US20130248347A1 - Utilization of a coke oven featuring improved heating properties - Google Patents
Utilization of a coke oven featuring improved heating properties Download PDFInfo
- Publication number
- US20130248347A1 US20130248347A1 US13/901,118 US201313901118A US2013248347A1 US 20130248347 A1 US20130248347 A1 US 20130248347A1 US 201313901118 A US201313901118 A US 201313901118A US 2013248347 A1 US2013248347 A1 US 2013248347A1
- Authority
- US
- United States
- Prior art keywords
- coking chamber
- oven
- coating
- emission
- recovery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000571 coke Substances 0.000 title claims abstract description 30
- 238000010438 heat treatment Methods 0.000 title claims abstract description 27
- 238000004939 coking Methods 0.000 claims abstract description 33
- 238000000576 coating method Methods 0.000 claims abstract description 20
- 239000011248 coating agent Substances 0.000 claims abstract description 19
- 238000011084 recovery Methods 0.000 claims abstract description 12
- 238000010276 construction Methods 0.000 claims abstract description 7
- 206010022000 influenza Diseases 0.000 claims abstract description 7
- 238000003303 reheating Methods 0.000 claims abstract description 5
- 239000003245 coal Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 11
- 238000003763 carbonization Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000010000 carbonizing Methods 0.000 claims 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 abstract description 14
- 239000000203 mixture Substances 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 8
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 abstract description 7
- 239000003546 flue gas Substances 0.000 description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B21/00—Heating of coke ovens with combustible gases
- C10B21/20—Methods of heating ovens of the chamber oven type
- C10B21/22—Methods of heating ovens of the chamber oven type by introducing the heating gas and air at various levels
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B23/00—Other methods of heating coke ovens
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B15/00—Other coke ovens
- C10B15/02—Other coke ovens with floor heating
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B29/00—Other details of coke ovens
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B29/00—Other details of coke ovens
- C10B29/02—Brickwork, e.g. casings, linings, walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/0003—Linings or walls
- F27D1/0006—Linings or walls formed from bricks or layers with a particular composition or specific characteristics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/16—Making or repairing linings ; Increasing the durability of linings; Breaking away linings
- F27D1/1678—Increasing the durability of linings; Means for protecting
Definitions
- the tertiary heating elements can be fastened in any kind in the oven chamber.
- the tertiary heating elements are detachably hung into suitable holders, with these holders being mounted in the wall and/or top of the coking chamber.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Coke Industry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Ceramic Products (AREA)
- Furnace Details (AREA)
Abstract
A coke oven of a horizontal construction of the non-recovery or heat recovery type is shown. The oven has at least one coking chamber, in which laterally vertical downcomers as well as horizontal bottom flues extend underneath the coking chamber for indirect reheating of the coking chamber. At least a part of the interior walls of the coking chamber is configured as a secondary heating source by coating it with a high-emission coating (HEB) that shows an emission degree equal to or higher than 0.9, and consists of the substances Cr2O3 or Fe2O3 or a mixture containing these substances, with the portion of Fe2O3 amounting to at least 25% by weight in the mixture, and with the portion of Cr2O3 amounting to at least 20% by weight in the mixture.
Description
- This application is a divisional application of U.S. Ser. No. 12/311,145, filed Nov. 18, 2009. U.S. Ser. No. 12/311,145 is the US national phase application of PCT application PCT/EP2007/007030, filed Aug. 9, 2007. US Ser. No. 12/311,145 was pending as of the filing date of this application. US Ser. No. 12/311,145 and PCT/EP2007/007030 are incorporated by reference as if set forth in their entirety herein.
- The invention relates to a coke oven of horizontal construction (non-recovery/heat recovery type), in which at least part of the interior walls of a coking chamber is configured as secondary heating surfaces by coating them with a high-emission coating (HEB), with the emission degree of this high-emission coating being equal to or greater than 0.9. This HEB preferably consists of the substances Cr2O3 or Fe2O3 or of a mixture containing any one of these substances, with the portion of Fe2O3 amounting to at least 25% by wt. in a mixture and with the portion of Cr2O3 amounting to at least 20% by wt. in a mixture.
- Coke ovens of horizontal construction are known from prior art in technology and they are in frequent use. Examples of such coke ovens are described in U.S. Pat. No. 4,111,757, U.S. Pat. No. 4,344,820, U.S. Pat. No. 6,596,128 B2 or DE 691 06 312 T2. A survey of coke ovens and common design types is given by W. E. Buss et al. in Iron and Steel Engineer. 33-38. January, 1999.
- They are distinguished in that the supply of the required energy is partly taken directly from the combustion of light-volatile coal constituents in the oven free space above the coal cake or from the coal charge. Another part of the coking energy is carried in through walls heated by flue gases on their rear side and through the chamber floor into the coal cake or coal charge.
- On account of a direct energy impact, the growth in thickness of the upper layer of the carbonised coke is the fastest. Carbonised layers which grow in parallel to the walls or from the bottom and in parallel to the chamber floor, therefore, at the end of the coking time, are less in thickness than the upper layer.
- Known from prior art in technology are different approaches designed to speed up the coking time of coal. An increase in temperature in the coking chamber which would cause an acceleration of the coking process leads to a higher loss of coal chemicals and as a rule it is impossible for reasons related to material. Therefore, preference was given to try to improve the indirect heat transport through the walls and chamber floor, for example in the way described in
DE 10 2006 026521. - For the constructively different horizontal chamber ovens, the European patent EP 0 742 276 B1 describes a method to improve heat transfer from parallel heating flues outside the actual oven space into the coal charge. According to this method, the surfaces of heating flues extending in parallel to the coke oven chamber are coated so that they act as a black body, thus improving heat transport through the wall.
- Still there is a demand, however, to reduce the coking time and thereby to improve the economic efficiency of this method.
- This task is solved by the coke oven of horizontal construction (non-recovery/heat recovery type) as defined herein. This coke oven consists of at least one coking chamber, laterally arranged vertical downcomers as well as bottom flues arranged horizontally and extending underneath the coking chamber for indirect reheating of the coking chamber, with at least part of the interior walls of the coking chamber being configured as secondary heating surfaces by coating them with a high-emission coating (HEB), and with the emission degree of this high-emission coating being equal to or greater than 0.9.
- This HEB preferably consists of the substances Cr2O3 or Fe2O3 or of a mixture containing any one of these substances, with the portion of Fe2O3 amounting to at least 25% by wt. in a mixture and with the portion of Cr2O3 amounting to at least 20% by wt. in a mixture. Alternatively, the HEB can also contain SiC with a portion of at least 20% by wt. A survey of the state of the art technology in coatings of oven walls for an improved reflection of heat is given by M. Schulte et al. in “Stahl and Eisen”, 110(3), 99-104, 1990.
- In an improved variant of this coke oven, the HEB furthermore contains one or more inorganic binding agents. It has also been found that the constituents of the HEB should have a special grain size which is smaller than or equal to 15 μm and which ideally ranges between 2.5 and 10 μm.
- By way of the HEB, the radiation situation in the coke oven room is substantially improved and the fast coking process from top to bottom is further speeded up.
- The coke oven can be further improved by coating the walls of flue gas channels extending horizontally underneath the coking chamber partly or entirely with HEB in any one of the material composition as described hereinabove, thus improving the indirect heat transport through the floor of the coke oven chamber.
- Another further improved variant is provided in that one or more heating elements, so-called tertiary heating elements, are arranged in the oven free space which in the intended operation of the coke oven is not destined for being filled with solid matter, said heating elements also being entirely or partly coated with the HEB described hereinabove. Alternatively these tertiary heating elements can also consist of or be formed entirely or partly of the substances that form the HEB.
- The tertiary heating elements may have any form and are ideally shaped as hanging ribs or hanging walls. The tertiary heating elements can be further improved to have openings or a partly open structure.
- In principle the tertiary heating elements can be fastened in any kind in the oven chamber. Ideally the tertiary heating elements are detachably hung into suitable holders, with these holders being mounted in the wall and/or top of the coking chamber. On the one hand it has the advantage that the tertiary heating elements can be taken out more easily when work is to be done on a coke oven chamber, and on the other hand it is avoided in this manner that expansion processes are transferred into the oven brickwork.
- Another improved variant of the coke oven lies in adapting the gas routing to the positioning of the tertiary heating elements. Thus, when the coking chamber is section-wise divided by the tertiary heating elements, at least one air feeder mains is led into each of these sections and one or two downcomers are led out from each of these sections.
- Also covered by the present invention is a method for production of coke by implementing the coke oven described hereinabove, utilising one of the embodiments. In general, a multitude of the described coke ovens are then operated more or less in parallel.
- According to a particularly suitable variant of the method it is provided that the temperature in the coking chamber during the coking process ideally amounts to 1,000 to 1,400° C. on average. This temperature may also be exceeded for a short period of time.
- The FIGURE shows a sectional view of an embodiment of a coke oven according to the present invention.
- The FIGURE shows an embodiment of the inventive coke oven in a sectional view. The
coke oven 1 consists of anoven top 2,oven walls 3 and anoven floor 4, which enclose theoven room 5. Theair feeder mains 6 represented in dashed lines lead into theoven room 5. Thecoal charge 7 rests on theoven floor 4 andflue gas channels 8 extend underneath theoven floor 4. Also shown in the cross-section are theair feeder mains 10 provided in theoven foundation 9 which allow for conducting air into theflue gas channels 8. - Through
vertical downcomers 11, which extend in theoven walls 3 from the oven free space of theoven room 5 to the horizontalflue gas channels 8 underneath theoven floor 4, the gases developing during coal carbonisation can be discharged. - The interior surfaces of the
oven room 5 are provided with an HEB that consists of Cr2O3, Fe2O3 and SiC in equal portions. This HEB of the interior walls, thereby becoming secondary heating surfaces, has not been shown here any further. Furthermore,heating elements 12, tertiary heating surfaces, are mounted inoven room 5 vertically and parallel to each other which, by and large, fill the free cross-section above thecoal charge 7 and which are also coated with this HEB. Theheating elements 12 are mounted to theholder elements 13 which in the case shown here have a shape of wall and roof anchors. In the example shown here, a small,circumferential gap 14 is left between the interior wall surfaces of theoven room 5,coal charge 7 and the outer edge ofheating element 12 in order to allow for a horizontal convection in theoven room 5 and to prevent damage to material due to differences in the expansion behaviour of the structural parts. - By coating all surfaces not contacting the coal charge and by the additional radiation surfaces which are also coated and which are introduced through the tertiary heating surfaces into the oven room, it has been managed to markedly improve the radiation situation in the oven room which subsequently has led to a shortened carbonisation time of coke.
- List of reference numbers
- 1 Coke oven
- 2 Oven top
- 3 Oven wall
- 4 Oven floor
- 5 Oven room
- 6 Air feeder mains
- 7 Coal charge
- 8 Flue gas channel
- 9 Oven foundation
- 10 Air feeder mains
- 11 Downcomer
- 12 Heating element
- 13 Holder element
- 14 Gap
Claims (6)
1. Utilization of one or more coke ovens of horizontal construction of the type non-recovery or heat-recovery, consisting of at least one coking chamber, laterally arranged vertical downcomers as well as bottom flues arranged horizontally and underneath the coking chamber for indirect reheating of said coking chamber, wherein at least a part of the interior walls of the coking chamber is configured as secondary heating surfaces by coating them with a high-emission coating, with the emission degree of this high-emission coating being equal to or higher than 0.9.
2. Utilization according to claim 1 , wherein coal carbonization is carried out at a mean oven room temperature of 1,000 to 1,400° C.
3. A method of using one or more coke ovens of horizontal construction of the type non-recovery or heat-recovery, each coke oven consisting of at least one coking chamber, laterally arranged vertical downcomers as well as bottom flues arranged horizontally and underneath the coking chamber for indirect reheating of said coking chamber, wherein at least a part of the interior walls of the coking chamber is configured as secondary heating surfaces by coating them with a high-emission coating, with the emission degree of this high-emission coating being equal to or higher than 0.9, comprising
providing a coke charge to the oven; and
carbonizing the charge.
4. Method according to claim 3 , wherein the coal carbonization is carried out at a mean oven room temperature of 1,000 to 1,400° C.
5. A method of making coal comprising utilizing one or more coke ovens of horizontal construction of the type non-recovery or heat-recovery, consisting of at least one coking chamber, laterally arranged vertical downcomers as well as bottom flues arranged horizontally and underneath the coking chamber for indirect reheating of said coking chamber, wherein at least a part of the interior walls of the coking chamber is configured as secondary heating surfaces by coating them with a high-emission coating , with the emission degree of this high-emission coating being equal to or higher than 0.9.
6. Method according to claim 5 , wherein the coal carbonization is carried out at a mean oven room temperature of 1,000 to 1,400° C.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/901,118 US20130248347A1 (en) | 2006-09-21 | 2013-05-23 | Utilization of a coke oven featuring improved heating properties |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102006045067 | 2006-09-21 | ||
| DE200610045067 DE102006045067A1 (en) | 2006-09-21 | 2006-09-21 | Coke oven with improved heating properties |
| PCT/EP2007/007030 WO2008034493A1 (en) | 2006-09-21 | 2007-08-09 | Coke oven featuring improved heating properties |
| US31114509A | 2009-11-18 | 2009-11-18 | |
| US13/901,118 US20130248347A1 (en) | 2006-09-21 | 2013-05-23 | Utilization of a coke oven featuring improved heating properties |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2007/007030 Division WO2008034493A1 (en) | 2006-09-21 | 2007-08-09 | Coke oven featuring improved heating properties |
| US31114509A Division | 2006-09-21 | 2009-11-18 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130248347A1 true US20130248347A1 (en) | 2013-09-26 |
Family
ID=38584489
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/311,145 Expired - Fee Related US8460516B2 (en) | 2006-09-21 | 2007-08-09 | Coke oven featuring improved heating properties |
| US13/901,118 Abandoned US20130248347A1 (en) | 2006-09-21 | 2013-05-23 | Utilization of a coke oven featuring improved heating properties |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/311,145 Expired - Fee Related US8460516B2 (en) | 2006-09-21 | 2007-08-09 | Coke oven featuring improved heating properties |
Country Status (20)
| Country | Link |
|---|---|
| US (2) | US8460516B2 (en) |
| EP (1) | EP2064303B1 (en) |
| JP (1) | JP5566107B2 (en) |
| KR (1) | KR20090060298A (en) |
| CN (1) | CN101517037B (en) |
| AP (1) | AP2538A (en) |
| AR (1) | AR062942A1 (en) |
| AU (1) | AU2007299334B2 (en) |
| BR (1) | BRPI0717047A2 (en) |
| CA (1) | CA2663746A1 (en) |
| CL (1) | CL2007002740A1 (en) |
| CO (1) | CO6170370A2 (en) |
| DE (1) | DE102006045067A1 (en) |
| MX (1) | MX2009003053A (en) |
| NZ (1) | NZ575265A (en) |
| RU (1) | RU2447129C2 (en) |
| TW (1) | TWI439540B (en) |
| UA (1) | UA98119C2 (en) |
| WO (1) | WO2008034493A1 (en) |
| ZA (1) | ZA200901938B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020199688A1 (en) * | 2019-04-03 | 2020-10-08 | 中冶焦耐(大连)工程技术有限公司 | Burner heat-preservation structure of coke oven combustion chamber, coke oven combustion chamber and coke oven |
Families Citing this family (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102006045067A1 (en) * | 2006-09-21 | 2008-04-03 | Uhde Gmbh | Coke oven with improved heating properties |
| DE102006045056A1 (en) * | 2006-09-21 | 2008-03-27 | Uhde Gmbh | coke oven |
| DE102007058473B4 (en) * | 2007-12-04 | 2009-11-26 | Uhde Gmbh | Method and device for closing a coke oven, which is loaded by a horizontally directed, front and rear oven opening or prepared for coking |
| CN102322623B (en) * | 2011-08-24 | 2013-11-13 | 成都中冶节能环保工程有限公司 | Coke oven top waste heat reclaiming system |
| DE102012002963A1 (en) | 2012-02-16 | 2013-08-22 | Thyssenkrupp Uhde Gmbh | Method and device for surface-optimized supply of combustion air into the primary heating chamber of a coke oven chamber of the "non-recovery" or "heat-recovery" type |
| US9587120B2 (en) | 2012-02-29 | 2017-03-07 | Scg Chemicals Co., Ltd. | High emissivity coating compositions and manufacturing processes therefore |
| DE102012014741A1 (en) * | 2012-07-26 | 2014-05-15 | Thyssenkrupp Uhde Gmbh | Apparatus and method for the directed introduction of combustion air into the secondary heating chambers of a "heat recovery" coke oven |
| DE102014221150B3 (en) * | 2014-10-17 | 2016-03-17 | Thyssenkrupp Ag | Coke oven with improved exhaust system in the secondary heating chambers and a method for coking coal and the use of the coke oven |
| CN104930858A (en) * | 2015-05-14 | 2015-09-23 | 成都中冶节能环保工程有限公司 | Elimination-type coke oven waste heat power generation system based on power supply regulation circuit |
| CN104819647A (en) * | 2015-05-14 | 2015-08-05 | 成都中冶节能环保工程有限公司 | High-efficiency driving power supply circuit based elimination type coke oven waste heat power generation system |
| CN104819649A (en) * | 2015-05-14 | 2015-08-05 | 成都中冶节能环保工程有限公司 | Voltage stabilizing power supply circuit based elimination type coke oven waste heat power generation system |
| CN104819648A (en) * | 2015-05-14 | 2015-08-05 | 成都中冶节能环保工程有限公司 | Voltage booster power supply circuit based elimination type coke oven waste heat power generation system |
| CN104833228A (en) * | 2015-05-15 | 2015-08-12 | 成都中冶节能环保工程有限公司 | Thermal induction type coke oven waste heat recovery power generation system based on stabilized power supply circuit |
| CN104833222A (en) * | 2015-05-15 | 2015-08-12 | 成都中冶节能环保工程有限公司 | Thermal protection type coke oven waste heat recovery power generation system based on power source voltage adjustment circuit |
| CN104913650A (en) * | 2015-05-15 | 2015-09-16 | 成都中冶节能环保工程有限公司 | Thermal type coke oven waste heat electricity generation system based on efficient drive power source circuit |
| CN104913647A (en) * | 2015-05-15 | 2015-09-16 | 成都中冶节能环保工程有限公司 | Alarm type coke oven waste heat recycling and power generation system based on power supply whole voltage circuit |
| CN104880079A (en) * | 2015-05-15 | 2015-09-02 | 成都中冶节能环保工程有限公司 | Thermal induction type coke oven after heat recycling power generation system based on efficient drive power supply circuit |
| CN104833223A (en) * | 2015-05-15 | 2015-08-12 | 成都中冶节能环保工程有限公司 | Alarm type coke oven waste heat power generation system based on efficiently-driving power source circuit |
| CN104913651A (en) * | 2015-05-17 | 2015-09-16 | 成都中冶节能环保工程有限公司 | Thermal protection type coke oven waste heat electricity generation system based on boost power circuit |
| CN104833227A (en) * | 2015-05-17 | 2015-08-12 | 成都中冶节能环保工程有限公司 | Thermal protection type coke oven waste heat recovery power generation system based on stabilized power supply circuit |
| CN104880081A (en) * | 2015-05-17 | 2015-09-02 | 成都中冶节能环保工程有限公司 | Wet protection type coke oven after heat power generating system based on stabilization power supply circuit |
| CN104833229A (en) * | 2015-05-17 | 2015-08-12 | 成都中冶节能环保工程有限公司 | Thermal protection type coke oven waste heat recovery power generation system based on power source adjustment circuit |
| US10018363B1 (en) * | 2016-12-23 | 2018-07-10 | Jade Range LLC | Hearth oven |
| CN112268462B (en) * | 2020-11-27 | 2023-03-28 | 广西柳州宝铁节能技术有限公司 | Preparation method of multi-element combined energy-saving device |
| CN112414145B (en) * | 2020-11-27 | 2023-03-31 | 广西柳州宝铁节能技术有限公司 | Preparation method of combined energy-saving device |
| CN114439428B (en) * | 2021-12-30 | 2023-08-25 | 中煤科工集团西安研究院有限公司 | Enhanced extraction method for coal bed gas horizontal well of coal group under goaf group |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4124450A (en) * | 1975-11-24 | 1978-11-07 | Pennsylvania Coke Technology, Inc. | Method for producing coke |
| US4287024A (en) * | 1978-06-22 | 1981-09-01 | Thompson Buster R | High-speed smokeless coke oven battery |
| US5114542A (en) * | 1990-09-25 | 1992-05-19 | Jewell Coal And Coke Company | Nonrecovery coke oven battery and method of operation |
| DE4402390C1 (en) * | 1994-01-27 | 1995-05-24 | Didier Werke Ag | Ceramic honeycomb body, for lining furnace walls |
| EP0742276A1 (en) * | 1995-05-12 | 1996-11-13 | Krupp Koppers GmbH | Method for operating a coke oven |
| US6187148B1 (en) * | 1999-03-01 | 2001-02-13 | Pennsylvania Coke Technology, Inc. | Downcomer valve for non-recovery coke oven |
| US20020134659A1 (en) * | 2001-02-14 | 2002-09-26 | Westbrook Richard W. | Coke oven flue gas sharing |
| US8460516B2 (en) * | 2006-09-21 | 2013-06-11 | Uhde Gmbh | Coke oven featuring improved heating properties |
| US8821693B2 (en) * | 2007-12-04 | 2014-09-02 | Thyssenkrupp Uhde Gmbh | Refractory oven doors and refractory oven door framing walls of a coke oven battery |
| US9034147B2 (en) * | 2009-04-01 | 2015-05-19 | Thyssenkrupp Uhde Gmbh | Method to reduce heat radiation losses through coke oven chamber doors and walls by adapting the coal cake in height or density |
| US9039869B2 (en) * | 2007-12-18 | 2015-05-26 | Uhde Gmbh | Controllable air ducts for feeding of additional combustion air into the area of flue gas channels of coke oven chambers |
| US9222025B2 (en) * | 2010-03-03 | 2015-12-29 | Thyssenkrupp Uhde Gmbh | Method and device for coking coal mixtures having high driving pressure properties in a “non-recovery” or “heat-recovery” coking oven |
| US9284491B2 (en) * | 2008-05-27 | 2016-03-15 | Thyssenkrupp Industrial Solutions Ag | Device for a directed introduction of primary combustion air into the gas space of a coke battery |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2056119B2 (en) * | 1970-11-14 | 1974-09-05 | Bergwerksverband Gmbh, 4300 Essen | Coke ovens with high specific throughput |
| US4111757A (en) | 1977-05-25 | 1978-09-05 | Pennsylvania Coke Technology, Inc. | Smokeless and non-recovery type coke oven battery |
| US4304605A (en) * | 1980-03-03 | 1981-12-08 | Keibler Richard C | High temperature resistant coating composition |
| JPS57109868A (en) * | 1980-12-27 | 1982-07-08 | Tatsuo Miyake | Heat radiation paint |
| SU1030396A1 (en) * | 1981-12-28 | 1983-07-23 | Восточный научно-исследовательский и проектный институт огнеупорной промышленности | Heating partition wall of coking oven |
| US4946806A (en) * | 1988-10-11 | 1990-08-07 | Sudamet, Ltd. | Flame spraying method and composition |
| JPH02160896A (en) * | 1988-12-13 | 1990-06-20 | Sumitomo Metal Ind Ltd | Method for preventing adhesion of carbon to coke oven wall surface |
| CN1049917A (en) * | 1989-08-26 | 1991-03-13 | 王根贤 | Glasses with bright spots |
| SU1721072A1 (en) * | 1990-05-07 | 1992-03-23 | Украинский научно-исследовательский углехимический институт | Horizontal coke oven |
| CN1274785A (en) * | 2000-06-06 | 2000-11-29 | 苟红侠 | Road base layer paver |
| KR100658569B1 (en) * | 2000-11-15 | 2006-12-15 | 카요코 소라 | Titanium oxide-based thermal radiation paint |
| JP2004225027A (en) * | 2003-01-23 | 2004-08-12 | Kayoko Sora | Heat radiating coating for use in industrial heating furnace and manufacturing method thereof |
| DE102006026521A1 (en) | 2006-06-06 | 2007-12-13 | Uhde Gmbh | Horizontal oven for the production of coke, comprises a coke oven chamber, and a coke oven base that is arranged in vertical direction between the oven chamber and horizontally running flue gas channels and that has cover- and lower layer |
-
2006
- 2006-09-21 DE DE200610045067 patent/DE102006045067A1/en not_active Withdrawn
-
2007
- 2007-08-08 TW TW96129126A patent/TWI439540B/en not_active IP Right Cessation
- 2007-08-09 RU RU2009114840/05A patent/RU2447129C2/en not_active IP Right Cessation
- 2007-08-09 US US12/311,145 patent/US8460516B2/en not_active Expired - Fee Related
- 2007-08-09 AU AU2007299334A patent/AU2007299334B2/en not_active Ceased
- 2007-08-09 CN CN200780035103.XA patent/CN101517037B/en not_active Expired - Fee Related
- 2007-08-09 EP EP07801565.8A patent/EP2064303B1/en not_active Not-in-force
- 2007-08-09 MX MX2009003053A patent/MX2009003053A/en active IP Right Grant
- 2007-08-09 WO PCT/EP2007/007030 patent/WO2008034493A1/en not_active Ceased
- 2007-08-09 KR KR1020097005605A patent/KR20090060298A/en not_active Abandoned
- 2007-08-09 NZ NZ575265A patent/NZ575265A/en not_active IP Right Cessation
- 2007-08-09 BR BRPI0717047 patent/BRPI0717047A2/en active Search and Examination
- 2007-08-09 JP JP2009528608A patent/JP5566107B2/en not_active Expired - Fee Related
- 2007-08-09 CA CA 2663746 patent/CA2663746A1/en not_active Abandoned
- 2007-08-09 UA UAA200902528A patent/UA98119C2/en unknown
- 2007-08-09 AP AP2009004789A patent/AP2538A/en active
- 2007-09-21 AR ARP070104185 patent/AR062942A1/en not_active Application Discontinuation
- 2007-09-21 CL CL2007002740A patent/CL2007002740A1/en unknown
-
2009
- 2009-03-19 ZA ZA200901938A patent/ZA200901938B/en unknown
- 2009-03-24 CO CO09030072A patent/CO6170370A2/en active IP Right Grant
-
2013
- 2013-05-23 US US13/901,118 patent/US20130248347A1/en not_active Abandoned
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4124450A (en) * | 1975-11-24 | 1978-11-07 | Pennsylvania Coke Technology, Inc. | Method for producing coke |
| US4287024A (en) * | 1978-06-22 | 1981-09-01 | Thompson Buster R | High-speed smokeless coke oven battery |
| US5114542A (en) * | 1990-09-25 | 1992-05-19 | Jewell Coal And Coke Company | Nonrecovery coke oven battery and method of operation |
| DE4402390C1 (en) * | 1994-01-27 | 1995-05-24 | Didier Werke Ag | Ceramic honeycomb body, for lining furnace walls |
| EP0742276A1 (en) * | 1995-05-12 | 1996-11-13 | Krupp Koppers GmbH | Method for operating a coke oven |
| US6187148B1 (en) * | 1999-03-01 | 2001-02-13 | Pennsylvania Coke Technology, Inc. | Downcomer valve for non-recovery coke oven |
| US20020134659A1 (en) * | 2001-02-14 | 2002-09-26 | Westbrook Richard W. | Coke oven flue gas sharing |
| US8460516B2 (en) * | 2006-09-21 | 2013-06-11 | Uhde Gmbh | Coke oven featuring improved heating properties |
| US8821693B2 (en) * | 2007-12-04 | 2014-09-02 | Thyssenkrupp Uhde Gmbh | Refractory oven doors and refractory oven door framing walls of a coke oven battery |
| US9039869B2 (en) * | 2007-12-18 | 2015-05-26 | Uhde Gmbh | Controllable air ducts for feeding of additional combustion air into the area of flue gas channels of coke oven chambers |
| US9284491B2 (en) * | 2008-05-27 | 2016-03-15 | Thyssenkrupp Industrial Solutions Ag | Device for a directed introduction of primary combustion air into the gas space of a coke battery |
| US9034147B2 (en) * | 2009-04-01 | 2015-05-19 | Thyssenkrupp Uhde Gmbh | Method to reduce heat radiation losses through coke oven chamber doors and walls by adapting the coal cake in height or density |
| US9222025B2 (en) * | 2010-03-03 | 2015-12-29 | Thyssenkrupp Uhde Gmbh | Method and device for coking coal mixtures having high driving pressure properties in a “non-recovery” or “heat-recovery” coking oven |
Non-Patent Citations (1)
| Title |
|---|
| Buss et al., "Thyssen Still Otto/PACT nonrecovery coke making system. Iron and Steel Engineer, January 1999, Pages 33-38. * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020199688A1 (en) * | 2019-04-03 | 2020-10-08 | 中冶焦耐(大连)工程技术有限公司 | Burner heat-preservation structure of coke oven combustion chamber, coke oven combustion chamber and coke oven |
Also Published As
| Publication number | Publication date |
|---|---|
| US20100065412A1 (en) | 2010-03-18 |
| AP2538A (en) | 2012-12-20 |
| CO6170370A2 (en) | 2010-06-18 |
| AR062942A1 (en) | 2008-12-17 |
| KR20090060298A (en) | 2009-06-11 |
| CN101517037B (en) | 2014-07-09 |
| WO2008034493A1 (en) | 2008-03-27 |
| AU2007299334B2 (en) | 2011-10-27 |
| CL2007002740A1 (en) | 2008-05-09 |
| BRPI0717047A2 (en) | 2013-10-15 |
| JP5566107B2 (en) | 2014-08-06 |
| RU2447129C2 (en) | 2012-04-10 |
| DE102006045067A1 (en) | 2008-04-03 |
| EP2064303B1 (en) | 2015-10-14 |
| AU2007299334A1 (en) | 2008-03-27 |
| MX2009003053A (en) | 2009-04-01 |
| ZA200901938B (en) | 2010-03-31 |
| US8460516B2 (en) | 2013-06-11 |
| UA98119C2 (en) | 2012-04-25 |
| TW200817500A (en) | 2008-04-16 |
| JP2010504378A (en) | 2010-02-12 |
| CA2663746A1 (en) | 2008-03-27 |
| NZ575265A (en) | 2012-03-30 |
| AP2009004789A0 (en) | 2009-04-30 |
| EP2064303A1 (en) | 2009-06-03 |
| RU2009114840A (en) | 2010-10-27 |
| CN101517037A (en) | 2009-08-26 |
| TWI439540B (en) | 2014-06-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8460516B2 (en) | Coke oven featuring improved heating properties | |
| US9115313B2 (en) | Floor construction for horizontal coke ovens | |
| MY200733A (en) | Novel coke oven structure and sectional heating combustion method thereof | |
| AU2007299285B2 (en) | Coke oven comprising tertiary heating elements in the gas chamber | |
| US2147681A (en) | Horizontal chamber coke oven | |
| US2853440A (en) | Floor for broad coke ovens and heating flue-structure therefor and method of operating the same | |
| JP2010504379A5 (en) | ||
| US3170851A (en) | Downflow horizontal coking retort oven | |
| US2839453A (en) | Coking retort oven with graduated liner wall | |
| US3953299A (en) | Coke oven having a low burner heating wall and a high burner heating wall | |
| US1269895A (en) | Apparatus for converting beehive-ovens into by-product coke-ovens. | |
| US1704686A (en) | Regenerative heating furnace | |
| US571558A (en) | Gas generator | |
| EP1566427A1 (en) | Method for reinforcing the heating walls of a coke oven battery | |
| US1704229A (en) | Regenerative heating structure | |
| US2407356A (en) | Regenerative coke oven battery | |
| JPH08283735A (en) | Method for promoting dry distillation of coke oven kiln mouth | |
| JP2009019173A (en) | Coke oven operation method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |