US20130150286A1 - Methods and pharmaceutical compositions for the treatment of respiratory tract infections - Google Patents
Methods and pharmaceutical compositions for the treatment of respiratory tract infections Download PDFInfo
- Publication number
- US20130150286A1 US20130150286A1 US13/806,796 US201013806796A US2013150286A1 US 20130150286 A1 US20130150286 A1 US 20130150286A1 US 201013806796 A US201013806796 A US 201013806796A US 2013150286 A1 US2013150286 A1 US 2013150286A1
- Authority
- US
- United States
- Prior art keywords
- seq
- amino acid
- acid sequence
- group
- flagellin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 206010057190 Respiratory tract infections Diseases 0.000 title claims abstract description 34
- 239000008194 pharmaceutical composition Substances 0.000 title claims abstract description 22
- 238000011282 treatment Methods 0.000 title abstract description 34
- 208000020029 respiratory tract infectious disease Diseases 0.000 title abstract description 16
- 101000669460 Homo sapiens Toll-like receptor 5 Proteins 0.000 claims abstract description 69
- 102100039357 Toll-like receptor 5 Human genes 0.000 claims abstract description 68
- 239000000556 agonist Substances 0.000 claims abstract description 28
- 108010040721 Flagellin Proteins 0.000 claims description 139
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 81
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 60
- 229920001184 polypeptide Polymers 0.000 claims description 59
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 52
- 241000894006 Bacteria Species 0.000 claims description 26
- 101800001415 Bri23 peptide Proteins 0.000 claims description 20
- 101800000655 C-terminal peptide Proteins 0.000 claims description 20
- 102400000107 C-terminal peptide Human genes 0.000 claims description 20
- 125000000539 amino acid group Chemical group 0.000 claims description 19
- 241000588724 Escherichia coli Species 0.000 claims description 13
- 229940024606 amino acid Drugs 0.000 claims description 11
- 235000001014 amino acid Nutrition 0.000 claims description 11
- 241000700605 Viruses Species 0.000 claims description 10
- 150000001413 amino acids Chemical class 0.000 claims description 10
- 241000222120 Candida <Saccharomycetales> Species 0.000 claims description 8
- 241000233866 Fungi Species 0.000 claims description 8
- 241000607142 Salmonella Species 0.000 claims description 7
- 108091023037 Aptamer Proteins 0.000 claims description 6
- 241000588698 Erwinia Species 0.000 claims description 6
- 241000588748 Klebsiella Species 0.000 claims description 6
- 241000589516 Pseudomonas Species 0.000 claims description 6
- 241000607720 Serratia Species 0.000 claims description 6
- 239000000443 aerosol Substances 0.000 claims description 6
- 125000006850 spacer group Chemical group 0.000 claims description 6
- 241000606768 Haemophilus influenzae Species 0.000 claims description 5
- 101800000597 N-terminal peptide Proteins 0.000 claims description 5
- 102400000108 N-terminal peptide Human genes 0.000 claims description 5
- 229940047650 haemophilus influenzae Drugs 0.000 claims description 5
- 241000701161 unidentified adenovirus Species 0.000 claims description 5
- 241000228212 Aspergillus Species 0.000 claims description 4
- 241000588914 Enterobacter Species 0.000 claims description 4
- 241000588921 Enterobacteriaceae Species 0.000 claims description 4
- 241000588722 Escherichia Species 0.000 claims description 4
- 206010017533 Fungal infection Diseases 0.000 claims description 4
- 241000589989 Helicobacter Species 0.000 claims description 4
- 208000031888 Mycoses Diseases 0.000 claims description 4
- 241000588769 Proteus <enterobacteria> Species 0.000 claims description 4
- 241000235070 Saccharomyces Species 0.000 claims description 4
- 241000607768 Shigella Species 0.000 claims description 4
- 241000194017 Streptococcus Species 0.000 claims description 4
- 241000187747 Streptomyces Species 0.000 claims description 4
- 239000007921 spray Substances 0.000 claims description 4
- 208000024891 symptom Diseases 0.000 claims description 4
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 claims description 3
- 208000035143 Bacterial infection Diseases 0.000 claims description 3
- 241000235527 Rhizopus Species 0.000 claims description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 3
- 241000191940 Staphylococcus Species 0.000 claims description 3
- 208000036142 Viral infection Diseases 0.000 claims description 3
- 229960001230 asparagine Drugs 0.000 claims description 3
- 235000009582 asparagine Nutrition 0.000 claims description 3
- 208000022362 bacterial infectious disease Diseases 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 claims description 3
- 230000002685 pulmonary effect Effects 0.000 claims description 3
- 238000011200 topical administration Methods 0.000 claims description 3
- 241001430294 unidentified retrovirus Species 0.000 claims description 3
- 230000009385 viral infection Effects 0.000 claims description 3
- 241000235389 Absidia Species 0.000 claims description 2
- 241000589944 Aquaspirillum Species 0.000 claims description 2
- 241000589941 Azospirillum Species 0.000 claims description 2
- 241000589154 Azotobacter group Species 0.000 claims description 2
- 241000606126 Bacteroidaceae Species 0.000 claims description 2
- 241000606660 Bartonella Species 0.000 claims description 2
- 241000604933 Bdellovibrio Species 0.000 claims description 2
- 241000228405 Blastomyces dermatitidis Species 0.000 claims description 2
- 241000589876 Campylobacter Species 0.000 claims description 2
- 241000606161 Chlamydia Species 0.000 claims description 2
- 241000193403 Clostridium Species 0.000 claims description 2
- 241000223205 Coccidioides immitis Species 0.000 claims description 2
- 241001480517 Conidiobolus Species 0.000 claims description 2
- 241001337994 Cryptococcus <scale insect> Species 0.000 claims description 2
- 241000235555 Cunninghamella Species 0.000 claims description 2
- 241000031711 Cytophagaceae Species 0.000 claims description 2
- 241000607473 Edwardsiella <enterobacteria> Species 0.000 claims description 2
- 241000711950 Filoviridae Species 0.000 claims description 2
- 241000710831 Flavivirus Species 0.000 claims description 2
- 241000588731 Hafnia Species 0.000 claims description 2
- 241000205035 Halobacteriaceae Species 0.000 claims description 2
- 241000228404 Histoplasma capsulatum Species 0.000 claims description 2
- 241000588915 Klebsiella aerogenes Species 0.000 claims description 2
- 241000186781 Listeria Species 0.000 claims description 2
- 241000589330 Methylococcaceae Species 0.000 claims description 2
- 241000588771 Morganella <proteobacterium> Species 0.000 claims description 2
- 241000588656 Neisseriaceae Species 0.000 claims description 2
- 241000605012 Oceanospirillum Species 0.000 claims description 2
- 241000713112 Orthobunyavirus Species 0.000 claims description 2
- 241000526686 Paracoccidioides brasiliensis Species 0.000 claims description 2
- 241000606752 Pasteurellaceae Species 0.000 claims description 2
- 241000709664 Picornaviridae Species 0.000 claims description 2
- 241000233872 Pneumocystis carinii Species 0.000 claims description 2
- 241000588767 Proteus vulgaris Species 0.000 claims description 2
- 241000588768 Providencia Species 0.000 claims description 2
- 241001633102 Rhizobiaceae Species 0.000 claims description 2
- 241000235525 Rhizomucor pusillus Species 0.000 claims description 2
- 241000223598 Scedosporium boydii Species 0.000 claims description 2
- 241000607715 Serratia marcescens Species 0.000 claims description 2
- 241000607762 Shigella flexneri Species 0.000 claims description 2
- 241000605008 Spirillum Species 0.000 claims description 2
- 241001149963 Sporothrix schenckii Species 0.000 claims description 2
- 241001568331 Vampirovibrio Species 0.000 claims description 2
- 229940092559 enterobacter aerogenes Drugs 0.000 claims description 2
- 239000003595 mist Substances 0.000 claims description 2
- 229940007042 proteus vulgaris Drugs 0.000 claims description 2
- 241001529453 unidentified herpesvirus Species 0.000 claims description 2
- 241000193830 Bacillus <bacterium> Species 0.000 claims 2
- 241000712891 Arenavirus Species 0.000 claims 1
- 241000702263 Reovirus sp. Species 0.000 claims 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 56
- 108090000623 proteins and genes Proteins 0.000 description 39
- 210000004072 lung Anatomy 0.000 description 32
- 241000699670 Mus sp. Species 0.000 description 26
- 208000015181 infectious disease Diseases 0.000 description 26
- 241000282414 Homo sapiens Species 0.000 description 24
- 230000014509 gene expression Effects 0.000 description 23
- 241001465754 Metazoa Species 0.000 description 22
- 210000003622 mature neutrocyte Anatomy 0.000 description 21
- 239000013598 vector Substances 0.000 description 21
- 230000001580 bacterial effect Effects 0.000 description 19
- 235000018102 proteins Nutrition 0.000 description 19
- 102000004169 proteins and genes Human genes 0.000 description 19
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 18
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 18
- 230000011664 signaling Effects 0.000 description 17
- 208000035109 Pneumococcal Infections Diseases 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- 230000008595 infiltration Effects 0.000 description 13
- 238000001764 infiltration Methods 0.000 description 13
- 210000000440 neutrophil Anatomy 0.000 description 13
- 150000007523 nucleic acids Chemical class 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 230000015788 innate immune response Effects 0.000 description 12
- 210000001744 T-lymphocyte Anatomy 0.000 description 11
- 239000003814 drug Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 230000004083 survival effect Effects 0.000 description 11
- 210000003719 b-lymphocyte Anatomy 0.000 description 10
- 238000010367 cloning Methods 0.000 description 10
- 230000007115 recruitment Effects 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 9
- 230000001404 mediated effect Effects 0.000 description 9
- 108020004707 nucleic acids Proteins 0.000 description 9
- 102000039446 nucleic acids Human genes 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 238000011725 BALB/c mouse Methods 0.000 description 8
- 208000009362 Pneumococcal Pneumonia Diseases 0.000 description 8
- 206010035728 Pneumonia pneumococcal Diseases 0.000 description 8
- 108010076504 Protein Sorting Signals Proteins 0.000 description 8
- 102000002689 Toll-like receptor Human genes 0.000 description 8
- 108020000411 Toll-like receptor Proteins 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 208000022218 streptococcal pneumonia Diseases 0.000 description 8
- 108060003951 Immunoglobulin Proteins 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 102000010168 Myeloid Differentiation Factor 88 Human genes 0.000 description 7
- 108010077432 Myeloid Differentiation Factor 88 Proteins 0.000 description 7
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 7
- 241000193998 Streptococcus pneumoniae Species 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 230000002950 deficient Effects 0.000 description 7
- 239000003623 enhancer Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 102000018358 immunoglobulin Human genes 0.000 description 7
- 210000004962 mammalian cell Anatomy 0.000 description 7
- 210000002345 respiratory system Anatomy 0.000 description 7
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 7
- 238000011579 SCID mouse model Methods 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 239000002158 endotoxin Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 229920006008 lipopolysaccharide Polymers 0.000 description 6
- 108020004999 messenger RNA Proteins 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000009885 systemic effect Effects 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 238000011740 C57BL/6 mouse Methods 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000036755 cellular response Effects 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 230000007123 defense Effects 0.000 description 4
- -1 for example Proteins 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 238000007912 intraperitoneal administration Methods 0.000 description 4
- 230000002147 killing effect Effects 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 238000013421 nuclear magnetic resonance imaging Methods 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 230000000770 proinflammatory effect Effects 0.000 description 4
- 230000000241 respiratory effect Effects 0.000 description 4
- 230000019491 signal transduction Effects 0.000 description 4
- 210000000952 spleen Anatomy 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 3
- 241000304886 Bacilli Species 0.000 description 3
- 241000194108 Bacillus licheniformis Species 0.000 description 3
- 102100036848 C-C motif chemokine 20 Human genes 0.000 description 3
- 102100039398 C-X-C motif chemokine 2 Human genes 0.000 description 3
- 241000222122 Candida albicans Species 0.000 description 3
- 108010012236 Chemokines Proteins 0.000 description 3
- 102000019034 Chemokines Human genes 0.000 description 3
- 108020004635 Complementary DNA Proteins 0.000 description 3
- 241000701022 Cytomegalovirus Species 0.000 description 3
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 3
- 241000709661 Enterovirus Species 0.000 description 3
- 101100390711 Escherichia coli (strain K12) fhuA gene Proteins 0.000 description 3
- 241001302584 Escherichia coli str. K-12 substr. W3110 Species 0.000 description 3
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 102100034221 Growth-regulated alpha protein Human genes 0.000 description 3
- 241000700721 Hepatitis B virus Species 0.000 description 3
- 101000713099 Homo sapiens C-C motif chemokine 20 Proteins 0.000 description 3
- 101000889128 Homo sapiens C-X-C motif chemokine 2 Proteins 0.000 description 3
- 101001069921 Homo sapiens Growth-regulated alpha protein Proteins 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 102100036342 Interleukin-1 receptor-associated kinase 1 Human genes 0.000 description 3
- 101710199015 Interleukin-1 receptor-associated kinase 1 Proteins 0.000 description 3
- 102000004889 Interleukin-6 Human genes 0.000 description 3
- 108090001005 Interleukin-6 Proteins 0.000 description 3
- 244000285963 Kluyveromyces fragilis Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 101100178822 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) htrA1 gene Proteins 0.000 description 3
- 108010057466 NF-kappa B Proteins 0.000 description 3
- 102000003945 NF-kappa B Human genes 0.000 description 3
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 3
- 101100407828 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) ptr-3 gene Proteins 0.000 description 3
- 206010035664 Pneumonia Diseases 0.000 description 3
- 101100277437 Rhizobium meliloti (strain 1021) degP1 gene Proteins 0.000 description 3
- 102000008228 Toll-like receptor 2 Human genes 0.000 description 3
- 108010060888 Toll-like receptor 2 Proteins 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 206010046306 Upper respiratory tract infection Diseases 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 239000006161 blood agar Substances 0.000 description 3
- 238000010804 cDNA synthesis Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000011260 co-administration Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 101150018266 degP gene Proteins 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 108020001096 dihydrofolate reductase Proteins 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 210000003495 flagella Anatomy 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000028709 inflammatory response Effects 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 231100000668 minimum lethal dose Toxicity 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 210000003437 trachea Anatomy 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 2
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 2
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 2
- 102000013563 Acid Phosphatase Human genes 0.000 description 2
- 108010051457 Acid Phosphatase Proteins 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 241000351920 Aspergillus nidulans Species 0.000 description 2
- 241000228245 Aspergillus niger Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 101150102665 CCL20 gene Proteins 0.000 description 2
- 101150093802 CXCL1 gene Proteins 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 101150031350 Cxcl2 gene Proteins 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 102000005731 Glucose-6-phosphate isomerase Human genes 0.000 description 2
- 108010070600 Glucose-6-phosphate isomerase Proteins 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 241000711549 Hepacivirus C Species 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 241000235649 Kluyveromyces Species 0.000 description 2
- 241001138401 Kluyveromyces lactis Species 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 241000144128 Lichtheimia corymbifera Species 0.000 description 2
- 241000239218 Limulus Species 0.000 description 2
- 206010024971 Lower respiratory tract infections Diseases 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 206010030113 Oedema Diseases 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 206010057249 Phagocytosis Diseases 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 101100084022 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) lapA gene Proteins 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- 240000005384 Rhizopus oryzae Species 0.000 description 2
- 235000013752 Rhizopus oryzae Nutrition 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- 101150006914 TRP1 gene Proteins 0.000 description 2
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 2
- 102000008234 Toll-like receptor 5 Human genes 0.000 description 2
- 108010060812 Toll-like receptor 5 Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 108010069584 Type III Secretion Systems Proteins 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 210000003123 bronchiole Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 238000011461 current therapy Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 210000005069 ears Anatomy 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 210000002919 epithelial cell Anatomy 0.000 description 2
- 210000000981 epithelium Anatomy 0.000 description 2
- 101150104647 fljB gene Proteins 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 210000003714 granulocyte Anatomy 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000016784 immunoglobulin production Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000005265 lung cell Anatomy 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 101150093139 ompT gene Proteins 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 210000001539 phagocyte Anatomy 0.000 description 2
- 101150009573 phoA gene Proteins 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000006208 topical dosage form Substances 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 230000002463 transducing effect Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 241000712461 unidentified influenza virus Species 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 101710187573 Alcohol dehydrogenase 2 Proteins 0.000 description 1
- 101710133776 Alcohol dehydrogenase class-3 Proteins 0.000 description 1
- 239000012114 Alexa Fluor 647 Substances 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 241001225321 Aspergillus fumigatus Species 0.000 description 1
- 241001465318 Aspergillus terreus Species 0.000 description 1
- 241000713842 Avian sarcoma virus Species 0.000 description 1
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000222173 Candida parapsilosis Species 0.000 description 1
- 241000222178 Candida tropicalis Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 241001647372 Chlamydia pneumoniae Species 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- 241000588923 Citrobacter Species 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 206010011416 Croup infectious Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N D-alanine Chemical compound C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 241000222175 Diutina rugosa Species 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 241001115402 Ebolavirus Species 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241001646716 Escherichia coli K-12 Species 0.000 description 1
- 241001646719 Escherichia coli O157:H7 Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 102000030595 Glucokinase Human genes 0.000 description 1
- 108010021582 Glucokinase Proteins 0.000 description 1
- 101100508941 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) ppa gene Proteins 0.000 description 1
- 241001149669 Hanseniaspora Species 0.000 description 1
- 101710121697 Heat-stable enterotoxin Proteins 0.000 description 1
- 241000709721 Hepatovirus A Species 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 1
- 101001059454 Homo sapiens Serine/threonine-protein kinase MARK2 Proteins 0.000 description 1
- 241000701109 Human adenovirus 2 Species 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 241000711920 Human orthopneumovirus Species 0.000 description 1
- 206010020983 Hypogammaglobulinaemia Diseases 0.000 description 1
- 101150098378 Il17a gene Proteins 0.000 description 1
- 101150016080 Il17f gene Proteins 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100023533 Interleukin-1 receptor-associated kinase 4 Human genes 0.000 description 1
- 101710199010 Interleukin-1 receptor-associated kinase 4 Proteins 0.000 description 1
- 206010022998 Irritability Diseases 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- 241000710842 Japanese encephalitis virus Species 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 241000481961 Lachancea thermotolerans Species 0.000 description 1
- 241000235651 Lachancea waltii Species 0.000 description 1
- 206010023927 Lassa fever Diseases 0.000 description 1
- 208000032376 Lung infection Diseases 0.000 description 1
- 239000006137 Luria-Bertani broth Substances 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- 241000588655 Moraxella catarrhalis Species 0.000 description 1
- 241000712045 Morbillivirus Species 0.000 description 1
- 208000005647 Mumps Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101100490443 Mus musculus Acvr1 gene Proteins 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 241000202934 Mycoplasma pneumoniae Species 0.000 description 1
- 238000011785 NMRI mouse Methods 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 241000150452 Orthohantavirus Species 0.000 description 1
- 241000702244 Orthoreovirus Species 0.000 description 1
- 238000009004 PCR Kit Methods 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108010087702 Penicillinase Proteins 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108010079855 Peptide Aptamers Proteins 0.000 description 1
- 201000005702 Pertussis Diseases 0.000 description 1
- 201000007100 Pharyngitis Diseases 0.000 description 1
- 102000001105 Phosphofructokinases Human genes 0.000 description 1
- 108010069341 Phosphofructokinases Proteins 0.000 description 1
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000235645 Pichia kudriavzevii Species 0.000 description 1
- 241000711902 Pneumovirus Species 0.000 description 1
- 108010093965 Polymyxin B Proteins 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 208000001431 Psychomotor Agitation Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 108010011939 Pyruvate Decarboxylase Proteins 0.000 description 1
- 102000013009 Pyruvate Kinase Human genes 0.000 description 1
- 108020005115 Pyruvate Kinase Proteins 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 241000711798 Rabies lyssavirus Species 0.000 description 1
- 102000004879 Racemases and epimerases Human genes 0.000 description 1
- 108090001066 Racemases and epimerases Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 206010062106 Respiratory tract infection viral Diseases 0.000 description 1
- 206010038743 Restlessness Diseases 0.000 description 1
- 241000223252 Rhodotorula Species 0.000 description 1
- 241000710799 Rubella virus Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 241000311088 Schwanniomyces Species 0.000 description 1
- 241001123650 Schwanniomyces occidentalis Species 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 102100028904 Serine/threonine-protein kinase MARK2 Human genes 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 101150000629 TGFB1 gene Proteins 0.000 description 1
- 102000003714 TNF receptor-associated factor 6 Human genes 0.000 description 1
- 108090000009 TNF receptor-associated factor 6 Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 102000002933 Thioredoxin Human genes 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102000008235 Toll-Like Receptor 9 Human genes 0.000 description 1
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 1
- 241001149964 Tolypocladium Species 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 1
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 244000000188 Vaccinium ovalifolium Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- 241000235013 Yarrowia Species 0.000 description 1
- 241000710772 Yellow fever virus Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 102000035181 adaptor proteins Human genes 0.000 description 1
- 108091005764 adaptor proteins Proteins 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 210000002821 alveolar epithelial cell Anatomy 0.000 description 1
- 210000001132 alveolar macrophage Anatomy 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 238000001949 anaesthesia Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 238000011203 antimicrobial therapy Methods 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 230000036528 appetite Effects 0.000 description 1
- 235000019789 appetite Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229940091771 aspergillus fumigatus Drugs 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000005983 bone marrow dysfunction Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 229940055022 candida parapsilosis Drugs 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000014564 chemokine production Effects 0.000 description 1
- 238000011098 chromatofocusing Methods 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 201000010549 croup Diseases 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 108091007930 cytoplasmic receptors Proteins 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 102000045719 human TLR5 Human genes 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 101150020087 ilvG gene Proteins 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000014726 immortalization of host cell Effects 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 230000000899 immune system response Effects 0.000 description 1
- 230000028802 immunoglobulin-mediated neutralization Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 210000005007 innate immune system Anatomy 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 231100000636 lethal dose Toxicity 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 239000013586 microbial product Substances 0.000 description 1
- 239000002855 microbicide agent Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000036457 multidrug resistance Effects 0.000 description 1
- 208000010805 mumps infectious disease Diseases 0.000 description 1
- 210000001989 nasopharynx Anatomy 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000000242 pagocytic effect Effects 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229950009506 penicillinase Drugs 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 230000004983 pleiotropic effect Effects 0.000 description 1
- 201000008246 pneumonic tularemia Diseases 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 229920000024 polymyxin B Polymers 0.000 description 1
- 229960005266 polymyxin b Drugs 0.000 description 1
- 108010055896 polyornithine Proteins 0.000 description 1
- 229920002714 polyornithine Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000012383 pulmonary drug delivery Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000019254 respiratory burst Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000000717 sertoli cell Anatomy 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000011272 standard treatment Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 238000010396 two-hybrid screening Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 239000000304 virulence factor Substances 0.000 description 1
- 230000007923 virulence factor Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
- 229940051021 yellow-fever virus Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/164—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0043—Nose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/08—Solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/12—Aerosols; Foams
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/18—Testing for antimicrobial activity of a material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to methods and pharmaceutical compositions for the treatment of respiratory tract infections. More particularly, the present invention relates to a TLR5 agonist for use in a method for treating a respiratory tract infection.
- Respiratory tract infections are common infections of the upper respiratory tract (e.g., nose, ears, sinuses, and throat) and lower respiratory tract (e.g., trachea, bronchial tubes, and lungs). Symptoms of upper respiratory tract infection include runny or stuffy nose, irritability, restlessness, poor appetite, decreased activity level, coughing, and fever.
- Viral respiratory tract infections cause and/or are associated with sore throats, colds, croup, and the flu.
- viruses that cause upper and lower respiratory tract infections include rhinoviruses and influenza viruses A and B.
- Common respiratory bacterial infections cause and/or associated with, for example, whooping cough and strep throat.
- An example of a bacterium that causes upper and lower respiratory tract infections is Streptococcus pneumoniae.
- Streptococcus pneumoniae pneumococcus
- Capsular polysaccharide is the main virulence factor, and its composition defines 91 serotypes of pneumococcus.
- Certain serotypes colonize asymptomatically the human nasopharynx representing a reservoir for inter-individual transmission of the bacteria. In some individuals colonization may progress to pneumococcal pneumonia and invasive disease. In contrast, serotypes like serotype 1 are rarely associated with colonization but cause invasive infections.
- the infection causing microorganism e.g., virus, bacterium, or fungus
- the infection causing microorganism may be resistant or develop resistance to the administered therapeutic agent or combination of therapeutic agents.
- microorganisms that develop resistance to administered therapeutic agents often develop pleiotropic drug or multidrug resistance, that is, resistance to therapeutic agents that act by mechanisms different from the mechanisms of the administered agents.
- pleiotropic drug or multidrug resistance that is, resistance to therapeutic agents that act by mechanisms different from the mechanisms of the administered agents.
- TLR2 Toll-like receptor 2
- TLR4 TLR4
- TLR9 Toll-like receptor 9
- TLR signaling activates mucosal innate responses that culminate with the recruitment of phagocytes like polymorphonuclear neutrophils (PMN) and macrophages and the production of microbicidal agents.
- PMN polymorphonuclear neutrophils
- Modulating immunity by the activity of innate receptors is an emerging concept to elicit protective responses against infections.
- the rationale is to promote innate responses that greatly exceed in magnitude, quality and dynamic the innate response triggered by the pathogen itself.
- the effectiveness of TLR agonists for therapeutic treatment of infectious diseases has been demonstrated in several animal models, including models of respiratory tract infections (Brown, K. L., C. Cosseau, J. L. Gardy and R. E. Hancock 2007. Complexities of targeting innate immunity to treat infection. Trends Immunol 28:260-266; Lembo, A., M. Pelletier, R. Iyer, M. Timko, J. C. Dudda, T. E. West, C. B. Wilson, A. M. Hajjar, and S.
- TLR5 senses bacterial flagellins that are the main constituent of flagella.
- Various cells of the pulmonary tract including the epithelial cells express TLR5 but the modulation of the TLR5 signalling pathway has not yet been investigated for the treatment of respiratory tract infections.
- the present invention relates to methods and pharmaceutical compositions for the treatment of respiratory tract infections. More particularly, the present invention relates to a TLR5 agonist for use in a method for treating a respiratory tract infection.
- Streptococcus pneumoniae is a major cause of pneumonia in infants and the elderly. Innate defenses are essential to control pneumococcal infections and deficient responses can trigger disease in susceptible individuals.
- flagellin can locally activate innate immunity and thereby increase the resistance to acute pneumonia.
- Flagellin mucosal treatment improved S. pneumoniae clearance in the lungs and promoted increased survival to infection.
- lung architecture was fully restored after the treatment of infected mice, indicating that flagellin allows the re-establishment of steady state conditions. Using a flagellin mutant that is unable to signal through TLR5, they established that TLR5 signaling is essential for protection.
- mucosal stimulation of innate immunity by TLR5 also represents a relevant way for the treatment of respiratory tract infections.
- microbial products like non-typeable Haemophilus influenzae lysates that are known to stimulate innate immunity by respiratory route are able to protect against various respiratory infections (Evans S E, Scott B L, Clement C G, Larson D T, Kontoyiannis D, Lewis R E, Lasala P R, Pawlik J, Peterson J W, Chopra A K, Klimpel G, Bowden G, Hook M, Xu Y, Tuvim M J, Dickey B F.
- Stimulated innate resistance of lung epithelium protects mice broadly against bacteria and fungi.
- Am J Respir Cell Mol Biol. 2010; 42:40-50 including S. pneumoniae infections (Clement C G, Evans S E, Evans C M, Hawke D, Kobayashi R, Reynolds P R, Moghaddam S J, Scott B L, Melicoff E, Adachi R, Dickey B F, Tuvim M J. Stimulation of lung innate immunity protects against lethal pneumococcal pneumonia in mice. Am J Respir Crit. Care Med. 2008; 177:1322-30.).
- Such respiratory infections include diseases that are induced by bacteria, viruses and fungi.
- the present invention relates to a TLR5 agonist for use in a method for treating a respiratory tract infection.
- respiratory tract infection has its general meaning in the art and is intended to designated infections of the upper respiratory tract (e.g., nose, ears, sinuses, and throat) and lower respiratory tract (e.g., trachea, bronchial tubes, and lungs) induced by a live microorganism.
- upper respiratory tract e.g., nose, ears, sinuses, and throat
- lower respiratory tract e.g., trachea, bronchial tubes, and lungs
- viruses which cause viral infections include, but are not limited to, retroviruses (e.g., human T-cell lymphotrophic virus (HTLV) types I and II and human immunodeficiency virus (HIV)), herpes viruses (e.g., herpes simplex virus (HSV) types I and II, Epstein-Barr virus, HHV6-HHV8, and cytomegalovirus), arenavirues (e.g., lassa fever virus), paramyxoviruses (e.g., morbillivirus virus, human respiratory syncytial virus, mumps, hMPV, and pneumovirus), adenoviruses, bunyaviruses (e.g., hantavirus), comaviruses, filoviruses (e.g., Ebola virus), flaviviruses (e.g., hepatitis C virus (HCV), yellow fever virus, and Japanese encephalitis virus), hepadnaviruses (
- bacteria which cause bacterial respiratory tract infections include, but not limited to, the Aquaspirillum family, Azospirillum family, Azotobacteraceae family, Bacteroidaceae family, Bartonella species, Bdellovibrio family, Campylobacter species, Chlamydia species (e.g., Chlamydia pneumoniae ), Clostridium , Enterobacteriaceae family (e.g., Citrobacter species, Edwardsiella, Enterobacter aerogenes, Erwinia species, Escherichia coli, Hafnia species, Klebsiella species, Morganella species, Proteus vulgaris, Providencia, Salmonella species, Serratia marcescens , and Shigella flexneri ), Gardinella family, Haemophilus influenzae , Halobacteriaceae family, Helicobacter Family, Legionallaceae family, Listeria species, Methylococcaceae family, mycobacteria (
- fungi which cause fungal infections include, but not limited to, Absidia species (e.g., Absidia corymbifera and Absidia ramosa ), Aspergillus species, (e.g., Aspergillus fiavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger , and Aspergillus terreus ), Blastomyces dermatitidis, Candida species (e.g., Candida albicans, Candida glabrala, Candida ken, Candida krusei, Candida parapsilosis, Candida pseudotropicalis, Candida quillermondii, Candida rugosa, Candida stellatoidea , and Candida tropicalis ), Coccidioides immitis, Conidiobolus species, Cryptococcus neo forms, Cunninghamella species, Histoplasma capsulatum, Mucor pusillus, Paracoccidioides brasiliensis, Pseudalle
- the respiratory tract infection according to the invention is a bacterial respiratory tract infection, more particularly a respiratory tract infection that results from bacteria that do not have flagella.
- bacteria that do not have flagella and cause respiratory tract infection include Streptococcus pneumoniae, Haemophilus influenzae Moraxella catarrhalis , or Mycoplasma pneumoniae .
- the respiratory tract infection according to the invention is a pneumococcal infection.
- TLR5 has its general meaning in the art and is intended to mean a toll-like receptor 5 of any species, but preferably a human toll-like receptor 5.
- a TLR5 Upon activation, a TLR5 induces a cellular response by transducing an intracellular signal that is propagated through a series of signaling molecules from the cell surface to the nucleus.
- the intracellular domain of TLR5 recruits the adaptor protein, MyD88, which recruits the serine/threonine kinases IRAK (IRAK-1 and IRAK-4).
- IRAKs form a complex with TRAF6, which then interacts with various molecules that participate in transducing the TLR signal.
- TLR5 signal transduction pathway components stimulate the activity of transcription factors, such as fos, jun and NF-kB, and the corresponding induction of gene products of fos-, jun- and NF-kB-regulated genes, such as, for example, IL-6, TNF- ⁇ , CXCL1, CXCL2 and CCL20.
- transcription factors such as fos, jun and NF-kB
- gene products of fos-, jun- and NF-kB-regulated genes such as, for example, IL-6, TNF- ⁇ , CXCL1, CXCL2 and CCL20.
- TLR5 agonist refers to a compound (natural or not) that selectively activates or increases normal signal transduction through TLR5.
- a TLR5 agonist can activate or increase normal signal transduction through TLR5 indirectly, for example, by modifying or altering the native conformation of TLR5 or a TLR5 ligand.
- the activities of signalling molecules that mediate the TLR5 signal, as well as molecules produced as a result of TLR5 activation are TLR5 activities that can be observed or measured. Therefore, a TLR5 activity includes recruitment of intracellular signaling molecules, as well as downstream events resulting from TLR5 activation, such as transcription factor activation and production of immunomodulatory molecules.
- TLR5-mediated response mediates an innate immune system response in a subject because cytokines released by TLR5-expressing cells regulate other immune system cells to promote an immune response in a subject. Therefore, as used herein the term “TLR5-mediated response” is intended to mean the ability of TLR5 agonist to induce a TLR5-mediated cellular response.
- Exemplary TLR5-mediated cellular responses include activation of transcription factors such as fos, jun and NF-kB, production of cytokines and chemokines such as IL-6, TNF- ⁇ , CXCL1, CXCL2 and CCL20, and the stimulation of an immune response in a subject.
- the TLR5 agonist according to the invention is a low molecular weight agonist, e.g. a small organic molecule.
- small organic molecule refers to a molecule of a size comparable to those organic molecules generally used in pharmaceuticals. The term excludes biological macromolecules (e.g., proteins, nucleic acids, etc.). Preferred small organic molecules range in size up to about 5000 Da, more preferably up to 2000 Da, and most preferably up to about 1000 Da.
- the TLR5 agonist according to the invention may consist in an antibody (the term including “antibody fragment”).
- the TLR5 agonist may consist in an antibody directed against TLR5, in such a way that said antibody activates the receptor.
- Antibodies can be raised according to known methods by administering the appropriate antigen or epitope to a host animal selected, e.g., from pigs, cows, horses, rabbits, goats, sheep, and mice, among others.
- a host animal selected, e.g., from pigs, cows, horses, rabbits, goats, sheep, and mice, among others.
- Various adjuvants known in the art can be used to enhance antibody production.
- antibodies useful in practicing the invention can be polyclonal, monoclonal antibodies are preferred.
- Monoclonal antibodies can be prepared and isolated using any technique that provides for the production of antibody molecules by continuous cell lines in culture. Techniques for production and isolation include but are not limited to the hybridoma technique; the human B-cell hybridoma technique; and the EBV-hybridoma technique.
- techniques described for the production of single chain antibodies see, e.g., U.S. Pat. No. 4,946,778) can be adapted to produce anti-TLR5
- the TLR5 agonist useful in practicing the present invention also include anti-TLR5 antibody fragments including but not limited to F(ab′)2 fragments, which can be generated by pepsin digestion of an intact antibody molecule, and Fab fragments, which can be generated by reducing the disulfide bridges of the F(ab′)2 fragments.
- anti-TLR5 antibody fragments including but not limited to F(ab′)2 fragments, which can be generated by pepsin digestion of an intact antibody molecule, and Fab fragments, which can be generated by reducing the disulfide bridges of the F(ab′)2 fragments.
- Fab and/or scFv expression libraries can be constructed to allow rapid identification of fragments having the desired specificity to TLR5.
- Humanized antibodies and antibody fragments thereof can also be prepared according to known techniques.
- “Humanized antibodies” are forms of non-human (e.g., rodent) chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin.
- humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region (CDRs) of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity and capacity.
- donor antibody such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity and capacity.
- framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
- humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance.
- the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence.
- the humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
- Fc immunoglobulin constant region
- the TLR5 agonist is an aptamer.
- Aptamers are a class of molecule that represents an alternative to antibodies in term of molecular recognition.
- Aptamers are oligonucleotide or oligopeptide sequences with the capacity to recognize virtually any class of target molecules with high affinity and specificity.
- Such ligands may be isolated through Systematic Evolution of Ligands by EXponential enrichment (SELEX) of a random sequence library, as described in Tuerk C. and Gold L., 1990.
- the random sequence library is obtainable by combinatorial chemical synthesis of DNA. In this library, each member is a linear oligomer, eventually chemically modified, of a unique sequence.
- Peptide aptamers consists of a conformationally constrained antibody variable region displayed by a platform protein, such as E. coli Thioredoxin A that are selected from combinatorial libraries by two hybrid methods.
- the TLR5 agonist according to the invention is a polypeptide, and more particularly a flagellin polypeptide.
- flagellin is intended to mean the flagellin contained in a variety of Gram-positive or Gram-negative bacterial species.
- Non-limiting sources of flagellins include but are not limited to Escherichia , e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella , e.g., Salmonella enterica serovar Typhimurium, Serratia , e.g., Serratia marcescans , and Shigella , as well as Bacilli such as B. subtilis and B. licheniformis, Pseudomonas such as P. aeruginosa , and Streptomyces .
- flagellin sequences and nucleotide sequences of flagellins are publically available in the NCBI Genbank, see for example Accession Nos. AAL20871, NP 310689, BAB58984, AA085383, AAA27090, NP 461698, AAK58560, YP — 001217666, YP — 002151351, YP — 001250079, AAA99807, CAL35450, AAN74969, and BAC44986.
- flagellin sequences from these and other species are intended to be encompassed by the term flagellin as used herein. Therefore, the sequence differences between species are included within the meaning of the term.
- flagellin polypeptide is intended to a flagellin or a fragment thereof that retains the ability to bind and activate TLR5.
- the flagellin polypeptide according to the invention comprises the domains of flagellin involved in TLR5 signaling.
- domain of flagellin includes naturally occurring domain of flagellin and function conservative variants thereof. “Function conservative variants” are those in which a given amino acid residue in a protein or enzyme has been changed without altering the overall conformation and function of the polypeptide, including, but not limited to, replacement of an amino acid with one having similar properties (such as, for example, polarity, hydrogen bonding potential, acidic, basic, hydrophobic, aromatic, and the like).
- Amino acids other than those indicated as conserved may differ in a protein so that the percent protein or amino acid sequence similarity between any two proteins of similar function may vary and may be, for example, from 70% to 99% as determined according to an alignment scheme such as by the Cluster Method, wherein similarity is based on the MEGALIGN algorithm.
- a “function-conservative variant” also includes a polypeptide which has at least 60% amino acid identity as determined by BLAST or FASTA algorithms, preferably at least 75%, most preferably at least 85%, and even more preferably at least 90%, and which has the same or substantially similar properties or functions as the native or parent protein to which it is compared.
- flagellin that are involved in TLR5 signaling are well known in the art, see for example Smith et al. (2003) Nat. Immunol. 4: 1247-1253 (e.g., amino acids 78-129, 135-173 and 394-444 of S. typhimurium flagellin or homologs or modified forms thereof).
- flagellin polypeptides include but are not limited to those described in U.S. Pat. Nos. 6,585,980; 6,130,082; 5,888,810; 5,618,533; and 4,886,748; U.S. Patent Publication No. US 2003/0044429 A1; and in the International Patent Application Publications n° WO 2008097016 and WO 2009156405 which are incorporated by reference.
- An exemplary E. coli O157:H7 flagellin is SEQ ID NO: 1.
- An exemplary S. typhimurium flagellin is SEQ ID NO:2 or SEQ ID NO:3. Amino acid sequences at least about 90%, at least about 95%, at least about 97%, at least about 98% or at least about 99% identical to SEQ ID NO: 1 SEQ ID NO:2 or SEQ ID NO:3 can be used as flagellin polypeptides according to the invention.
- a flagellin polypeptide of the invention may comprise: a) a N-terminal peptide having at least 90% amino acid identity with the amino acid sequence starting from the amino acid residue located at position 1 of SEQ ID NO:3 and ending at an amino acid residue selected from the group consisting of any one of the amino acid residues located at positions 99 to 173 of SEQ ID NO:3; and b) a C-terminal peptide having at least 90% amino acid identity with the amino acid sequence starting at an amino acid residue selected from the group consisting of any one of the amino acid residues located at positions 401 to 406 of SEQ ID NO:3 and ending at the amino acid residue located at position 494 of SEQ ID NO:3, wherein: the said N-terminal peptide is directly linked to the said C-terminal peptide, or the said N-terminal
- said N-terminal peptide is selected from the group consisting of the amino acid sequences 1-99, 1-137, 1-160 and 1-173 of SEQ ID NO:3.
- said C-terminal peptide is selected from the group consisting of the amino acid sequences 401-494 and 406-494 of SEQ ID NO:3.
- said N-terminal and C-terminal peptides consist of the amino acid sequences 1-173 and 401-494 of SEQ ID NO:3, respectively.
- said N-terminal and C-terminal peptides consist of the amino acid sequences 1-160 and 406-494 of SEQ ID NO:3, respectively.
- said N-terminal and C-terminal peptides consist of the amino acid sequences 1-137 and 406-494 of SEQ ID NO:3, respectively.
- said N-terminal peptide and the said C-terminal peptide are indirectly linked, one to the other, through an intermediate spacer chain consisting of a NH2-GIy-AIa-AIa-GIy-COOH (SEQ ID NO:4) peptide sequence.
- the asparagine amino acid residue located at position 488 of SEQ ID NO:3 is replaced by a serine.
- the flagellin polypeptide as above described comprises an additional methionine residue at the N-terminal end.
- the flagellin polypeptide according to the invention may be recombinantly produced by recombinant cells that have been transfected with a nucleic acid that encodes its amino acid sequence and allows its effective production within the transfected cells.
- the nucleic acid sequence encoding the flagellin polypeptide of the invention may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression.
- a replicable vector for cloning (amplification of the DNA) or for expression.
- Various vectors are publicly available.
- the vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage.
- the appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art.
- Vector components generally include, but are not limited to, one or more of a signal sequence if the sequence is to be secreted, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques that are known to the skilled artisan.
- the flagellin polypeptides of the invention may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or peptide.
- a heterologous polypeptide which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or peptide.
- the signal sequence may be a component of the vector, or it may be a part of the DNA encoding the polypeptide of interest that is inserted into the vector.
- the signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin Il leaders.
- the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces .alpha.-factor leaders, the latter described in U.S. Pat. No. 5,010,182), or acid phosphatase leader, the C. albicans glucoamylase leader, or the signal described in WO 90/13646.
- yeast invertase leader alpha factor leader (including Saccharomyces and Kluyveromyces .alpha.-factor leaders, the latter described in U.S. Pat. No. 5,010,182)
- acid phosphatase leader the C. albicans glucoamylase leader
- mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders.
- Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses.
- the origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2.mu. plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV, or BPV) are useful for cloning vectors in mammalian cells.
- Selection genes will typically contain a selection gene, also termed a selectable marker.
- Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.
- suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the nucleic acid encoding the flagellin polypeptide of the invention such as DHFR or thymidine kinase.
- An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77: 4216 (1980).
- a suitable selection gene for use in yeast is the trp 1 gene present in the yeast plasmid YRp7.
- the trp 1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1. Jones, Genetics, 85: 12 (1977).
- Expression and cloning vectors usually contain a promoter operably linked to the nucleic acid sequence encoding the flagellin polypeptide to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the beta-lactamase and lactose promoter systems (Chang et al., Nature, 275: 615 (1978); Goeddel et al., Nature, 281:544 (1979)), alkaline phosphatase, a tryptophan (trp) promoter system (Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776), and hybrid promoters such as the tac promoter (deBoer et al., Proc.
- promoters for use in bacterial systems also will contain a Shine-Dalgarno (S. D.) sequence operably linked to the DNA encoding the flagellin polypeptide of the invention.
- Suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem., 255: 2073 (1980)) or other glycolytic enzymes (Hess et al., J. Adv.
- enolase such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isome
- yeast promoters that are inducible promoters having the additional advantage of transcription controlled by growth conditions are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. Nucleic acid of interest transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowl pox virus (UK 2,211,504 published 5 Jul.
- viruses such as polyoma virus, fowl pox virus (UK 2,211,504 published 5 Jul.
- adenovirus such as Adenovirus 2
- bovine papilloma virus such as Adenovirus 2
- bovine papilloma virus such as avian sarcoma virus
- cytomegalovirus such as a retrovirus
- a retrovirus such as hepatitis-B virus
- Simian Virus 40 SV40
- heterologous mammalian promoters e.g., the actin promoter or an immunoglobulin promoter
- heat-shock promoters provided such promoters are compatible with the host cell systems.
- Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription.
- Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, .alpha.-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus.
- Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
- the enhancer may be spliced into the vector at a position 5′ or 3′ to the sequence coding for polypeptides of interest, but is preferably located at a site 5′ from the promoter.
- Expression vectors used in eukaryotic host cells will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5′ and, occasionally 3′, untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding the flagellin polypeptide of the invention.
- Host cells are transfected or transformed with expression or cloning vectors described herein for flagellin polypeptide production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
- the culture conditions such as media, temperature, pH, and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in Mammalian Cell Biotechnology: A Practical Approach, M. Butler, ed. (IRL Press, 1991).
- transfection Methods of transfection are known to the ordinarily skilled artisan, for example, CaPO4 treatment and electroporation.
- transformation is performed using standard techniques appropriate to such cells.
- the calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers.
- the calcium phosphate precipitation method of Graham and van der Eb, Virology, 52:456-457 (1978) can be employed.
- General aspects of mammalian cell host system transformations have been described in U.S. Pat. No. 4,399,216.
- Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact, 130: 946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76: 3829 (1979).
- other methods for introducing DNA into cells such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene or polyornithine, may also be used.
- polycations e.g., polybrene or polyornithine
- Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells.
- Suitable prokaryotes include, but are not limited to, eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli .
- eubacteria such as Gram-negative or Gram-positive organisms
- Enterobacteriaceae such as E. coli .
- E. coli strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,537); E. coli strain W3110 (ATCC 27,325); and K5772 (ATCC 53,635).
- Other suitable prokaryotic host cells include Enterobacteriaceae such as Escherichia , e.g., E.
- Strain SIN41 of Salmonella typhimurium (fliC fljB), is particularly interesting for the production of flagellin polypeptides of the invention, since these prokaryotic host cells do not secrete any flagellins (Proc Natl Acad Sci USA. 2001; 98:13722-7). However flagellins are secreted through specialized secretion system: the so called “Type III secretion system”. Interestingly, strain SIN41 produces all components of the type III secretion system required for optimal flagellin secretion. Cloning sequence coding new flagellin peptides under fliC promoter enables secretion in large amounts of the flagellin polypeptides of interest in strain SIN41.
- Strain W3110 is also interesting because it is a common host strain for recombinant DNA product fermentations.
- the host cell secretes minimal amounts of proteolytic enzymes.
- strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonA; E. coli W3110 strain 9E4, which has the complete genotype tonA ptr3; E. coli W31 10 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT kan.sup.r; E.
- E. coli W31 10 strain 37D6 which has the complete genotype tona ptr3 phoA E15 (argF-lac)169 degP ompT rbs7 ilvG kan.sup.r; E. coli W31 10 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Pat. No. 4,946,783 issued 7 Aug. 1990.
- coli strains MG1655, MG1655 AfimA-H or MKS12, a fliD- and -f/m>A-/-/-deleted MG1655 strain are also interesting candidates for production of recombinant flagellins as secreted proteins (Nat. Biotechnol. 2005; (4):475-81).
- in vitro methods of cloning e.g., PCR or other nucleic acid polymerase reactions, are suitable.
- eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for vectors encoding the flagellin polypeptides according to the invention.
- Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism.
- K. lactis MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacterid., 737 [1983]
- K. fragilis ATCC 12,424)
- K. bulgaricus ATCC 16,045)
- K. wickeramii ATCC 24,178
- K. waltii ATCC 56,500
- drosophilarum ATCC 36,906; Van den Berg et al., Bio/Technology, 8:135 (1990)), K. thermotolerans , and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28: 265-278 [1988]); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci.
- Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 Oct. 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 Jan. 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112: 284-289 [1983]; Tilburn et al., Gene, 26: 205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci.
- Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis , and Rhodotorula .
- Suitable host cells for the expression of nucleic acid encoding flagellin polypeptide of the invention are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells.
- Examples of useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen. Virol., 36: 59 (1977)); Chinese hamster ovary cells/ ⁇ DHFR(CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)); mouse Sertoli cells (TM4, Mather, Biol.
- Flagellin polypeptide of the invention may be recovered from culture medium or from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g., TRITON-XTM. 100) or by enzymatic cleavage.
- a suitable detergent solution e.g., TRITON-XTM. 100
- Cells employed in expression of nucleic acid encoding the flagellin polypeptide of the invention can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell-lysing agents. It may be desired to purify the polypeptide of interest from recombinant cell proteins or polypeptides.
- the following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; Protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the flagellin polypeptide of the invention.
- the flagellin polypeptide is purified from the supernatant of recombinant S. Typhimurium SIN41 (fliC fljB), as disclosed in Nempont et al. (Nempont, C. C., D.; Rumbo, M.; Bompard, C.; Villeret, V.; Sirard, J. C. 2008. Deletion of flagellin's hypervariable region abrogates antibody-mediated neutralization and systemic activation of TLR5-dependent immunity. J Immunol 181:2036-2043.). In particular, Salmonella were grown in Luria-Bertani (LB) broth for 6-18 hours at 37° C. with agitation.
- LB Luria-Bertani
- the supernatant was filtered and saturated with 60% ammonium sulfate (Sigma Aldrich, USA).
- the precipitated materials were recovered by centrifugation, solubilization in 20 mM Tris/HCl pH7.5 and then dialysis.
- the proteins were further purified by successive rounds of hydroxyapatite, anion exchange, and size exlusion chromatography (Bio-Rad Laboratories, USA; GE Healthcare, Sweden). Lastly, the proteins were depleted of lipopolysaccharide (LPS) using a polymyxin B column (Pierce, USA). Using the Limulus assay (Associates of Cape Cod Inc., USA), the residual LPS concentration was determined to be less than 30 pg LPS per ⁇ g recombinant flagellin.
- a flagellin polypeptide according to the invention may be purified by separation on an immunoaffinity chromatography substrate.
- Said immunoaffinity chromatography substrate comprises anti-flagellin antibodies that have been immobilized thereon.
- anti-flagellin antibodies it is intended herein antibodies that bind to either a native flagellin or to a hypervariable region-deleted flagellin, including those encompassed by the present invention.
- the anti-flagellin antibodies consist of monoclonal antibodies, including mouse anti-flagellin antibodies.
- a polypeptide of the invention may be synthesized through conventional techniques of chemical peptide synthesis.
- flagellin polypeptide sequence of the invention may be produced by direct peptide synthesis using solid-phase techniques.
- In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, with an Applied Biosystems Peptide Synthesizer (Foster City, Calif.) using manufacturer's instructions.
- Automated synthesis may be accomplished, for instance, with an Applied Biosystems Peptide Synthesizer (Foster City, Calif.) using manufacturer's instructions.
- polypeptide of interest may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the full-length peptide of interest.
- the present invention also relates to pharmaceutical compositions for use in a method for treating a respiratory tract infection comprising a TLR5 agonist according to the invention.
- the TLR5 agonists according to the invention may be combined with pharmaceutically acceptable excipients, and optionally sustained-release matrices, such as biodegradable polymers, to form therapeutic compositions.
- pharmaceutically acceptable excipients such as a carboxylate, a carboxylate, a carboxylate, a carboxylate, a carboxylate, a carboxylate, a carboxylate, a carboxylate, a carboxysulfate, a pharmaceutically acceptable graft copolymer, or adiluent, encapsulating material or formulation auxiliary of any type.
- composition of the invention is formulated to be compatible with its intended route of administration.
- routes of administration include, but are not limited to, parenteral, e.g., intravenous, intradermal, subcutaneous, oral, intranasal (e.g., inhalation), transdermal (e.g., topical), transmucosal, and rectal administration.
- the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous, subcutaneous, intramuscular, oral, intranasal, or topical administration to human beings.
- compositions for intravenous administration are solutions in sterile isotonic aqueous buffer.
- the composition may also include a solubilizing agent and a local anesthetic to ease pain at the site of the injection.
- the pharmaceutical composition of the invention is administered topically (i.e. in the respiratory tract of the subject).
- the compositions can be formulated in the form of an ointment, cream, transdermal patch, lotion, gel, spray, aerosol, solution, emulsion, or other form well-known to one of skill in the art.
- viscous to semi-solid or solid forms comprising a carrier or one or more excipients compatible with topical application and having a dynamic viscosity preferably greater than water are typically employed.
- Suitable formulations include, without limitation, solutions, suspensions, emulsions, creams, ointments, powders, liniments, salves, and the like, which are, if desired, sterilized or mixed with auxiliary agents (e.g., preservatives, stabilizers, wetting agents, buffers, or salts) for influencing various properties, such as, for example, osmotic pressure.
- auxiliary agents e.g., preservatives, stabilizers, wetting agents, buffers, or salts
- Other suitable topical dosage forms include sprayable aerosol preparations wherein the active ingredient, preferably in combination with a solid or liquid inert carrier, is packaged in a mixture with a pressurized volatile (e.g., a gaseous propellant, such as freon) or in a squeeze bottle.
- a pressurized volatile e.g., a gaseous propellant, such as freon
- humectants can also be added to pharmaceutical composition
- the composition can be formulated in an aerosol form, spray, mist or in the form of drops.
- prophylactic or therapeutic agents for use according to the present invention can be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant (e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas).
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
- the dosage unit may be determined by providing a valve to deliver a metered amount.
- Capsules and cartridges for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
- the method of the invention may comprise pulmonary administration, e.g., by use of an inhaler or nebulizer, of a composition formulated with an aerosolizing agent.
- pulmonary administration e.g., by use of an inhaler or nebulizer
- a composition formulated with an aerosolizing agent See, e.g., U.S. Pat. Nos. 6,019,968, 5,985,320, 5,985,309, 5,934,272, 5,874,064, 5,855,913, 5,290,540, and 4,880,078; and PCT Publication Nos. WO 92/19244, WO 97/32572, WO 97/44013, WO 98/31346, and WO 99/66903, each of which his incorporated herein by reference in their entirety.
- the pharmaceutical composition of the invention is administered using Alkermes AIRTM pulmonary drug delivery technology (Alkermes, Inc., Cambridge, Mass.).
- the invention provides a method of preventing, treating, managing, or ameliorating a respiratory tract infection or one or more symptoms thereof comprising administering a subject in need thereof with a therapeutically effective amount of a TLR5 agonist.
- the term “subject” or “individual” to be treated is intended for a human or non-human mammal (such as a rodent (mouse, rat), a feline, a canine, or a primate) affected or likely to be affected with cancer.
- a human or non-human mammal such as a rodent (mouse, rat), a feline, a canine, or a primate
- the subject is a human.
- terapéuticaally effective amount is meant for a sufficient amount of polypeptide or nucleic acid in order to treat cancer, at a reasonable benefit/risk ratio applicable to any medical treatment. It will be understood, however, that the total daily usage of the polypeptide and pharmaceutical compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment.
- the specific therapeutically effective dose level for any particular subject will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the polypeptide employed; the specific composition employed, the age, body weight, general health, sex and diet of the subject; the time of administration, route of administration, the duration of the treatment; the drugs used in combination or coincidental with the specific polypeptide employed; and like factors well known in the medical arts.
- Streptococcus pneumoniae serotype 1 (clinical isolate E1586) was obtained from the National Reference Laboratory—Ministry of Health, Republic (39).
- Working stocks were prepared as follows. Todd Hewitt Yeast Broth (THYB) (Sigma-Aldrich, St. Louis—Mo., USA) was inoculated with fresh colonies of S. pneumoniae grown in blood-agar plates, and incubated at 37° C. until the culture reached OD 600nm of 0.7-0.9 units. Cultures were stored at ⁇ 80° C. in THYB+glycerol 12% (v/v) up to 3 months. For mouse infection, working stocks were thawed and washed with sterile physiological saline solution (saline) and diluted to the appropriate concentration. Number of bacteria in stocks was confirmed by plating serial dilutions onto blood agar plates.
- Native flagellin from Salmonella enterica Serovar Typhimurium SIN22, or recombinant flagellins (FliC ⁇ 174-400 and FliC ⁇ 174-400/89-96* ) were prepared as previously described (27).
- FliC ⁇ 174-400/89-96* carries aminoacids substitution (89-96) that prevents TLR5 signaling. All proteins contained low LPS amount (less than 30 pg LPS per ⁇ g, determined with the Limulus assay). In some experiments, trypsin-hydrolyzed FliC (FliC/T) was used as a control. Native FliC was heated for 5 minutes at 65° C. before use to ensure that proteins are mostly monomers.
- mice Female BALB/c, C57BL/6J and outbred NMRI strain (6-8 weeks old) were obtained from the National Division of Veterinary Laboratories (Uruguay) or Janvier laboratories (France).
- Female SCID mice C.B-17 SCID were obtained from Institut Pasteur de Lille breeding facilities. These mice are characterized by the lack of B and T lymphocytes and agammaglobulinaemia. Animals were maintained in individually ventilated cages and handled in a vertical laminar flow cabinet (class II A2, ESCO, Pensylvania-USA) for infection. All experiments complied with current national and institutional regulations and ethical guidelines (CHEA—Universidad de la Rep ⁇ blica, Brazil and #A59107—Institut Pasteur de Lille).
- mice were anaesthetized by intraperitoneal (i.p.) injection of 2.2 mg Ketamine (Richmond-Vet Pharma, Bs. As.—Argentina) plus 0.11 mg Xylazine (Portinco, Montevideo—Uruguay) in a total volume of 200 ⁇ l or by inhalation of Isoflurane (Belamont, SAS, France) using an anaesthesia non-rebreathing system (DRE-Compact 150, DRE Veterinary, Louisville—US). Bacteria and flagellins were administrated onto mice's nostrils in 20 to 50 ⁇ l of saline. Mice survival was recorded daily.
- granulocytes For depletion of granulocytes, 100 ⁇ g of anti-Gr-1 (RB6-8C5) or isotype control (HB152) were administered i.p. 24 h before i.n. challenge with S. pneumoniae (24). The anti-Gr1 injection was found to deplete 96.8 ⁇ 1.2% PMNs in Bronchoalveolar Lavages (BAL) after flagellin intranasal treatment.
- BAL Bronchoalveolar Lavages
- Lungs and spleen were collected at selected time points after intranasal challenge and homogenized with an UltraTurrax homogenizer (IKA-Werke, Staufen-Germany). Viable counts were determined by plating serial dilutions onto blood-agar plates.
- UltraTurrax homogenizer IKA-Werke, Staufen-Germany
- RNA extraction was performed according manufacturer's instructions. Prior to cDNA synthesis, 1 ⁇ g total RNA was treated with DNAse-I (Invitrogen), and first strand complementary DNA (cDNA) synthesis was carried out using random primers (Invitrogen) and M-MLV reverse transcriptase (Invitrogen). Real-time PCR was performed using QuantiTect® SYBR® Green PCR Kit (Qiagen, Hilden-Germany) in a Rotor-Gene 6000 (Corbett, Sydney-Australia) according to the following protocol: 15 min at 95° C.
- bronchoalveolar lavages BAL sampling trachea was cannulated and 1 ml of PBS+1 mM EDTA was instilled six times and recovered by gentle aspiration; this process was repeated twice.
- Cells were suspended in FACS-EDTA buffer (PBS, 0.1% azide, 1% bovine serum albumin from Sigma-Aldrich plus 5 mM EDTA).
- Lung cells were isolated after collagenase/DNAse treatment as previously described (34) and filtered through a 40 ⁇ m cell strainer. Immune cells were separated in a two-layered Percoll (Sigma-Aldrich) gradient.
- cells were suspended in 35% isotonic Percoll solution, carefully placed on top of a 70% isotonic Percoll solution and centrifuged 30 min at 2600 g and RT without brake. Top ring of cells corresponding mostly to epithelial cells was discarded and immune cells were recovered from the ring of cells closest to the 70% Percoll layer. Cells were filtered using a 100 ⁇ m cell strainer washed and stained for FACS analysis.
- Neutrophils were identified by FSC-SSC and positive staining for PE- or Alexa Fluor 647-conjugated anti-Ly-6G (clone 1A8), PerCP-Cy5.5-conjugated anti-Ly-6C (Clone HK1.4) or PE-conjugated anti-CD11b (clone Ml/70) from BD Biosciences or BioLegend, California-USA. After fixation with PFA 4%, flow cytometry data acquisition was performed on a FACS Calibur Cytometer with CellQuest 3.3 software (BD Biosciences).
- Lungs were fixed in 4% formalin (Sigma-Aldrich) for 24 h and then embedded in paraffin. Lung blocks were sectioned at 5 ⁇ m using a Leica microtome (Leica Microsystems, Wetzlar-Germany) and adhered to silanized slides. Hematoxylin/eosin stained sections were analyzed using a Nikon Eclipse 80i microscope and a Nikon DS-Ri1 digital camera and processed using NIS-Elements BR 3.0 software by Laboratory Imaging.
- flagellin to control pneumococcal pneumonia was then assessed by comparing the survival of mice challenged intranasally with S. pneumoniae to mice instilled with flagellin (FliC) and S. pneumoniae .
- FliC flagellin
- mice were also challenged with S. pneumoniae and flagellin previously hydrolyzed with trypsin (FliC/T).
- FliC-treated mice had a survival rate of 75%, while untreated or FliC/T-treated animals died within 3 to 4 days after challenge.
- the protection induced by flagellin ranged from 75 to 100% between different independent experiments. Co-administration of flagellin with S.
- pneumoniae resulted within 24 h in an 80-fold reduction of bacterial counts in the lungs as compared with animals that received S. pneumoniae alone ( FIG. 1B ).
- flagellin could exert a protective response against pneumococcal infection when administered before and after the infection. All animals receiving flagellin intranasally 12 to 24 h before pneumococcal challenge survived, while all control mice died by day 4. Moreover, 100% protection was also achieved when flagellin was administered 24 h after the challenge. Therefore, flagellin shows prophylactic and therapeutic effects in pneumococcal pneumonia.
- flagellin The capacity of flagellin to induce protection was also assessed in C57BL/6 and the outbred strain NMRI.
- the MLD of S. pneumoniae serotype 1 was found to be 2 ⁇ 10 6 CFU for both strains, and flagellin-mediated protection was evaluated with 5xMLD.
- Administration of flagellin 12 h before bacterial challenge induced 80% protection in C57BL/6 mice; similarly, 100% protection was achieved in NMRI animals when flagellin was administered 32 h to 6 h before challenge.
- Flagellin was also protective when co-administered with S. pneumoniae in C57BL/6 and NMRI strains, although to a lower extent (40%). Altogether, these results show that flagellin treatment is protective in different mouse strains.
- flagellin treatment modify the lung transcriptional response to pneumococcal infection.
- Mice were challenged with S. pneumoniae or with S. pneumoniae plus flagellin as before. Another group received flagellin alone as control. Twenty four hours after treatment and infection, lungs were harvested to analyze the expression of selected genes by qRT-PCR. Administration of flagellin alone or in combination with S. pneumoniae provoked a dramatic increase in Cxcl1, Cxcl2 and Ccl20 mRNA levels as compared to pneumococcal challenge.
- Flagellin treatment also increased expression of Tnf; although the difference was consistent, it was not statistically significant. Expression of 116 was increased in animals that were challenged and treated with flagellin but not in those that received flagellin or S.
- Neutrophils recruitment into the airways is a landmark of both pneumococcal infection and nasal flagellin treatment and here we showed that flagellin treatment and infection activated expression of genes involved in neutrophil recruitment.
- flagellin treatment and infection activated expression of genes involved in neutrophil recruitment.
- BAL and lungs were collected at different time points after challenge and stained with an anti-Ly6G antibody.
- Pneumococcal challenge induced recruitment of PMN in all animals.
- mice treated with flagellin at the time of the challenge showed a more rapid and pronounced infiltration of PMN into the airways as compared with mice challenged with S. pneumoniae alone.
- SCID mice deficient for antibodies, B and T cells
- BALB/c mice immunocompetent BALB/c mice were challenged with 2 ⁇ 10 7 CFU of S. pneumoniae or S. pneumoniae with flagellin.
- Lungs and spleen were collected 36 h after infection to determine bacterial counts.
- Flagellin co-administration promoted clearance of bacteria in the lungs of SCID mice to a similar extent than in BALB/c mice.
- SCID and BALB/c mice also showed lower bacterial counts in the spleen upon flagellin treatment meaning that they were able to control not only local, but also systemic infection.
- Innate immunity is essential for controlling pneumococcal infection as shown by TLR as well as MyD88 requirement to prevent early colonization of the respiratory tract by S. pneumoniae (Albiger, B., Sandgren A., Katsuragi H., Meyer-Hoffert U., Beiter K., Wartha F., Hornef M., Normark S, and Normark B. H.2005.
- Myeloid differentiation factor 88-dependent signalling controls bacterial growth during colonization and systemic pneumococcal disease in mice. Cell Microbiol 7:1603-1615.; Khan, A. Q., Q. Chen, Z.-Q. Wu, J. C. Paton, and C. M. Snapper. 2005.
- flagellin upregulates the expression of proinflammatory cytokines.
- coadministration of flagellin at the time of S. pneumoniae challenge also upregulates the expression of the PMN-specific chemokine/activator genes Cxcl1 and Cxcl2 and also Tnf and Ccl20 in the lungs whereas S. pneumoniae alone was poorly inducing these genes.
- analysis of lung tissue sections showed a massive infiltration of cells in the peribroncheal and perivascular regions that was more pronounced in the lungs of flagellin-treated animals than in infected non-treated animals.
- TLR5 response do not only upregulate pro-inflammatory genes but also trigger response termination. Therefore, flagellin mucosal treatment could be considered as a therapy against pneumococcal pneumonia enhancing neutrophil infiltration and concurrent limitation of inflammation that merits further evaluation in clinical trials.
- T and B lymphocytes as well as natural antibodies may play an important role in the early control of pneumococcal pneumonia. It was showed that T lymphocytes accumulate in zones of peribroncheal inflammation at early stages of the immune response and are involved in the defense against pneumococcus since MHC class II-deficient mice lacking CD4 + T cells are more susceptible to infection compared to their wild type counterparts. It was showed that CD19-deficient mice, which have impaired development of B1a cells and natural antibody production, have increased susceptibility to pneumococcal infection. However, the results presented here show that neither T nor B cells are required for flagellin-induced local and systemic clearance of bacteria. Taken together, our results strongly suggest that changing the PMN dynamic results in effective killing of the pneumococci, even in the absence of B and T lymphocytes.
- TLR5 signaling is required for the protection induced by flagellin.
- TLR5 is expressed by alveolar macrophages and epithelial cells, suggesting that these resident cells may be key players in the induction of protective innate defenses against S. pneumoniae upon flagellin treatment.
- the airway epithelium is the TLR5-activated tissue involved in chemokine production and PMN recruitment in response to flagellated bacteria.
- murine neutrophils express TLR5, thus TLR5 signaling may also directly activate PMN and enhance their S. pneumoniae killing capacity.
- heat killed Haemophilus influenzae can specifically increase PMN capacity to kill pneumococcus in a Nod1-dependent manner.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gastroenterology & Hepatology (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Pulmonology (AREA)
- Dispersion Chemistry (AREA)
- Virology (AREA)
- Otolaryngology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
- The present invention relates to methods and pharmaceutical compositions for the treatment of respiratory tract infections. More particularly, the present invention relates to a TLR5 agonist for use in a method for treating a respiratory tract infection.
- Respiratory tract infections are common infections of the upper respiratory tract (e.g., nose, ears, sinuses, and throat) and lower respiratory tract (e.g., trachea, bronchial tubes, and lungs). Symptoms of upper respiratory tract infection include runny or stuffy nose, irritability, restlessness, poor appetite, decreased activity level, coughing, and fever.
- Viral respiratory tract infections cause and/or are associated with sore throats, colds, croup, and the flu. Examples of viruses that cause upper and lower respiratory tract infections include rhinoviruses and influenza viruses A and B.
- Common respiratory bacterial infections cause and/or associated with, for example, whooping cough and strep throat. An example of a bacterium that causes upper and lower respiratory tract infections is Streptococcus pneumoniae. Streptococcus pneumoniae (pneumococcus) causes respiratory tract infections among infants and the elderly worldwide. Capsular polysaccharide is the main virulence factor, and its composition defines 91 serotypes of pneumococcus. Certain serotypes colonize asymptomatically the human nasopharynx representing a reservoir for inter-individual transmission of the bacteria. In some individuals colonization may progress to pneumococcal pneumonia and invasive disease. In contrast, serotypes like
serotype 1 are rarely associated with colonization but cause invasive infections. - Current therapies for respiratory tract infections involve the administration of anti-viral agents, anti-bacterial, and antifungal agents for the treatment, prevention, or amelioration of viral, bacterial, and fungal respiratory tract infections, respectively. Unfortunately, in regard to certain infections, there are no therapies available, infections have been proven to be refractory to therapies, or the occurrence of side effects outweighs the benefits of the administration of a therapy to a subject. The use of anti-bacterial agents for treatment of bacterial respiratory tract infections may also produce side effects or result in resistant bacterial strains. The administration of antifungal agents may cause renal failure or bone marrow dysfunction and may not be effective against fungal infection in subjects with suppressed immune systems. Additionally, the infection causing microorganism (e.g., virus, bacterium, or fungus) may be resistant or develop resistance to the administered therapeutic agent or combination of therapeutic agents. In fact, microorganisms that develop resistance to administered therapeutic agents often develop pleiotropic drug or multidrug resistance, that is, resistance to therapeutic agents that act by mechanisms different from the mechanisms of the administered agents. Thus, as a result of drug resistance, many infections prove refractory to a wide array of standard treatment protocols.
- Therefore, new therapies for the treatment, prevention, management, and/or amelioration of respiratory tract infections and symptoms thereof are needed.
- Activation of innate defences is essential to control pneumococcal infection. Toll-like receptor 2 (TLR2), TLR4 and TLR9 as well as the adaptor MyD88 participate in the early detection and clearance of pneumococcus in the lungs. The cytosolic receptors nucleotide-binding oligomerization domain (Nod) containing Nod1 and Nod2, have also been involved in the recognition of pneumococci. TLR signaling activates mucosal innate responses that culminate with the recruitment of phagocytes like polymorphonuclear neutrophils (PMN) and macrophages and the production of microbicidal agents. This process triggers rapid eradication of the pathogen by phagocytosis as well as extracellular killing. In MyD88-deficient animals S. pneumoniae is unable to intrinsically trigger any PMN recruitment into airways and animals have increased susceptibility to pneumonia. The contribution of TLR signaling in humans has been highlighted by a recent study showing that some MyD88 polymorphisms are associated with increased susceptibility to pneumococcal infection.
- Modulating immunity by the activity of innate receptors is an emerging concept to elicit protective responses against infections. The rationale is to promote innate responses that greatly exceed in magnitude, quality and dynamic the innate response triggered by the pathogen itself. The effectiveness of TLR agonists for therapeutic treatment of infectious diseases has been demonstrated in several animal models, including models of respiratory tract infections (Brown, K. L., C. Cosseau, J. L. Gardy and R. E. Hancock 2007. Complexities of targeting innate immunity to treat infection. Trends Immunol 28:260-266; Lembo, A., M. Pelletier, R. Iyer, M. Timko, J. C. Dudda, T. E. West, C. B. Wilson, A. M. Hajjar, and S. J. Skerrett. 2008. Administration of a synthetic TLR4 agonist protects mice from pneumonic tularemia. J Immunol 180:7574-7581; Romagne, F. 2007. Current and future drugs targeting one class of innate immunity receptors: the Toll-like receptors. Drug Discov Today 12:80-87). TLR5 senses bacterial flagellins that are the main constituent of flagella. Various cells of the pulmonary tract including the epithelial cells express TLR5 but the modulation of the TLR5 signalling pathway has not yet been investigated for the treatment of respiratory tract infections.
- The present invention relates to methods and pharmaceutical compositions for the treatment of respiratory tract infections. More particularly, the present invention relates to a TLR5 agonist for use in a method for treating a respiratory tract infection.
- Streptococcus pneumoniae is a major cause of pneumonia in infants and the elderly. Innate defenses are essential to control pneumococcal infections and deficient responses can trigger disease in susceptible individuals. Here, the inventors showed that flagellin can locally activate innate immunity and thereby increase the resistance to acute pneumonia. Flagellin mucosal treatment improved S. pneumoniae clearance in the lungs and promoted increased survival to infection. In addition, lung architecture was fully restored after the treatment of infected mice, indicating that flagellin allows the re-establishment of steady state conditions. Using a flagellin mutant that is unable to signal through TLR5, they established that TLR5 signaling is essential for protection. In the respiratory tract, flagellin induced neutrophil infiltration into airways and upregulated the expression of genes coding for IL-6, TNF-α, CXCL1, CXCL2 and CCL20. Using depleting antibodies, they demonstrated that neutrophils are major effectors for protection. Further, they found that B and T cell-deficient SCID mice clear S. pneumoniae challenge to the same extent than immunocompetent animals suggesting that these cell populations are not required for flagellin-induced protection. In conclusion, the results emphasize that mucosal stimulation of innate immunity by a TLR not naturally engaged by S. pneumoniae can increase the potency to cure pneumococcal pneumonia. Moreover without whishing to be bound by any particular theory, the inventors believe that mucosal stimulation of innate immunity by TLR5 also represents a relevant way for the treatment of respiratory tract infections. For instance, microbial products like non-typeable Haemophilus influenzae lysates that are known to stimulate innate immunity by respiratory route are able to protect against various respiratory infections (Evans S E, Scott B L, Clement C G, Larson D T, Kontoyiannis D, Lewis R E, Lasala P R, Pawlik J, Peterson J W, Chopra A K, Klimpel G, Bowden G, Hook M, Xu Y, Tuvim M J, Dickey B F. Stimulated innate resistance of lung epithelium protects mice broadly against bacteria and fungi. Am J Respir Cell Mol Biol. 2010; 42:40-50), including S. pneumoniae infections (Clement C G, Evans S E, Evans C M, Hawke D, Kobayashi R, Reynolds P R, Moghaddam S J, Scott B L, Melicoff E, Adachi R, Dickey B F, Tuvim M J. Stimulation of lung innate immunity protects against lethal pneumococcal pneumonia in mice. Am J Respir Crit. Care Med. 2008; 177:1322-30.). Such respiratory infections include diseases that are induced by bacteria, viruses and fungi.
- Therefore, the present invention relates to a TLR5 agonist for use in a method for treating a respiratory tract infection.
- The term “respiratory tract infection” has its general meaning in the art and is intended to designated infections of the upper respiratory tract (e.g., nose, ears, sinuses, and throat) and lower respiratory tract (e.g., trachea, bronchial tubes, and lungs) induced by a live microorganism.
- Examples of viruses which cause viral infections include, but are not limited to, retroviruses (e.g., human T-cell lymphotrophic virus (HTLV) types I and II and human immunodeficiency virus (HIV)), herpes viruses (e.g., herpes simplex virus (HSV) types I and II, Epstein-Barr virus, HHV6-HHV8, and cytomegalovirus), arenavirues (e.g., lassa fever virus), paramyxoviruses (e.g., morbillivirus virus, human respiratory syncytial virus, mumps, hMPV, and pneumovirus), adenoviruses, bunyaviruses (e.g., hantavirus), comaviruses, filoviruses (e.g., Ebola virus), flaviviruses (e.g., hepatitis C virus (HCV), yellow fever virus, and Japanese encephalitis virus), hepadnaviruses (e.g., hepatitis B viruses (HBV)), orthomyoviruses (e.g., influenza viruses A, B and C and PIV), papovaviruses (e.g., papillomavirues), picornaviruses (e.g., rhinoviruses, enteroviruses and hepatitis A viruses), poxviruses, reoviruses (e.g., rotavirues), togaviruses (e.g., rubella virus), and rhabdoviruses (e.g., rabies virus).
- Examples of bacteria which cause bacterial respiratory tract infections include, but not limited to, the Aquaspirillum family, Azospirillum family, Azotobacteraceae family, Bacteroidaceae family, Bartonella species, Bdellovibrio family, Campylobacter species, Chlamydia species (e.g., Chlamydia pneumoniae), Clostridium, Enterobacteriaceae family (e.g., Citrobacter species, Edwardsiella, Enterobacter aerogenes, Erwinia species, Escherichia coli, Hafnia species, Klebsiella species, Morganella species, Proteus vulgaris, Providencia, Salmonella species, Serratia marcescens, and Shigella flexneri), Gardinella family, Haemophilus influenzae, Halobacteriaceae family, Helicobacter Family, Legionallaceae family, Listeria species, Methylococcaceae family, mycobacteria (e.g., Mycobacterium tuberculosis), Neisseriaceae family, Oceanospirillum family, Pasteurellaceae family, Pneumococcus species, Pseudomonas species, Rhizobiaceae family, Spirillum Family, Spirosomaceae family, Staphylococcus (e.g., methicillin resistant Staphylococcus aureus and Staphylococcus pyrogenes), Streptococcus (e.g., Streptococcus enteritidis, Streptococcus Fasciae, and Streptococcus pneumoniae), Vampirovibr Helicobacter Family, and Vampirovibrio family.
- Examples of fungi which cause fungal infections include, but not limited to, Absidia species (e.g., Absidia corymbifera and Absidia ramosa), Aspergillus species, (e.g., Aspergillus fiavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, and Aspergillus terreus), Blastomyces dermatitidis, Candida species (e.g., Candida albicans, Candida glabrala, Candida ken, Candida krusei, Candida parapsilosis, Candida pseudotropicalis, Candida quillermondii, Candida rugosa, Candida stellatoidea, and Candida tropicalis), Coccidioides immitis, Conidiobolus species, Cryptococcus neo forms, Cunninghamella species, Histoplasma capsulatum, Mucor pusillus, Paracoccidioides brasiliensis, Pseudallescheria boydii, Pneumocystis carinii, Rhizopus species (e.g., Rhizopus arrhizus, Rhizopus oryzae, and Rhizopus Microspores), Saccharomyces species, and Sporothrix schenckii.
- In a particular embodiment, the respiratory tract infection according to the invention is a bacterial respiratory tract infection, more particularly a respiratory tract infection that results from bacteria that do not have flagella. Typically, bacteria that do not have flagella and cause respiratory tract infection include Streptococcus pneumoniae, Haemophilus influenzae Moraxella catarrhalis, or Mycoplasma pneumoniae. Even more preferably, the respiratory tract infection according to the invention is a pneumococcal infection.
- As used herein the term “toll-
like receptor 5” or “TLR5” has its general meaning in the art and is intended to mean a toll-like receptor 5 of any species, but preferably a human toll-like receptor 5. Upon activation, a TLR5 induces a cellular response by transducing an intracellular signal that is propagated through a series of signaling molecules from the cell surface to the nucleus. Typically, the intracellular domain of TLR5 recruits the adaptor protein, MyD88, which recruits the serine/threonine kinases IRAK (IRAK-1 and IRAK-4). IRAKs form a complex with TRAF6, which then interacts with various molecules that participate in transducing the TLR signal. These molecules and other TLR5 signal transduction pathway components stimulate the activity of transcription factors, such as fos, jun and NF-kB, and the corresponding induction of gene products of fos-, jun- and NF-kB-regulated genes, such as, for example, IL-6, TNF-α, CXCL1, CXCL2 and CCL20. - As used herein, the term “TLR5 agonist” refers to a compound (natural or not) that selectively activates or increases normal signal transduction through TLR5. A TLR5 agonist can activate or increase normal signal transduction through TLR5 indirectly, for example, by modifying or altering the native conformation of TLR5 or a TLR5 ligand. The activities of signalling molecules that mediate the TLR5 signal, as well as molecules produced as a result of TLR5 activation are TLR5 activities that can be observed or measured. Therefore, a TLR5 activity includes recruitment of intracellular signaling molecules, as well as downstream events resulting from TLR5 activation, such as transcription factor activation and production of immunomodulatory molecules. A TLR5 cellular response mediates an innate immune system response in a subject because cytokines released by TLR5-expressing cells regulate other immune system cells to promote an immune response in a subject. Therefore, as used herein the term “TLR5-mediated response” is intended to mean the ability of TLR5 agonist to induce a TLR5-mediated cellular response. Exemplary TLR5-mediated cellular responses include activation of transcription factors such as fos, jun and NF-kB, production of cytokines and chemokines such as IL-6, TNF-α, CXCL1, CXCL2 and CCL20, and the stimulation of an immune response in a subject.
- In one embodiment, the TLR5 agonist according to the invention is a low molecular weight agonist, e.g. a small organic molecule. The term “small organic molecule” refers to a molecule of a size comparable to those organic molecules generally used in pharmaceuticals. The term excludes biological macromolecules (e.g., proteins, nucleic acids, etc.). Preferred small organic molecules range in size up to about 5000 Da, more preferably up to 2000 Da, and most preferably up to about 1000 Da.
- Alternatively, the TLR5 agonist according to the invention may consist in an antibody (the term including “antibody fragment”). In particular, the TLR5 agonist may consist in an antibody directed against TLR5, in such a way that said antibody activates the receptor.
- Antibodies can be raised according to known methods by administering the appropriate antigen or epitope to a host animal selected, e.g., from pigs, cows, horses, rabbits, goats, sheep, and mice, among others. Various adjuvants known in the art can be used to enhance antibody production. Although antibodies useful in practicing the invention can be polyclonal, monoclonal antibodies are preferred. Monoclonal antibodies can be prepared and isolated using any technique that provides for the production of antibody molecules by continuous cell lines in culture. Techniques for production and isolation include but are not limited to the hybridoma technique; the human B-cell hybridoma technique; and the EBV-hybridoma technique. Alternatively, techniques described for the production of single chain antibodies (see, e.g., U.S. Pat. No. 4,946,778) can be adapted to produce anti-TLR5 single chain antibodies.
- The TLR5 agonist useful in practicing the present invention also include anti-TLR5 antibody fragments including but not limited to F(ab′)2 fragments, which can be generated by pepsin digestion of an intact antibody molecule, and Fab fragments, which can be generated by reducing the disulfide bridges of the F(ab′)2 fragments. Alternatively, Fab and/or scFv expression libraries can be constructed to allow rapid identification of fragments having the desired specificity to TLR5.
- Humanized antibodies and antibody fragments thereof can also be prepared according to known techniques. “Humanized antibodies” are forms of non-human (e.g., rodent) chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region (CDRs) of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity and capacity. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. Methods for making humanized antibodies are described, for example, by Winter (U.S. Pat. No. 5,225,539) and Boss (Celltech, U.S. Pat. No. 4,816,397).
- Then after raising antibodies as above described, the skilled man in the art can easily select those that are TLR5 agonists.
- In another embodiment the TLR5 agonist is an aptamer. Aptamers are a class of molecule that represents an alternative to antibodies in term of molecular recognition. Aptamers are oligonucleotide or oligopeptide sequences with the capacity to recognize virtually any class of target molecules with high affinity and specificity. Such ligands may be isolated through Systematic Evolution of Ligands by EXponential enrichment (SELEX) of a random sequence library, as described in Tuerk C. and Gold L., 1990. The random sequence library is obtainable by combinatorial chemical synthesis of DNA. In this library, each member is a linear oligomer, eventually chemically modified, of a unique sequence. Possible modifications, uses and advantages of this class of molecules have been reviewed in Jayasena S.D., 1999. Peptide aptamers consists of a conformationally constrained antibody variable region displayed by a platform protein, such as E. coli Thioredoxin A that are selected from combinatorial libraries by two hybrid methods.
- Then after raising aptamers directed against TLR5 as above described, the skilled man in the art can easily select those that are TLR5 agonists.
- In another particular embodiment, the TLR5 agonist according to the invention is a polypeptide, and more particularly a flagellin polypeptide.
- As used herein, the term “flagellin” is intended to mean the flagellin contained in a variety of Gram-positive or Gram-negative bacterial species. Non-limiting sources of flagellins include but are not limited to Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella enterica serovar Typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis, Pseudomonas such as P. aeruginosa, and Streptomyces. These examples are illustrative rather than limiting. The amino acid sequences and nucleotide sequences of flagellins are publically available in the NCBI Genbank, see for example Accession Nos. AAL20871, NP 310689, BAB58984, AA085383, AAA27090, NP 461698, AAK58560, YP—001217666, YP—002151351, YP—001250079, AAA99807, CAL35450, AAN74969, and BAC44986. The flagellin sequences from these and other species are intended to be encompassed by the term flagellin as used herein. Therefore, the sequence differences between species are included within the meaning of the term.
- The term “flagellin polypeptide” is intended to a flagellin or a fragment thereof that retains the ability to bind and activate TLR5. Typically, the flagellin polypeptide according to the invention comprises the domains of flagellin involved in TLR5 signaling. The term “domain of flagellin” includes naturally occurring domain of flagellin and function conservative variants thereof. “Function conservative variants” are those in which a given amino acid residue in a protein or enzyme has been changed without altering the overall conformation and function of the polypeptide, including, but not limited to, replacement of an amino acid with one having similar properties (such as, for example, polarity, hydrogen bonding potential, acidic, basic, hydrophobic, aromatic, and the like). Amino acids other than those indicated as conserved may differ in a protein so that the percent protein or amino acid sequence similarity between any two proteins of similar function may vary and may be, for example, from 70% to 99% as determined according to an alignment scheme such as by the Cluster Method, wherein similarity is based on the MEGALIGN algorithm. A “function-conservative variant” also includes a polypeptide which has at least 60% amino acid identity as determined by BLAST or FASTA algorithms, preferably at least 75%, most preferably at least 85%, and even more preferably at least 90%, and which has the same or substantially similar properties or functions as the native or parent protein to which it is compared. The domains of flagellin that are involved in TLR5 signaling are well known in the art, see for example Smith et al. (2003) Nat. Immunol. 4: 1247-1253 (e.g., amino acids 78-129, 135-173 and 394-444 of S. typhimurium flagellin or homologs or modified forms thereof).
- Examples of flagellin polypeptides include but are not limited to those described in U.S. Pat. Nos. 6,585,980; 6,130,082; 5,888,810; 5,618,533; and 4,886,748; U.S. Patent Publication No. US 2003/0044429 A1; and in the International Patent Application Publications n° WO 2008097016 and WO 2009156405 which are incorporated by reference.
- An exemplary E. coli O157:H7 flagellin is SEQ ID NO: 1. An exemplary S. typhimurium flagellin is SEQ ID NO:2 or SEQ ID NO:3. Amino acid sequences at least about 90%, at least about 95%, at least about 97%, at least about 98% or at least about 99% identical to SEQ ID NO: 1 SEQ ID NO:2 or SEQ ID NO:3 can be used as flagellin polypeptides according to the invention.
- In another particular embodiment, the present encompasses use of the flagellin recombinant proteins described in the International Patent Application n° WO 2009156405 which is incorporated by reference in its entirely. Accordingly, a flagellin polypeptide of the invention may comprise: a) a N-terminal peptide having at least 90% amino acid identity with the amino acid sequence starting from the amino acid residue located at
position 1 of SEQ ID NO:3 and ending at an amino acid residue selected from the group consisting of any one of the amino acid residues located at positions 99 to 173 of SEQ ID NO:3; and b) a C-terminal peptide having at least 90% amino acid identity with the amino acid sequence starting at an amino acid residue selected from the group consisting of any one of the amino acid residues located at positions 401 to 406 of SEQ ID NO:3 and ending at the amino acid residue located at position 494 of SEQ ID NO:3, wherein: the said N-terminal peptide is directly linked to the said C-terminal peptide, or the said N-terminal peptide and the said C-terminal peptide are indirectly linked, one to the other, through a spacer chain. In another particular embodiment, said N-terminal peptide is selected from the group consisting of the amino acid sequences 1-99, 1-137, 1-160 and 1-173 of SEQ ID NO:3. In another embodiment, said C-terminal peptide is selected from the group consisting of the amino acid sequences 401-494 and 406-494 of SEQ ID NO:3. In another embodiment, said N-terminal and C-terminal peptides consist of the amino acid sequences 1-173 and 401-494 of SEQ ID NO:3, respectively. In another embodiment, said N-terminal and C-terminal peptides consist of the amino acid sequences 1-160 and 406-494 of SEQ ID NO:3, respectively. In another embodiment, said N-terminal and C-terminal peptides consist of the amino acid sequences 1-137 and 406-494 of SEQ ID NO:3, respectively. In another embodiment, said N-terminal peptide and the said C-terminal peptide are indirectly linked, one to the other, through an intermediate spacer chain consisting of a NH2-GIy-AIa-AIa-GIy-COOH (SEQ ID NO:4) peptide sequence. In another embodiment, the asparagine amino acid residue located at position 488 of SEQ ID NO:3 is replaced by a serine. In another embodiment, the flagellin polypeptide as above described comprises an additional methionine residue at the N-terminal end. - The flagellin polypeptide according to the invention may be recombinantly produced by recombinant cells that have been transfected with a nucleic acid that encodes its amino acid sequence and allows its effective production within the transfected cells.
- The nucleic acid sequence encoding the flagellin polypeptide of the invention, may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art.
- Vector components generally include, but are not limited to, one or more of a signal sequence if the sequence is to be secreted, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques that are known to the skilled artisan.
- The flagellin polypeptides of the invention may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or peptide. In general, the signal sequence may be a component of the vector, or it may be a part of the DNA encoding the polypeptide of interest that is inserted into the vector. The signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin Il leaders. For yeast secretion the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces .alpha.-factor leaders, the latter described in U.S. Pat. No. 5,010,182), or acid phosphatase leader, the C. albicans glucoamylase leader, or the signal described in WO 90/13646. In mammalian cell expression, mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders.
- Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2.mu. plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV, or BPV) are useful for cloning vectors in mammalian cells.
- Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.
- An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the nucleic acid encoding the flagellin polypeptide of the invention such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77: 4216 (1980). A suitable selection gene for use in yeast is the
trp 1 gene present in the yeast plasmid YRp7. Stinchcomb et al., Nature, 282: 39 (1979); Kingsman et al., Gene, 7: 141 (1979); Tschemper et al, Gene, 10: 157 (1980). Thetrp 1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1. Jones, Genetics, 85: 12 (1977). - Expression and cloning vectors usually contain a promoter operably linked to the nucleic acid sequence encoding the flagellin polypeptide to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the beta-lactamase and lactose promoter systems (Chang et al., Nature, 275: 615 (1978); Goeddel et al., Nature, 281:544 (1979)), alkaline phosphatase, a tryptophan (trp) promoter system (Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776), and hybrid promoters such as the tac promoter (deBoer et al., Proc. Natl. Acad. Sci. USA, 80: 21-25 (1983)). promoters for use in bacterial systems also will contain a Shine-Dalgarno (S. D.) sequence operably linked to the DNA encoding the flagellin polypeptide of the invention.
- Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem., 255: 2073 (1980)) or other glycolytic enzymes (Hess et al., J. Adv. Enzyme Reg., 7: 149 (1968); Holland, Biochemistry, 17: 4900 (1978)), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
- Other yeast promoters that are inducible promoters having the additional advantage of transcription controlled by growth conditions are the promoter regions for
alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. Nucleic acid of interest transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowl pox virus (UK 2,211,504 published 5 Jul. 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus, and Simian Virus 40 (SV40); by heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter; and by heat-shock promoters, provided such promoters are compatible with the host cell systems. - Transcription of a DNA encoding the flagellin polypeptide of the invention by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, .alpha.-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a
position 5′ or 3′ to the sequence coding for polypeptides of interest, but is preferably located at asite 5′ from the promoter. - Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5′ and, occasionally 3′, untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding the flagellin polypeptide of the invention.
- Still other methods, vectors, and host cells suitable for adaptation to the synthesis of the flagellin polypeptide of the invention in recombinant vertebrate cell culture are described in Gething et al., Nature, 293: 620-625 (1981); Mantei et al., Nature, 281:40-46 (1979); EP 117,060; and EP 117,058.
- Selection and Transformation of Host Cells Host cells are transfected or transformed with expression or cloning vectors described herein for flagellin polypeptide production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
- The culture conditions, such as media, temperature, pH, and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in Mammalian Cell Biotechnology: A Practical Approach, M. Butler, ed. (IRL Press, 1991).
- Methods of transfection are known to the ordinarily skilled artisan, for example, CaPO4 treatment and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology, 52:456-457 (1978) can be employed. General aspects of mammalian cell host system transformations have been described in U.S. Pat. No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact, 130: 946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76: 3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene or polyornithine, may also be used. For various techniques for transforming mammalian cells, see, Keown et al., Methods in Enzymology, 185: 527-537 (1990) and Mansour et al., Nature, 336: 348-352 (1988).
- Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells.
- Suitable prokaryotes include, but are not limited to, eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli. Various E. coli strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,537); E. coli strain W3110 (ATCC 27,325); and K5772 (ATCC 53,635). Other suitable prokaryotic host cells include Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41 P disclosed in DD 266,710 published 12 Apr. 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. These examples are illustrative rather than limiting.
- Strain SIN41 of Salmonella typhimurium (fliC fljB), is particularly interesting for the production of flagellin polypeptides of the invention, since these prokaryotic host cells do not secrete any flagellins (Proc Natl Acad Sci USA. 2001; 98:13722-7). However flagellins are secreted through specialized secretion system: the so called “Type III secretion system”. Interestingly, strain SIN41 produces all components of the type III secretion system required for optimal flagellin secretion. Cloning sequence coding new flagellin peptides under fliC promoter enables secretion in large amounts of the flagellin polypeptides of interest in strain SIN41.
- Strain W3110 is also interesting because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell secretes minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonA; E. coli W3110 strain 9E4, which has the complete genotype tonA ptr3; E. coli W31 10 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT kan.sup.r; E. coli W31 10 strain 37D6, which has the complete genotype tona ptr3 phoA E15 (argF-lac)169 degP ompT rbs7 ilvG kan.sup.r; E. coli W31 10 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Pat. No. 4,946,783 issued 7 Aug. 1990. The E. coli strains MG1655, MG1655 AfimA-H or MKS12, a fliD- and -f/m>A-/-/-deleted MG1655 strain are also interesting candidates for production of recombinant flagellins as secreted proteins (Nat. Biotechnol. 2005; (4):475-81). Alternatively, in vitro methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.
- In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for vectors encoding the flagellin polypeptides according to the invention. Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism.
- Others include Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published 2 May 1985); Kluyveromyces hosts (U.S. Pat. No. 4,943,529; Fleer et al., Bio/Technology, 9: 968-975 (1991)) such as, e.g., K. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacterid., 737 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., Bio/Technology, 8:135 (1990)), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28: 265-278 [1988]); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76: 5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 Oct. 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 Jan. 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112: 284-289 [1983]; Tilburn et al., Gene, 26: 205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81:1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J., 4: 475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis, and Rhodotorula. Suitable host cells for the expression of nucleic acid encoding flagellin polypeptide of the invention are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells. Examples of useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen. Virol., 36: 59 (1977)); Chinese hamster ovary cells/−DHFR(CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)); mouse Sertoli cells (TM4, Mather, Biol. Reprod., 23:243-251 (1980)); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); and mouse mammary tumor (MMT 060562, ATCC CCL51). The selection of the appropriate host cell is deemed to be within the skill in the art.
- Flagellin polypeptide of the invention may be recovered from culture medium or from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g., TRITON-X™. 100) or by enzymatic cleavage.
- Cells employed in expression of nucleic acid encoding the flagellin polypeptide of the invention can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell-lysing agents. It may be desired to purify the polypeptide of interest from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; Protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the flagellin polypeptide of the invention.
- Various methods of protein purification may be employed and such methods are known in the art and described, for example, in Deutscher, Methods in Enzymology, 182 (1990); Scopes, Protein Purification: Principles and Practice (Springer-Verlag: New York, 1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the particular flagellin polypeptide produced.
- In a preferred embodiment, the flagellin polypeptide is purified from the supernatant of recombinant S. Typhimurium SIN41 (fliC fljB), as disclosed in Nempont et al. (Nempont, C. C., D.; Rumbo, M.; Bompard, C.; Villeret, V.; Sirard, J. C. 2008. Deletion of flagellin's hypervariable region abrogates antibody-mediated neutralization and systemic activation of TLR5-dependent immunity. J Immunol 181:2036-2043.). In particular, Salmonella were grown in Luria-Bertani (LB) broth for 6-18 hours at 37° C. with agitation. The supernatant was filtered and saturated with 60% ammonium sulfate (Sigma Aldrich, USA). The precipitated materials were recovered by centrifugation, solubilization in 20 mM Tris/HCl pH7.5 and then dialysis. The proteins were further purified by successive rounds of hydroxyapatite, anion exchange, and size exlusion chromatography (Bio-Rad Laboratories, USA; GE Healthcare, Sweden). Lastly, the proteins were depleted of lipopolysaccharide (LPS) using a polymyxin B column (Pierce, USA). Using the Limulus assay (Associates of Cape Cod Inc., USA), the residual LPS concentration was determined to be less than 30 pg LPS per μg recombinant flagellin.
- In further embodiments, a flagellin polypeptide according to the invention may be purified by separation on an immunoaffinity chromatography substrate.
- Said immunoaffinity chromatography substrate comprises anti-flagellin antibodies that have been immobilized thereon. By “anti-flagellin” antibodies, it is intended herein antibodies that bind to either a native flagellin or to a hypervariable region-deleted flagellin, including those encompassed by the present invention.
- Preferably, the anti-flagellin antibodies consist of monoclonal antibodies, including mouse anti-flagellin antibodies.
- In certain embodiments, a polypeptide of the invention may be synthesized through conventional techniques of chemical peptide synthesis.
- For instance, the flagellin polypeptide sequence of the invention may be produced by direct peptide synthesis using solid-phase techniques.
- In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, with an Applied Biosystems Peptide Synthesizer (Foster City, Calif.) using manufacturer's instructions.
- Various portions of the polypeptide of interest may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the full-length peptide of interest.
- The present invention also relates to pharmaceutical compositions for use in a method for treating a respiratory tract infection comprising a TLR5 agonist according to the invention.
- Typically, the TLR5 agonists according to the invention may be combined with pharmaceutically acceptable excipients, and optionally sustained-release matrices, such as biodegradable polymers, to form therapeutic compositions. “Pharmaceutically” or “pharmaceutically acceptable” refers to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to a mammal, especially a human. A pharmaceutically acceptable carrier or excipient refers to a non-toxic solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
- The pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include, but are not limited to, parenteral, e.g., intravenous, intradermal, subcutaneous, oral, intranasal (e.g., inhalation), transdermal (e.g., topical), transmucosal, and rectal administration. In a specific embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous, subcutaneous, intramuscular, oral, intranasal, or topical administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic to ease pain at the site of the injection.
- Preferably, the pharmaceutical composition of the invention is administered topically (i.e. in the respiratory tract of the subject). Therefore, the compositions can be formulated in the form of an ointment, cream, transdermal patch, lotion, gel, spray, aerosol, solution, emulsion, or other form well-known to one of skill in the art. For non-sprayable topical dosage forms, viscous to semi-solid or solid forms comprising a carrier or one or more excipients compatible with topical application and having a dynamic viscosity preferably greater than water are typically employed. Suitable formulations include, without limitation, solutions, suspensions, emulsions, creams, ointments, powders, liniments, salves, and the like, which are, if desired, sterilized or mixed with auxiliary agents (e.g., preservatives, stabilizers, wetting agents, buffers, or salts) for influencing various properties, such as, for example, osmotic pressure. Other suitable topical dosage forms include sprayable aerosol preparations wherein the active ingredient, preferably in combination with a solid or liquid inert carrier, is packaged in a mixture with a pressurized volatile (e.g., a gaseous propellant, such as freon) or in a squeeze bottle. Moisturizers or humectants can also be added to pharmaceutical compositions and dosage forms if desired. Examples of such additional ingredients are well-known in the art.
- If the method of the invention comprises intranasal administration of a composition, the composition can be formulated in an aerosol form, spray, mist or in the form of drops. In particular, prophylactic or therapeutic agents for use according to the present invention can be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant (e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas). In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges (composed of, e.g., gelatin) for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
- The method of the invention may comprise pulmonary administration, e.g., by use of an inhaler or nebulizer, of a composition formulated with an aerosolizing agent. See, e.g., U.S. Pat. Nos. 6,019,968, 5,985,320, 5,985,309, 5,934,272, 5,874,064, 5,855,913, 5,290,540, and 4,880,078; and PCT Publication Nos. WO 92/19244, WO 97/32572, WO 97/44013, WO 98/31346, and WO 99/66903, each of which his incorporated herein by reference in their entirety. In a specific embodiment, the pharmaceutical composition of the invention is administered using Alkermes AIR™ pulmonary drug delivery technology (Alkermes, Inc., Cambridge, Mass.).
- Accordingly, the invention provides a method of preventing, treating, managing, or ameliorating a respiratory tract infection or one or more symptoms thereof comprising administering a subject in need thereof with a therapeutically effective amount of a TLR5 agonist.
- According to the invention, the term “subject” or “individual” to be treated is intended for a human or non-human mammal (such as a rodent (mouse, rat), a feline, a canine, or a primate) affected or likely to be affected with cancer. Preferably, the subject is a human.
- The term “therapeutically effective amount” is meant for a sufficient amount of polypeptide or nucleic acid in order to treat cancer, at a reasonable benefit/risk ratio applicable to any medical treatment. It will be understood, however, that the total daily usage of the polypeptide and pharmaceutical compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular subject will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the polypeptide employed; the specific composition employed, the age, body weight, general health, sex and diet of the subject; the time of administration, route of administration, the duration of the treatment; the drugs used in combination or coincidental with the specific polypeptide employed; and like factors well known in the medical arts.
- The invention will be further illustrated by the following figures and examples. However, these examples and figures should not be interpreted in any way as limiting the scope of the present invention.
-
FIG. 1 : Flagellin protects BALB/c mice against a lethal respiratory challenge with S. pneumoniae: BALB/c mice (n=8) were infected i.n. with 4×105 CFU of S. pneumoniae (Sp)serotype 1 in saline alone (black square), or supplemented with 1 μg Flagellin (FliC, black circle) or supplemented with 1 μg trypsin-digested flagellin (FliC/T, open circle). (A) Mice survival was daily monitored. Survival for FliC-treated group was statistically significant compared to saline group or FliC/T-treated group. Results are representative of 1 out of 3 experiments. (B) Mice were sacrificed 24 h after challenge and the number of colony forming units (CFU) was determined in the lungs. Significant differences between groups are marked with asterisk; P<0.05 (*). Results are representative of 1 out of 3 experiments. Error bars represent the mean±Standard error of the mean (SEM). -
FIG. 2 : TLR5 signaling is required for flagellin-mediated protection against S. pneumoniae infection: BALB/c mice (n=8) were infected i.n. with 4×105 CFU of S. pneumoniae (Sp)serotype 1 in saline alone (black square), or supplemented with 1 μg FliC A174-400 (black circle) or with 1 μg FliCΔ174-400/89-96* lacking TLR5-signaling motif (open circle). Mice survival was recorded daily. Survival for FliC A174-400-treated group was statistically significant compared to untreated group or FliCΔ174-400/89-96*-treated group (P<0.05). Results are representative of 1 out of 2 experiments. - Material & Methods
- Bacterial Preparation:
- Streptococcus pneumoniae serotype 1 (clinical isolate E1586) was obtained from the National Reference Laboratory—Ministry of Health, Uruguay (39). Working stocks were prepared as follows. Todd Hewitt Yeast Broth (THYB) (Sigma-Aldrich, St. Louis—Mo., USA) was inoculated with fresh colonies of S. pneumoniae grown in blood-agar plates, and incubated at 37° C. until the culture reached OD600nm of 0.7-0.9 units. Cultures were stored at −80° C. in THYB+glycerol 12% (v/v) up to 3 months. For mouse infection, working stocks were thawed and washed with sterile physiological saline solution (saline) and diluted to the appropriate concentration. Number of bacteria in stocks was confirmed by plating serial dilutions onto blood agar plates.
- Proteins:
- Native flagellin (FliC) from Salmonella enterica Serovar Typhimurium SIN22, or recombinant flagellins (FliCΔ174-400 and FliCΔ174-400/89-96*) were prepared as previously described (27). FliCΔ174-400/89-96* carries aminoacids substitution (89-96) that prevents TLR5 signaling. All proteins contained low LPS amount (less than 30 pg LPS per μg, determined with the Limulus assay). In some experiments, trypsin-hydrolyzed FliC (FliC/T) was used as a control. Native FliC was heated for 5 minutes at 65° C. before use to ensure that proteins are mostly monomers. Unless specified, 1 μg FliC, FliC/T, FliCΔ174-400 or FliCΔ174-400/89-96* was co-administered i.n. with the S. pneumoniae suspension. To exclude any direct effect of flagellin on bacterial viability, viable counts were determined prior and after incubation of S. pneumoniae with the same concentration of flagellin used for the in vivo assay. There were no significant differences in the number of bacteria recovered after incubation with flagellin compared to control condition.
- Animal Infections:
- Female BALB/c, C57BL/6J and outbred NMRI strain (6-8 weeks old) were obtained from the National Division of Veterinary Laboratories (Uruguay) or Janvier laboratories (France). Female SCID mice (C.B-17 SCID) were obtained from Institut Pasteur de Lille breeding facilities. These mice are characterized by the lack of B and T lymphocytes and agammaglobulinaemia. Animals were maintained in individually ventilated cages and handled in a vertical laminar flow cabinet (class II A2, ESCO, Pensylvania-USA) for infection. All experiments complied with current national and institutional regulations and ethical guidelines (CHEA—Universidad de la República, Uruguay and #A59107—Institut Pasteur de Lille). Mice were anaesthetized by intraperitoneal (i.p.) injection of 2.2 mg Ketamine (Richmond-Vet Pharma, Bs. As.—Argentina) plus 0.11 mg Xylazine (Portinco, Montevideo—Uruguay) in a total volume of 200 μl or by inhalation of Isoflurane (Belamont, SAS, France) using an anaesthesia non-rebreathing system (DRE-Compact 150, DRE Veterinary, Louisville—US). Bacteria and flagellins were administrated onto mice's nostrils in 20 to 50 μl of saline. Mice survival was recorded daily.
- For depletion of granulocytes, 100 μg of anti-Gr-1 (RB6-8C5) or isotype control (HB152) were administered i.p. 24 h before i.n. challenge with S. pneumoniae (24). The anti-Gr1 injection was found to deplete 96.8±1.2% PMNs in Bronchoalveolar Lavages (BAL) after flagellin intranasal treatment.
- Determination of Bacterial Load in Lungs and Spleen:
- Lungs and spleen were collected at selected time points after intranasal challenge and homogenized with an UltraTurrax homogenizer (IKA-Werke, Staufen-Germany). Viable counts were determined by plating serial dilutions onto blood-agar plates.
- Quantitative RT-PCR (qRT-PCR):
- Lungs were homogenized in Trizol reagent (Invitrogen, California-USA) with UltraTurrax homogenizer and stored at −80° C. RNA extraction was performed according manufacturer's instructions. Prior to cDNA synthesis, 1 μg total RNA was treated with DNAse-I (Invitrogen), and first strand complementary DNA (cDNA) synthesis was carried out using random primers (Invitrogen) and M-MLV reverse transcriptase (Invitrogen). Real-time PCR was performed using QuantiTect® SYBR® Green PCR Kit (Qiagen, Hilden-Germany) in a Rotor-Gene 6000 (Corbett, Sydney-Australia) according to the following protocol: 15 min at 95° C. followed by 40 cycles at 95° C. for 15 sec and 60° C. for 1 min. Primers were used in a final concentration of 0.9 μM. The expression of the gene of interest was normalized using β-actin as housekeeping gene. Results are presented as fold increase in mRNA levels compared to saline-treated group.
- Determination of PMN Infiltration into the Airways and Lungs:
- For bronchoalveolar lavages (BAL) sampling trachea was cannulated and 1 ml of PBS+1 mM EDTA was instilled six times and recovered by gentle aspiration; this process was repeated twice. Cells were suspended in FACS-EDTA buffer (PBS, 0.1% azide, 1% bovine serum albumin from Sigma-Aldrich plus 5 mM EDTA). Lung cells were isolated after collagenase/DNAse treatment as previously described (34) and filtered through a 40 μm cell strainer. Immune cells were separated in a two-layered Percoll (Sigma-Aldrich) gradient. Briefly, cells were suspended in 35% isotonic Percoll solution, carefully placed on top of a 70% isotonic Percoll solution and centrifuged 30 min at 2600 g and RT without brake. Top ring of cells corresponding mostly to epithelial cells was discarded and immune cells were recovered from the ring of cells closest to the 70% Percoll layer. Cells were filtered using a 100 μm cell strainer washed and stained for FACS analysis. Neutrophils were identified by FSC-SSC and positive staining for PE- or Alexa Fluor 647-conjugated anti-Ly-6G (clone 1A8), PerCP-Cy5.5-conjugated anti-Ly-6C (Clone HK1.4) or PE-conjugated anti-CD11b (clone Ml/70) from BD Biosciences or BioLegend, California-USA. After fixation with
PFA 4%, flow cytometry data acquisition was performed on a FACS Calibur Cytometer with CellQuest 3.3 software (BD Biosciences). - Histological Analysis:
- Lungs were fixed in 4% formalin (Sigma-Aldrich) for 24 h and then embedded in paraffin. Lung blocks were sectioned at 5 μm using a Leica microtome (Leica Microsystems, Wetzlar-Germany) and adhered to silanized slides. Hematoxylin/eosin stained sections were analyzed using a Nikon Eclipse 80i microscope and a Nikon DS-Ri1 digital camera and processed using NIS-Elements BR 3.0 software by Laboratory Imaging.
- Statistical Analysis:
- Log-rank (Mantel-Cox) test was performed for analysis of survival curves. For comparison between two groups Mann-Whitney test was performed. P values<0.05 were considered significant in all cases. Statistical analysis was carried out using GraphPad Prism program (GraphPad Software, San Diego Calif. USA).
- Results
- Intranasal Delivery of Flagellin Protects Mice Against a Lethal Challenge with S. pneumoniae:
- We first determined the minimal dose of S. pneumoniae that causes 100% mortality in BALB/c mice upon intranasal (i.n.) administration. Animals were infected with increasing doses of a clinical isolate of
S. pneumoniae serotype 1 and survival was assessed daily. We defined 4×105 CFU as the minimal lethal dose (MLD) that kills all animals within 72 to 120 h. - The capacity of flagellin to control pneumococcal pneumonia was then assessed by comparing the survival of mice challenged intranasally with S. pneumoniae to mice instilled with flagellin (FliC) and S. pneumoniae. As a control, mice were also challenged with S. pneumoniae and flagellin previously hydrolyzed with trypsin (FliC/T). As shown in
FIG. 1A , FliC-treated mice had a survival rate of 75%, while untreated or FliC/T-treated animals died within 3 to 4 days after challenge. The protection induced by flagellin ranged from 75 to 100% between different independent experiments. Co-administration of flagellin with S. pneumoniae resulted within 24 h in an 80-fold reduction of bacterial counts in the lungs as compared with animals that received S. pneumoniae alone (FIG. 1B ). We also evaluated whether flagellin could exert a protective response against pneumococcal infection when administered before and after the infection. All animals receiving flagellin intranasally 12 to 24 h before pneumococcal challenge survived, while all control mice died byday 4. Moreover, 100% protection was also achieved when flagellin was administered 24 h after the challenge. Therefore, flagellin shows prophylactic and therapeutic effects in pneumococcal pneumonia. - The capacity of flagellin to induce protection was also assessed in C57BL/6 and the outbred strain NMRI. The MLD of
S. pneumoniae serotype 1 was found to be 2×106 CFU for both strains, and flagellin-mediated protection was evaluated with 5xMLD. Administration of flagellin 12 h before bacterial challenge induced 80% protection in C57BL/6 mice; similarly, 100% protection was achieved in NMRI animals when flagellin was administered 32 h to 6 h before challenge. Flagellin was also protective when co-administered with S. pneumoniae in C57BL/6 and NMRI strains, although to a lower extent (40%). Altogether, these results show that flagellin treatment is protective in different mouse strains. - We next addressed whether TLR5 signaling is necessary for the protection elicited by flagellin treatment. For this, we used the recombinant flagellins FliCΔ174-400 and FliCΔ174-400/89-96* (27). FliCΔ174-400 has the same capacity to promote mucosal TLR5 signaling as native flagellin, whereas FliCΔ174-400/89-96* carries mutations that prevents TLR5 signaling. Whereas all mice that received FliCΔ174-400 and S. pneumoniae survived the challenge, none of those receiving the mutant FliCΔ174-400/89-96* did so (
FIG. 2 ). These results strongly suggest that TLR5 signaling is required for protection. - Flagellin Treatment Promotes Pro-Inflammatory Gene Expression and Exacerbates Transient Cellular Infiltration into the Lungs During Pneumococcal Pneumonia:
- We then analyzed whether flagellin treatment modify the lung transcriptional response to pneumococcal infection. Mice were challenged with S. pneumoniae or with S. pneumoniae plus flagellin as before. Another group received flagellin alone as control. Twenty four hours after treatment and infection, lungs were harvested to analyze the expression of selected genes by qRT-PCR. Administration of flagellin alone or in combination with S. pneumoniae provoked a dramatic increase in Cxcl1, Cxcl2 and Ccl20 mRNA levels as compared to pneumococcal challenge. Flagellin treatment also increased expression of Tnf; although the difference was consistent, it was not statistically significant. Expression of 116 was increased in animals that were challenged and treated with flagellin but not in those that received flagellin or S. pneumoniae alone suggesting a synergistic effect between flagellin and pneumococcal infection on 116 expression. mRNA levels of Tgfb1, Il17a, Il17f; Il23 and Il4 genes remained unchanged among all groups compared to mock animals.
- To assess if expression of proinflammatory genes correlated with inflammation and cellular infiltration into the airways, we performed the histological analysis of lung tissue obtained 24 h after flagellin-treatment and infection. S. pneumoniae induced moderate cellular infiltration restricted to certain bronchioles and some perivascular areas close to these bronchioles. On the contrary flagellin treatment, alone or together with the pneumococci, induced edema, and massive infiltration of cells affecting not only perivascular and peribroncheal regions but also some areas of the surrounding lung parenchyma. Remarkably, at
day 7 lungs from mice that received flagellin and pneumococci showed complete resolution of the inflammation with no apparent cellular infiltration or edema. These results suggest that flagellin induces a strong but transient inflammatory response that promotes the clearance of bacteria, without causing permanent alteration of lung morphology or function. - Flagellin-Induced Protection Requires Gr-1 Expressing Cells but is Independent of B and T Lymphocytes:
- Neutrophils recruitment into the airways is a landmark of both pneumococcal infection and nasal flagellin treatment and here we showed that flagellin treatment and infection activated expression of genes involved in neutrophil recruitment. Thus, we aimed at comparing the kinetics of neutrophils infiltration in animals challenged with S. pneumoniae and either treated or not with flagellin. BAL and lungs were collected at different time points after challenge and stained with an anti-Ly6G antibody. Pneumococcal challenge induced recruitment of PMN in all animals. However, mice treated with flagellin at the time of the challenge showed a more rapid and pronounced infiltration of PMN into the airways as compared with mice challenged with S. pneumoniae alone. At 24 h, PMN infiltration peaked whatever the groups, and the difference between groups was maximal. However, by 48 hours the numbers of PMN were no longer significantly different between groups. Thus, co-administration of flagellin with pneumococcus promoted a rapid and transient recruitment of high number of neutrophils into the airways.
- Subsequently, we determined whether neutrophils were critical for the flagellin-mediated protection. For this purpose, animals were injected i.p. with a monoclonal antibody specific for granulocyte receptor-1 (Gr-1 or Ly6G/Ly6C) or isotype control antibody 24 h before challenge. Animals that received isotype control and were treated with FliC survived to challenge. In contrast, anti-Gr-1 treatment depleted >95% neutrophils from the airways and abrogated flagellin-mediated protection against S. pneumoniae. These results showed that Gr-1-expressing cells, likely PMN, are critical effectors of flagellin-induced protection in pneumococcal infection.
- As B and T lymphocytes have been involved in the early phase of pneumococcal infection, we evaluated their role in flagellin-induced protection. SCID mice (deficient for antibodies, B and T cells) as well as immunocompetent BALB/c mice were challenged with 2×107 CFU of S. pneumoniae or S. pneumoniae with flagellin. Lungs and spleen were collected 36 h after infection to determine bacterial counts. Flagellin co-administration promoted clearance of bacteria in the lungs of SCID mice to a similar extent than in BALB/c mice. Both SCID and BALB/c mice also showed lower bacterial counts in the spleen upon flagellin treatment meaning that they were able to control not only local, but also systemic infection. SCID mice recruited similar numbers of PMN into the lungs and alveolar spaces 16 h upon instillation of flagellin when compared to BALB/c mice. In summary, these results show that Gr-1-expressing cells require neither B cells nor T lymphocytes to trigger flagellin-induced protection.
- Discussion:
- Innate immunity is essential for controlling pneumococcal infection as shown by TLR as well as MyD88 requirement to prevent early colonization of the respiratory tract by S. pneumoniae (Albiger, B., Sandgren A., Katsuragi H., Meyer-Hoffert U., Beiter K., Wartha F., Hornef M., Normark S, and Normark B. H.2005. Myeloid differentiation factor 88-dependent signalling controls bacterial growth during colonization and systemic pneumococcal disease in mice. Cell Microbiol 7:1603-1615.; Khan, A. Q., Q. Chen, Z.-Q. Wu, J. C. Paton, and C. M. Snapper. 2005. Both innate immunity and
type 1 humoral immunity to Streptococcus pneumoniae are mediated by MyD88 but differ in their relative levels of dependence on Toll-Like Receptor 2. Infect. Immun. 73:298-307.). Immune response to airway pneumococcal infection is characterized by a great and brisk recruitment of neutrophils into the lungs, and phagocytic killing of pneumococcus by PMN is considered a major defense mechanism. Nevertheless, S. pneumoniae can evade host's innate defenses by inhibiting or delaying complement deposition and respiratory burst of phagocytes. Hence, the neutrophil influx is often ineffective in clearing the infection until serotype-specific antibodies are produced and bypass complement deposition inhibition enhancing opsono-phagocytosis. In this study we assessed whether exogenous administration of an agonist of a TLR not naturally engaged by S. pneumoniae, namely TLR5 agonist flagellin, could strength innate immunity to control acute respiratory pneumococcal infection. We found that local administration of flagellin promoted survival of mice challenged with a lethal dose ofS. pneumoniae serotype 1 by enhancing local and systemic bacterial clearance. Flagellin treatment was effective when performed before, during and after infection establishment in the BALB/c, C57BL/6 and NMRI mice. - It has been demonstrated that in vivo administration of flagellin upregulates the expression of proinflammatory cytokines. Here we show that coadministration of flagellin at the time of S. pneumoniae challenge also upregulates the expression of the PMN-specific chemokine/activator genes Cxcl1 and Cxcl2 and also Tnf and Ccl20 in the lungs whereas S. pneumoniae alone was poorly inducing these genes. In agreement with the chemokine and cytokine expression profile, analysis of lung tissue sections showed a massive infiltration of cells in the peribroncheal and perivascular regions that was more pronounced in the lungs of flagellin-treated animals than in infected non-treated animals. Noteworthy, despite the pronounced inflammatory response induced by flagellin, lung tissue was fully recovered by
day 7, while untreated animals died of infection. The analysis of BAL samples suggested that administration of the TLR5 agonist at the time of pneumococcal challenge induced accelerated and more pronounced PMN recruitment. PMN infiltration was transient, peaked at 24 h and regressed to steady state levels at 40 h. Depletion of Gr-1-expressing cells, most likely PMN, abolished the protection demonstrating that these cells are necessary for controlling pneumococcal lung infection. The self-limiting nature of the flagellin-mediated inflammatory response is a very relevant finding since exacerbated inflammation could be associated to failure of lung barrier and function. The molecular mechanisms controlling TLR5 response do not only upregulate pro-inflammatory genes but also trigger response termination. Therefore, flagellin mucosal treatment could be considered as a therapy against pneumococcal pneumonia enhancing neutrophil infiltration and concurrent limitation of inflammation that merits further evaluation in clinical trials. - Besides PMN, several studies have also reported that T and B lymphocytes as well as natural antibodies may play an important role in the early control of pneumococcal pneumonia. It was showed that T lymphocytes accumulate in zones of peribroncheal inflammation at early stages of the immune response and are involved in the defense against pneumococcus since MHC class II-deficient mice lacking CD4+ T cells are more susceptible to infection compared to their wild type counterparts. It was showed that CD19-deficient mice, which have impaired development of B1a cells and natural antibody production, have increased susceptibility to pneumococcal infection. However, the results presented here show that neither T nor B cells are required for flagellin-induced local and systemic clearance of bacteria. Taken together, our results strongly suggest that changing the PMN dynamic results in effective killing of the pneumococci, even in the absence of B and T lymphocytes.
- Our results also showed that TLR5 signaling is required for the protection induced by flagellin. In the airways, TLR5 is expressed by alveolar macrophages and epithelial cells, suggesting that these resident cells may be key players in the induction of protective innate defenses against S. pneumoniae upon flagellin treatment. In line with this, recent studies suggested that the airway epithelium is the TLR5-activated tissue involved in chemokine production and PMN recruitment in response to flagellated bacteria. On the other hand murine neutrophils express TLR5, thus TLR5 signaling may also directly activate PMN and enhance their S. pneumoniae killing capacity. In a similar fashion, it was previously established that heat killed Haemophilus influenzae can specifically increase PMN capacity to kill pneumococcus in a Nod1-dependent manner.
- Current therapies for prophylaxis and treatment of S. pneumoniae infection have limitations in preventing or curing pneumococcal disease, thus new strategies of immune-intervention are still required. Several reports have shown that administration of bacterial lysates and whole heat killed bacteria stimulate protective responses against infection. However, the undefined nature of these preparations is usually a problem when designing drugs for human use. Our results showed that local stimulation with a single and well characterized molecule, specifically flagellin, is sufficient for augmenting lung innate immune defenses and control pneumococcal pneumonia, highlighting the benefits of using Microbe-Associated Molecular Patterns as the basis for developing antimicrobial therapies.
- Throughout this application, various references describe the state of the art to which this invention pertains. The disclosures of these references are hereby incorporated by reference into the present disclosure.
Claims (32)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/IB2010/001911 WO2011161491A1 (en) | 2010-06-25 | 2010-06-25 | Methods and pharmaceutical compositions for the treatment of respiratory tract infections |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2010/001911 A-371-Of-International WO2011161491A1 (en) | 2010-06-25 | 2010-06-25 | Methods and pharmaceutical compositions for the treatment of respiratory tract infections |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/185,077 Continuation US10426816B2 (en) | 2010-06-25 | 2014-02-20 | Methods and pharmaceutical compositions for the treatment of respiratory tract infections |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130150286A1 true US20130150286A1 (en) | 2013-06-13 |
Family
ID=43447689
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/806,796 Abandoned US20130150286A1 (en) | 2010-06-25 | 2010-06-25 | Methods and pharmaceutical compositions for the treatment of respiratory tract infections |
| US14/185,077 Active 2032-03-07 US10426816B2 (en) | 2010-06-25 | 2014-02-20 | Methods and pharmaceutical compositions for the treatment of respiratory tract infections |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/185,077 Active 2032-03-07 US10426816B2 (en) | 2010-06-25 | 2014-02-20 | Methods and pharmaceutical compositions for the treatment of respiratory tract infections |
Country Status (9)
| Country | Link |
|---|---|
| US (2) | US20130150286A1 (en) |
| EP (1) | EP2585094B1 (en) |
| JP (1) | JP5746761B2 (en) |
| KR (1) | KR101768118B1 (en) |
| CN (1) | CN103037887B (en) |
| BR (1) | BR112012033121B1 (en) |
| CA (1) | CA2800206C (en) |
| ES (1) | ES2690760T3 (en) |
| WO (1) | WO2011161491A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110008379A1 (en) * | 2007-10-17 | 2011-01-13 | The University Court Of The University Of Edinburgh | Immunogenic compositions containing escherichia coli h7 flagella and methods of use thereof |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3024476A1 (en) * | 2013-07-26 | 2016-06-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the treatment of bacterial infections |
| ES2809598T3 (en) * | 2014-12-23 | 2021-03-04 | Inst Nat Sante Rech Med | Pharmaceutical compositions for the treatment of post-influenza bacterial superinfections |
| EP3236989A1 (en) * | 2014-12-24 | 2017-11-01 | INSERM - Institut National de la Santé et de la Recherche Médicale | Methods and pharmaceutical compositions for the treatment of acute exacerbations of chronic obstructive pulmonary disease |
| KR102540830B1 (en) * | 2020-11-06 | 2023-06-05 | 이화여자대학교 산학협력단 | Streptomyces sp. strain having antiviral effects and Composition for antivirus comprising the same |
| WO2022098133A1 (en) * | 2020-11-06 | 2022-05-12 | 이화여자대학교 산학협력단 | Streptomyces sp. strain having antiviral efficacy and antiviral composition comprising same |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060257415A1 (en) * | 2002-09-03 | 2006-11-16 | Fondation Eurov Acc | Adjuvants |
Family Cites Families (40)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4399216A (en) | 1980-02-25 | 1983-08-16 | The Trustees Of Columbia University | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
| ZA811368B (en) | 1980-03-24 | 1982-04-28 | Genentech Inc | Bacterial polypedtide expression employing tryptophan promoter-operator |
| NZ201705A (en) | 1981-08-31 | 1986-03-14 | Genentech Inc | Recombinant dna method for production of hepatitis b surface antigen in yeast |
| US4943529A (en) | 1982-05-19 | 1990-07-24 | Gist-Brocades Nv | Kluyveromyces as a host strain |
| AU2353384A (en) | 1983-01-19 | 1984-07-26 | Genentech Inc. | Amplification in eukaryotic host cells |
| US4713339A (en) | 1983-01-19 | 1987-12-15 | Genentech, Inc. | Polycistronic expression vector construction |
| GB8308235D0 (en) | 1983-03-25 | 1983-05-05 | Celltech Ltd | Polypeptides |
| DD266710A3 (en) | 1983-06-06 | 1989-04-12 | Ve Forschungszentrum Biotechnologie | Process for the biotechnical production of alkaline phosphatase |
| AU3145184A (en) | 1983-08-16 | 1985-02-21 | Zymogenetics Inc. | High expression of foreign genes in schizosaccharomyces pombe |
| US4879231A (en) | 1984-10-30 | 1989-11-07 | Phillips Petroleum Company | Transformation of yeasts of the genus pichia |
| ES2060580T3 (en) | 1986-03-11 | 1994-12-01 | Shionogi & Co | DNA THAT HAS A DNA CODING SEQUENCE OF FLAGELINE PROTEIN AND A VECTOR THAT CONTAINS IT. |
| US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
| GB8610600D0 (en) | 1986-04-30 | 1986-06-04 | Novo Industri As | Transformation of trichoderma |
| US4946778A (en) | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
| US4946783A (en) | 1987-01-30 | 1990-08-07 | President And Fellows Of Harvard College | Periplasmic protease mutants of Escherichia coli |
| US4880078A (en) | 1987-06-29 | 1989-11-14 | Honda Giken Kogyo Kabushiki Kaisha | Exhaust muffler |
| US5010182A (en) | 1987-07-28 | 1991-04-23 | Chiron Corporation | DNA constructs containing a Kluyveromyces alpha factor leader sequence for directing secretion of heterologous polypeptides |
| GB8724885D0 (en) | 1987-10-23 | 1987-11-25 | Binns M M | Fowlpox virus promotors |
| US6130082A (en) | 1988-05-05 | 2000-10-10 | American Cyanamid Company | Recombinant flagellin vaccines |
| FR2646437B1 (en) | 1989-04-28 | 1991-08-30 | Transgene Sa | NOVEL DNA SEQUENCES, THEIR APPLICATION AS A SEQUENCE ENCODING A SIGNAL PEPTIDE FOR THE SECRETION OF MATURE PROTEINS BY RECOMBINANT YEASTS, EXPRESSION CASSETTES, PROCESSED YEASTS AND PROCESS FOR PREPARING THE SAME |
| EP0394538B1 (en) | 1989-04-28 | 1996-10-16 | Rhein Biotech Gesellschaft Für Neue Biotechnologische Prozesse Und Produkte Mbh | A yeast cell of the genus schwanniomyces |
| EP0402226A1 (en) | 1989-06-06 | 1990-12-12 | Institut National De La Recherche Agronomique | Transformation vectors for yeast yarrowia |
| FR2649120B1 (en) | 1989-06-30 | 1994-01-28 | Cayla | NOVEL STRAIN AND ITS MUTANTS OF FILAMENTOUS MUSHROOMS, PROCESS FOR PRODUCING RECOMBINANT PROTEINS USING SAID STRAIN, AND STRAINS AND PROTEINS OBTAINED BY SAID METHOD |
| US5290540A (en) | 1991-05-01 | 1994-03-01 | Henry M. Jackson Foundation For The Advancement Of Military Medicine | Method for treating infectious respiratory diseases |
| US5618533A (en) | 1992-02-11 | 1997-04-08 | Yale University | Flagellin-based polypeptides for the diagnosis of lyme disease |
| US5934272A (en) | 1993-01-29 | 1999-08-10 | Aradigm Corporation | Device and method of creating aerosolized mist of respiratory drug |
| US5888810A (en) | 1993-11-12 | 1999-03-30 | The United States Of America As Represented By The Secretary Of Agriculture | Campylobacteri jejuni flagellin-escherichia coli LT-B fusion protein |
| US6019968A (en) | 1995-04-14 | 2000-02-01 | Inhale Therapeutic Systems, Inc. | Dispersible antibody compositions and methods for their preparation and use |
| PT885002E (en) | 1996-03-04 | 2011-07-14 | Massachusetts Inst Technology | Materials and methods for enhancing cellular internalization |
| US5874064A (en) | 1996-05-24 | 1999-02-23 | Massachusetts Institute Of Technology | Aerodynamically light particles for pulmonary drug delivery |
| US5985309A (en) | 1996-05-24 | 1999-11-16 | Massachusetts Institute Of Technology | Preparation of particles for inhalation |
| US5855913A (en) | 1997-01-16 | 1999-01-05 | Massachusetts Instite Of Technology | Particles incorporating surfactants for pulmonary drug delivery |
| EP0954282B1 (en) | 1997-01-16 | 2005-01-19 | Massachusetts Institute Of Technology | Preparation of particles for inhalation |
| US6211159B1 (en) | 1997-04-11 | 2001-04-03 | University Of Toronto | Flagellin gene, FlaC of campylobacter |
| ATE238768T1 (en) | 1998-06-24 | 2003-05-15 | Advanced Inhalation Res Inc | LARGE POROUS PARTICLES EXPECTED FROM AN INHALER |
| AUPQ761200A0 (en) * | 2000-05-19 | 2000-06-15 | Hunter Immunology Limited | Compositions and methods for treatment of mucosal infections |
| DE60141773D1 (en) | 2001-04-20 | 2010-05-20 | Inst Systems Biology | GREAT SIMILAR RECEPTOR 5-LIGANDS AND USE PROCESS |
| EP2121734B1 (en) | 2007-02-09 | 2013-05-08 | Industry Foundation of Chonam National University | Modified flagellin improved toll-like receptor 5 stimulating activity |
| US20090297552A1 (en) * | 2008-04-25 | 2009-12-03 | Aderem Alan A | Flagellin polypeptide vaccines |
| EP2695941B1 (en) * | 2008-06-25 | 2015-07-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Novel immunoadjuvant flagellin-based compounds and use thereof |
-
2010
- 2010-06-25 US US13/806,796 patent/US20130150286A1/en not_active Abandoned
- 2010-06-25 WO PCT/IB2010/001911 patent/WO2011161491A1/en not_active Ceased
- 2010-06-25 KR KR1020137001996A patent/KR101768118B1/en active Active
- 2010-06-25 JP JP2013515977A patent/JP5746761B2/en active Active
- 2010-06-25 ES ES10779841.5T patent/ES2690760T3/en active Active
- 2010-06-25 EP EP10779841.5A patent/EP2585094B1/en active Active
- 2010-06-25 CN CN201080067699.3A patent/CN103037887B/en active Active
- 2010-06-25 CA CA2800206A patent/CA2800206C/en active Active
- 2010-06-25 BR BR112012033121-3A patent/BR112012033121B1/en active IP Right Grant
-
2014
- 2014-02-20 US US14/185,077 patent/US10426816B2/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060257415A1 (en) * | 2002-09-03 | 2006-11-16 | Fondation Eurov Acc | Adjuvants |
Non-Patent Citations (4)
| Title |
|---|
| Accession number AAL20871.1 * |
| Burdelya et al. (Science, 2008, Vol 320: pp. 226-230) * |
| Intranasal Delivery (Accessed 11/21/13) * |
| Nempont et al. (J. Immunol 2008; 181: 2036-2043 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110008379A1 (en) * | 2007-10-17 | 2011-01-13 | The University Court Of The University Of Edinburgh | Immunogenic compositions containing escherichia coli h7 flagella and methods of use thereof |
| US9193770B2 (en) * | 2007-10-17 | 2015-11-24 | The University Court Of The University Of Edinburgh | Immunogenic compositions containing Escherichia coli H7 flagella and methods of use thereof |
| US10363297B2 (en) | 2007-10-17 | 2019-07-30 | The University Court Of The University Of Edinburgh | Immunogenic compositions containing Escherichia coli H7 flagella and methods of use thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| US10426816B2 (en) | 2019-10-01 |
| CA2800206C (en) | 2018-06-05 |
| US20140206601A1 (en) | 2014-07-24 |
| KR101768118B1 (en) | 2017-08-14 |
| ES2690760T3 (en) | 2018-11-22 |
| CN103037887A (en) | 2013-04-10 |
| EP2585094B1 (en) | 2018-08-01 |
| CN103037887B (en) | 2017-11-10 |
| WO2011161491A1 (en) | 2011-12-29 |
| CA2800206A1 (en) | 2011-12-29 |
| BR112012033121A2 (en) | 2016-10-11 |
| JP2013530982A (en) | 2013-08-01 |
| JP5746761B2 (en) | 2015-07-08 |
| KR20140005843A (en) | 2014-01-15 |
| BR112012033121B1 (en) | 2019-08-20 |
| EP2585094A1 (en) | 2013-05-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10426816B2 (en) | Methods and pharmaceutical compositions for the treatment of respiratory tract infections | |
| Munoz et al. | Mucosal administration of flagellin protects mice from Streptococcus pneumoniae lung infection | |
| JP6420417B2 (en) | Compositions and methods for removing biofilms | |
| Martin et al. | Staphylococcus aureus activates type I IFN signaling in mice and humans through the Xr repeated sequences of protein A | |
| JP2018527933A (en) | Novel endolysin polypeptide | |
| JP2007504144A (en) | Serine protease activity inhibitors and methods for their use in the treatment and composition of bacterial infections | |
| US20080095756A1 (en) | Compositions Comprising Lysostaphin Variants And Methods Of Using The Same | |
| JP2018535227A (en) | Methods for preventing or treating nosocomial pneumonia | |
| CN112118861A (en) | Modified PlySs2 lysins and uses thereof | |
| Underwood et al. | Innate immunity and the role of defensins in otitis media | |
| US9598488B2 (en) | Blockage of interferon-gamma for prevention of polymicrobial synergy | |
| CN110714000A (en) | Application of Toll-like receptor ligand protein in resisting bacterial infection | |
| JP2025000998A (en) | Methods of reducing type 2 cytokine-mediated inflammation using neuromedin peptides | |
| CN100540047C (en) | Application of TRAP protein in the preparation of medicines for treating Staphylococcus aureus infection | |
| US20240293517A1 (en) | Chimeric endolysin polypeptide, cluster 3b | |
| KR20240153571A (en) | Chimeric endolysin polypeptide | |
| KR20240158911A (en) | Chimeric endolysin polypeptide | |
| US20160271220A1 (en) | Compositions and methods for using and identifying antimicrobial agents | |
| Gong et al. | INFLAMMATION, IMMUNITY, AND VACCINES |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: INSTITUT PASTEUR DE LILLE, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIRARD, JEAN-CLAUDE;CHABALGOITY, JOSE A.;REEL/FRAME:029883/0435 Effective date: 20121220 Owner name: INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE M Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIRARD, JEAN-CLAUDE;CHABALGOITY, JOSE A.;REEL/FRAME:029883/0435 Effective date: 20121220 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |