CN106794325A (en) * | 2014-02-21 | 2017-05-31 | 瑞必治公司 | Powder inhalator, system and method |
| CN107847692A (en) * | 2015-04-30 | 2018-03-27 | 好利安科技有限公司 | Powder chamber for high dose medicament delivering |
| WO2018112258A1 (en) | 2016-12-14 | 2018-06-21 | Respira Therapeutics, Inc. | Methods and compositions for treatment of pulmonary hypertension and other lung disorders |
| US10441733B2 (en) | 2012-06-25 | 2019-10-15 | Respira Therapeutics, Inc. | Powder dispersion devices and methods |
| US10589234B2 (en) | 2015-07-16 | 2020-03-17 | Ohkawara Kakohki Co., Ltd. | Wet disperser |
| US11452825B2 (en) | 2017-05-31 | 2022-09-27 | Philip Morris Products S.A. | Inhaler article with occluded airflow element |
| US11806314B2 (en) | 2013-12-09 | 2023-11-07 | Respira Therapeutics, Inc. | PDE5 inhibitor powder formulations and methods relating thereto |
Families Citing this family (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110253140A1 (en) * | 2008-07-30 | 2011-10-20 | Stc.Unm | Formulations containing large-size carrier particles for dry powder inhalation aerosols |
| ES2842407T3 (en) | 2010-12-22 | 2021-07-14 | Syqe Medical Ltd | Drug delivery system |
| US9757529B2 (en) * | 2012-12-20 | 2017-09-12 | Otitopic Inc. | Dry powder inhaler and methods of use |
| US10207065B2 (en) * | 2013-07-12 | 2019-02-19 | John H. Silva | Mouthpiece for inhalers |
| GB2521148B (en) * | 2013-12-10 | 2016-06-08 | Kind Consumer Ltd | Airflow testing apparatus |
| ES2927609T3 (en) * | 2013-12-11 | 2022-11-08 | De Motu Cordis Pty Ltd | Apparatus |
| RU2016147231A (en) * | 2014-06-06 | 2018-07-12 | Рейксуниверситет Гронинген | DRY POWDER INHIBITED DRY POWDER |
| JP6663867B2 (en) | 2014-06-30 | 2020-03-13 | サイケ メディカル リミテッドSyqe Medical Ltd. | Drug dose cartridge for inhalation device |
| IL294077A (en) | 2014-06-30 | 2022-08-01 | Syqe Medical Ltd | Method and device for vaporization and inhalation of isolated substances |
| US11298477B2 (en) | 2014-06-30 | 2022-04-12 | Syqe Medical Ltd. | Methods, devices and systems for pulmonary delivery of active agents |
| CN106573123B (en) | 2014-06-30 | 2021-08-31 | Syqe医药有限公司 | Methods, devices and systems for pulmonary delivery of active agents |
| BR112016030955B1 (en) * | 2014-06-30 | 2022-03-22 | Syqe Medical Ltd. | inhaler device |
| CN105999486B (en) * | 2015-03-21 | 2018-11-09 | 深圳百美酶生物医药科技有限公司 | Manual Diskus and its application in lung cancer therapy |
| US11806331B2 (en) | 2016-01-06 | 2023-11-07 | Syqe Medical Ltd. | Low dose therapeutic treatment |
| JP6948725B2 (en) * | 2016-10-11 | 2021-10-13 | カエール バイオセラピューティクス コーポレイション | Instruments and methods for the production and concentration of particulate aerosols |
| ES2936415T3 (en) | 2017-04-17 | 2023-03-16 | Respira Therapeutics Inc | Dry Powder Unit Dose Inhaler |
| EP3713626A4 (en) * | 2017-11-21 | 2021-08-18 | Impel Neuropharma Inc. | Intranasal device with inlet interface |
| CN109821118A (en) * | 2017-11-23 | 2019-05-31 | 正大天晴药业集团股份有限公司 | Novel lung delivery system |
| US20220184326A1 (en) * | 2019-03-11 | 2022-06-16 | Health Research, Inc. | Medicinal nebulizer and method of dispensing medicament |
| US11433063B1 (en) * | 2019-03-12 | 2022-09-06 | Belhaven Biopharma, Inc. | Intranasal composition of pharmaceutical countermeasures for chemical warfare nerve agents and accidental exposure to organophosphate pesticides |
| EP3979990A1 (en) | 2019-06-10 | 2022-04-13 | Respira Therapeutics, Inc. | Carrier-based formulations and related methods |
| US20220296829A1 (en) * | 2021-03-18 | 2022-09-22 | Funai Electric Co., Ltd. | Nose cone vent design for inhalation device |
Family Cites Families (229)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US376819A (en) | 1888-01-24 | Medicinal vapors | ||
| US361748A (en) | 1887-04-26 | John w | ||
| US598286A (en) | 1898-02-01 | Inhaler | ||
| US263451A (en) | 1882-08-29 | adams | ||
| US2603216A (en) | 1952-07-15 | Powder inhaler | ||
| US16066A (en) | 1856-11-11 | Medical kespibatok | ||
| US419942A (en) | 1890-01-21 | Insufflator | ||
| US631621A (en) | 1898-11-16 | 1899-08-22 | James J Curran | Inhaler. |
| US658436A (en) | 1900-05-28 | 1900-09-25 | Hans Hennerich Groth | Insufflator. |
| US844097A (en) | 1906-08-07 | 1907-02-12 | Yancey Q Caldwell | Inhaler. |
| US1599959A (en) | 1923-03-23 | 1926-09-14 | Fujimoto Buheiji | Atomizer |
| US1752956A (en) | 1927-04-21 | 1930-04-01 | Karl Zeyen | Apparatus for spraying pulverulent material |
| US2214032A (en) | 1939-06-23 | 1940-09-10 | Walter B Stewart | Apparatus for administering powdered aluminum |
| US2513145A (en) | 1946-11-27 | 1950-06-27 | Charles C Chapple | Inhaler |
| US2693805A (en) | 1947-03-08 | 1954-11-09 | George V Taplin | Apparatus for administering therapeutic agents |
| US2470296A (en) | 1948-04-30 | 1949-05-17 | Abbott Lab | Inhalator |
| US2642063A (en) * | 1948-07-31 | 1953-06-16 | Frederick M Turnbull | Inhaler |
| US2603215A (en) | 1949-02-12 | 1952-07-15 | American Cyanamid Co | Drug inhalator |
| US2534636A (en) | 1949-02-12 | 1950-12-19 | American Cyanamid Co | Powder dispenser |
| US2569720A (en) | 1949-03-22 | 1951-10-02 | Package Devices Inc | Medicinal inhaler |
| US2641255A (en) | 1949-03-31 | 1953-06-09 | Abbott Lab | Inhaler |
| US2517482A (en) | 1949-04-09 | 1950-08-01 | Sharp & Dohme Inc | Inhaler |
| GB671582A (en) | 1949-04-16 | 1952-05-07 | Donald Herbert Brooks | Improvements in dispensers for medicinal and other powders |
| US2549303A (en) | 1949-04-20 | 1951-04-17 | Bristol Lab Inc | Inhaler for crystalline pencilllin or the like |
| US2587215A (en) | 1949-04-27 | 1952-02-26 | Frank P Priestly | Inhalator |
| US2579280A (en) | 1949-06-25 | 1951-12-18 | Macgregor Instr Company | Inhaler |
| US2573918A (en) | 1949-11-05 | 1951-11-06 | Vick Chemical Company | Device for dispensing medicaments |
| US2581182A (en) | 1950-03-14 | 1952-01-01 | Abbott Lab | Inhaler |
| GB705404A (en) | 1950-05-19 | 1954-03-10 | A M Bickford & Sons Ltd | An inhaler for medicinal substances |
| US2992645A (en) | 1958-05-06 | 1961-07-18 | Benger Lab Ltd | Disperser for powders |
| US3105488A (en) | 1959-09-17 | 1963-10-01 | Albert M Richards | Respiratory devices |
| GB1182779A (en) | 1966-09-17 | 1970-03-04 | Fisons Pharmaceuticals Ltd | Inhalation Device |
| GB1268051A (en) | 1968-06-07 | 1972-03-22 | Fisons Pharmaceuticals Ltd | Inhalation device |
| IT941426B (en) | 1971-07-17 | 1973-03-01 | Isf Spa | SWIRL-CHAMBER INHALER FOR POWDER-SHAPING MEDICINAL SUBSTANCES |
| US3888253A (en) | 1972-08-04 | 1975-06-10 | Beecham Group Ltd | Device for administration of medicines |
| GB1392945A (en) | 1972-08-23 | 1975-05-07 | Fisons Ltd | Inhalation device |
| GB1459426A (en) | 1973-02-26 | 1976-12-22 | Allen & Hanburys Ltd | Inhalation devices |
| FR2224175B1 (en) | 1973-04-04 | 1978-04-14 | Isf Spa | |
| GB1387954A (en) | 1973-05-08 | 1975-03-19 | Miles Lab | Insufflator |
| US3980074A (en) | 1973-07-18 | 1976-09-14 | Beecham Group Limited | Device for the administration of powders |
| GB1479283A (en) | 1973-07-23 | 1977-07-13 | Bespak Industries Ltd | Inhaler for powdered medicament |
| US3888252A (en) | 1974-01-23 | 1975-06-10 | Anthony J Side | Powder inhaler |
| IT1016489B (en) | 1974-03-18 | 1977-05-30 | Isf Spa | INHALER |
| US3971377A (en) | 1974-06-10 | 1976-07-27 | Alza Corporation | Medicament dispensing process for inhalation therapy |
| DE2525683A1 (en) | 1974-06-12 | 1976-01-02 | Ciba Geigy Ag | SULFOGROUPHIC HETEROCYCLES |
| IT1017153B (en) | 1974-07-15 | 1977-07-20 | Isf Spa | APPARATUS FOR INHALATIONS |
| US3964483A (en) | 1975-01-13 | 1976-06-22 | Syntex Puerto Rico, Inc. | Inhalation device |
| US3948264A (en) | 1975-05-21 | 1976-04-06 | Mead Johnson & Company | Inhalation device |
| GB1518998A (en) | 1975-08-28 | 1978-07-26 | Gillette Co | Packaging flowable materials |
| US4147166A (en) | 1977-05-02 | 1979-04-03 | American Cyanamid Company | Oral inhalator powder dispenser |
| US4216768A (en) | 1978-03-23 | 1980-08-12 | Whitfield Jack | Device for inhaling powdered substance |
| IT1116047B (en) | 1979-04-27 | 1986-02-10 | Sigma Tau Ind Farmaceuti | DEVICE FOR THE QUICK INHALATION OF POWDER DRUGS BY PERSONS SUFFERING FROM ASTHMA |
| BR8007911A (en) | 1979-12-06 | 1981-06-16 | Glaxo Group Ltd | PERFECTED INHALER |
| ES506585A0 (en) | 1980-10-30 | 1982-09-01 | Riker Laboratories Inc | A DEVICE TO FACILITATE THE ORAL INHALATION OF MEDICINES IN THE FORM OF POWDER |
| ATE23272T1 (en) | 1981-07-08 | 1986-11-15 | Draco Ab | POWDER INHALER. |
| US4570630A (en) | 1983-08-03 | 1986-02-18 | Miles Laboratories, Inc. | Medicament inhalation device |
| DE3345722A1 (en) | 1983-12-17 | 1985-06-27 | Boehringer Ingelheim KG, 6507 Ingelheim | INHALATOR |
| NZ217006A (en) | 1985-07-30 | 1989-04-26 | Glaxo Group Ltd | Inhaler for finely divided medicament includes plunger to open medicament container |
| AT384552B (en) * | 1985-08-01 | 1987-12-10 | Hurka Wilhelm | INHALATION DEVICE FOR DOSING AND DISTRIBUTING SOLID BODIES INTO THE BREATHING AIR |
| JPS62204756A (en) | 1986-03-04 | 1987-09-09 | 大研医工株式会社 | Drug volatilizing method and apparatus |
| SE453566B (en) | 1986-03-07 | 1988-02-15 | Draco Ab | POWDER INHALATOR DEVICE |
| IT1228459B (en) | 1989-02-23 | 1991-06-19 | Phidea S R L | INHALER WITH REGULAR AND COMPLETE EMPTYING OF THE CAPSULE. |
| CA2058764A1 (en) | 1989-04-28 | 1990-10-29 | Peter D. Hodson | Dry powder inhalation device |
| GB8909891D0 (en) | 1989-04-28 | 1989-06-14 | Riker Laboratories Inc | Device |
| US5176132A (en) | 1989-05-31 | 1993-01-05 | Fisons Plc | Medicament inhalation device and formulation |
| US5239991A (en) | 1989-06-21 | 1993-08-31 | Fisons Plc | Disposable powder medicament inhalation device with peel-off cover |
| IT1237118B (en) | 1989-10-27 | 1993-05-18 | Miat Spa | MULTI-DOSE INHALER FOR POWDER DRUGS. |
| US5376386A (en) | 1990-01-24 | 1994-12-27 | British Technology Group Limited | Aerosol carriers |
| US5201308A (en) | 1990-02-14 | 1993-04-13 | Newhouse Michael T | Powder inhaler |
| HU213221B (en) | 1990-03-02 | 1997-03-28 | Glaxo Group Ltd | Inhalation device and medicine packet for device |
| GB9004781D0 (en) | 1990-03-02 | 1990-04-25 | Glaxo Group Ltd | Device |
| US5615670A (en) | 1990-03-07 | 1997-04-01 | Fisons Plc | Powder inhaler with centrifugal force used to meter powder |
| NZ238489A (en) | 1990-06-14 | 1995-09-26 | Rhone Poulenc Rorer Ltd | Inhaler with capsule in swirling chamber: capsule pierced in chamber |
| GB9015522D0 (en) | 1990-07-13 | 1990-08-29 | Braithwaite Philip W | Inhaler |
| DE4027390C2 (en) | 1990-08-30 | 1994-11-03 | Boehringer Ingelheim Kg | Propellant-free inhalation device |
| US5429122A (en) | 1990-09-26 | 1995-07-04 | Zanen; Pieter | Inhaler devices provided with a reservoir for several doses of medium for inhaling, transporting device, whirl chamber |
| GB9021433D0 (en) | 1990-10-02 | 1990-11-14 | Atomic Energy Authority Uk | Power inhaler |
| US5042472A (en) | 1990-10-15 | 1991-08-27 | Merck & Co., Inc. | Powder inhaler device |
| GB9024760D0 (en) | 1990-11-14 | 1991-01-02 | Riker Laboratories Inc | Inhalation device and medicament carrier |
| GB9026025D0 (en) | 1990-11-29 | 1991-01-16 | Boehringer Ingelheim Kg | Inhalation device |
| GB9027234D0 (en) | 1990-12-15 | 1991-02-06 | Harris Pharma Ltd | An inhalation device |
| US5186164A (en) | 1991-03-15 | 1993-02-16 | Puthalath Raghuprasad | Mist inhaler |
| US5327883A (en) | 1991-05-20 | 1994-07-12 | Dura Pharmaceuticals, Inc. | Apparatus for aerosolizing powdered medicine and process and using |
| FR2676929B1 (en) | 1991-05-30 | 1994-02-11 | Aerosols Bouchage Ste Fse | POWDER INHALER. |
| DK0592540T3 (en) | 1991-07-02 | 2000-06-26 | Inhale Inc | Method and apparatus for dispensing aerosolized drugs |
| US5161524A (en) | 1991-08-02 | 1992-11-10 | Glaxo Inc. | Dosage inhalator with air flow velocity regulating means |
| ES2089474T3 (en) | 1991-08-16 | 1996-10-01 | Sandoz Ltd | INHALER FOR THE ADMINISTRATION OF POWDERED SUBSTANCES. |
| US5469843A (en) | 1991-11-12 | 1995-11-28 | Minnesota Mining And Manufacturing Company | Inhalation device |
| US5476093A (en) | 1992-02-14 | 1995-12-19 | Huhtamaki Oy | Device for more effective pulverization of a powdered inhalation medicament |
| JP3513604B2 (en) | 1992-03-25 | 2004-03-31 | テブロ ソシエテ アノニム | Powder jet dispenser for drug inhalation therapy |
| WO1993024165A1 (en) | 1992-05-29 | 1993-12-09 | Ggu Gesellschaft Für Gesundheits- Und Umweltforschung Mbh & Co. Vertriebs Kg | Device for generating inhalable active substance particles |
| US5394868A (en) | 1992-06-25 | 1995-03-07 | Schering Corporation | Inhalation device for powdered medicaments |
| US5239993A (en) | 1992-08-26 | 1993-08-31 | Glaxo Inc. | Dosage inhalator providing optimized compound inhalation trajectory |
| CA2144343A1 (en) | 1992-09-11 | 1994-03-31 | Peter Erich Cox | Inhalation device |
| EP0674533B1 (en) | 1992-12-18 | 1999-03-10 | Schering Corporation | Inhaler for powdered medications |
| US5743250A (en) | 1993-01-29 | 1998-04-28 | Aradigm Corporation | Insulin delivery enhanced by coached breathing |
| IL108780A (en) | 1993-02-27 | 1999-06-20 | Fisons Plc | Inhalation device |
| EP0692990B1 (en) | 1993-04-06 | 1998-09-23 | Minnesota Mining And Manufacturing Company | Deagglomerators for dry powder inhalers |
| US5372128A (en) | 1993-04-14 | 1994-12-13 | Habley Medical Technology Corporation | Fluidizing powder inhaler |
| US5533502A (en) | 1993-05-28 | 1996-07-09 | Vortran Medical Technology, Inc. | Powder inhaler with aerosolization occurring within each individual powder receptacle |
| GB9312984D0 (en) | 1993-06-23 | 1993-08-04 | Bespak Plc | Atomising dispenser |
| GB9314614D0 (en) | 1993-07-14 | 1993-08-25 | Minnesota Mining & Mfg | Dry powder inhalers |
| US5349947A (en) | 1993-07-15 | 1994-09-27 | Newhouse Michael T | Dry powder inhaler and process that explosively discharges a dose of powder and gas from a soft plastic pillow |
| SE9302550D0 (en) | 1993-07-30 | 1993-07-30 | Ernst Hoerlin | POWDER INHALES |
| US5388572A (en) | 1993-10-26 | 1995-02-14 | Tenax Corporation (A Connecticut Corp.) | Dry powder medicament inhalator having an inhalation-activated piston to aerosolize dose and deliver same |
| DE4340768A1 (en) | 1993-11-30 | 1995-06-01 | Bayer Ag | Inhalation device |
| US5415162A (en) | 1994-01-18 | 1995-05-16 | Glaxo Inc. | Multi-dose dry powder inhalation device |
| PT101450B (en) | 1994-02-02 | 1999-11-30 | Hovione Produtos Farmaceuticos | NEW INHALATION DEVICE |
| GB9417399D0 (en) | 1994-08-30 | 1994-10-19 | Scherer Corp R P | Ocular treatment device |
| ATE228024T1 (en) | 1994-09-16 | 2002-12-15 | Glaxosmithkline Lab Sas | INHALER |
| FR2725626A1 (en) | 1994-10-18 | 1996-04-19 | Sofab | DEVICE FOR INHALING POWDERED PRODUCTS |
| GB9422821D0 (en) | 1994-11-11 | 1995-01-04 | Aid Medic Ltd | Atomizer |
| GB9501841D0 (en) | 1995-01-31 | 1995-03-22 | Co Ordinated Drug Dev | Improvements in and relating to carrier particles for use in dry powder inhalers |
| US5622166A (en) | 1995-04-24 | 1997-04-22 | Dura Pharmaceuticals, Inc. | Dry powder inhaler delivery system |
| US5921237A (en) | 1995-04-24 | 1999-07-13 | Dura Pharmaceuticals, Inc. | Dry powder inhaler |
| PT837710E (en) | 1995-06-21 | 2002-05-31 | Sofotec Gmbh & Co Kg | PHARMACEUTICAL POINT CARTRIDGE WITH INTEGRATED DOSAGE DEVICE AND INHALER FOR PO MEDICATIONS |
| SE504458C2 (en) | 1995-06-21 | 1997-02-17 | Lars Gunnar Nilsson | Inhalator for electrical dosing of substances |
| GB9513218D0 (en) | 1995-06-29 | 1995-09-06 | Fisons Plc | Inhalation device and method |
| DE19523516C1 (en) | 1995-06-30 | 1996-10-31 | Asta Medica Ag | Inhaler for administering medication from blister packs |
| US5642727A (en) * | 1995-07-25 | 1997-07-01 | David Sarnoff Research Center, Inc. | Inhaler apparatus using a tribo-electric charging technique |
| US6209538B1 (en) | 1995-08-02 | 2001-04-03 | Robert A. Casper | Dry powder medicament inhalator having an inhalation-activated flow diverting means for triggering delivery of medicament |
| US5692496A (en) | 1995-08-02 | 1997-12-02 | Innovative Devices, Llc | Dry powder medicament inhalator having an inhalation-activated flow diverting means for triggering delivery of medicament |
| US5617844A (en) | 1995-09-21 | 1997-04-08 | King; Russell W. | Aerosol medication delivery system |
| WO1997020589A1 (en) | 1995-12-07 | 1997-06-12 | Jago Pharma Ag | Inhalator designed to provide multiple doses of a dry pharmacological powder |
| US5669378A (en) | 1995-12-21 | 1997-09-23 | Pera; Ivo | Inhaling device |
| AP9801285A0 (en) | 1996-01-03 | 1998-09-30 | Glaxo Group Ltd | Inhalation device. |
| US6026809A (en) | 1996-01-25 | 2000-02-22 | Microdose Technologies, Inc. | Inhalation device |
| US5694920A (en) | 1996-01-25 | 1997-12-09 | Abrams; Andrew L. | Inhalation device |
| US5699789A (en) | 1996-03-11 | 1997-12-23 | Hendricks; Mark R. | Dry powder inhaler |
| JPH09253208A (en) | 1996-03-21 | 1997-09-30 | Unisia Jecs Corp | Nasal administration device |
| JP3328132B2 (en) | 1996-03-21 | 2002-09-24 | 株式会社ユニシアジェックス | Inhaler type dispenser |
| DE19613185A1 (en) * | 1996-04-02 | 1997-10-09 | Pfeiffer Erich Gmbh & Co Kg | Dosing device for flowable media such as powder / air dispersions |
| US5875776A (en) | 1996-04-09 | 1999-03-02 | Vivorx Pharmaceuticals, Inc. | Dry powder inhaler |
| US6123070A (en) | 1996-06-07 | 2000-09-26 | Valois S.A. | Device for enhancing the emptying of an inhaler metering chamber |
| US5857456A (en) | 1996-06-10 | 1999-01-12 | Sarnoff Corporation | Inhaler apparatus with an electronic means for enhanced release of dry powders |
| US5813401A (en) | 1996-10-15 | 1998-09-29 | Radcliff; Janet H. | Nebulizer automatic control valve |
| SE9700424D0 (en) | 1997-02-07 | 1997-02-07 | Astra Ab | Powder inhales |
| SE9700421D0 (en) | 1997-02-07 | 1997-02-07 | Astra Ab | Single dose inhalation I |
| TW469832U (en) | 1997-03-14 | 2001-12-21 | Astra Ab | Inhalation device |
| US6237590B1 (en) | 1997-09-18 | 2001-05-29 | Delsys Pharmaceutical Corporation | Dry powder delivery system apparatus |
| US6073629A (en) * | 1997-09-25 | 2000-06-13 | Norton Healthcare Ltd. | Inhaler spacer |
| US6237591B1 (en) | 1998-11-02 | 2001-05-29 | Dura Pharmaceuticals, Inc. | Turbine dry powder inhaler |
| US6752147B1 (en) | 1998-01-30 | 2004-06-22 | Hagepharm Gmbh | Inhalation apparatus for powder medications |
| GB2334686B (en) | 1998-02-26 | 2002-06-19 | Medic Aid Ltd | Nebuliser |
| GB9810126D0 (en) | 1998-05-13 | 1998-07-08 | Glaxo Group Ltd | |
| US6257233B1 (en) | 1998-06-04 | 2001-07-10 | Inhale Therapeutic Systems | Dry powder dispersing apparatus and methods for their use |
| US6152130A (en) | 1998-06-12 | 2000-11-28 | Microdose Technologies, Inc. | Inhalation device with acoustic control |
| US6234169B1 (en) | 1998-08-14 | 2001-05-22 | Arthur Slutsky | Inhaler |
| CA2347856C (en) | 1998-11-13 | 2009-02-17 | Jago Research Ag | Dry powder for inhalation |
| GB9905538D0 (en) | 1999-03-10 | 1999-05-05 | Glaxo Group Ltd | A device |
| US6328033B1 (en) | 1999-06-04 | 2001-12-11 | Zohar Avrahami | Powder inhaler |
| ITMI991582A1 (en) | 1999-07-16 | 2001-01-16 | Chiesi Farma Spa | DUST CONSTITUTED FROM PARTICLES HAVING THE PERFECTLY SMOOTH SURFACE FOR USE AS VEHICLES FOR THE PREPARATION OF INALA MIXTURES |
| US6810872B1 (en) | 1999-12-10 | 2004-11-02 | Unisia Jecs Corporation | Inhalant medicator |
| US7069929B2 (en) | 2000-02-01 | 2006-07-04 | Quadrant Technologies Limited | Dry powder inhaler |
| US6427688B1 (en) | 2000-02-01 | 2002-08-06 | Dura Pharmaceuticals, Icn. | Dry powder inhaler |
| US6971383B2 (en) | 2001-01-24 | 2005-12-06 | University Of North Carolina At Chapel Hill | Dry powder inhaler devices, multi-dose dry powder drug packages, control systems, and associated methods |
| FI20000810A0 (en) | 2000-04-06 | 2000-04-06 | Orion Yhtymae Oyj | The powder inhaler |
| TWI224515B (en) | 2000-06-23 | 2004-12-01 | Norton Healthcare Ltd | Pre-metered dose magazine for breath-actuated dry powder inhaler |
| AU2001283546A1 (en) | 2000-08-14 | 2002-02-25 | Advanced Inhalation Research, Inc. | Inhalation device and method |
| SE517227C2 (en) | 2000-09-25 | 2002-05-14 | Microdrug Ag | Dry powder inhaler with foil cutter |
| FI20002363A0 (en) | 2000-10-27 | 2000-10-27 | Orion Yhtymae Oyj | powder inhaler |
| GB0026647D0 (en) | 2000-10-31 | 2000-12-13 | Glaxo Group Ltd | Medicament dispenser |
| US6626173B2 (en) | 2001-01-08 | 2003-09-30 | Iep Pharmaceutical Devices Inc. | Dry powder inhaler |
| FI20010538A0 (en) | 2001-03-16 | 2001-03-16 | Orion Corp | The powder inhaler |
| US6766799B2 (en) | 2001-04-16 | 2004-07-27 | Advanced Inhalation Research, Inc. | Inhalation device |
| GB2375308A (en) | 2001-05-10 | 2002-11-13 | Cambridge Consultants | Inhalers |
| EP1392383A2 (en) | 2001-05-10 | 2004-03-03 | Vectura Delivery Devices Limited | Inhalers |
| SE0101825D0 (en) | 2001-05-22 | 2001-05-22 | Astrazeneca Ab | An inhalation device |
| EG24184A (en) | 2001-06-15 | 2008-10-08 | Otsuka Pharma Co Ltd | Dry powder inhalation system for transpulmonary |
| US6681768B2 (en) | 2001-06-22 | 2004-01-27 | Sofotec Gmbh & Co. Kg | Powder formulation disintegrating system and method for dry powder inhalers |
| JP2004537377A (en) | 2001-08-09 | 2004-12-16 | グラクソ グループ リミテッド | Inhalation device with pharmaceutical composition |
| GB0120018D0 (en) | 2001-08-16 | 2001-10-10 | Meridica Ltd | Pack containing medicament and dispensing device |
| US6779520B2 (en) | 2001-10-30 | 2004-08-24 | Iep Pharmaceutical Devices Inc. | Breath actuated dry powder inhaler |
| FI116657B (en) * | 2002-03-28 | 2006-01-31 | Focus Inhalation Oy | Process for treating the carrier particles and using them |
| GR1004350B (en) | 2002-03-29 | 2003-09-26 | Inhaler for dry powder | |
| SE524957C2 (en) | 2002-04-12 | 2004-11-02 | Microdrug Ag | Method for dividing and distributing in air of dry powder drug |
| US7118010B2 (en) | 2002-05-10 | 2006-10-10 | Oriel Therapeutics, Inc. | Apparatus, systems and related methods for dispensing and /or evaluating dry powders |
| US6889690B2 (en) | 2002-05-10 | 2005-05-10 | Oriel Therapeutics, Inc. | Dry powder inhalers, related blister devices, and associated methods of dispensing dry powder substances and fabricating blister packages |
| US6769436B2 (en) * | 2002-06-28 | 2004-08-03 | Richard C. Horian | Volatile inhaler and method |
| GB0217198D0 (en) | 2002-07-25 | 2002-09-04 | Glaxo Group Ltd | Medicament dispenser |
| PT1386630E (en) | 2002-07-31 | 2006-09-29 | Chiesi Farma Spa | INPUT IN PO |
| US7284553B2 (en) | 2002-12-12 | 2007-10-23 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Powder inhaler comprising a chamber for a capsule for taking up a non-returnable capsule being filled with an active ingredient |
| US20040173211A1 (en) | 2003-01-14 | 2004-09-09 | Boehringer Ingelheim International Gmbh | Powder inhaler |
| ATE400313T1 (en) | 2003-03-20 | 2008-07-15 | Galephar M F | IMPROVED DRY POWDER INHALATION SYSTEM |
| EP1488819A1 (en) | 2003-06-16 | 2004-12-22 | Rijksuniversiteit te Groningen | Dry powder inhaler and method for pulmonary inhalation of dry powder |
| GB2405798A (en) | 2003-09-15 | 2005-03-16 | Vectura Ltd | Dry powder inhaler with primary and secondary piercing elements and a medicament pack for use with an inhalation device. |
| DE10352277A1 (en) | 2003-11-08 | 2005-06-02 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | powder inhaler |
| WO2005076872A2 (en) | 2004-02-06 | 2005-08-25 | Microdose Technologies, Inc. | A blister pack for use with an inhalation device |
| CA2554005C (en) * | 2004-02-24 | 2013-05-28 | Microdose Technologies, Inc. | Directional flow sensor inhaler |
| US7556035B2 (en) * | 2004-05-28 | 2009-07-07 | Quadrant Technologies Limited | Unit dose dry powder inhaler |
| US7664249B2 (en) * | 2004-06-30 | 2010-02-16 | Microsoft Corporation | Methods and interfaces for probing and understanding behaviors of alerting and filtering systems based on models and simulation from logs |
| CA2616997C (en) | 2004-09-13 | 2014-12-23 | Oriel Therapeutics, Inc. | Dry powder inhalers that inhibit agglomeration, related devices and methods |
| WO2006037636A2 (en) | 2004-10-06 | 2006-04-13 | Boehringer Ingelheim International Gmbh | Dispensing device, storage device and method for dispensing powder |
| GB0427028D0 (en) | 2004-12-09 | 2005-01-12 | Cambridge Consultants | Dry powder inhalers |
| GB0427856D0 (en) | 2004-12-20 | 2005-01-19 | Glaxo Group Ltd | Maniflod for use in medicament dispenser |
| GB0503738D0 (en) | 2005-02-23 | 2005-03-30 | Optinose As | Powder delivery devices |
| IL175664A0 (en) | 2006-05-16 | 2006-09-05 | Aespira Ltd | Dry-powder inhaler |
| GB0520794D0 (en) * | 2005-10-12 | 2005-11-23 | Innovata Biomed Ltd | Inhaler |
| EP1795221A1 (en) | 2005-12-02 | 2007-06-13 | Boehringer Ingelheim Pharma GmbH & Co. KG | Dispensing device, storage device and method for dispensing a formulation |
| FR2895644B1 (en) * | 2006-01-03 | 2008-05-16 | Didier Gerard Martzel | SUBSTITUTE OF CIGARETTE |
| US7987845B2 (en) | 2006-01-31 | 2011-08-02 | Oriel Therapeutics, Inc. | Dry powder inhalers having spiral travel paths, unit dose microcartridges with dry powder, related devices and methods |
| WO2007103152A2 (en) | 2006-03-03 | 2007-09-13 | Stc.Unm | Dry powder inhaler with aeroelastic dispersion mechanism |
| US8127763B2 (en) | 2006-03-03 | 2012-03-06 | Stc.Unm | Dry powder inhaler with aeroelastic dispersion mechanism |
| US8037880B2 (en) | 2006-04-07 | 2011-10-18 | The University Of Western Ontario | Dry powder inhaler |
| PT103481B (en) * | 2006-05-16 | 2008-08-01 | Hovione Farmaciencia S A | INHALER OF SIMPLE USE AND INHALATION METHOD |
| US8522775B2 (en) | 2006-06-16 | 2013-09-03 | Cipla Limited | Dry powder inhaler |
| EP2043717A1 (en) | 2006-07-14 | 2009-04-08 | Astra Zeneca AB | Inhalation system and delivery device for the administration of a drug in the form of dry powder |
| US7903371B2 (en) * | 2006-07-21 | 2011-03-08 | Tdk Corporation | Perpendicular magnetic recording head and perpendicular magnetic recording/reproducing head having a magnetic shield layer with a thick edge portion |
| WO2008021451A2 (en) | 2006-08-14 | 2008-02-21 | Aktiv-Dry Llc | Human-powered dry powder inhaler and dry powder inhaler compositions |
| DE102006044755A1 (en) | 2006-09-20 | 2008-04-10 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | inhaler |
| WO2008047105A1 (en) * | 2006-10-17 | 2008-04-24 | Cipla Limited | Crystalline form of benzothiophene compound and process for preparation thereof |
| US8196576B2 (en) | 2007-02-28 | 2012-06-12 | Microdose Therapeutx, Inc. | Inhaler |
| KR101623422B1 (en) * | 2007-06-27 | 2016-05-23 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | Optical designs for high-efficacy white-light emitting diodes |
| EP2898914B1 (en) * | 2007-07-06 | 2018-06-20 | Manta Devices, LLC | Inhalation devices for storing and delivering medicament |
| WO2009046072A1 (en) | 2007-10-02 | 2009-04-09 | Baxter International Inc | Dry powder inhaler |
| EP2082764A1 (en) * | 2008-01-24 | 2009-07-29 | Boehringer Ingelheim International GmbH | Inhaler |
| GB0802028D0 (en) | 2008-02-05 | 2008-03-12 | Dunne Stephen T | Powder inhaler flow regulator |
| US20090235929A1 (en) | 2008-03-19 | 2009-09-24 | Marc Egen | Powder inhalers |
| IL191190A0 (en) | 2008-05-01 | 2009-08-03 | Dan Adler | Dry powder inhaler |
| ES2929343T3 (en) | 2008-06-13 | 2022-11-28 | Mannkind Corp | Suction Actuated Dry Powder Inhaler for Drug Delivery |
| FR2933620B1 (en) | 2008-07-11 | 2010-09-03 | Valois Sa | INHALATION DEVICE FOR POWDER. |
| US20110253140A1 (en) | 2008-07-30 | 2011-10-20 | Stc.Unm | Formulations containing large-size carrier particles for dry powder inhalation aerosols |
| AU2010319328A1 (en) | 2009-11-12 | 2012-05-31 | Stc.Unm | Dry powder inhaler with flutter dispersion member |
| CA2786996A1 (en) * | 2010-01-27 | 2011-07-07 | Dan Adler | Dry powder inhaler |
| US8561609B2 (en) * | 2010-12-07 | 2013-10-22 | Respira Therapeutics, Inc. | Dry powder inhaler |
| CN102553039B (en) | 2010-12-17 | 2014-10-29 | 陈庆堂 | Medicinal powder suction nozzle and application |
| US10682476B2 (en) | 2012-02-21 | 2020-06-16 | Respira Therapeutics, Inc. | Powder inhaler, system and methods |
| US10463815B2 (en) | 2012-02-21 | 2019-11-05 | Respira Therapeutics, Inc. | Inhaler to deliver substances for prophylaxis or prevention of disease or injury caused by the inhalation of biological or chemical agents |
| FR3007992B1 (en) | 2013-07-05 | 2018-01-26 | Aptar France Sas | DEVICE FOR DISPENSING FLUID OR PULVERULENT PRODUCT. |
-
2013
- 2013-02-21 US US13/773,325 patent/US10463815B2/en active Active
- 2013-02-25 US US13/776,558 patent/US20150246189A9/en not_active Abandoned
- 2013-02-25 US US13/776,546 patent/US10441733B2/en active Active
- 2013-06-20 EP EP13810308.0A patent/EP2863973A4/en not_active Withdrawn
- 2013-06-20 JP JP2015520317A patent/JP6735012B2/en active Active
- 2013-06-20 WO PCT/US2013/046795 patent/WO2014004256A1/en not_active Ceased
- 2013-06-20 CA CA2877483A patent/CA2877483A1/en not_active Abandoned
- 2013-06-20 JP JP2015520314A patent/JP2015525111A/en active Pending
- 2013-06-20 ES ES13808599T patent/ES2729566T3/en active Active
- 2013-06-20 EP EP13808599.8A patent/EP2863972B1/en active Active
- 2013-06-20 CA CA2877486A patent/CA2877486C/en active Active
- 2013-06-20 WO PCT/US2013/046779 patent/WO2014004250A1/en not_active Ceased
-
2015
- 2015-01-16 IN IN405DEN2015 patent/IN2015DN00405A/en unknown
- 2015-01-16 IN IN408DEN2015 patent/IN2015DN00408A/en unknown
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11471623B2 (en) | 2012-02-21 | 2022-10-18 | Respira Therapeutics, Inc. | Powder dispersion methods and devices |
| US20160199598A1 (en) * | 2012-02-21 | 2016-07-14 | Respira Therapeutics, Inc. | Powder dispersion methods and devices |
| US10525216B2 (en) * | 2012-02-21 | 2020-01-07 | Respira Therapeutics, Inc. | Powder dispersion methods and devices |
| US10682476B2 (en) | 2012-02-21 | 2020-06-16 | Respira Therapeutics, Inc. | Powder inhaler, system and methods |
| US10441733B2 (en) | 2012-06-25 | 2019-10-15 | Respira Therapeutics, Inc. | Powder dispersion devices and methods |
| US12364701B2 (en) | 2013-12-09 | 2025-07-22 | Respira Therapeutics, Inc. | PDE5 inhibitor powder formulations and methods relating thereto |
| US11806314B2 (en) | 2013-12-09 | 2023-11-07 | Respira Therapeutics, Inc. | PDE5 inhibitor powder formulations and methods relating thereto |
| CN106794325A (en) * | 2014-02-21 | 2017-05-31 | 瑞必治公司 | Powder inhalator, system and method |
| CN106794325B (en) * | 2014-02-21 | 2020-06-30 | 瑞必治公司 | Powder inhaler, system and method |
| WO2016115379A1 (en) * | 2015-01-14 | 2016-07-21 | Respira Therapeutics, Inc. | Powder dispersion methods and devices |
| CN107427650A (en) * | 2015-01-14 | 2017-12-01 | 瑞必治公司 | Powder process for dispersing and device |
| CN107847692A (en) * | 2015-04-30 | 2018-03-27 | 好利安科技有限公司 | Powder chamber for high dose medicament delivering |
| US10589234B2 (en) | 2015-07-16 | 2020-03-17 | Ohkawara Kakohki Co., Ltd. | Wet disperser |
| WO2018112258A1 (en) | 2016-12-14 | 2018-06-21 | Respira Therapeutics, Inc. | Methods and compositions for treatment of pulmonary hypertension and other lung disorders |
| EP4620525A2 (en) | 2016-12-14 | 2025-09-24 | Respira Therapeutics, Inc. | Methods and compositions for treatment of pulmonary hypertension and other lung disorders |
| US11452825B2 (en) | 2017-05-31 | 2022-09-27 | Philip Morris Products S.A. | Inhaler article with occluded airflow element |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2877486A1 (en) | 2014-01-03 |
| JP2015525111A (en) | 2015-09-03 |
| US20130340747A1 (en) | 2013-12-26 |
| IN2015DN00408A (en) | 2015-06-19 |
| ES2729566T3 (en) | 2019-11-04 |
| JP2015521526A (en) | 2015-07-30 |
| CA2877483A1 (en) | 2014-01-03 |
| EP2863973A4 (en) | 2015-12-23 |
| EP2863973A1 (en) | 2015-04-29 |
| EP2863972A4 (en) | 2015-12-23 |
| WO2014004250A1 (en) | 2014-01-03 |
| US10441733B2 (en) | 2019-10-15 |
| US20130213397A1 (en) | 2013-08-22 |
| EP2863972B1 (en) | 2019-03-06 |
| IN2015DN00405A (en) | 2015-06-19 |
| EP2863972A1 (en) | 2015-04-29 |
| CA2877486C (en) | 2020-08-18 |
| JP6735012B2 (en) | 2020-08-05 |
| WO2014004256A1 (en) | 2014-01-03 |
| US10463815B2 (en) | 2019-11-05 |
| US20150246189A9 (en) | 2015-09-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10441733B2 (en) | Powder dispersion devices and methods | |
| US8561609B2 (en) | Dry powder inhaler | |
| US11471623B2 (en) | Powder dispersion methods and devices | |
| US10682476B2 (en) | Powder inhaler, system and methods | |
| PL204303B1 (en) | Inhalation device and method | |
| AU2016256655B2 (en) | Powder compartment for high dosage drug delivery | |
| EP3630239B1 (en) | Devices, systems, and methods for dry powder therapies | |
| US20250108180A1 (en) | Powder dispersion methods and devices |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: RESPIRA THERAPEUTICS, INC., NEW MEXICO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DONOVAN, MARTIN J.;REEL/FRAME:030602/0297 Effective date: 20130301 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |