[go: up one dir, main page]

US20130337605A1 - Substrate plasma-processing apparatus - Google Patents

Substrate plasma-processing apparatus Download PDF

Info

Publication number
US20130337605A1
US20130337605A1 US13/972,497 US201313972497A US2013337605A1 US 20130337605 A1 US20130337605 A1 US 20130337605A1 US 201313972497 A US201313972497 A US 201313972497A US 2013337605 A1 US2013337605 A1 US 2013337605A1
Authority
US
United States
Prior art keywords
substrate
electrode
distance
chamber
supporting bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/972,497
Other versions
US8901008B2 (en
Inventor
Tae-Wook Kang
Ou-Hyun Kim
Chang-Soon Jl
Hyun-Lae Cho
Chang-Guo AN
Jeong-yeol Lee
Jae-Mork PARK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Display Co Ltd filed Critical Samsung Display Co Ltd
Priority to US13/972,497 priority Critical patent/US8901008B2/en
Publication of US20130337605A1 publication Critical patent/US20130337605A1/en
Application granted granted Critical
Publication of US8901008B2 publication Critical patent/US8901008B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • H01L51/0029
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/811Controlling the atmosphere during processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/024Moving components not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/03Mounting, supporting, spacing or insulating electrodes
    • H01J2237/032Mounting or supporting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/03Mounting, supporting, spacing or insulating electrodes
    • H01J2237/038Insulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20221Translation
    • H01J2237/20235Z movement or adjustment

Definitions

  • aspects of the present invention relate to a substrate plasma-processing apparatus.
  • An organic light emitting display device using an organic light emitting device has a fast response speed compared to a liquid crystal (LCD) typical of those currently widely used.
  • Organic light emitting display devices are being thought of as the next generation display device because an organic light emitting display device accommodates a moving picture better, has a wider viewing angle due to self light-emission, and exhibits high brightness.
  • the OLED includes a pixel electrode, a counter electrode facing the pixel electrode, and an emission layer including an organic material where the emission layer is interposed between the pixel electrode and the counter electrode.
  • a surface of the pixel electrode i.e., an anode electrode
  • the plasma-process with respect to the surface of the pixel electrode has an effect on light emission efficiency and lifetime of the OLED. That is, if the surface of the pixel electrode is not uniformly plasma-processed, the brightness of the organic light emitting display device is not uniform and also, the lifetime of the organic light emitting display device is shortened. Therefore, with respect to plasma-processing the surface of the pixel electrode, plasma uniformity in a plasma-processing apparatus is very important.
  • An aspect of the present invention provides a substrate plasma-processing apparatus for constantly maintaining plasma uniformity in a chamber.
  • An aspect of the present invention provides a substrate plasma-processing apparatus for plasma-processing the surface of a pixel or other display electrode formed on a substrate, the substrate plasma-processing apparatus including a chamber having disposed therein the substrate; a first electrode disposed in the chamber apart from the bottom surface of the substrate; a second electrode disposed in the chamber apart from the top surface of the substrate; and a distance adjusting unit adjusting the distance between the first electrode and the substrate or the distance between the second electrode and the substrate.
  • the distance adjusting unit may adjust the distance between the first electrode and the substrate by raising or lowering the substrate.
  • the distance adjusting unit may adjust the distance between the second electrode and the substrate by raising or lowering the second electrode.
  • a substrate plasma-processing apparatus for plasma-processing the surface of a pixel or other display electrode of an organic light emitting device
  • the substrate plasma-processing apparatus including a chamber; a distance adjusting unit for supporting and moving the substrate in the chamber; a first electrode disposed below and apart from the substrate; and a second electrode facing the first electrode by being disposed above and apart from the substrate; wherein the distance adjusting unit adjusts the distance between the substrate and the first electrode or the distance between the substrate and the second electrode.
  • the distance adjusting unit may include a substrate supporting unit supporting the substrate; a supporting bar coupled with the substrate supporting unit in a direction perpendicular to the substrate; and an actuator vertically raising or lowering the supporting bar.
  • the actuator may increase the distance between the substrate and the first electrode by moving the supporting bar outside the chamber.
  • the actuator may decrease the distance between the substrate and the first electrode by moving the supporting bar inside the chamber.
  • the second electrode may be supported by the supporting bar and may be disposed above and apart from the substrate.
  • the distance between the substrate and the second electrode may be maintained constant while the substrate is raised or lowered.
  • the second electrode may be fixed to the supporting bar.
  • the distance between the substrate and the first electrode may increase and the distance between the substrate and the second electrode may decrease.
  • the distance between the substrate and the first electrode may decrease and the distance between the substrate and the second electrode may increase.
  • the substrate supporting unit and the supporting bar may be formed of an insulating material.
  • the substrate supporting unit and the supporting bar may be formed of a ceramic material.
  • the ceramic may include alumina (Al 2 O 3 ).
  • the substrate plasma-processing apparatus may further include a first insulating member disposed between the substrate supporting unit and the supporting bar, and the first insulating member may couple the substrate supporting unit and the supporting bar.
  • the substrate plasma-processing apparatus may further include a first cover unit externally surrounding the first insulating member.
  • the first cover unit may be formed of ceramic.
  • the first insulating member may be formed of a polymer.
  • the substrate supporting unit and the supporting bar may be formed of a metal.
  • the substrate plasma-processing apparatus may further include a second insulating member disposed between the first electrode and the chamber.
  • the second insulating member may be formed of a fluoropolymer.
  • the second electrode may be grounded.
  • the may flow in the second electrode so as to maintain a temperature of the second electrode constant.
  • the first electrode may include at least one pipe for delivering gas from outside of the chamber; and at least one shower head for emitting the gas to the chamber.
  • the substrate plasma-processing apparatus may further include at least one flow adjusting valve for adjusting the flow of the gas emitted to the first electrode.
  • the substrate plasma-processing apparatus may further include an inner chamber disposed in the chamber, and the first electrode may be disposed in the inner chamber.
  • the substrate plasma-processing apparatus may further include a third insulating member disposed between the inner chamber and the chamber.
  • the third insulating member may be formed of a fluoropolymer.
  • the substrate plasma-processing apparatus may further include a second cover unit externally surrounding the third insulating member.
  • the second cover unit may be formed of a ceramic material.
  • FIG. 1 is a cross-sectional view of a substrate plasma-processing apparatus according to an embodiment of the present invention
  • FIG. 2 is a variation of a distance adjusting unit of the substrate plasma-processing apparatus of FIG. 1 ;
  • FIG. 3A is a two-dimensional etching map with respect to etching degree of a mother substrate that is plasma-processed by a conventional plasma-processing apparatus;
  • FIG. 3B is a three-dimensional etching map with respect to etching degree of a mother substrate that is plasma-processed by a conventional plasma-processing apparatus;
  • FIG. 4A is a two-dimensional etching map with respect to etching degree of a mother substrate that is plasma-processed by the substrate plasma-processing apparatus according to an embodiment of the present invention.
  • FIG. 4B is a three-dimensional etching map with respect to etching degree of a mother substrate that is plasma-processed by the substrate plasma-processing apparatus according to the embodiment of FIG. 4A .
  • FIG. 1 is a cross-sectional view of a substrate plasma-processing apparatus 100 according to an embodiment of the present invention.
  • the substrate plasma-processing apparatus 100 includes a chamber 101 , a distance adjusting unit 102 , a first electrode 104 , a second electrode 105 , and at least one flow adjusting valve 107 .
  • the distance adjusting unit 102 is disposed in the chamber 101 to support a substrate 103 and the second electrode 105 .
  • the distance adjusting unit 102 supports the substrate 103 and the second electrode 105 , raises or lowers the substrate 103 in the chamber 101 , and raises or lowers the second electrode 105 in the chamber 101 .
  • the second electrode 105 is disposed above and apart from the substrate 103
  • the first electrode 104 is disposed below and apart from the substrate 103 .
  • the distance adjusting unit 102 raises or lowers the substrate 103 , the distance S 1 between the first electrode 104 and the substrate 103 , and the distance S 2 between the second electrode 105 and the substrate 103 may be adjusted, or when the distance adjusting unit 102 raises or lowers the second electrode 105 , the distance S 2 between the second electrode 105 and the substrate 103 may be adjusted. A detailed description thereof will be provided later.
  • the shown distance adjusting unit 102 includes a substrate supporting unit 102 a, a supporting bar 102 b, and an actuator 102 c.
  • the shown substrate supporting unit 102 a supports the bottom surface of the substrate 103 .
  • the shown substrate supporting unit 102 a is formed of two plates which are individually connected to the supporting bar 102 b.
  • the two plates of the substrate supporting unit 102 a are disposed apart from each other sufficiently so that the substrate 103 is disposed between the two plates.
  • the shown two plates of the substrate supporting unit 102 a support bottom surfaces of both side portions of the substrate 103 , wherein the side portions face each other.
  • the substrate 103 is disposed between the two plates of the substrate supporting unit 102 a so that the bottom surface of the substrate 103 faces the first electrode 104 , and the top surface of the substrate 103 faces the second electrode 105 .
  • the supporting unit 102 a can be otherwise constructed, and can support other sides of the substrate in addition to, or instead of the sides shown.
  • An end of the supporting bar 102 b is coupled with the substrate supporting unit 102 a, and a portion of the supporting bar 102 b is in the chamber 101 .
  • the substrate supporting unit 102 a is disposed in the chamber 101 .
  • the end of the supporting bar 102 b is coupled with the substrate supporting unit 102 a in the direction perpendicular to the substrate 103 , and the other end is connected to the actuator 102 c disposed outside the chamber 101 .
  • the portion of the supporting bar 102 b is disposed inside the chamber 101 , and another portion of the supporting bar 102 b is disposed outside the chamber 101 , in such a manner that the substrate supporting unit 102 a and the portion of the supporting bar 102 b are disposed in the chamber 101 .
  • the shown supporting bar 102 b is vertically raised or lowered by the actuator 102 c. Since the end of the supporting bar 102 b is coupled with the substrate supporting unit 102 a, the substrate supporting unit 102 a is raised or lowered when the supporting bar 102 b is raised or lowered. Thus, according to the raising or the lowering of the supporting bar 102 b, the substrate 103 supported by the substrate supporting unit 102 a is raised or lowered.
  • the actuator 102 c vertically raises or lowers the supporting bar 102 b. As illustrated in FIG. 1 , the actuator 102 c is disposed outside the chamber 101 . In this case, the actuator 102 c is connected to the other portion of the supporting bar 102 b, which is outside the chamber 101 .
  • the position of the actuator 102 c of the substrate plasma-processing apparatus 100 is not limited to the aforementioned position, and thus, the actuator 102 c may be disposed inside the chamber 101 and connected at other portions of the supporting bar 102 b.
  • the actuator 102 c raises the supporting bar 102 b
  • the supporting bar 102 b moves in the direction toward the outside of the chamber 101 so that the substrate supporting unit 102 a which is coupled with the end of the supporting bar 102 b is also raised.
  • the substrate 103 which is supported by the substrate supporting unit 102 a
  • the substrate 103 which is supported by the substrate supporting unit 102 a
  • the substrate 103 which is supported by the substrate supporting unit 102 a
  • the substrate 103 which is supported by the substrate supporting unit 102 a
  • the substrate 103 which is supported by the substrate supporting unit 102 a
  • the distance S 1 between the first electrode 104 and the substrate 103 decreases.
  • the substrate supporting unit 102 a and the supporting bar 102 b are formed of an insulating material such as a ceramic.
  • the ceramic may be alumina (Al 2 O 3 ).
  • the substrate supporting unit 102 a and the supporting bar 102 b are formed of the insulating material so that it is possible to prevent arcing from occurring between the substrate 103 and the substrate supporting unit 102 a, or between the supporting bar 102 b and the substrate supporting unit 102 a.
  • a first insulating member 102 d may be disposed between the substrate supporting unit 102 a and the supporting bar 102 b.
  • FIG. 2 is a diagram of the distance adjusting unit 102 of the substrate plasma-processing apparatus of FIG. 1 .
  • the substrate supporting unit 102 a and the supporting bar 102 b are coupled by a first insulating member 102 d.
  • the first insulating member 102 d is a polymer, for example a fluoropolymer.
  • a first cover unit 102 e is disposed to externally surround the first insulating member 102 d.
  • the first cover unit 102 e protects the first insulating member 102 d from plasma.
  • the substrate supporting unit 102 a and the supporting bar 102 b are formed of a metal such as aluminum.
  • the first insulating member 102 d prevents arcing from occurring between the substrate supporting unit 102 a and the supporting bar 102 b.
  • the first electrode 104 is disposed inside the chamber 101 apart from the bottom surface of the substrate 103 .
  • the first electrode 104 is a radio frequency (RF) electrode to which radio frequency (RF) power is applied.
  • RF radio frequency
  • An RF power of about 40 Mhz may be applied to the first electrode 104 .
  • a surface of the first electrode 104 faces the inside of the chamber 101 , and the other surface of the first electrode 104 faces the outside of the chamber 101 .
  • At least one shower head 104 a for emitting a gas to the chamber 101 is disposed on the surface of the first electrode 104 , which faces the inside of the chamber 101 .
  • At least one pipe 104 b for delivering a gas from the outside of the chamber 101 to the inside of the chamber 101 is disposed on the other surface of the first electrode 104 , which faces the outside of the chamber 101 .
  • a gas such as N 2 , O 2 , He, Ar, or the like is injected into the first electrode 104 . Then, the gas is emitted to the inside of the chamber 101 via the at least one shower head 104 a of the first electrode 104 .
  • the substrate plasma-processing apparatus 100 further includes at least one flow adjusting valve 107 .
  • Each flow adjusting valve 107 is disposed on one pipe 104 b and adjusts the flow of the gas emitted to the first electrode 104 .
  • a second insulating member 106 is disposed between the first electrode 104 and the chamber 101 .
  • the second insulating member 106 prevents direct contact between the first electrode 104 and the chamber 101 . That is, the second insulating member 106 is disposed at side and bottom portions of the first electrode 104 which may contact the chamber 101 . In this way, the first electrode 104 and the chamber 101 do not directly contact each other. Thus, using the second insulating member 106 , the first electrode 104 and the chamber 101 are insulated from each other so that it is possible to prevent arcing from occurring between the first electrode 104 and the chamber 101 .
  • the second insulating member 106 may be formed of a fluoropolymer.
  • An inner chamber 108 is disposed in the chamber 101 . As shown in FIG. 1 , the first electrode 104 is disposed in the inner chamber 108 . The top portion of the inner chamber 108 is open.
  • a third insulating member 109 is disposed between the inner chamber 108 and the chamber 101 .
  • the third insulating member 109 prevents the inner chamber 108 from directly contacting the chamber 101 .
  • the third insulating member 109 may be formed of a fluoropolymer.
  • a second cover unit 110 externally surrounds the third insulating member 109 .
  • the second cover unit 110 covering the third insulating member 109 , prevents the third insulating member 109 from being directly exposed to plasma.
  • the second cover unit 110 may be formed of a ceramic material.
  • the second electrode 105 faces the first electrode 104 by being disposed above and apart from the substrate 103 .
  • the second electrode 105 is disposed in the chamber 101 while being supported by the supporting bar 102 b of the distance adjusting unit 102 that supports the substrate 103 .
  • the second electrode 105 is disposed above and apart from the substrate 103 by being slidably fixed to the supporting bar 102 b. In this manner, in the case where the second electrode 105 is slidably fixed to the supporting bar 102 b, when the substrate 103 is raised or lowered by the distance adjusting unit 102 , the distance S 2 between the substrate 103 and the second electrode 105 may increase or decrease while maintaining a constant distance of either the substrate 103 or the second electrode 105 relative to the chamber 101 .
  • the second electrode 105 is slidably fixed to the supporting bar 102 b, when the substrate 103 is raised, the distance S 2 between the substrate 103 and the second electrode 105 decreases and the distance S 1 between the substrate 103 and the first electrode 104 increases. Also, when the substrate 103 is lowered, the distance S 2 between the substrate 103 and the second electrode 105 increases, and the distance S 1 between the substrate 103 and the first electrode 104 decreases.
  • the second electrode 105 can be slidably fixed to the supporting bar 102 b while being fixed to the chamber 101 , and/or the second electrode 105 can be fixed to the supporting bar 102 b using a clamp, which can be loosened to allow adjustment of the distance S 2 and tightened to prevent further adjustment.
  • the invention is not limited thereto.
  • the second electrode 105 may be disposed at the supporting bar 102 b so as to maintain a constant distance from the substrate 103 (i.e., not slidably fixed). In this case, the substrate 103 and the second electrode 105 are raised or lowered while maintaining the constant distance. Thus, when the substrate 103 is raised or lowered, the distance S 1 between the substrate 103 and the first electrode 104 increases or decreases but the distance between the substrate 103 and the second electrode 105 is constant.
  • the second electrode 105 may be separated from the supporting bar 102 b, the distance between the substrate 103 and the second electrode 105 may be adjusted, and then, the second electrode 105 may be disposed at the supporting bar 102 b.
  • the second electrode 105 may be moved by the distance adjusting unit 102 . That is, the distance adjusting unit 102 may adjust the distance S 2 between the second electrode 105 and the substrate 103 by raising or lowering the second electrode 105 . In this case, the distance adjusting unit 102 adjusts the distance S 1 between the first electrode 104 and the substrate 103 by raising or lowering the substrate 103 with respect to the first electrode 104 , and adjusts the distance S 2 between the substrate 103 and the second electrode 105 by raising or lowering the second electrode 105 with respect to the substrate 103 that is fixed.
  • the second electrode 105 is grounded.
  • the second electrode 105 may have an internal space in which refrigerant flows. Since the refrigerant flows in the second electrode 105 , it is possible to prevent the second electrode 105 from being overheated and to maintain the temperature of the second electrode 105 constant.
  • the distance S 1 between the substrate 103 and the first electrode 104 that is the RF electrode is improved by adjusting the plasma status in the chamber 101 . Accordingly, the surface of an anode electrode (not shown) on the substrate 103 is uniformly etched so that it is possible to prevent the brightness of an organic light emitting display device from being degraded and to increase the yield rate.
  • FIGS. 3A and 3B illustrate etching maps with respect to etching degree of a mother substrate 203 that is plasma-processed by a conventional plasma-processing apparatus.
  • the etching map of FIG. 3A is a two-dimensional etching map
  • the etching map of FIG. 3B is a three-dimensional etching map.
  • the portion A of the surface of the mother substrate 203 is deeply etched but another portion B is shallowly etched so that etching is not uniform. Brightness is relatively degraded at the deeply etched portion A, compared to the shallowly etched portion B. Also, a significantly and shallowly etched portion has a degraded lifetime.
  • FIGS. 4A and 4B illustrate etching maps with respect to etching degree of a mother substrate 303 that is plasma-processed by the substrate plasma-processing apparatus 100 according to the embodiment of FIG. 1 .
  • the etching map of FIG. 4A is a two-dimensional etching map
  • the etching map of FIG. 4B is a three-dimensional etching map.
  • the surface of the mother substrate 303 is uniformly etched. That is, there is a small difference between the rather deeply etched portion A and the rather shallowly etched portion B, and the whole surface of the mother substrate 303 is uniformly etched. In this manner, since uniform etching is performed on the mother substrate 303 , problems including brightness degradation and lifetime reduction of the organic light emitting display device may be solved.
  • the etching in the surface of the substrate is made uniform by maintaining plasma uniformity in the chamber constant, so that the problems including brightness degradation and lifetime reduction of the organic light emitting display device are solved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A substrate plasma-processing apparatus for plasma-processing a surface of an electrode of an organic light emitting device. The substrate plasma-processing apparatus may adjust the distance between a first electrode and a substrate and adjust the distance between a second electrode and the substrate.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 12/774,846, filed on May 6, 2010, and claims priority from and the benefit of Korean Patent Application No. 10-2009-0039887, filed on May 7, 2009 in the Korean Intellectual Property Office, both of which are hereby incorporated by reference for all purpose as if fully set forth herein.
  • BACKGROUND OF THE INVENTION
  • 1. Field
  • Aspects of the present invention relate to a substrate plasma-processing apparatus.
  • 2. Discussion of the Background
  • An organic light emitting display device using an organic light emitting device (OLED) has a fast response speed compared to a liquid crystal (LCD) typical of those currently widely used. Organic light emitting display devices are being thought of as the next generation display device because an organic light emitting display device accommodates a moving picture better, has a wider viewing angle due to self light-emission, and exhibits high brightness.
  • The OLED includes a pixel electrode, a counter electrode facing the pixel electrode, and an emission layer including an organic material where the emission layer is interposed between the pixel electrode and the counter electrode. Before depositing the organic material, a surface of the pixel electrode (i.e., an anode electrode) is processed using plasma. The plasma-process with respect to the surface of the pixel electrode has an effect on light emission efficiency and lifetime of the OLED. That is, if the surface of the pixel electrode is not uniformly plasma-processed, the brightness of the organic light emitting display device is not uniform and also, the lifetime of the organic light emitting display device is shortened. Therefore, with respect to plasma-processing the surface of the pixel electrode, plasma uniformity in a plasma-processing apparatus is very important.
  • SUMMARY
  • Aspects of the present invention provide a substrate plasma-processing apparatus for constantly maintaining plasma uniformity in a chamber. An aspect of the present invention provides a substrate plasma-processing apparatus for plasma-processing the surface of a pixel or other display electrode formed on a substrate, the substrate plasma-processing apparatus including a chamber having disposed therein the substrate; a first electrode disposed in the chamber apart from the bottom surface of the substrate; a second electrode disposed in the chamber apart from the top surface of the substrate; and a distance adjusting unit adjusting the distance between the first electrode and the substrate or the distance between the second electrode and the substrate.
  • According to an aspect of the invention, the distance adjusting unit may adjust the distance between the first electrode and the substrate by raising or lowering the substrate.
  • According to an aspect of the invention, the distance adjusting unit may adjust the distance between the second electrode and the substrate by raising or lowering the second electrode.
  • Another aspect of the present invention provides a substrate plasma-processing apparatus for plasma-processing the surface of a pixel or other display electrode of an organic light emitting device, the substrate plasma-processing apparatus including a chamber; a distance adjusting unit for supporting and moving the substrate in the chamber; a first electrode disposed below and apart from the substrate; and a second electrode facing the first electrode by being disposed above and apart from the substrate; wherein the distance adjusting unit adjusts the distance between the substrate and the first electrode or the distance between the substrate and the second electrode.
  • According to an aspect of the invention, the distance adjusting unit may include a substrate supporting unit supporting the substrate; a supporting bar coupled with the substrate supporting unit in a direction perpendicular to the substrate; and an actuator vertically raising or lowering the supporting bar.
  • According to an aspect of the invention, the actuator may increase the distance between the substrate and the first electrode by moving the supporting bar outside the chamber.
  • According to an aspect of the invention, the actuator may decrease the distance between the substrate and the first electrode by moving the supporting bar inside the chamber.
  • According to an aspect of the invention, the second electrode may be supported by the supporting bar and may be disposed above and apart from the substrate.
  • According to an aspect of the invention, the distance between the substrate and the second electrode may be maintained constant while the substrate is raised or lowered.
  • According to an aspect of the invention, the second electrode may be fixed to the supporting bar.
  • According to an aspect of the invention, when the substrate is raised, the distance between the substrate and the first electrode may increase and the distance between the substrate and the second electrode may decrease.
  • According to an aspect of the invention, when the substrate is lowered, the distance between the substrate and the first electrode may decrease and the distance between the substrate and the second electrode may increase.
  • According to an aspect of the invention, the substrate supporting unit and the supporting bar may be formed of an insulating material.
  • According to an aspect of the invention, the substrate supporting unit and the supporting bar may be formed of a ceramic material.
  • According to an aspect of the invention, the ceramic may include alumina (Al2O3).
  • According to an aspect of the invention, the substrate plasma-processing apparatus may further include a first insulating member disposed between the substrate supporting unit and the supporting bar, and the first insulating member may couple the substrate supporting unit and the supporting bar.
  • According to an aspect of the invention, the substrate plasma-processing apparatus may further include a first cover unit externally surrounding the first insulating member.
  • According to an aspect of the invention, the first cover unit may be formed of ceramic. The first insulating member may be formed of a polymer.
  • According to an aspect of the invention, the substrate supporting unit and the supporting bar may be formed of a metal.
  • According to an aspect of the invention, the substrate plasma-processing apparatus may further include a second insulating member disposed between the first electrode and the chamber.
  • According to an aspect of the invention, the second insulating member may be formed of a fluoropolymer.
  • According to an aspect of the invention, the second electrode may be grounded.
  • According to an aspect of the invention, the may flow in the second electrode so as to maintain a temperature of the second electrode constant.
  • According to an aspect of the invention, the first electrode may include at least one pipe for delivering gas from outside of the chamber; and at least one shower head for emitting the gas to the chamber.
  • According to an aspect of the invention, the substrate plasma-processing apparatus may further include at least one flow adjusting valve for adjusting the flow of the gas emitted to the first electrode.
  • According to an aspect of the invention, the substrate plasma-processing apparatus may further include an inner chamber disposed in the chamber, and the first electrode may be disposed in the inner chamber.
  • According to an aspect of the invention, the substrate plasma-processing apparatus may further include a third insulating member disposed between the inner chamber and the chamber.
  • According to an aspect of the invention, the third insulating member may be formed of a fluoropolymer.
  • According to an aspect of the invention, the substrate plasma-processing apparatus may further include a second cover unit externally surrounding the third insulating member.
  • According to an aspect of the invention, the second cover unit may be formed of a ceramic material.
  • Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
  • FIG. 1 is a cross-sectional view of a substrate plasma-processing apparatus according to an embodiment of the present invention;
  • FIG. 2 is a variation of a distance adjusting unit of the substrate plasma-processing apparatus of FIG. 1;
  • FIG. 3A is a two-dimensional etching map with respect to etching degree of a mother substrate that is plasma-processed by a conventional plasma-processing apparatus;
  • FIG. 3B is a three-dimensional etching map with respect to etching degree of a mother substrate that is plasma-processed by a conventional plasma-processing apparatus;
  • FIG. 4A is a two-dimensional etching map with respect to etching degree of a mother substrate that is plasma-processed by the substrate plasma-processing apparatus according to an embodiment of the present invention; and
  • FIG. 4B is a three-dimensional etching map with respect to etching degree of a mother substrate that is plasma-processed by the substrate plasma-processing apparatus according to the embodiment of FIG. 4A.
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • Reference will now be made in detail to the present embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present invention by referring to the figures.
  • FIG. 1 is a cross-sectional view of a substrate plasma-processing apparatus 100 according to an embodiment of the present invention. Referring to FIG. 1, the substrate plasma-processing apparatus 100 includes a chamber 101, a distance adjusting unit 102, a first electrode 104, a second electrode 105, and at least one flow adjusting valve 107.
  • The distance adjusting unit 102 is disposed in the chamber 101 to support a substrate 103 and the second electrode 105. The distance adjusting unit 102 supports the substrate 103 and the second electrode 105, raises or lowers the substrate 103 in the chamber 101, and raises or lowers the second electrode 105 in the chamber 101. The second electrode 105 is disposed above and apart from the substrate 103, and the first electrode 104 is disposed below and apart from the substrate 103. Thus, when the distance adjusting unit 102 raises or lowers the substrate 103, the distance S1 between the first electrode 104 and the substrate 103, and the distance S2 between the second electrode 105 and the substrate 103 may be adjusted, or when the distance adjusting unit 102 raises or lowers the second electrode 105, the distance S2 between the second electrode 105 and the substrate 103 may be adjusted. A detailed description thereof will be provided later.
  • While not required in all aspects, the shown distance adjusting unit 102 includes a substrate supporting unit 102 a, a supporting bar 102 b, and an actuator 102 c. The shown substrate supporting unit 102 a supports the bottom surface of the substrate 103. The shown substrate supporting unit 102 a is formed of two plates which are individually connected to the supporting bar 102 b. The two plates of the substrate supporting unit 102 a are disposed apart from each other sufficiently so that the substrate 103 is disposed between the two plates. The shown two plates of the substrate supporting unit 102 a support bottom surfaces of both side portions of the substrate 103, wherein the side portions face each other. That is, the substrate 103 is disposed between the two plates of the substrate supporting unit 102 a so that the bottom surface of the substrate 103 faces the first electrode 104, and the top surface of the substrate 103 faces the second electrode 105. However, it is understood that the supporting unit 102 a can be otherwise constructed, and can support other sides of the substrate in addition to, or instead of the sides shown.
  • An end of the supporting bar 102 b is coupled with the substrate supporting unit 102 a, and a portion of the supporting bar 102 b is in the chamber 101. Thus, the substrate supporting unit 102 a is disposed in the chamber 101. Referring to FIG. 1, the end of the supporting bar 102 b is coupled with the substrate supporting unit 102 a in the direction perpendicular to the substrate 103, and the other end is connected to the actuator 102 c disposed outside the chamber 101. That is, the portion of the supporting bar 102 b is disposed inside the chamber 101, and another portion of the supporting bar 102 b is disposed outside the chamber 101, in such a manner that the substrate supporting unit 102 a and the portion of the supporting bar 102 b are disposed in the chamber 101.
  • While not required in all aspects, the shown supporting bar 102 b is vertically raised or lowered by the actuator 102 c. Since the end of the supporting bar 102 b is coupled with the substrate supporting unit 102 a, the substrate supporting unit 102 a is raised or lowered when the supporting bar 102 b is raised or lowered. Thus, according to the raising or the lowering of the supporting bar 102 b, the substrate 103 supported by the substrate supporting unit 102 a is raised or lowered.
  • The actuator 102 c vertically raises or lowers the supporting bar 102 b. As illustrated in FIG. 1, the actuator 102 c is disposed outside the chamber 101. In this case, the actuator 102 c is connected to the other portion of the supporting bar 102 b, which is outside the chamber 101. However, the position of the actuator 102 c of the substrate plasma-processing apparatus 100 is not limited to the aforementioned position, and thus, the actuator 102 c may be disposed inside the chamber 101 and connected at other portions of the supporting bar 102 b.
  • When the actuator 102 c raises the supporting bar 102 b, the supporting bar 102 b moves in the direction toward the outside of the chamber 101 so that the substrate supporting unit 102 a which is coupled with the end of the supporting bar 102 b is also raised. Thus, the substrate 103, which is supported by the substrate supporting unit 102 a, is raised inside the chamber 101. Accordingly, the distance S1 between the first electrode 104 and the substrate 103 increases. Conversely, when the actuator 102 c lowers the supporting bar 102 b, the supporting bar 102 b moves in the direction toward the inside the chamber 101 so that the substrate supporting unit 102 a which is coupled with the end of the supporting bar 102 b is also lowered. Thus, the substrate 103, which is supported by the substrate supporting unit 102 a, is lowered inside the chamber 101. Accordingly, the distance S1 between the first electrode 104 and the substrate 103 decreases.
  • The substrate supporting unit 102 a and the supporting bar 102 b are formed of an insulating material such as a ceramic. The ceramic may be alumina (Al2O3). In this manner, the substrate supporting unit 102 a and the supporting bar 102 b are formed of the insulating material so that it is possible to prevent arcing from occurring between the substrate 103 and the substrate supporting unit 102 a, or between the supporting bar 102 b and the substrate supporting unit 102 a.
  • As a modified embodiment, a first insulating member 102 d (see FIG. 2) may be disposed between the substrate supporting unit 102 a and the supporting bar 102 b. FIG. 2 is a diagram of the distance adjusting unit 102 of the substrate plasma-processing apparatus of FIG. 1. Referring to FIG. 2, the substrate supporting unit 102 a and the supporting bar 102 b are coupled by a first insulating member 102 d. The first insulating member 102 d is a polymer, for example a fluoropolymer. A first cover unit 102 e is disposed to externally surround the first insulating member 102 d. The first cover unit 102 e protects the first insulating member 102 d from plasma. The substrate supporting unit 102 a and the supporting bar 102 b are formed of a metal such as aluminum. The first insulating member 102 d prevents arcing from occurring between the substrate supporting unit 102 a and the supporting bar 102 b.
  • Referring back to FIG. 1, the first electrode 104 is disposed inside the chamber 101 apart from the bottom surface of the substrate 103. The first electrode 104 is a radio frequency (RF) electrode to which radio frequency (RF) power is applied. An RF power of about 40 Mhz may be applied to the first electrode 104.
  • A surface of the first electrode 104 faces the inside of the chamber 101, and the other surface of the first electrode 104 faces the outside of the chamber 101. At least one shower head 104 a for emitting a gas to the chamber 101 is disposed on the surface of the first electrode 104, which faces the inside of the chamber 101. At least one pipe 104 b for delivering a gas from the outside of the chamber 101 to the inside of the chamber 101 is disposed on the other surface of the first electrode 104, which faces the outside of the chamber 101. A gas such as N2, O2, He, Ar, or the like is injected into the first electrode 104. Then, the gas is emitted to the inside of the chamber 101 via the at least one shower head 104 a of the first electrode 104.
  • The substrate plasma-processing apparatus 100 further includes at least one flow adjusting valve 107. Each flow adjusting valve 107 is disposed on one pipe 104 b and adjusts the flow of the gas emitted to the first electrode 104.
  • A second insulating member 106 is disposed between the first electrode 104 and the chamber 101. The second insulating member 106 prevents direct contact between the first electrode 104 and the chamber 101. That is, the second insulating member 106 is disposed at side and bottom portions of the first electrode 104 which may contact the chamber 101. In this way, the first electrode 104 and the chamber 101 do not directly contact each other. Thus, using the second insulating member 106, the first electrode 104 and the chamber 101 are insulated from each other so that it is possible to prevent arcing from occurring between the first electrode 104 and the chamber 101. The second insulating member 106 may be formed of a fluoropolymer.
  • An inner chamber 108 is disposed in the chamber 101. As shown in FIG. 1, the first electrode 104 is disposed in the inner chamber 108. The top portion of the inner chamber 108 is open.
  • A third insulating member 109 is disposed between the inner chamber 108 and the chamber 101. The third insulating member 109 prevents the inner chamber 108 from directly contacting the chamber 101. By the third insulating member 109, the chamber 101 and the inner chamber 108 are insulated from each other, and it is possible to prevent arcing from occurring between the chamber 101 and the inner chamber 108. The third insulating member 109 may be formed of a fluoropolymer. A second cover unit 110 externally surrounds the third insulating member 109. The second cover unit 110, covering the third insulating member 109, prevents the third insulating member 109 from being directly exposed to plasma. The second cover unit 110 may be formed of a ceramic material.
  • The second electrode 105 faces the first electrode 104 by being disposed above and apart from the substrate 103. The second electrode 105 is disposed in the chamber 101 while being supported by the supporting bar 102 b of the distance adjusting unit 102 that supports the substrate 103.
  • The second electrode 105 is disposed above and apart from the substrate 103 by being slidably fixed to the supporting bar 102 b. In this manner, in the case where the second electrode 105 is slidably fixed to the supporting bar 102 b, when the substrate 103 is raised or lowered by the distance adjusting unit 102, the distance S2 between the substrate 103 and the second electrode 105 may increase or decrease while maintaining a constant distance of either the substrate 103 or the second electrode 105 relative to the chamber 101.
  • To be more specific, since the second electrode 105 is slidably fixed to the supporting bar 102 b, when the substrate 103 is raised, the distance S2 between the substrate 103 and the second electrode 105 decreases and the distance S1 between the substrate 103 and the first electrode 104 increases. Also, when the substrate 103 is lowered, the distance S2 between the substrate 103 and the second electrode 105 increases, and the distance S1 between the substrate 103 and the first electrode 104 decreases. While not required in all aspects, the second electrode 105 can be slidably fixed to the supporting bar 102 b while being fixed to the chamber 101, and/or the second electrode 105 can be fixed to the supporting bar 102 b using a clamp, which can be loosened to allow adjustment of the distance S2 and tightened to prevent further adjustment. However, the invention is not limited thereto.
  • As another modified embodiment, the second electrode 105 may be disposed at the supporting bar 102 b so as to maintain a constant distance from the substrate 103 (i.e., not slidably fixed). In this case, the substrate 103 and the second electrode 105 are raised or lowered while maintaining the constant distance. Thus, when the substrate 103 is raised or lowered, the distance S1 between the substrate 103 and the first electrode 104 increases or decreases but the distance between the substrate 103 and the second electrode 105 is constant. In the case where the distance between the substrate 103 and the second electrode 105 has to be changed when the distance between the substrate 103 and the second electrode 105 is constantly maintained, the second electrode 105 may be separated from the supporting bar 102 b, the distance between the substrate 103 and the second electrode 105 may be adjusted, and then, the second electrode 105 may be disposed at the supporting bar 102 b.
  • As another modified embodiment, the second electrode 105 may be moved by the distance adjusting unit 102. That is, the distance adjusting unit 102 may adjust the distance S2 between the second electrode 105 and the substrate 103 by raising or lowering the second electrode 105. In this case, the distance adjusting unit 102 adjusts the distance S1 between the first electrode 104 and the substrate 103 by raising or lowering the substrate 103 with respect to the first electrode 104, and adjusts the distance S2 between the substrate 103 and the second electrode 105 by raising or lowering the second electrode 105 with respect to the substrate 103 that is fixed.
  • The second electrode 105 is grounded. The second electrode 105 may have an internal space in which refrigerant flows. Since the refrigerant flows in the second electrode 105, it is possible to prevent the second electrode 105 from being overheated and to maintain the temperature of the second electrode 105 constant.
  • As described above, by adjusting the distance S1 between the substrate 103 and the first electrode 104 that is the RF electrode, plasma uniformity is improved by adjusting the plasma status in the chamber 101. Accordingly, the surface of an anode electrode (not shown) on the substrate 103 is uniformly etched so that it is possible to prevent the brightness of an organic light emitting display device from being degraded and to increase the yield rate.
  • FIGS. 3A and 3B illustrate etching maps with respect to etching degree of a mother substrate 203 that is plasma-processed by a conventional plasma-processing apparatus. In more detail, the etching map of FIG. 3A is a two-dimensional etching map, and the etching map of FIG. 3B is a three-dimensional etching map.
  • Referring to the etching map of FIG. 3A, it is apparent that the portion A of the surface of the mother substrate 203 is deeply etched but another portion B is shallowly etched so that etching is not uniform. Brightness is relatively degraded at the deeply etched portion A, compared to the shallowly etched portion B. Also, a significantly and shallowly etched portion has a degraded lifetime.
  • FIGS. 4A and 4B illustrate etching maps with respect to etching degree of a mother substrate 303 that is plasma-processed by the substrate plasma-processing apparatus 100 according to the embodiment of FIG. 1. In more detail, the etching map of FIG. 4A is a two-dimensional etching map, and the etching map of FIG. 4B is a three-dimensional etching map.
  • Referring to the etching maps of FIG. 4A, it is apparent that the surface of the mother substrate 303 is uniformly etched. That is, there is a small difference between the rather deeply etched portion A and the rather shallowly etched portion B, and the whole surface of the mother substrate 303 is uniformly etched. In this manner, since uniform etching is performed on the mother substrate 303, problems including brightness degradation and lifetime reduction of the organic light emitting display device may be solved.
  • According to embodiments of the present invention, the etching in the surface of the substrate is made uniform by maintaining plasma uniformity in the chamber constant, so that the problems including brightness degradation and lifetime reduction of the organic light emitting display device are solved.
  • Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in this embodiment without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.

Claims (20)

What is claimed is:
1. A method for manufacturing an organic light-emitting display apparatus, the method comprising:
placing a substrate containing a display electrode in a plasma-processing chamber between first and second electrodes such that the first electrode within the chamber is disposed a first distance below and apart from the substrate and the second electrode within the chamber is disposed a second distance above and apart from the substrate, the substrate being supported by a distance adjusting unit, the distance adjusting unit coupling the second electrode to the substrate;
adjusting at least one of the first distance between the substrate and the first electrode and the second distance between the substrate and the second electrode; and
performing plasma-processing while the substrate is disposed at the adjusted first and/or second distances apart from the first and second electrodes, the first and second electrodes not contacting the substrate during plasma-processing.
2. The method of claim 1, wherein the distance adjusting unit comprises:
a substrate supporting unit to support the substrate;
a supporting bar coupled with the substrate supporting unit in a direction perpendicular to the substrate; and
an actuator to vertically raise or lower the supporting bar.
3. The method of claim 2, wherein the actuator is configured to adjust the first distance between the substrate and the first electrode by moving the supporting bar in a direction away from a center of the chamber or by moving the supporting bar toward the center of the chamber.
4. The method of claim 2, wherein the second electrode is supported by the supporting bar.
5. The method of claim 4, wherein the second distance between the substrate and the second electrode is maintained constant while the substrate is raised or lowered.
6. The method of claim 4, wherein, when the substrate is raised, the first distance between the substrate and the first electrode increases and the second distance between the substrate and the second electrode decreases, and wherein, when the substrate is lowered, the first distance between the substrate and the first electrode decreases and the second distance between the substrate and the second electrode increases.
7. The method of claim 2, wherein the substrate supporting unit and the supporting bar comprise an insulating material.
8. The method of claim 7, wherein the substrate supporting unit and the supporting bar comprise a ceramic material.
9. The method of claim 2, further comprising:
a first insulating member disposed between the substrate supporting unit and
the supporting bar, wherein the first insulating member couples the substrate supporting unit and the supporting bar; and
a second insulating member disposed between the first electrode and the chamber.
10. The method of claim 9, further comprising a first cover unit externally surrounding the first insulating member.
11. The method of claim 10, wherein the first cover unit comprises a ceramic material.
12. The method of claim 9, wherein the substrate supporting unit and the supporting bar comprise a metal.
13. The method of claim 1, wherein the second electrode is grounded.
14. The method of claim 1, wherein refrigerant flows in the second electrode to maintain a temperature of the second electrode.
15. The method of claim 1, further comprising emitting a gas to the chamber through at least one shower head, the gas being delivered by at least one pipe.
16. The method of claim 15, wherein a flow of the emitted gas is adjusted by at least one flow adjusting valve.
17. The method of claim 1, wherein the first electrode is disposed in an inner chamber, the inner chamber being disposed in the chamber.
18. The method of claim 17, wherein a third insulating member is disposed between the inner chamber and the chamber.
19. The method of claim 18, wherein a second cover unit externally surrounds the third insulating member.
20. The method of claim 19, wherein the second cover unit comprises a ceramic material.
US13/972,497 2009-05-07 2013-08-21 Substrate plasma-processing apparatus Active 2030-05-17 US8901008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/972,497 US8901008B2 (en) 2009-05-07 2013-08-21 Substrate plasma-processing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0039887 2009-05-07
KR1020090039887A KR101050463B1 (en) 2009-05-07 2009-05-07 Plasma processing equipment
US12/774,846 US20100282709A1 (en) 2009-05-07 2010-05-06 Substrate plasma-processing apparatus
US13/972,497 US8901008B2 (en) 2009-05-07 2013-08-21 Substrate plasma-processing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/774,846 Continuation US20100282709A1 (en) 2009-05-07 2010-05-06 Substrate plasma-processing apparatus

Publications (2)

Publication Number Publication Date
US20130337605A1 true US20130337605A1 (en) 2013-12-19
US8901008B2 US8901008B2 (en) 2014-12-02

Family

ID=43061742

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/774,846 Abandoned US20100282709A1 (en) 2009-05-07 2010-05-06 Substrate plasma-processing apparatus
US13/972,497 Active 2030-05-17 US8901008B2 (en) 2009-05-07 2013-08-21 Substrate plasma-processing apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/774,846 Abandoned US20100282709A1 (en) 2009-05-07 2010-05-06 Substrate plasma-processing apparatus

Country Status (2)

Country Link
US (2) US20100282709A1 (en)
KR (1) KR101050463B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018125381A3 (en) * 2016-12-29 2018-08-09 Applied Materials, Inc. Apparatus for field guided acid profile control in a photoresist layer
US11112697B2 (en) 2015-11-30 2021-09-07 Applied Materials, Inc. Method and apparatus for post exposure processing of photoresist wafers

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6348321B2 (en) * 2013-05-17 2018-06-27 キヤノンアネルバ株式会社 Etching device
EP2854155B1 (en) 2013-09-27 2017-11-08 INDEOtec SA Plasma reactor vessel and assembly, and a method of performing plasma processing
KR102133351B1 (en) * 2013-12-30 2020-07-13 주식회사 선익시스템 Plasma processing apparatus of oled substrate
CN103956315B (en) * 2014-05-22 2016-05-18 中国地质大学(北京) The plasma reaction chamber that a kind of electrode spacing is adjustable and electrode gap adjusting device
CN103972014B (en) * 2014-05-22 2016-05-18 中国地质大学(北京) Plasma reaction chamber electrode gap adjusting device and plasma reaction chamber
KR101938306B1 (en) * 2016-04-18 2019-01-14 최상준 Controlling Method for Apparatus for Dry Etching
JP7233348B2 (en) * 2019-09-13 2023-03-06 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855679A (en) * 1995-03-30 1999-01-05 Nec Corporation Semiconductor manufacturing apparatus
US20010018272A1 (en) * 2000-01-26 2001-08-30 Hiroshi Haji Plasma treatment apparatus and method
US20060078677A1 (en) * 2004-06-25 2006-04-13 Won Tae K Method to improve transmittance of an encapsulating film
US20080311313A1 (en) * 2004-10-05 2008-12-18 Tokyo Electron Limited Film Forming Method and Film Forming Apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2673538B2 (en) 1988-05-02 1997-11-05 東京エレクトロン株式会社 Etching apparatus and etching method
US5670066A (en) * 1995-03-17 1997-09-23 Lam Research Corporation Vacuum plasma processing wherein workpiece position is detected prior to chuck being activated
US20070091540A1 (en) * 2005-10-20 2007-04-26 Applied Materials, Inc. Method of processing a workpiece in a plasma reactor using multiple zone feed forward thermal control
KR101352365B1 (en) * 2006-08-09 2014-01-16 엘아이지에이디피 주식회사 Plasma processing apparatus
KR20080020722A (en) * 2006-08-24 2008-03-06 세메스 주식회사 Plasma processing apparatus and substrate processing method using the same
KR20080061811A (en) * 2006-12-28 2008-07-03 주식회사 케이씨텍 Substrate Surface Treatment Equipment
US8161906B2 (en) * 2008-07-07 2012-04-24 Lam Research Corporation Clamped showerhead electrode assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855679A (en) * 1995-03-30 1999-01-05 Nec Corporation Semiconductor manufacturing apparatus
US20010018272A1 (en) * 2000-01-26 2001-08-30 Hiroshi Haji Plasma treatment apparatus and method
US20060078677A1 (en) * 2004-06-25 2006-04-13 Won Tae K Method to improve transmittance of an encapsulating film
US20080311313A1 (en) * 2004-10-05 2008-12-18 Tokyo Electron Limited Film Forming Method and Film Forming Apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11112697B2 (en) 2015-11-30 2021-09-07 Applied Materials, Inc. Method and apparatus for post exposure processing of photoresist wafers
US11899366B2 (en) 2015-11-30 2024-02-13 Applied Materials, Inc. Method and apparatus for post exposure processing of photoresist wafers
WO2018125381A3 (en) * 2016-12-29 2018-08-09 Applied Materials, Inc. Apparatus for field guided acid profile control in a photoresist layer
KR20190092595A (en) * 2016-12-29 2019-08-07 어플라이드 머티어리얼스, 인코포레이티드 Device for Field-Induced Acid Profile Control in Photoresist Layers
US10615058B2 (en) 2016-12-29 2020-04-07 Applied Materials, Inc. Apparatus for field guided acid profile control in a photoresist layer
JP2020515045A (en) * 2016-12-29 2020-05-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Device for field-induced acid profile control in photoresist layer
KR102279565B1 (en) 2016-12-29 2021-07-21 어플라이드 머티어리얼스, 인코포레이티드 Apparatus for Field Induced Acid Profile Control in Photoresist Layers
KR20210107040A (en) * 2016-12-29 2021-08-31 어플라이드 머티어리얼스, 인코포레이티드 Apparatus for field guided acid profile control in a photoresist layer
KR102398589B1 (en) 2016-12-29 2022-05-17 어플라이드 머티어리얼스, 인코포레이티드 Apparatus for field guided acid profile control in a photoresist layer

Also Published As

Publication number Publication date
US20100282709A1 (en) 2010-11-11
KR101050463B1 (en) 2011-07-20
KR20100120975A (en) 2010-11-17
US8901008B2 (en) 2014-12-02

Similar Documents

Publication Publication Date Title
US8901008B2 (en) Substrate plasma-processing apparatus
JP7055054B2 (en) Plasma processing equipment, plasma control method, and plasma control program
US20210027980A1 (en) Plasma processing apparatus
KR102434559B1 (en) Mounting table and plasma processing apparatus
KR102121655B1 (en) Plasma processing apparatus
US7837828B2 (en) Substrate supporting structure for semiconductor processing, and plasma processing device
US7850174B2 (en) Plasma processing apparatus and focus ring
US8852386B2 (en) Plasma processing apparatus
US9324600B2 (en) Mounting table structure and plasma film forming apparatus
JP2007273685A (en) Substrate mounting table and substrate processing apparatus
TWI475610B (en) Electrode construction and substrate processing device
US10923333B2 (en) Substrate processing apparatus and substrate processing control method
KR20140108141A (en) Mounting table and plasma processing apparatus
JPH10223621A (en) Vacuum treating apparatus
KR20170028849A (en) Focus ring and substrate processing apparatus
JP2017228395A (en) Plasma treatment apparatus
JP6660464B2 (en) Frame with uneven gas flow clearance for improved cleaning
KR20220038186A (en) Gas confiner assembly for eliminating shadow frame
JP2021064695A (en) Substrate processing apparatus and substrate processing method
US20180340257A1 (en) Diffuser for uniformity improvement in display pecvd applications
JP2007027086A (en) Inductively coupled plasma processing equipment
CN103811262B (en) Inductance coupling plasma processing device
CN109119321B (en) Plasma processing apparatus
CN112703591B (en) Substrate supporting unit
US20070184181A1 (en) Device and method for forming film for organic electro-luminescence element using inductive coupling CVD

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8