US20130130055A1 - Coated steel sheet, method for producing the same, and resin-coated steel sheet obtained using the same - Google Patents
Coated steel sheet, method for producing the same, and resin-coated steel sheet obtained using the same Download PDFInfo
- Publication number
- US20130130055A1 US20130130055A1 US13/636,858 US201113636858A US2013130055A1 US 20130130055 A1 US20130130055 A1 US 20130130055A1 US 201113636858 A US201113636858 A US 201113636858A US 2013130055 A1 US2013130055 A1 US 2013130055A1
- Authority
- US
- United States
- Prior art keywords
- steel sheet
- coating
- coated steel
- layer
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 129
- 239000010959 steel Substances 0.000 title claims abstract description 129
- 229920005989 resin Polymers 0.000 title claims abstract description 93
- 239000011347 resin Substances 0.000 title claims abstract description 93
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000000576 coating method Methods 0.000 claims abstract description 196
- 239000011248 coating agent Substances 0.000 claims abstract description 180
- 230000007797 corrosion Effects 0.000 claims abstract description 73
- 238000005260 corrosion Methods 0.000 claims abstract description 73
- 239000000853 adhesive Substances 0.000 claims abstract description 57
- 230000001070 adhesive effect Effects 0.000 claims abstract description 57
- 229910052751 metal Inorganic materials 0.000 claims abstract description 40
- 239000002184 metal Substances 0.000 claims abstract description 37
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 36
- 239000000956 alloy Substances 0.000 claims abstract description 36
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 28
- 229910052742 iron Inorganic materials 0.000 claims abstract description 23
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 22
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 21
- 229910052802 copper Inorganic materials 0.000 claims abstract description 20
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 20
- 229910017091 Fe-Sn Inorganic materials 0.000 claims abstract description 12
- 229910017136 Fe—Ni—Sn Inorganic materials 0.000 claims abstract description 12
- 229910017142 Fe—Sn Inorganic materials 0.000 claims abstract description 12
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims abstract description 12
- 238000005868 electrolysis reaction Methods 0.000 claims description 58
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 30
- 239000007864 aqueous solution Substances 0.000 claims description 29
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 18
- 229920001568 phenolic resin Polymers 0.000 claims description 18
- 239000005011 phenolic resin Substances 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 14
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 13
- 238000000151 deposition Methods 0.000 claims description 9
- 230000007547 defect Effects 0.000 abstract description 22
- VVXLFFIFNVKFBD-UHFFFAOYSA-N 4,4,4-trifluoro-1-phenylbutane-1,3-dione Chemical compound FC(F)(F)C(=O)CC(=O)C1=CC=CC=C1 VVXLFFIFNVKFBD-UHFFFAOYSA-N 0.000 description 61
- 239000010410 layer Substances 0.000 description 49
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 45
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 32
- 238000000034 method Methods 0.000 description 31
- MEYVLGVRTYSQHI-UHFFFAOYSA-L cobalt(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Co+2].[O-]S([O-])(=O)=O MEYVLGVRTYSQHI-UHFFFAOYSA-L 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 28
- 229910000576 Laminated steel Inorganic materials 0.000 description 21
- 239000011572 manganese Substances 0.000 description 21
- 239000010949 copper Substances 0.000 description 17
- 239000010408 film Substances 0.000 description 17
- 239000011701 zinc Substances 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 15
- 239000005029 tin-free steel Substances 0.000 description 13
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 12
- 239000003973 paint Substances 0.000 description 12
- 235000011007 phosphoric acid Nutrition 0.000 description 12
- 239000000654 additive Substances 0.000 description 9
- 230000000996 additive effect Effects 0.000 description 9
- 229910052718 tin Inorganic materials 0.000 description 9
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 8
- 239000010960 cold rolled steel Substances 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 239000011651 chromium Substances 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000005211 surface analysis Methods 0.000 description 6
- 238000004876 x-ray fluorescence Methods 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- -1 phosphate compound Chemical class 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- GFHNAMRJFCEERV-UHFFFAOYSA-L cobalt chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Co+2] GFHNAMRJFCEERV-UHFFFAOYSA-L 0.000 description 4
- RXCBCUJUGULOGC-UHFFFAOYSA-H dipotassium;tetrafluorotitanium;difluoride Chemical compound [F-].[F-].[F-].[F-].[F-].[F-].[K+].[K+].[Ti+4] RXCBCUJUGULOGC-UHFFFAOYSA-H 0.000 description 4
- 238000007765 extrusion coating Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- RVUXIPACAZKWHU-UHFFFAOYSA-N sulfuric acid;heptahydrate Chemical compound O.O.O.O.O.O.O.OS(O)(=O)=O RVUXIPACAZKWHU-UHFFFAOYSA-N 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- 229910021550 Vanadium Chloride Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- SCVOEYLBXCPATR-UHFFFAOYSA-L manganese(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Mn+2].[O-]S([O-])(=O)=O SCVOEYLBXCPATR-UHFFFAOYSA-L 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- RPESBQCJGHJMTK-UHFFFAOYSA-I pentachlorovanadium Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[V+5] RPESBQCJGHJMTK-UHFFFAOYSA-I 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 3
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002433 Vinyl chloride-vinyl acetate copolymer Polymers 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 2
- 229940044175 cobalt sulfate Drugs 0.000 description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 150000004673 fluoride salts Chemical class 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000004688 heptahydrates Chemical class 0.000 description 2
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 2
- 229910000358 iron sulfate Inorganic materials 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 2
- 229940053662 nickel sulfate Drugs 0.000 description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000011775 sodium fluoride Substances 0.000 description 2
- 235000013024 sodium fluoride Nutrition 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RZLVQBNCHSJZPX-UHFFFAOYSA-L zinc sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Zn+2].[O-]S([O-])(=O)=O RZLVQBNCHSJZPX-UHFFFAOYSA-L 0.000 description 2
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 229910000152 cobalt phosphate Inorganic materials 0.000 description 1
- ZBDSFTZNNQNSQM-UHFFFAOYSA-H cobalt(2+);diphosphate Chemical compound [Co+2].[Co+2].[Co+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O ZBDSFTZNNQNSQM-UHFFFAOYSA-H 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 229910000159 nickel phosphate Inorganic materials 0.000 description 1
- RRIWRJBSCGCBID-UHFFFAOYSA-L nickel sulfate hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-]S([O-])(=O)=O RRIWRJBSCGCBID-UHFFFAOYSA-L 0.000 description 1
- 229940116202 nickel sulfate hexahydrate Drugs 0.000 description 1
- JOCJYBPHESYFOK-UHFFFAOYSA-K nickel(3+);phosphate Chemical compound [Ni+3].[O-]P([O-])([O-])=O JOCJYBPHESYFOK-UHFFFAOYSA-K 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- RBFRVUKIVGOWND-UHFFFAOYSA-L oxygen(2-);vanadium(4+);sulfate Chemical compound [O-2].[V+4].[O-]S([O-])(=O)=O RBFRVUKIVGOWND-UHFFFAOYSA-L 0.000 description 1
- 229940044654 phenolsulfonic acid Drugs 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229940096017 silver fluoride Drugs 0.000 description 1
- REYHXKZHIMGNSE-UHFFFAOYSA-M silver monofluoride Chemical compound [F-].[Ag+] REYHXKZHIMGNSE-UHFFFAOYSA-M 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- DXIGZHYPWYIZLM-UHFFFAOYSA-J tetrafluorozirconium;dihydrofluoride Chemical compound F.F.F[Zr](F)(F)F DXIGZHYPWYIZLM-UHFFFAOYSA-J 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- YUOWTJMRMWQJDA-UHFFFAOYSA-J tin(iv) fluoride Chemical compound [F-].[F-].[F-].[F-].[Sn+4] YUOWTJMRMWQJDA-UHFFFAOYSA-J 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/021—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/02—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0008—Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/50—Treatment of iron or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
- C23G1/081—Iron or steel solutions containing H2SO4
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/12—Electroplating: Baths therefor from solutions of nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/20—Electroplating: Baths therefor from solutions of iron
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/22—Electroplating: Baths therefor from solutions of zinc
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/54—Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/36—Pretreatment of metallic surfaces to be electroplated of iron or steel
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/605—Surface topography of the layers, e.g. rough, dendritic or nodular layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/08—Electrolytic coating other than with metals with inorganic materials by cathodic processes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/08—Electrolytic coating other than with metals with inorganic materials by cathodic processes
- C25D9/10—Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F1/00—Electrolytic cleaning, degreasing, pickling or descaling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/714—Inert, i.e. inert to chemical degradation, corrosion
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/30—Electroplating: Baths therefor from solutions of tin
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
- C25D5/505—After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12556—Organic component
- Y10T428/12569—Synthetic resin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
Definitions
- the present invention relates to a coated steel sheet which is mainly used for containers, such as cans, after being further coated with a resin in such a manner that the surface of the coated steel sheet is laminated with a resin film or the like or a paint containing a resin is applied onto the surface of the coated steel sheet, and more particularly, relates to a coated steel sheet which has excellent adhesion to a resin coated thereon in a high-temperature, and humid environment (hereinafter, referred to as “humid resin adhesion”), and which exhibits excellent corrosion resistance even if the coated resin peels off.
- the invention also relates to a method for producing the same, and to a resin-coated steel sheet obtained by further coating the coated steel sheet with a resin.
- Metal sheets such as tin-plated steel sheets and electrolytic chromium coated steel sheets referred to as tin-free steel sheets, are used for various metal cans, such as beverage cans, food cans, pail cans, and 18-liter cans.
- tin-free steel sheets are produced by subjecting steel sheets to electrolysis in a coating bath containing hexavalent Cr, and have excellent humid resin adhesion to a resin, such as a paint, coated thereon.
- various metal cans have been conventionally manufactured in such a manner that metal sheets, such as tin-free steel sheets, are painted and then formed into can bodies.
- metal sheets such as tin-free steel sheets
- a method has come to be frequently used in which a resin-coated metal sheet that is not painted but is coated with a resin, such as a plastic film, and formed into a can body.
- the resin needs to strongly adhere to the metal sheet.
- resin-coated metal sheets used for beverage cans or food cans are required to have excellent humid resin adhesion such that the resin does not peel off even in a high-temperature and humid environment because the cans may be subjected to a retort process, in some cases, after contents have been packed therein, and are also required to have excellent corrosion resistance such that the cans are prevented from being corroded and pierced by the contents of the cans or the like even when the resin partially peels off owing to being scratched or the like.
- Patent Literature 1 it is possible to produce a coated steel sheet having very excellent humid resin adhesion and excellent corrosion resistance, without using Cr, by depositing a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer on at least one surface of steel sheet, and then depositing an adhesive coating to a resin to be coated thereon by performing cathodic electrolysis in an aqueous solution which includes ions containing Ti and further includes ions containing at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn.
- a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer on at least one surface of steel sheet, and then depositing an adhesive coating to a resin to
- the present invention provides, without using Cr, a coated steel sheet which has excellent humid resin adhesion and corrosion resistance and in which streaky surface defects do not occur, a method for producing the same, and a resin-coated steel sheet obtained using the coated steel sheet.
- Patent Literature 1 an adhesive coating of Patent Literature 1 is deposited, it is effective to perform cathodic electrolysis in an aqueous solution which includes Zr instead of Ti and further includes at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn.
- the present invention has been made based on such a finding.
- the present invention provides a coated steel sheet characterized by including a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer disposed on at least one surface of steel sheet, and an adhesive coating disposed on the corrosion-resistant coating, the adhesive coating containing Zr and further containing at least one metal element selected from the group consisting of Co, Fe, Ni V, Cu, Mn, and Zn, in total, at a ratio by mass of 0.01 to 10 with respect to Zr.
- the adhesive coating further contains P derived from a phosphoric acid and/or C derived from a phenolic resin, in total, at a ratio by mass of 0.01 to 10 with respect to Zr. Furthermore, preferably, the Zr coating weight of the adhesive coating is 3 to 200 mg/m 2 per one surface.
- a coated steel sheet of the present invention can be produced by depositing a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer on at least one surface of a steel sheet, and depositing an adhesive coating by performing cathodic electrolysis with an electric charge density of 1 to 20 C/dm 2 in an aqueous solution which includes Zr in an amount of 0.008 to 0.07 mol/l (1: liter) and further includes at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a molar ratio of 0.01 to 10 with respect to Zr.
- a coated steel sheet of the present invention can be produced by depositing a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer on at least one surface of a steel sheet, and then depositing an adhesive coating by performing cathodic electrolysis in an aqueous solution which includes Zr in an amount of 0.008 to 0.07 mol/l and further includes at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a molar ratio of 0.01 to 10 with respect to Zr, under the electrolysis conditions, using an electric current having a current density that changes with a cycle of 0.01 to 0.4 seconds between the current density at which Zr is deposited and the current density at which Zr is not deposited, and having a period of 0.005 to 0.2 seconds per cycle during which Zr is not deposited, in
- the upper limit of the current density at which Zr is not deposited is a value that depends on the composition and pH of the aqueous solution used in the cathodic electrolysis.
- the current density at which Zr is not deposited is set at 0 A/dm 2 .
- the aqueous solution used in the cathodic electrolysis further includes a phosphoric acid and/or a phenolic resin, in total, at a molar ratio of 0.01 to 10 with respect to Zr.
- the present invention also provides a resin-coated steel sheet in which the coated steel sheet of the present invention described above is coated with a resin.
- the coated steel sheet of the present invention can be used without any problem as an alternative material to replace conventional tin-free steel sheets and can be used, without being coated with a resin, for containers which contain oil, organic solvents, paint, or the like. Furthermore, when the coated steel sheet is coated with a resin to obtain a resin-coated steel sheet and the resin-coated steel sheet is formed into cans or can lids, and even when the cans or can lids are exposed to a retort atmosphere, the resin does not peel off. In addition, at resin peel-off portions, such as scratches, the amount of dissolving out of Fe of a base steel sheet is markedly small, and very good corrosion resistance is exhibited.
- FIG. 1 is a graph showing the relationship between the Zr coating weight and the current density in an aqueous solution, with pH4, containing 12.5 g/l of potassium hexafluorozirconate and 5 g/l of cobalt sulfate heptahydrate.
- FIG. 2( a ), FIG. 2( b ), and FIG. 2( c ) are views illustrating a 180° peeling test.
- a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer is disposed on at least one surface of steel sheet, and an adhesive coating containing Zr and further containing at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn is disposed thereon.
- a low-carbon cold-rolled steel sheet commonly used for cans can be used as a base steel sheet.
- the corrosion-resistant coating disposed on the surface of the base steel sheet needs to be a coating composed of a single layer selected from a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer or a multi-layer including some of these layers so that it strongly bonds to the base steel sheet in order to impart excellent corrosion resistance to the steel sheet even when, after the coated steel sheet is coated with a resin, the resin partially peels off owing to being scratched or the like.
- the Ni coating weight is preferably set at 200 mg/m 2 or more per one surface of steel sheet.
- the Ni coating weight is preferably set at 60 mg/m 2 or more per one surface of the steel sheet.
- the Sn coating weight is preferably set at 100 mg/m 2 or more per one surface of the steel sheet.
- the Ni coating weight is set at 50 mg/m 2 or more and the Sn coating weight is set at 100 mg/m 2 or more per one surface of the steel sheet.
- the coating weights of Ni and Sn can be determined by surface analysis using fluorescence X-rays.
- Such a corrosion-resistant coating can be disposed by a known method appropriate to the metal element to be contained.
- an adhesive coating containing Zr and further containing at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a ratio by mass of 0.01 to 10, more preferably 0.01 to 2, with respect to Zr excellent humid resin adhesion can be obtained, and prevention of occurrence of streaky surface defects is ensured.
- the adhesive coating further contains P derived from a phosphoric acid and/or C derived from a phenolic resin, in total, at a ratio by mass of 0.01 to 10 with respect to Zr.
- P derived from a phosphoric acid and/or C derived from a phenolic resin in total, at a ratio by mass of 0.01 to 10 with respect to Zr.
- hydroxyl groups present in the adhesive coating, hydroxyl groups of the phenolic resin or hydroxyl groups of the phosphoric acid, and hydroxyl groups present on the surface of the corrosion-resistant coating are crosslinked by dehydration condensation, resulting in covalent bonds between the corrosion-resistant coating and the adhesive coating through oxygen atoms.
- the Zr coating weight is preferably 3 to 200 mg/m 2 per one surface of the steel sheet.
- the reason for this is that at a Zr coating weight of 3 to 200 mg/m 2 , effects of improving humid resin adhesion and preventing occurrence of streaky surface defects can be sufficiently obtained, and at a Zr coating weight exceeding 200 mg/m 2 , the effects are saturated, resulting in an increase in cost.
- the Zr coating weight is more preferably 20 to 100 mg/m 2 .
- the total coating weight of at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn is preferably 10 to 200 mg/m 2 per one surface of the steel sheet.
- the total coating weight of these metal elements is 10 mg/m 2 or more and 200 mg/m 2 or less, it is possible to form a coating having excellent humid resin adhesion and having no streaky surface defects.
- the adhesive coating further includes O.
- O the coating becomes mainly composed of oxides of Zr, thus being more effective in improving humid resin adhesion and preventing occurrence of streaky surface defects.
- the coating weight of Zr and the coating weights of Co, Fe, Ni, V, Cu, Mn, Zn, and P in the adhesive coating can be determined by surface analysis using fluorescence X-rays.
- the C content in the adhesive coating can be obtained by subtracting the C content in the steel sheet as a background from the total C content measured by gas chromatography.
- the O content is not particularly specified, the presence of O can be confirmed by surface analysis using XPS (X-ray photoelectron spectrometer).
- the adhesive coating can be disposed by performing cathodic electrolysis with an electric charge density of 1 to 20 C/dm 2 in an aqueous solution which includes Zr in an amount of 0.008 to 0.07 mol/l, preferably 0.02 to 0.05 mol/l, and further includes at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a molar ratio of 0.01 to 10, preferably 0.01 to 2.5, more preferably 0.01 to 2, with respect to Zr.
- the Zr amount is less than 0.008 mol/l, it is not possible to disposing a coating having excellent humid resin adhesion and having no streaky surface defects.
- the Zr amount exceeds 0.07 mol/l, it becomes difficult for Zr to be present in a stable state in the aqueous solution, and Zr oxides are formed.
- the total amount, in terms of molar ratio, of at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn is less than 0.01, it is difficult to dispose a coating having excellent humid resin adhesion and having no streaky surface defects.
- the total amount exceeds 10 the effects are saturated, resulting in an increase in cost.
- an aqueous solution containing Zr an aqueous solution containing fluorozirconate ions or an aqueous solution containing fluorozirconate ions and a fluoride salts is preferable.
- a compound that produces fluorozirconate ions hexafluorozirconic acid, ammonium hexafluorozirconate, potassium hexafluorozirconate, or the like can be used.
- a fluoride salt sodium fluoride, potassium fluoride, silver fluoride, tin fluoride, or the like can be used.
- an aqueous solution containing potassium hexafluorozirconate or an aqueous solution containing potassium hexafluorozirconate and sodium fluoride can dispose a homogeneous coating efficiently, which is preferable.
- cobalt sulfate cobalt chloride, iron sulfate, iron chloride, nickel sulfate, copper sulfate, vanadium oxide sulfate, zinc sulfate, manganese sulfate, and the like can be used.
- these metal elements are added such that the total amount, in terms of molar ratio with respect to Zr, is 0.01 to 10, preferably 0.01 to 2.5, and more preferably 0.01 to 2.
- the cathodic electrolysis may be performed with a current density of 5 to 20 A/dm 2 and at an electrolysis time of 1 to 5 sec.
- the electric charge density is set at 3 to 15 C/dm 2 .
- cathodic electrolysis under the electrolysis conditions, using an electric current having a current density that changes with a cycle of 0.01 to 0.4 seconds between the current density at which Zr is deposited and the current density at which Zr is not deposited, and having a period of 0.005 to 0.2 seconds per cycle during which Zr is not deposited, in which the number of cycles is 10 or more and the total electric charge density at the current density at which Zr is deposited is 3 to 20 C/dm 2 .
- the upper limit of the current density at which Zr is not deposited depends on the composition and pH of the aqueous solution including Zr and at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn.
- FIG. 1 shows the relationship between the Zr coating weight and the current density in an aqueous solution, with pH4, containing 12.5 g/l of potassium hexafluorozirconate and 5 g/l of cobalt sulfate heptahydrate.
- an alternating current that changes cyclically in a manner similar to a sine curve, or a pulsed current that changes in a binary manner between the current density at which Zr is deposited and the current density at which Zr is not deposited can be used. It is also possible to use a current obtained by superposing an alternating current or a pulsed current on a direct current.
- the current density at which Zr is not deposited is set at 0 A/dm 2 because it eliminates the need to predetermine the upper limit of the current density depending on the aqueous solution to be used.
- the cathodic electrolysis is performed in the aqueous solution which further includes a phosphoric acid and/or a phenolic resin, in total, at a molar ratio of 0.01 to 10 with respect to Zr.
- the reason for this is that, by performing the cathodic electrolysis in the aqueous solution including phosphoric acid and/or phenolic resin, it is possible to dispose an adhesive coating containing P derived from a phosphoric acid and/or C derived from a phenolic resin, resulting in further improvement in coatability of the adhesive coating and improvement in corrosion resistance.
- a compound that produces a phosphoric acid orthophosphoric acid or a phosphate compound of the metal element added simultaneously may be used, or nickel phosphate, iron phosphate, cobalt phosphate, zirconium phosphate, or the like can be used.
- a phenolic resin a phenolic resin having a weight-average molecular weight of about 3,000 to 20,000 is preferable, and a phenolic resin having a weight-average molecular weight of about 5,000 is more preferable.
- the phenolic resin may be provided with water solubility by being amino/alcohol denatured.
- a resin-coated steel sheet can be obtained by coating the coated steel sheet of the present invention with a resin. As described above, since the coated steel sheet of the present invention has excellent humid resin adhesion, the resin-coated steel sheet has excellent corrosion resistance and formability.
- the resin used to coat the coated steel sheet of the present invention is not particularly limited.
- any of various thermoplastic resins and thermosetting resins may be used.
- the resin that can be used include olefin resin films, such as polyethylene, polypropylene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, ethylene-acrylic ester copolymers, and ionomers; polyester films, such as polybutylene terephthalate; polyamide films, such as nylon 6, nylon 6,6, nylon 11, and nylon 12; and thermoplastic resin films, such as polyvinyl chloride films and polyvinylidene chloride films. These films may be unoriented or biaxially oriented.
- a urethane adhesive, epoxy adhesive, acid-modified olefin resin adhesive, copolyamide adhesive, copolyester adhesive, or the like is preferable.
- a thermosetting paint may be applied onto the coated steel sheet or the film with a thickness in the range of 0.05 to 2 ⁇ m and used as an adhesive.
- thermoplastic or thermosetting paints such as modified epoxy paints (e.g., phenol epoxy and amino-epoxy paints), vinyl chloride-vinyl acetate copolymers, saponified vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinyl acetate-maleic anhydride copolymers, epoxy-modified-, epoxy amino-modified, or epoxy phenol-modified vinyl paints, or modified vinyl paints, acrylic paints, and synthetic rubber paints (e.g., styrene-butadiene copolymers), may be used alone or in combination of two or more.
- modified epoxy paints e.g., phenol epoxy and amino-epoxy paints
- vinyl chloride-vinyl acetate copolymers saponified vinyl chloride-vinyl acetate copolymers
- vinyl chloride-vinyl acetate-maleic anhydride copolymers vinyl chloride-vinyl acetate-maleic anhydride copoly
- the thickness of the resin coating layer is preferably in the range of 3 to 50 ⁇ m, and more preferably 5 to 40 ⁇ m. When the thickness falls below the range described above, corrosion resistance becomes insufficient. When the thickness exceeds the range described above, a problem in terms of formability is likely to occur.
- the resin coating layer can be disposed on the coated steel sheet by any method.
- an extrusion coating method for example, an extrusion coating method, a cast film heat bonding method, a biaxially oriented film heat bonding method, or the like can be used.
- the coated steel sheet may be extrusion-coated with a resin in a molten state, and the resin is heat-bonded to the coated steel sheet. That is, the resin is melted and kneaded in an extruder and then extruded into a thin film from a T-die.
- the extruded molten resin film, together with the coated steel sheet, is passed between a pair of lamination rolls, and the thin film and the coated steel sheet are integrated under pressure in a cooling environment, followed by quenching.
- a multi-layered resin coating layer is disposed by extrusion coating
- a method in which a plurality of extruders for corresponding layers are used resin flows from the individual extruders are joined together in a multilayer die, and then extrusion coating is performed in the same manner as that for a single-layer resin.
- the resin-coated steel sheet can be used for three-piece cans with side seams and seamless cans (two-piece cans).
- the resin-coated steel sheet can also be used for lids of stay-on-tab easy open cans and lids of full open easy open cans.
- Corrosion-resistant coatings are disposed on both surfaces of cold-rolled steel sheet (thickness: 0.2 mm), which is made as cold-rolled low-carbon steel used to produce a tin-free steel sheet (TFS), using coating bath a or b shown in Table 1, by one of the methods A to D described below.
- a cold-rolled steel sheet is annealed in an atmosphere of 10 vol % H 2 +90 vol % N 2 at about 700° C., subjected to temper rolling at an elongation percentage of 1.5%, degreased by alkali electrolysis, pickled with sulfuric acid, and then coated with Ni using the coating bath a to thereby dispose corrosion-resistant coatings made of Ni layers.
- a cold-rolled steel sheet is degreased by alkali electrolysis, coated with Ni using the coating bath a, annealed in an atmosphere of 10 vol % H 2 +90 vol % N 2 at about 700° C. to perform diffusion coating of Ni, and then subjected to temper rolling at an elongation percentage of 1.5% to thereby dispose corrosion-resistant coatings made of Fe—Ni alloy layers.
- a cold-rolled steel sheet is degreased by alkali electrolysis, coated with Ni using the coating bath a, annealed in an atmosphere of 10 vol % H 2 +90 vol % N 2 at about 700° C. to perform diffusion coating of Ni, subjected to temper rolling at an elongation percentage of 1.5%, followed by degreasing and acid pickling, coated with Sn using the coating bath b, and subjected to melting by heating the steel sheet at a temperature equal to or higher than the melting point of Sn.
- a corrosion-resistant coating including an Fe—Ni—Sn alloy layer and a Sn layer thereon is disposed.
- a cold-rolled steel sheet is degreased by alkali electrolysis, annealed under the same conditions as the conditions A, subjected to temper rolling, coated with Sn using the coating bath b, and subjected to melting by heating the steel sheet at a temperature equal to or higher than the melting point of Sn.
- a corrosion-resistant coating including an Fe—Sn alloy layer and a Sn layer thereon is disposed.
- Sn coating is partially alloyed by the melting treatment.
- the net coating weight of remaining Sn which remains without being alloyed is shown in Tables 3 to 5.
- coated steel sheets Nos. 1 to 33 are produced.
- coated steel sheet Nos. 1, 16, 19, 22, and 29 are comparative examples, in which the adhesive coating does not contain any of Co, Fe, Ni, V, Cu, Mn, and Zn.
- Nos. 30 and 31 are comparative examples, in which corrosion-resistant coatings are not disposed.
- Nos. 32 and 33 are comparative examples, in which adhesive coatings containing Ti and further containing V or Mn are disposed on corrosion-resistant coatings.
- the Zr coating weight and Ti coating weight in each adhesive coating are determined by X-ray fluorescence analysis in comparison with a calibration sheet in which the content of each metal is determined by chemical analysis in advance. Furthermore, regarding Co, Fe, Ni, V, Cu, Mn, and Zn, the coating weights contained are determined by a method appropriately selected from X-ray fluorescence analysis, the same technique as that used for Zr and Ti, chemical analysis, Auger electron spectroscopy analysis, and secondary ion mass spectrometry, and the mass ratio of Co, Fe, Ni, V, Cu, Mn, and Zn to Zr or Ti is evaluated. Furthermore, the presence of O can be confirmed by XPS surface analysis in each of Nos. 1 to 33.
- both surfaces of each of the coated steel sheet Nos. 1 to 33 are laminated with isophthalic acid copolymerized polyethylene terephthalate films (draw ratio: 3.1 ⁇ 3.1, thickness: 25 copolymerization ratio: 12 mol %, melting point: 224° C.) under the laminating conditions such that the degree of biaxial orientation (BO value) of the films is 150, i.e., with a steel sheet feed rate of 40 m/min, a nip length of rubber roll of 17 mm, a period of time from pressure bonding to water cooling of 1 second.
- laminated steel sheet Nos. 1 to 33 are produced.
- the term “nip length” means the length of a contact portion of a rubber roll with each steel sheet in the feed direction.
- humid resin adhesion, corrosion resistance, and streaky surface defects are evaluated.
- Humid resin adhesion is evaluated by a 180° peeling test in a retort atmosphere having a temperature of 130° C. and a relative humidity of 100%.
- a peel length 5 shown in FIG. 2( c ) is measured and evaluated.
- the test piece is considered to have better humid resin adhesion.
- the test piece is evaluated to have excellent humid resin adhesion targeted in the present invention.
- Corrosion resistance A laminate surface of each laminated steel sheet is cut in a crossing manner with a cutter knife such that the cut depth reaches the base steel sheet, the laminated steel sheet is immersed in 80 ml of a test liquid prepared by mixing equivalent amounts of 1.5% by mass NaCl aqueous solution and 1.5% by mass citric acid aqueous solution, and left to stand at 55° C. for 9 days.
- Streaky surface defects Degree of occurrence of streaky patterns is visually observed and evaluated as follows:
- ⁇ No streaky patterns are observed.
- x Streaky patterns are observed.
- Coating bath Bath composition a Ni coating Nickel sulfate: 250 g/l, nickel chloride: 45 g/l, boric acid: bath) 30 g/l b (Sn coating Stunnous sulfate: 55 g/l, phenolsulfonic acid(65% by mass): bath) 35 g/l, brightener: appropriate amount
- Example 24 0 700 300 100 Co 1.80
- Example 25 0 500 70 20 Co 1.80
- Example 26 0 500 70 60 Fe 0.80
- Example 27 0 500 70 60 Ni 0.05
- Example 28 0 1500 900 60 Fe 0.80
- Example 29 0 700 300 60 — 0 Comparative example 30 — — — 60 Co 1.80 Comparative example 31 — — — 60 Fe 0.80 Comparative example
- Corrosion-resistant coatings are formed on both surfaces of each cold-rolled steel sheet (thickness: 0.2 mm), which is made of cold-rolled low-carbon steel used to produce a tin-free steel sheet (TFS), using coating bath a or b shown in Table 1, by one of the methods A to D described above. In the methods C and D, Sn coating is partially alloyed by the melting treatment. The net amount of remaining Sn which remains without being alloyed is shown in Tables 7 to 9.
- coated steel sheets Nos. 34 to 49 are produced.
- the pH of the cathodic electrolysis bath is adjusted by an alkali solution, such as potassium hydroxide, or an acid solution, such as sulfuric acid.
- a pulsed current is used, and the current density at which Zr is not deposited is set at 0 A/dm 2 .
- coated steel sheets Nos. 46 and 47 a pulsed current is used, and on the basis of the results shown in FIG.
- the Ni coating weight and Sn coating weight in each corrosion-resistant coating and the Zr coating weight and Ti coating weight in each adhesive coating are determined by X-ray fluorescence analysis in comparison with a calibration sample in which the content of each metal is determined by chemical analysis in advance. Furthermore, regarding Co, Fe, V, and Mn, the coating weights are determined by a method appropriately selected from X-ray fluorescence analysis, the same technique as that used for Zr and Ti, chemical analysis, Auger electron spectroscopy analysis, and secondary ion mass spectrometry. Furthermore, the presence of O can be confirmed by XPS surface analysis in each of Nos. 34 to 49.
- Example 1 Both surfaces of each of the coated steel sheets Nos. 34 to 49 are laminated as in Example 1 to produce laminated steel sheet Nos. 34 to 49. Regarding the resulting laminated steel sheet Nos. 34 to 49, humid resin adhesion, corrosion resistance, and streaky surface defects are evaluated as in Example 1.
- Corrosion-resistant coatings are formed on both surfaces of each cold-rolled steel sheet (thickness: 0.2 mm), which is made of cold-rolled low-carbon steel used to produce a tin-free steel sheet (TFS), using coating bath a or b shown in Table 1, by one of the methods A to D described above. In the methods C and D, Sn coating is partially alloyed by the heat melting treatment. The net coating weight of remaining Sn which remains without being alloyed is shown in Tables 11 and 12.
- coated steel sheets Nos. 50 to 60 are produced.
- the pH of the coating bath is adjusted by an alkali solution, such as potassium hydroxide, or an acid solution, such as sulfuric acid.
- a pulsed current is used, and the current density at which Zr is not deposited is set at 0 A/dm 2 .
- a phenolic resin in the coating bath a phenolic resin with a weight-average molecular weight of 5,000 is used.
- the Ni coating weight and Sn coating weight in each corrosion-resistant coating and the Zr coating weight in each adhesive coating are determined by X-ray fluorescence analysis in comparison with a calibration sample in which the content of each metal is determined by chemical analysis in advance. Furthermore, regarding Co and P, the contents are determined by a method appropriately selected from X-ray fluorescence analysis, the same technique as that used for Zr, chemical analysis, Auger electron spectroscopy analysis, and secondary ion mass spectrometry, and the mass ratio of Co and P to Zr is evaluated. Furthermore, the presence of O can be confirmed by XPS surface analysis in each of Nos. 50 to 60. Furthermore, the C content in the adhesive coating is obtained by subtracting the C content in the steel sheet as a background from the total C content measured by gas chromatography.
- Example 1 Both surfaces of each of the coated steel sheets Nos. 50 to 60 are laminated as in Example 1 to produce laminated steel sheet Nos. 50 to 60. Regarding the resulting laminated steel sheet Nos. 50 to 60, humid resin adhesion, corrosion resistance, and streaky surface defects are evaluated as in Example 1.
- the present invention it is possible to produce, even without using Cr which is strictly environmentally regulated, a coated steel sheet which has excellent humid resin adhesion and corrosion resistance and in which streaky surface defects do not occur.
- the coated steel sheet of the present invention can be used without any problem as an alternative material to replace conventional tin-free steel sheets and can be used, without being coated with a resin, for containers which contain oil, organic solvents, paint, or the like.
- the coated steel sheet is coated with a resin to obtain a resin-coated steel sheet and the resin-coated steel sheet is formed into cans or can lids, and even when the cans or can lids are exposed to a retort atmosphere, the resin does not peel off.
- resin peel-off portions, such as scratches the amount of dissolving out of Fe of a base steel sheet is markedly small, and very good corrosion resistance is exhibited. Therefore, the present invention can greatly contribute to the industry.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Laminated Bodies (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
A coated steel sheet includes a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer disposed on at least one surface of a steel sheet, and an adhesive coating disposed on the corrosion-resistant coating, the adhesive coating containing Zr and further containing at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a ratio by mass of 0.01 to 10 with respect to Zr. The coated steel sheet has excellent humid resin adhesion and corrosion resistance, in which streaky surface defects do not occur.
Description
- This application is the U.S. National Phase application of PCT/JP2011/058154, filed Mar. 24, 2011, and claims priority to Japanese Patent Application Nos. 2010-069015, filed Mar. 25, 2010, 2010-183825, filed Aug. 19, 2010, and 2010-206515, filed Sep. 15, 2010, the disclosures of which are incorporated herein by reference in their entireties for all purposes.
- The present invention relates to a coated steel sheet which is mainly used for containers, such as cans, after being further coated with a resin in such a manner that the surface of the coated steel sheet is laminated with a resin film or the like or a paint containing a resin is applied onto the surface of the coated steel sheet, and more particularly, relates to a coated steel sheet which has excellent adhesion to a resin coated thereon in a high-temperature, and humid environment (hereinafter, referred to as “humid resin adhesion”), and which exhibits excellent corrosion resistance even if the coated resin peels off. The invention also relates to a method for producing the same, and to a resin-coated steel sheet obtained by further coating the coated steel sheet with a resin.
- Metal sheets, such as tin-plated steel sheets and electrolytic chromium coated steel sheets referred to as tin-free steel sheets, are used for various metal cans, such as beverage cans, food cans, pail cans, and 18-liter cans. In particular, tin-free steel sheets are produced by subjecting steel sheets to electrolysis in a coating bath containing hexavalent Cr, and have excellent humid resin adhesion to a resin, such as a paint, coated thereon.
- In recent years, in response to growing environmental awareness, there has been a worldwide trend toward restricting use of hexavalent Cr, and there has also been a demand for alternative materials to tin-free steel sheets produced using a coating bath of hexavalent Cr.
- On the other hand, various metal cans have been conventionally manufactured in such a manner that metal sheets, such as tin-free steel sheets, are painted and then formed into can bodies. In recent years, in order to reduce waste associated with manufacturing operations, a method has come to be frequently used in which a resin-coated metal sheet that is not painted but is coated with a resin, such as a plastic film, and formed into a can body. In the resin-coated metal sheet, the resin needs to strongly adhere to the metal sheet. In particular, resin-coated metal sheets used for beverage cans or food cans are required to have excellent humid resin adhesion such that the resin does not peel off even in a high-temperature and humid environment because the cans may be subjected to a retort process, in some cases, after contents have been packed therein, and are also required to have excellent corrosion resistance such that the cans are prevented from being corroded and pierced by the contents of the cans or the like even when the resin partially peels off owing to being scratched or the like.
- Under these requirements, the present inventors have recently proposed, in
Patent Literature 1, that it is possible to produce a coated steel sheet having very excellent humid resin adhesion and excellent corrosion resistance, without using Cr, by depositing a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer on at least one surface of steel sheet, and then depositing an adhesive coating to a resin to be coated thereon by performing cathodic electrolysis in an aqueous solution which includes ions containing Ti and further includes ions containing at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn. -
- [PTL 1] Japanese Unexamined Patent Application Publication No. 2009-155665
- In the coated steel sheet produced by the method according to
Patent Literature 1, streaky surface defects may occur in some cases. - The present invention provides, without using Cr, a coated steel sheet which has excellent humid resin adhesion and corrosion resistance and in which streaky surface defects do not occur, a method for producing the same, and a resin-coated steel sheet obtained using the coated steel sheet.
- The present inventors have performed intensive studies and have found that, when an adhesive coating of
Patent Literature 1 is deposited, it is effective to perform cathodic electrolysis in an aqueous solution which includes Zr instead of Ti and further includes at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn. - The present invention has been made based on such a finding. The present invention provides a coated steel sheet characterized by including a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer disposed on at least one surface of steel sheet, and an adhesive coating disposed on the corrosion-resistant coating, the adhesive coating containing Zr and further containing at least one metal element selected from the group consisting of Co, Fe, Ni V, Cu, Mn, and Zn, in total, at a ratio by mass of 0.01 to 10 with respect to Zr. In the coated steel sheet of the present invention, preferably, the adhesive coating further contains P derived from a phosphoric acid and/or C derived from a phenolic resin, in total, at a ratio by mass of 0.01 to 10 with respect to Zr. Furthermore, preferably, the Zr coating weight of the adhesive coating is 3 to 200 mg/m2 per one surface.
- A coated steel sheet of the present invention can be produced by depositing a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer on at least one surface of a steel sheet, and depositing an adhesive coating by performing cathodic electrolysis with an electric charge density of 1 to 20 C/dm2 in an aqueous solution which includes Zr in an amount of 0.008 to 0.07 mol/l (1: liter) and further includes at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a molar ratio of 0.01 to 10 with respect to Zr.
- Furthermore, a coated steel sheet of the present invention can be produced by depositing a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer on at least one surface of a steel sheet, and then depositing an adhesive coating by performing cathodic electrolysis in an aqueous solution which includes Zr in an amount of 0.008 to 0.07 mol/l and further includes at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a molar ratio of 0.01 to 10 with respect to Zr, under the electrolysis conditions, using an electric current having a current density that changes with a cycle of 0.01 to 0.4 seconds between the current density at which Zr is deposited and the current density at which Zr is not deposited, and having a period of 0.005 to 0.2 seconds per cycle during which Zr is not deposited, in which the number of cycles is 10 or more and the total electric charge density at the current density at which Zr is deposited is 3 to 20 C/dm2. In this case, the upper limit of the current density at which Zr is not deposited is a value that depends on the composition and pH of the aqueous solution used in the cathodic electrolysis. In this production method, it may be possible to use an electric current having a current density that changes in a binary manner between the current density at which Zr is deposited and the current density at which Zr is not deposited. In this case, preferably, the current density at which Zr is not deposited is set at 0 A/dm2.
- In any of the production methods described above, preferably, the aqueous solution used in the cathodic electrolysis further includes a phosphoric acid and/or a phenolic resin, in total, at a molar ratio of 0.01 to 10 with respect to Zr.
- The present invention also provides a resin-coated steel sheet in which the coated steel sheet of the present invention described above is coated with a resin.
- According to the present invention, it has become possible to produce, without using Cr, a coated steel sheet which has excellent humid resin adhesion and corrosion resistance and in which streaky surface defects do not occur. The coated steel sheet of the present invention can be used without any problem as an alternative material to replace conventional tin-free steel sheets and can be used, without being coated with a resin, for containers which contain oil, organic solvents, paint, or the like. Furthermore, when the coated steel sheet is coated with a resin to obtain a resin-coated steel sheet and the resin-coated steel sheet is formed into cans or can lids, and even when the cans or can lids are exposed to a retort atmosphere, the resin does not peel off. In addition, at resin peel-off portions, such as scratches, the amount of dissolving out of Fe of a base steel sheet is markedly small, and very good corrosion resistance is exhibited.
-
FIG. 1 is a graph showing the relationship between the Zr coating weight and the current density in an aqueous solution, with pH4, containing 12.5 g/l of potassium hexafluorozirconate and 5 g/l of cobalt sulfate heptahydrate. -
FIG. 2( a),FIG. 2( b), andFIG. 2( c) are views illustrating a 180° peeling test. - 1) Coated Steel Sheet
- In a coated steel sheet of an embodiment of the present invention, a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer is disposed on at least one surface of steel sheet, and an adhesive coating containing Zr and further containing at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn is disposed thereon.
- As a base steel sheet, a low-carbon cold-rolled steel sheet commonly used for cans can be used.
- 1.1) Corrosion-Resistant Coating
- The corrosion-resistant coating disposed on the surface of the base steel sheet needs to be a coating composed of a single layer selected from a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer or a multi-layer including some of these layers so that it strongly bonds to the base steel sheet in order to impart excellent corrosion resistance to the steel sheet even when, after the coated steel sheet is coated with a resin, the resin partially peels off owing to being scratched or the like. In the case of a Ni layer, the Ni coating weight is preferably set at 200 mg/m2 or more per one surface of steel sheet. In the case of an Fe—Ni alloy layer, the Ni coating weight is preferably set at 60 mg/m2 or more per one surface of the steel sheet. In the case of a Sn layer or an Fe—Sn alloy layer, the Sn coating weight is preferably set at 100 mg/m2 or more per one surface of the steel sheet. In the case of an Fe—Ni—Sn alloy layer, preferably, the Ni coating weight is set at 50 mg/m2 or more and the Sn coating weight is set at 100 mg/m2 or more per one surface of the steel sheet. The coating weights of Ni and Sn can be determined by surface analysis using fluorescence X-rays.
- Such a corrosion-resistant coating can be disposed by a known method appropriate to the metal element to be contained.
- 1.2) Adhesive Coating
- By disposing, on the corrosion-resistant coating, an adhesive coating containing Zr and further containing at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a ratio by mass of 0.01 to 10, more preferably 0.01 to 2, with respect to Zr, excellent humid resin adhesion can be obtained, and prevention of occurrence of streaky surface defects is ensured. Although the reason for this is not clear at present, it is believed that by incorporating these metal elements into the coating containing Zr, a dense coating having uniformly distributed surface irregularities is formed.
- Preferably, the adhesive coating further contains P derived from a phosphoric acid and/or C derived from a phenolic resin, in total, at a ratio by mass of 0.01 to 10 with respect to Zr. The reason for this is that by incorporating P derived from a phosphoric acid and/or C derived from a phenolic resin into the adhesive coating, coatability of the adhesive coating is further improved and corrosion resistance is improved. Although the reason for improvement in coatability is not clear at present, it is believed that hydroxyl groups present in the adhesive coating, hydroxyl groups of the phenolic resin or hydroxyl groups of the phosphoric acid, and hydroxyl groups present on the surface of the corrosion-resistant coating are crosslinked by dehydration condensation, resulting in covalent bonds between the corrosion-resistant coating and the adhesive coating through oxygen atoms.
- In the adhesive coating, the Zr coating weight is preferably 3 to 200 mg/m2 per one surface of the steel sheet. The reason for this is that at a Zr coating weight of 3 to 200 mg/m2, effects of improving humid resin adhesion and preventing occurrence of streaky surface defects can be sufficiently obtained, and at a Zr coating weight exceeding 200 mg/m2, the effects are saturated, resulting in an increase in cost. The Zr coating weight is more preferably 20 to 100 mg/m2.
- In the adhesive coating, the total coating weight of at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn is preferably 10 to 200 mg/m2 per one surface of the steel sheet. When the total coating weight of these metal elements is 10 mg/m2 or more and 200 mg/m2 or less, it is possible to form a coating having excellent humid resin adhesion and having no streaky surface defects.
- Preferably, the adhesive coating further includes O. The reason for this is that by incorporating O, the coating becomes mainly composed of oxides of Zr, thus being more effective in improving humid resin adhesion and preventing occurrence of streaky surface defects.
- Note that the coating weight of Zr and the coating weights of Co, Fe, Ni, V, Cu, Mn, Zn, and P in the adhesive coating can be determined by surface analysis using fluorescence X-rays. The C content in the adhesive coating can be obtained by subtracting the C content in the steel sheet as a background from the total C content measured by gas chromatography. Although the O content is not particularly specified, the presence of O can be confirmed by surface analysis using XPS (X-ray photoelectron spectrometer).
- The adhesive coating can be disposed by performing cathodic electrolysis with an electric charge density of 1 to 20 C/dm2 in an aqueous solution which includes Zr in an amount of 0.008 to 0.07 mol/l, preferably 0.02 to 0.05 mol/l, and further includes at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a molar ratio of 0.01 to 10, preferably 0.01 to 2.5, more preferably 0.01 to 2, with respect to Zr. When the Zr amount is less than 0.008 mol/l, it is not possible to disposing a coating having excellent humid resin adhesion and having no streaky surface defects. On the other hand, when the Zr amount exceeds 0.07 mol/l, it becomes difficult for Zr to be present in a stable state in the aqueous solution, and Zr oxides are formed. When the total amount, in terms of molar ratio, of at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn is less than 0.01, it is difficult to dispose a coating having excellent humid resin adhesion and having no streaky surface defects. On the other hand, when the total amount exceeds 10, the effects are saturated, resulting in an increase in cost.
- As an aqueous solution containing Zr, an aqueous solution containing fluorozirconate ions or an aqueous solution containing fluorozirconate ions and a fluoride salts is preferable. As a compound that produces fluorozirconate ions, hexafluorozirconic acid, ammonium hexafluorozirconate, potassium hexafluorozirconate, or the like can be used. As a fluoride salt, sodium fluoride, potassium fluoride, silver fluoride, tin fluoride, or the like can be used. In particular, an aqueous solution containing potassium hexafluorozirconate or an aqueous solution containing potassium hexafluorozirconate and sodium fluoride can dispose a homogeneous coating efficiently, which is preferable.
- Furthermore, as a compound that produces Co, Fe, Ni, V, Cu, Mn, and Zn, cobalt sulfate, cobalt chloride, iron sulfate, iron chloride, nickel sulfate, copper sulfate, vanadium oxide sulfate, zinc sulfate, manganese sulfate, and the like can be used. In this case, these metal elements are added such that the total amount, in terms of molar ratio with respect to Zr, is 0.01 to 10, preferably 0.01 to 2.5, and more preferably 0.01 to 2.
- The cathodic electrolysis may be performed with a current density of 5 to 20 A/dm2 and at an electrolysis time of 1 to 5 sec. Preferably, the electric charge density is set at 3 to 15 C/dm2.
- Furthermore, when the cathodic electrolysis is performed, using an electric current having a current density that cyclically changes between the current density at which Zr is deposited and the current density at which Zr is not deposited so that the coating is grown intermittently, it is possible to obtain excellent humid resin adhesion compared with the case where electrolysis is performed continuously at a constant current. For that purpose, it is necessary to secure a certain Zr coating weight. In order to secure the Zr coating weight necessary for achieving productivity (line speed) on a commercial basis, it is preferable to perform cathodic electrolysis under the electrolysis conditions, using an electric current having a current density that changes with a cycle of 0.01 to 0.4 seconds between the current density at which Zr is deposited and the current density at which Zr is not deposited, and having a period of 0.005 to 0.2 seconds per cycle during which Zr is not deposited, in which the number of cycles is 10 or more and the total electric charge density at the current density at which Zr is deposited is 3 to 20 C/dm2. It is believed that, by performing electrolysis under such conditions, at the current density at which Zr is not deposited, redissolution of deposited Zr is promoted rather than it being the case that deposition of Zr does not occur, and therefore, a denser coating having more uniformly distributed surface irregularities is formed, and excellent humid resin adhesion can be obtained.
- The upper limit of the current density at which Zr is not deposited, i.e., the current density at the boundary between the case where Zr is not deposited and the case where Zr is deposited, depends on the composition and pH of the aqueous solution including Zr and at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn. For example,
FIG. 1 shows the relationship between the Zr coating weight and the current density in an aqueous solution, with pH4, containing 12.5 g/l of potassium hexafluorozirconate and 5 g/l of cobalt sulfate heptahydrate. In this case, it is obvious that deposition of Zr does not occur at 0.8 A/dm2 or less. As described above, since the upper limit of the current density at which Zr is not deposited depends on the composition and pH of the aqueous solution used in the cathodic electrolysis, it is necessary to predetermine the upper limit depending on the aqueous solution to be used. - As the electric current having a current density that changes cyclically between the current density at which Zr is deposited and the current density at which Zr is not deposited, an alternating current that changes cyclically in a manner similar to a sine curve, or a pulsed current that changes in a binary manner between the current density at which Zr is deposited and the current density at which Zr is not deposited can be used. It is also possible to use a current obtained by superposing an alternating current or a pulsed current on a direct current. In the case where a pulsed current that changes in a binary manner between the current density at which Zr is deposited and the current density at which Zr is not deposited is used, more preferably, the current density at which Zr is not deposited is set at 0 A/dm2 because it eliminates the need to predetermine the upper limit of the current density depending on the aqueous solution to be used.
- In the present invention, preferably, the cathodic electrolysis is performed in the aqueous solution which further includes a phosphoric acid and/or a phenolic resin, in total, at a molar ratio of 0.01 to 10 with respect to Zr. The reason for this is that, by performing the cathodic electrolysis in the aqueous solution including phosphoric acid and/or phenolic resin, it is possible to dispose an adhesive coating containing P derived from a phosphoric acid and/or C derived from a phenolic resin, resulting in further improvement in coatability of the adhesive coating and improvement in corrosion resistance. In this case, as a compound that produces a phosphoric acid, orthophosphoric acid or a phosphate compound of the metal element added simultaneously may be used, or nickel phosphate, iron phosphate, cobalt phosphate, zirconium phosphate, or the like can be used. As a phenolic resin, a phenolic resin having a weight-average molecular weight of about 3,000 to 20,000 is preferable, and a phenolic resin having a weight-average molecular weight of about 5,000 is more preferable. Furthermore, the phenolic resin may be provided with water solubility by being amino/alcohol denatured.
- 2) Resin-Coated Steel Sheet (Laminated Steel Sheet)
- A resin-coated steel sheet can be obtained by coating the coated steel sheet of the present invention with a resin. As described above, since the coated steel sheet of the present invention has excellent humid resin adhesion, the resin-coated steel sheet has excellent corrosion resistance and formability.
- The resin used to coat the coated steel sheet of the present invention is not particularly limited. For example, any of various thermoplastic resins and thermosetting resins may be used. Examples the resin that can be used include olefin resin films, such as polyethylene, polypropylene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, ethylene-acrylic ester copolymers, and ionomers; polyester films, such as polybutylene terephthalate; polyamide films, such as
nylon 6, 6,6, nylon 11, and nylon 12; and thermoplastic resin films, such as polyvinyl chloride films and polyvinylidene chloride films. These films may be unoriented or biaxially oriented. In the case where an adhesive is used for lamination, a urethane adhesive, epoxy adhesive, acid-modified olefin resin adhesive, copolyamide adhesive, copolyester adhesive, or the like (thickness: 0.1 to 5.0 μm) is preferable. Furthermore, a thermosetting paint may be applied onto the coated steel sheet or the film with a thickness in the range of 0.05 to 2 μm and used as an adhesive.nylon - Furthermore, thermoplastic or thermosetting paints, such as modified epoxy paints (e.g., phenol epoxy and amino-epoxy paints), vinyl chloride-vinyl acetate copolymers, saponified vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinyl acetate-maleic anhydride copolymers, epoxy-modified-, epoxy amino-modified, or epoxy phenol-modified vinyl paints, or modified vinyl paints, acrylic paints, and synthetic rubber paints (e.g., styrene-butadiene copolymers), may be used alone or in combination of two or more.
- The thickness of the resin coating layer is preferably in the range of 3 to 50 μm, and more preferably 5 to 40 μm. When the thickness falls below the range described above, corrosion resistance becomes insufficient. When the thickness exceeds the range described above, a problem in terms of formability is likely to occur.
- The resin coating layer can be disposed on the coated steel sheet by any method. For example, an extrusion coating method, a cast film heat bonding method, a biaxially oriented film heat bonding method, or the like can be used. In the extrusion coating method, the coated steel sheet may be extrusion-coated with a resin in a molten state, and the resin is heat-bonded to the coated steel sheet. That is, the resin is melted and kneaded in an extruder and then extruded into a thin film from a T-die. The extruded molten resin film, together with the coated steel sheet, is passed between a pair of lamination rolls, and the thin film and the coated steel sheet are integrated under pressure in a cooling environment, followed by quenching. In the case where a multi-layered resin coating layer is disposed by extrusion coating, it may be possible to use a method in which a plurality of extruders for corresponding layers are used, resin flows from the individual extruders are joined together in a multilayer die, and then extrusion coating is performed in the same manner as that for a single-layer resin. Furthermore, it is possible to dispose resin coating layers on both surfaces of the coated steel sheet by passing the coated steel sheet perpendicularly between a pair of lamination rolls, and supplying a molten resin web onto both surfaces.
- The resin-coated steel sheet can be used for three-piece cans with side seams and seamless cans (two-piece cans). The resin-coated steel sheet can also be used for lids of stay-on-tab easy open cans and lids of full open easy open cans.
- Described above are merely examples of embodiments of the present invention. Various modifications may be made within the scopes of the present invention.
- Corrosion-resistant coatings are disposed on both surfaces of cold-rolled steel sheet (thickness: 0.2 mm), which is made as cold-rolled low-carbon steel used to produce a tin-free steel sheet (TFS), using coating bath a or b shown in Table 1, by one of the methods A to D described below.
- A: A cold-rolled steel sheet is annealed in an atmosphere of 10 vol % H2+90 vol % N2 at about 700° C., subjected to temper rolling at an elongation percentage of 1.5%, degreased by alkali electrolysis, pickled with sulfuric acid, and then coated with Ni using the coating bath a to thereby dispose corrosion-resistant coatings made of Ni layers.
- B: A cold-rolled steel sheet is degreased by alkali electrolysis, coated with Ni using the coating bath a, annealed in an atmosphere of 10 vol % H2+90 vol % N2 at about 700° C. to perform diffusion coating of Ni, and then subjected to temper rolling at an elongation percentage of 1.5% to thereby dispose corrosion-resistant coatings made of Fe—Ni alloy layers.
- C: A cold-rolled steel sheet is degreased by alkali electrolysis, coated with Ni using the coating bath a, annealed in an atmosphere of 10 vol % H2+90 vol % N2 at about 700° C. to perform diffusion coating of Ni, subjected to temper rolling at an elongation percentage of 1.5%, followed by degreasing and acid pickling, coated with Sn using the coating bath b, and subjected to melting by heating the steel sheet at a temperature equal to or higher than the melting point of Sn. Thereby, a corrosion-resistant coating including an Fe—Ni—Sn alloy layer and a Sn layer thereon is disposed.
- D: A cold-rolled steel sheet is degreased by alkali electrolysis, annealed under the same conditions as the conditions A, subjected to temper rolling, coated with Sn using the coating bath b, and subjected to melting by heating the steel sheet at a temperature equal to or higher than the melting point of Sn. Thereby, a corrosion-resistant coating including an Fe—Sn alloy layer and a Sn layer thereon is disposed.
- In the methods C and D, Sn coating is partially alloyed by the melting treatment. The net coating weight of remaining Sn which remains without being alloyed is shown in Tables 3 to 5.
- Then, by performing cathodic electrolysis under the cathodic electrolysis conditions shown in Tables 2 to 5, followed by drying, adhesive coatings are formed on the corrosion resistant coatings disposed on both surfaces of each of the steel sheets. Thereby, coated steel sheets Nos. 1 to 33 are produced. Note that coated steel sheet Nos. 1, 16, 19, 22, and 29 are comparative examples, in which the adhesive coating does not contain any of Co, Fe, Ni, V, Cu, Mn, and Zn. Nos. 30 and 31 are comparative examples, in which corrosion-resistant coatings are not disposed. Nos. 32 and 33 are comparative examples, in which adhesive coatings containing Ti and further containing V or Mn are disposed on corrosion-resistant coatings.
- The Zr coating weight and Ti coating weight in each adhesive coating are determined by X-ray fluorescence analysis in comparison with a calibration sheet in which the content of each metal is determined by chemical analysis in advance. Furthermore, regarding Co, Fe, Ni, V, Cu, Mn, and Zn, the coating weights contained are determined by a method appropriately selected from X-ray fluorescence analysis, the same technique as that used for Zr and Ti, chemical analysis, Auger electron spectroscopy analysis, and secondary ion mass spectrometry, and the mass ratio of Co, Fe, Ni, V, Cu, Mn, and Zn to Zr or Ti is evaluated. Furthermore, the presence of O can be confirmed by XPS surface analysis in each of Nos. 1 to 33.
- Furthermore, both surfaces of each of the coated steel sheet Nos. 1 to 33 are laminated with isophthalic acid copolymerized polyethylene terephthalate films (draw ratio: 3.1×3.1, thickness: 25 copolymerization ratio: 12 mol %, melting point: 224° C.) under the laminating conditions such that the degree of biaxial orientation (BO value) of the films is 150, i.e., with a steel sheet feed rate of 40 m/min, a nip length of rubber roll of 17 mm, a period of time from pressure bonding to water cooling of 1 second. Thereby, laminated steel sheet Nos. 1 to 33 are produced. The term “nip length” means the length of a contact portion of a rubber roll with each steel sheet in the feed direction. Regarding the resulting laminated steel sheet Nos. 1 to 33, humid resin adhesion, corrosion resistance, and streaky surface defects are evaluated.
- Humid resin adhesion: Humid resin adhesion is evaluated by a 180° peeling test in a retort atmosphere having a temperature of 130° C. and a relative humidity of 100%. The 180° peeling test is a film peel test in which a test piece (size: 30 mm×100 mm, the front and rear surfaces being each n=1, each laminated steel sheet being n=2) obtained by cutting a
portion 3 of asteel sheet 1 so that afilm 2 remains as shown inFIG. 2( a) is used, a weight 4 (100 g) is attached to an end of the test piece, the test piece is folded 180° over thefilm 2 as shown inFIG. 2( b), and the test piece is left to stand for 30 minutes. Apeel length 5 shown inFIG. 2( c) is measured and evaluated. The peel lengths (n=2) of the front and rear surfaces of each laminated steel sheet are averaged. As thepeel length 5 decreases, the test piece is considered to have better humid resin adhesion. When thepeel length 5 is less than 20 mm, the test piece is evaluated to have excellent humid resin adhesion targeted in the present invention. - Corrosion resistance: A laminate surface of each laminated steel sheet is cut in a crossing manner with a cutter knife such that the cut depth reaches the base steel sheet, the laminated steel sheet is immersed in 80 ml of a test liquid prepared by mixing equivalent amounts of 1.5% by mass NaCl aqueous solution and 1.5% by mass citric acid aqueous solution, and left to stand at 55° C. for 9 days. The corrosion resistance of the cut portions is evaluated under the following criteria (both surfaces of each laminated steel sheet are evaluated, that is, evaluation number n=2), symbol ◯ indicating good corrosion resistance:
- ◯: No corrosion in both n=2.
x: Corrosion in one or more of n=2. - Streaky surface defects: Degree of occurrence of streaky patterns is visually observed and evaluated as follows:
- ◯: No streaky patterns are observed.
x: Streaky patterns are observed. - The results are shown in Table 6. In all of laminated steel sheet Nos. 2 to 15, 17, 18, 20, 21, and 23 to 28, which are examples of the present invention, good humid resin adhesion and corrosion resistance are exhibited, and no streaky surface defects are observed. In contrast, in laminated steel sheet Nos. 1, 16, 19, 22, and 29, which are comparative examples, although there is no problem in corrosion resistance, humid resin adhesion is poor. In laminated steel sheet Nos. 30 and 31, although there is no problem in humid resin adhesion, corrosion resistance is poor. In laminated steel sheet Nos. 32 and 33, although there is no problem in humid resin adhesion or corrosion resistance, streaky patterns are observed on the surface.
-
TABLE 1 Coating bath Bath composition a (Ni coating Nickel sulfate: 250 g/l, nickel chloride: 45 g/l, boric acid: bath) 30 g/l b (Sn coating Stunnous sulfate: 55 g/l, phenolsulfonic acid(65% by mass): bath) 35 g/l, brightener: appropriate amount -
TABLE 2 Coating Cathodic electrolysis treatment Zr amount Molar ratio Current Electric Coated steel Coating in bath of metal M density Electrolysis charge density sheet No. method Treatment bath composition (mol/l) to Zr in bath (A/dm2) time (sec) (C/dm2) 1 A Potassium hexafluorozirconate 12.5 g/l 0.044 0 3 2.0 6.0 2 A Potassium hexafluorozirconate 12.5 g/l + 0.044 0.476 4 1.2 4.8 cobalt chloride hexahydrate 5 g/l 3 A Potassium hexafluorozirconate 12.5 g/l + 0.044 1.428 5 1.2 6.0 cobalt chloride hexahydrate 15 g/l 4 A Potassium hexafluorozirconate 6.5 g/l + 0.023 2.746 6 1.2 7.2 cobalt chloride hexahydrate 15 g/l 5 A Potassium hexafluorozirconate 12.5 g/l + 0.044 0.403 5 1.2 6.0 cobalt sulfate heptahydrate 5 g/l 6 A Potassium hexafluorozirconate 12.5 g/l + 0.044 0.403 6 1.2 7.2 cobalt sulfate heptahydrate 5 g/l 7 A Potassium hexafluorozirconate 12.5 g/l + 0.044 1.355 4 1.2 4.8 iron sulfate heptahydrate 5 g/l + cobalt chloride hexahydrate 10 g/l 8 A Potassium hexafluorozirconate 6.3 g/l + 0.022 0.808 4 1.6 6.4 iron sulfate heptahydrate 5 g/l 9 A Potassium hexafluorozirconate 12.5 g/l + 0.044 0.407 4 1.2 4.8 iron sulfate heptahydrate 5 g/l 10 A Potassium hexafluorozirconate 12.5 g/l + 0.044 0.396 6 1.6 9.6 copper sulfate pentahydrate 5 g/l 11 A Potassium hexafluorozirconate 6.5 g/l + 0.023 1.383 6 1.6 9.6 vanadium chloride 5 g/l 12 A Potassium hexafluorozirconate 12.5 g/l + 0.044 0.397 5 1.6 8.0 zinc sulfate heptahydrate 5 g/l 13 A Potassium hexafluorozirconate 12.5 g/l + 0.044 0.470 6 1.6 9.6 manganese sulfate pentahydrate 5 g/l Corrosion-resistant coating Adhesive coating Coating weight of Ni Coating Additive Mass Coated steel and Sn (mg/m2) weight of element ratio sheet No. Ni Sn Zr (mg/m2) M M/Zr Remarks 1 290 0 60 — 0 Comparative example 2 295 0 20 Co 0.10 Example 3 295 0 60 Co 1.20 Example 4 295 0 100 Co 1.30 Example 5 295 0 60 Co 0.10 Example 6 295 0 100 Co 0.10 Example 7 295 0 20 Fe, Co 1.20 Example 8 295 0 60 Fe 0.11 Example 9 295 0 20 Fe 0.10 Example 10 300 0 20 Cu 0.10 Example 11 295 0 20 V 0.15 Example 12 295 0 60 Zn 0.12 Example 13 300 0 20 Mn 0.10 Example -
TABLE 3 Coating Cathodic electrolysis treatment Zr amount Molar ratio Current Electric Coated steel Coating in bath of metal M density Electrolysis charge density sheet No. method Treatment bath composition (mol/l) to Zr in bath (A/dm2) time (sec) (C/dm2) 14 B Potassium hexafluorozirconate 0.044 0.403 5 1.2 6.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/l 15 B Potassium hexafluorozirconate 0.044 1.222 3 1.6 4.8 12.5 g/l + iron sulfate heptahydrate 15 g/l 16 B Potassium hexafluorozirconate 12.5 g/l 0.044 0 3 2.0 6.0 17 C Potassium hexafluorozirconate 0.044 2.419 5 1.2 6.0 12.5 g/l + cobalt sulfate heptahydrate 30 g/l 18 C Potassium hexafluorozirconate 0.044 1.222 3 1.6 4.8 12.5 g/l + iron sulfate heptahydrate 15 g/l 19 C Potassium hexafluorozirconate 12.5 g/l 0.044 0 3 2.0 6.0 20 C Potassium hexafluorozirconate 0.044 2.419 9 1.2 10.8 12.5 g/l + cobalt sulfate heptahydrate 30 g/l 21 C Potassium hexafluorozirconate 0.044 1.222 5 1.2 6.0 12.5 g/l + iron sulfate heptahydrate 15 g/l 22 C Potassium hexafluorozirconate 12.5 g/l 0.044 0 3 2.0 6.0 Corrosion-resistant coating Ni, Sn, net coating weight of remaining Sn (mg/m2) Adhesive coating Net coating Coating Additive Mass Coated steel weight of weight of element ratio sheet No. Ni Sn remaining Sn Zr (mg/m2) M M/Zr Remarks 14 80 0 0 60 Co 0.10 Example 15 80 0 0 60 Fe 1.00 Example 16 80 0 0 60 — 0 Comparative example 17 80 150 25 60 Co 3.00 Example 18 80 300 50 60 Fe 1.00 Example 19 80 300 50 60 — 0 Comparative example 20 80 500 70 60 Co 3.00 Example 21 80 500 70 60 Fe 1.00 Example 22 80 500 70 60 — 0 Comparative example -
TABLE 4 Coating Cathodic electrolysis treatment Zr amount Molar ratio Current Electric Coated steel Coating in bath of metal M density Electrolysis charge density sheet No. method Treatment bath composition (mol/l) to Zr in bath (A/dm2) time (sec) (C/dm2) 23 D Potassium hexafluorozirconate 0.044 1.209 8 1.2 9.6 12.5 g/l + cobalt sulfate heptahydrate 15 g/l 24 D Potassium hexafluorozirconate 0.044 1.209 6 2.0 12.0 12.5 g/l + cobalt sulfate heptahydrate 15 g/l 25 D Potassium hexafluorozirconate 0.044 1.209 7 1.6 11.2 12.5 g/l + cobalt sulfate heptahydrate 15 g/l 26 D Potassium hexafluorozirconate 0.044 0.407 5 1.2 6.0 12.5 g/l + iron sulfate heptahydrate 5 g/l 27 D Potassium hexafluorozirconate 0.044 0.861 6 2.0 12.0 12.5 g/l + nickel sulfate hexahydrate 10 g/l 28 D Potassium hexafluorozirconate 0.044 0.892 8 1.2 9.6 12.5 g/l + iron chloride, anhydrous 5 g/l 29 D Potassium hexafluorozirconate 0.044 0 4 1.2 4.8 12.5 g/l 30 None (on Potassium hexafluorozirconate 0.044 1.209 5 1.2 6.0 steel sheet) 12.5 g/l + cobalt sulfate heptahydrate 15 g/l 31 None (on Potassium hexafluorozirconate 0.044 0.407 3 1.6 4.8 steel sheet) 12.5 g/l + iron sulfate heptahydrate 5 g/l Corrosion-resistant coating Ni, Sn, net coating weight of remaining Sn (mg/m2) Adhesive coating Net coating Coating Additive Mass Coated steel weight of weight of element ratio sheet No. Ni Sn remaining Sn Zr (mg/m2) M M/Zr Remarks 23 0 2000 1500 60 Co 1.80 Example 24 0 700 300 100 Co 1.80 Example 25 0 500 70 20 Co 1.80 Example 26 0 500 70 60 Fe 0.80 Example 27 0 500 70 60 Ni 0.05 Example 28 0 1500 900 60 Fe 0.80 Example 29 0 700 300 60 — 0 Comparative example 30 — — — 60 Co 1.80 Comparative example 31 — — — 60 Fe 0.80 Comparative example -
TABLE 5 Coating Cathodic electrolysis treatment Ti amount Molar ratio Current Electric Coated steel Coating in bath of metal M density Electrolysis charge density sheet No. method Treatment bath composition (mol/l) to Ti in bath (A/dm2) time (sec) (C/dm2) 32 A Potassium fluorotitanate 0.044 0.719 6 2.0 12 10.6 g/l + vanadium chloride 5 g/l 33 A Potassium fluorotitanate 0.044 0.470 6 2.0 12 10.6 g/l + manganese sulfate pentahydrate 5 g/l Corrosion-resistant coating Ni, Sn, net coating weight of remaining Sn (mg/m2) Adhesive coating Net coating Coating Additive Mass Coated steel weight of weight of element ratio sheet No. Ni Sn remaining Sn Ti (mg/m2) M M/Ti Remarks 32 295 0 0 20 V 0.15 Comparative example 33 300 0 0 20 Mn 0.10 Comparative example -
TABLE 6 Humid Streaky Laminated steel resin adhesion: Corrosion surface sheet No. peel length (mm) resistance defects Remarks 1 50 ∘ ∘ Comparative example 2 19 ∘ ∘ Example 3 18 ∘ ∘ Example 4 18 ∘ ∘ Example 5 19 ∘ ∘ Example 6 19 ∘ ∘ Example 7 17 ∘ ∘ Example 8 18 ∘ ∘ Example 9 19 ∘ ∘ Example 10 19 ∘ ∘ Example 11 18 ∘ ∘ Example 12 19 ∘ ∘ Example 13 19 ∘ ∘ Example 14 17 ∘ ∘ Example 15 19 ∘ ∘ Example 16 50 ∘ ∘ Comparative example 17 17 ∘ ∘ Example 18 17 ∘ ∘ Example 19 70 ∘ ∘ Comparative example 20 18 ∘ ∘ Example 21 19 ∘ ∘ Example 22 70 ∘ ∘ Comparative example 23 19 ∘ ∘ Example 24 18 ∘ ∘ Example 25 17 ∘ ∘ Example 26 18 ∘ ∘ Example 27 18 ∘ ∘ Example 28 18 ∘ ∘ Example 29 70 ∘ ∘ Comparative example 30 17 x ∘ Comparative example 31 17 x ∘ Comparative example 32 19 ∘ x Comparative example 33 19 ∘ x Comparative example - Corrosion-resistant coatings are formed on both surfaces of each cold-rolled steel sheet (thickness: 0.2 mm), which is made of cold-rolled low-carbon steel used to produce a tin-free steel sheet (TFS), using coating bath a or b shown in Table 1, by one of the methods A to D described above. In the methods C and D, Sn coating is partially alloyed by the melting treatment. The net amount of remaining Sn which remains without being alloyed is shown in Tables 7 to 9.
- Then, by performing cathodic electrolysis under the cathodic electrolysis conditions shown in Tables 7 to 9, followed by drying, adhesive coatings are disposed on the corrosion resistant coatings on both surfaces of each of the steel sheets. Thereby, coated steel sheets Nos. 34 to 49 are produced. In this case, the pH of the cathodic electrolysis bath is adjusted by an alkali solution, such as potassium hydroxide, or an acid solution, such as sulfuric acid. Furthermore, in coated steel sheets Nos. 34 to 45, a pulsed current is used, and the current density at which Zr is not deposited is set at 0 A/dm2. On the other hand, in coated steel sheets Nos. 46 and 47, a pulsed current is used, and on the basis of the results shown in
FIG. 1 , an example in which the current density at which Zr is not deposited is not 0 A/dm2 (No. 46) and an example in which the current density at which Zr is not deposited exceeds the upper limit (No. 47) are taken. Out of these coated steel sheets, in Nos. 38, 45, and 47, the cathodic electrolysis conditions are out of the preferred pulsed current conditions. Nos. 48 and 49 are comparative examples, in which cathodic electrolysis is performed in an aqueous solution containing Ti instead of Zr. - The Ni coating weight and Sn coating weight in each corrosion-resistant coating and the Zr coating weight and Ti coating weight in each adhesive coating are determined by X-ray fluorescence analysis in comparison with a calibration sample in which the content of each metal is determined by chemical analysis in advance. Furthermore, regarding Co, Fe, V, and Mn, the coating weights are determined by a method appropriately selected from X-ray fluorescence analysis, the same technique as that used for Zr and Ti, chemical analysis, Auger electron spectroscopy analysis, and secondary ion mass spectrometry. Furthermore, the presence of O can be confirmed by XPS surface analysis in each of Nos. 34 to 49.
- Both surfaces of each of the coated steel sheets Nos. 34 to 49 are laminated as in Example 1 to produce laminated steel sheet Nos. 34 to 49. Regarding the resulting laminated steel sheet Nos. 34 to 49, humid resin adhesion, corrosion resistance, and streaky surface defects are evaluated as in Example 1.
- The results are shown in Table 10. In all of laminated steel sheet Nos. 34 to 47 using the coated steel sheets which are examples of the present invention, good humid resin adhesion and corrosion resistance are exhibited, and no streaky surface defects are observed. In Nos. 34 to 37, 39 to 44, and 46, in which cathodic electrolysis is performed under the electrolysis conditions, using an electric current having a current density that changes with a cycle of 0.01 to 0.4 seconds and having a period of 0.005 to 0.2 seconds per cycle during which Zr is not deposited, in which the number of cycles is 10 or more and the total electric charge density at the current density at which Zr is deposited is 3 to 20 C/dm2, the peel length of humid resin adhesion is 15 mm or less, and particularly good humid resin adhesion can be obtained. In contrast, in laminated steel sheet Nos. 48 and 49, which are comparative examples, although good humid resin adhesion and corrosion resistance are exhibited, streaky surface defects are observed.
-
TABLE 7 Cathodic electrolysis Electrolysis conditions* Period per Coated Treatment bath cycle during Total electric steel Coating Amount Molar ratio Current which current Number charge density sheet treatment of Zr of metal M density 2 Cycle density 2 is of cycles at current No. Method Composition and pH (mol/l) to Zr (A/dm2) (sec) maintained (sec) (No.) density 1 (C/dm2) 34 A Potassium hexafluorozirconate 0.044 0.403 0 0.1 0.05 15 3.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/l pH 4 35 A Potassium hexafluorozirconate 0.044 0.403 0 0.09 0.04 15 4.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/l pH 4 36 A Potassium hexafluorozirconate 0.044 1.222 0 0.1 0.05 15 3.0 12.5 g/l + iron sulfate heptahydrate 15 g/l pH 4.2 37 A Potassium hexafluorozirconate 0.044 0.407 0 0.05 0.03 20 5.0 12.5 g/l + iron sulfate heptahydrate 5 g/l + cobalt sulfate heptahydrate 4 g/l pH 4.1 38 A Potassium hexafluorozirconate 0.044 0.403 0 0.7 0.40 4 6.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/l pH 4 39 B Potassium hexafluorozirconate 0.044 0.403 0 0.1 0.05 15 3.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/l pH 4 40 C Potassium hexafluorozirconate 0.044 0.403 0 0.1 0.05 15 3.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/l pH 4 Corrosion-resistant coating Ni, Sn, net coating weight Coated of remaining Sn (mg/m2) Adhesive coating steel Net coating Coating Additive Mass sheet weight of weight of element ratio No. Ni Sn remaining Sn Zr (mg/m2) M M/Zr Remarks 34 295 0 0 40 Co 1.22 Example 35 295 0 0 60 Co 1.46 Example 36 295 0 0 50 Fe 0.86 Example 37 295 0 0 30 Fe, Co 1.67 Example 38 295 0 0 60 Co 0.10 Example 39 70 0 0 40 Co 1.22 Example 40 70 100 0 40 Co 1.22 Example *Current density 1: current density at which Zr is deposited, Current density 2: current density at which Zr is not deposited -
TABLE 8 Cathodic electrolysis Electrolysis conditions* Period per Coated Treatment bath cycle during Total electric steel Coating Amount Molar ratio Current which current Number charge density sheet treatment of Zr of metal M density 2 Cycle density 2 is of cycles at current No. Method Composition and pH (mol/l) to Zr (A/dm2) (sec) maintained (sec) (No.) density 1 (C/dm2) 41 D Potassium hexafluorozirconate 0.044 0.403 0 0.1 0.05 15 3.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/ l pH 442 D Potassium hexafluorozirconate 0.044 0.403 0 0.09 0.04 15 4.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/ l pH 443 D Potassium hexafluorozirconate 0.044 1.222 0 0.1 0.05 15 3.0 12.5 g/l + iron sulfate heptahydrate 15 g/l pH 4.2 44 D Potassium hexafluorozirconate 0.044 0.729 0 0.05 0.03 20 5.0 12.5 g/l + iron sulfate heptahydrate 5 g/l + cobalt sulfate heptahydrate 4 g/l pH 4.1 45 D Potassium hexafluorozirconate 0.044 0.407 0 0.70 0.40 4 6.0 12.5 g/l + iron sulfate heptahydrate 5 g/l pH 4.2 Corrosion-resistant coating Ni, Sn, net coating weight Coated of remaining Sn (mg/m2) Adhesive coating steel Net coating Coating Additive Mass sheet weight of weight of Zr element ratio No. Ni Sn remaining Sn (mg/m2) M M/Zr Remarks 41 0 500 70 40 Co 1.22 Example 42 0 700 300 60 Co 1.46 Example 43 0 500 0 50 Fe 0.86 Example 44 0 500 30 30 Fe, Co 1.67 Example 45 0 500 70 60 Fe 0.80 Example *Current density 1: current density at which Zr is deposited, Current density 2: current density at which Zr is not deposited -
TABLE 9 Cathodic electrolysis Electrolysis conditions* Period per Coated Treatment bath cycle during Total electric steel Coating Amount Molar ratio Current which current Number charge density sheet treatment of Zr(Ti) of metal M density 2 Cycle density 2 is of cycles at current No. Method Composition and pH (mol/l) to Zr (Ti) (A/dm2) (sec) maintained (sec) (No.) density 1 (C/dm2) 46 A Potassium hexafluorozirconate 0.044 0.403 0.5 0.1 0.05 15 3.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/ l pH 447 A Potassium hexafluorozirconate 0.044 0.403 3.5 0.1 0.05 15 3.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/ l pH 448 A Potassium fluorotitanate (0.044) (0.931) 0 0.9 0.40 4 12.0 10.6 g/l + vanadium chloride 5 g/l pH 3.5 49 A Potassium fluorotitanate (0.044) (0.531) 0 0.9 0.40 4 12.0 10.6 g/l + manganese sulfate pentahydrate 5 g/l pH 3.5 Corrosion-resistant coating Ni, Sn, net coaring weight Adhesive coating Coated of remaining Sn (mg/m2) Coating steel Net coating weight of Additive Mass sheet weightt of Zr(Ti) element ratio No. Ni Sn remaining Sn (mg/m2) M M/Zr(Ti) Remarks 46 295 0 0 40 Co 1.22 Example 47 295 0 0 40 Co 1.22 Example 48 295 0 0 20 V 0.15 Comparative example 49 300 0 0 20 Mn 0.10 Comparative example *Current density 1: current density at which Zr(Ti) is deposited, Current density 2: current density at which Zr(Ti) is not deposited -
TABLE 10 Humid Streaky Laminated steel resin adhesion: Corrosion surface sheet No. peel length (mm) resistance defects Remarks 34 15 ∘ ∘ Example 35 14 ∘ ∘ Example 36 14 ∘ ∘ Example 37 15 ∘ ∘ Example 38 19 ∘ ∘ Example 39 14 ∘ ∘ Example 40 15 ∘ ∘ Example 41 15 ∘ ∘ Example 42 14 ∘ ∘ Example 43 14 ∘ ∘ Example 44 15 ∘ ∘ Example 45 18 ∘ ∘ Example 46 14 ∘ ∘ Example 47 19 ∘ ∘ Example 48 8 ∘ x Comparative example 49 9 ∘ x Comparative example - Corrosion-resistant coatings are formed on both surfaces of each cold-rolled steel sheet (thickness: 0.2 mm), which is made of cold-rolled low-carbon steel used to produce a tin-free steel sheet (TFS), using coating bath a or b shown in Table 1, by one of the methods A to D described above. In the methods C and D, Sn coating is partially alloyed by the heat melting treatment. The net coating weight of remaining Sn which remains without being alloyed is shown in Tables 11 and 12.
- Then, by performing cathodic electrolysis under the cathodic electrolysis conditions shown in Tables 11 and 12, followed by drying, adhesive coatings are formed on the corrosion resistant coatings disposed on both surfaces of each of the steel sheets. Thereby, coated steel sheets Nos. 50 to 60 are produced. In this case, the pH of the coating bath is adjusted by an alkali solution, such as potassium hydroxide, or an acid solution, such as sulfuric acid. Furthermore, in coated steel sheets Nos. 54 to 60, a pulsed current is used, and the current density at which Zr is not deposited is set at 0 A/dm2. Furthermore, as the phenolic resin in the coating bath, a phenolic resin with a weight-average molecular weight of 5,000 is used.
- The Ni coating weight and Sn coating weight in each corrosion-resistant coating and the Zr coating weight in each adhesive coating are determined by X-ray fluorescence analysis in comparison with a calibration sample in which the content of each metal is determined by chemical analysis in advance. Furthermore, regarding Co and P, the contents are determined by a method appropriately selected from X-ray fluorescence analysis, the same technique as that used for Zr, chemical analysis, Auger electron spectroscopy analysis, and secondary ion mass spectrometry, and the mass ratio of Co and P to Zr is evaluated. Furthermore, the presence of O can be confirmed by XPS surface analysis in each of Nos. 50 to 60. Furthermore, the C content in the adhesive coating is obtained by subtracting the C content in the steel sheet as a background from the total C content measured by gas chromatography.
- Both surfaces of each of the coated steel sheets Nos. 50 to 60 are laminated as in Example 1 to produce laminated steel sheet Nos. 50 to 60. Regarding the resulting laminated steel sheet Nos. 50 to 60, humid resin adhesion, corrosion resistance, and streaky surface defects are evaluated as in Example 1.
- The results are shown in Table 13. In all of laminated steel sheet Nos. 50 to 60 which are examples of the present invention, good humid resin adhesion and corrosion resistance are exhibited, and no streaky surface defects are observed. In Nos. 54 to 60, in which cathodic electrolysis is performed using a pulsed current, the peel length of humid resin adhesion is 15 mm or less, and particularly good humid resin adhesion can be obtained. In adhesive coatings containing Zr, point rust may be observed in portions other than the cut portion after the corrosion resistance test in some cases. However, when P derived from a phosphoric acid or C derived from a phenolic resin is incorporated into coatings as in the examples of the present invention, no point rust is observed.
-
TABLE 11 Cathodic electrolysis electrolysis conditions Treatment bath Electric Coating Amount Molar ratio Current charge Coated steel treatment of Zr of metal M density Electrolysis density sheet No. Method Composition (mol/l) to Zr (A/dm2) time (sec) (C/dm2) 50 A Potassium hexafluorozirconate 12.5 g/l + cobalt 0.044 0.403 7 1.5 10.5 sulfate heptahydrate 5 g/l + orthophosphoric acid1 g/l 51 C Potassium hexafluorozirconate 12.5 g/l + cobalt 0.044 0.403 7 1.5 10.5 sulfate heptahydrate 5 g/l + orthophosphoric acid1 g/l 52 B Potassium hexafluorozirconate 12.5 g/l + cobalt 0.044 0.403 7 1.5 10.5 sulfate heptahydrate 5 g/l + orthophosphoric acid1 g/l + phenolic resin0.5 g/l 53 D Potassium hexafluorozirconate 12.5 g/l + cobalt 0.044 0.403 6 1.5 9.0 sulfate heptahydrate 5 g/l + orthophosphoric acid1 g/l + phenolic resin0.9 g/l Corrosion-resistant coating Ni, Sn, net coating weight of remaining Sn (mg/m2) Adhesive coating Net coating Coating Additive Mass Mass Mass Coated steel weight of weight of element ratio ratio ratio sheet No. Ni Sn remaining Sn Zr (mg/m2) M M/Zr P/Zr C/Zr Remarks 50 300 0 0 10 Co 2.00 0.4 — Example 51 80 150 25 30 Co 2.00 0.1 — Example 52 70 0 0 30 Co 2.00 0.1 0.1 Example 53 0 500 0 5 Co 2.00 0.7 0.8 Example -
TABLE 12 Cathodic electrolysis Electrolysis conditioons* Period per Treatment bath cycle during Total electric Molar which current charge density Coated Coating Amount ratio of Current density 2 is Number at current steel treatment of Zr metal M density 2 Cycle maintained of cycles density 1 sheet No. Method Composition (mol/l) to Zr (A/dm2) (sec) (sec) (No.) C/dm2) 54 A Potassium hexafluorozirconate 0.044 0.403 0 0.1 0.05 15 3.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/l + orthophosphoric acid1 g/l 55 D Potassium hexafluorozirconate 0.044 0.403 0 0.1 0.05 15 3.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/l + orthophosphoric acid1 g/l 56 A Potassium hexafluorozirconate 0.044 0.403 0 0.1 0.05 25 4.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/l + orthophosphoric acid1 g/l + phenolic resin0.9 g/l 57 B Potassium hexafluorozirconate 0.044 0.403 0 0.1 0.05 15 3.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/l + orthophosphoric acid1 g/l + phenolic resin0.9 g/l 58 C Potassium hexafluorozirconate 0.044 0.403 0 0.1 0.05 15 3.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/l + orthophosphoric acid g/l + phenolic resin0.9 g/l 59 D Potassium hexafluorozirconate 0.044 0.403 0 0.1 0.05 25 4.0 12.5 g/l + cobalt sulfate heptahydrate 5 g/l + orthophosphoric acid1 g/l + phenolic resin0.5 g/l Potassium hexafluorozirconate 60 D 12.5 g/l + cobalt sulfate 0.044 0.403 0 0.1 0.05 15 3.0 heptahydrate 5 g/l + orthophosphoric acid1 g/l + phenolic resin0.9 g/l Corrosion-resistant coating Ni, Sn, net coating weight of remaining Sn (mg/m2) Adhesive coating net coating Coating Coated weight of weight of Additive Mass Mass Mass steel remaining Zr element ratio ratio ratio sheet No. Ni Sn Sn (mg/m2) M M/Zr P/Zr C/Zr Remarks 54 300 0 0 30 Co 1.67 0.4 — Example 55 0 500 0 8 Co 2.00 0.5 — Example 56 300 0 0 12 Co 2.00 0.3 0.3 Example 57 70 0 0 8 Co 2.00 0.5 0.5 Example 58 70 700 200 8 Co 2.00 0.5 0.5 Example 59 0 500 0 12 Co 2.00 0.3 0.3 Example 60 0 800 200 8 Co 2.00 0.5 0.5 Example *Current density 1: current density at which Zr is deposited, Current density 2: current density at which Zr is not deposited -
TABLE 13 Humid Streaky Laminated steel resin adhesion: Corrosion surface sheet No. peel length (mm) resistance defects Remarks 50 17 ∘ ∘ Example 51 17 ∘ ∘ Example 52 19 ∘ ∘ Example 53 17 ∘ ∘ Example 54 12 ∘ ∘ Example 55 13 ∘ ∘ Example 56 12 ∘ ∘ Example 57 12 ∘ ∘ Example 58 15 ∘ ∘ Example 59 12 ∘ ∘ Example 60 15 ∘ ∘ Example - According to the present invention, it is possible to produce, even without using Cr which is strictly environmentally regulated, a coated steel sheet which has excellent humid resin adhesion and corrosion resistance and in which streaky surface defects do not occur. The coated steel sheet of the present invention can be used without any problem as an alternative material to replace conventional tin-free steel sheets and can be used, without being coated with a resin, for containers which contain oil, organic solvents, paint, or the like. Furthermore, when the coated steel sheet is coated with a resin to obtain a resin-coated steel sheet and the resin-coated steel sheet is formed into cans or can lids, and even when the cans or can lids are exposed to a retort atmosphere, the resin does not peel off. Furthermore, at resin peel-off portions, such as scratches, the amount of dissolving out of Fe of a base steel sheet is markedly small, and very good corrosion resistance is exhibited. Therefore, the present invention can greatly contribute to the industry.
-
-
- 1 steel sheet
- 2 film
- 3 cut portion of steel sheet
- 4 weight
- 5 peel length
Claims (10)
1. A coated steel sheet comprising:
a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer disposed on at least one surface of a steel sheet; and
an adhesive coating disposed on the corrosion-resistant coating, the adhesive coating containing Zr and further containing at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a ratio by mass of 0.01 to 10 with respect to Zr.
2. The coated steel sheet according to claim 1 wherein the adhesive coating further contains P derived from a phosphoric acid and/or C derived from a phenolic resin, in total, at a ratio by mass of 0.01 to 10 with respect to Zr.
3. The coated steel sheet according to claim 1 , wherein the Zr coating weight of the adhesive coating is 3 to 200 mg/m2 per one surface of the steel sheet.
4. A method for producing a coated steel sheet comprising:
depositing a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer on at least one surface of a steel sheet; and
disposing an adhesive coating by performing cathodic electrolysis with an electric charge density of 1 to 20 C/dm2 in an aqueous solution which includes Zr in an amount of 0.008 to 0.07 mol/l and further includes at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a molar ratio of 0.01 to 10 with respect to Zr.
5. A method for producing a coated steel sheet comprising:
disposing a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer on at least one surface of a steel sheet; and
disposing an adhesive coating by performing cathodic electrolysis in an aqueous solution which includes Zr in an amount of 0.008 to 0.07 mol/l and further includes at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a molar ratio of 0.01 to 10 with respect to Zr, under the electrolysis conditions, using an electric current having a current density that changes with a cycle of 0.01 to 0.4 seconds between the current density at which Zr is deposited and the current density at which Zr is not deposited, and having a period of 0.005 to 0.2 seconds per cycle during which Zr is not deposited, in which the number of cycles is 10 or more and the total electric charge density at the current density at which Zr is deposited is 3 to 20 C/dm2,
wherein the upper limit of the current density at which Zr is not deposited is a value that depends on the composition and pH of the aqueous solution used in the cathodic electrolysis.
6. The method for producing a coated steel sheet according to claim 5 , further comprising using an electric current having a current density that changes in a binary manner between the current density at which Zr is deposited and the current density at which Zr is not deposited.
7. The method for producing a coated steel sheet according to claim 6 , wherein the current density at which Zr is not deposited is set at 0 A/dm2.
8. The method for producing a coated steel sheet according to claim 4 , wherein the aqueous solution further includes a phosphoric acid and/or a phenolic resin, in total, at a molar ratio of 0.01 to 10 with respect to Zr.
9. A resin-coated steel sheet comprising the coated steel sheet according to claim 1 , the coated steel sheet being coated with a resin.
10. The method for producing a coated steel sheet according to claim 5 , wherein the aqueous solution further includes a phosphoric acid and/or a phenolic resin, in total, at a molar ratio of 0.01 to 10 with respect to Zr.
Applications Claiming Priority (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010-069015 | 2010-03-25 | ||
| JP2010069015 | 2010-03-25 | ||
| JP2010183825 | 2010-08-19 | ||
| JP2010-193825 | 2010-08-19 | ||
| JP2010206515A JP5786296B2 (en) | 2010-03-25 | 2010-09-15 | Surface-treated steel sheet, method for producing the same, and resin-coated steel sheet using the same |
| JP2010-206515 | 2010-09-15 | ||
| PCT/JP2011/058154 WO2011118846A1 (en) | 2010-03-25 | 2011-03-24 | Surface treated steel plate, manufacturing method therefor, and resin-coated steel plate using same |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2011/058154 A-371-Of-International WO2011118846A1 (en) | 2010-03-25 | 2011-03-24 | Surface treated steel plate, manufacturing method therefor, and resin-coated steel plate using same |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/475,393 Division US10392709B2 (en) | 2010-03-25 | 2017-03-31 | Coated steel sheet, method for producing the same, and resin-coated steel sheet obtained using the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130130055A1 true US20130130055A1 (en) | 2013-05-23 |
Family
ID=44673381
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/636,858 Abandoned US20130130055A1 (en) | 2010-03-25 | 2011-03-24 | Coated steel sheet, method for producing the same, and resin-coated steel sheet obtained using the same |
| US15/475,393 Expired - Fee Related US10392709B2 (en) | 2010-03-25 | 2017-03-31 | Coated steel sheet, method for producing the same, and resin-coated steel sheet obtained using the same |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/475,393 Expired - Fee Related US10392709B2 (en) | 2010-03-25 | 2017-03-31 | Coated steel sheet, method for producing the same, and resin-coated steel sheet obtained using the same |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US20130130055A1 (en) |
| EP (1) | EP2540867A4 (en) |
| JP (1) | JP5786296B2 (en) |
| CN (2) | CN102812156B (en) |
| MY (1) | MY168768A (en) |
| WO (1) | WO2011118846A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140349135A1 (en) * | 2013-05-27 | 2014-11-27 | Thyssenkrupp Rasselstein Gmbh | Method for coating a steel sheet with a metal layer |
| US20150111057A1 (en) * | 2012-05-29 | 2015-04-23 | Toyo Kohan Co., Ltd. | Surface-Treated Steel Sheet for Container Having Excellent Processing Adhesion to Resin, Method For Manufacturing Same, and Can |
| US20160111182A1 (en) * | 2013-05-23 | 2016-04-21 | Jfe Steel Corporation | Electrical steel sheet provided with insulating coating |
| US20170001415A1 (en) * | 2014-08-27 | 2017-01-05 | Schlumberger Technology Corporation | Steel Armor Wire Coatings |
| US11859289B2 (en) | 2019-12-19 | 2024-01-02 | Nippon Steel Corporation | Sn-based plated steel sheet |
| US11946121B2 (en) | 2017-07-28 | 2024-04-02 | Jfe Steel Corporation | Steel sheet for battery outer tube cans, battery outer tube can and battery |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102339193B1 (en) * | 2017-07-28 | 2021-12-13 | 제이에프이 스틸 가부시키가이샤 | Steel plate for battery cans, cans and batteries |
| EP4052834A4 (en) * | 2019-10-31 | 2023-01-04 | JFE Steel Corporation | Mig welding method |
| MX2022006167A (en) * | 2019-11-22 | 2022-06-14 | Ppg Ind Ohio Inc | Methods for electrolytically depositing pretreatment compositions. |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090032144A1 (en) * | 2007-08-03 | 2009-02-05 | Mcmillen Mark W | Pretreatment compositions and methods for coating a metal substrate |
| US20100035055A1 (en) * | 2006-12-13 | 2010-02-11 | Kazuhisa Okai | Surface-treated galvanized steel sheet with superior flat-portion corrosion resistance, blackening resistance, and appearance and corrosion resistance after press forming and aqueous surface-treatment liquid for galvanized steel sheet |
| US20130266819A1 (en) * | 2010-12-07 | 2013-10-10 | Henkel Ag & Co. Kgaa | Metal pretreatment composition containing zirconium, copper, and metal chelating agents and related coatings on metal substrates |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3392008B2 (en) * | 1996-10-30 | 2003-03-31 | 日本表面化学株式会社 | Metal protective film forming treatment agent and treatment method |
| AU1887601A (en) * | 1999-12-13 | 2001-06-18 | Toyo Kohan Co. Ltd. | Method for producing surface treated steel sheet, surface treated steel sheet and surface treated steel sheet coated with resin |
| JP2001247977A (en) * | 2000-03-03 | 2001-09-14 | Hitachi Ltd | Chrome-free metal surface treatment composition |
| JP2004307923A (en) * | 2003-04-07 | 2004-11-04 | Nippon Steel Corp | Surface treated steel sheet with excellent corrosion resistance, paintability and workability |
| JP2005023422A (en) * | 2003-06-09 | 2005-01-27 | Nippon Paint Co Ltd | Metal surface treatment method and surface-treated metal |
| JP2005048200A (en) * | 2003-07-29 | 2005-02-24 | Jfe Steel Kk | Surface-treated steel sheet with excellent corrosion resistance and coating appearance |
| JP5252925B2 (en) | 2005-11-22 | 2013-07-31 | 日本パーカライジング株式会社 | Surface chemical conversion liquid and method for producing chemical conversion metal plate |
| JP4470874B2 (en) | 2005-11-30 | 2010-06-02 | Jfeスチール株式会社 | Surface-treated galvanized steel sheet |
| JP5093797B2 (en) | 2006-03-24 | 2012-12-12 | 新日本製鐵株式会社 | Steel plate for containers with excellent can processability |
| EP2006416B1 (en) * | 2006-03-29 | 2015-08-26 | Nippon Steel & Sumitomo Metal Corporation | Steel sheet for containers |
| JP2008088552A (en) * | 2006-09-08 | 2008-04-17 | Nippon Paint Co Ltd | Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material |
| CN101466872B (en) * | 2006-09-08 | 2011-05-18 | 新日本制铁株式会社 | Steel plate for container, and method for production thereof |
| JP4998707B2 (en) * | 2007-01-29 | 2012-08-15 | Jfeスチール株式会社 | Surface-treated metal plate and manufacturing method thereof, resin-coated metal plate, metal can and can lid |
| JP5467719B2 (en) * | 2007-12-25 | 2014-04-09 | Jfeスチール株式会社 | Manufacturing method of surface-treated steel sheet |
| JP5251078B2 (en) | 2007-11-16 | 2013-07-31 | 新日鐵住金株式会社 | Steel plate for containers and manufacturing method thereof |
| JPWO2009081807A1 (en) * | 2007-12-21 | 2011-05-06 | 関西ペイント株式会社 | Method for producing surface-treated metal substrate, surface-treated metal substrate obtained by the production method, metal substrate treatment method and metal substrate treated by the method |
| JP5123052B2 (en) * | 2008-05-26 | 2013-01-16 | 日本パーカライジング株式会社 | Surface chemical conversion solution, chemical conversion metal plate and method for producing the same, and upper-layer metal plate and method for producing the same |
| JP4886811B2 (en) * | 2008-06-05 | 2012-02-29 | 新日本製鐵株式会社 | Steel plate for containers excellent in organic film performance and method for producing the same |
| JP5085439B2 (en) * | 2008-06-13 | 2012-11-28 | 新日本製鐵株式会社 | Metal (water) oxide coated metal material |
-
2010
- 2010-09-15 JP JP2010206515A patent/JP5786296B2/en active Active
-
2011
- 2011-03-24 MY MYPI2012004135A patent/MY168768A/en unknown
- 2011-03-24 US US13/636,858 patent/US20130130055A1/en not_active Abandoned
- 2011-03-24 CN CN201180015547.3A patent/CN102812156B/en not_active Expired - Fee Related
- 2011-03-24 WO PCT/JP2011/058154 patent/WO2011118846A1/en not_active Ceased
- 2011-03-24 CN CN201610084810.9A patent/CN105667007B/en not_active Expired - Fee Related
- 2011-03-24 EP EP11759646.0A patent/EP2540867A4/en not_active Withdrawn
-
2017
- 2017-03-31 US US15/475,393 patent/US10392709B2/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100035055A1 (en) * | 2006-12-13 | 2010-02-11 | Kazuhisa Okai | Surface-treated galvanized steel sheet with superior flat-portion corrosion resistance, blackening resistance, and appearance and corrosion resistance after press forming and aqueous surface-treatment liquid for galvanized steel sheet |
| US20090032144A1 (en) * | 2007-08-03 | 2009-02-05 | Mcmillen Mark W | Pretreatment compositions and methods for coating a metal substrate |
| US20130266819A1 (en) * | 2010-12-07 | 2013-10-10 | Henkel Ag & Co. Kgaa | Metal pretreatment composition containing zirconium, copper, and metal chelating agents and related coatings on metal substrates |
Non-Patent Citations (1)
| Title |
|---|
| English Machine Translation of Yamaguchi JP 2004-307923, JPO, Accessed 12/29/2014. * |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150111057A1 (en) * | 2012-05-29 | 2015-04-23 | Toyo Kohan Co., Ltd. | Surface-Treated Steel Sheet for Container Having Excellent Processing Adhesion to Resin, Method For Manufacturing Same, and Can |
| US10526109B2 (en) * | 2012-05-29 | 2020-01-07 | Toyo Kohan Co., Ltd. | Surface-treated steel sheet for container having excellent processing adhesion to resin, method for manufacturing same, and can |
| US20160111182A1 (en) * | 2013-05-23 | 2016-04-21 | Jfe Steel Corporation | Electrical steel sheet provided with insulating coating |
| US20140349135A1 (en) * | 2013-05-27 | 2014-11-27 | Thyssenkrupp Rasselstein Gmbh | Method for coating a steel sheet with a metal layer |
| US20170001415A1 (en) * | 2014-08-27 | 2017-01-05 | Schlumberger Technology Corporation | Steel Armor Wire Coatings |
| US11946121B2 (en) | 2017-07-28 | 2024-04-02 | Jfe Steel Corporation | Steel sheet for battery outer tube cans, battery outer tube can and battery |
| US11859289B2 (en) | 2019-12-19 | 2024-01-02 | Nippon Steel Corporation | Sn-based plated steel sheet |
Also Published As
| Publication number | Publication date |
|---|---|
| MY168768A (en) | 2018-12-04 |
| CN105667007B (en) | 2018-02-06 |
| WO2011118846A1 (en) | 2011-09-29 |
| JP5786296B2 (en) | 2015-09-30 |
| US20170204521A1 (en) | 2017-07-20 |
| JP2012062509A (en) | 2012-03-29 |
| CN105667007A (en) | 2016-06-15 |
| CN102812156A (en) | 2012-12-05 |
| CN102812156B (en) | 2016-12-07 |
| US10392709B2 (en) | 2019-08-27 |
| EP2540867A1 (en) | 2013-01-02 |
| EP2540867A4 (en) | 2014-01-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10392709B2 (en) | Coated steel sheet, method for producing the same, and resin-coated steel sheet obtained using the same | |
| JP5978576B2 (en) | Steel plate for container and method for producing the same | |
| JP5467719B2 (en) | Manufacturing method of surface-treated steel sheet | |
| US8877348B2 (en) | Surface-treated steel sheet and resin-coated steel sheet | |
| CN103097582A (en) | Steel sheet for container and method for manufacturing therefor | |
| US9580816B2 (en) | Apparatus for continuous electrolytic treatment of steel sheet and method for producing surface-treated steel sheet using the same | |
| JP5648522B2 (en) | Manufacturing method of surface-treated steel sheet | |
| JP6168101B2 (en) | Surface-treated steel sheet, method for producing the same, and resin-coated steel sheet using the same | |
| JP5772845B2 (en) | Manufacturing method of surface-treated steel sheet | |
| JP2010255065A (en) | Surface-treated steel sheet and manufacturing method thereof | |
| JP5742147B2 (en) | Surface-treated steel sheet, method for producing the same, and resin-coated steel sheet using the same | |
| JP5257192B2 (en) | Method for producing surface-treated steel sheet and resin-coated steel sheet | |
| JP5151964B2 (en) | Surface-treated steel sheet, method for producing the same, and resin-coated steel sheet | |
| JP2012036424A (en) | Method for manufacturing surface-treated steel sheet and method for manufacturing resin-covered steel sheet |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: JFE STEEL CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIYAMOTO, YUKA;SUZUKI, TAKESHI;IWASA, HIROKI;AND OTHERS;SIGNING DATES FROM 20121101 TO 20121215;REEL/FRAME:029569/0570 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |