US20130300033A1 - Fibrous separation membrane for secondary battery and manufacturiing method thereof - Google Patents
Fibrous separation membrane for secondary battery and manufacturiing method thereof Download PDFInfo
- Publication number
- US20130300033A1 US20130300033A1 US13/943,754 US201313943754A US2013300033A1 US 20130300033 A1 US20130300033 A1 US 20130300033A1 US 201313943754 A US201313943754 A US 201313943754A US 2013300033 A1 US2013300033 A1 US 2013300033A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- layer
- separation membrane
- fibrous
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 57
- 238000000926 separation method Methods 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims description 23
- 229920006015 heat resistant resin Polymers 0.000 claims abstract description 38
- 229920003043 Cellulose fiber Polymers 0.000 claims abstract description 8
- 229920000642 polymer Polymers 0.000 claims description 74
- 238000001523 electrospinning Methods 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 238000002844 melting Methods 0.000 claims description 15
- 230000008018 melting Effects 0.000 claims description 15
- 239000002861 polymer material Substances 0.000 claims description 8
- -1 polyethylene Polymers 0.000 description 13
- 239000011159 matrix material Substances 0.000 description 11
- 239000011148 porous material Substances 0.000 description 8
- 239000004698 Polyethylene Substances 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- 229920002301 cellulose acetate Polymers 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 229920002635 polyurethane Polymers 0.000 description 6
- 239000004814 polyurethane Substances 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 5
- 229920005672 polyolefin resin Polymers 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000009987 spinning Methods 0.000 description 4
- BMTAFVWTTFSTOG-UHFFFAOYSA-N Butylate Chemical compound CCSC(=O)N(CC(C)C)CC(C)C BMTAFVWTTFSTOG-UHFFFAOYSA-N 0.000 description 3
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229920005548 perfluoropolymer Polymers 0.000 description 3
- 229920002627 poly(phosphazenes) Polymers 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920000193 polymethacrylate Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 229920002689 polyvinyl acetate Polymers 0.000 description 3
- 239000011118 polyvinyl acetate Substances 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000005033 polyvinylidene chloride Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229920001410 Microfiber Polymers 0.000 description 2
- 239000006183 anode active material Substances 0.000 description 2
- 239000006182 cathode active material Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000002121 nanofiber Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- GKTNLYAAZKKMTQ-UHFFFAOYSA-N n-[bis(dimethylamino)phosphinimyl]-n-methylmethanamine Chemical compound CN(C)P(=N)(N(C)C)N(C)C GKTNLYAAZKKMTQ-UHFFFAOYSA-N 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D11/00—Other features of manufacture
- D01D11/06—Coating with spinning solutions or melts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
- H01M50/4295—Natural cotton, cellulose or wood
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/42—Acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/454—Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2009/00—Layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/34—Electrical apparatus, e.g. sparking plugs or parts thereof
- B29L2031/3468—Batteries, accumulators or fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a fibrous separation membrane for secondary batteries, and a method of manufacturing the same.
- a secondary battery is a battery which can be reused because it can be recharged using external energy and returned to an original state after being discharged.
- Such a secondary battery is characterized in that it has high power density, it can do high-power discharge, and it is only slightly influenced by temperature.
- Such a secondary battery includes the four major components of a cathode active material, an anode active material, an electrolyte and a separation membrane.
- a separation membrane serves to separate a cathode active material and an anode active material, and is used as an ion transfer passage.
- a separation membrane since a separation membrane serves to provide an ion transfer passage and prevent foreign matter from moving, it must have pores having a size of several micrometers or less.
- the wet process is a process of forming pores by phase-separating a solution containing a polymer, a solvent and other components and then stretching the phase-separated product
- the dry process is a process of forming pores by extruding a polymer and then stretching the extruded polymer.
- the wet process is advantageous in that pores are non-oriented, but is disadvantageous in that manufacturing costs are high.
- uniaxial stretching must be conducted in the dry process, the dry process is disadvantageous in that pores are oriented, but is advantageous in that manufacturing costs are low.
- All of the separation membranes formed by the wet process or the dry process are made of polyolefin-based resins. Since both the wet process and the dry process include a stretching process, there is a problem in that the raw materials of the separation membranes cannot be freely selected.
- the separation membrane is generally made of two kinds of resins of polyethylene and polypropylene.
- the separation membrane is produced by mixing the two kinds of resins or laminating them.
- the conventional separation membrane is made of a polyolefin-based resin, its heat resistance is low, so that it is greatly constricted at high temperature, with the result that it is not suitable for EV.
- the conventional separation membrane is problematic in that its raw material is limited to polyolefin-based resins, so that the range of selection of raw materials is very narrow, with the result that it is not suitable for the realization of high functionality.
- the present invention has been devised to solve the above-mentioned problems, and the present invention intends to provide a fibrous separation membrane for secondary batteries, which can expand the range of selection of raw materials because it is manufactured by electrospinning, and which can maintain high strength because paper is used as a support layer, and a method of manufacturing the same.
- An aspect of the present invention provides a fibrous separation membrane for secondary batteries, including: a support layer containing cellulose fiber; and a first heat-resistant resin layer applied on one side of the support layer.
- the first heat-resistant resin layer may be made of any one selected from the group consisting of aromatic polyesters, polyphosphazenes, polyurethane, polyurethane copolymers including polyetherurethane, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, polyvinylidene fluoride, perfluoropolymers, polyvinylchloride, polyvinylidene chloride, polyethyleneglycol derivatives, polyoxide, polyvinyl acetate, polystyrene, polyacrylonitrile, and polymethacrylate.
- the fibrous separation membrane may further include: a first polymer layer applied between the support layer and the first heat-resistant resin layer.
- the first polymer layer may be made of a polymer material having a melting point of 100 ⁇ 180° C.
- the fibrous separation membrane may further include: a second heat-resistant resin layer applied on the other side of the support layer.
- the second heat-resistant resin layer may be made of any one selected from the group consisting of aromatic polyesters, polyphosphazenes, polyurethane, polyurethane copolymers including polyetherurethane, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, polyvinylidene fluoride, perfluoropolymers, polyvinylchloride, polyvinylidene chloride, polyethyleneglycol derivatives, polyoxide, polyvinyl acetate, polystyrene, polyacrylonitrile, and polymethacrylate.
- the fibrous separation membrane may further include: a second polymer layer applied between the support layer and the second heat-resistant resin layer.
- the second polymer layer may be made of a polymer material having a melting point of 100 ⁇ 180° C.
- Another aspect of the present invention provides a method of manufacturing a fibrous separation membrane for secondary batteries, including: forming a support layer containing cellulose fiber; and electrospinning a heat-resistant resin solution onto one side of the support layer to form a first ultrafine-fibrous heat-resistant resin layer.
- the method may further include: electrospinning a first polymer solution onto one side of the support layer to form a first ultrafine-fibrous polymer layer between the forming the support layer and the forming the first ultrafine-fibrous heat-resistant resin layer.
- the first polymer layer may be made of a polymer material having a melting point of 100 ⁇ 180° C.
- the method may further include: electrospinning a heat-resistant resin solution onto the other side of the support layer to form a second ultrafine-fibrous heat-resistant resin layer.
- the method may further include: electrospinning a second polymer solution onto the other side of the support layer to form a second ultrafine-fibrous polymer layer between the forming the support layer and the forming the second ultrafine-fibrous heat-resistant resin layer.
- the second polymer layer may be made of a polymer material having a melting point of 100 ⁇ 180° C.
- FIG. 1 is a sectional view showing a fibrous separation membrane for secondary batteries according to a first embodiment of the present invention
- FIG. 2 is a sectional view showing a fibrous separation membrane for secondary batteries according to a second embodiment of the present invention
- FIG. 3 is a schematic view showing an electrospinning apparatus which can be used to manufacture the fibrous separation membrane for secondary batteries according to the present invention
- FIG. 4 is a flowchart showing a method of manufacturing the fibrous membrane for secondary batteries according to the first embodiment of the present invention.
- FIG. 5 is a scanning electron microscope (SEM) photograph showing a polymer layer formed on the surface of a support layer in the fibrous separation membrane according to the first embodiment of the present invention.
- FIG. 1 is a sectional view showing a fibrous separation membrane for secondary batteries according to a first embodiment of the present invention.
- the fibrous separation membrane for secondary batteries includes a support layer 10 , a polymer layer 22 applied on the support layer 10 , and a heat-resistant resin layer 24 applied on the polymer layer 22 .
- the polymer layer 22 may not be provided.
- the support layer 10 which serves to provide strength to the polymer layer 22 and the heat-resistance resin layer 24 , is made of cellulose fiber, and has a weight of 5 ⁇ 500 g/m 2 , preferably 100-300 g/m 2 .
- the support layer 10 may be formed of paper, and the paper may be transparent or translucent.
- the paper for forming the support layer 10 may be tracing paper.
- the “tracing paper” is referred to as paper certified according to ISO 4046-1978, 6.94.
- the tracing paper is obtained by hardening cellulose fiber.
- the polymer layer 22 functions to shut down a secondary battery when the secondary battery reaches a high temperature.
- the heat-resistant resin layer 24 prevents the meltdown of a separation membrane when the secondary battery is further heated after the secondary battery was shut down, thus preventing the short and explosion of the secondary battery.
- the polymer layer 22 and the heat-resistant resin layer 24 may have a molecular weight which enables electrospinning to be carried out, and, particularly, may have a molecular weight of 10,000 or more.
- the polymer layer 22 and the heat-resistant resin layer 24 have a molecular weight of 10,000 or more, fiber can be easily made by electrospinning, and the physical properties thereof are excellent. Further, as the molecular weight thereof increases, the diameter of the nanofiber obtained by electrospinning decreases, thus forming a large number of junctions of nanofibers.
- the polymer layer 22 and the heat-resistant resin layer 24 can be made of a polymer having a molecular weight of 2,000 or more in terms of workability and physical properties depending on mass production.
- the polymer layer 22 and the heat-resistant resin layer 24 can be made of ultra-high molecular weight polyethylene having a molecular weight of 1,000,000 ⁇ 5,000,000.
- the solvent used to form the polymer layer 22 and the heat-resistant resin layer 24 can suitably dissolve a polymer and disperse solid particles
- the solvent may be selectively used depending on the kind of polymer and solid particles by those skilled in the art.
- the polymer layer 22 is made of a polyolefin resin or a polymer having a melt index of 1 ⁇ 25 g/min and a relatively low melting point, such as polyethylene (PE), polypropylene (PP), polymethylpentene, an ethylene-propylene copolymer or the like.
- the polymer layer 22 may be made of a polymer material having a melting point of 100 ⁇ 180° C., preferably 120 ⁇ 150° C.
- a polyolefin resin or a polymer is used to make the polymer layer 22 , but the present invention is not limited thereto. All of the polymer materials having a melting point of 100 ⁇ 180° C. can be used.
- the heat-resistant resin layer is made of a polymer having a melting point of 180° C. or having no melting point.
- the polymer having a melting point of 180° C. or having no melting point may include: aromatic polyesters, such as polyamide, polyimide, polyamideimide, poly(meta-phenyleneisophthalamide), ploysulfone, polyether ketone, polyether imide, polyethylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and the like; polyphosphazenes, such as polytetrafluoroethylene, polydiphenoxyphosphazene, poly ⁇ bis[2-(2-methoxyethoxy)phosphazene] ⁇ , and the like; polyurethane; polyurethane copolymers, such as polyetherurethane, and the like; cellulose acetate; cellulose acetate butylate; cellulose acetate propionate; polyvinylidene fluoride; perfluoropolymers
- the polymer having no melting point is referred to as a polymer that bums without melting even at 180° C. or higher.
- Both the polymer layer 22 and the heat-resistant resin layer 24 may have a thickness of 1 ⁇ 50 ⁇ m, preferably 1 ⁇ 20 ⁇ m, more preferably 5 ⁇ 10 ⁇ m. When the thickness thereof is excessively small, sufficient effects cannot be exhibited. Further, when the thickness thereof is excessively large, it is economically disadvantageous and is not especially profitable.
- the fibrous separation membrane for secondary batteries is formed by sequentially electrospinning a polymer solution (including a melt solution) onto the support layer 10 , and is formed therein with pores that are micrometers in size.
- the matrix of the fibrous separation membrane for secondary batteries has a structure in which ultrafine polymer fibers having a diameter of 1 ⁇ 3000 nm are irregularly and three-dimensionally laminated, so that the ratio of surface area to volume of the matrix thereof is higher than that of a conventional matrix, and the porosity thereof is higher than that of the conventional matrix.
- the porosity of the matrix of the separation membrane is high, the amount of an electrolyte impregnated into the matrix thereof increases, thus increasing the ion conductivity of the separation membrane. Further, since the surface area of the matrix of the separation membrane is large regardless of the high porosity thereof, the contact area of an electrolyte to the matrix of the separation membrane can be increased, thus minimizing the leakage of the electrolyte.
- porous polymer matrix is formed by electrospinning, there is an advantage in that the porous polymer matrix is directly formed in the form of membrane.
- the diameter of the fibrous polymer forming the porous polymer matrix may be adjusted to within a range of 1 ⁇ 3000 nm, preferably 10 ⁇ 1000 nm, more preferably 50 ⁇ 500 nm.
- the diameter of the fibrous polymer is excessively small, it is difficult to form a separation membrane. Further, when the diameter thereof is excessively large, the impregnation rate of an electrolyte is decreased.
- the porosity of the polymer layer 22 applied on the support layer 10 is about 20 ⁇ 90%, and the pore size thereof is about 10 nm ⁇ 10 ⁇ m.
- FIG. 2 is a sectional view showing a fibrous separation membrane for secondary batteries according to a second embodiment of the present invention.
- the fibrous separation membrane for secondary batteries includes a support layer 10 , a pair of polymer layers 22 and 22 ′ applied on both sides of the support layer 10 , and a pair of heat-resistant resin layers 24 and 24 ′ respectively applied on the polymer layers 22 and 22 ′.
- the polymer layers 22 and 22 ′ may not be provided.
- the configuration of the fibrous separation membrane for secondary batteries according to the second embodiment of the present invention is the same as that of the fibrous separation membrane for secondary batteries according to the first embodiment of the present invention, except that the polymer layers 22 and 22 ′ and the heat-resistant resin layers 24 and 24 ′ are sequentially formed on both sides of the support layer 10 . Therefore, detailed descriptions thereof will be omitted.
- FIG. 3 is a schematic view showing an electrospinning apparatus which can be used to manufacture the fibrous separation membrane for secondary batteries according to the present invention.
- the electrospinning apparatus includes a barrel 100 for storing a polymer solution or a heat-resistant resin solution, a proportioning pump 110 for discharging the polymer solution or heat-resistant resin solution, a high-voltage generator 120 , and a spinning nozzle 130 connected to the high-voltage generator 120 .
- the polymer solution or heat-resistant resin solution discharged through the proportioning pump 110 passes through the spinning nozzle 130 electrically charged by the high-voltage generator 120 to be formed into ultrafine fiber, and the ultrafine fiber is collected on the support layer 10 disposed on a collecting plate 140 grounded in the form of a conveyor moving at a predetermined speed.
- FIG. 4 is a flowchart showing a method of manufacturing the fibrous membrane for secondary batteries according to the first embodiment.
- first, paper to be used as a support layer is prepared and provided (S 100 ).
- the paper is made of cellulose fiber, and has a weight of 5 ⁇ 500 g/m 2 , preferably 100 ⁇ 300 g/m 2 .
- the paper is a tracing paper obtained by hardening cellulose fiber.
- a polymer solution is put into a barrel of an electrospinning apparatus, the polymer solution is discharged using a proportioning pump, and then a spinning nozzle is electrically charged using a high-voltage generator, thus forming a polymer layer on the paper disposed on a collecting plate grounded in the form of a conveyor moving at a predetermined speed (S 200 ).
- a polyethylene (PE) solution is prepared and then put into a barrel of an electrospinning apparatus, and then the polyethylene (PE) solution is discharged using a proportioning pump.
- a spinning nozzle is electrically charged using a high-voltage generator to form a polymer layer having a thickness of 50 ⁇ m on a support layer.
- the procedure of forming the polymer layer may be omitted.
- a heat-resistant resin solution for example a polyethylene terephthalate (PET) solution
- PET polyethylene terephthalate
- S 300 an ultrafine-fibrous porous polymer separation membrane
- FIG. 5 shows a scanning electron microscope (SEM) photograph of the polymer layer applied on the surface of the support layer.
- press lamination is conducted at a predetermined temperature or lower after the polymer layer is disposed on the support layer, or is conducted at a predetermined temperature or lower after the separation membrane of the present invention is disposed between a cathode and an anode (S 400 ).
- a pair of polymer layers 22 and 22 ′ and a pair of heat-resistant resin layers 24 and 24 ′ can be sequentially formed on both sides of a support layer in the same manner as the above-mentioned method of manufacturing the fibrous membrane for secondary batteries according to the first embodiment of the present invention. Therefore, detailed descriptions thereof will be omitted.
- the procedure of forming the pair of polymer layers 22 and 22 ′ may be omitted.
- a separation membrane can assure sufficient strength because it is manufactured by electrospinning a polymer solution on paper used as a support layer.
- micropores can be formed in a separation membrane because the separation membrane is manufactured by electrospinning a polymer solution on paper used as a support layer.
- a separation membrane having heat resistance which is not constricted even at high temperature, can be obtained because paper and several polymer resins are used.
- the adhesion between the fiber and the paper can be improved, the strength of a separation membrane can be improved, and a thin fibrous separation membrane can be obtained.
- a thin separation membrane can be obtained, so that a secondary battery generates high power, thereby improving the performance of a secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cell Separators (AREA)
Abstract
Disclosed herein is a fibrous separation membrane for secondary batteries, comprising: a support layer containing cellulose fiber; and a first heat-resistant resin layer applied on one side of the support layer.
Description
- This application claims the benefit of Korean Patent Application No. 10-2011-0027783, filed Mar. 28, 2011, entitled “Secondary battery fibrous separation membrane and method thereof”, which is hereby incorporated by reference in its entirety into this application.
- 1. Technical Field
- The present invention relates to a fibrous separation membrane for secondary batteries, and a method of manufacturing the same.
- 2. Description of the Related Art
- A secondary battery is a battery which can be reused because it can be recharged using external energy and returned to an original state after being discharged.
- Such a secondary battery is characterized in that it has high power density, it can do high-power discharge, and it is only slightly influenced by temperature.
- Recently, green energy has attracted considerable attention, and thus secondary batteries have expanded their fields to IT, EV, ESS, and the like.
- The demand for secondary batteries is rapidly increasing, and the function of secondary batteries is also becoming highly functionalized.
- Such a secondary battery includes the four major components of a cathode active material, an anode active material, an electrolyte and a separation membrane. Among them, a separation membrane serves to separate a cathode active material and an anode active material, and is used as an ion transfer passage. As such, since a separation membrane serves to provide an ion transfer passage and prevent foreign matter from moving, it must have pores having a size of several micrometers or less.
- Conventional separation membranes are mostly formed by a wet process or a dry process.
- The wet process is a process of forming pores by phase-separating a solution containing a polymer, a solvent and other components and then stretching the phase-separated product, and the dry process is a process of forming pores by extruding a polymer and then stretching the extruded polymer.
- Since biaxial stretching must be conducted in the wet process, the wet process is advantageous in that pores are non-oriented, but is disadvantageous in that manufacturing costs are high. In contrast, since uniaxial stretching must be conducted in the dry process, the dry process is disadvantageous in that pores are oriented, but is advantageous in that manufacturing costs are low.
- All of the separation membranes formed by the wet process or the dry process are made of polyolefin-based resins. Since both the wet process and the dry process include a stretching process, there is a problem in that the raw materials of the separation membranes cannot be freely selected.
- The separation membrane is generally made of two kinds of resins of polyethylene and polypropylene. The separation membrane is produced by mixing the two kinds of resins or laminating them.
- Like this, since the conventional separation membrane is made of a polyolefin-based resin, its heat resistance is low, so that it is greatly constricted at high temperature, with the result that it is not suitable for EV.
- Further, the conventional separation membrane is problematic in that its raw material is limited to polyolefin-based resins, so that the range of selection of raw materials is very narrow, with the result that it is not suitable for the realization of high functionality.
- Accordingly, the present invention has been devised to solve the above-mentioned problems, and the present invention intends to provide a fibrous separation membrane for secondary batteries, which can expand the range of selection of raw materials because it is manufactured by electrospinning, and which can maintain high strength because paper is used as a support layer, and a method of manufacturing the same.
- An aspect of the present invention provides a fibrous separation membrane for secondary batteries, including: a support layer containing cellulose fiber; and a first heat-resistant resin layer applied on one side of the support layer.
- Here, the first heat-resistant resin layer may be made of any one selected from the group consisting of aromatic polyesters, polyphosphazenes, polyurethane, polyurethane copolymers including polyetherurethane, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, polyvinylidene fluoride, perfluoropolymers, polyvinylchloride, polyvinylidene chloride, polyethyleneglycol derivatives, polyoxide, polyvinyl acetate, polystyrene, polyacrylonitrile, and polymethacrylate.
- Further, the fibrous separation membrane may further include: a first polymer layer applied between the support layer and the first heat-resistant resin layer.
- Further, the first polymer layer may be made of a polymer material having a melting point of 100˜180° C.
- Further, the fibrous separation membrane may further include: a second heat-resistant resin layer applied on the other side of the support layer.
- Further, the second heat-resistant resin layer may be made of any one selected from the group consisting of aromatic polyesters, polyphosphazenes, polyurethane, polyurethane copolymers including polyetherurethane, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, polyvinylidene fluoride, perfluoropolymers, polyvinylchloride, polyvinylidene chloride, polyethyleneglycol derivatives, polyoxide, polyvinyl acetate, polystyrene, polyacrylonitrile, and polymethacrylate.
- Further, the fibrous separation membrane may further include: a second polymer layer applied between the support layer and the second heat-resistant resin layer.
- Further, the second polymer layer may be made of a polymer material having a melting point of 100˜180° C.
- Another aspect of the present invention provides a method of manufacturing a fibrous separation membrane for secondary batteries, including: forming a support layer containing cellulose fiber; and electrospinning a heat-resistant resin solution onto one side of the support layer to form a first ultrafine-fibrous heat-resistant resin layer.
- Here, the method may further include: electrospinning a first polymer solution onto one side of the support layer to form a first ultrafine-fibrous polymer layer between the forming the support layer and the forming the first ultrafine-fibrous heat-resistant resin layer.
- Further, the first polymer layer may be made of a polymer material having a melting point of 100˜180° C.
- Further, the method may further include: electrospinning a heat-resistant resin solution onto the other side of the support layer to form a second ultrafine-fibrous heat-resistant resin layer.
- Further, the method may further include: electrospinning a second polymer solution onto the other side of the support layer to form a second ultrafine-fibrous polymer layer between the forming the support layer and the forming the second ultrafine-fibrous heat-resistant resin layer.
- Further, the second polymer layer may be made of a polymer material having a melting point of 100˜180° C.
- The terms and words used in the present specification and claims should not be interpreted as being limited to typical meanings or dictionary definitions, but should be interpreted as having meanings and concepts relevant to the technical scope of the present invention based on the rule that an inventor can appropriately define the concept of the term to describe the best method he or she knows for carrying out the invention.
- The above and other objects, features and advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
-
FIG. 1 is a sectional view showing a fibrous separation membrane for secondary batteries according to a first embodiment of the present invention; -
FIG. 2 is a sectional view showing a fibrous separation membrane for secondary batteries according to a second embodiment of the present invention; -
FIG. 3 is a schematic view showing an electrospinning apparatus which can be used to manufacture the fibrous separation membrane for secondary batteries according to the present invention; -
FIG. 4 is a flowchart showing a method of manufacturing the fibrous membrane for secondary batteries according to the first embodiment of the present invention; and -
FIG. 5 is a scanning electron microscope (SEM) photograph showing a polymer layer formed on the surface of a support layer in the fibrous separation membrane according to the first embodiment of the present invention. - The objects, features and advantages of the present invention will be more clearly understood from the following detailed description of preferred embodiments taken in conjunction with the accompanying drawings. Throughout the accompanying drawings, the same reference numerals are used to designate the same or similar components, and redundant descriptions thereof are omitted. Further, in the description of the present invention, when it is determined that the detailed description of the related art would obscure the gist of the present invention, the description thereof will be omitted.
- Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
-
FIG. 1 is a sectional view showing a fibrous separation membrane for secondary batteries according to a first embodiment of the present invention. - As shown in
FIG. 1 , the fibrous separation membrane for secondary batteries according to the first embodiment of the present invention includes asupport layer 10, apolymer layer 22 applied on thesupport layer 10, and a heat-resistant resin layer 24 applied on thepolymer layer 22. Here, if necessary, thepolymer layer 22 may not be provided. - The
support layer 10, which serves to provide strength to thepolymer layer 22 and the heat-resistance resin layer 24, is made of cellulose fiber, and has a weight of 5˜500 g/m2, preferably 100-300 g/m2. - Meanwhile, the
support layer 10 may be formed of paper, and the paper may be transparent or translucent. In particular, the paper for forming thesupport layer 10 may be tracing paper. The “tracing paper” is referred to as paper certified according to ISO 4046-1978, 6.94. - Particularly, the tracing paper is obtained by hardening cellulose fiber.
- Here, when paper is used as the
support layer 10, pores having a size of several micrometers (μm), which is a requirement of a separation membrane, can be obtained as well guaranteeing strength. - The
polymer layer 22 functions to shut down a secondary battery when the secondary battery reaches a high temperature. - The heat-
resistant resin layer 24 prevents the meltdown of a separation membrane when the secondary battery is further heated after the secondary battery was shut down, thus preventing the short and explosion of the secondary battery. - The
polymer layer 22 and the heat-resistant resin layer 24 may have a molecular weight which enables electrospinning to be carried out, and, particularly, may have a molecular weight of 10,000 or more. When thepolymer layer 22 and the heat-resistant resin layer 24 have a molecular weight of 10,000 or more, fiber can be easily made by electrospinning, and the physical properties thereof are excellent. Further, as the molecular weight thereof increases, the diameter of the nanofiber obtained by electrospinning decreases, thus forming a large number of junctions of nanofibers. - Further, the
polymer layer 22 and the heat-resistant resin layer 24 can be made of a polymer having a molecular weight of 2,000 or more in terms of workability and physical properties depending on mass production. In particularly, thepolymer layer 22 and the heat-resistant resin layer 24 can be made of ultra-high molecular weight polyethylene having a molecular weight of 1,000,000˜5,000,000. - If the solvent used to form the
polymer layer 22 and the heat-resistant resin layer 24 can suitably dissolve a polymer and disperse solid particles, the solvent may be selectively used depending on the kind of polymer and solid particles by those skilled in the art. - The
polymer layer 22 is made of a polyolefin resin or a polymer having a melt index of 1˜25 g/min and a relatively low melting point, such as polyethylene (PE), polypropylene (PP), polymethylpentene, an ethylene-propylene copolymer or the like. - Further, for the purpose of shutdown function, the
polymer layer 22 may be made of a polymer material having a melting point of 100˜180° C., preferably 120˜150° C. - Here, a polyolefin resin or a polymer is used to make the
polymer layer 22, but the present invention is not limited thereto. All of the polymer materials having a melting point of 100˜180° C. can be used. - The heat-resistant resin layer is made of a polymer having a melting point of 180° C. or having no melting point. Examples of the polymer having a melting point of 180° C. or having no melting point may include: aromatic polyesters, such as polyamide, polyimide, polyamideimide, poly(meta-phenyleneisophthalamide), ploysulfone, polyether ketone, polyether imide, polyethylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and the like; polyphosphazenes, such as polytetrafluoroethylene, polydiphenoxyphosphazene, poly{bis[2-(2-methoxyethoxy)phosphazene]}, and the like; polyurethane; polyurethane copolymers, such as polyetherurethane, and the like; cellulose acetate; cellulose acetate butylate; cellulose acetate propionate; polyvinylidene fluoride; perfluoropolymers; polyvinylchloride; polyvinylidene chloride; polyethyleneglycol derivatives; polyoxide; polyvinyl acetate; polystyrene; polyacrylonitrile; polymethacrylate; and the like.
- Here, the polymer having no melting point is referred to as a polymer that bums without melting even at 180° C. or higher.
- Both the
polymer layer 22 and the heat-resistant resin layer 24 may have a thickness of 1˜50 μm, preferably 1˜20 μm, more preferably 5˜10 μm. When the thickness thereof is excessively small, sufficient effects cannot be exhibited. Further, when the thickness thereof is excessively large, it is economically disadvantageous and is not especially profitable. - As described above, the fibrous separation membrane for secondary batteries is formed by sequentially electrospinning a polymer solution (including a melt solution) onto the
support layer 10, and is formed therein with pores that are micrometers in size. - It was ascertained that the matrix of the fibrous separation membrane for secondary batteries has a structure in which ultrafine polymer fibers having a diameter of 1˜3000 nm are irregularly and three-dimensionally laminated, so that the ratio of surface area to volume of the matrix thereof is higher than that of a conventional matrix, and the porosity thereof is higher than that of the conventional matrix.
- Therefore, since the porosity of the matrix of the separation membrane is high, the amount of an electrolyte impregnated into the matrix thereof increases, thus increasing the ion conductivity of the separation membrane. Further, since the surface area of the matrix of the separation membrane is large regardless of the high porosity thereof, the contact area of an electrolyte to the matrix of the separation membrane can be increased, thus minimizing the leakage of the electrolyte.
- Meanwhile, when a porous polymer matrix is formed by electrospinning, there is an advantage in that the porous polymer matrix is directly formed in the form of membrane.
- The diameter of the fibrous polymer forming the porous polymer matrix may be adjusted to within a range of 1˜3000 nm, preferably 10˜1000 nm, more preferably 50˜500 nm. When the diameter of the fibrous polymer is excessively small, it is difficult to form a separation membrane. Further, when the diameter thereof is excessively large, the impregnation rate of an electrolyte is decreased.
- Further, the porosity of the
polymer layer 22 applied on thesupport layer 10 is about 20˜90%, and the pore size thereof is about 10 nm˜10 μm. -
FIG. 2 is a sectional view showing a fibrous separation membrane for secondary batteries according to a second embodiment of the present invention. - As shown in
FIG. 2 , the fibrous separation membrane for secondary batteries according to the second embodiment of the present invention includes asupport layer 10, a pair of polymer layers 22 and 22′ applied on both sides of thesupport layer 10, and a pair of heat-resistant resin layers 24 and 24′ respectively applied on the polymer layers 22 and 22′. Here, if necessary, the polymer layers 22 and 22′ may not be provided. - The configuration of the fibrous separation membrane for secondary batteries according to the second embodiment of the present invention is the same as that of the fibrous separation membrane for secondary batteries according to the first embodiment of the present invention, except that the polymer layers 22 and 22′ and the heat-resistant resin layers 24 and 24′ are sequentially formed on both sides of the
support layer 10. Therefore, detailed descriptions thereof will be omitted. - Hereinafter, a method of manufacturing the fibrous membrane for secondary batteries according to the first embodiment will be described with reference to
FIG. 3 . -
FIG. 3 is a schematic view showing an electrospinning apparatus which can be used to manufacture the fibrous separation membrane for secondary batteries according to the present invention. - As shown in
FIG. 3 , the electrospinning apparatus includes abarrel 100 for storing a polymer solution or a heat-resistant resin solution, aproportioning pump 110 for discharging the polymer solution or heat-resistant resin solution, a high-voltage generator 120, and a spinningnozzle 130 connected to the high-voltage generator 120. - The polymer solution or heat-resistant resin solution discharged through the
proportioning pump 110 passes through the spinningnozzle 130 electrically charged by the high-voltage generator 120 to be formed into ultrafine fiber, and the ultrafine fiber is collected on thesupport layer 10 disposed on a collectingplate 140 grounded in the form of a conveyor moving at a predetermined speed. -
FIG. 4 is a flowchart showing a method of manufacturing the fibrous membrane for secondary batteries according to the first embodiment. - As shown in
FIG. 4 , in the method of manufacturing the fibrous membrane for secondary batteries according to the first embodiment, first, paper to be used as a support layer is prepared and provided (S100). - The paper is made of cellulose fiber, and has a weight of 5˜500 g/m2, preferably 100˜300 g/m2. In particular, the paper is a tracing paper obtained by hardening cellulose fiber.
- Subsequently, a polymer solution is put into a barrel of an electrospinning apparatus, the polymer solution is discharged using a proportioning pump, and then a spinning nozzle is electrically charged using a high-voltage generator, thus forming a polymer layer on the paper disposed on a collecting plate grounded in the form of a conveyor moving at a predetermined speed (S200).
- For example, as the polymer solution, a polyethylene (PE) solution is prepared and then put into a barrel of an electrospinning apparatus, and then the polyethylene (PE) solution is discharged using a proportioning pump.
- In this case, a spinning nozzle is electrically charged using a high-voltage generator to form a polymer layer having a thickness of 50 μm on a support layer.
- Here, if necessary, the procedure of forming the polymer layer may be omitted.
- Subsequently, a heat-resistant resin solution, for example a polyethylene terephthalate (PET) solution, is electrospun in the same manner as the polymer solution to form a heat-resistant resin layer on the polymer layer, thereby manufacturing an ultrafine-fibrous porous polymer separation membrane (S300).
-
FIG. 5 shows a scanning electron microscope (SEM) photograph of the polymer layer applied on the surface of the support layer. - Subsequently, in order to increase adhesion between the support layer and the polymer layer and adhesion between the polymer layer and the heat-resistant resin layer and to adjust the porosity and thickness of the heat-resistant resin layer, press lamination is conducted at a predetermined temperature or lower after the polymer layer is disposed on the support layer, or is conducted at a predetermined temperature or lower after the separation membrane of the present invention is disposed between a cathode and an anode (S400).
- Meanwhile, in a method of manufacturing the fibrous membrane for secondary batteries according to the second embodiment of the present invention, a pair of polymer layers 22 and 22′ and a pair of heat-resistant resin layers 24 and 24′ can be sequentially formed on both sides of a support layer in the same manner as the above-mentioned method of manufacturing the fibrous membrane for secondary batteries according to the first embodiment of the present invention. Therefore, detailed descriptions thereof will be omitted.
- Here, if necessary, the procedure of forming the pair of polymer layers 22 and 22′ may be omitted.
- As described above, according to the present invention, a separation membrane can assure sufficient strength because it is manufactured by electrospinning a polymer solution on paper used as a support layer.
- Further, according to the present invention, micropores can be formed in a separation membrane because the separation membrane is manufactured by electrospinning a polymer solution on paper used as a support layer.
- Further, according to the present invention, a separation membrane having heat resistance, which is not constricted even at high temperature, can be obtained because paper and several polymer resins are used.
- Further, according to the present invention, owing to the post-treatment using a thermal pressing process, the adhesion between the fiber and the paper can be improved, the strength of a separation membrane can be improved, and a thin fibrous separation membrane can be obtained.
- Furthermore, according to the present invention, a thin separation membrane can be obtained, so that a secondary battery generates high power, thereby improving the performance of a secondary battery.
- Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Claims (7)
1.-8. (canceled)
9. A method of manufacturing a fibrous separation membrane for secondary batteries, comprising:
forming a support layer containing cellulose fiber; and
electrospinning a heat-resistant resin solution onto one side of the support layer to form a first ultrafine-fibrous heat-resistant resin layer.
10. The method according to claim 9 , further comprising: electrospinning a first polymer solution onto one side of the support layer to form a first ultrafine-fibrous polymer layer between the forming the support layer and the forming the first ultrafine-fibrous heat-resistant resin layer.
11. The method according to claim 10 , wherein the first polymer layer is made of a polymer material having a melting point of 100˜180° C.
12. The method according to claim 9 , further comprising: electrospinning a heat-resistant resin solution onto the other side of the support layer to form a second ultrafine-fibrous heat-resistant resin layer.
13. The method according to claim 12 , further comprising: electrospinning a second polymer solution onto the other side of the support layer to form a second ultrafine-fibrous polymer layer between the forming the support layer and the forming the second ultrafine-fibrous heat-resistant resin layer.
14. The method according to claim 13 , wherein the second polymer layer is made of a polymer material having a melting point of 100˜180° C.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/943,754 US20130300033A1 (en) | 2010-03-28 | 2013-07-16 | Fibrous separation membrane for secondary battery and manufacturiing method thereof |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2011-0027783 | 2011-03-28 | ||
| KR1020110027783A KR101301446B1 (en) | 2011-03-28 | 2011-03-28 | Secondary battery fibrous separation membrane and method thereof |
| US13/155,366 US20110236744A1 (en) | 2010-03-28 | 2011-06-07 | Fibrous separation membrane for secondary battery and manufacturing method thereof |
| US13/943,754 US20130300033A1 (en) | 2010-03-28 | 2013-07-16 | Fibrous separation membrane for secondary battery and manufacturiing method thereof |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/155,366 Division US20110236744A1 (en) | 2010-03-28 | 2011-06-07 | Fibrous separation membrane for secondary battery and manufacturing method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130300033A1 true US20130300033A1 (en) | 2013-11-14 |
Family
ID=44656852
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/155,366 Abandoned US20110236744A1 (en) | 2010-03-28 | 2011-06-07 | Fibrous separation membrane for secondary battery and manufacturing method thereof |
| US13/943,754 Abandoned US20130300033A1 (en) | 2010-03-28 | 2013-07-16 | Fibrous separation membrane for secondary battery and manufacturiing method thereof |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/155,366 Abandoned US20110236744A1 (en) | 2010-03-28 | 2011-06-07 | Fibrous separation membrane for secondary battery and manufacturing method thereof |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US20110236744A1 (en) |
| JP (1) | JP2012209234A (en) |
| KR (1) | KR101301446B1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
Families Citing this family (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011162528A2 (en) * | 2010-06-21 | 2011-12-29 | Kolon Industries, Inc. | Porous nanoweb and method for manufacturing the same |
| EP2614547B1 (en) | 2010-09-09 | 2020-07-08 | California Institute of Technology | Three-dimensional electrode array and method of making it |
| EP2732487A4 (en) | 2011-07-11 | 2015-04-08 | California Inst Of Techn | NEW SEPARATORS FOR ELECTROCHEMICAL SYSTEMS |
| US9379368B2 (en) | 2011-07-11 | 2016-06-28 | California Institute Of Technology | Electrochemical systems with electronically conductive layers |
| CN104126239A (en) * | 2012-02-21 | 2014-10-29 | 阿科玛股份有限公司 | Aqueous polyvinylidene fluoride composition |
| WO2014100213A2 (en) * | 2012-12-18 | 2014-06-26 | Sabic Innovative Plastics Ip B.V. | High temperature melt integrity battery separators via spinning |
| US9647255B2 (en) * | 2012-12-21 | 2017-05-09 | Amogreentech Co., Ltd. | Porous separation membrane, secondary battery using same, and method for manufacturing said secondary battery |
| KR101576151B1 (en) * | 2013-07-12 | 2015-12-09 | 주식회사 아모그린텍 | Complex fibrous separator, manufacturing method thereof and secondary battery using the same |
| WO2014113944A1 (en) * | 2013-01-23 | 2014-07-31 | 华南理工大学 | Diaphragm paper, and preparation method and application thereof |
| KR101292657B1 (en) * | 2013-02-06 | 2013-08-23 | 톱텍에이치앤에스 주식회사 | A hybrid non-woven separator having the inverted structure |
| KR101635031B1 (en) * | 2013-08-01 | 2016-07-08 | (주)에프티이앤이 | Both sides substrate nanofiber filter for excellent heat-resisting property and its manufacturing method |
| KR101465243B1 (en) * | 2013-04-24 | 2014-11-25 | 애경유화주식회사 | Heat-resistant nano web membrane and method for production thereof |
| JP2016532787A (en) * | 2013-07-05 | 2016-10-20 | ザ ノース フェイス アパレル コーポレイションThe North Face Apparel Corp. | Method for producing waterproof and breathable membrane and superfine fiber web |
| CN103437071A (en) * | 2013-09-11 | 2013-12-11 | 浙江伟星实业发展股份有限公司 | Electrostatic spinning nanofiber membrane as well as preparation method thereof |
| KR101543403B1 (en) | 2013-10-07 | 2015-08-11 | (주)에프티이앤이 | Filter including polyvinylidene fluoride nanofiber and bicomponent substrate and its manufacturing method |
| KR101521602B1 (en) * | 2013-10-07 | 2015-05-20 | (주)에프티이앤이 | Filter including polyvinylidene fluoride nanofiber and its manufacturing method |
| KR101543404B1 (en) * | 2013-10-07 | 2015-08-11 | (주)에프티이앤이 | Filter including polyvinylidene fluoride nanofiber having multi fiber-diameter group on both sides of a substrate and its manufacturing method |
| KR101521600B1 (en) * | 2013-10-07 | 2015-05-20 | (주)에프티이앤이 | Filter including polyvinylidene fluoride nanofiber and bicomponent substrate and its manufacturing method |
| KR101615678B1 (en) * | 2013-10-07 | 2016-04-26 | (주)에프티이앤이 | Filter including polyvinylidene fluoride nanofiber on both sides of a substrate and its manufacturing method |
| US20150171398A1 (en) | 2013-11-18 | 2015-06-18 | California Institute Of Technology | Electrochemical separators with inserted conductive layers |
| US10714724B2 (en) | 2013-11-18 | 2020-07-14 | California Institute Of Technology | Membranes for electrochemical cells |
| US9668742B2 (en) | 2014-03-12 | 2017-06-06 | Cook Medical Technologies Llc | Occlusion device |
| CN104727016A (en) * | 2014-04-01 | 2015-06-24 | 浙江伟星实业发展股份有限公司 | Nanofiber composite membrane and preparation method thereof |
| KR101969009B1 (en) * | 2014-10-10 | 2019-04-15 | 주식회사 아모그린텍 | Membrane for flexible battery, method of manufacturing thereof, and flexible battery including the same |
| WO2016085226A1 (en) * | 2014-11-24 | 2016-06-02 | 주식회사 아모그린텍 | Separator for flexible battery, method for manufacturing same, and flexible battery comprising same |
| KR101894134B1 (en) * | 2015-03-30 | 2018-09-04 | 주식회사 엘지화학 | A multi-layered separator based cellulose |
| WO2016159658A1 (en) * | 2015-03-30 | 2016-10-06 | 주식회사 엘지화학 | Cellulose-based multilayer separation membrane |
| WO2017096258A1 (en) | 2015-12-02 | 2017-06-08 | California Institute Of Technology | Three-dimensional ion transport networks and current collectors for electrochemical cells |
| CN106898718B (en) * | 2015-12-18 | 2020-03-31 | 比亚迪股份有限公司 | Polymer composite membrane, preparation method thereof and lithium ion battery |
| CN107681090A (en) * | 2017-08-04 | 2018-02-09 | 浙江大东南集团有限公司 | A kind of lithium ion cell nano fiber composite barrier film of high security and preparation method thereof |
| CN109428035B (en) * | 2017-08-31 | 2020-11-06 | 比亚迪股份有限公司 | Battery diaphragm, preparation method thereof and lithium ion battery |
| KR102230611B1 (en) * | 2019-05-22 | 2021-03-19 | 고려대학교 산학협력단 | Separator for electrochemical device and method for preparing the same |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130012598A1 (en) * | 2009-03-24 | 2013-01-10 | Velev Orlin D | Apparatus and methods for fabricating nanofibers from sheared solutions under continuous flow |
| US20130281594A1 (en) * | 2009-09-04 | 2013-10-24 | Basf Se | Water-absorbent polymer particles |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1186829C (en) * | 1997-01-16 | 2005-01-26 | 三菱制纸株式会社 | Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for mfg. separator for nonaqueous electrolyte batteries |
| TW460505B (en) * | 1998-04-27 | 2001-10-21 | Sumitomo Chemical Co | Separator for nonaqueous electrolyte battery and lithium secondary battery made from the same |
| JP4593566B2 (en) * | 2003-06-17 | 2010-12-08 | ナノフィル カンパニー リミテッド | COMPOSITE MEMBRANE FOR ELECTROCHEMICAL DEVICE, PROCESS FOR PRODUCING THE SAME AND ELECTROCHEMICAL DEVICE HAVING THE SAME |
| JP4705335B2 (en) * | 2004-03-19 | 2011-06-22 | 株式会社巴川製紙所 | Separator for electronic parts and method for manufacturing the same |
| US20050208383A1 (en) * | 2004-03-19 | 2005-09-22 | Hiroki Totsuka | Electronic component separator and method for producing the same |
| JP4803984B2 (en) * | 2004-09-22 | 2011-10-26 | 帝人株式会社 | Lithium ion secondary battery separator, method for producing the same, and lithium ion secondary battery |
| KR100845239B1 (en) * | 2006-08-07 | 2008-07-10 | 한국과학기술연구원 | Separator with heat-resistant ultra-fine fiber layer and secondary battery using same |
| JP2008103050A (en) * | 2006-10-20 | 2008-05-01 | Toshiba Corp | Playback apparatus and playback method |
| JP5160111B2 (en) * | 2007-03-19 | 2013-03-13 | 株式会社クラレ | Battery separator, method for producing the same, and battery comprising the same |
| JP5140886B2 (en) * | 2007-05-07 | 2013-02-13 | 帝人株式会社 | Composite fiber structure |
| JP4518125B2 (en) * | 2007-09-27 | 2010-08-04 | トヨタ自動車株式会社 | Positive electrode active material and lithium secondary battery |
| KR101714811B1 (en) * | 2009-09-16 | 2017-03-09 | 주식회사 쿠라레 | Separator for non-aqueous batteries, non-aqueous battery using same, and production method for separator for non-aqueous batteries |
-
2011
- 2011-03-28 KR KR1020110027783A patent/KR101301446B1/en not_active Expired - Fee Related
- 2011-05-27 JP JP2011119278A patent/JP2012209234A/en active Pending
- 2011-06-07 US US13/155,366 patent/US20110236744A1/en not_active Abandoned
-
2013
- 2013-07-16 US US13/943,754 patent/US20130300033A1/en not_active Abandoned
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130012598A1 (en) * | 2009-03-24 | 2013-01-10 | Velev Orlin D | Apparatus and methods for fabricating nanofibers from sheared solutions under continuous flow |
| US20130281594A1 (en) * | 2009-09-04 | 2013-10-24 | Basf Se | Water-absorbent polymer particles |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20120109257A (en) | 2012-10-08 |
| JP2012209234A (en) | 2012-10-25 |
| KR101301446B1 (en) | 2013-08-28 |
| US20110236744A1 (en) | 2011-09-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20130300033A1 (en) | Fibrous separation membrane for secondary battery and manufacturiing method thereof | |
| US8968909B2 (en) | Fibrous separation membrane for secondary battery and manufacturing method thereof | |
| KR101929063B1 (en) | Separator for non-aqueous batteries and non-aqueous battery equipped with same, and process for manufacturing separator for non-aqueous batteries | |
| US10693114B2 (en) | Polyolefin-based porous film and method for producing the same | |
| KR101735510B1 (en) | Porous separator and preparation method thereof | |
| Zhang | A review on the separators of liquid electrolyte Li-ion batteries | |
| KR101265735B1 (en) | Ultrafine fibrous separator having shutdown function, method and apparatus for manufacturing the same | |
| CN103781831B (en) | Manufacture method containing the micro-porous stretched film of cellulose nano-fibrous polyolefine, this film and non-aqueous secondary batteries barrier film | |
| CN102498592B (en) | Separator for non-aqueous batteries, non-aqueous battery using same, and production method for separator for non-aqueous batteries | |
| KR101407770B1 (en) | Porous Nanoweb and Method for Manufacturing The Same | |
| KR101183912B1 (en) | Polyethylene multilayer microporous membrane, battery separator using same, and battery | |
| KR101292656B1 (en) | Polyethyleneterephthalate-based separator for secondary battery | |
| KR102386487B1 (en) | Microporous membrane, lithium ion secondary battery, and microporous membrane manufacturing method | |
| CN101223031A (en) | Polyolefin multilayer microporous film and battery separator | |
| KR20170019348A (en) | Polyolefin multilayer microporous film, method for producing same, and cell separator | |
| JPWO2013099607A1 (en) | Polyolefin microporous membrane and method for producing the same | |
| KR101689754B1 (en) | A high-strength electrospun microfiber web for a separator of a secondary battery, a separator comprising the same and a method for manufacturing the same | |
| KR102264032B1 (en) | Method for producing polyolefin microporous membrane and polyolefin microporous membrane | |
| KR102520879B1 (en) | Polyolefin microporous membrane, battery separator and secondary battery | |
| KR102276328B1 (en) | Polyolefin laminated porous film, battery separator using same and manufacturing method therefor | |
| JP2016173956A (en) | Separator for aqueous electrolyte storage battery, and aqueous electrolyte storage battery arranged by use thereof | |
| KR20150030102A (en) | A method of manufacturing separator for electrochemical device and separator for electrochemical device manufactured thereby | |
| JP2019197702A (en) | Non-woven fabric for battery separator and battery separator | |
| EP4053985B1 (en) | Battery-separator nonwoven fabric and battery separator | |
| KR101419772B1 (en) | 2-layer seperator for secondary cell with excellent heat-resisting property and its method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SAMSUNG ELECTRO-MECHANICS CO., LTD, KOREA, REPUBLI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, SUN OK;YOO, YOUNG SEUCK;NA, JIN WOOK;REEL/FRAME:030816/0838 Effective date: 20110513 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |