US20130298564A1 - Cooling system and method for turbine system - Google Patents
Cooling system and method for turbine system Download PDFInfo
- Publication number
- US20130298564A1 US20130298564A1 US13/470,556 US201213470556A US2013298564A1 US 20130298564 A1 US20130298564 A1 US 20130298564A1 US 201213470556 A US201213470556 A US 201213470556A US 2013298564 A1 US2013298564 A1 US 2013298564A1
- Authority
- US
- United States
- Prior art keywords
- tube
- plate
- liner
- hole
- combustor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 16
- 239000012530 fluid Substances 0.000 claims abstract description 39
- 230000002093 peripheral effect Effects 0.000 claims abstract description 36
- 125000006850 spacer group Chemical group 0.000 claims description 27
- 238000002485 combustion reaction Methods 0.000 claims description 20
- 238000010790 dilution Methods 0.000 claims description 8
- 239000012895 dilution Substances 0.000 claims description 8
- 239000007789 gas Substances 0.000 description 19
- 230000007704 transition Effects 0.000 description 17
- 239000000446 fuel Substances 0.000 description 12
- 230000008646 thermal stress Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/023—Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
- F23R3/06—Arrangement of apertures along the flame tube
Definitions
- the present disclosure relates in general to turbine systems, and more particularly to cooling systems for turbine systems and in exemplary embodiments cooling systems for combustors of turbine systems.
- Turbine systems are widely utilized in fields such as power generation.
- a conventional gas turbine system includes a compressor section, a combustor section, and at least one turbine section.
- the compressor section is configured to compress air as the air flows through the compressor section.
- the air is then flowed from the compressor section to the combustor section, where it is mixed with fuel and combusted, generating a hot gas flow.
- the hot gas flow is provided to the turbine section, which utilizes the hot gas flow by extracting energy from it to power the compressor, an electrical generator, and other various loads.
- the combustor liner and transition piece are examples of components defining temperature boundaries.
- Compressed air flowing through a compressor is typically flowed upstream in a flow passage past the outside surfaces of the combustor liner and transition piece before entering a combustion zone defined by inner surfaces of the combustor liner and transition piece. Due to combustion occurring in the combustion zone, a temperature differential exists between the flow passage and the combustion zone, and the air in the flow passage is utilized to cool the combustor liner and transition piece.
- portions of the air flowing through the flow passage are diverted through the combustor liner and/or transition piece into the combustion zone, to cool the combustor liner and/or transition piece. It is generally desirable for this air to create a film in the combustion zone adjacent to the inner surfaces of the combustor liner and/or transition piece, such that the combustor liner and/or transition piece are film cooled.
- cooling systems and methods for turbine systems are desired in the art.
- systems and methods that provide improved film cooling at temperature boundaries in a turbine system would be advantageous.
- systems and methods that reduce or eliminate recirculation and stagnation on liners defining the temperature boundaries would be advantageous.
- a cooling system for a turbine system includes a liner defining a temperature boundary between a hot side and a cold side.
- the liner includes a hot side surface and a cold side surface and defines a hole extending between the hot side surface and the cold side surface.
- the hole defines a peripheral edge.
- the cooling system further includes an insert.
- the insert includes a tube extending through the hole, the tube including an outer surface.
- the outer surface and the peripheral edge define a generally continuous peripheral gap therebetween.
- the insert further includes a plate connected to the tube and disposed in the hot side. The plate extends outwardly from the tube such that working fluid flowing through the gap is redirected by the plate to form a film proximate the hot side surface.
- FIG. 2 is a cross-sectional view of several portions of a gas turbine system according to one embodiment of the present disclosure
- FIG. 3 is a perspective exploded view of an insert and a liner according to one embodiment of the present disclosure
- FIG. 4 is a cutaway perspective assembled view of the insert and liner of FIG. 3 ;
- FIG. 6 is a cross-sectional view of an insert in a liner according to another embodiment of the present disclosure.
- FIG. 7 is a cutaway perspective view of an insert in a liner according to another embodiment of the present disclosure.
- FIG. 8 is a cross-sectional view of the insert and liner of FIG. 7 ;
- FIG. 9 is a cutaway perspective view of an insert in a liner according to another embodiment of the present disclosure.
- FIG. 10 is a cross-sectional view of the insert and liner of FIG. 9 .
- FIG. 1 is a schematic diagram of a gas turbine system 10 .
- the gas turbine system 10 may include a compressor section 12 , a combustor section 14 which may include a plurality of combustors 15 as discussed below, and a turbine section 16 .
- the compressor section 12 and turbine section 16 may be coupled by a shaft 18 .
- the shaft 18 may be a single shaft or a plurality of shaft segments coupled together to form shaft 18 .
- the shaft 18 may further be coupled to a generator or other suitable energy storage device, or may be connected directly to, for example, an electrical grid. Exhaust gases from the system 10 may be exhausted into the atmosphere, flowed to a steam turbine or other suitable system, or recycled through a heat recovery steam generator.
- various holes may be defined in the combustor liner 22 and/or transition piece 26 . These holes allow for working fluid flowing past the combustor liner 22 and/or transition piece 26 to be diverted into the combustion zone 24 , typically for cooling purposes. Dilution holes 42 are one example of such holes. Dilution holes 42 are defined in the combustor liner 22 , as shown.
- One or more holes 70 may be defined in the liner 60 . Each hole 70 may extend between the hot side surface 66 and the cold side surface 68 .
- a peripheral edge 72 may be defined by the hole 70 in the liner 60 . The peripheral edge 72 may define an outer boundary of the hole 70 .
- a hole according to the present disclosure may have any suitable shape and size. For example, in some embodiments, a hole may have a generally circular or oval cross-sectional shape. In other embodiments, a hole may have a generally rectangular, triangular, or other suitable polygonal shape.
- a liner 60 is a combustor liner 22 .
- the combustor liner 22 defines a temperature boundary between a hot side 62 , such as a combustion zone 24 , and a cold side surface 64 , such as a flow passage 36 .
- One or more holes 70 are defined in the combustor liner 22 . It should be understood, however, that the present disclosure is not limited to combustor liners 22 as liners 60 . Rather, any suitable liner defining a temperature boundary, such as a transition piece 26 or other suitable liner component, is within the scope and spirit of the present disclosure.
- a cooling system 50 according to the present disclosure further includes one or more inserts 80 .
- Each insert 80 is disposed in a hole 70 in a liner 60 , and facilitates film cooling of the liner 60 adjacent to the hole 70 .
- the use of an insert 80 in a hole 70 in a liner 60 reduces recirculation and stagnation adjacent to the hole 70 .
- the insert 80 directs working fluid 82 flowing through the hole 70 , such as a portion of the working fluid 84 as discussed below, to form a film proximate the liner 60 , which facilitates film cooling.
- the use of a cooling system 50 according to the present disclosure may advantageously reduce the existence of hot spots and resulting uneven thermal stresses in liners 60 . This may further advantageously reduce the formation of cracks in the liner 60 , especially adjacent to the holes 70 in which inserts 80 are disposed.
- an insert 80 includes a tube 90 .
- the tube 90 may include an inner surface 92 , and includes an outer surface 94 .
- the inner surface 92 may define an interior 96 of the tube 90 .
- the interior 96 may be generally hollow as shown, thus allowing working fluid 82 to flow therethrough.
- the tube 90 may be generally solid, such that no inner surface 92 can be defined.
- the tube 90 may have any suitable cross-sectional shape and size.
- the tube 90 may be cylindrical, and thus have a generally circular or oval cross-sectional shape.
- a hole may have a generally rectangular, triangular, or other suitable polygonal shape.
- the tube 90 of an insert 80 extends through a hole 70 in a liner 60 .
- the outer surface 94 of the tube 90 and the peripheral edge 72 of the hole 70 define a gap 98 therebetween.
- the gap 98 is a generally continuous peripheral gap that extends peripherally around the entire tube 90 , and thus peripherally about the entire outer surface 94 , as well as peripherally around the entire peripheral edge 72 .
- some of the working fluid 82 flowing through the flow passage 26 may flow through the hole 70 .
- this portion 84 of the working fluid 82 may flow between the hole 70 and the outer surface 94 of the tube 90 , and thus through the peripheral gap 98 . As discussed below, this portion 84 of the working fluid 82 may, after flowing through the peripheral gap 98 , be redirected to form a film proximate the hot side surface 66 .
- a insert 80 further includes a plate 100 , also known as a first plate 100 .
- the plate 100 is connected to the tube 90 , such as to the outer surface 94 thereof.
- the plate 100 may be welded to the tube 90 , mechanically connected to the tube 90 such as through screws, rivets, nut-bolt combinations, etc., or formed with the tube 90 as a singular component.
- the plate 100 extends around the entire periphery of the tube 90 , and is connected to an entire peripheral portion of the outer surface 94 .
- the plate 100 is disposed in the hot side 62 of the liner 60 .
- the plate 100 may extend generally outwardly from tube 90 , such as from the outer surface 94 away from the inner surface 92 .
- the plate 100 may extend generally transverse to and outwardly from the tube 90 .
- the tube 90 is generally cylindrical, and thus has a circular or oval cross-section
- the plate 100 may extend radially outward from the tube 90 .
- the plate 100 may extend from the tube 90 at any suitable angle to the transverse or radial direction.
- the plate 100 may redirect a portion 84 of the working fluid 82 flowing through the hole 70 .
- the portion 84 that flows through the peripheral gap 98 may contact or flow proximate to the plate 100 . Due to the positioning of the plate 100 , the plate 100 may cause the portion 84 of the working fluid 82 to turn and flow between the plate 100 and the hot side surface 66 of the liner 60 . This redirection in flow results in a film of working fluid 82 , which includes the portion 84 , being formed and flowing proximate the hot side surface 66 .
- Such redirection of the portion 84 of the working fluid 82 by the plate thus facilitates formation of a film of working fluid 82 quickly and proximate the associated hole 70 , and thus advantageously reduce the existence of hot spots and resulting uneven thermal stresses in liners 60 , particularly proximate holes 70 .
- an insert 80 further includes a second plate 102 .
- the second plate 102 may be connected to the tube 90 , such as to the outer surface 94 thereof.
- the second plate 102 may be welded to the tube 90 , mechanically connected to the tube 90 such as through screws, rivets, nut-bolt combinations, etc., or formed with the tube 90 as a singular component.
- the second plate 102 extends around the entire periphery of the tube 90 , and is connected to an entire peripheral portion of the outer surface 94 .
- the second plate 102 is disposed in the cold side 64 of the liner 60 .
- the second plate 102 may extend generally outwardly from tube 90 , such as from the outer surface 94 away from the inner surface 92 .
- the second plate 102 may extend generally transverse to and outwardly from the tube 90 .
- the second plate 102 may extend radially outward from the tube 90 .
- the second plate 102 may extend from the tube 90 at any suitable angle to the transverse or radial direction.
- the plate 100 may capture and direct working fluid 82 towards the hole 70 .
- the working fluid 82 may thus flow between the second plate 102 and the cold side surface 68 of the liner.
- a portion 84 of the working fluid 82 may flow through the hole 70 , and specifically through the peripheral gap 98 as discussed above, and then be redirected to form a film as discussed.
- An insert 80 according to the present disclosure may be connected to a liner 60 using any suitable connection methods or apparatus.
- one or more studs 110 may be utilized to connect the insert 80 to the liner 60 .
- the studs 110 may extend between the second plate 102 and the cold side surface 68 .
- studs 110 may extend between the first plate 100 and the hot side surface 66 .
- Any number of studs 110 may be utilized, in any suitable pattern that suitably connects the insert 80 to the liner 60 .
- eight studs 110 may be arranged in a generally annular array, as shown in FIG. 3 .
- one, two, three, four, five, six, seven, nine, ten or more studs 110 may be utilized, and/or the studs 110 may have any suitable arrangement.
- Each stud 110 may have any suitable shape and or size.
- the studs 110 may be welded, mechanically connected or formed as a unitary component with the insert 80 and/or the liner 60 .
- one or more ribs 120 may connect the insert 80 and liner 60 .
- Ribs 120 may be utilized in embodiments including or not including a second plate 102 .
- each rib 120 may extend between and connect the tube 90 , such as the outer surface 94 thereof, and the cold side surface 68 . Any number of ribs 120 may be utilized, in any suitable pattern that suitably connects the insert 80 to the liner 60 .
- ribs 120 may be arranged in a generally annular array, or alternatively, one, two, three, five, six, seven, eight, nine, ten or more ribs 120 may be utilized, and/or the ribs 120 may have any suitable arrangement.
- Each ribs 120 may have any suitable shape and or size.
- a rib 120 may be generally curvilinear as shown.
- a rib 120 may be generally linear, and/or may have various linear and/or curvilinear portions.
- the ribs 120 may be welded, mechanically connected or formed as a unitary component with the insert 80 and/or the liner 60 .
- one or more spacers 130 may be included in the insert 80 .
- the spacers 130 may position the insert 80 within the hole 70 , and may in some embodiments further connect the insert 80 to the liner 60 .
- the spacers 130 may connect the insert 80 to the liner 60 .
- Each spacer 130 may extend between and connect the peripheral edge 72 of the hole 70 and the outer surface 94 of the tube 90 . Any number of spacers 130 may be utilized, in any suitable pattern that suitably connects the insert 80 to the liner 60 .
- spacer 130 may be arranged in a generally annular array, or alternatively, one, two, three, five, six, seven, eight, nine, ten or more spacers 130 may be utilized, and/or the spacers 130 may have any suitable arrangement.
- Each spacer 130 may have any suitable shape and or size.
- the spacers 130 may be welded, mechanically connected or formed as a unitary component with the insert 80 , such as the outer surface 94 of the tube 90 , and/or the liner 60 , such as the peripheral edge 72 of the hole 70 .
- one or more holes 132 may be defined in each spacer 130 . Holes 132 are particularly necessary in embodiments wherein the spacers 130 connect the insert 80 to the liner 60 , in order to provide and maintain the continuous peripheral gap 98 between the hole 70 and the tube 90 .
- the spacers 130 may not connect the insert 80 to the liner 60 , and may rather simply maintain the position of the tube 90 within the hole 70 .
- the spacers 130 in these embodiments may have any suitable shape and size, and any suitable number of spacers 130 in any suitable pattern may be utilized.
- the spacers 130 may be connected, such as welded, mechanically connected or formed as a unitary component with, either the insert 80 , such as the outer surface 94 of the tube 90 , as shown or the liner 60 , such as the peripheral edge 72 of the hole 70 .
- the spacers 130 may not be connected to the other of the insert 80 and the liner 60 , thus maintaining the continuous peripheral gap 98 while serving to position the tube 90 within the hole 70 .
- the present disclosure is further directed to methods for cooling a liner 60 in a turbine system 10 .
- the method may include, for example, flowing a working fluid 82 , such as a portion 84 thereof, through a generally continuous peripheral gap 98 defined in the liner 60 between an outer surface 94 of a tube 90 disposed in a hole 70 and a peripheral edge 72 of the hole 70 .
- the method may further include, for example, redirecting the working fluid 82 , such as the portion 84 thereof, flowed through the gap 98 to form a film proximate a hot side surface 66 of the liner 60 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
A cooling system and a method for cooling a liner in a turbine system are disclosed. The cooling system includes a liner defining a temperature boundary between a hot side and a cold side. The liner includes a hot side surface and a cold side surface and defines a hole extending between the hot side surface and the cold side surface. The hole defines a peripheral edge. The cooling system further includes an insert. The insert includes a tube extending through the hole, the tube including an outer surface. The outer surface and the peripheral edge define a generally continuous peripheral gap therebetween. The insert further includes a plate connected to the tube and disposed in the hot side. The plate extends outwardly from the tube such that working fluid flowing through the gap is redirected by the plate to form a film proximate the hot side surface.
Description
- The present disclosure relates in general to turbine systems, and more particularly to cooling systems for turbine systems and in exemplary embodiments cooling systems for combustors of turbine systems.
- Turbine systems are widely utilized in fields such as power generation. For example, a conventional gas turbine system includes a compressor section, a combustor section, and at least one turbine section. The compressor section is configured to compress air as the air flows through the compressor section. The air is then flowed from the compressor section to the combustor section, where it is mixed with fuel and combusted, generating a hot gas flow. The hot gas flow is provided to the turbine section, which utilizes the hot gas flow by extracting energy from it to power the compressor, an electrical generator, and other various loads.
- Temperature boundaries exist in many locations in turbine systems. For example, in the combustor of a turbine system, the combustor liner and transition piece are examples of components defining temperature boundaries. Compressed air flowing through a compressor is typically flowed upstream in a flow passage past the outside surfaces of the combustor liner and transition piece before entering a combustion zone defined by inner surfaces of the combustor liner and transition piece. Due to combustion occurring in the combustion zone, a temperature differential exists between the flow passage and the combustion zone, and the air in the flow passage is utilized to cool the combustor liner and transition piece.
- Further in many cases, portions of the air flowing through the flow passage are diverted through the combustor liner and/or transition piece into the combustion zone, to cool the combustor liner and/or transition piece. It is generally desirable for this air to create a film in the combustion zone adjacent to the inner surfaces of the combustor liner and/or transition piece, such that the combustor liner and/or transition piece are film cooled.
- However, in many cases the air flowed through the combustor liner and/or transition piece, and further in many other cases requiring film cooling of other suitable liners disposed on temperature boundaries, there may be issues with film formation and resulting film cooling. For example, in many cases, the air flowed through the liner may cause recirculation or stagnation zones to form adjacent on the hot side of the liner. Hot fluids flowing past the liner, such as the hot gas flow in the combustor zone, may recirculate or stagnate within these zones, causing hot spots on the liner. The existence of hot spots can lead to uneven thermal stresses in the liner. In many cases, the thermal stresses can be of a cyclic nature due to system stops and starts, which can lead to crack initiation.
- Thus, cooling systems and methods for turbine systems are desired in the art. For example, systems and methods that provide improved film cooling at temperature boundaries in a turbine system would be advantageous. Further, systems and methods that reduce or eliminate recirculation and stagnation on liners defining the temperature boundaries would be advantageous.
- Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
- In one embodiment, a cooling system for a turbine system is disclosed. The cooling system includes a liner defining a temperature boundary between a hot side and a cold side. The liner includes a hot side surface and a cold side surface and defines a hole extending between the hot side surface and the cold side surface. The hole defines a peripheral edge. The cooling system further includes an insert. The insert includes a tube extending through the hole, the tube including an outer surface. The outer surface and the peripheral edge define a generally continuous peripheral gap therebetween. The insert further includes a plate connected to the tube and disposed in the hot side. The plate extends outwardly from the tube such that working fluid flowing through the gap is redirected by the plate to form a film proximate the hot side surface.
- In another embodiment, a method for cooling a liner in a turbine system is disclosed. The method includes flowing a working fluid through a generally continuous peripheral gap defined in the liner between an outer surface of a tube disposed in a hole and a peripheral edge of the hole. The method further includes redirecting the working fluid flowed through the gap to form a film proximate a hot side surface of the liner.
- These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
- A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
-
FIG. 1 is a schematic view of a gas turbine system according to one embodiment of the present disclosure; -
FIG. 2 is a cross-sectional view of several portions of a gas turbine system according to one embodiment of the present disclosure; -
FIG. 3 is a perspective exploded view of an insert and a liner according to one embodiment of the present disclosure; -
FIG. 4 is a cutaway perspective assembled view of the insert and liner ofFIG. 3 ; -
FIG. 5 is a cross-sectional view of the insert and liner ofFIG. 4 ; -
FIG. 6 is a cross-sectional view of an insert in a liner according to another embodiment of the present disclosure; -
FIG. 7 is a cutaway perspective view of an insert in a liner according to another embodiment of the present disclosure; -
FIG. 8 is a cross-sectional view of the insert and liner ofFIG. 7 ; -
FIG. 9 is a cutaway perspective view of an insert in a liner according to another embodiment of the present disclosure; and -
FIG. 10 is a cross-sectional view of the insert and liner ofFIG. 9 . - Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
-
FIG. 1 is a schematic diagram of agas turbine system 10. It should be understood that theturbine system 10 of the present disclosure need not be agas turbine system 10, but rather may be anysuitable turbine system 10, such as a steam turbine system or other suitable system. Thegas turbine system 10 may include acompressor section 12, acombustor section 14 which may include a plurality ofcombustors 15 as discussed below, and aturbine section 16. Thecompressor section 12 andturbine section 16 may be coupled by ashaft 18. Theshaft 18 may be a single shaft or a plurality of shaft segments coupled together to formshaft 18. Theshaft 18 may further be coupled to a generator or other suitable energy storage device, or may be connected directly to, for example, an electrical grid. Exhaust gases from thesystem 10 may be exhausted into the atmosphere, flowed to a steam turbine or other suitable system, or recycled through a heat recovery steam generator. - Referring to
FIG. 2 , a simplified drawing of several portions of agas turbine system 10 is illustrated. Thegas turbine system 10 as shown inFIG. 2 comprises acompressor section 12 for pressurizing a working fluid that is flowing through thesystem 10. The working fluid is typically air, but may be any suitable liquid or gas. Pressurized working fluid discharged from thecompressor section 12 flows into acombustor section 14, which may include a plurality of combustors 15 (only one of which is illustrated inFIG. 2 ) disposed in an annular array about an axis of thesystem 10. The working fluid entering thecombustor section 14 is mixed with fuel, such as natural gas or another suitable liquid or gas, and combusted. Hot gases of combustion flow from each combustor 15 to aturbine section 16 to drive thesystem 10 and generate power. - A
combustor 15 in thegas turbine 10 may include a variety of components for mixing and combusting the working fluid and fuel. For example, thecombustor 15 may include acasing 21, such as acompressor discharge casing 21. A variety of sleeves may be at least partially disposed in thecasing 21. For example, acombustor liner 22 may generally define acombustion zone 24 therein. Combustion of the working fluid, fuel, and optional oxidizer may generally occur in thecombustion zone 24. The resulting hot gases of combustion may flow downstream indirection 28 through thecombustion liner 22 into atransition piece 26 which further defines the combustion zone, and then flow through thetransition piece 26 and into theturbine section 16. - An
impingement sleeve 32 and flowsleeve 34 may generally circumferentiallysurround combustor liner 22 andtransition piece 26, as shown. Aflow passage 26 surrounding thecombustor liner 22 andtransition piece 26, through which working fluid may flow in anupstream direction 28, may thus further be defined be theimpingement sleeve 32 and flowsleeve 34. Thus, theflow passage 26 may be defined between the sleeve comprising theimpingement sleeve 32 and flowsleeve 34 and the sleeve comprising thecombustor liner 22 andtransition piece 26. As such, the working fluid flows through theflow passage 26 in the upstream direction, enters thecombustor 15 and is combusted with the fuel as discussed, and the resulting hot gas flows through thecombustion zone 24 in thedownstream direction 28. - The
combustor 15 may further include afuel nozzle 40 or a plurality offuel nozzles 40. Fuel may be supplied to thefuel nozzles 40 by one or more manifolds (not shown). As discussed below, thefuel nozzle 40 orfuel nozzles 40 may supply the fuel and, optionally, working fluid to thecombustion zone 24 for combustion. - In exemplary embodiments, various holes may be defined in the
combustor liner 22 and/ortransition piece 26. These holes allow for working fluid flowing past thecombustor liner 22 and/ortransition piece 26 to be diverted into thecombustion zone 24, typically for cooling purposes. Dilution holes 42 are one example of such holes. Dilution holes 42 are defined in thecombustor liner 22, as shown. -
FIGS. 3 through 10 illustrate various embodiments of acooling system 50 for aturbine system 10 according to the present disclosure. Thesystem 50 includes aliner 60. Theliner 60 defines a temperature boundary between ahot side 62 and acold side 64, and includes ahot side surface 66 and acold side surface 68. The temperature in thehot side 62 is relatively hotter than the temperature in thecold side 64. Theliner 60 is disposed on and defines the temperature boundary, so thehot size surface 66 of theliner 60 faces thehot side 62 and thecold side surface 68 of theliner 60 faces thecold side 64. - One or
more holes 70 may be defined in theliner 60. Eachhole 70 may extend between thehot side surface 66 and thecold side surface 68. Aperipheral edge 72 may be defined by thehole 70 in theliner 60. Theperipheral edge 72 may define an outer boundary of thehole 70. A hole according to the present disclosure may have any suitable shape and size. For example, in some embodiments, a hole may have a generally circular or oval cross-sectional shape. In other embodiments, a hole may have a generally rectangular, triangular, or other suitable polygonal shape. - One exemplary embodiment of a
liner 60 is acombustor liner 22. As discussed above, thecombustor liner 22 defines a temperature boundary between ahot side 62, such as acombustion zone 24, and acold side surface 64, such as aflow passage 36. One ormore holes 70, such as dilution holes 42, are defined in thecombustor liner 22. It should be understood, however, that the present disclosure is not limited tocombustor liners 22 asliners 60. Rather, any suitable liner defining a temperature boundary, such as atransition piece 26 or other suitable liner component, is within the scope and spirit of the present disclosure. - A
cooling system 50 according to the present disclosure further includes one or more inserts 80. Eachinsert 80 is disposed in ahole 70 in aliner 60, and facilitates film cooling of theliner 60 adjacent to thehole 70. In particular, the use of aninsert 80 in ahole 70 in aliner 60 reduces recirculation and stagnation adjacent to thehole 70. Theinsert 80 directs workingfluid 82 flowing through thehole 70, such as a portion of the workingfluid 84 as discussed below, to form a film proximate theliner 60, which facilitates film cooling. Thus, the use of acooling system 50 according to the present disclosure may advantageously reduce the existence of hot spots and resulting uneven thermal stresses inliners 60. This may further advantageously reduce the formation of cracks in theliner 60, especially adjacent to theholes 70 in which inserts 80 are disposed. - As shown in
FIGS. 3 through 10 , aninsert 80 according to the present disclosure includes atube 90. Thetube 90 may include aninner surface 92, and includes anouter surface 94. In embodiments wherein thetube 90 includes aninner surface 92, theinner surface 92 may define an interior 96 of thetube 90. The interior 96 may be generally hollow as shown, thus allowing workingfluid 82 to flow therethrough. In other embodiments, thetube 90 may be generally solid, such that noinner surface 92 can be defined. Thetube 90 may have any suitable cross-sectional shape and size. For example, in some embodiments, thetube 90 may be cylindrical, and thus have a generally circular or oval cross-sectional shape. In other embodiments, a hole may have a generally rectangular, triangular, or other suitable polygonal shape. As shown, thetube 90 of aninsert 80 extends through ahole 70 in aliner 60. When positioned in thehole 70, theouter surface 94 of thetube 90 and theperipheral edge 72 of thehole 70 define agap 98 therebetween. Thegap 98 is a generally continuous peripheral gap that extends peripherally around theentire tube 90, and thus peripherally about the entireouter surface 94, as well as peripherally around the entireperipheral edge 72. As discussed, some of the workingfluid 82 flowing through theflow passage 26 may flow through thehole 70. As shown, due to theinsert 80 being positioned in thehole 70, while some of this workingfluid 82 may flow through the interior 96 of thetube 90, aportion 84 of the workingfluid 82 may flow between thehole 70 and theouter surface 94 of thetube 90, and thus through theperipheral gap 98. As discussed below, thisportion 84 of the workingfluid 82 may, after flowing through theperipheral gap 98, be redirected to form a film proximate thehot side surface 66. - As further shown in
FIGS. 3 through 10 , ainsert 80 according to the present disclosure further includes aplate 100, also known as afirst plate 100. Theplate 100 is connected to thetube 90, such as to theouter surface 94 thereof. For example, theplate 100 may be welded to thetube 90, mechanically connected to thetube 90 such as through screws, rivets, nut-bolt combinations, etc., or formed with thetube 90 as a singular component. In exemplary embodiments, theplate 100 extends around the entire periphery of thetube 90, and is connected to an entire peripheral portion of theouter surface 94. When theinsert 80 is positioned extending through thehole 70, theplate 100 is disposed in thehot side 62 of theliner 60. - The
plate 100 may extend generally outwardly fromtube 90, such as from theouter surface 94 away from theinner surface 92. For example, theplate 100 may extend generally transverse to and outwardly from thetube 90. In embodiments wherein thetube 90 is generally cylindrical, and thus has a circular or oval cross-section, theplate 100 may extend radially outward from thetube 90. Alternatively, theplate 100 may extend from thetube 90 at any suitable angle to the transverse or radial direction. - As shown, the
plate 100 may redirect aportion 84 of the workingfluid 82 flowing through thehole 70. Theportion 84 that flows through theperipheral gap 98 may contact or flow proximate to theplate 100. Due to the positioning of theplate 100, theplate 100 may cause theportion 84 of the workingfluid 82 to turn and flow between theplate 100 and thehot side surface 66 of theliner 60. This redirection in flow results in a film of workingfluid 82, which includes theportion 84, being formed and flowing proximate thehot side surface 66. Such redirection of theportion 84 of the workingfluid 82 by the plate thus facilitates formation of a film of workingfluid 82 quickly and proximate the associatedhole 70, and thus advantageously reduce the existence of hot spots and resulting uneven thermal stresses inliners 60, particularlyproximate holes 70. - In some embodiments, as shown in
FIGS. 3 through 6 , aninsert 80 according to the present disclosure further includes asecond plate 102. Thesecond plate 102 may be connected to thetube 90, such as to theouter surface 94 thereof. For example, thesecond plate 102 may be welded to thetube 90, mechanically connected to thetube 90 such as through screws, rivets, nut-bolt combinations, etc., or formed with thetube 90 as a singular component. In exemplary embodiments, thesecond plate 102 extends around the entire periphery of thetube 90, and is connected to an entire peripheral portion of theouter surface 94. When theinsert 80 is positioned extending through thehole 70, thesecond plate 102 is disposed in thecold side 64 of theliner 60. - The
second plate 102 may extend generally outwardly fromtube 90, such as from theouter surface 94 away from theinner surface 92. For example, thesecond plate 102 may extend generally transverse to and outwardly from thetube 90. In embodiments wherein thetube 90 is generally cylindrical, and thus has a circular or oval cross-section, thesecond plate 102 may extend radially outward from thetube 90. Alternatively, thesecond plate 102 may extend from thetube 90 at any suitable angle to the transverse or radial direction. - As shown, the
plate 100 may capture and direct workingfluid 82 towards thehole 70. The workingfluid 82 may thus flow between thesecond plate 102 and thecold side surface 68 of the liner. Aportion 84 of the workingfluid 82 may flow through thehole 70, and specifically through theperipheral gap 98 as discussed above, and then be redirected to form a film as discussed. - An
insert 80 according to the present disclosure may be connected to aliner 60 using any suitable connection methods or apparatus. In some embodiments, as shown inFIGS. 3 through 6 , for example, one ormore studs 110 may be utilized to connect theinsert 80 to theliner 60. In exemplary embodiments, as shown, thestuds 110 may extend between thesecond plate 102 and thecold side surface 68. In other embodiments,studs 110 may extend between thefirst plate 100 and thehot side surface 66. Any number ofstuds 110 may be utilized, in any suitable pattern that suitably connects theinsert 80 to theliner 60. For example, eightstuds 110 may be arranged in a generally annular array, as shown inFIG. 3 . Alternatively, one, two, three, four, five, six, seven, nine, ten ormore studs 110 may be utilized, and/or thestuds 110 may have any suitable arrangement. Eachstud 110 may have any suitable shape and or size. Thestuds 110 may be welded, mechanically connected or formed as a unitary component with theinsert 80 and/or theliner 60. - In other embodiments, as shown in
FIGS. 7 and 8 , one ormore ribs 120 may connect theinsert 80 andliner 60.Ribs 120 may be utilized in embodiments including or not including asecond plate 102. For example, in some embodiments as shown, eachrib 120 may extend between and connect thetube 90, such as theouter surface 94 thereof, and thecold side surface 68. Any number ofribs 120 may be utilized, in any suitable pattern that suitably connects theinsert 80 to theliner 60. For example, fourribs 120 may be arranged in a generally annular array, or alternatively, one, two, three, five, six, seven, eight, nine, ten ormore ribs 120 may be utilized, and/or theribs 120 may have any suitable arrangement. Eachribs 120 may have any suitable shape and or size. For example, in some embodiments, arib 120 may be generally curvilinear as shown. In other embodiments, arib 120 may be generally linear, and/or may have various linear and/or curvilinear portions. Theribs 120 may be welded, mechanically connected or formed as a unitary component with theinsert 80 and/or theliner 60. - In some embodiments, as shown in
FIGS. 6 , 9 and 10, one ormore spacers 130 may be included in theinsert 80. Thespacers 130 may position theinsert 80 within thehole 70, and may in some embodiments further connect theinsert 80 to theliner 60. For example, as shown inFIGS. 9 and 10 , thespacers 130 may connect theinsert 80 to theliner 60. Eachspacer 130 may extend between and connect theperipheral edge 72 of thehole 70 and theouter surface 94 of thetube 90. Any number ofspacers 130 may be utilized, in any suitable pattern that suitably connects theinsert 80 to theliner 60. For example, fourspacer 130 may be arranged in a generally annular array, or alternatively, one, two, three, five, six, seven, eight, nine, ten ormore spacers 130 may be utilized, and/or thespacers 130 may have any suitable arrangement. Eachspacer 130 may have any suitable shape and or size. Thespacers 130 may be welded, mechanically connected or formed as a unitary component with theinsert 80, such as theouter surface 94 of thetube 90, and/or theliner 60, such as theperipheral edge 72 of thehole 70. Further, one ormore holes 132 may be defined in eachspacer 130.Holes 132 are particularly necessary in embodiments wherein thespacers 130 connect theinsert 80 to theliner 60, in order to provide and maintain the continuousperipheral gap 98 between thehole 70 and thetube 90. - In other embodiments, as shown in
FIG. 6 , thespacers 130 may not connect theinsert 80 to theliner 60, and may rather simply maintain the position of thetube 90 within thehole 70. As discussed above, thespacers 130 in these embodiments may have any suitable shape and size, and any suitable number ofspacers 130 in any suitable pattern may be utilized. Thespacers 130 may be connected, such as welded, mechanically connected or formed as a unitary component with, either theinsert 80, such as theouter surface 94 of thetube 90, as shown or theliner 60, such as theperipheral edge 72 of thehole 70. Thespacers 130 may not be connected to the other of theinsert 80 and theliner 60, thus maintaining the continuousperipheral gap 98 while serving to position thetube 90 within thehole 70. - The present disclosure is further directed to methods for cooling a
liner 60 in aturbine system 10. The method may include, for example, flowing a workingfluid 82, such as aportion 84 thereof, through a generally continuousperipheral gap 98 defined in theliner 60 between anouter surface 94 of atube 90 disposed in ahole 70 and aperipheral edge 72 of thehole 70. The method may further include, for example, redirecting the workingfluid 82, such as theportion 84 thereof, flowed through thegap 98 to form a film proximate ahot side surface 66 of theliner 60. - This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Claims (20)
1. A cooling system for a turbine system, comprising:
a liner defining a temperature boundary between a hot side and a cold side, the liner comprising a hot side surface and a cold side surface and defining a hole extending between the hot side surface and the cold side surface, the hole defining a peripheral edge; and
an insert comprising:
a tube extending through the hole, the tube comprising an outer surface, the outer surface and the peripheral edge defining a generally continuous peripheral gap therebetween; and
a plate connected to the tube and disposed in the hot side, the plate extending outwardly from the tube such that working fluid flowing through the gap is redirected by the plate to form a film proximate the hot side surface.
2. The cooling system of claim 1 , wherein the tube is a generally cylindrical tube, and wherein the plate extends generally radially outward from the outer surface of the tube.
3. The cooling system of claim 1 , wherein the plate is a first plate, further comprising a second plate connected to the tube and disposed in the cold side, the second plate extending generally outwardly from the tube such that working fluid flows between the second plate and the cold side surface into the gap.
4. The cooling system of claim 3 , further comprising a plurality of studs each extending between the second plate and the cold side surface.
5. The cooling system of claim 1 , further comprising a plurality of ribs disposed in the cold side, each of the plurality of ribs connecting the tube and the cold side surface.
6. The cooling system of claim 1 , further comprising a plurality of spacers each extending through the gap, each of the plurality of spacers positioning the tube within the hole.
7. The cooling system of claim 6 , wherein each of the plurality of spacers is connected to the outer surface of the tube.
8. The cooling system of claim 6 , wherein each of the plurality of spacers is connected to the outer surface of the tube and to the peripheral edge, and wherein each of the plurality of spacers further defines a hole therethrough.
9. The cooling system of claim 1 , wherein the liner is a combustor liner and the hole is a dilution hole.
10. A combustor for a turbine system, the combustor comprising:
a combustor liner defining a temperature boundary between a combustion zone and a flow passage, the liner comprising a hot side surface and a cold side surface and defining a dilution hole extending between the hot side surface and the cold side surface, the dilution hole defining a peripheral edge; and
an insert comprising:
a tube extending through the dilution hole, the tube comprising an outer surface, the outer surface and the peripheral edge defining a generally continuous peripheral gap therebetween; and
a plate connected to the tube and disposed in the combustion zone, the plate extending outwardly from the tube such that working fluid flowing through the gap is redirected by the plate to form a film proximate the hot side surface.
11. The combustor of claim 10 , wherein the tube is a generally cylindrical tube, and wherein the plate extends generally radially outward from the outer surface of the tube.
12. The combustor of claim 10 , wherein the plate is a first plate, further comprising a second plate connected to the tube and disposed in the flow passage, the second plate extending outwardly from the tube such that working fluid flows between the second plate and the cold side surface into the gap.
13. The combustor of claim 12 , further comprising a plurality of studs each extending between the second plate and the cold side surface.
14. The combustor of claim 10 , further comprising a plurality of ribs disposed in the flow passage, each of the plurality of ribs connecting the tube and the cold side surface.
15. The combustor of claim 10 , further comprising a plurality of spacers each extending through the gap, each of the plurality of spacers positioning the tube within the dilution hole.
16. The combustor of claim 15 , wherein each of the plurality of spacers is connected to the outer surface of the tube.
17. The combustor of claim 15 , wherein each of the plurality of spacers is connected to the outer surface of the tube and to the peripheral edge, and wherein each of the plurality of spacers further defines a hole therethrough.
18. The combustor of claim 10 , wherein the turbine system is a gas turbine system.
19. A method for cooling a liner in a turbine system, the method comprising:
flowing a working fluid through a generally continuous peripheral gap defined in the liner between an outer surface of a tube disposed in a hole and a peripheral edge of the hole;
redirecting the working fluid flowed through the gap to form a film proximate a hot side surface of the liner.
20. The method of claim 19 , wherein the working fluid is redirected by a plate connected to the tube and extending outwardly from the tube.
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/470,556 US20130298564A1 (en) | 2012-05-14 | 2012-05-14 | Cooling system and method for turbine system |
| JP2013099827A JP2013238389A (en) | 2012-05-14 | 2013-05-10 | Cooling system and method for turbine system |
| EP13167423.6A EP2664748A2 (en) | 2012-05-14 | 2013-05-13 | Cooling system and method for turbine system |
| RU2013121277/06A RU2013121277A (en) | 2012-05-14 | 2013-05-13 | COOLING SYSTEM FOR TURBO INSTALLATION, COMBUSTION CHAMBER AND METHOD FOR COOLING THE HEAT PIPE |
| CN2013101769153A CN103422990A (en) | 2012-05-14 | 2013-05-14 | Cooling system and method for turbine system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/470,556 US20130298564A1 (en) | 2012-05-14 | 2012-05-14 | Cooling system and method for turbine system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130298564A1 true US20130298564A1 (en) | 2013-11-14 |
Family
ID=48446100
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/470,556 Abandoned US20130298564A1 (en) | 2012-05-14 | 2012-05-14 | Cooling system and method for turbine system |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20130298564A1 (en) |
| EP (1) | EP2664748A2 (en) |
| JP (1) | JP2013238389A (en) |
| CN (1) | CN103422990A (en) |
| RU (1) | RU2013121277A (en) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015116269A3 (en) * | 2013-11-04 | 2015-10-08 | United Technologies Corporation | Quench aperture body for a turbine engine combustor |
| US20160053998A1 (en) * | 2014-08-20 | 2016-02-25 | Mitsubishi Hitachi Power Systems, Ltd. | Cylinder of combustor, method of manufacturing of cylinder of combustor, and pressure vessel |
| US20160123594A1 (en) * | 2014-11-04 | 2016-05-05 | United Technologies Corporation | Low lump mass combustor wall with quench aperture(s) |
| US20160201908A1 (en) * | 2013-08-30 | 2016-07-14 | United Technologies Corporation | Vena contracta swirling dilution passages for gas turbine engine combustor |
| US20160356500A1 (en) * | 2013-09-16 | 2016-12-08 | United Technologies Corporation | Controlled variation of pressure drop through effusion cooling in a double walled combustor of a gas turbine engine |
| CN106716017A (en) * | 2014-09-25 | 2017-05-24 | 三菱日立电力系统株式会社 | Combustor and gas turbine |
| US20190024895A1 (en) * | 2017-07-18 | 2019-01-24 | General Electric Company | Combustor dilution structure for gas turbine engine |
| US10408453B2 (en) * | 2017-07-19 | 2019-09-10 | United Technologies Corporation | Dilution holes for gas turbine engines |
| US11073284B2 (en) * | 2014-01-03 | 2021-07-27 | Raytheon Technologies Corporation | Cooled grommet for a combustor wall assembly |
| US11137140B2 (en) | 2017-10-04 | 2021-10-05 | Raytheon Technologies Corporation | Dilution holes with ridge feature for gas turbine engines |
| US11255543B2 (en) * | 2018-08-07 | 2022-02-22 | General Electric Company | Dilution structure for gas turbine engine combustor |
| CN114135901A (en) * | 2021-11-08 | 2022-03-04 | 中国航发四川燃气涡轮研究院 | Ablation-proof flame tube large-hole jet sleeve |
| US12429221B2 (en) | 2021-09-30 | 2025-09-30 | General Electric Company | Annular combustor dilution with swirl vanes for lower emissions |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3064837B1 (en) * | 2015-03-05 | 2019-05-08 | Ansaldo Energia Switzerland AG | Liner for a gas turbine combustor |
| CN107795383B (en) * | 2016-08-29 | 2019-08-06 | 中国航发商用航空发动机有限责任公司 | A kind of gas turbine cooling air distribution system |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4085580A (en) * | 1975-11-29 | 1978-04-25 | Rolls-Royce Limited | Combustion chambers for gas turbine engines |
| US4365470A (en) * | 1980-04-02 | 1982-12-28 | United Technologies Corporation | Fuel nozzle guide and seal for a gas turbine engine |
| US4749029A (en) * | 1985-12-02 | 1988-06-07 | Kraftwerk Union Aktiengesellschaft | Heat sheild assembly, especially for structural parts of gas turbine systems |
| US4766722A (en) * | 1985-08-02 | 1988-08-30 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation (Snecma) | Enlarged bowl member for a turbojet engine combustion chamber |
| US4805397A (en) * | 1986-06-04 | 1989-02-21 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation (Snecma) | Combustion chamber structure for a turbojet engine |
| US4875339A (en) * | 1987-11-27 | 1989-10-24 | General Electric Company | Combustion chamber liner insert |
| US6711900B1 (en) * | 2003-02-04 | 2004-03-30 | Pratt & Whitney Canada Corp. | Combustor liner V-band design |
| US7861530B2 (en) * | 2007-03-30 | 2011-01-04 | Pratt & Whitney Canada Corp. | Combustor floating collar with louver |
-
2012
- 2012-05-14 US US13/470,556 patent/US20130298564A1/en not_active Abandoned
-
2013
- 2013-05-10 JP JP2013099827A patent/JP2013238389A/en active Pending
- 2013-05-13 RU RU2013121277/06A patent/RU2013121277A/en not_active Application Discontinuation
- 2013-05-13 EP EP13167423.6A patent/EP2664748A2/en not_active Withdrawn
- 2013-05-14 CN CN2013101769153A patent/CN103422990A/en active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4085580A (en) * | 1975-11-29 | 1978-04-25 | Rolls-Royce Limited | Combustion chambers for gas turbine engines |
| US4365470A (en) * | 1980-04-02 | 1982-12-28 | United Technologies Corporation | Fuel nozzle guide and seal for a gas turbine engine |
| US4766722A (en) * | 1985-08-02 | 1988-08-30 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation (Snecma) | Enlarged bowl member for a turbojet engine combustion chamber |
| US4749029A (en) * | 1985-12-02 | 1988-06-07 | Kraftwerk Union Aktiengesellschaft | Heat sheild assembly, especially for structural parts of gas turbine systems |
| US4805397A (en) * | 1986-06-04 | 1989-02-21 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation (Snecma) | Combustion chamber structure for a turbojet engine |
| US4875339A (en) * | 1987-11-27 | 1989-10-24 | General Electric Company | Combustion chamber liner insert |
| US6711900B1 (en) * | 2003-02-04 | 2004-03-30 | Pratt & Whitney Canada Corp. | Combustor liner V-band design |
| US7861530B2 (en) * | 2007-03-30 | 2011-01-04 | Pratt & Whitney Canada Corp. | Combustor floating collar with louver |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160201908A1 (en) * | 2013-08-30 | 2016-07-14 | United Technologies Corporation | Vena contracta swirling dilution passages for gas turbine engine combustor |
| US20160356500A1 (en) * | 2013-09-16 | 2016-12-08 | United Technologies Corporation | Controlled variation of pressure drop through effusion cooling in a double walled combustor of a gas turbine engine |
| US10731858B2 (en) * | 2013-09-16 | 2020-08-04 | Raytheon Technologies Corporation | Controlled variation of pressure drop through effusion cooling in a double walled combustor of a gas turbine engine |
| US10571125B2 (en) | 2013-11-04 | 2020-02-25 | United Technologies Corporation | Quench aperture body for a turbine engine combustor |
| US11287132B2 (en) | 2013-11-04 | 2022-03-29 | Raytheon Technologies Corporation | Quench aperture body for a turbine engine combustor |
| WO2015116269A3 (en) * | 2013-11-04 | 2015-10-08 | United Technologies Corporation | Quench aperture body for a turbine engine combustor |
| US11073284B2 (en) * | 2014-01-03 | 2021-07-27 | Raytheon Technologies Corporation | Cooled grommet for a combustor wall assembly |
| CN106574779A (en) * | 2014-08-20 | 2017-04-19 | 三菱日立电力系统株式会社 | Combustor cylinder, method for manufacturing cumbustor cylinder, and pressure container |
| US20160053998A1 (en) * | 2014-08-20 | 2016-02-25 | Mitsubishi Hitachi Power Systems, Ltd. | Cylinder of combustor, method of manufacturing of cylinder of combustor, and pressure vessel |
| US9915428B2 (en) * | 2014-08-20 | 2018-03-13 | Mitsubishi Hitachi Power Systems, Ltd. | Cylinder of combustor, method of manufacturing of cylinder of combustor, and pressure vessel |
| US10584879B2 (en) | 2014-09-25 | 2020-03-10 | Mitsubishi Hitachi Power Systems, Ltd. | Combustor including a flow guide introduction portion connected to a flow guide main body portion, and a gas turbine |
| CN106716017A (en) * | 2014-09-25 | 2017-05-24 | 三菱日立电力系统株式会社 | Combustor and gas turbine |
| EP3182016A4 (en) * | 2014-09-25 | 2017-07-12 | Mitsubishi Hitachi Power Systems, Ltd. | Combustor and gas turbine |
| US10451281B2 (en) * | 2014-11-04 | 2019-10-22 | United Technologies Corporation | Low lump mass combustor wall with quench aperture(s) |
| US20160123594A1 (en) * | 2014-11-04 | 2016-05-05 | United Technologies Corporation | Low lump mass combustor wall with quench aperture(s) |
| US20190024895A1 (en) * | 2017-07-18 | 2019-01-24 | General Electric Company | Combustor dilution structure for gas turbine engine |
| US10408453B2 (en) * | 2017-07-19 | 2019-09-10 | United Technologies Corporation | Dilution holes for gas turbine engines |
| US11137140B2 (en) | 2017-10-04 | 2021-10-05 | Raytheon Technologies Corporation | Dilution holes with ridge feature for gas turbine engines |
| US12050011B2 (en) | 2017-10-04 | 2024-07-30 | Rtx Corporation | Dilution holes with ridge feature for gas turbine engines |
| US11255543B2 (en) * | 2018-08-07 | 2022-02-22 | General Electric Company | Dilution structure for gas turbine engine combustor |
| US12429221B2 (en) | 2021-09-30 | 2025-09-30 | General Electric Company | Annular combustor dilution with swirl vanes for lower emissions |
| CN114135901A (en) * | 2021-11-08 | 2022-03-04 | 中国航发四川燃气涡轮研究院 | Ablation-proof flame tube large-hole jet sleeve |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103422990A (en) | 2013-12-04 |
| EP2664748A2 (en) | 2013-11-20 |
| JP2013238389A (en) | 2013-11-28 |
| RU2013121277A (en) | 2014-11-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20130298564A1 (en) | Cooling system and method for turbine system | |
| US8459041B2 (en) | Leaf seal for transition duct in turbine system | |
| US8544277B2 (en) | Turbulated aft-end liner assembly and cooling method | |
| US8529195B2 (en) | Inducer for gas turbine system | |
| US9383104B2 (en) | Continuous combustion liner for a combustor of a gas turbine | |
| US8756934B2 (en) | Combustor cap assembly | |
| US9175857B2 (en) | Combustor cap assembly | |
| US20150292438A1 (en) | Method and apparatus for cooling combustor liner in combustor | |
| US8959886B2 (en) | Mesh cooled conduit for conveying combustion gases | |
| JP6367559B2 (en) | Transition duct with improved turbomachine cooling | |
| US9267436B2 (en) | Fuel distribution manifold for a combustor of a gas turbine | |
| US20090120093A1 (en) | Turbulated aft-end liner assembly and cooling method | |
| US20110252805A1 (en) | Combustor liner cooling at transition duct interface and related method | |
| US9458732B2 (en) | Transition duct assembly with modified trailing edge in turbine system | |
| US20140116060A1 (en) | Combustor and a method for cooling the combustor | |
| US8707673B1 (en) | Articulated transition duct in turbomachine | |
| US20120031099A1 (en) | Combustor assembly for use in a turbine engine and methods of assembling same | |
| US8974179B2 (en) | Convolution seal for transition duct in turbine system | |
| US9890954B2 (en) | Combustor cap assembly | |
| US10648667B2 (en) | Combustion chamber with double wall | |
| US8650852B2 (en) | Support assembly for transition duct in turbine system | |
| US8448450B2 (en) | Support assembly for transition duct in turbine system | |
| US9328623B2 (en) | Turbine system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AGARWAL, KRISHNA KANT;REEL/FRAME:028201/0922 Effective date: 20120514 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |