[go: up one dir, main page]

US20130133854A1 - Heat exchange apparatus - Google Patents

Heat exchange apparatus Download PDF

Info

Publication number
US20130133854A1
US20130133854A1 US13/685,749 US201213685749A US2013133854A1 US 20130133854 A1 US20130133854 A1 US 20130133854A1 US 201213685749 A US201213685749 A US 201213685749A US 2013133854 A1 US2013133854 A1 US 2013133854A1
Authority
US
United States
Prior art keywords
temperature sensor
top panel
heat
heat carrier
support board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/685,749
Inventor
Shuichi Hirata
Yoshiki Tomita
Masaru Nakashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to TOYOTA JIDOSHA KABUSHIKI KAISHA reassignment TOYOTA JIDOSHA KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIRATA, SHUICHI, NAKASHIMA, MASARU, TOMITA, YOSHIKI
Publication of US20130133854A1 publication Critical patent/US20130133854A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/006Heat conductive materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/20Fastening; Joining with threaded elements

Definitions

  • JP 2002-305010 A A heat exchange apparatus mounted with a temperature sensor is also disclosed in Japanese Patent Application Publication No, 2002-305010 (JP 2002-305010 A).
  • the heat exchange apparatus of JP 2002-305010 A employs a logic plate having the temperature sensor embedded in the plate.
  • the bracket may also be fixed to the outside surface of the top panel by brazing.
  • a braze alloy having a low melting point than the top panel and the bracket permits the bracket to be fixed to the top panel without melting the top panel nor the bracket.
  • the temperature sensor 18 When the temperature sensor 18 is fixed to the top panel 8 via the temperature sensor support board 16 by using the bracket 10 , bolt 12 and nut 14 , the temperature sensor 18 is disposed at an area deviated from a position to face the heat carrier passage 4 via the top panel 8 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A heat exchange apparatus includes: a main body including a top panel and a bottom panel, the top panel superposed on top of the bottom panel to define a heat carrier passage therebetween; a bracket fixed to an outside surface of the top panel; a shaft member fixed to the bracket; a temperature sensor support board including a penetration portion penetrated by the shaft member; a temperature sensor fixed to the temperature sensor support board; and a pressing member disposed at a distal end of the shaft member penetrating through the temperature sensor support board and pressing down the temperature sensor support board onto the bracket. The shaft member penetrating through the temperature sensor support board is disposed at a position to face the heat carrier passage via the top panel.

Description

    INCORPORATION BY REFERENCE
  • The disclosure of Japanese Patent Application No. 2011-259387 filed on Nov. 28, 2011 including the specification, drawings and abstract is incorporated herein by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • There has been known a heat exchange apparatus designed to cool, for example, a semiconductor device which generates heat when operating. The heat exchange apparatus is mounted with the semiconductor device on an outside surface of a heat exchanger body with a liquid coolant flowing therethrough, thus cooling the semiconductor device with the liquid coolant. This specification discloses an apparatus which exchanges heat between a heat carrier flowing through the heat exchanger body and a device disposed on the outside of the heat exchanger body. The heat carrier is not limited to liquid and may be a gaseous medium or an intermediate medium between gas and liquid. More specifically, the heat exchange apparatus of the invention may be a heat exchange apparatus for cooling devices or a heat exchange apparatus for heating devices.
  • 2. Description of the Related Art
  • The heat exchange apparatus often requires exact detection of the temperature of the heat carrier. Particularly, in a case where a semiconductor device for regulating electric power supplied to a vehicle-mounted traction motor is cooled by heat exchange between the semiconductor device and the liquid coolant, it is extremely necessary to detect the temperature of the liquid coolant exactly. Furthermore, in a case where the temperature of the liquid coolant fluctuates, it is extremely necessary to instantaneously detect the temperature change.
  • However, it is difficult to dispose a temperature sensor for detecting the heat carrier temperature within the heat exchanger body. The temperature sensor is normally disposed on the outside of the heat exchanger body. In the case where the temperature sensor is disposed on the outside of the heat exchanger body, various factors affect the output of the temperature sensor. In exact observation, the temperature of the heat carrier, the temperature of a wall of the heat exchanger body, and the temperature of a device exchanging heat with the heat carrier vary from one another. Various considerations must be given to the detection of the heat carrier temperature using the temperature sensor disposed on the outside of the heat exchanger body while eliminating the influences of the temperature of the device exchanging heat with the heat carrier.
  • FIG. 3 and FIG. 4 show a surrounding structure of a temperature sensor of a heat exchange apparatus disclosed in the description and the drawings of Japanese Patent Application No. 2010-268115 (JP 2010-268115). However, this patent application has not been laid open yet (note: Although this patent application was not yet laid open on Nov. 28, 2011 when the application of this invention was filed, this patent application was laid open afterward on Jun. 21, 2012 as Japanese Patent Application Publication No. 2012-119501 (JP 2012-119501 A)). The heat exchange apparatus includes a heat exchanger body 7 in which a top panel 8 is superposed on a bottom panel 6 to define a heat carrier passage 4 therebetween, A temperature sensor 18 is fixed to the heat exchanger body 7 as follows. The bottom panel 6 and the top panel 8 are formed with through-holes 6 a, 8 a at places of superposition, the through-holes 6 a, 8 a permitting a bolt 12 to penetrate therethrough. The bolt 12 is press-inserted into the through-hole 6 a and fixed therein. A shank of the bolt 12 penetrates through the through-hole 8 a of the top panel 8. The temperature sensor 18 is fixed to a temperature sensor support board 16. The temperature sensor support board 16 is formed with a through-hole 16 a to permit the shank of the bolt 12 to penetrate therethrough. The shank of the bolt 12 is inserted through the through-hole 16 a of the temperature sensor support board 16 and a nut 14 is screwed on a tip of the bolt 12, whereby the temperature sensor support board 16 is clamped and fixed between the nut 14 and the top panel 8. The temperature sensor 18 is fixed at a position to face the heat carrier passage 4 via the top panel 8.
  • A heat exchange apparatus mounted with a temperature sensor is also disclosed in Japanese Patent Application Publication No, 2002-305010 (JP 2002-305010 A). The heat exchange apparatus of JP 2002-305010 A employs a logic plate having the temperature sensor embedded in the plate.
  • The temperature sensor fixing technique shown in FIG. 3 and FIG. 4 has a problem in detecting the temperature of the heat carrier without response delay, FIG. 3 shows the temperature sensor 18 which is fixed at the position to face the heat carrier passage 4 via the top panel 8. However, the temperature sensor 18 is not in intimate contact with the top panel 8. More exactly, an area of the temperature sensor support board 16 that covers a bottom face of the temperature sensor 18 is not in intimate contact with the top panel 8. Therefore, the amount of heat transferred along a heat transfer passage going from the heat carrier in the heat carrier passage 4→the top panel 8→the temperature sensor 18 is unexpectedly small. Measurement results actually show that the amount of heat transferred along a heat transfer passage going from the heat carrier in the heat carrier passage 4→the top panel 8→the bolt 12→the temperature sensor support board 16→the temperature sensor 18 is rather greater than the above amount of heat. It was found that the latter heat transfer passage has less heat resistance because the bolt 12 and nut 14 bring the top panel 8 and the temperature sensor support board 16 into intimate contact at areas around the bolt 12 and nut 14.
  • According to the temperature sensor fixing technique shown in FIG. 3 and FIG. 4, the heat transfer passage, as the main heat transfer passage, going from the heat carrier in the heat carrier passage 4→the top panel 8→the bolt 12→the temperature sensor support board 16→the temperature sensor 18 has such a long passage length that it takes a long time for temperature change of the heat carrier to be transferred to the temperature sensor 18. In the temperature sensor fixing technique shown in FIG. 3 and FIG. 4, response delay during the measurement of temperature is not negligible. The heat is transferred to the bolt 12 not only from the top panel 8 but also from the bottom panel 6 while the bottom panel 6 is in contact with a wall of a casing 2. The temperature of the heat carrier differs from that of the wall of the casing 2. According to the temperature sensor fixing technique shown in FIG. 3 and FIG. 4, it is also found that the temperatures of the wall of the casing 2 and the like affect the results of temperature measurement. With the use of the logic plate disclosed in JP 2002-305010 A, it is still difficult to achieve the exact and quick detection of the temperature of the heat carrier.
  • SUMMARY OF THE INVENTION
  • This specification discloses a heat exchange apparatus which is the result of improvement in the temperature sensor fixing technique and is capable of exact and quick detection of the temperature of the heat carrier (capable of outputting temperature measurement results following the temperature change of the heat carrier quick enough to make time delay negligible).
  • According to one aspect of the invention, a heat exchange apparatus includes: a main body having a top panel and a bottom panel, the top panel superposed on top of the bottom panel to define a heat carrier passage therebetween; a temperature sensor fixed to a temperature sensor support board; and a fixing member for fixing the temperature sensor support board to the top panel and fixed to an outside surface of the top panel at a position to face the heat carrier passage via the top panel. According to the above heat exchange apparatus, the main heat transfer passage going from the heat carrier in the heat carrier passage→the top panel→the fixing member→the temperature sensor support board is minimized in the passage length. Hence, the temperature change of the heat carrier is quickly transferred to the temperature sensor. Further, the temperature sensor is less affected by temperatures of elements other than the heat carrier in the heat carrier passage. Thus, the temperature sensor can achieve the exact and quick detection of the temperature of the heat carrier.
  • In the heat exchange apparatus according to another aspect of the invention, the temperature sensor may also be deviated from as position to face the heat carrier passage via the top panel as a result of fixing the fixing member to the position to face the heat carrier passage via the top panel. Even if the temperature sensor is deviated from the position to face the heat carrier passage via the top panel, the temperature sensor can achieve the exact and quick detection of the temperature of the heat carrier as long as the fixing member constituting the main heat transfer passage is fixed to the position to face the heat carrier passage via the top panel.
  • In the heat exchange apparatus according to another aspect of the invention, the temperature sensor support board may be formed with a penetration portion. Further, the fixing member may include: a bracket fixed to the outside surface of the top panel at a position to face the heat carrier passage via the top panel; a shaft member fixed to the bracket and penetrating through the penetration portion formed in the temperature sensor support board; and a pressing member fixed to the shaft member penetrating through the penetration portion and pressing down the temperature sensor support board onto the bracket. Further, the shaft member may be fixed to the outside surface of the top panel at a position to face a central part of the heat carrier passage via the top panel.
  • In the heat exchange apparatus according to another aspect of the invention, the bracket may also be fixed to the outside surface of the top panel by brazing. According to the above fixing by brazing, a braze alloy having a low melting point than the top panel and the bracket permits the bracket to be fixed to the top panel without melting the top panel nor the bracket.
  • In the heat exchange apparatus according to another aspect of the invention, the top panel may also be flat and thinner than the bottom panel, the bottom panel may also be curved, the heat carrier may also be a liquid coolant, the penetration portion may also be a through-hole, the shaft member may also be a bolt, the pressing member may also be a nut, and the bottom panel may also abut on a wall of a casing.
  • If a U-shaped notch, for example, is formed in the temperature sensor support board, the notch permits the shaft member to penetrate therethrough. Hence, the penetration portion formed in the temperature sensor support board need not be the through-hole. However, the penetration portion defined by an enclosed through-hole is easier to handle. What is required of the shaft member fixed to the bracket is that the shaft member is fixed to the bracket as fixing the temperature sensor to place. For example, the shaft member may be a bolt fixedly screwed in a screw hole formed in the bracket. In this case, if the bolt is screwed in the screw hole of the bracket, the head of the bolt serves as the pressing member for pressing down the temperature sensor support board onto the bracket. A structure where the bolt is screwed in the screw hole of the bracket so that the head of the bolt presses down the temperature sensor support board onto the bracket may be adopted. An alternative structure where the temperature sensor support board is pressed down onto the bracket by screwing the nut on the bolt projecting from the bracket may also be adopted.
  • According to the heat exchange apparatus disclosed herein, the main heat transfer passage extending from the heat carrier in the heat carrier passage to the temperature sensor is notably reduced in the passage length. This provides for the exact and quick detection of the temperature of the heat carrier.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features, advantages, and technical and industrial significance of this invention will be described in the following detailed description of example embodiments of the invention with reference to the accompanying drawings, in which like numerals denote like elements, and wherein:
  • FIG. 1 is a sectional view showing a temperature sensor fixing portion of a heat exchange apparatus according to an embodiment of the invention;
  • FIG. 2 is a perspective view showing the temperature sensor fixing portion of the heat exchange apparatus according to the embodiment of the invention;
  • FIG. 3 is a sectional view showing a temperature sensor fixing portion of a heat exchange apparatus according to Related Art; and
  • FIG. 4 is a perspective view showing the temperature sensor fixing portion of the heat exchange apparatus according to Related Art.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • The following is a list of main features of an embodiment of the invention to be described hereinbelow.
  • Feature 1: A semiconductor device which generates heat when operating is disposed on an outside surface of a top panel of a heat exchanger body. A liquid coolant flows through the heat exchanger body. The semiconductor device is cooled with the liquid coolant.
    Feature 2: An upper limit of output power from the semiconductor device is set according to the detected temperature of the liquid coolant thereby preventing the overheating of the semiconductor device. If the temperature detection has low accuracy, the upper limit must be set to a lower value because a substantial margin need be allowed for the upper limit. If the temperature detection is increased in accuracy, the margin allowed for the upper limit can be reduced so that the value of the upper limit can be increased. Increase in the accuracy of temperature detection leads to the expansion of operating range of the semiconductor device.
    Feature 3: The semiconductor device regulates electric power supplied to a traction motor. The increase in the operating range of the semiconductor device leads to improvement of the travelling performance of the vehicle.
    Feature 4: A wall of a casing accommodating an electronic device which generates heat when operating abuts on a bottom panel of the heat exchanger body.
  • FIG. 2 shows, in perspective, the vicinity of a heat carrier inflow pipe 22 of the heat exchanger body 7. FIG. 1 is a sectional view taken on the line I-I in FIG. 2. In FIG. 1 and FIG. 2, a reference numeral 6 denotes a bottom panel; a reference numeral 8 denotes a top panel; a reference numeral 10 denotes a bracket; a reference numeral 12 denotes a bolt; a reference numeral 14 denotes a nut; a reference numeral 16 denotes a temperature sensor support board; a reference numeral 18 denotes a temperature sensor; a reference numeral 20 denotes a cable for transmitting an output from the temperature sensor to an external device. A reference numeral 4 denotes a heat carrier passage. A reference numeral 2 denotes a casing. A semiconductor device which generates heat when operating is fixed to an unillustrated area of an outside surface of the top panel 8 via a board formed of a material which has electrical insulative properties and high heat conductivity. Accommodated in the casing 2 is an electronic device which generates heat when operating. A liquid coolant flows through the heat carrier passage 4, cooling the semiconductor device in contact with the top panel 8 as well as cooling a wall of the casing 2 in contact with the bottom panel 6. The top panel 8 and the bottom panel 6 are formed from an aluminum alloy having high heat conductivity. In this embodiment, the heat exchanger body 7 is a cooler body, the heat carrier is the liquid coolant, and the heat carrier passage 4 is a liquid coolant passage. It is to be noted, however, that the fixing structure for the temperature sensor according to the embodiment is not only effective in cooling operation but also effective in heating operation using the heat carrier. Further, the temperature sensor fixing structure of the embodiment is also effective for a case where the heat carrier is gaseous.
  • As shown in FIG. 1, the top panel 8 is flat while the bottom panel 6 is curved. The heat carrier passage 4 is formed by superposing the top panel 8 on the bottom panel 6, followed by brazing overlapped opposite ends thereof. Overlapped areas of the top panel 8 and the bottom panel 6 are formed with a plurality of through-holes 24. Bolts 25 penetrating through these through-holes are screwed into the wall of the casing 2 thereby fixing the heat exchanger body 7 to the casing 2. Fixing the heat exchanger body 7 to the casing 2 brings the bottom panel 6 into intimate contact with the casing 2. Indicated at 27 in the figure is a sleeve.
  • A bracket 10 is brazed to the outside surface of the top panel 18 in order to fix the temperature sensor 18 to the top panel 8. The bracket 10 is formed with a stepped through-hole 10 a for receiving a head and a shank of the bolt 12. The bolt 12 is press-inserted into the through-hole 10 a. The head of the bolt 12 is brazed to the top panel 8 in conjunction with brazing the bracket 10 to the outside surface of the top panel 8. The shank of the bolt 12 extends upward from the bracket 10.
  • The temperature sensor 18 is a thermistor and is fixed to the temperature sensor support board 16. The temperature sensor support board 16 is formed with a through-hole 16 a which allows the shank of the bolt 12 to penetrate therethrough. After the shank of the bolt 12 is inserted through the through-hole 16 a of the temperature sensor support board 16, the nut 14 is screwed on the bolt 12. When the nut 14 is screwed on the bolt 12, the nut 14 presses down the temperature sensor support board 16 onto the bracket 10, thus fixing the temperature sensor support board 16 to the top panel 8. The bracket 10, bolt 12 and temperature sensor support board 16 are formed from aluminum alloy having high heat conductivity. When the temperature sensor 18 is fixed to the top panel 8 via the temperature sensor support board 16 by using the bracket 10, bolt 12 and nut 14, the temperature sensor 18 is disposed at an area deviated from a position to face the heat carrier passage 4 via the top panel 8.
  • The bracket 10 and the bolt 12 fixed to the bracket 10 are disposed at positions to face the heat carrier passage 4 via the top panel 8. As shown in FIG. 1, the bolt 12 is disposed at the position to face a central part of the heat carrier passage 4 via the top panel 8. Furthermore, the top panel 8 is thinner than the bottom panel 6. The main heat transfer passage from the heat carrier in the heat carrier passage 4 to the temperature sensor 18 goes from the heat carrier in the heat carrier passage 4→the top panel 8→the bolt 12→the temperature sensor support board 16→the temperature sensor 18. The length of the heat transfer passage from the heat carrier in the heat carrier passage 4 to the temperature sensor 18 is minimized. The position of the through-hole 16 a formed in the temperature sensor support board 16 is deviated from the fixing position of the temperature sensor 18. Hence, the temperature sensor 18 is deviated from the position to face the heat carrier passage 4 via the top panel 8. Even so, the temperature sensor 18 involves less detection error and detection delay because the main heat transfer passage is short in length.
  • In the case shown in FIG. 3, the temperature sensor 18 faces the heat carrier passage 4 via the top panel 8. At first glance, the structure of FIG. 3 is more adapted for the exact and quick detection of the temperature of the heat carrier by means of the temperature sensor 18. Actually, however, the structure of FIG. 1 is more adapted for the exact and quick detection of the temperature of the heat carrier. The reason is that the temperature sensor 18 of FIG. 1 or the temperature sensor 18 of FIG. 3 is not in intimate contact with the bracket 10 nor the top panel 8 and hence, the amount of heat transmitted to the temperature sensor 18 is low. It was found that what is important is to reduce the length of the heat transfer passage including metal-to-metal intimate contact so as to be capable of transferring a large amount of heat. In the case shown in FIG. 1, the heat transfer passage from the heat carrier in the heat carrier passage 4 to the temperature sensor support board 16 is minimized in the length and hence, the structure of FIG. 1 is adapted to detect the temperature of the heat carrier more exactly and quickly than the structure of FIG. 3.
  • According to the embodiment, the heat transfer passage going from the heat carrier in the heat carrier passage 4→the top panel 8→the bolt 12→the temperature sensor support board 16→the temperature sensor 18 is spaced farther away from the wall of the casing 2 than the heat transfer passage shown in FIG. 3. Therefore, the influence that the heat of the wall of the casing 2 exerts on the temperature sensor 18 is reduced. With the additional effect of the reduced influence of the heat of the wall, the structure of the embodiment is adapted for the exact and quick detection of the temperature of the heat carrier by means of the temperature sensor 18.
  • In the above-described embodiment, the temperature sensor support board 16 is pressed down onto the bracket 10 by screwing the nut 14 on the bolt 12 anchored in the bracket 10. Alternatively, a screw hole may be formed in the bracket 10 and the bolt may be screwed into the screw hole so as to permit the head of the bolt to press down the temperature sensor support board 16 onto the bracket 10. A shaft member fixed in the bracket may be the shank of the bolt 12 anchored in the bracket 10 or the shank of the bolt screwed into the bracket 10. A pressing member for pressing down the temperature sensor support board 16 on the bracket 10 may be the nut 14 or the head of the bolt. The combination of bolt and nut may be replaced by a rivet drivenly fixed in the bracket 10. The temperature sensor support board 16 can be pressed down onto the bracket 10 with a head of the rivet. The shaft member may be formed integrally with the bracket.
  • Although the specific examples of the invention have been described in detail, these examples are intended for purposes of illustration only and are not intended to limit the scope of the appended claims. The techniques disclosed in the scope of the claims include various modifications and changes of the above examples. Further, the technical elements described in this specification or shown in the drawings deliver technical utilities as used alone or in various combinations thereof and hence, are not limited to the combinations stated in the claims of this patent application. The techniques illustrated in this specification or the drawings are intended to achieve a plurality of purposes at a time and hence, deliver the technical utility by achieving any one of these purposes.

Claims (6)

What is claimed is:
1. A heat exchange apparatus comprising:
a main body that includes a top panel and a bottom panel, the top panel superposed on top of the bottom panel to define a heat carrier passage therebetween;
a temperature sensor that is fixed to a temperature sensor support board; and
a fixing member that fixes the temperature sensor support board to the top panel and is fixed to an outside surface of the top panel at a position to face the heat carrier passage via the top panel.
2. The heat exchange apparatus according to claim 1, wherein
the temperature sensor is disposed at place deviated from a position to face the heat carrier passage via the top panel.
3. The heat exchange apparatus according to claim 1, wherein
the temperature sensor support board is formed with a penetration portion, and the fixing member includes: a bracket fixed to the outside surface of the top panel at a position to face the heat carrier passage via the top panel; a shaft member fixed to the bracket and penetrating through the penetration portion; and a pressing member fixed to the shaft member penetrating through the penetration portion and pressing down the temperature sensor support board onto the bracket.
4. The heat exchange apparatus according to claim 1, wherein
the shaft member is fixed to the outside surface of the top panel at a position to face a central part of the heat carrier passage via the top panel.
5. The heat exchange apparatus according to claim 3, wherein
the bracket is fixed to the outside surface of the top panel by brazing.
6. The heat exchange apparatus according to claim 1, wherein
the top panel is flat and thinner than the bottom panel, the bottom panel is curved, the heat carrier is a liquid coolant, the penetration portion is a through-hole, the shaft member is a bolt, the pressing member is a nut, and the bottom panel abuts on a wall of a casing accommodating an object with which heat is exchanged.
US13/685,749 2011-11-28 2012-11-27 Heat exchange apparatus Abandoned US20130133854A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-259387 2011-11-28
JP2011259387A JP2013115204A (en) 2011-11-28 2011-11-28 Heat exchanger

Publications (1)

Publication Number Publication Date
US20130133854A1 true US20130133854A1 (en) 2013-05-30

Family

ID=48465753

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/685,749 Abandoned US20130133854A1 (en) 2011-11-28 2012-11-27 Heat exchange apparatus

Country Status (3)

Country Link
US (1) US20130133854A1 (en)
JP (1) JP2013115204A (en)
CN (1) CN103137580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170211844A1 (en) * 2016-01-27 2017-07-27 Noritz Corporation Hot water supply device
DE102021102178A1 (en) 2021-02-01 2022-08-04 Webasto SE Temperature detection device and system for detecting the temperature of a coolant-carrying component of a heating or cooling device for an automobile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102473770B1 (en) * 2015-09-08 2022-12-02 현대모비스 주식회사 Installation structure of temperature sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1909870A (en) * 1930-07-18 1933-05-16 Gilbert G Rosino Controller for automobile heaters
US4385658A (en) * 1981-05-26 1983-05-31 Carrier Corporation Fluid temperature measuring device
US4893590A (en) * 1987-09-30 1990-01-16 Hitachi, Ltd. Automotive liquid-cooled electronic control apparatus
US6288371B1 (en) * 1999-07-13 2001-09-11 Micro Control Company Temperature controlled high power burn-in board heat sinks
US7206204B2 (en) * 2003-12-19 2007-04-17 Hitachi Industrial Equipment Systems Co., Ltd. Electric circuit module
US7679915B2 (en) * 2004-09-17 2010-03-16 Kabushiki Kaisha Yaskawa Denki Motor control apparatus and method of assembling motor control apparatus
US8146650B2 (en) * 2005-07-25 2012-04-03 Siemens Aktiengesellschaft Microfluidic system
US20120193086A1 (en) * 2011-01-28 2012-08-02 Tasseron Sensors, Inc. Thermal probe

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235572A (en) * 1992-02-20 1993-09-10 Mitsubishi Shindoh Co Ltd Cooling apparatus for circuit board
JP3376346B2 (en) * 2000-09-25 2003-02-10 株式会社東芝 Cooling device, circuit module having the cooling device, and electronic equipment
JP2002260745A (en) * 2001-02-27 2002-09-13 Japan Storage Battery Co Ltd Battery
JP4591659B2 (en) * 2004-03-26 2010-12-01 Tdk株式会社 Electronic components with temperature sensitive elements
DE102005013762C5 (en) * 2005-03-22 2012-12-20 Sew-Eurodrive Gmbh & Co. Kg Electronic device and method for determining the temperature of a power semiconductor
JP4725536B2 (en) * 2007-03-05 2011-07-13 株式会社デンソー Power converter
CN201795868U (en) * 2010-08-12 2011-04-13 周玉林 Temperature sensing device used for rapidly measuring fluid temperature in pipeline

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1909870A (en) * 1930-07-18 1933-05-16 Gilbert G Rosino Controller for automobile heaters
US4385658A (en) * 1981-05-26 1983-05-31 Carrier Corporation Fluid temperature measuring device
US4893590A (en) * 1987-09-30 1990-01-16 Hitachi, Ltd. Automotive liquid-cooled electronic control apparatus
US6288371B1 (en) * 1999-07-13 2001-09-11 Micro Control Company Temperature controlled high power burn-in board heat sinks
US7206204B2 (en) * 2003-12-19 2007-04-17 Hitachi Industrial Equipment Systems Co., Ltd. Electric circuit module
US7679915B2 (en) * 2004-09-17 2010-03-16 Kabushiki Kaisha Yaskawa Denki Motor control apparatus and method of assembling motor control apparatus
US8146650B2 (en) * 2005-07-25 2012-04-03 Siemens Aktiengesellschaft Microfluidic system
US20120193086A1 (en) * 2011-01-28 2012-08-02 Tasseron Sensors, Inc. Thermal probe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170211844A1 (en) * 2016-01-27 2017-07-27 Noritz Corporation Hot water supply device
DE102021102178A1 (en) 2021-02-01 2022-08-04 Webasto SE Temperature detection device and system for detecting the temperature of a coolant-carrying component of a heating or cooling device for an automobile

Also Published As

Publication number Publication date
JP2013115204A (en) 2013-06-10
CN103137580A (en) 2013-06-05

Similar Documents

Publication Publication Date Title
US9318406B2 (en) Device and method for determining the temperature of a heat sink
JP3785338B2 (en) Thermal flow meter
CN102156148B (en) Differential scanning calorimeter
US20130133854A1 (en) Heat exchange apparatus
JP2008224553A (en) Thermistor mounting body
EP2037247B1 (en) Temperature sensor
US9476777B2 (en) Temperature detector, temperature sensor and method for manufacturing the temperature detector
JP5078703B2 (en) Apparatus and method for measuring thermal conductivity of thermal bonding material
US10247685B2 (en) High-temperature structure for measuring properties of curved thermoelectric device, and system and method for measuring properties of curved thermoelectric device using the same
US9534966B2 (en) Fluid line temperature sensing
JPH0674837A (en) Method and device for detecting heat flux of mold for casting
CN111649837A (en) A boiler water-cooled wall fin temperature measuring device
JPH0992994A (en) Cooling plate
JP7637248B2 (en) Temperature Measuring Device
JP5838762B2 (en) Heat exchanger
JP2001021512A (en) Thermal conductivity measuring device
JP2010267724A (en) Electronic device
JP4946278B2 (en) Power converter
JP2013156122A (en) Heating device
JP6027955B2 (en) Hygrometer component, hygrometer, and environmental test device
CN222379831U (en) Chip testing heating tool and temperature control device using the heating tool
KR20030015364A (en) Digital thermometer with multi-function for a ship
CN216593839U (en) A temperature detection device for a motor controller and a motor controller
JP2014159976A (en) Heat transfer mechanism, and thermal analysis device including the same
JP7661858B2 (en) Soldering Equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIRATA, SHUICHI;TOMITA, YOSHIKI;NAKASHIMA, MASARU;REEL/FRAME:029351/0880

Effective date: 20121106

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE