US20130260321A1 - Cooled electrode and burner system including a cooled electrode - Google Patents
Cooled electrode and burner system including a cooled electrode Download PDFInfo
- Publication number
- US20130260321A1 US20130260321A1 US13/730,979 US201213730979A US2013260321A1 US 20130260321 A1 US20130260321 A1 US 20130260321A1 US 201213730979 A US201213730979 A US 201213730979A US 2013260321 A1 US2013260321 A1 US 2013260321A1
- Authority
- US
- United States
- Prior art keywords
- electrode
- heat
- cooling fluid
- flame
- burner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details
- F23D14/68—Treating the combustion air or gas, e.g. by filtering, or moistening
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C99/00—Subject-matter not provided for in other groups of this subclass
- F23C99/001—Applying electric means or magnetism to combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23Q—IGNITION; EXTINGUISHING-DEVICES
- F23Q3/00—Igniters using electrically-produced sparks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L2900/00—Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
- F23L2900/15044—Preheating combustion air by heat recovery means using solar or other clean energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M2900/00—Special features of, or arrangements for combustion chambers
- F23M2900/13003—Energy recovery by thermoelectric elements, e.g. by Peltier/Seebeck effect, arranged in the combustion plant
Definitions
- an electrode system for a burner may include a thermally coupled electrode configured to apply an electric field to a region corresponding to a flame or combustion gas produced by the flame and to receive heat from the flame or the combustion gas.
- a cooling apparatus may be operatively coupled to the thermally coupled electrode and configured to remove the heat received by the electrode from the flame or the combustion gas.
- a method of cooling an electrode subject to heating by a flame or a combustion gas produced by the flame may include applying an electric field to a flame or combustion gas produced by the flame with an electrode, causing a detectable response in the flame or the combustion gas responsive to the electric field, receiving heat from the flame or the combustion gas with the electrode, and cooling the electrode to remove the heat received from the flame or the combustion gas.
- FIG. 1 is a diagram showing a burner and a cooled electrode system for the burner, according to an embodiment.
- FIG. 2 is a diagram showing the electrode of FIG. 1 with a thermo-electric cooler configured to remove the heat from the electrode, according to an embodiment.
- FIG. 3 is a diagram showing the electrode of FIG. 1 with a cooling apparatus including a heat pipe, according to an embodiment.
- FIG. 4 is a diagram showing the electrode of FIG. 1 , wherein the electrode includes a flow channel for a cooling fluid and an aperture for outputting the heated cooling fluid to the flame or combustion gas, according to an embodiment.
- FIG. 5 is a diagram showing the electrode of FIG. 1 , wherein the electrode includes first and second fluid flow channels for carrying a cooling fluid through the electrode, according to an embodiment.
- FIG. 6 is a diagram showing an electrically isolated cooling fluid source configured to provide a cooling fluid to a thermally coupled electrode, according to an embodiment.
- FIG. 7 is a flowchart illustrating a method for cooling an electrode subject to heating by a flame or a combustion gas produced by the flame, according to an embodiment.
- FIG. 1 is a diagram showing a burner 102 configured to support a flame 106 and a cooled electrode system 101 for the burner 102 , according to an embodiment.
- the electrode system 101 for the burner 102 may include a thermally coupled electrode 104 configured to apply an electric field or eject electrically-charged ions to a region corresponding to the flame 106 or combustion gas 108 produced by the flame 106 .
- the thermally coupled electrode 104 may receive heat from the flame 106 and/or the combustion gas 108 .
- a cooling apparatus 110 may be operatively coupled to the thermally coupled electrode 104 and configured to remove the heat received by the electrode 104 from the flame 106 or the combustion gas 108 .
- a volume in which the flame 106 and combustion gases 108 are at least transiently held may be referred to as a combustion volume 111 .
- the electrode 104 may be disposed at least partially within the combustion volume 111 to receive the heat from the flame 106 and/or the combustion gas 108 .
- the electrode 104 may be outside the combustion volume 111 , but thermally coupled to the flame 106 or the combustion gas 108 to receive heat therefrom.
- the electrode 104 and cooling apparatus 110 are shown in block diagram form. Their physical form and location may vary from what may be indicated in FIG. 1 . As will be appreciated from the description below, the cooling apparatus 110 may be disposed substantially within the electrode 104 , may be adjacent to the electrode 104 , and/or may include relatively extensive apparatus separated from the electrode 104 .
- At least a majority of heat removed by the cooling apparatus 110 from the thermally coupled electrode 104 may correspond to heat received from the flame 106 and/or combustion gas 108 produced by the flame 106 . Additionally or alternatively, heat removed by the cooling apparatus 110 from the thermally coupled electrode 104 may include heat caused by dissipation from electrical modulation of the thermally coupled electrode 104 and heat received from the flame 106 .
- the burner and electrode system 101 may include a plurality of thermally coupled electrodes 104 and/or additional non-thermally coupled electrode(s) (not shown).
- the burner 102 may include a fuel source 112 configured to provide fuel for the flame 106 and an oxidizer source 116 configured to provide oxidizer for the flame 106 .
- Electrical isolation 114 may be configured to electrically isolate the fuel source 112 from ground or voltages other than voltages corresponding to the thermally coupled electrode 104 .
- An electrode controller 118 may be configured to apply a voltage corresponding to the electric field to the thermally coupled electrode 104 through one or more electrical leads 120 .
- the electrode controller 118 may include a waveform generator 122 and an amplifier 124 .
- the waveform generator 122 may be configured to provide a time-varying voltage.
- the time varying voltage may be at least partially periodic and may have a frequency between about 50 Hz and 10 kHz, for example.
- the amplifier 124 may amplify the time varying voltage received from the waveform generator 122 to a working voltage.
- the working voltage may be conveyed to the thermally coupled electrode 104 by the one or more electrical leads 120 .
- the working voltage may range between about ⁇ 1000 V (e.g., as a time varying voltage formed as a sinusoid or a square wave that cycles between +1 kV and ⁇ 1 kV) to about ⁇ 500,000 V ( ⁇ 500 kV).
- ⁇ 1000 V e.g., as a time varying voltage formed as a sinusoid or a square wave that cycles between +1 kV and ⁇ 1 kV
- ⁇ 500,000 V ⁇ 500 kV.
- current dissipated by the electrode(s) 104 is low -- for example, 50 milliamperes or less. Accordingly, the electrode(s) 104 do not typically undergo any significant Joule heating responsive to the applied amplified electrical waveform. Rather, a majority to substantially all of the heat removed by cooling may be attributed to radiant and/or convective heat transfer from the flame 106 or the combustion gas 108 to the electrode 104 .
- the cooling apparatus 110 may be operatively coupled to and controlled by the electrode controller 118 .
- the cooling apparatus 110 may be not controlled by the electrode controller 118 .
- the block diagram connection 126 shown in FIG. 1 between the electrode controller 118 and the cooling apparatus 110 may be omitted when there is no operative coupling between the cooling apparatus 110 and the electrode controller 118 .
- a heat sink may be operatively coupled to the cooling apparatus 110 and configured to receive the heat received by the thermally coupled electrode 104 from the flame 106 or the combustion gas 108 , and removed from the thermally coupled electrode 104 by the cooling apparatus 110 .
- the cooling apparatus 110 may be configured to output heat from the thermally coupled electrode 104 to a heat sink (not shown) including a heat exchange surface (not shown) configured to pre-heat an oxidizer 116 or gas fed to the flame 106 .
- the oxidizer 116 may include oxygen carried in air.
- the heat sink (not shown) may include fins configured to pre-heat the air before the air flows into and past the flame 106 .
- the cooling apparatus 110 may be configured to output heat from the thermally coupled electrode 104 to a heat sink (not shown) including a heat exchange surface (not shown) configured to pre-heat fuel fed to the flame 106 .
- the heat sink may include fins (not shown) disposed along a non-conductive portion 114 of a fuel supply tube.
- Such a heat sink and fins (not shown) may be formed, for example, by embedding the heat sink and/or fins in a cast fuel supply tube 114 or by co-molding the heat sink and/or fins in a thermoplastic fuel supply tube 114 .
- the heat sink (not shown) may be formed as a conductive portion 112 of the fuel supply. This arrangement may be especially suitable for gaseous fuels.
- the heat sink may be configured to be at least partially immersed in a liquid fuel, such as heating oil or bunker fuel.
- the heat sink (not shown) may be configured as at least a portion of a fuel intake mechanism (not shown) that pre-heats the liquid fuel for easier pumping and passage through a nozzle 112 . This arrangement may be especially suitable for a viscous fuel such as bunker fuel.
- the cooling apparatus 110 may be configured to output heat from the thermally coupled electrode 104 to a combustion volume 111 corresponding to the flame 106 or the combustion gas 108 .
- the cooling apparatus 110 may include a forced or natural convection system (not shown) configured to pass overfire air through a hollow thermally coupled electrode 104 .
- the overfire air may pass through the electrode and out an orifice (such as an open end of the electrode, for example) at an overfire air injection location.
- the overfire air (or other fluid passing through the thermally coupled electrode 104 ) may itself act as the heat sink. This approach is described more fully in conjunction with FIG. 4 below.
- the cooling apparatus 110 may be configured to output heat from the thermally coupled electrode 104 to a liquid, gas, or solid heat sink (not shown) that is not thermally coupled to the flame 106 or the combustion gas 108 .
- the liquid, gas, or solid heat sink may be electrically isolated from a secondary coolant (not shown) configured to remove the heat from the heat sink.
- an electrical isolation system may be configured to reduce or substantially prevent current leakage from the thermally coupled electrode 104 to a heat sink (not shown) configured to receive heat removed from the thermally coupled electrode by the cooling apparatus 110 .
- cooling apparatuses 110 are contemplated.
- FIG. 2 is a diagram 201 showing the thermally coupled electrode of FIG. 1 with a thermo-electric cooler 202 configured and operatively coupled to remove the heat from the thermally coupled electrode 104 , according to an embodiment.
- Thermo-electric coolers may typically operate according to the Peltier effect.
- the thermally coupled electrode 104 may be configured to be fluid cooled.
- Fluid cooling may take several forms including gas cooling, liquid cooling, phase change cooling; open and closed tips (respectively allowing and not allowing the fluid to be launched toward the flame 106 ); and/or with various heat sinking approaches.
- a common theme may include electrical isolation of the electrode with respect to external fluid systems and/or with respect to grounding to the burner 102 and associated apparatuses. Electrode isolation may be intrinsic in the case of a non-conducting heat sink such as combustion air, or may include relatively sophisticated isolation approaches.
- FIG. 3 is a diagram showing the thermally coupled electrode 104 of FIG. 1 with a cooling apparatus 110 including a heat pipe 302 , according to an embodiment.
- the heat pipe 302 may be configured to receive heat from the flame 106 via evaporation at an evaporator end 304 and output the heat from the flame via condensation at a condenser end 306 .
- Heat pipes are self-contained coolers that do not receive any power input or fluid flow from an outside source.
- a liquid form of the working fluid in contact with a thermally conductive solid surface 312 turns into a vapor by absorbing heat from the surface.
- the vapor form of the working fluid traverses the length of the heat pipe (or depth of the heat pipe, depending on the particular physical form of the electrode 104 ) through a vapor space 308 to the condenser 306 .
- the vapor condenses back into the liquid, releasing the latent heat that was absorbed at the evaporator 304 .
- the liquid then returns to the evaporator 304 through either capillary action or gravity action where it evaporates once more and repeats the cycle.
- the liquid returns from the condenser to the evaporator via a wicking layer 310 adjacent to the vapor space 308 .
- a wall 312 of the heat pipe 302 may form an electrically conductive path of the electrode 104 .
- the electrode 104 and the heat pipe 302 may include an electrical lug 314 configured for operative coupling to the electrode lead 120 from the electrode controller 118 .
- the electrode 104 and the heat pipe 302 may also include an electrically insulating coating 316 configured to reduce or prevent communication of the voltage placed on the electrode 104 to ground, to another voltage, or to an electrically conductive cooling fluid received from a cooling fluid inlet 320 and output to a cooling fluid outlet 322 .
- the wall 312 of the heat pipe may include one or more smooth contours 318 configured to reduce or prevent charge concentration and arcing to or through the flame 106 .
- FIG. 4 is a diagram showing the thermally coupled electrode 104 of FIG. 1 , wherein the electrode 104 includes a flow channel 404 for a cooling fluid and an aperture 322 for outputting the heated cooling fluid to the flame 106 or combustion gas, according to an embodiment.
- the thermally coupled electrode 104 , 401 may include a wall 402 forming an electrical conductor and defining a fluid flow channel 404 and at least one aperture 322 formed in the wall 402 .
- the fluid flow channel 404 may be configured to convey a cooling fluid from a cooling fluid inlet 408 to the aperture 322 to transfer heat from the wall 402 to the cooling fluid and to output the heated cooling fluid to the flame 106 or to combustion gas 108 produced by the flame.
- An electrical lug 314 may be configured for operative coupling between the electrically conductive wall 402 and the electrode lead 120 from the electrode controller 118 .
- An electrically insulating coupling 410 to the fluid flow channel 404 may be configured to reduce or prevent communication of the voltage placed on the electrode 104 to ground, to another voltage, or to an electrically conductive secondary cooling fluid (not shown).
- the wall 402 may include one or more smooth contours 318 configured to reduce or prevent charge concentration and arcing to or through the flame 106 .
- an electrically insulating coating 412 may be formed over at least a portion of the wall 402 adjacent to the flow channel 404 to reduce or eliminate current flow to the cooling fluid.
- the cooling fluid may include a gas such as air.
- the aperture 322 may form an overtire air port.
- the cooling fluid may include a liquid.
- FIG. 5 is a diagram showing the electrode 104 of FIG. 1 , wherein the electrode 104 includes first and second fluid flow channels 504 , 506 for carrying a cooling fluid through the electrode 104 , according to an embodiment.
- a wall 502 may define an electrical conductor for carrying electrode voltage.
- a first fluid flow channel 504 may be formed within the wall 502 and may be configured to convey received cooling fluid.
- a second fluid flow channel 506 may be formed within the wall and may be configured to convey output cooling fluid.
- the fluid flow channels 504 , 506 may be configured to respectively convey the cooling fluid at least a portion of a flow distance from a cooling fluid inlet port 508 to a cooling fluid outlet port 510 . At least one of the fluid flow channels 504 , 506 may be configured to transfer heat from the wall 502 to the cooling fluid. At least one fitting 512 may be configured to couple the fluid flow channels 504 , 506 respectively to the cooling fluid inlet port 508 and the cooling fluid outlet port 510 . The fitting 512 may form the cooling fluid inlet port 508 and the cooling fluid outlet port 510 . The at least one fitting 512 may be substantially electrically insulating.
- the fluid flow channels may be arranged in various ways.
- the fluid flow channels 504 , 506 may be coaxial.
- a tube or integrally formed wall 514 may define the inner flow channel 506 .
- the indicated flow directions may be reversed.
- the fluid flow channels may include parallel lumens that are not coaxial.
- An electrical lug 314 may be configured for operative coupling between the electrically conductive wall 502 to the electrode lead 120 , for coupling the electrode 104 to the electrode controller 118 .
- the cooling fluid may be electrically conductive or electrically non-conductive.
- the cooling fluid may include a gas such as air or a gaseous fuel.
- the cooling fluid may be electrically conductive or potentially electrically conductive.
- the cooling fluid may include a liquid such as water or a liquid fuel.
- Some cooling fluids such as water and/or some fuels, may be at least partially electrically conductive.
- Other cooling fluids such as air that may carry humidity or insulating oil that may contain water, may be potentially conductive.
- relatively high voltages may be placed on the electrode 104 . Accordingly, it may be advisable at least in some embodiments, to ensure electrical isolation of the electrode 104 from a cooling fluid or to ensure electrical isolation of the cooling fluid from ground or other voltages.
- an electrically insulating coating 412 may be formed over at least a portion of surfaces of the wall 502 or walls 502 , 514 defining the fluid flow channels 504 , 506 .
- the electrically insulating coating 412 may be configured to reduce or eliminate current flow to the cooling fluid.
- the electrically insulating coating may include a ceramic coating.
- the electrically insulating coating may include a glass formed by crosslinking a silane to form silicone and pyrolyzing the silicone.
- cooling fluids may be electrically conductive or at least potentially electrically conductive. Even in cases where electrical conductivity is not anticipated, it may be desirable to provide one or more extra levels of electrical isolation such as for fail-safe protection.
- FIG. 6 is a diagram showing an electrically isolated cooling fluid source 601 configured to provide a cooling fluid to a thermally coupled electrode 104 , according to an embodiment.
- An electrically insulating tank or pool 602 may be configured to hold a reservoir of cooling fluid 604 .
- a cooling fluid supply system 606 may be configured to convey the cooling fluid from the reservoir 602 of cooling fluid 604 to a cooling fluid inlet 320 , 408 , 508 (respectively seen in FIGS. 3-5 ) operatively coupled to the thermally coupled electrode 104 .
- the electrically isolated or electrically insulating cooling fluid supply system 601 may include an electrically isolated or electrically isolating pump 608 configured pump the cooling fluid. Additionally or alternatively, the electrically isolated or electrically insulating cooling fluid supply system 601 may be configured to deliver the cooling fluid responsive to a thermal siphon.
- a return line 610 may be configured to return heated cooling fluid from the cooling fluid outlet port 322 , 510 (see FIGS. 3 and 5 ).
- a cooling fluid supply 612 may be configured to provide cooling fluid to the electrically insulating tank or pool 602 through an antisiphon arrangement 614 configured to prevent electrical conduction to the fluid supply 612 .
- the electrically isolated cooling fluid source 601 may include a valve 616 configured to cause the cooling fluid to be supplied across the antisiphon arrangement 614 in a non-continuous stream that prevents electrical conduction from the cooling fluid reservoir 604 to the cooling fluid supply 612 .
- a secondary coolant tank 618 may be configured to hold a secondary coolant 620 .
- the secondary coolant 620 may be arranged to receive heat from the cooling fluid reservoir 604 through the electrically insulating tank or pool 602 .
- FIG. 7 is a flowchart illustrating a method 701 for cooling an electrode subject to heating by a flame or a combustion gas produced by the flame, according to an embodiment.
- an electric field may be applied to a flame or combustion gas produced by the flame with an electrode. Proceeding to step 706 , the electric field may cause a detectable response in the flame or the combustion gas. As described elsewhere herein, it may be desirable or necessary to place the electrode where, in step 708 , the electrode receives heat from the flame or the combustion. Proceeding to step 712 , the electrode may be cooled to remove the heat received from the flame or the combustion gas.
- a step (not shown) of generating heat in the electrode by Joule heating may be included.
- the majority of heat removed by cooling in step 712 typically corresponds to heat received from the flame.
- substantially all the heat removed by cooling corresponds to heat received from the flame.
- the method 701 may include supplying fuel and an oxidizer to a burner (not shown) and supporting the flame with the burner (not shown).
- a burner not shown
- an electrode system including at least one thermally coupled electrode may be integrated with or sold with a burner such that a single vendor product performs these additional steps.
- different vendors may supply the electrode system and the burner.
- the method 701 may further include electrically isolating the fuel source from ground or voltages other than voltages corresponding to the electrode (not shown).
- the method 701 may include step 702 , wherein a time-varying voltage to the electrode.
- Step 702 may include generating a waveform with a waveform generator and amplifying the waveform to the time-varying voltage.
- the time-varying voltage applied to the electrode corresponds to the electric field applied to the flame or the combustion gas.
- the waveform and an amount of amplification applied to the waveform may be selected to cause the detectable response in the flame or the combustion gas.
- the waveform and the time-varying voltage are selected not to cause Joule heating of the electrode.
- the waveform and the time-varying voltage may be selected to avoid causing arcing between the flame or other structures and the electrode; and to cause no inductive or resistive heating of the flame or the combustion gas.
- the method 701 may include controlling a cooling apparatus operatively coupled to the electrode with a controller that also generates the waveform for the electrode.
- Cooling the electrode in step 712 may include operating a thermo-electric cooler.
- the method 701 may include step 710 , including providing at least one of an electrically isolating cooling fluid or an electrically isolated heat sink to receive heat from the electrode.
- Step 710 may include transferring the heat to the electrically isolating cooling fluid or electrically isolated heat sink.
- providing an electrically isolating cooling fluid or heat sink may include providing an electrically non-conducting gas.
- Providing the electrically non-conducting gas may include providing primary air or oxidizer for the flame.
- Transferring the heat to the electrically isolating cooling fluid in step 710 may include preheating the primary air or oxidizer with the heat removed from the electrode before mixing with a fuel or the flame.
- providing the electrically non-conducting gas may include providing overfire air or oxidizer for the flame.
- Transferring the heat to the electrically isolating cooling fluid may include preheating the overfire air or oxidizer with the heat removed from the electrode.
- the preheated overfire air or oxidizer may be injected into the flame or the combustion gas.
- this approach may be used in conjunction with an electrode formed to correspond to the diagram of FIG. 4 .
- preheating the overfire air or oxidizer with heat removed from the electrode may include passing the overfire air or oxidizer through one or more lumens formed in the electrode and convectively receiving the heat into the overfire air or oxidizer from one or more walls of the one or more lumens.
- Injecting the preheated air or oxidizer into the flame or the combustion gas may include passing the convectively heated air or oxidizer from the one or more lumens through one or more apertures formed in the electrode and into the flame or combustion gas.
- Providing the electrically non-conductive gas may include providing atmospheric air.
- Transferring the heat to the electrically isolating cooling fluid in step 712 may include transferring heat from the heat sink to the electrically non-conductive gas through cooling fins.
- providing an electrically isolating cooling fluid or heat sink in step 710 may include providing an electrically non-conductive liquid coolant.
- providing a non-conductive liquid coolant may include providing a liquid fuel.
- Transferring the heat to the electrically isolating cooling fluid in step 712 may include transferring the heat to the liquid fuel to preheat the liquid fuel.
- the method 701 may include conveying the preheated liquid fuel to a burner and fueling the flame with the preheated liquid fuel.
- step 710 may include providing an electrically conductive liquid coolant and electrically isolating the electrically conductive liquid coolant from ground and from voltages other than a voltage applied to the electrode.
- providing the electrically conductive liquid fuel may include providing an electrically conductive liquid fuel, water, or a liquid metal.
- the method 701 may then include transferring heat from the electrically conductive liquid coolant to a secondary coolant or heat sink through an electrically non-conductive wall, heat exchanger, or tank (for example, see the block diagram of FIG. 6 ).
- Providing the electrically isolating cooling fluid or an electrically isolated heat sink in step 710 may include pumping the electrically conductive liquid coolant from an electrically isolating coolant reservoir and past a heat sink operatively coupled to the electrode. Additionally or alternatively, providing the electrically isolating cooling fluid or an electrically isolated heat sink in step 710 may include pumping the electrically conductive liquid coolant from an electrically isolating coolant reservoir and or through at least one fluid channel in the electrode. Electrically isolating the electrically conductive liquid coolant may further include providing a pump that is electrically isolating or electrically isolating the pump from a pump drive motor.
- a peristaltic pump may be electrically isolating by using a non-conductive flexible tube to carry the liquid through the pump.
- a vane, centrifugal, positive displacement, or other pump may be electrically isolated from the pump drive motor by cutting a conductive shaft, and providing power transmission between ends of the conductive shaft through an insulating universal joint or shaft.
- Electrically isolating the electrically conductive liquid coolant from ground and from voltages other than a voltage applied to the electrode may include providing the electrically conductive liquid coolant to a reservoir from a cooling fluid supply through an antisiphon arrangement that prevents electrical conduction between the fluid supply and the reservoir.
- providing the electrically conductive liquid coolant to the reservoir from the cooling fluid supply through an antisiphon arrangement that prevents electrical conduction may include modulating a liquid coolant flow to prevent a continuous stream of the electrically conductive liquid coolant from bridging the antisiphon arrangement.
- electrical isolation may be provided intrinsic to or in conjunction with the electrode.
- an electrical insulator may be provided between the electrode and one or more cooling fluid flow channels. For example, see FIG. 3 , 316 , FIG. 4 , 412 , or FIG. 5 , 412 .
- Step 712 may be performed in a range of ways described above in conjunction with apparatus diagrams.
- cooling the electrode to remove heat received from the flame may include passing a cooling fluid through the electrode.
- cooling the electrode to remove heat received from the flame may include operating a heat pipe to remove the heat from the electrode.
- Heat from the heat pipe may be transferred to a cooling fluid.
- transferring heat from the heat pipe to the cooling fluid may include passing primary combustion oxidizer, overfire oxidizer, or fuel across a condenser portion of the heat pipe to preheat the primary combustion oxidizer, overfire oxidizer, or fuel.
- Electrical insulation e.g., FIG. 3 , 316
- Phase change materials that absorb heat during phase change may be circulated through a thermally coupled electrode or may be positioned in a solid form to respond to transients in heat input from the flame or hot gas.
- certain metal alloys or salt mixtures eutectics
- Pb/Sn solder is a eutectic mixture that melts at 360 F or so.
- Eutectic mixtures may be provided for nearly any temperature using salts; e.g., between about 200 and 1600 F.
- One or more cavities in the electrode 104 may be filed with a eutectic mixture to provide passive overheat protection, at least for a time, because a melting salt maintains its melting point or melt range temperature until the last bit of salt is liquefied.
- the heat of fusion of a eutectic cavity may provide a substantial heat sink to protect a thermally coupled electrode 104 , in the event of failure of a cooling apparatus, or in lieu of a separate cooling apparatus.
- a eutectic may be circulated, such as in slurry form.
- One may also use a liquid/vapor equilibrium to provide overtemperature protection.
- a liquid may be adulterated to form a range of vaporization temperatures between a bubble point and a dew point rather than a single boiling point. If the electrode receives sufficient heat from the flame or combustion gas to reach a boiling point or boiling range of a circulated coolant, additional heat of vaporization may provide higher heat transfer rates than can be provided by a liquid responding only with a sensible temperature rise.
- the circulation may optionally be passive, requiring no pumps or other moving parts.
- an upper end of a sealed tube containing a eutectic may be allowed to exchange heat with an ambient environment while a lower end of the sealed tube exchanges heat with the furnace.
- the device may circulate the cooler dense phase to the high temperature region and the hotter less dense phase to the cooling region.
- This approach may be used in the form of a heat pipe, such as the cooling system illustrated by FIG. 3 , for example.
- the tube may work in the opposite orientation.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Combustion (AREA)
- Fuel Cell (AREA)
Abstract
According to embodiments, an electrode configured to provide an electric field to a flame or combustion gas produced by a flame may receive heat from the flame or the combustion gas. The electrode may be cooled to remove the heat received from the flame or combustion gas.
Description
- The present application claims priority benefit from U.S. Provisional Patent Application No. 61/601920, entitled “COOLED ELECTRODE AND BURNER SYSTEM INCLUDING A COOLED ELECTRODE”, filed Feb. 22, 2012; which, to the extent not inconsistent with the disclosure herein, is incorporated by reference.
- According to an embodiment, an electrode system for a burner may include a thermally coupled electrode configured to apply an electric field to a region corresponding to a flame or combustion gas produced by the flame and to receive heat from the flame or the combustion gas. A cooling apparatus may be operatively coupled to the thermally coupled electrode and configured to remove the heat received by the electrode from the flame or the combustion gas.
- According to another embodiment, a method of cooling an electrode subject to heating by a flame or a combustion gas produced by the flame may include applying an electric field to a flame or combustion gas produced by the flame with an electrode, causing a detectable response in the flame or the combustion gas responsive to the electric field, receiving heat from the flame or the combustion gas with the electrode, and cooling the electrode to remove the heat received from the flame or the combustion gas.
-
FIG. 1 is a diagram showing a burner and a cooled electrode system for the burner, according to an embodiment. -
FIG. 2 is a diagram showing the electrode ofFIG. 1 with a thermo-electric cooler configured to remove the heat from the electrode, according to an embodiment. -
FIG. 3 is a diagram showing the electrode ofFIG. 1 with a cooling apparatus including a heat pipe, according to an embodiment. -
FIG. 4 is a diagram showing the electrode ofFIG. 1 , wherein the electrode includes a flow channel for a cooling fluid and an aperture for outputting the heated cooling fluid to the flame or combustion gas, according to an embodiment. -
FIG. 5 is a diagram showing the electrode ofFIG. 1 , wherein the electrode includes first and second fluid flow channels for carrying a cooling fluid through the electrode, according to an embodiment. -
FIG. 6 is a diagram showing an electrically isolated cooling fluid source configured to provide a cooling fluid to a thermally coupled electrode, according to an embodiment. -
FIG. 7 is a flowchart illustrating a method for cooling an electrode subject to heating by a flame or a combustion gas produced by the flame, according to an embodiment. - In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
-
FIG. 1 is a diagram showing aburner 102 configured to support aflame 106 and a cooledelectrode system 101 for theburner 102, according to an embodiment. Theelectrode system 101 for theburner 102 may include a thermally coupledelectrode 104 configured to apply an electric field or eject electrically-charged ions to a region corresponding to theflame 106 orcombustion gas 108 produced by theflame 106. The thermally coupledelectrode 104 may receive heat from theflame 106 and/or thecombustion gas 108. Acooling apparatus 110 may be operatively coupled to the thermally coupledelectrode 104 and configured to remove the heat received by theelectrode 104 from theflame 106 or thecombustion gas 108. - A volume in which the
flame 106 andcombustion gases 108 are at least transiently held may be referred to as acombustion volume 111. Theelectrode 104 may be disposed at least partially within thecombustion volume 111 to receive the heat from theflame 106 and/or thecombustion gas 108. Alternatively, theelectrode 104 may be outside thecombustion volume 111, but thermally coupled to theflame 106 or thecombustion gas 108 to receive heat therefrom. - The
electrode 104 andcooling apparatus 110 are shown in block diagram form. Their physical form and location may vary from what may be indicated inFIG. 1 . As will be appreciated from the description below, thecooling apparatus 110 may be disposed substantially within theelectrode 104, may be adjacent to theelectrode 104, and/or may include relatively extensive apparatus separated from theelectrode 104. - According to an embodiment, at least a majority of heat removed by the
cooling apparatus 110 from the thermally coupledelectrode 104 may correspond to heat received from theflame 106 and/orcombustion gas 108 produced by theflame 106. Additionally or alternatively, heat removed by thecooling apparatus 110 from the thermally coupledelectrode 104 may include heat caused by dissipation from electrical modulation of the thermally coupledelectrode 104 and heat received from theflame 106. Optionally, the burner andelectrode system 101 may include a plurality of thermally coupledelectrodes 104 and/or additional non-thermally coupled electrode(s) (not shown). - The
burner 102 may include afuel source 112 configured to provide fuel for theflame 106 and anoxidizer source 116 configured to provide oxidizer for theflame 106.Electrical isolation 114 may be configured to electrically isolate thefuel source 112 from ground or voltages other than voltages corresponding to the thermally coupledelectrode 104. - An
electrode controller 118 may be configured to apply a voltage corresponding to the electric field to the thermally coupledelectrode 104 through one or moreelectrical leads 120. Theelectrode controller 118 may include awaveform generator 122 and anamplifier 124. Thewaveform generator 122 may be configured to provide a time-varying voltage. The time varying voltage may be at least partially periodic and may have a frequency between about 50 Hz and 10 kHz, for example. Theamplifier 124 may amplify the time varying voltage received from thewaveform generator 122 to a working voltage. The working voltage may be conveyed to the thermally coupledelectrode 104 by the one or moreelectrical leads 120. The working voltage may range between about ±1000 V (e.g., as a time varying voltage formed as a sinusoid or a square wave that cycles between +1 kV and −1 kV) to about ±500,000 V (±500 kV). Experiments were run by the inventors using voltages between ±4 kV and ±40 kV. Typically, current dissipated by the electrode(s) 104 is low -- for example, 50 milliamperes or less. Accordingly, the electrode(s) 104 do not typically undergo any significant Joule heating responsive to the applied amplified electrical waveform. Rather, a majority to substantially all of the heat removed by cooling may be attributed to radiant and/or convective heat transfer from theflame 106 or thecombustion gas 108 to theelectrode 104. - The
cooling apparatus 110 may be operatively coupled to and controlled by theelectrode controller 118. Alternatively, thecooling apparatus 110 may be not controlled by theelectrode controller 118. Theblock diagram connection 126 shown inFIG. 1 between theelectrode controller 118 and thecooling apparatus 110 may be omitted when there is no operative coupling between thecooling apparatus 110 and theelectrode controller 118. - A heat sink (not shown) may be operatively coupled to the
cooling apparatus 110 and configured to receive the heat received by the thermally coupledelectrode 104 from theflame 106 or thecombustion gas 108, and removed from the thermally coupledelectrode 104 by thecooling apparatus 110. For example, thecooling apparatus 110 may be configured to output heat from the thermally coupledelectrode 104 to a heat sink (not shown) including a heat exchange surface (not shown) configured to pre-heat anoxidizer 116 or gas fed to theflame 106. For example, theoxidizer 116 may include oxygen carried in air. The heat sink (not shown) may include fins configured to pre-heat the air before the air flows into and past theflame 106. - Alternatively or additionally, the
cooling apparatus 110 may be configured to output heat from the thermally coupledelectrode 104 to a heat sink (not shown) including a heat exchange surface (not shown) configured to pre-heat fuel fed to theflame 106. For example, the heat sink (not shown) may include fins (not shown) disposed along anon-conductive portion 114 of a fuel supply tube. Such a heat sink and fins (not shown) may be formed, for example, by embedding the heat sink and/or fins in a castfuel supply tube 114 or by co-molding the heat sink and/or fins in a thermoplasticfuel supply tube 114. Additionally or alternatively, the heat sink (not shown) may be formed as aconductive portion 112 of the fuel supply. This arrangement may be especially suitable for gaseous fuels. - According to another example, the heat sink (not shown) may be configured to be at least partially immersed in a liquid fuel, such as heating oil or bunker fuel. According to an embodiment, the heat sink (not shown) may be configured as at least a portion of a fuel intake mechanism (not shown) that pre-heats the liquid fuel for easier pumping and passage through a
nozzle 112. This arrangement may be especially suitable for a viscous fuel such as bunker fuel. - The
cooling apparatus 110 may be configured to output heat from the thermally coupledelectrode 104 to acombustion volume 111 corresponding to theflame 106 or thecombustion gas 108. For example, thecooling apparatus 110 may include a forced or natural convection system (not shown) configured to pass overfire air through a hollow thermally coupledelectrode 104. The overfire air may pass through the electrode and out an orifice (such as an open end of the electrode, for example) at an overfire air injection location. In this case, the overfire air (or other fluid passing through the thermally coupled electrode 104) may itself act as the heat sink. This approach is described more fully in conjunction withFIG. 4 below. - The
cooling apparatus 110 may be configured to output heat from the thermally coupledelectrode 104 to a liquid, gas, or solid heat sink (not shown) that is not thermally coupled to theflame 106 or thecombustion gas 108. For example, the liquid, gas, or solid heat sink may be electrically isolated from a secondary coolant (not shown) configured to remove the heat from the heat sink. - According to an embodiment, an electrical isolation system (not shown) may be configured to reduce or substantially prevent current leakage from the thermally coupled
electrode 104 to a heat sink (not shown) configured to receive heat removed from the thermally coupled electrode by thecooling apparatus 110. - Various types of cooling
apparatuses 110 are contemplated. -
FIG. 2 is a diagram 201 showing the thermally coupled electrode ofFIG. 1 with a thermo-electric cooler 202 configured and operatively coupled to remove the heat from the thermally coupledelectrode 104, according to an embodiment. Thermo-electric coolers may typically operate according to the Peltier effect. - According to embodiments, the thermally coupled
electrode 104 may be configured to be fluid cooled. Fluid cooling may take several forms including gas cooling, liquid cooling, phase change cooling; open and closed tips (respectively allowing and not allowing the fluid to be launched toward the flame 106); and/or with various heat sinking approaches. Generally speaking, a common theme may include electrical isolation of the electrode with respect to external fluid systems and/or with respect to grounding to theburner 102 and associated apparatuses. Electrode isolation may be intrinsic in the case of a non-conducting heat sink such as combustion air, or may include relatively sophisticated isolation approaches. -
FIG. 3 is a diagram showing the thermally coupledelectrode 104 ofFIG. 1 with acooling apparatus 110 including aheat pipe 302, according to an embodiment. Theheat pipe 302 may be configured to receive heat from theflame 106 via evaporation at anevaporator end 304 and output the heat from the flame via condensation at acondenser end 306. Heat pipes are self-contained coolers that do not receive any power input or fluid flow from an outside source. At theevaporator 304, a liquid form of the working fluid in contact with a thermally conductivesolid surface 312 turns into a vapor by absorbing heat from the surface. The vapor form of the working fluid traverses the length of the heat pipe (or depth of the heat pipe, depending on the particular physical form of the electrode 104) through avapor space 308 to thecondenser 306. At thecondenser 306, the vapor condenses back into the liquid, releasing the latent heat that was absorbed at theevaporator 304. The liquid then returns to theevaporator 304 through either capillary action or gravity action where it evaporates once more and repeats the cycle. Typically, the liquid returns from the condenser to the evaporator via awicking layer 310 adjacent to thevapor space 308. - According to an embodiment, a
wall 312 of theheat pipe 302 may form an electrically conductive path of theelectrode 104. Theelectrode 104 and theheat pipe 302 may include anelectrical lug 314 configured for operative coupling to theelectrode lead 120 from theelectrode controller 118. Theelectrode 104 and theheat pipe 302 may also include an electrically insulatingcoating 316 configured to reduce or prevent communication of the voltage placed on theelectrode 104 to ground, to another voltage, or to an electrically conductive cooling fluid received from a coolingfluid inlet 320 and output to a coolingfluid outlet 322. Thewall 312 of the heat pipe may include one or moresmooth contours 318 configured to reduce or prevent charge concentration and arcing to or through theflame 106. -
FIG. 4 is a diagram showing the thermally coupledelectrode 104 ofFIG. 1 , wherein theelectrode 104 includes aflow channel 404 for a cooling fluid and anaperture 322 for outputting the heated cooling fluid to theflame 106 or combustion gas, according to an embodiment. The thermally coupled 104, 401 may include aelectrode wall 402 forming an electrical conductor and defining afluid flow channel 404 and at least oneaperture 322 formed in thewall 402. Thefluid flow channel 404 may be configured to convey a cooling fluid from a coolingfluid inlet 408 to theaperture 322 to transfer heat from thewall 402 to the cooling fluid and to output the heated cooling fluid to theflame 106 or tocombustion gas 108 produced by the flame. - An
electrical lug 314 may be configured for operative coupling between the electricallyconductive wall 402 and theelectrode lead 120 from theelectrode controller 118. An electrically insulatingcoupling 410 to thefluid flow channel 404 may be configured to reduce or prevent communication of the voltage placed on theelectrode 104 to ground, to another voltage, or to an electrically conductive secondary cooling fluid (not shown). - The
wall 402 may include one or moresmooth contours 318 configured to reduce or prevent charge concentration and arcing to or through theflame 106. Optionally, an electrically insulatingcoating 412 may be formed over at least a portion of thewall 402 adjacent to theflow channel 404 to reduce or eliminate current flow to the cooling fluid. - The cooling fluid may include a gas such as air. For example, the
aperture 322 may form an overtire air port. According to other embodiments, the cooling fluid may include a liquid. -
FIG. 5 is a diagram showing theelectrode 104 ofFIG. 1 , wherein theelectrode 104 includes first and second 504, 506 for carrying a cooling fluid through thefluid flow channels electrode 104, according to an embodiment. Awall 502 may define an electrical conductor for carrying electrode voltage. A firstfluid flow channel 504 may be formed within thewall 502 and may be configured to convey received cooling fluid. A secondfluid flow channel 506 may be formed within the wall and may be configured to convey output cooling fluid. - The
504, 506 may be configured to respectively convey the cooling fluid at least a portion of a flow distance from a coolingfluid flow channels fluid inlet port 508 to a coolingfluid outlet port 510. At least one of the 504, 506 may be configured to transfer heat from thefluid flow channels wall 502 to the cooling fluid. At least onefitting 512 may be configured to couple the 504, 506 respectively to the coolingfluid flow channels fluid inlet port 508 and the coolingfluid outlet port 510. The fitting 512 may form the coolingfluid inlet port 508 and the coolingfluid outlet port 510. The at least onefitting 512 may be substantially electrically insulating. - The fluid flow channels (e.g., 504, 506) may be arranged in various ways. For example, the
504, 506 may be coaxial. A tube or integrally formed wall 514 may define thefluid flow channels inner flow channel 506. The indicated flow directions may be reversed. Alternatively, the fluid flow channels may include parallel lumens that are not coaxial. - An
electrical lug 314 may be configured for operative coupling between the electricallyconductive wall 502 to theelectrode lead 120, for coupling theelectrode 104 to theelectrode controller 118. - The cooling fluid may be electrically conductive or electrically non-conductive. According to embodiments, the cooling fluid may include a gas such as air or a gaseous fuel. In other embodiments, the cooling fluid may be electrically conductive or potentially electrically conductive. The cooling fluid may include a liquid such as water or a liquid fuel.
- Some cooling fluids, such as water and/or some fuels, may be at least partially electrically conductive. Other cooling fluids, such as air that may carry humidity or insulating oil that may contain water, may be potentially conductive. As described above, relatively high voltages may be placed on the
electrode 104. Accordingly, it may be advisable at least in some embodiments, to ensure electrical isolation of theelectrode 104 from a cooling fluid or to ensure electrical isolation of the cooling fluid from ground or other voltages. - According to an embodiment, an electrically insulating
coating 412 may be formed over at least a portion of surfaces of thewall 502 orwalls 502, 514 defining the 504, 506. The electrically insulatingfluid flow channels coating 412 may be configured to reduce or eliminate current flow to the cooling fluid. For example, the electrically insulating coating may include a ceramic coating. For example, the electrically insulating coating may include a glass formed by crosslinking a silane to form silicone and pyrolyzing the silicone. - As indicated above, some cooling fluids may be electrically conductive or at least potentially electrically conductive. Even in cases where electrical conductivity is not anticipated, it may be desirable to provide one or more extra levels of electrical isolation such as for fail-safe protection.
-
FIG. 6 is a diagram showing an electrically isolated coolingfluid source 601 configured to provide a cooling fluid to a thermally coupledelectrode 104, according to an embodiment. An electrically insulating tank orpool 602 may be configured to hold a reservoir of coolingfluid 604. A coolingfluid supply system 606 may be configured to convey the cooling fluid from thereservoir 602 of cooling fluid 604 to a cooling 320, 408, 508 (respectively seen influid inlet FIGS. 3-5 ) operatively coupled to the thermally coupledelectrode 104. The electrically isolated or electrically insulating coolingfluid supply system 601 may include an electrically isolated or electrically isolatingpump 608 configured pump the cooling fluid. Additionally or alternatively, the electrically isolated or electrically insulating coolingfluid supply system 601 may be configured to deliver the cooling fluid responsive to a thermal siphon. - A
return line 610 may be configured to return heated cooling fluid from the coolingfluid outlet port 322, 510 (seeFIGS. 3 and 5 ). - A cooling
fluid supply 612 may be configured to provide cooling fluid to the electrically insulating tank orpool 602 through anantisiphon arrangement 614 configured to prevent electrical conduction to thefluid supply 612. The electrically isolated coolingfluid source 601 may include avalve 616 configured to cause the cooling fluid to be supplied across theantisiphon arrangement 614 in a non-continuous stream that prevents electrical conduction from the coolingfluid reservoir 604 to the coolingfluid supply 612. - A
secondary coolant tank 618 may be configured to hold asecondary coolant 620. Thesecondary coolant 620 may be arranged to receive heat from the coolingfluid reservoir 604 through the electrically insulating tank orpool 602. -
FIG. 7 is a flowchart illustrating amethod 701 for cooling an electrode subject to heating by a flame or a combustion gas produced by the flame, according to an embodiment. Instep 704 an electric field may be applied to a flame or combustion gas produced by the flame with an electrode. Proceeding to step 706, the electric field may cause a detectable response in the flame or the combustion gas. As described elsewhere herein, it may be desirable or necessary to place the electrode where, instep 708, the electrode receives heat from the flame or the combustion. Proceeding to step 712, the electrode may be cooled to remove the heat received from the flame or the combustion gas. - According to some embodiments, a step (not shown) of generating heat in the electrode by Joule heating may be included. However, under such cases, the majority of heat removed by cooling in
step 712 typically corresponds to heat received from the flame. In many if not all cases, substantially all the heat removed by cooling corresponds to heat received from the flame. - The
method 701 may include supplying fuel and an oxidizer to a burner (not shown) and supporting the flame with the burner (not shown). For example, an electrode system including at least one thermally coupled electrode may be integrated with or sold with a burner such that a single vendor product performs these additional steps. In other cases, different vendors may supply the electrode system and the burner. - The
method 701 may further include electrically isolating the fuel source from ground or voltages other than voltages corresponding to the electrode (not shown). - The
method 701 may includestep 702, wherein a time-varying voltage to the electrode. Step 702 may include generating a waveform with a waveform generator and amplifying the waveform to the time-varying voltage. The time-varying voltage applied to the electrode corresponds to the electric field applied to the flame or the combustion gas. The waveform and an amount of amplification applied to the waveform may be selected to cause the detectable response in the flame or the combustion gas. According to embodiments, the waveform and the time-varying voltage are selected not to cause Joule heating of the electrode. The waveform and the time-varying voltage may be selected to avoid causing arcing between the flame or other structures and the electrode; and to cause no inductive or resistive heating of the flame or the combustion gas. - Optionally, the
method 701 may include controlling a cooling apparatus operatively coupled to the electrode with a controller that also generates the waveform for the electrode. - Cooling the electrode in
step 712 may include operating a thermo-electric cooler. - Optionally, the
method 701 may includestep 710, including providing at least one of an electrically isolating cooling fluid or an electrically isolated heat sink to receive heat from the electrode. Step 710 may include transferring the heat to the electrically isolating cooling fluid or electrically isolated heat sink. For example, providing an electrically isolating cooling fluid or heat sink may include providing an electrically non-conducting gas. Providing the electrically non-conducting gas may include providing primary air or oxidizer for the flame. Transferring the heat to the electrically isolating cooling fluid instep 710 may include preheating the primary air or oxidizer with the heat removed from the electrode before mixing with a fuel or the flame. Additionally or alternatively, providing the electrically non-conducting gas may include providing overfire air or oxidizer for the flame. Transferring the heat to the electrically isolating cooling fluid may include preheating the overfire air or oxidizer with the heat removed from the electrode. The preheated overfire air or oxidizer may be injected into the flame or the combustion gas. For example, this approach may be used in conjunction with an electrode formed to correspond to the diagram ofFIG. 4 . - Additionally or alternatively, preheating the overfire air or oxidizer with heat removed from the electrode may include passing the overfire air or oxidizer through one or more lumens formed in the electrode and convectively receiving the heat into the overfire air or oxidizer from one or more walls of the one or more lumens. Injecting the preheated air or oxidizer into the flame or the combustion gas may include passing the convectively heated air or oxidizer from the one or more lumens through one or more apertures formed in the electrode and into the flame or combustion gas. Providing the electrically non-conductive gas may include providing atmospheric air.
- Transferring the heat to the electrically isolating cooling fluid in
step 712 may include transferring heat from the heat sink to the electrically non-conductive gas through cooling fins. - Optionally, providing an electrically isolating cooling fluid or heat sink in
step 710 may include providing an electrically non-conductive liquid coolant. For example, providing a non-conductive liquid coolant may include providing a liquid fuel. Transferring the heat to the electrically isolating cooling fluid instep 712 may include transferring the heat to the liquid fuel to preheat the liquid fuel. Themethod 701 may include conveying the preheated liquid fuel to a burner and fueling the flame with the preheated liquid fuel. - Alternatively, step 710 may include providing an electrically conductive liquid coolant and electrically isolating the electrically conductive liquid coolant from ground and from voltages other than a voltage applied to the electrode. For example, providing the electrically conductive liquid fuel may include providing an electrically conductive liquid fuel, water, or a liquid metal. The
method 701 may then include transferring heat from the electrically conductive liquid coolant to a secondary coolant or heat sink through an electrically non-conductive wall, heat exchanger, or tank (for example, see the block diagram ofFIG. 6 ). Providing the electrically isolating cooling fluid or an electrically isolated heat sink instep 710 may include pumping the electrically conductive liquid coolant from an electrically isolating coolant reservoir and past a heat sink operatively coupled to the electrode. Additionally or alternatively, providing the electrically isolating cooling fluid or an electrically isolated heat sink instep 710 may include pumping the electrically conductive liquid coolant from an electrically isolating coolant reservoir and or through at least one fluid channel in the electrode. Electrically isolating the electrically conductive liquid coolant may further include providing a pump that is electrically isolating or electrically isolating the pump from a pump drive motor. For example, a peristaltic pump may be electrically isolating by using a non-conductive flexible tube to carry the liquid through the pump. Alternatively, a vane, centrifugal, positive displacement, or other pump may be electrically isolated from the pump drive motor by cutting a conductive shaft, and providing power transmission between ends of the conductive shaft through an insulating universal joint or shaft. - Electrically isolating the electrically conductive liquid coolant from ground and from voltages other than a voltage applied to the electrode may include providing the electrically conductive liquid coolant to a reservoir from a cooling fluid supply through an antisiphon arrangement that prevents electrical conduction between the fluid supply and the reservoir. For example, providing the electrically conductive liquid coolant to the reservoir from the cooling fluid supply through an antisiphon arrangement that prevents electrical conduction may include modulating a liquid coolant flow to prevent a continuous stream of the electrically conductive liquid coolant from bridging the antisiphon arrangement.
- Additionally or alternatively, electrical isolation may be provided intrinsic to or in conjunction with the electrode. For example, an electrical insulator may be provided between the electrode and one or more cooling fluid flow channels. For example, see
FIG. 3 , 316,FIG. 4 , 412, orFIG. 5 , 412. - Step 712 may be performed in a range of ways described above in conjunction with apparatus diagrams. For example, cooling the electrode to remove heat received from the flame may include passing a cooling fluid through the electrode. Additionally or alternatively, cooling the electrode to remove heat received from the flame may include operating a heat pipe to remove the heat from the electrode. Heat from the heat pipe may be transferred to a cooling fluid. For example, transferring heat from the heat pipe to the cooling fluid may include passing primary combustion oxidizer, overfire oxidizer, or fuel across a condenser portion of the heat pipe to preheat the primary combustion oxidizer, overfire oxidizer, or fuel. Electrical insulation (e.g.,
FIG. 3 , 316) may be provided over at least a condenser portion of the heat pipe to prevent conduction of an electrode voltage to a cooling fluid passing across the condenser. - Other approaches may also be used to cool a thermally coupled electrode and may fall within the scope of claims. Phase change materials that absorb heat during phase change may be circulated through a thermally coupled electrode or may be positioned in a solid form to respond to transients in heat input from the flame or hot gas. For example, certain metal alloys or salt mixtures (eutectics) may additionally or alternatively be used to provide at least temporary protection of the
electrode 104. For example, Pb/Sn solder is a eutectic mixture that melts at 360 F or so. Eutectic mixtures may be provided for nearly any temperature using salts; e.g., between about 200 and 1600 F. One or more cavities in theelectrode 104 may be filed with a eutectic mixture to provide passive overheat protection, at least for a time, because a melting salt maintains its melting point or melt range temperature until the last bit of salt is liquefied. The heat of fusion of a eutectic cavity may provide a substantial heat sink to protect a thermally coupledelectrode 104, in the event of failure of a cooling apparatus, or in lieu of a separate cooling apparatus. - According to an embodiment, a eutectic may be circulated, such as in slurry form. One may also use a liquid/vapor equilibrium to provide overtemperature protection. According to an embodiment, a liquid may be adulterated to form a range of vaporization temperatures between a bubble point and a dew point rather than a single boiling point. If the electrode receives sufficient heat from the flame or combustion gas to reach a boiling point or boiling range of a circulated coolant, additional heat of vaporization may provide higher heat transfer rates than can be provided by a liquid responding only with a sensible temperature rise.
- In circulated coolant systems, the circulation may optionally be passive, requiring no pumps or other moving parts. For example, in a system where the cooled phase is more dense, an upper end of a sealed tube containing a eutectic may be allowed to exchange heat with an ambient environment while a lower end of the sealed tube exchanges heat with the furnace. In this case, the device may circulate the cooler dense phase to the high temperature region and the hotter less dense phase to the cooling region. This approach may be used in the form of a heat pipe, such as the cooling system illustrated by
FIG. 3 , for example. By using materials with juxtaposed densities (e.g., bismuth etc.), the tube may work in the opposite orientation. - While various aspects and embodiments have been disclosed herein, other aspects and embodiments are contemplated. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
Claims (83)
1. An electrode system for a burner, comprising:
a thermally coupled electrode configured to apply an electric field or eject electrically-charged ions to a region corresponding to a flame or combustion gas produced by the flame and to receive heat from the flame or the combustion gas; and
a cooling apparatus operatively coupled to the thermally coupled electrode and configured to remove the heat received by the thermally coupled electrode from the flame or the combustion gas.
2. The electrode system for a burner claim 1 , wherein at least a majority of heat removed by the cooling apparatus from the thermally coupled electrode corresponds to heat received from the flame or combustion gas produced by the tie flame.
3. The burner system of claim 1 , wherein heat removed by the cooling apparatus from the thermally coupled electrode includes heat caused by dissipation from electrical modulation of the thermally coupled electrode and heat received from the flame.
4. The electrode system for a burner claim 1 ,
wherein the burner is configured to support the flame.
5. The electrode system for a burner claim 4 , wherein the burner further comprises:
a fuel source configured to provide fuel for the flame;
electrical isolation configured to electrically isolate the fuel source from ground or voltages other than voltages corresponding to the thermally coupled electrode; and
an oxidizer source configured to provide oxidizer for the flame.
6. The electrode system for a burner claim 1 , further comprising:
an electrode controller configured to apply a voltage corresponding to the electric field to the thermally coupled electrode through one or more electrical leads.
7. The electrode system for a burner claim 6 , wherein the cooling apparatus is operatively coupled to and controlled by the electrode controller.
8. (canceled)
9. The electrode system for a burner claim 1 , further comprising:
a heat sink operatively coupled to the cooling apparatus and configured to receive the heat received by the thermally coupled electrode from the flame or the combustion gas and removed from the thermally coupled electrode by the cooling apparatus.
10. The electrode system for a burner claim 1 , wherein the cooling apparatus is configured to output heat from the thermally coupled electrode to a heat sink including a heat exchange surface configured to pre-heat an oxidizer or gas fed to the flame.
11. The electrode system for a burner claim 1 , wherein the cooling apparatus is configured to output heat from the thermally coupled electrode to a heat sink including a heat exchange surface configured to pre-heat fuel fed to the flame.
12. (canceled)
13. The electrode system for a burner of claim 1 , wherein the cooling apparatus is configured to output heat from the thermally coupled electrode to a liquid, gas, or solid heat sink that is not thermally coupled to the flame or the combustion gas.
14. The electrode system for a burner of claim 1 , further comprising:
an electrical isolation system configured to reduce or substantially prevent current leakage from the thermally coupled electrode to a heat sink configured to receive heat removed from the thermally coupled electrode by the cooling apparatus.
15. The electrode system for a burner of claim 1 , wherein the cooling apparatus comprises:
a thermo-electric cooler operatively coupled to remove the heat from the thermally coupled electrode.
16. The electrode system for a burner of claim 1 , wherein the thermally coupled electrode is configured to be fluid cooled.
17. The electrode system for a burner of claim 1 , wherein the cooling apparatus includes a heat pipe configured to receive heat from the flame or combustion gas via evaporation at an evaporator end and output the heat from the flame or combustion gas via condensation at a condenser end.
18. The electrode system for a burner of claim 17 , wherein a wall of the heat pipe forms an electrically conductive path of the electrode.
19. (canceled)
20. The electrode system for a burner of claim 17 , wherein the electrode and the heat pipe further comprise:
an electrically insulating coating configured to reduce or prevent communication of the voltage place on the electrode to ground, to another voltage, or to an electrically conductive cooling fluid arranged to receive heat from the condenser end of the heat pipe.
21. The electrode system for a burner of claim 17 , wherein an exterior surface of the wall of the heat pipe includes one or more smooth contours configured to reduce or prevent charge concentration and arcing to or through the flame.
22. The electrode system for a burner of claim 1 , wherein the thermally coupled electrode further comprises:
a wall forming an electrical conductor and defining a fluid flow channel; and
at least one aperture formed in the wall;
wherein the fluid flow channel is configured to convey a cooling fluid from cooling fluid inlet to the aperture to transfer heat received from the wall to the cooling fluid and to output the heated cooling fluid to the flame or to combustion gas produced by the flame.
23. (canceled)
24. The electrode system for a burner of claim 22 , further comprising:
an electrically insulating coupling to the fluid flow channel configured to reduce or prevent communication of the voltage placed on the electrode to ground, to another voltage, or to an electrically conductive secondary cooling fluid.
25. The electrode system for a burner of claim 22 , wherein the wall includes one or more smooth contours configured to reduce or prevent charge concentration and arcing to or through the flame.
26. The electrode system for a burner of claim 22 , wherein the wall further comprises:
an electrically insulating coating formed over at least a portion thereof to reduce or eliminate current flow to the cooling fluid.
27. The electrode system for a burner of claim 22 , wherein the cooling fluid includes a gas.
28. The electrode system for a burner of claim 27 , wherein the cooling fluid includes air.
29. The electrode system for a burner of claim 28 , wherein the aperture forms an overfire air port.
30. The electrode system for a burner of claim 22 , wherein the cooling fluid includes a liquid.
31. The electrode system for a burner of claim 1 , wherein the thermally coupled electrode further comprises:
a wall defining an electrical conductor;
a first fluid flow channel formed within the wall and configured to convey received cooling fluid; and
a second fluid flow channel formed within the wall and configured to convey output cooling fluid.
32. The electrode system for a burner of claim 31 , wherein the first and second fluid flow channels are configured to respectively convey the cooling fluid at least a portion of a flow distance from a cooling fluid inlet port to a cooling fluid outlet port; and
wherein at least one of the first and second fluid flow channels is configured to transfer heat from the wall to the cooling fluid.
33. The electrode system for a burner of claim 31 , further comprising:
at least one fitting configured to couple the first and second fluid flow channels respectively to the cooling fluid inlet port and the cooling fluid outlet port;
wherein the fitting forms the cooling fluid inlet port and the cooling fluid outlet port.
34. The electrode system for a burner of claim 33 , wherein the at least one fitting is substantially electrically insulating.
35. The electrode system for a burner of claim 31 , wherein the first and second fluid flow channels are coaxial; and
further comprising:
a tube or integrally formed wall defining the inner flow channel.
36. The electrode system for a burner of claim 31 wherein the first and second fluid flow channels include parallel lumens that are not coaxial.
37. (canceled)
38. The electrode system for a burner of claim 31 , wherein the cooling fluid is electrically non-conductive.
39.-40. (canceled)
41. The electrode system for a burner of claim 31 , wherein the cooling fluid is electrically conductive or potentially electrically conductive.
42.-44. (canceled)
45. The electrode system for a burner of claim 41 , wherein the wall further comprises:
an electrically insulating coating formed over at least a portion of surfaces of the wall or walls defining the first and second fluid flow channels;
wherein the electrically insulating coating is configured to reduce or eliminate current flow to the cooling fluid.
46. The electrode system for a burner of claim 45 , wherein the electrically insulating coating includes a ceramic coating.
47. The electrode system for a burner of claim 46 , wherein the electrically insulating coating includes a glass coating.
48. The electrode system for a burner of claim 1 , further comprising:
an electrically isolated cooling fluid source configured to provide a cooling fluid to the thermally coupled electrode.
49. The electrode system for a burner of claim 48 , wherein the electrically Isolated cooling fluid source comprises:
an electrically insulating tank or pool configured to hold a reservoir of cooling fluid.
50. The electrode system for a burner of claim 49 , further comprising:
an electrically isolated or electrically insulating cooling fluid supply system configured to convey the cooling fluid from the reservoir of cooling fluid to a cooling fluid inlet operatively coupled to the thermally coupled electrode.
51. The electrode system for a burner of claim 50 , wherein the electrically isolated or electrically insulating cooling fluid supply system includes an electrically isolated or electrically isolating pump configured to pump the cooling fluid.
52.-53. (canceled)
54. The electrode system for a burner of claim 49 , wherein the electrically isolated cooling fluid source further comprises:
a cooling fluid supply configured to provide cooling fluid to the electrically insulating tank or pool through an antisiphon arrangement configured to prevent electrical conduction to the fluid supply.
55. The electrode system for a burner of claim 54 , wherein the electrically isolated cooling fluid source further comprises:
a valve configured to cause the cooling fluid to be supplied across the antisiphon arrangement in a non-continuous stream that prevents electrical conduction from the cooling fluid reservoir to the cooling fluid supply.
56. The electrode system for a burner of claim 49 , wherein the electrically isolated cooling fluid source further comprises:
a secondary coolant tank configured to hold a secondary coolant;
wherein the secondary coolant is arranged to receive heat from the cooling fluid reservoir through the electrically insulating tank or pool.
57. A method for cooling an electrode subject to heating by a flame or a combustion gas produced by the flame, comprising:
applying an electric field or ejecting electrically-charged ions to a flame or combustion gas with an electrode;
causing a detectable response in the flame or the combustion gas responsive to the electric field;
receiving heat from the flame or the combustion gas with the electrode; and
cooling the electrode to remove the heat received from the flame or the combustion gas.
58. The method for cooling an electrode subject to heating by a flame or a combustion gas produced by the flame of claim 57 , further comprising:
generating heat in the electrode by Joule heating;
wherein the majority of heat removed by cooling corresponds to heat received from the flame.
59. The method of claim 58 , wherein substantially all the heat removed by cooling corresponds to heat received from the flame.
60. The method of claim 57 , further comprising:
providing a source of fuel and oxidizer;
supplying fuel and an oxidizer to a burner; and
supporting the flame with the burner.
61. The method of claim 60 , further comprising:
electrically isolating the fuel source from ground or voltages other than voltages corresponding to the electrode.
62. The method of claim 57 , further comprising:
generating a waveform with a waveform generator;
amplifying the waveform to a time-varying voltage; and
applying the time-varying voltage to the electrode;
wherein the time-varying voltage applied to the electrode corresponds to the electric field applied to the flame or the combustion gas; and
wherein the waveform and an amount of amplification applied to the waveform are selected to cause the detectable response in the flame or the combustion gas.
63. The method for of claim 62 , wherein the waveform and the time-varying voltage are selected not to cause to eliminate or minimize Joule heating of the electrode.
64. The method of claim 62 , wherein the waveform and the time-varying voltage are selected to avoid causing arcing between the flame or other structures and the electrode; and
wherein the waveform and the time-varying voltage cause no inductive or resistive heating of the flame or the combustion gas.
65. The method of claim 62 , further comprising:
controlling a cooling apparatus operatively coupled to the electrode with a controller that generates the waveform.
66. The method of claim 57 , wherein the step of cooling the electrode includes operating a thermo-electric cooler.
67. The method of claim 57 , further comprising:
providing at least one of an electrically isolating cooling fluid or an electrically isolated heat sink to receive heat from the electrode;
wherein the step of cooling the electrode to remove the heat received from the flame or the combustion gas includes transferring the heat received by the electrode to the electrically isolating cooling fluid or electrically isolated heat sink.
68. The method of claim 67 , wherein the step of providing the electrically isolating cooling fluid or the electrically isolated heat sink further includes providing an electrically non-conducting gas.
69. The method of claim 68 , wherein the step of providing the electrically non-conducting gas includes providing primary air or an oxidizer for the flame or the combustion gas; and
wherein the step of transferring the heat received from the electrode to the electrically isolating cooling fluid or electrically isolated heat sink further comprises:
preheating the primary air or the oxidizer with the heat removed from the electrode; and
mixing the primary air or the oxidizer with a fuel or with the flame or the combustion gas.
70. The method of claim 68 , wherein the step of providing the electrically non-conducting gas includes providing overfire air or oxidizer for the flame; and
wherein the step of transferring the heat received from the electrode to the electrically isolating cooling fluid or electrically isolated heat sink further comprises:
preheating the overfire air or oxidizer with the heat removed from the electrode; and
injecting the preheated overfire air or oxidizer into the flame or the combustion gas.
71. The method of claim 70 , wherein the step of preheating the overfire air or oxidizer with heat removed from the electrode includes passing the overfire air or oxidizer through one or more lumens comprising one or more walls formed in the electrode and convectively receiving the heat into the overfire air or oxidizer from the one or more walls of the one or more lumens; and
wherein the step of injecting the preheated air or oxidizer into the flame or the combustion gas includes passing the convectively heated air or oxidizer from the one or more lumens through one or more apertures formed in the electrode and into the flame or combustion gas.
72. The method of claim 68 , wherein the step of providing the electrically non-conductive gas includes providing atmospheric air.
73. The method of claim 68 , wherein the step of transferring the heat to the electrically isolating cooling fluid further comprises:
transferring heat from the heat sink to the electrically non-conductive gas through cooling fins.
74. The method of claim 67 , wherein the step of providing an electrically isolating cooling fluid or heat sink includes the step of providing an electrically non-conductive liquid coolant.
75. The method of claim 74 , wherein the step of providing a nonconductive liquid coolant includes providing a liquid fuel; and
wherein the step of transferring the heat to the electrically isolating cooling fluid includes the step of transferring the heat to the liquid fuel to preheat the liquid fuel; and
further comprising:
conveying the preheated liquid fuel to a burner; and
fueling the flame with the preheated liquid fuel.
76. The method of claim 67 , wherein the step of providing an electrically isolating cooling fluid or heat sink further comprises:
providing an electrically conductive liquid coolant; and
electrically isolating the electrically conductive liquid coolant from ground and from voltages other than a voltage applied to the electrode.
77. The method of claim 76 , wherein the step of providing the electrically conductive liquid coolant includes the step of providing an electrically conductive liquid fuel, water, a liquid metal, a molten salt or equivalents thereof.
78. The method of claim 76 , further comprising:
transferring heat from the electrically isolate and electrically conductive liquid coolant to a secondary coolant or heat sink through an electrically non-conductive wall, heat exchanger, or tank.
79. The method of claim 76 , wherein the step of providing the electrically isolated and electrically conductive coolant further comprises:
pumping the electrically isolated and electrically conductive liquid coolant from an electrically isolating coolant reservoir and past a heat sink operatively coupled to the electrode or through at least one fluid channel in the electrode; and
wherein electrically isolating the electrically conductive liquid coolant further comprises:
providing a pump that is electrically isolated or electrically isolating the pump from a pump drive motor.
80. The method of claim 76 , wherein the step of electrically isolating the electrically conductive liquid coolant from ground and from voltages other than a voltage applied to the electrode further comprises:
providing the electrically conductive liquid coolant to a reservoir from a cooling fluid supply through an antisiphon arrangement that prevents electrical conduction between the fluid supply and the reservoir.
81. The method of claim 80 , wherein the step of providing the electrically isolated and electrically conductive liquid coolant to the reservoir from the cooling fluid supply through an antisiphon arrangement that prevents electrical conduction includes modulating a liquid coolant flow to prevent a continuous stream of the electrically conductive liquid coolant from bridging the antisiphon arrangement.
82. The method of claim 57 , further comprising:
providing an electrical insulator between the electrode and one or more cooling fluid flow channels.
83. The method for of claim 57 , wherein the step of cooling the electrode to remove heat received from the flame or the combustion gas includes the step of passing a cooling fluid through the electrode.
84. The method of claim 57 , wherein the step of cooling the electrode to remove heat received from the flame includes the step of operating a heat pipe to remove the heat from the electrode.
85. The method of claim 84 , further comprising:
transferring heat from the heat pipe to a cooling fluid.
86. The method of claim 85 , wherein the step of transferring heat from the heat pipe to the cooling fluid further comprises:
passing primary combustion oxidizer, overfire oxidizer, or fuel across a condenser portion of the heat pipe to preheat the primary combustion oxidizer, overfire oxidizer, or fuel.
87. The method of claim 85 , further comprising:
providing electrical insulation over at least a condenser portion of the heat pipe to prevent conduction of an electrode voltage to a cooling fluid passing across the condenser.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/730,979 US20130260321A1 (en) | 2012-02-22 | 2012-12-29 | Cooled electrode and burner system including a cooled electrode |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261601920P | 2012-02-22 | 2012-02-22 | |
| US13/730,979 US20130260321A1 (en) | 2012-02-22 | 2012-12-29 | Cooled electrode and burner system including a cooled electrode |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130260321A1 true US20130260321A1 (en) | 2013-10-03 |
Family
ID=49006102
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/730,979 Abandoned US20130260321A1 (en) | 2012-02-22 | 2012-12-29 | Cooled electrode and burner system including a cooled electrode |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20130260321A1 (en) |
| EP (1) | EP2817566A4 (en) |
| CN (1) | CN104136849A (en) |
| CA (1) | CA2862808A1 (en) |
| MX (1) | MX2014010138A (en) |
| WO (1) | WO2013126143A1 (en) |
Cited By (60)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110027734A1 (en) * | 2009-04-03 | 2011-02-03 | Clearsign Combustion Corporation | System and apparatus for applying an electric field to a combustion volume |
| US20110203771A1 (en) * | 2010-01-13 | 2011-08-25 | Clearsign Combustion Corporation | Method and apparatus for electrical control of heat transfer |
| US20140038113A1 (en) * | 2012-07-31 | 2014-02-06 | Clearsign Combustion Corporation | Acoustic control of an electrodynamic combustion system |
| US8881535B2 (en) | 2011-02-09 | 2014-11-11 | Clearsign Combustion Corporation | Electric field control of two or more responses in a combustion system |
| US8911699B2 (en) | 2012-08-14 | 2014-12-16 | Clearsign Combustion Corporation | Charge-induced selective reduction of nitrogen |
| WO2015051377A1 (en) * | 2013-10-04 | 2015-04-09 | Clearsign Combustion Corporation | Ionizer for a combustion system |
| US9209654B2 (en) | 2011-12-30 | 2015-12-08 | Clearsign Combustion Corporation | Method and apparatus for enhancing flame radiation |
| US9267680B2 (en) | 2012-03-27 | 2016-02-23 | Clearsign Combustion Corporation | Multiple fuel combustion system and method |
| US9284886B2 (en) | 2011-12-30 | 2016-03-15 | Clearsign Combustion Corporation | Gas turbine with Coulombic thermal protection |
| US9289780B2 (en) | 2012-03-27 | 2016-03-22 | Clearsign Combustion Corporation | Electrically-driven particulate agglomeration in a combustion system |
| US20160123577A1 (en) * | 2014-11-03 | 2016-05-05 | Clearsign Combustion Corporation | Solid fuel system with electrodynamic combustion control |
| US9366427B2 (en) | 2012-03-27 | 2016-06-14 | Clearsign Combustion Corporation | Solid fuel burner with electrodynamic homogenization |
| US9371994B2 (en) | 2013-03-08 | 2016-06-21 | Clearsign Combustion Corporation | Method for Electrically-driven classification of combustion particles |
| US9377195B2 (en) | 2012-03-01 | 2016-06-28 | Clearsign Combustion Corporation | Inertial electrode and system configured for electrodynamic interaction with a voltage-biased flame |
| US9377188B2 (en) | 2013-02-21 | 2016-06-28 | Clearsign Combustion Corporation | Oscillating combustor |
| WO2016140681A1 (en) * | 2015-03-05 | 2016-09-09 | Clearsign Combustion Corporation | APPLICATION OF ELECTRIC FIELDS TO CONTROL CO AND NOx GENERATION IN A COMBUSTION REACTION |
| US9441834B2 (en) | 2012-12-28 | 2016-09-13 | Clearsign Combustion Corporation | Wirelessly powered electrodynamic combustion control system |
| US9453640B2 (en) | 2012-05-31 | 2016-09-27 | Clearsign Combustion Corporation | Burner system with anti-flashback electrode |
| US9496688B2 (en) | 2012-11-27 | 2016-11-15 | Clearsign Combustion Corporation | Precombustion ionization |
| US9494317B2 (en) | 2012-09-10 | 2016-11-15 | Clearsign Combustion Corporation | Electrodynamic combustion control with current limiting electrical element |
| US9513006B2 (en) | 2012-11-27 | 2016-12-06 | Clearsign Combustion Corporation | Electrodynamic burner with a flame ionizer |
| US20160363315A1 (en) * | 2013-12-31 | 2016-12-15 | Clearsign Combustion Corporation | Method and apparatus for extending flammability and stability limits in a combustion reaction |
| US9562681B2 (en) | 2012-12-11 | 2017-02-07 | Clearsign Combustion Corporation | Burner having a cast dielectric electrode holder |
| US9574767B2 (en) | 2013-07-29 | 2017-02-21 | Clearsign Combustion Corporation | Combustion-powered electrodynamic combustion system |
| US9664386B2 (en) | 2013-03-05 | 2017-05-30 | Clearsign Combustion Corporation | Dynamic flame control |
| US9696031B2 (en) | 2012-03-27 | 2017-07-04 | Clearsign Combustion Corporation | System and method for combustion of multiple fuels |
| US9696034B2 (en) | 2013-03-04 | 2017-07-04 | Clearsign Combustion Corporation | Combustion system including one or more flame anchoring electrodes and related methods |
| US9702547B2 (en) | 2014-10-15 | 2017-07-11 | Clearsign Combustion Corporation | Current gated electrode for applying an electric field to a flame |
| US9702550B2 (en) | 2012-07-24 | 2017-07-11 | Clearsign Combustion Corporation | Electrically stabilized burner |
| US9732958B2 (en) | 2010-04-01 | 2017-08-15 | Clearsign Combustion Corporation | Electrodynamic control in a burner system |
| US9739479B2 (en) | 2013-03-28 | 2017-08-22 | Clearsign Combustion Corporation | Battery-powered high-voltage converter circuit with electrical isolation and mechanism for charging the battery |
| US9746180B2 (en) | 2012-11-27 | 2017-08-29 | Clearsign Combustion Corporation | Multijet burner with charge interaction |
| US9803855B2 (en) | 2013-02-14 | 2017-10-31 | Clearsign Combustion Corporation | Selectable dilution low NOx burner |
| US20170363004A1 (en) * | 2016-06-20 | 2017-12-21 | United Technologies Corporation | Combustor component having enhanced cooling |
| US9879858B2 (en) | 2012-03-01 | 2018-01-30 | Clearsign Combustion Corporation | Inertial electrode and system configured for electrodynamic interaction with a flame |
| US20180051874A1 (en) * | 2016-08-18 | 2018-02-22 | Clearsign Combustion Corporation | Cooled ceramic electrode supports |
| US10006715B2 (en) | 2015-02-17 | 2018-06-26 | Clearsign Combustion Corporation | Tunnel burner including a perforated flame holder |
| US10060619B2 (en) | 2012-12-26 | 2018-08-28 | Clearsign Combustion Corporation | Combustion system with a grid switching electrode |
| US10066835B2 (en) | 2013-11-08 | 2018-09-04 | Clearsign Combustion Corporation | Combustion system with flame location actuation |
| US10077899B2 (en) | 2013-02-14 | 2018-09-18 | Clearsign Combustion Corporation | Startup method and mechanism for a burner having a perforated flame holder |
| US10125979B2 (en) | 2013-05-10 | 2018-11-13 | Clearsign Combustion Corporation | Combustion system and method for electrically assisted start-up |
| US10161625B2 (en) | 2013-07-30 | 2018-12-25 | Clearsign Combustion Corporation | Combustor having a nonmetallic body with external electrodes |
| US10174938B2 (en) | 2014-06-30 | 2019-01-08 | Clearsign Combustion Corporation | Low inertia power supply for applying voltage to an electrode coupled to a flame |
| US10190767B2 (en) | 2013-03-27 | 2019-01-29 | Clearsign Combustion Corporation | Electrically controlled combustion fluid flow |
| US10295185B2 (en) | 2013-10-14 | 2019-05-21 | Clearsign Combustion Corporation | Flame visualization control for electrodynamic combustion control |
| US10295175B2 (en) | 2013-09-13 | 2019-05-21 | Clearsign Combustion Corporation | Transient control of a combustion Reaction |
| US10359213B2 (en) | 2013-02-14 | 2019-07-23 | Clearsign Combustion Corporation | Method for low NOx fire tube boiler |
| US10364980B2 (en) | 2013-09-23 | 2019-07-30 | Clearsign Combustion Corporation | Control of combustion reaction physical extent |
| US10364984B2 (en) | 2013-01-30 | 2019-07-30 | Clearsign Combustion Corporation | Burner system including at least one coanda surface and electrodynamic control system, and related methods |
| US10386062B2 (en) | 2013-02-14 | 2019-08-20 | Clearsign Combustion Corporation | Method for operating a combustion system including a perforated flame holder |
| US10458647B2 (en) | 2014-08-15 | 2019-10-29 | Clearsign Combustion Corporation | Adaptor for providing electrical combustion control to a burner |
| US10514165B2 (en) | 2016-07-29 | 2019-12-24 | Clearsign Combustion Corporation | Perforated flame holder and system including protection from abrasive or corrosive fuel |
| US10571124B2 (en) | 2013-02-14 | 2020-02-25 | Clearsign Combustion Corporation | Selectable dilution low NOx burner |
| US10677454B2 (en) | 2012-12-21 | 2020-06-09 | Clearsign Technologies Corporation | Electrical combustion control system including a complementary electrode pair |
| US10808927B2 (en) | 2013-10-07 | 2020-10-20 | Clearsign Technologies Corporation | Pre-mixed fuel burner with perforated flame holder |
| US10823401B2 (en) | 2013-02-14 | 2020-11-03 | Clearsign Technologies Corporation | Burner system including a non-planar perforated flame holder |
| US11073280B2 (en) | 2010-04-01 | 2021-07-27 | Clearsign Technologies Corporation | Electrodynamic control in a burner system |
| US11460188B2 (en) | 2013-02-14 | 2022-10-04 | Clearsign Technologies Corporation | Ultra low emissions firetube boiler burner |
| US20230116739A1 (en) * | 2021-10-12 | 2023-04-13 | Samsung Electronics Co., Ltd. | Substrate processing apparatus and substrate processing method |
| US20250024641A1 (en) * | 2023-07-10 | 2025-01-16 | Hamilton Sundstrand Corporation | Electrowetting and thermoelectrics assisted two phase cooling of power electronics using integrated cooling |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111692613A (en) * | 2020-07-15 | 2020-09-22 | 珠海格力电器股份有限公司 | Heating device |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4427965A (en) * | 1981-07-20 | 1984-01-24 | Simonsen Bent P | Resistor coolant device |
| US4644783A (en) * | 1984-07-16 | 1987-02-24 | National Research Development Corp. | Active control of acoustic instability in combustion chambers |
| US4840702A (en) * | 1987-12-29 | 1989-06-20 | Action Technologies, Inc. | Apparatus and method for plasma treating of circuit boards |
| EP0410706A2 (en) * | 1989-07-26 | 1991-01-30 | Hitachi, Ltd. | Low-temperature plasma processor |
| US5596598A (en) * | 1993-09-30 | 1997-01-21 | Isover Saint Gobain | Electric melting device |
| US20040147986A1 (en) * | 2003-01-24 | 2004-07-29 | Baumgardner Jonathan M. | Method and apparatus for treating skin disorders using a near black body flashlamp source |
| US20080245894A1 (en) * | 2006-07-27 | 2008-10-09 | Ossian, Inc. | Liquid spraying apparatus |
| US20100170572A1 (en) * | 2006-11-06 | 2010-07-08 | Massachusetts Institute Of Technology | Pumping and flow control in systems including microfluidic systems |
| US20100216313A1 (en) * | 2007-10-12 | 2010-08-26 | Panasonic Corproation | Plasma processing apparatus |
Family Cites Families (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2234368C3 (en) * | 1972-07-13 | 1979-06-28 | Metallgesellschaft Ag, 6000 Frankfurt | Electrostatic dust collector |
| US3985111A (en) * | 1973-12-17 | 1976-10-12 | Eaton Corporation | Article for defining an auxiliary compartment for an engine combustion chamber |
| US4061117A (en) * | 1975-03-31 | 1977-12-06 | Nissan Motor Co., Ltd. | Method of controlling air-fuel mixture in internal combustion engine and a system therefor |
| JPS5819609A (en) * | 1981-07-29 | 1983-02-04 | Miura Eng Internatl Kk | Fuel combustion method |
| US4477911A (en) * | 1982-12-02 | 1984-10-16 | Westinghouse Electric Corp. | Integral heat pipe-electrode |
| FR2577304B1 (en) * | 1985-02-08 | 1989-12-01 | Electricite De France | GAS ELECTROBURNER WITH ELECTRICAL ENERGY SUPPLY. |
| FR2647186B1 (en) * | 1989-05-19 | 1991-08-23 | Electricite De France | GAS ELECTROBURNER WITH ENERGY SUPPLY AND ASSISTED PRIMING |
| US5180694A (en) * | 1989-06-01 | 1993-01-19 | General Electric Company | Silicon-oxy-carbide glass method of preparation and articles |
| US5702244A (en) * | 1994-06-15 | 1997-12-30 | Thermal Energy Systems, Incorporated | Apparatus and method for reducing particulate emissions from combustion processes |
| US5455401A (en) * | 1994-10-12 | 1995-10-03 | Aerojet General Corporation | Plasma torch electrode |
| IT1288991B1 (en) * | 1996-09-27 | 1998-09-25 | Danieli Off Mecc | COOLING SYSTEM FOR ELECTRODES FOR ELECTRIC ARC FURNACES IN DIRECT CURRENT |
| US5829245A (en) * | 1996-12-31 | 1998-11-03 | Westinghouse Electric Corporation | Cooling system for gas turbine vane |
| AU9575598A (en) * | 1997-09-24 | 1999-04-12 | Edward A. Corlew | Multi-well computerized control of fluid pumping |
| DE19815817C2 (en) * | 1998-04-08 | 2000-11-02 | Schulz Harder Juergen | Cooling system |
| CA2291525C (en) * | 1999-03-12 | 2009-02-17 | A. H. Simpson Industries Limited | Ozone generator |
| US6211490B1 (en) * | 1999-06-21 | 2001-04-03 | Lincoln Global, Inc. | Nozzle for shielded arc welding gun |
| JP2001227851A (en) * | 2000-02-16 | 2001-08-24 | Seiko Instruments Inc | Cooling device |
| AU2002223938A1 (en) * | 2000-12-14 | 2002-06-24 | Eskom | Cooling system |
| US6746439B2 (en) * | 2001-04-19 | 2004-06-08 | Jay Alan Lenker | Method and apparatus for fluid administration with distributed heating |
| US6835483B2 (en) * | 2001-05-31 | 2004-12-28 | Plug Power, Inc. | Method and apparatus for controlling a combined heat and power fuel cell system |
| JP4236882B2 (en) * | 2001-08-01 | 2009-03-11 | 東京エレクトロン株式会社 | Gas processing apparatus and gas processing method |
| US6858335B2 (en) * | 2001-11-14 | 2005-02-22 | Relion, Inc. | Fuel cell power systems and methods of operating fuel cell power systems |
| JP4020725B2 (en) * | 2002-07-29 | 2007-12-12 | 富士通株式会社 | Electronic equipment with energy-saving cooling system |
| ES2287436T3 (en) * | 2002-11-13 | 2007-12-16 | Coprecitec, S.L. | THERMOELECTRIC GENERATOR GROUP WITH A PILOT BURNER. |
| US20040149579A1 (en) * | 2002-12-19 | 2004-08-05 | General Electric Company | System for monitoring combustible gases |
| US7938828B2 (en) * | 2003-03-28 | 2011-05-10 | Boston Scientific Scimed, Inc. | Cooled ablation catheter |
| DE102004033545B4 (en) * | 2004-07-09 | 2006-06-14 | J. Eberspächer GmbH & Co. KG | burner |
| US7530231B2 (en) * | 2005-04-01 | 2009-05-12 | Pratt & Whitney Canada Corp. | Fuel conveying member with heat pipe |
| US7816121B2 (en) * | 2006-04-18 | 2010-10-19 | Advanced Liquid Logic, Inc. | Droplet actuation system and method |
| US8375890B2 (en) * | 2007-03-19 | 2013-02-19 | Micron Technology, Inc. | Apparatus and methods for capacitively coupled plasma vapor processing of semiconductor wafers |
| US8434436B2 (en) * | 2007-04-13 | 2013-05-07 | Ford Global Technologies, Llc | Electronically actuated valve system |
| US8851882B2 (en) * | 2009-04-03 | 2014-10-07 | Clearsign Combustion Corporation | System and apparatus for applying an electric field to a combustion volume |
| KR20120129907A (en) * | 2010-01-13 | 2012-11-28 | 클리어사인 컨버스천 코포레이션 | Method and apparatus for elecrical control of heat transfer |
| CN102374527A (en) * | 2011-09-28 | 2012-03-14 | 南京创能电力科技开发有限公司 | Installing structure for plasma generator of burner |
-
2012
- 2012-12-29 CN CN201280070553.3A patent/CN104136849A/en active Pending
- 2012-12-29 EP EP12869145.8A patent/EP2817566A4/en not_active Withdrawn
- 2012-12-29 CA CA2862808A patent/CA2862808A1/en not_active Abandoned
- 2012-12-29 WO PCT/US2012/072221 patent/WO2013126143A1/en not_active Ceased
- 2012-12-29 MX MX2014010138A patent/MX2014010138A/en unknown
- 2012-12-29 US US13/730,979 patent/US20130260321A1/en not_active Abandoned
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4427965A (en) * | 1981-07-20 | 1984-01-24 | Simonsen Bent P | Resistor coolant device |
| US4644783A (en) * | 1984-07-16 | 1987-02-24 | National Research Development Corp. | Active control of acoustic instability in combustion chambers |
| US4840702A (en) * | 1987-12-29 | 1989-06-20 | Action Technologies, Inc. | Apparatus and method for plasma treating of circuit boards |
| EP0410706A2 (en) * | 1989-07-26 | 1991-01-30 | Hitachi, Ltd. | Low-temperature plasma processor |
| US5596598A (en) * | 1993-09-30 | 1997-01-21 | Isover Saint Gobain | Electric melting device |
| US20040147986A1 (en) * | 2003-01-24 | 2004-07-29 | Baumgardner Jonathan M. | Method and apparatus for treating skin disorders using a near black body flashlamp source |
| US20080245894A1 (en) * | 2006-07-27 | 2008-10-09 | Ossian, Inc. | Liquid spraying apparatus |
| US20100170572A1 (en) * | 2006-11-06 | 2010-07-08 | Massachusetts Institute Of Technology | Pumping and flow control in systems including microfluidic systems |
| US20100216313A1 (en) * | 2007-10-12 | 2010-08-26 | Panasonic Corproation | Plasma processing apparatus |
Cited By (80)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110027734A1 (en) * | 2009-04-03 | 2011-02-03 | Clearsign Combustion Corporation | System and apparatus for applying an electric field to a combustion volume |
| US20110203771A1 (en) * | 2010-01-13 | 2011-08-25 | Clearsign Combustion Corporation | Method and apparatus for electrical control of heat transfer |
| US9151549B2 (en) | 2010-01-13 | 2015-10-06 | Clearsign Combustion Corporation | Method and apparatus for electrical control of heat transfer |
| US9732958B2 (en) | 2010-04-01 | 2017-08-15 | Clearsign Combustion Corporation | Electrodynamic control in a burner system |
| US11073280B2 (en) | 2010-04-01 | 2021-07-27 | Clearsign Technologies Corporation | Electrodynamic control in a burner system |
| US8881535B2 (en) | 2011-02-09 | 2014-11-11 | Clearsign Combustion Corporation | Electric field control of two or more responses in a combustion system |
| US9243800B2 (en) | 2011-02-09 | 2016-01-26 | Clearsign Combustion Corporation | Apparatus for electrodynamically driving a charged gas or charged particles entrained in a gas |
| US9958154B2 (en) | 2011-02-09 | 2018-05-01 | Clearsign Combustion Corporation | System and method for flattening a flame |
| US9209654B2 (en) | 2011-12-30 | 2015-12-08 | Clearsign Combustion Corporation | Method and apparatus for enhancing flame radiation |
| US9284886B2 (en) | 2011-12-30 | 2016-03-15 | Clearsign Combustion Corporation | Gas turbine with Coulombic thermal protection |
| US9377195B2 (en) | 2012-03-01 | 2016-06-28 | Clearsign Combustion Corporation | Inertial electrode and system configured for electrodynamic interaction with a voltage-biased flame |
| US9879858B2 (en) | 2012-03-01 | 2018-01-30 | Clearsign Combustion Corporation | Inertial electrode and system configured for electrodynamic interaction with a flame |
| US9267680B2 (en) | 2012-03-27 | 2016-02-23 | Clearsign Combustion Corporation | Multiple fuel combustion system and method |
| US10101024B2 (en) | 2012-03-27 | 2018-10-16 | Clearsign Combustion Corporation | Method for combustion of multiple fuels |
| US9366427B2 (en) | 2012-03-27 | 2016-06-14 | Clearsign Combustion Corporation | Solid fuel burner with electrodynamic homogenization |
| US9696031B2 (en) | 2012-03-27 | 2017-07-04 | Clearsign Combustion Corporation | System and method for combustion of multiple fuels |
| US9289780B2 (en) | 2012-03-27 | 2016-03-22 | Clearsign Combustion Corporation | Electrically-driven particulate agglomeration in a combustion system |
| US9468936B2 (en) | 2012-03-27 | 2016-10-18 | Clearsign Combustion Corporation | Electrically-driven particulate agglomeration in a combustion system |
| US9909757B2 (en) | 2012-05-31 | 2018-03-06 | Clearsign Combustion Corporation | Low NOx burner and method of operating a low NOx burner |
| US10753605B2 (en) | 2012-05-31 | 2020-08-25 | Clearsign Technologies Corporation | Low NOx burner |
| US9453640B2 (en) | 2012-05-31 | 2016-09-27 | Clearsign Combustion Corporation | Burner system with anti-flashback electrode |
| US9702550B2 (en) | 2012-07-24 | 2017-07-11 | Clearsign Combustion Corporation | Electrically stabilized burner |
| US9605849B2 (en) | 2012-07-31 | 2017-03-28 | Clearsign Combustion Corporation | Acoustic control of an electrodynamic combustion system |
| US20140038113A1 (en) * | 2012-07-31 | 2014-02-06 | Clearsign Combustion Corporation | Acoustic control of an electrodynamic combustion system |
| US9310077B2 (en) * | 2012-07-31 | 2016-04-12 | Clearsign Combustion Corporation | Acoustic control of an electrodynamic combustion system |
| US8911699B2 (en) | 2012-08-14 | 2014-12-16 | Clearsign Combustion Corporation | Charge-induced selective reduction of nitrogen |
| US10359189B2 (en) | 2012-09-10 | 2019-07-23 | Clearsign Combustion Corporation | Electrodynamic combustion control with current limiting electrical element |
| US9494317B2 (en) | 2012-09-10 | 2016-11-15 | Clearsign Combustion Corporation | Electrodynamic combustion control with current limiting electrical element |
| US9746180B2 (en) | 2012-11-27 | 2017-08-29 | Clearsign Combustion Corporation | Multijet burner with charge interaction |
| US9513006B2 (en) | 2012-11-27 | 2016-12-06 | Clearsign Combustion Corporation | Electrodynamic burner with a flame ionizer |
| US9496688B2 (en) | 2012-11-27 | 2016-11-15 | Clearsign Combustion Corporation | Precombustion ionization |
| US9562681B2 (en) | 2012-12-11 | 2017-02-07 | Clearsign Combustion Corporation | Burner having a cast dielectric electrode holder |
| US10677454B2 (en) | 2012-12-21 | 2020-06-09 | Clearsign Technologies Corporation | Electrical combustion control system including a complementary electrode pair |
| US10627106B2 (en) | 2012-12-26 | 2020-04-21 | Clearsign Technologies Corporation | Combustion system with a grid switching electrode |
| US10060619B2 (en) | 2012-12-26 | 2018-08-28 | Clearsign Combustion Corporation | Combustion system with a grid switching electrode |
| US9441834B2 (en) | 2012-12-28 | 2016-09-13 | Clearsign Combustion Corporation | Wirelessly powered electrodynamic combustion control system |
| US10364984B2 (en) | 2013-01-30 | 2019-07-30 | Clearsign Combustion Corporation | Burner system including at least one coanda surface and electrodynamic control system, and related methods |
| US10077899B2 (en) | 2013-02-14 | 2018-09-18 | Clearsign Combustion Corporation | Startup method and mechanism for a burner having a perforated flame holder |
| US11460188B2 (en) | 2013-02-14 | 2022-10-04 | Clearsign Technologies Corporation | Ultra low emissions firetube boiler burner |
| US10359213B2 (en) | 2013-02-14 | 2019-07-23 | Clearsign Combustion Corporation | Method for low NOx fire tube boiler |
| US10823401B2 (en) | 2013-02-14 | 2020-11-03 | Clearsign Technologies Corporation | Burner system including a non-planar perforated flame holder |
| US9803855B2 (en) | 2013-02-14 | 2017-10-31 | Clearsign Combustion Corporation | Selectable dilution low NOx burner |
| US10386062B2 (en) | 2013-02-14 | 2019-08-20 | Clearsign Combustion Corporation | Method for operating a combustion system including a perforated flame holder |
| US10571124B2 (en) | 2013-02-14 | 2020-02-25 | Clearsign Combustion Corporation | Selectable dilution low NOx burner |
| US10047950B2 (en) | 2013-02-21 | 2018-08-14 | Clearsign Combustion Corporation | Oscillating combustor with pulsed charger |
| US9377188B2 (en) | 2013-02-21 | 2016-06-28 | Clearsign Combustion Corporation | Oscillating combustor |
| US9696034B2 (en) | 2013-03-04 | 2017-07-04 | Clearsign Combustion Corporation | Combustion system including one or more flame anchoring electrodes and related methods |
| US9664386B2 (en) | 2013-03-05 | 2017-05-30 | Clearsign Combustion Corporation | Dynamic flame control |
| US9909759B2 (en) | 2013-03-08 | 2018-03-06 | Clearsign Combustion Corporation | System for electrically-driven classification of combustion particles |
| US9371994B2 (en) | 2013-03-08 | 2016-06-21 | Clearsign Combustion Corporation | Method for Electrically-driven classification of combustion particles |
| US10190767B2 (en) | 2013-03-27 | 2019-01-29 | Clearsign Combustion Corporation | Electrically controlled combustion fluid flow |
| US10808925B2 (en) | 2013-03-27 | 2020-10-20 | Clearsign Technologies Corporation | Method for electrically controlled combustion fluid flow |
| US9739479B2 (en) | 2013-03-28 | 2017-08-22 | Clearsign Combustion Corporation | Battery-powered high-voltage converter circuit with electrical isolation and mechanism for charging the battery |
| US10125979B2 (en) | 2013-05-10 | 2018-11-13 | Clearsign Combustion Corporation | Combustion system and method for electrically assisted start-up |
| US9574767B2 (en) | 2013-07-29 | 2017-02-21 | Clearsign Combustion Corporation | Combustion-powered electrodynamic combustion system |
| US10161625B2 (en) | 2013-07-30 | 2018-12-25 | Clearsign Combustion Corporation | Combustor having a nonmetallic body with external electrodes |
| US10295175B2 (en) | 2013-09-13 | 2019-05-21 | Clearsign Combustion Corporation | Transient control of a combustion Reaction |
| US10364980B2 (en) | 2013-09-23 | 2019-07-30 | Clearsign Combustion Corporation | Control of combustion reaction physical extent |
| WO2015051377A1 (en) * | 2013-10-04 | 2015-04-09 | Clearsign Combustion Corporation | Ionizer for a combustion system |
| US10422523B2 (en) | 2013-10-04 | 2019-09-24 | Clearsign Combustion Corporation | Ionizer for a combustion system |
| US10808927B2 (en) | 2013-10-07 | 2020-10-20 | Clearsign Technologies Corporation | Pre-mixed fuel burner with perforated flame holder |
| US10295185B2 (en) | 2013-10-14 | 2019-05-21 | Clearsign Combustion Corporation | Flame visualization control for electrodynamic combustion control |
| US10240788B2 (en) | 2013-11-08 | 2019-03-26 | Clearsign Combustion Corporation | Combustion system with flame location actuation |
| US10066835B2 (en) | 2013-11-08 | 2018-09-04 | Clearsign Combustion Corporation | Combustion system with flame location actuation |
| US20160363315A1 (en) * | 2013-12-31 | 2016-12-15 | Clearsign Combustion Corporation | Method and apparatus for extending flammability and stability limits in a combustion reaction |
| US10174938B2 (en) | 2014-06-30 | 2019-01-08 | Clearsign Combustion Corporation | Low inertia power supply for applying voltage to an electrode coupled to a flame |
| US10458647B2 (en) | 2014-08-15 | 2019-10-29 | Clearsign Combustion Corporation | Adaptor for providing electrical combustion control to a burner |
| US9702547B2 (en) | 2014-10-15 | 2017-07-11 | Clearsign Combustion Corporation | Current gated electrode for applying an electric field to a flame |
| US10281141B2 (en) | 2014-10-15 | 2019-05-07 | Clearsign Combustion Corporation | System and method for applying an electric field to a flame with a current gated electrode |
| US20160123577A1 (en) * | 2014-11-03 | 2016-05-05 | Clearsign Combustion Corporation | Solid fuel system with electrodynamic combustion control |
| US10006715B2 (en) | 2015-02-17 | 2018-06-26 | Clearsign Combustion Corporation | Tunnel burner including a perforated flame holder |
| WO2016140681A1 (en) * | 2015-03-05 | 2016-09-09 | Clearsign Combustion Corporation | APPLICATION OF ELECTRIC FIELDS TO CONTROL CO AND NOx GENERATION IN A COMBUSTION REACTION |
| US10458331B2 (en) * | 2016-06-20 | 2019-10-29 | United Technologies Corporation | Fuel injector with heat pipe cooling |
| US20170363004A1 (en) * | 2016-06-20 | 2017-12-21 | United Technologies Corporation | Combustor component having enhanced cooling |
| US10514165B2 (en) | 2016-07-29 | 2019-12-24 | Clearsign Combustion Corporation | Perforated flame holder and system including protection from abrasive or corrosive fuel |
| US10619845B2 (en) * | 2016-08-18 | 2020-04-14 | Clearsign Combustion Corporation | Cooled ceramic electrode supports |
| US20180051874A1 (en) * | 2016-08-18 | 2018-02-22 | Clearsign Combustion Corporation | Cooled ceramic electrode supports |
| US20230116739A1 (en) * | 2021-10-12 | 2023-04-13 | Samsung Electronics Co., Ltd. | Substrate processing apparatus and substrate processing method |
| US12456610B2 (en) * | 2021-10-12 | 2025-10-28 | Samsung Electronics Co., Ltd. | Substrate processing apparatus and substrate processing method |
| US20250024641A1 (en) * | 2023-07-10 | 2025-01-16 | Hamilton Sundstrand Corporation | Electrowetting and thermoelectrics assisted two phase cooling of power electronics using integrated cooling |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2013126143A1 (en) | 2013-08-29 |
| EP2817566A4 (en) | 2015-12-16 |
| CA2862808A1 (en) | 2013-08-29 |
| MX2014010138A (en) | 2016-03-04 |
| CN104136849A (en) | 2014-11-05 |
| EP2817566A1 (en) | 2014-12-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20130260321A1 (en) | Cooled electrode and burner system including a cooled electrode | |
| US20130340802A1 (en) | Thermoelectric generator for use with integrated functionality | |
| RU2016124992A (en) | CHARGING STATION CONTAINING A CHARGING CABLE | |
| CN104085108A (en) | Spray head assembly and 3D printer utilizing same | |
| CZ279016B6 (en) | Fuel preheating apparatus for ultrasonic sprayer in a heating installation | |
| US12368196B2 (en) | Phase-change cooling module and battery pack using same | |
| TW428224B (en) | Wafer heating method and device adopting the same | |
| KR101926441B1 (en) | Divice for controlling pressure of gas container in a gas burner | |
| KR20050094033A (en) | A stirling engine assembly | |
| CN108295776A (en) | A kind of solid salt heating melting plant and method | |
| WO2003107404A8 (en) | EPITAXIAL VAPOR PHASE APPARATUS AND EPITAXIAL VAPOR PHASE METHOD | |
| KR101661051B1 (en) | Heat transfer device | |
| KR101406285B1 (en) | Dielectric Heating Apparatus and Dielectric Heating Method of using the same | |
| US10560984B2 (en) | Inductive heater for fluids | |
| JP2005351333A (en) | Heating/heat insulating pipe | |
| RU2010138849A (en) | METHOD FOR PRODUCING THERMAL ENERGY FROM ELECTRIC AND DEVICE FOR ITS IMPLEMENTATION KUTER PETROV | |
| KR20240171070A (en) | Heating assembly for aerosol generating device | |
| CN109708300A (en) | A kind of manufacturing method of ceramic wafer heater and instant heating type fluid heater | |
| RU2180161C1 (en) | Temperature control device for electronic equipment components releasing high heat | |
| CN204160771U (en) | A kind of nozzle component and use the 3D printer of this nozzle component | |
| KR20210087178A (en) | electric heater for double pipe of currenting water | |
| JPS6152882B2 (en) | ||
| CN113924168B (en) | system that generates fog | |
| RU2365072C1 (en) | Electronic boards cooling device | |
| Xuan et al. | Experimental studies for EHD boiling heat transfer enhancement outside a tube |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CLEARSIGN COMBUSTION CORPORATION, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COLANNINO, JOSEPH;WIKLOF, CHRISTOPHER A.;REEL/FRAME:029814/0184 Effective date: 20130206 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |