US20130269396A1 - Washing machine having damping apparatus - Google Patents
Washing machine having damping apparatus Download PDFInfo
- Publication number
- US20130269396A1 US20130269396A1 US13/859,917 US201313859917A US2013269396A1 US 20130269396 A1 US20130269396 A1 US 20130269396A1 US 201313859917 A US201313859917 A US 201313859917A US 2013269396 A1 US2013269396 A1 US 2013269396A1
- Authority
- US
- United States
- Prior art keywords
- drum
- washing machine
- cabinet
- dampers
- machine according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/20—Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
- D06F37/24—Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations in machines with a receptacle rotating or oscillating about a vertical axis
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/02—Rotary receptacles, e.g. drums
- D06F37/12—Rotary receptacles, e.g. drums adapted for rotation or oscillation about a vertical axis
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/20—Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/20—Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
- D06F37/206—Mounting of motor
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/26—Casings; Tubs
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/30—Driving arrangements
- D06F37/40—Driving arrangements for driving the receptacle and an agitator or impeller, e.g. alternatively
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F39/00—Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00
- D06F39/12—Casings; Tubs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/10—Suppression of vibrations in rotating systems by making use of members moving with the system
- F16F15/12—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
Definitions
- Embodiments of the present disclosure relate to a washing machine having a damping apparatus that absorbs vibration occurring while a drum of the washing machine rotates.
- a washing machine as a machine that washes clothes using power generally includes a tub in which washing water is stored, a drum rotatably installed in the tub, a pulsator rotatably installed at the bottom of the drum, and a motor and a clutch for rotating the drum and the pulsator.
- the washing machine performs a washing operation of removing dirt from laundry and a dehydration operation of removing moisture of laundry.
- the pulsator rotates in a state in which laundry and detergent water are put in the drum, and laundry put into the drum is stirred with washing water so that dirt can be removed from laundry.
- the drum rotates to remove moisture that remains in laundry.
- the drum eccentrically rotates and vibrates in a section in which the drum rotates at rpm required for the dehydration operation after passing through the transition section (hereinafter, referred to as a ‘normal status section’).
- Vibration caused by eccentric rotation of the drum in the transition section or normal status section may cause collision between the drum and the tub or between the drum and the cabinet. Thus, a solution thereof is required.
- a washing machine including: a cabinet including an outer frame that constitutes an exterior, an inner frame connected to an inner side of the outer frame and a lower frame coupled to a lower part of the outer frame; a drum rotatably disposed in the inner frame; a base plate coupled to a lower part of the drum; a driving unit coupled to the base plate and configured to rotate the drum; and a damping apparatus configured to connect the base plate and the lower frame so as to absorb vibration occurring while the drum rotates.
- the damping apparatus may include: a support bracket coupled to a bottom surface of the base plate; and a plurality of dampers having ends connected to the support bracket and the other ends connected to the lower frame.
- the plurality of dampers may be disposed in a radial form centering on a rotation central axis of the drum.
- the plurality of dampers may include a first damper and a second damper that are adjacent to each other, and an angle between a virtual first extension line that extends from one end of the first damper toward the rotation central axis of the drum and a virtual second extension line that extends from one end of the second damper toward the rotation central axis of the drum may be between 45° and 135°.
- At least one of the plurality of dampers may have one end connected to the support bracket and the other end connected to a corner of the lower frame.
- An angle between a virtual third extension line that extends from one end of at least one of the plurality of dampers toward a ground and the ground may be between 5° and 30°.
- the support bracket may include: a body that surrounds at least a portion of the driving unit; a fixing part that is bent from an upper side of the body toward an outer side of the body and has at least one fixing hole through which the support bracket is fixed to the bottom surface of the base plate; and a plurality of fastening parts that protrude from sides of the body and connect the plurality of dampers to the support bracket.
- the plurality of dampers may be rotatably coupled to the support bracket and the lower frame.
- Position of the plurality of dampers may be biased toward one of a front and rear of a virtual first division plane that divides the cabinet in front and rear directions while passing through a rotation central axis of the drum.
- Position of the plurality of dampers may be biased toward one of a right and left of a virtual second division plane that divides the cabinet in right and left directions while passing through the rotation central axis of the drum.
- a washing machine including: a cabinet; a tub disposed in the cabinet and configured to store washing water; a drum rotatably disposed in the tub; a pulsator rotatably disposed in the drum; a motor disposed in a lower part of the tub and configured to provide power for rotating the drum; a clutch configured to selectively transfer power of the motor to the drum or pulsator; a base plate configured to fix the clutch and the motor and coupled to a lower part of the tub; and a damping apparatus configured to connect the base plate and the lower frame so as to absorb vibration occurring while the drum rotates, wherein the damping apparatus includes: a support bracket coupled to a bottom surface of the base plate; and a plurality of dampers having ends connected to the support bracket and the other ends connected to a lower part of the cabinet and disposed in a radial form centering on a rotation central axis of the drum.
- the plurality of dampers may be rotatably coupled to the support bracket and the lower part of the cabinet.
- the plurality of dampers may include a first damper and a second damper that are adjacent to each other, and an angle between the first damper and the second damper centering on the rotation central axis of the drum may be between 45° and 135°.
- An angle between the first damper and the second damper and a ground may be between 5° and 30°.
- Position of the plurality of dampers may be biased toward one of front and rear of a virtual first division plane that divides the cabinet in front and rear directions while passing through the rotation central axis of the drum.
- Position of the plurality of dampers may be biased toward one of right and left of a virtual second division plane that divides the cabinet in right and left directions while passing through the rotation central axis of the drum.
- the support bracket may include a collision prevention surface for preventing the motor and the clutch from colliding with the lower part of the cabinet while the drum rotates.
- FIG. 1 is a cross-sectional view of a washing machine according to an embodiment of the present disclosure
- FIG. 2 is a perspective view of the washing machine illustrated in FIG. 1 ;
- FIG. 3 is a cross-sectional view taken along a line I-I of FIG. 2 ;
- FIG. 4 is a cross-sectional view taken along a line II-II of FIG. 2 ;
- FIG. 5 is an exploded perspective view illustrating the combination relationship of a damping apparatus according to an embodiment of the present disclosure
- FIG. 6 is an exploded perspective view of FIG. 5 at a different angle.
- FIG. 7 is a bottom view of the damping apparatus illustrated in FIG. 5 .
- FIG. 1 is a cross-sectional view of a washing machine 1 according to an embodiment of the present disclosure.
- the washing machine 1 includes a cabinet 10 that constitutes the exterior, a drum 30 that is rotatably disposed in the cabinet 10 , and a driving unit that is disposed in a lower part of the drum 30 so as to rotate the drum 30 .
- a door 16 is disposed on the upper frame 15 so as to open/close the laundry port 14 .
- a lower frame 18 is disposed in a lower part of the cabinet 10 , and a mounting portion 19 on which the washing machine 1 may be mounted on a bottom surface, is coupled to the lower frame 18 .
- Suspension members are connected to the upper part of the cabinet 10 so as to suspend and support the drum 30 in the cabinet 10 .
- the drum 30 is rotatably disposed in the cabinet 10 , and a plurality of through holes 36 are formed in an upper part of the drum 30 along the circumference of the drum 30 .
- a pulsator 35 is rotatably installed at the bottom of the drum 30 .
- the pulsator 35 stirs laundry put into the drum 30 together with washing water.
- a water supply unit 50 for supplying washing water into the drum 30 is installed at the upper part of the drum 30 .
- the water supply unit 50 includes a water supply valve 53 that regulates the supply of water and a water supply pipe 51 that connects the water supply valve 53 and a detergent supply unit 60 .
- One side of the water supply pipe 51 is connected to an external water supply source (not shown), and the other side of the water supply pipe 51 is connected to the detergent supply unit 60 .
- the detergent supply unit 60 includes a case 61 disposed in the upper frame 15 and a detergent container 63 which is detachably mounted on the case 61 and accommodates each detergent.
- Water supplied via the water supply pipe 51 is supplied into the drum 30 together with detergent via the detergent supply unit 60 .
- a first draining hose 82 and a second draining hose 84 are disposed in the lower part of the drum 30 and guide washing water toward an outer side of the cabinet 10 after a washing or dehydration operation is completed.
- the driving unit includes a clutch 120 that selectively rotates the drum 30 and the pulsator 35 , a driving motor 150 that drives the clutch 120 , a flange member 140 that transfers rotational force of a driving shaft 124 of the clutch 120 to the drum 30 by connecting the driving shaft 124 of the clutch 120 to a bottom 32 of the drum 30 , and a base plate 160 on which the clutch 120 and the driving motor 150 are fixed.
- FIG. 2 is a perspective view of the washing machine 1 illustrated in FIG. 1
- FIG. 3 is a cross-sectional view taken along a line I-I of FIG. 2
- FIG. 4 is a cross-sectional view taken along a line II-II of FIG. 2 .
- the drum 30 is directly disposed in the cabinet 10 at a predetermined interval with the cabinet 10 . That is, an additional configuration which is disposed between the cabinet 10 and the drum 30 and in which washing water is stored, is omitted.
- the cabinet 10 includes an outer frame 10 a that constitutes an exterior of the washing machine 1 and an inner frame 10 b that is connected to an inner side of the outer frame 10 a.
- the inner frame 10 b may be configured in an approximately cylindrical form.
- An outer circumferential surface of the inner frame 10 b may be connected to an inner side of at least a portion of the outer frame 10 a via a rib (not shown) or may contact the inner side of at least a portion of the outer frame 10 a.
- the inner frame 10 b is inclined toward a direction in which the radius of the inner frame 10 b increases from the lower part of the inner frame 10 b .
- Most of the water that is discharged from the drum 30 via the plurality of through holes 36 in the dehydration operation falls along an inner circumferential surface of the inner frame 10 b and flows into a draining groove 22 . Since the inner frame 10 b is inclined in such a way that water discharged from the drum 30 slowly flows along an inclined surface of the inner frame 10 b , a phenomenon that water splashes toward an outer side of the draining groove 22 while flowing into the draining groove 22 , does not occur.
- the inner frame 10 b may have the same inclination angle as an inclination angle a of each of sidewalls 34 so as to be disposed in parallel to the sidewalls 34 .
- the drum 30 rotates, the drum 30 moves not only in a vertical direction but also in its radial direction.
- a gap between the drum 30 and the cabinet 10 is necessary so as to prevent interference with the inner frame 10 b of the cabinet 10 caused by movement of the drum 30 in the radial direction of the drum 30 .
- the inner frame 10 b and the sidewall 34 are disposed in parallel to each other so that space utility of the cabinet 10 can be maximized and simultaneously a predetermined gap between the drum 30 and the cabinet 10 can be maintained.
- the outer frame 10 a and the inner frame 10 b may be formed integrally with each other using injection molding so as to improve productivity.
- the cabinet 10 including the outer frame 10 a and the inner frame 10 b may be formed of a material, such as acrylonitrile butadiene styrene (ABS) or polypropylene (PP).
- ABS acrylonitrile butadiene styrene
- PP polypropylene
- the outer frame 10 a and the inner frame 10 b may be formed of different materials and may be coupled to each other. That is, in order to increase the strength of the cabinet 10 , the outer frame 10 a may be formed of metal, the inner frame 10 b may be formed of plastic, and the outer frame 10 a and the inner frame 10 b are coupled to each other, thereby forming the cabinet 10 .
- the draining groove 22 is bent along the circumference of the inner frame 10 b and is formed in a lower end of the inner frame 10 b.
- the draining groove 22 includes a first bent part 22 a that is bent from the lower end of the inner frame 10 b in its central direction and a second bent part 22 b that is bent from an end of the first bent part 22 a in a direction perpendicular to the ground.
- the first bent part 22 a serves as a bottom surface on which water discharged from the drum 30 via the through holes 36 formed in the upper part of the drum 30 in the dehydration operation and directly fallen or flowing along the outer circumferential surface of the drum 30 or the inner circumferential surface of the inner frame 10 b is received.
- the second bent part 22 b constitutes a flow passage on which water fallen to the bottom surface together with the inner circumferential surface of the lower end of the inner frame 10 b is stored and then is discharged outward.
- the above-described second draining hose 84 is connected to an end of the draining hole 24 , and water that passes through the draining hole 24 is finally discharged from the cabinet 10 via the second draining hose 84 and the first draining hose 82 connected to the second draining hose 84 .
- the drum 30 is disposed in the inner frame 10 b so as to be rotatable in the vertical direction.
- the drum 30 includes the bottom 32 and the sidewalls 34 that are connected to the bottom 32 and constitute a space in which washing water is stored.
- a plurality of ribs 32 a are formed on the bottom 32 .
- the plurality of ribs 32 a form an air flow in the radial direction of the drum 30 , i.e., in a direction from a center of the drum 30 to the inner frame 10 b of the cabinet 10 and prevent water that is fallen along the outer circumferential surface of the drum 30 from moving to a center of the drum 30 , in which the clutch 120 and the driving motor 150 are disposed, along the bottom 32 of the drum 30 .
- the sidewalls 34 extend from the bottom 32 and are inclined in a direction in which the diameter of the drum 30 increases. If the drum 30 rotates at a high speed of about 280 rpm or more during the dehydration operation, water dehydrated from the laundry may reach the sidewalls 34 due to a centrifugal force and then may smoothly move to the upper part of the drum 30 along an inner circumferential surface of the inclined sidewall 34 .
- the inclination angle ⁇ between the sidewall 34 and a straight line l perpendicular to the bottom 32 may preferably be about 2° to 10°. If the inclination angle ⁇ is excessively small, that is, less than 2°, water may not smoothly move to the upper part of the drum 30 along the inner circumferential surface of the sidewall 34 , and thus dehydration performance may be degraded. If the inclination angle ⁇ is excessively large, that is, greater than 10°, the upper part of the drum 30 is widened so that the entire width of the cabinet 10 may be increased.
- the through holes 36 through which water dehydrated from laundry may be discharged from the drum 30 are formed in upper parts of the sidewalls 34 .
- At least one through hole 36 may be formed in a circumferential direction of the sidewalls 34 , and a height at which the through hole 36 is formed, may be approximately half or more of the height of the drum 30 because washing water in the drum 30 should be prevented from flowing out through the through hole 36 in the washing operation.
- Water that is discharged from the drum 30 through the through hole 36 flows downward along the outer circumferential surface of the drum 30 or the inner circumferential surface of the inner frame 10 b or directly falls through a discharge flow passage 33 formed between the sidewall 34 and the inner circumferential surface of the inner frame 10 b and flows into the draining groove 22 .
- the drum 30 may further include a guide rib 38 that guides water discharged from the drum 30 through the through hole 36 toward the draining groove 22 .
- the guide rib 38 is disposed between the second bent part 22 b that constitutes the draining groove 22 and the inner circumferential surface of the inner frame 10 b , extends from a lower end of the sidewall 34 to a predetermined length, in particular, prevents water that falls along the outer circumferential surface of the drum 30 from moving to the center of the drum 30 , in which the clutch 120 and the driving motor 150 are disposed, along the bottom 32 of the drum 30 , and simultaneously naturally guides introduction of water to the draining groove 22 .
- An interference prevention groove 39 is formed between the side of the bottom 32 and the guide rib 38 to a predetermined depth and prevents interference between the drum 30 and the second bent part 22 b due to vertical vibration of the drum 30 while the washing machine 1 operates.
- the depth of the interference prevention groove 39 or a length at which the guide rib 38 extends from the lower end of the sidewall 34 is related to a width at which the drum 30 vibrates in the vertical direction during the washing or dehydration operation. As the width at which the drum 30 vibrates in the vertical direction increases, the depth of the interference prevention groove 39 should be increased, whereas the length at which the guide rib 38 extends from the lower end of the sidewall 34 , should be decreased.
- the guide rib 38 may be positioned between the second bent part 22 b and the inner circumferential surface of the inner frame 10 b , and the second bent part 22 b may be accommodated in the interference prevention groove 39 so that the entire height of the cabinet 10 can be reduced. That is, in consideration of the width at which the drum 30 vibrates in the vertical direction, the guide rib 38 is accommodated in the draining groove 22 and the second bent part 22 b is accommodated in the interference prevention groove 39 while the drum 30 vibrates, so that the height of the cabinet 10 can be reduced by a length at which the guide rib 38 and the second bent part 22 b overlap each other.
- the driving unit for driving the drum 30 or the pulsator 35 disposed in the drum 30 is coupled to the lower part of the drum 30 .
- the driving unit includes the clutch 120 that selectively rotates the drum 30 and the pulsator 35 , a driving motor 150 that drives the clutch 120 , a flange member 140 that connects the driving shaft 124 of the clutch 120 and the bottom 32 of the drum 30 and transfers rotational force of the driving shaft 124 to the drum 30 , and a base plate 160 that fixes the clutch 120 and the driving motor 150 .
- a shaft coupling portion 31 is formed at the center of the bottom 32 of the drum 30 , is coupled to the flange member 140 , and fixes and supports the flange member 140 .
- the shaft coupling portion 31 includes a shaft coupling wall 31 a that protrudes from the bottom 32 toward the outer side of the drum 30 downward, and a shaft insertion hole 31 b that is formed in the inner side of the shaft coupling wall 31 a so that one end of the flange member 140 may be inserted into the inner side of the drum 30 through the shaft insertion hole 31 b.
- the flange member 140 is inserted in and fixed to the shaft insertion hole 31 b and couples the driving shaft 124 and the drum 30 .
- the flange member 140 includes a first through hole 142 formed through the center of the flange member 140 so as to be coupled to the driving shaft 124 , and a second through hole 144 formed in a circumferential direction of the first through hole 142 .
- the second through hole 144 serves as a movement path on which washing water stored in the drum 30 moves to the outer side of the drum 30 after the washing operation is completed.
- the clutch 120 includes a housing 122 and a driving shaft 124 that is rotatably coupled to the center of the housing 122 . Deceleration units that decelerate various bearings for rotating and supporting the driving shaft 124 and the driving shaft 124 , are disposed in the internal space of the housing 122 .
- the driving shaft 124 penetrates the first through hole 142 formed in the flange member 140 and is connected to the drum 30 and the pulsator 35 .
- the driving shaft 124 includes a first connector 124 a coupled to the first through hole 142 and a second connector 124 b that extends from the first connector 124 a and is coupled to the pulsator 35 .
- the first connector 124 a and the second connector 124 b rotate simultaneously or individually depending on the washing or dehydration operation. In the washing operation, the second connector 124 b rotates and allows the pulsator 35 coupled to the second connector 124 b to rotate, and in the dehydration operation, the first connector 124 a and the second connector 124 b rotate simultaneously and allow the drum 30 and the pulsator 35 to simultaneously rotate.
- a pulley 134 is coupled to the other end of the driving shaft 124 so that rotational force of the driving motor 150 may be transferred to the clutch 120 via a driving belt 135 .
- a base plate cover 162 is coupled to a space between the flange member 140 and the base plate 160 .
- the base plate cover 162 communicates with the second through hole 144 and forms a space 161 in which washing water introduced through the second through hole 144 together with the base plate 160 may be moved to a draining case 174 .
- sealing members 164 are inserted between the flange member 140 and the base plate cover 162 and between the base plate cover 162 and the base plate 160 so as to prevent leakage of washing water.
- the draining case 174 is coupled to the lower part of the base plate 160 .
- the draining case 174 accommodates washing water that is introduced after passing through the space 161 formed by the base plate cover 162 and the base plate 160 .
- a draining pipe 176 that drains washing water flowing into the draining case 174 is disposed at one end of the draining case 174 , and the first draining hose 82 is connected to the draining pipe 176 and guides washing water toward the outer side of the cabinet 10 .
- a valve 178 is disposed on the draining pipe 176 so that washing water in the draining case 174 may be selectively drained during the washing operation.
- washing water used in the washing or rinsing operation is introduced into the space 161 between the base plate cover 162 and the base plate 160 via the second through hole 144 formed in the flange member 140 , and then is drained to the outer side of the cabinet 10 via the draining case 174 and the first draining hose 82 .
- washing water dehydrated from laundry in the dehydration operation is discharged from the drum 30 via the through hole 36 , flows along the outer circumferential surface of the drum 30 or the inner circumferential surface of the inner frame 10 b , is introduced into the draining groove 22 , and then is drained to the outer side of the cabinet 10 via the draining hole 24 and the second draining hose 84 connected to the draining hole 24 .
- the base plate 160 is coupled to the upper part of the cabinet 10 using suspension members 21 .
- At least two suspension members 21 are coupled to a corner of the cabinet 10 formed by the rectangular outer frame 10 a and the cylindrical inner frame 10 b , and support the drum 30 .
- a coupling rib 10 c is disposed at the corner of the cabinet 10 and supports and couples one end of the suspension member 21 .
- the coupling rib 10 c may be injection molded integrally with the outer frame 10 a and the inner frame 10 b.
- connection bracket 180 is coupled to a space between the base plate 160 and the suspension members 21 .
- the connection bracket 180 includes an avoidance groove 181 that is bent and formed in the lower end of the connection bracket 180 so as to prevent interference with the draining groove 22 while the washing machine 1 operates.
- the base plate 160 and the connection bracket 180 may be formed integrally with each other.
- the drum 30 is connected to the clutch 120 and the base plate 160 that fixes the clutch 120 at the lower part of the drum 30 .
- the base plate 160 is configured to be coupled to the upper part of the cabinet 10 via the suspension members 21 , and a load applied to the drum 30 is transferred to the suspension members 21 via the base plate 160 , and the suspension members 21 absorb vibration caused by the load applied to the drum 30 .
- the cabinet 10 is configured in a double structure including the outer frame 10 a and the inner frame 10 b and has enough strength to support a load applied to the drum 30 , the clutch 120 , and the driving motor 150 connected via the suspension members 21 .
- FIG. 5 is an exploded perspective view illustrating the combination relationship of the damping apparatus 200 according to an embodiment of the present disclosure
- FIG. 6 is an exploded perspective view of FIG. 5 at a different angle
- FIG. 7 is a bottom view of the damping apparatus 200 illustrated in FIG. 5 .
- the damping apparatus 200 is configured to connect the base plate 160 and the lower frame 18 and to absorb vibration occurring while the drum 30 rotates.
- the damping apparatus 200 includes a support bracket 210 coupled to a bottom surface of the base plate 160 and a plurality of dampers 220 and 240 , of which ends 220 a and 240 a are connected to the support bracket 210 and the other ends 220 b and 240 b are connected to the lower frame 18 .
- the support bracket 210 includes a body 212 that surrounds at least a portion of the driving unit including the clutch 120 and the driving motor 150 , a fixing part 214 that is bent from the upper side of the body 212 and toward the outer side of the body 212 , and a plurality of first fastening parts 216 that protrude from sides of the body 312 and connect a plurality of dampers 220 and 240 to the body 212 .
- the body 212 is coupled to approximately the center of the base plate 160 , and one side of the body 212 is open not to interfere with the driving belt 135 that connects the clutch 120 and the driving motor 150 .
- a collision prevention surface 212 a is disposed at the lower side of the body 212 so as to prevent the clutch 120 and the driving motor 150 from colliding with the lower part of the cabinet 10 while the drum 30 rotates.
- At least one fixing hole 214 a for fixing the support bracket 210 to the bottom surface of the base plate 160 is formed through the fixing part 214 .
- the plurality of first fastening parts 216 extend from the sides of the body 212 toward approximately the corner of the lower frame 18 to a predetermined length, and a pair of first fastening parts 216 are spaced apart from each other by a predetermined gap in parallel so that one ends 220 a and 240 a of the plurality of dampers 220 and 240 may be accommodated in the pair of first fastening parts 216 .
- First fastening holes 216 a are formed through the first fastening parts 216 so that the dampers 220 and 240 may be rotatably coupled to the first fastening parts 216 .
- the dampers 220 and 240 rotate around a virtual shaft S 1 that connects centers of the first fastening holes 216 a while the drum 30 rotates, and absorb vibration of the drum 30 .
- the plurality of dampers 220 and 240 are rotatably coupled to the support bracket 210 and the lower frame 18 and absorb vibration occurring while the drum 30 rotates, thereby stabilizing rotation of the drum 30 and preventing the drum 30 from colliding with the inner frame 10 b.
- the plurality of-dampers 220 and 240 may be disposed in a radial form centering on a rotation central axis Lc of the drum 30 so as to effectively absorb vibration caused by eccentric rotation of the drum 30 .
- one ends 220 a and 240 a of the dampers 220 and 240 may be directed toward the rotation central axis Lc of the drum 30
- the other ends 220 b and 240 b of the dampers 220 and 240 may be directed toward the corner of the lower frame 18 .
- An angle (see ⁇ of FIG. 7 ) between a virtual first extension line L 1 that extends from one end 220 a of the first damper 220 toward the rotation central axis Lc of the drum 30 , and a virtual second extension line L 2 that extends from one end 240 a of the second damper 240 toward the rotation central axis Lc of the drum 30 may be between 45° and 135°.
- the reason why the first damper 220 and the second damper 240 are disposed in such a way that the angle ⁇ between the first extension line L 1 and the second extension line L 2 is between 45° and 135°, is that, if the angle ⁇ between the first extension line L 1 and the second extension line L 2 is less than 45°, when the rotation central axis Lc of the drum 30 is eccentric to a direction that is closer to the y-axis than the x-axis while the drum 30 rotates, the first damper 220 and the second damper 240 may absorb vibration of the drum 30 ; however, when the rotation central axis Lc of the drum 30 is eccentric to a direction that is closer to the x-axis than the y-axis, the first damper 220 and the second damper 240 may not effectively absorb vibration of the drum.
- the first damper 220 and the second damper 240 may absorb vibration of the drum 30 ; however, when the rotation central axis Lc of the drum 30 is eccentric to a direction that is closer to the y-axis than the x-axis, the first damper 220 and the second damper 240 may not effectively absorb vibration of the drum 30 .
- the plurality of dampers 220 and 240 may be disposed in such a way that angles ⁇ 1 and ⁇ 2 (see FIG. 3 ) between a virtual third extension line L 3 and a virtual fourth extension line L 4 that extend from the other ends 220 b and 240 b toward the ground, are between 5° and 30°.
- the reason why the plurality of dampers 220 and 240 are disposed in such a way that angles ⁇ 1 and ⁇ 2 between the virtual third extension line L 3 and the virtual fourth extension line L 4 and the ground are between 5° and 30°, is that, if the angles ⁇ 1 and ⁇ 2 between the third extension line L 3 and the fourth extension line L 4 and the ground are less than 5° or greater than 30°, the first damper 220 and the second damper 240 may not effectively absorb vibration of the drum 30 that occurs in the z-axis direction.
- positions of the plurality of dampers 220 and 240 may be biased toward one of the front and rear of a virtual first division plane (see P 1 of FIG. 2 or 7 ) that divides the cabinet 10 in front and rear directions while passing through the rotation central axis Lc of the drum 30 .
- the reason why the positions of the plurality of dampers 220 and 240 are biased toward one of the front and rear of the first division plane P 1 is that, when the first damper 220 and the second damper 240 are disposed in the front and rear of the cabinet 10 divided by the first division plane P 1 , as described above, when the rotation central axis Lc of the drum 30 is eccentric to a direction that is close to the x-axis or y-axis, the dampers 220 and 240 cannot effectively absorb vibration of the drum 30 .
- the positions of the plurality of dampers 220 and 240 may be biased toward one of the right and left of a virtual second division plane (see P 2 of FIG. 2 or 7 ) that divides the cabinet 10 in right and left directions while passing through the rotation central axis Lc of the drum 30 .
- a pair of dampers i.e., the first damper 220 and the second damper 240 are used to absorb vibration caused by eccentric rotation of the drum 30 .
- the number of dampers is not limited to a pair, and more dampers may be used.
- an angle formed by a pair of dampers that are adjacent to each other may be between 45° and 135°, and an angle between the damper and the ground may be between 5° and 30°.
- a plurality of second fastening parts 226 are disposed on the lower frame 18 so as to connect the plurality of dampers 220 and 240 to the corner of the lower frame 18 .
- the plurality of second fastening parts 226 extend from the corner of the lower frame 18 toward approximately the rotation central axis Lc of the drum 30 to a predetermined length, and a pair of second fastening parts 226 are spaced apart from each other by a predetermined gap in parallel so that the other ends 220 b and 240 b of the dampers 220 and 240 may be accommodated in the pair of fastening parts 226 .
- Second fastening holes 226 a are formed through the second fastening parts 226 so that the dampers 220 and 240 may be rotatably coupled to the second fastening parts 226 .
- the dampers 220 and 240 are rotated around a virtual shaft S 2 that connects centers of the second fastening holes 226 a while the drum 30 rotates, and absorb vibration of the drum 30 .
- the damping apparatus 200 is disposed between the base plate 160 and the lower frame 18 , thereby effectively absorbing vibration caused by eccentric rotation of the drum 30 that may occur both in a transition section and a normal status section.
- the drum 30 can be stably rotated without the fear of colliding with the cabinet 10 .
- the damping apparatus 200 may be disposed in the washing machine 1 of FIG. 1 having no additional configuration for storing washing water, although not shown, in a washing machine having an additional configuration for storing washing water, like a tub, so as to connect the lower part of the tub and the lower part of the cabinet 10 and may be used to absorb vibration of the drum 30 .
- a damping apparatus is installed between a drum and a lower frame so that vibration of the drum that may occur during dehydration can be reduced and the drum can be stably rotated.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
Abstract
A washing machine having a structure in which a drum can stably rotate. The washing machine includes a cabinet including an outer frame that constitutes an exterior, an inner frame connected to an inner side of the outer frame, and a lower frame coupled to a lower part of the outer frame; a drum rotatably disposed in the inner frame; a base plate coupled to a lower part of the drum; a driving unit coupled to the base plate and driving the drum; and a damping apparatus that connects the base plate and the lower frame so as to absorb vibration occurring while the drum rotates.
Description
- This application claims the benefit of Korean Patent Application No. 10-2012-0039204, filed on Apr. 16, 2012 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
- 1. Field
- Embodiments of the present disclosure relate to a washing machine having a damping apparatus that absorbs vibration occurring while a drum of the washing machine rotates.
- 2. Description of the Related Art
- A washing machine as a machine that washes clothes using power, generally includes a tub in which washing water is stored, a drum rotatably installed in the tub, a pulsator rotatably installed at the bottom of the drum, and a motor and a clutch for rotating the drum and the pulsator.
- In general, the washing machine performs a washing operation of removing dirt from laundry and a dehydration operation of removing moisture of laundry.
- In the washing operation, the pulsator rotates in a state in which laundry and detergent water are put in the drum, and laundry put into the drum is stirred with washing water so that dirt can be removed from laundry. In the dehydration operation, the drum rotates to remove moisture that remains in laundry.
- In the dehydration operation, since the drum rotates in a state in which detergent water used in the washing operation is discharged from the drum, when laundry is put eccentrically into the drum, the drum eccentrically rotates and vibrates. Such a phenomenon may occur more remarkably, in particular, in a section in which revolutions per minute (rpm) of the drum is increased to reach rpm required for the dehydration operation (hereinafter, referred to as a ‘transition section’).
- Also, when force is applied to the drum due to movement between the drum and a cabinet, the drum eccentrically rotates and vibrates in a section in which the drum rotates at rpm required for the dehydration operation after passing through the transition section (hereinafter, referred to as a ‘normal status section’).
- Vibration caused by eccentric rotation of the drum in the transition section or normal status section may cause collision between the drum and the tub or between the drum and the cabinet. Thus, a solution thereof is required.
- Therefore, it is an aspect of the present disclosure to provide a washing machine having an improved structure in which a drum may be stably rotated while the washing machine performs a dehydration operation.
- Additional aspects of the disclosure will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the disclosure.
- In accordance with one aspect of the present disclosure, there is provided a washing machine including: a cabinet including an outer frame that constitutes an exterior, an inner frame connected to an inner side of the outer frame and a lower frame coupled to a lower part of the outer frame; a drum rotatably disposed in the inner frame; a base plate coupled to a lower part of the drum; a driving unit coupled to the base plate and configured to rotate the drum; and a damping apparatus configured to connect the base plate and the lower frame so as to absorb vibration occurring while the drum rotates.
- The damping apparatus may include: a support bracket coupled to a bottom surface of the base plate; and a plurality of dampers having ends connected to the support bracket and the other ends connected to the lower frame.
- The plurality of dampers may be disposed in a radial form centering on a rotation central axis of the drum.
- The plurality of dampers may include a first damper and a second damper that are adjacent to each other, and an angle between a virtual first extension line that extends from one end of the first damper toward the rotation central axis of the drum and a virtual second extension line that extends from one end of the second damper toward the rotation central axis of the drum may be between 45° and 135°.
- At least one of the plurality of dampers may have one end connected to the support bracket and the other end connected to a corner of the lower frame.
- An angle between a virtual third extension line that extends from one end of at least one of the plurality of dampers toward a ground and the ground may be between 5° and 30°.
- The support bracket may include: a body that surrounds at least a portion of the driving unit; a fixing part that is bent from an upper side of the body toward an outer side of the body and has at least one fixing hole through which the support bracket is fixed to the bottom surface of the base plate; and a plurality of fastening parts that protrude from sides of the body and connect the plurality of dampers to the support bracket.
- The plurality of dampers may be rotatably coupled to the support bracket and the lower frame.
- Position of the plurality of dampers may be biased toward one of a front and rear of a virtual first division plane that divides the cabinet in front and rear directions while passing through a rotation central axis of the drum.
- Position of the plurality of dampers may be biased toward one of a right and left of a virtual second division plane that divides the cabinet in right and left directions while passing through the rotation central axis of the drum.
- In accordance with another aspect of the present disclosure, there is provided a washing machine including: a cabinet; a tub disposed in the cabinet and configured to store washing water; a drum rotatably disposed in the tub; a pulsator rotatably disposed in the drum; a motor disposed in a lower part of the tub and configured to provide power for rotating the drum; a clutch configured to selectively transfer power of the motor to the drum or pulsator; a base plate configured to fix the clutch and the motor and coupled to a lower part of the tub; and a damping apparatus configured to connect the base plate and the lower frame so as to absorb vibration occurring while the drum rotates, wherein the damping apparatus includes: a support bracket coupled to a bottom surface of the base plate; and a plurality of dampers having ends connected to the support bracket and the other ends connected to a lower part of the cabinet and disposed in a radial form centering on a rotation central axis of the drum.
- The plurality of dampers may be rotatably coupled to the support bracket and the lower part of the cabinet.
- The plurality of dampers may include a first damper and a second damper that are adjacent to each other, and an angle between the first damper and the second damper centering on the rotation central axis of the drum may be between 45° and 135°.
- An angle between the first damper and the second damper and a ground may be between 5° and 30°.
- Position of the plurality of dampers may be biased toward one of front and rear of a virtual first division plane that divides the cabinet in front and rear directions while passing through the rotation central axis of the drum.
- Position of the plurality of dampers may be biased toward one of right and left of a virtual second division plane that divides the cabinet in right and left directions while passing through the rotation central axis of the drum.
- The support bracket may include a collision prevention surface for preventing the motor and the clutch from colliding with the lower part of the cabinet while the drum rotates.
- These and/or other aspects of the disclosure will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
-
FIG. 1 is a cross-sectional view of a washing machine according to an embodiment of the present disclosure; -
FIG. 2 is a perspective view of the washing machine illustrated inFIG. 1 ; -
FIG. 3 is a cross-sectional view taken along a line I-I ofFIG. 2 ; -
FIG. 4 is a cross-sectional view taken along a line II-II ofFIG. 2 ; -
FIG. 5 is an exploded perspective view illustrating the combination relationship of a damping apparatus according to an embodiment of the present disclosure; -
FIG. 6 is an exploded perspective view ofFIG. 5 at a different angle; and -
FIG. 7 is a bottom view of the damping apparatus illustrated inFIG. 5 . - Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout.
-
FIG. 1 is a cross-sectional view of awashing machine 1 according to an embodiment of the present disclosure. - As illustrated in
FIG. 1 , thewashing machine 1 includes acabinet 10 that constitutes the exterior, adrum 30 that is rotatably disposed in thecabinet 10, and a driving unit that is disposed in a lower part of thedrum 30 so as to rotate thedrum 30. - An
upper frame 15 in which alaundry port 14 through which laundry may be inserted into thedrum 30 is formed, is disposed in an upper part of thecabinet 10. Adoor 16 is disposed on theupper frame 15 so as to open/close thelaundry port 14. - A
lower frame 18 is disposed in a lower part of thecabinet 10, and amounting portion 19 on which thewashing machine 1 may be mounted on a bottom surface, is coupled to thelower frame 18. - Suspension members (see 21 of
FIG. 2 ) are connected to the upper part of thecabinet 10 so as to suspend and support thedrum 30 in thecabinet 10. - The
drum 30 is rotatably disposed in thecabinet 10, and a plurality of throughholes 36 are formed in an upper part of thedrum 30 along the circumference of thedrum 30. - A
pulsator 35 is rotatably installed at the bottom of thedrum 30. Thepulsator 35 stirs laundry put into thedrum 30 together with washing water. - A
water supply unit 50 for supplying washing water into thedrum 30 is installed at the upper part of thedrum 30. Thewater supply unit 50 includes awater supply valve 53 that regulates the supply of water and awater supply pipe 51 that connects thewater supply valve 53 and adetergent supply unit 60. - One side of the
water supply pipe 51 is connected to an external water supply source (not shown), and the other side of thewater supply pipe 51 is connected to thedetergent supply unit 60. - The
detergent supply unit 60 includes acase 61 disposed in theupper frame 15 and adetergent container 63 which is detachably mounted on thecase 61 and accommodates each detergent. Adischarge hole 65 through which washing water in which detergent is dissolved is discharged, is formed at the bottom of thecase 61. - Water supplied via the
water supply pipe 51 is supplied into thedrum 30 together with detergent via thedetergent supply unit 60. - A first draining
hose 82 and a second draininghose 84 are disposed in the lower part of thedrum 30 and guide washing water toward an outer side of thecabinet 10 after a washing or dehydration operation is completed. - The driving unit includes a
clutch 120 that selectively rotates thedrum 30 and thepulsator 35, adriving motor 150 that drives theclutch 120, aflange member 140 that transfers rotational force of adriving shaft 124 of theclutch 120 to thedrum 30 by connecting thedriving shaft 124 of theclutch 120 to abottom 32 of thedrum 30, and abase plate 160 on which theclutch 120 and thedriving motor 150 are fixed. -
FIG. 2 is a perspective view of thewashing machine 1 illustrated inFIG. 1 ,FIG. 3 is a cross-sectional view taken along a line I-I ofFIG. 2 , andFIG. 4 is a cross-sectional view taken along a line II-II ofFIG. 2 . - As illustrated in
FIGS. 2 through 4 , thedrum 30 is directly disposed in thecabinet 10 at a predetermined interval with thecabinet 10. That is, an additional configuration which is disposed between thecabinet 10 and thedrum 30 and in which washing water is stored, is omitted. - The
cabinet 10 includes anouter frame 10 a that constitutes an exterior of thewashing machine 1 and aninner frame 10 b that is connected to an inner side of theouter frame 10 a. - The
inner frame 10 b may be configured in an approximately cylindrical form. An outer circumferential surface of theinner frame 10 b may be connected to an inner side of at least a portion of theouter frame 10 a via a rib (not shown) or may contact the inner side of at least a portion of theouter frame 10 a. - The
inner frame 10 b is inclined toward a direction in which the radius of theinner frame 10 b increases from the lower part of theinner frame 10 b. Most of the water that is discharged from thedrum 30 via the plurality of throughholes 36 in the dehydration operation falls along an inner circumferential surface of theinner frame 10 b and flows into a draininggroove 22. Since theinner frame 10 b is inclined in such a way that water discharged from thedrum 30 slowly flows along an inclined surface of theinner frame 10 b, a phenomenon that water splashes toward an outer side of the draininggroove 22 while flowing into the draininggroove 22, does not occur. - Also, the
inner frame 10 b may have the same inclination angle as an inclination angle a of each of sidewalls 34 so as to be disposed in parallel to thesidewalls 34. When thedrum 30 rotates, thedrum 30 moves not only in a vertical direction but also in its radial direction. A gap between thedrum 30 and thecabinet 10 is necessary so as to prevent interference with theinner frame 10 b of thecabinet 10 caused by movement of thedrum 30 in the radial direction of thedrum 30. Theinner frame 10 b and thesidewall 34 are disposed in parallel to each other so that space utility of thecabinet 10 can be maximized and simultaneously a predetermined gap between thedrum 30 and thecabinet 10 can be maintained. - The
outer frame 10 a and theinner frame 10 b may be formed integrally with each other using injection molding so as to improve productivity. In this case, thecabinet 10 including theouter frame 10 a and theinner frame 10 b may be formed of a material, such as acrylonitrile butadiene styrene (ABS) or polypropylene (PP). The reason why thecabinet 10 may be manufactured using injection molding in this way is that thecabinet 10 includes theouter frame 10 a and theinner frame 10 b and thus its strength is increased. That is, after an injection molding material, such as ABS or PP, is injected into a mold and is solidified so as to manufacture thecabinet 10 using injection molding, thecabinet 10 is not damaged while the mold is separated from thecabinet 10. - The
outer frame 10 a and theinner frame 10 b may be formed of different materials and may be coupled to each other. That is, in order to increase the strength of thecabinet 10, theouter frame 10 a may be formed of metal, theinner frame 10 b may be formed of plastic, and theouter frame 10 a and theinner frame 10 b are coupled to each other, thereby forming thecabinet 10. - The draining
groove 22 is bent along the circumference of theinner frame 10 b and is formed in a lower end of theinner frame 10 b. - The draining
groove 22 includes a firstbent part 22 a that is bent from the lower end of theinner frame 10 b in its central direction and a secondbent part 22 b that is bent from an end of the firstbent part 22 a in a direction perpendicular to the ground. - The first
bent part 22 a serves as a bottom surface on which water discharged from thedrum 30 via the throughholes 36 formed in the upper part of thedrum 30 in the dehydration operation and directly fallen or flowing along the outer circumferential surface of thedrum 30 or the inner circumferential surface of theinner frame 10 b is received. The secondbent part 22 b constitutes a flow passage on which water fallen to the bottom surface together with the inner circumferential surface of the lower end of theinner frame 10 b is stored and then is discharged outward. - A draining
hole 24 which communicates with the draininggroove 22 and through which water stored in the draininggroove 22 is guided to the outer side of the draininggroove 22, is formed on one side of the firstbent part 22 a. The above-described second draininghose 84 is connected to an end of the draininghole 24, and water that passes through the draininghole 24 is finally discharged from thecabinet 10 via thesecond draining hose 84 and thefirst draining hose 82 connected to thesecond draining hose 84. - The
drum 30 is disposed in theinner frame 10 b so as to be rotatable in the vertical direction. - The
drum 30 includes the bottom 32 and thesidewalls 34 that are connected to the bottom 32 and constitute a space in which washing water is stored. - A plurality of
ribs 32 a are formed on the bottom 32. The plurality ofribs 32 a form an air flow in the radial direction of thedrum 30, i.e., in a direction from a center of thedrum 30 to theinner frame 10 b of thecabinet 10 and prevent water that is fallen along the outer circumferential surface of thedrum 30 from moving to a center of thedrum 30, in which the clutch 120 and the drivingmotor 150 are disposed, along the bottom 32 of thedrum 30. - The
sidewalls 34 extend from the bottom 32 and are inclined in a direction in which the diameter of thedrum 30 increases. If thedrum 30 rotates at a high speed of about 280 rpm or more during the dehydration operation, water dehydrated from the laundry may reach thesidewalls 34 due to a centrifugal force and then may smoothly move to the upper part of thedrum 30 along an inner circumferential surface of theinclined sidewall 34. - The inclination angle α between the
sidewall 34 and a straight line l perpendicular to the bottom 32 may preferably be about 2° to 10°. If the inclination angle α is excessively small, that is, less than 2°, water may not smoothly move to the upper part of thedrum 30 along the inner circumferential surface of thesidewall 34, and thus dehydration performance may be degraded. If the inclination angle α is excessively large, that is, greater than 10°, the upper part of thedrum 30 is widened so that the entire width of thecabinet 10 may be increased. - The through holes 36 through which water dehydrated from laundry may be discharged from the
drum 30 are formed in upper parts of thesidewalls 34. - At least one through
hole 36 may be formed in a circumferential direction of thesidewalls 34, and a height at which the throughhole 36 is formed, may be approximately half or more of the height of thedrum 30 because washing water in thedrum 30 should be prevented from flowing out through the throughhole 36 in the washing operation. - Water that is discharged from the
drum 30 through the throughhole 36 flows downward along the outer circumferential surface of thedrum 30 or the inner circumferential surface of theinner frame 10 b or directly falls through adischarge flow passage 33 formed between thesidewall 34 and the inner circumferential surface of theinner frame 10 b and flows into the draininggroove 22. - Also, the
drum 30 may further include aguide rib 38 that guides water discharged from thedrum 30 through the throughhole 36 toward the draininggroove 22. - The
guide rib 38 is disposed between the secondbent part 22 b that constitutes the draininggroove 22 and the inner circumferential surface of theinner frame 10 b, extends from a lower end of thesidewall 34 to a predetermined length, in particular, prevents water that falls along the outer circumferential surface of thedrum 30 from moving to the center of thedrum 30, in which the clutch 120 and the drivingmotor 150 are disposed, along the bottom 32 of thedrum 30, and simultaneously naturally guides introduction of water to the draininggroove 22. - An
interference prevention groove 39 is formed between the side of the bottom 32 and theguide rib 38 to a predetermined depth and prevents interference between thedrum 30 and the secondbent part 22 b due to vertical vibration of thedrum 30 while thewashing machine 1 operates. - The depth of the
interference prevention groove 39 or a length at which theguide rib 38 extends from the lower end of thesidewall 34, is related to a width at which thedrum 30 vibrates in the vertical direction during the washing or dehydration operation. As the width at which thedrum 30 vibrates in the vertical direction increases, the depth of theinterference prevention groove 39 should be increased, whereas the length at which theguide rib 38 extends from the lower end of thesidewall 34, should be decreased. - In this way, the
guide rib 38 may be positioned between the secondbent part 22 b and the inner circumferential surface of theinner frame 10 b, and the secondbent part 22 b may be accommodated in theinterference prevention groove 39 so that the entire height of thecabinet 10 can be reduced. That is, in consideration of the width at which thedrum 30 vibrates in the vertical direction, theguide rib 38 is accommodated in the draininggroove 22 and the secondbent part 22 b is accommodated in theinterference prevention groove 39 while thedrum 30 vibrates, so that the height of thecabinet 10 can be reduced by a length at which theguide rib 38 and the secondbent part 22 b overlap each other. - The driving unit for driving the
drum 30 or thepulsator 35 disposed in thedrum 30 is coupled to the lower part of thedrum 30. - The driving unit includes the clutch 120 that selectively rotates the
drum 30 and thepulsator 35, a drivingmotor 150 that drives the clutch 120, aflange member 140 that connects the drivingshaft 124 of the clutch 120 and the bottom 32 of thedrum 30 and transfers rotational force of the drivingshaft 124 to thedrum 30, and abase plate 160 that fixes the clutch 120 and the drivingmotor 150. - A
shaft coupling portion 31 is formed at the center of the bottom 32 of thedrum 30, is coupled to theflange member 140, and fixes and supports theflange member 140. Theshaft coupling portion 31 includes ashaft coupling wall 31 a that protrudes from the bottom 32 toward the outer side of thedrum 30 downward, and ashaft insertion hole 31 b that is formed in the inner side of theshaft coupling wall 31 a so that one end of theflange member 140 may be inserted into the inner side of thedrum 30 through theshaft insertion hole 31 b. - The
flange member 140 is inserted in and fixed to theshaft insertion hole 31 b and couples the drivingshaft 124 and thedrum 30. - The
flange member 140 includes a first throughhole 142 formed through the center of theflange member 140 so as to be coupled to the drivingshaft 124, and a second throughhole 144 formed in a circumferential direction of the first throughhole 142. - The second through
hole 144 serves as a movement path on which washing water stored in thedrum 30 moves to the outer side of thedrum 30 after the washing operation is completed. - The clutch 120 includes a
housing 122 and a drivingshaft 124 that is rotatably coupled to the center of thehousing 122. Deceleration units that decelerate various bearings for rotating and supporting the drivingshaft 124 and the drivingshaft 124, are disposed in the internal space of thehousing 122. - The driving
shaft 124 penetrates the first throughhole 142 formed in theflange member 140 and is connected to thedrum 30 and thepulsator 35. - The driving
shaft 124 includes afirst connector 124 a coupled to the first throughhole 142 and asecond connector 124 b that extends from thefirst connector 124 a and is coupled to thepulsator 35. Thefirst connector 124 a and thesecond connector 124 b rotate simultaneously or individually depending on the washing or dehydration operation. In the washing operation, thesecond connector 124 b rotates and allows thepulsator 35 coupled to thesecond connector 124 b to rotate, and in the dehydration operation, thefirst connector 124 a and thesecond connector 124 b rotate simultaneously and allow thedrum 30 and thepulsator 35 to simultaneously rotate. Apulley 134 is coupled to the other end of the drivingshaft 124 so that rotational force of the drivingmotor 150 may be transferred to the clutch 120 via a drivingbelt 135. - A
base plate cover 162 is coupled to a space between theflange member 140 and thebase plate 160. Thebase plate cover 162 communicates with the second throughhole 144 and forms aspace 161 in which washing water introduced through the second throughhole 144 together with thebase plate 160 may be moved to adraining case 174. Also, sealingmembers 164 are inserted between theflange member 140 and thebase plate cover 162 and between thebase plate cover 162 and thebase plate 160 so as to prevent leakage of washing water. - The draining
case 174 is coupled to the lower part of thebase plate 160. The drainingcase 174 accommodates washing water that is introduced after passing through thespace 161 formed by thebase plate cover 162 and thebase plate 160. A drainingpipe 176 that drains washing water flowing into the drainingcase 174, is disposed at one end of the drainingcase 174, and thefirst draining hose 82 is connected to the drainingpipe 176 and guides washing water toward the outer side of thecabinet 10. Avalve 178 is disposed on the drainingpipe 176 so that washing water in the drainingcase 174 may be selectively drained during the washing operation. - Washing water used in the washing or rinsing operation is introduced into the
space 161 between thebase plate cover 162 and thebase plate 160 via the second throughhole 144 formed in theflange member 140, and then is drained to the outer side of thecabinet 10 via the drainingcase 174 and thefirst draining hose 82. As described above, washing water dehydrated from laundry in the dehydration operation is discharged from thedrum 30 via the throughhole 36, flows along the outer circumferential surface of thedrum 30 or the inner circumferential surface of theinner frame 10 b, is introduced into the draininggroove 22, and then is drained to the outer side of thecabinet 10 via the draininghole 24 and thesecond draining hose 84 connected to the draininghole 24. - The
base plate 160 is coupled to the upper part of thecabinet 10 usingsuspension members 21. At least twosuspension members 21 are coupled to a corner of thecabinet 10 formed by the rectangularouter frame 10 a and the cylindricalinner frame 10 b, and support thedrum 30. Acoupling rib 10 c is disposed at the corner of thecabinet 10 and supports and couples one end of thesuspension member 21. Thecoupling rib 10 c may be injection molded integrally with theouter frame 10 a and theinner frame 10 b. - A
connection bracket 180 is coupled to a space between thebase plate 160 and thesuspension members 21. Theconnection bracket 180 includes anavoidance groove 181 that is bent and formed in the lower end of theconnection bracket 180 so as to prevent interference with the draininggroove 22 while thewashing machine 1 operates. Thebase plate 160 and theconnection bracket 180 may be formed integrally with each other. - The
drum 30 is connected to the clutch 120 and thebase plate 160 that fixes the clutch 120 at the lower part of thedrum 30. Thebase plate 160 is configured to be coupled to the upper part of thecabinet 10 via thesuspension members 21, and a load applied to thedrum 30 is transferred to thesuspension members 21 via thebase plate 160, and thesuspension members 21 absorb vibration caused by the load applied to thedrum 30. - As described above, the
cabinet 10 is configured in a double structure including theouter frame 10 a and theinner frame 10 b and has enough strength to support a load applied to thedrum 30, the clutch 120, and the drivingmotor 150 connected via thesuspension members 21. - Hereinafter, a damping
apparatus 200 that absorbs vibration occurring while thedrum 30 rotates together with thesuspension member 21 will be described in detail. -
FIG. 5 is an exploded perspective view illustrating the combination relationship of the dampingapparatus 200 according to an embodiment of the present disclosure,FIG. 6 is an exploded perspective view ofFIG. 5 at a different angle, andFIG. 7 is a bottom view of the dampingapparatus 200 illustrated inFIG. 5 . - As illustrated in
FIGS. 5 through 7 , the dampingapparatus 200 is configured to connect thebase plate 160 and thelower frame 18 and to absorb vibration occurring while thedrum 30 rotates. The dampingapparatus 200 includes asupport bracket 210 coupled to a bottom surface of thebase plate 160 and a plurality of 220 and 240, of which ends 220 a and 240 a are connected to thedampers support bracket 210 and the other ends 220 b and 240 b are connected to thelower frame 18. - The
support bracket 210 includes abody 212 that surrounds at least a portion of the driving unit including the clutch 120 and the drivingmotor 150, a fixingpart 214 that is bent from the upper side of thebody 212 and toward the outer side of thebody 212, and a plurality offirst fastening parts 216 that protrude from sides of the body 312 and connect a plurality of 220 and 240 to thedampers body 212. - The
body 212 is coupled to approximately the center of thebase plate 160, and one side of thebody 212 is open not to interfere with the drivingbelt 135 that connects the clutch 120 and the drivingmotor 150. Acollision prevention surface 212 a is disposed at the lower side of thebody 212 so as to prevent the clutch 120 and the drivingmotor 150 from colliding with the lower part of thecabinet 10 while thedrum 30 rotates. - At least one fixing
hole 214 a for fixing thesupport bracket 210 to the bottom surface of thebase plate 160 is formed through the fixingpart 214. - The plurality of
first fastening parts 216 extend from the sides of thebody 212 toward approximately the corner of thelower frame 18 to a predetermined length, and a pair offirst fastening parts 216 are spaced apart from each other by a predetermined gap in parallel so that one ends 220 a and 240 a of the plurality of 220 and 240 may be accommodated in the pair ofdampers first fastening parts 216. First fastening holes 216 a are formed through thefirst fastening parts 216 so that the 220 and 240 may be rotatably coupled to thedampers first fastening parts 216. The 220 and 240 rotate around a virtual shaft S1 that connects centers of the first fastening holes 216 a while thedampers drum 30 rotates, and absorb vibration of thedrum 30. - The plurality of
220 and 240 are rotatably coupled to thedampers support bracket 210 and thelower frame 18 and absorb vibration occurring while thedrum 30 rotates, thereby stabilizing rotation of thedrum 30 and preventing thedrum 30 from colliding with theinner frame 10 b. - The plurality of-
220 and 240 may be disposed in a radial form centering on a rotation central axis Lc of thedampers drum 30 so as to effectively absorb vibration caused by eccentric rotation of thedrum 30. As illustrated inFIGS. 5 through 7 , one ends 220 a and 240 a of the 220 and 240 may be directed toward the rotation central axis Lc of thedampers drum 30, and the other ends 220 b and 240 b of the 220 and 240 may be directed toward the corner of thedampers lower frame 18. - An angle (see β of
FIG. 7 ) between a virtual first extension line L1 that extends from oneend 220 a of thefirst damper 220 toward the rotation central axis Lc of thedrum 30, and a virtual second extension line L2 that extends from oneend 240 a of thesecond damper 240 toward the rotation central axis Lc of thedrum 30 may be between 45° and 135°. - In this way, the reason why the
first damper 220 and thesecond damper 240 are disposed in such a way that the angle β between the first extension line L1 and the second extension line L2 is between 45° and 135°, is that, if the angle β between the first extension line L1 and the second extension line L2 is less than 45°, when the rotation central axis Lc of thedrum 30 is eccentric to a direction that is closer to the y-axis than the x-axis while thedrum 30 rotates, thefirst damper 220 and thesecond damper 240 may absorb vibration of thedrum 30; however, when the rotation central axis Lc of thedrum 30 is eccentric to a direction that is closer to the x-axis than the y-axis, thefirst damper 220 and thesecond damper 240 may not effectively absorb vibration of the drum. If the angle β between the first extension line L1 and the second extension line L2 is greater than 135°, when the rotation central axis Lc of thedrum 30 is eccentric to a direction that is closer to the x-axis than the y-axis while thedrum 30 rotates, thefirst damper 220 and thesecond damper 240 may absorb vibration of thedrum 30; however, when the rotation central axis Lc of thedrum 30 is eccentric to a direction that is closer to the y-axis than the x-axis, thefirst damper 220 and thesecond damper 240 may not effectively absorb vibration of thedrum 30. - The plurality of
220 and 240 may be disposed in such a way that angles γ1 and γ2 (seedampers FIG. 3 ) between a virtual third extension line L3 and a virtual fourth extension line L4 that extend from the other ends 220 b and 240 b toward the ground, are between 5° and 30°. - In this way, the reason why the plurality of
220 and 240 are disposed in such a way that angles γ1 and γ2 between the virtual third extension line L3 and the virtual fourth extension line L4 and the ground are between 5° and 30°, is that, if the angles γ1 and γ2 between the third extension line L3 and the fourth extension line L4 and the ground are less than 5° or greater than 30°, thedampers first damper 220 and thesecond damper 240 may not effectively absorb vibration of thedrum 30 that occurs in the z-axis direction. - Also, positions of the plurality of
220 and 240 may be biased toward one of the front and rear of a virtual first division plane (see P1 ofdampers FIG. 2 or 7) that divides thecabinet 10 in front and rear directions while passing through the rotation central axis Lc of thedrum 30. - In this way, the reason why the positions of the plurality of
220 and 240 are biased toward one of the front and rear of the first division plane P1 is that, when thedampers first damper 220 and thesecond damper 240 are disposed in the front and rear of thecabinet 10 divided by the first division plane P1, as described above, when the rotation central axis Lc of thedrum 30 is eccentric to a direction that is close to the x-axis or y-axis, the 220 and 240 cannot effectively absorb vibration of thedampers drum 30. - In the above principle, the positions of the plurality of
220 and 240 may be biased toward one of the right and left of a virtual second division plane (see P2 ofdampers FIG. 2 or 7) that divides thecabinet 10 in right and left directions while passing through the rotation central axis Lc of thedrum 30. - As described above, a pair of dampers, i.e., the
first damper 220 and thesecond damper 240 are used to absorb vibration caused by eccentric rotation of thedrum 30. However, the number of dampers is not limited to a pair, and more dampers may be used. In such a case, as described above, an angle formed by a pair of dampers that are adjacent to each other, may be between 45° and 135°, and an angle between the damper and the ground may be between 5° and 30°. - A plurality of
second fastening parts 226 are disposed on thelower frame 18 so as to connect the plurality of 220 and 240 to the corner of thedampers lower frame 18. - The plurality of
second fastening parts 226 extend from the corner of thelower frame 18 toward approximately the rotation central axis Lc of thedrum 30 to a predetermined length, and a pair ofsecond fastening parts 226 are spaced apart from each other by a predetermined gap in parallel so that the other ends 220 b and 240 b of the 220 and 240 may be accommodated in the pair ofdampers fastening parts 226. Second fastening holes 226 a are formed through thesecond fastening parts 226 so that the 220 and 240 may be rotatably coupled to thedampers second fastening parts 226. The 220 and 240 are rotated around a virtual shaft S2 that connects centers of the second fastening holes 226 a while thedampers drum 30 rotates, and absorb vibration of thedrum 30. - As described above, the damping
apparatus 200 is disposed between thebase plate 160 and thelower frame 18, thereby effectively absorbing vibration caused by eccentric rotation of thedrum 30 that may occur both in a transition section and a normal status section. Thus, thedrum 30 can be stably rotated without the fear of colliding with thecabinet 10. - It is apparent that the damping
apparatus 200 may be disposed in thewashing machine 1 ofFIG. 1 having no additional configuration for storing washing water, although not shown, in a washing machine having an additional configuration for storing washing water, like a tub, so as to connect the lower part of the tub and the lower part of thecabinet 10 and may be used to absorb vibration of thedrum 30. - As described above, according to the embodiments of the present disclosure, a damping apparatus is installed between a drum and a lower frame so that vibration of the drum that may occur during dehydration can be reduced and the drum can be stably rotated.
- Although a few embodiments of the present disclosure have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.
Claims (20)
1. A washing machine comprising:
a cabinet comprising an outer frame that constitutes an exterior, an inner frame connected to an inner side of the outer frame, and a lower frame coupled to a lower part of the outer frame;
a drum rotatably disposed in the inner frame;
a base plate coupled to a lower part of the drum;
a driving unit coupled to the base plate and configured to rotate the drum; and
a damping apparatus configured to connect the base plate and the lower frame so as to absorb vibration occurring while the drum rotates.
2. The washing machine according to claim 1 , wherein the damping apparatus comprises:
a support bracket coupled to a bottom surface of the base plate; and
a plurality of dampers having ends connected to the support bracket and the other ends connected to the lower frame.
3. The washing machine according to claim 2 , wherein the plurality of dampers are disposed in a radial form centering on a rotation central axis of the drum.
4. The washing machine according to claim 3 , wherein the plurality of dampers comprise a first damper and a second damper that are adjacent to each other and an angle between a virtual first extension line that extends from one end of the first damper toward the rotation central axis of the drum and a virtual second extension line that extends from one end of the second damper toward the rotation central axis of the drum is between 45° and 135°.
5. The washing machine according to claim 2 , wherein at least one of the plurality of dampers has one end connected to the support bracket and the other end connected to a corner of the lower frame.
6. The washing machine according to claim 3 , wherein an angle between a virtual third extension line that extends from one end of at least one of the plurality of dampers toward a ground and the ground is between 5° and 30°.
7. The washing machine according to claim 2 , wherein the support bracket comprises:
a body configured to surround at least a portion of the driving unit;
a fixing part bent from an upper side of the body toward an outer side of the body and having at least one fixing hole through which the support bracket is fixed to the bottom surface of the base plate; and
a plurality of fastening parts configured to protrude from sides of the body and connect the plurality of dampers to the support bracket.
8. The washing machine according to claim 2 , wherein the plurality of dampers are rotatably coupled to the support bracket and the lower frame.
9. The washing machine according to claim 2 , wherein positions of the plurality of dampers are biased toward one of front and rear of a virtual first division plane that divides the cabinet in front and rear directions while passing through a rotation central axis of the drum.
10. The washing machine according to claim 2 , wherein positions of the plurality of dampers are biased toward one of right and left of a virtual second division plane that divides the cabinet in right and left directions while passing through the rotation central axis of the drum.
11. A washing machine comprising:
a cabinet;
a tub disposed in the cabinet and configured to store washing water;
a drum rotatably disposed in the tub;
a pulsator rotatably disposed in the drum;
a motor disposed in a lower part of the tub and configured to provide power for rotating the drum;
a clutch configured to selectively transfer power of the motor to the drum or pulsator;
a base plate configured to fix the clutch and the motor and coupled to a lower part of the tub; and
a damping apparatus configured to connect the base plate and the lower frame so as to absorb vibration occurring while the drum rotates,
wherein the damping apparatus comprises
a support bracket coupled to a bottom surface of the base plate; and
a plurality of dampers having ends connected to the support bracket and the other ends connected to a lower part of the cabinet and disposed in a radial form centering on a rotation central axis of the drum.
12. The washing machine according to claim 11 , wherein the plurality of dampers are rotatably coupled to the support bracket and the lower part of the cabinet.
13. The washing machine according to claim 11 , wherein the plurality of dampers comprise a first damper and a second damper that are adjacent to each other and an angle between the first damper and the second damper centering on the rotation central axis of the drum is between 45° and 135°.
14. The washing machine according to claim 12 , wherein an angle between the first damper and the second damper and a ground is between 5° and 30°.
15. The washing machine according to claim 11 , wherein positions of the plurality of dampers are biased toward one of front and rear of a virtual first division plane that divides the cabinet in front and rear directions while passing through the rotation central axis of the drum.
16. The washing machine according to claim 11 , wherein positions of the plurality of dampers are biased toward one of right and left of a virtual second division plane that divides the cabinet in right and left directions while passing through the rotation central axis of the drum.
17. The washing machine according to claim 11 , wherein the support bracket comprises a collision prevention surface for preventing the motor and the clutch from colliding with the lower part of the cabinet while the drum rotates.
18. The washing machine according to claim 11 , further comprising at least two suspension members to couple the base plate to an upper part of the cabinet.
19. The washing machine according to claim 18 , wherein upper ends of the at least two suspension members are coupled to respective corners of the cabinet via a coupling rib disposed at each of the respective corners of the cabinet.
20. The washing machine according to claim 19 , further comprising a connection bracket coupled to a space between the base plate and lower ends of the at least two suspension members,
wherein the connection bracket includes an avoidance groove that is bent and formed in the lower end of the connection bracket so as to prevent interference with a draining groove of the washing machine.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2012-0039204 | 2012-04-16 | ||
| KR1020120039204A KR20130116633A (en) | 2012-04-16 | 2012-04-16 | Washing machine having damping apparatus |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130269396A1 true US20130269396A1 (en) | 2013-10-17 |
Family
ID=49323848
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/859,917 Abandoned US20130269396A1 (en) | 2012-04-16 | 2013-04-10 | Washing machine having damping apparatus |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US20130269396A1 (en) |
| KR (1) | KR20130116633A (en) |
| CN (1) | CN103374804A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3305971A4 (en) * | 2015-05-29 | 2018-07-04 | Qingdao Haier Washing Machine Co., Ltd. | Sealing installation structure of inner barrel bottom and flange of washing machine |
| US20210062398A1 (en) * | 2016-12-23 | 2021-03-04 | Samsung Electronics Co., Ltd. | Washing machine |
| US11274389B2 (en) * | 2017-08-04 | 2022-03-15 | Samsung Electronics Co., Ltd. | Washing machine |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108823904A (en) * | 2018-05-31 | 2018-11-16 | 无锡小天鹅通用电器有限公司 | Device for clothing processing |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2836301A (en) * | 1953-08-26 | 1958-05-27 | Easy Washing Maching Company L | Tub structure |
| US2957331A (en) * | 1954-06-14 | 1960-10-25 | Easy Washing Machine Company L | Tub support |
| US2969172A (en) * | 1956-05-16 | 1961-01-24 | Easy Washing Machine Company L | Clothes washing machine |
| US3306082A (en) * | 1964-12-14 | 1967-02-28 | Hitachi Ltd | Washing machines |
| US4468938A (en) * | 1983-09-12 | 1984-09-04 | General Electric Company | Tubless washing machine |
| US5520029A (en) * | 1995-10-06 | 1996-05-28 | General Electric Company | Coil spring and snubber suspension system for a washer |
| WO1997045582A1 (en) * | 1996-05-27 | 1997-12-04 | Southcorp Whitegoods Pty. Ltd. | An improved washing machine |
| US5946947A (en) * | 1996-05-21 | 1999-09-07 | Samsung Electronics Co., Ltd. | Clothes washing machine having vibration and noise damper |
| US6286344B1 (en) * | 1999-02-04 | 2001-09-11 | Lg Electronics Inc. | Washing machine with tilted tub assembly |
| US20110023556A1 (en) * | 2009-07-29 | 2011-02-03 | Electrolux Do Brasil Sa | Suspension System for Washing Machines |
| US20110162442A1 (en) * | 2008-09-10 | 2011-07-07 | Prof. Dr. Lars Bertil Carnehammar | Method, system and device for reducing vibration in an article processing machine, such as a washing machine |
| US20110277514A1 (en) * | 2009-01-06 | 2011-11-17 | Lg Electronics Inc. | Laundry machine |
| US20130199246A1 (en) * | 2012-02-03 | 2013-08-08 | General Electric Company | Dynamic unbalance detection in a washing machine |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2284250Y (en) * | 1996-06-14 | 1998-06-17 | 青岛海尔洗衣机有限总公司 | Full automtic waher |
| CN2498186Y (en) * | 2001-09-13 | 2002-07-03 | 海尔集团公司 | Washing machine |
| CN2769294Y (en) * | 2005-01-31 | 2006-04-05 | 广东科龙电器股份有限公司 | High-speed dewatering full automatic pulsator washing machine |
| CN100523357C (en) * | 2007-05-23 | 2009-08-05 | 宋莉芳 | Inner inclined suspension type vibration avoiding system for shell and barrel integrated full automatic impeller washing machine |
| CN101463544B (en) * | 2007-12-19 | 2010-12-15 | 张繁荣 | Washing machine without using washing powder |
| CN201265096Y (en) * | 2008-09-12 | 2009-07-01 | 刘富春 | Fully automatic washing machine |
-
2012
- 2012-04-16 KR KR1020120039204A patent/KR20130116633A/en not_active Ceased
-
2013
- 2013-04-10 US US13/859,917 patent/US20130269396A1/en not_active Abandoned
- 2013-04-16 CN CN2013101308903A patent/CN103374804A/en active Pending
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2836301A (en) * | 1953-08-26 | 1958-05-27 | Easy Washing Maching Company L | Tub structure |
| US2957331A (en) * | 1954-06-14 | 1960-10-25 | Easy Washing Machine Company L | Tub support |
| US2969172A (en) * | 1956-05-16 | 1961-01-24 | Easy Washing Machine Company L | Clothes washing machine |
| US3306082A (en) * | 1964-12-14 | 1967-02-28 | Hitachi Ltd | Washing machines |
| US4468938A (en) * | 1983-09-12 | 1984-09-04 | General Electric Company | Tubless washing machine |
| US5520029A (en) * | 1995-10-06 | 1996-05-28 | General Electric Company | Coil spring and snubber suspension system for a washer |
| US5946947A (en) * | 1996-05-21 | 1999-09-07 | Samsung Electronics Co., Ltd. | Clothes washing machine having vibration and noise damper |
| WO1997045582A1 (en) * | 1996-05-27 | 1997-12-04 | Southcorp Whitegoods Pty. Ltd. | An improved washing machine |
| US6286344B1 (en) * | 1999-02-04 | 2001-09-11 | Lg Electronics Inc. | Washing machine with tilted tub assembly |
| US20110162442A1 (en) * | 2008-09-10 | 2011-07-07 | Prof. Dr. Lars Bertil Carnehammar | Method, system and device for reducing vibration in an article processing machine, such as a washing machine |
| US20110277514A1 (en) * | 2009-01-06 | 2011-11-17 | Lg Electronics Inc. | Laundry machine |
| US20110023556A1 (en) * | 2009-07-29 | 2011-02-03 | Electrolux Do Brasil Sa | Suspension System for Washing Machines |
| US20130199246A1 (en) * | 2012-02-03 | 2013-08-08 | General Electric Company | Dynamic unbalance detection in a washing machine |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3305971A4 (en) * | 2015-05-29 | 2018-07-04 | Qingdao Haier Washing Machine Co., Ltd. | Sealing installation structure of inner barrel bottom and flange of washing machine |
| US20210062398A1 (en) * | 2016-12-23 | 2021-03-04 | Samsung Electronics Co., Ltd. | Washing machine |
| US11898298B2 (en) * | 2016-12-23 | 2024-02-13 | Samsung Electronics Co., Ltd. | Washing machine |
| US20240125036A1 (en) * | 2016-12-23 | 2024-04-18 | Samsung Electronics Co., Ltd. | Washing machine |
| US12331449B2 (en) * | 2016-12-23 | 2025-06-17 | Samsung Electronics Co., Ltd. | Washing machine |
| US11274389B2 (en) * | 2017-08-04 | 2022-03-15 | Samsung Electronics Co., Ltd. | Washing machine |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20130116633A (en) | 2013-10-24 |
| CN103374804A (en) | 2013-10-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9428853B2 (en) | Washing machine | |
| EP2559799B1 (en) | Washing machine | |
| US9328442B2 (en) | Washing machine | |
| CN102216513B (en) | Laundry machine | |
| US20140033772A1 (en) | Washing machine | |
| EP2435612B1 (en) | Laundry machine | |
| KR102418217B1 (en) | Washing machine | |
| US9481958B2 (en) | Washing machine | |
| US9080275B2 (en) | Drain hose and washing machine having the same | |
| US20130269396A1 (en) | Washing machine having damping apparatus | |
| CN102421954B (en) | Laundry machine | |
| US9382651B2 (en) | Washing machine | |
| KR20150017889A (en) | Supporting device for washing machine | |
| JP5639979B2 (en) | Drum type washer / dryer | |
| US10590586B2 (en) | Washing machine having an improved coupling structure | |
| KR102838601B1 (en) | transit bolt Coupling portion for laundry machine | |
| EP2435610B1 (en) | Laundry machine | |
| KR101397104B1 (en) | Drum Type Washing Machine | |
| KR20120133988A (en) | washer | |
| KR20180022373A (en) | Washing machine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NA, GYU SUNG;KANG, DAE UK;KANG, JEONG HOON;AND OTHERS;SIGNING DATES FROM 20130404 TO 20130408;REEL/FRAME:030229/0615 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |