US20130108549A1 - Peptide probes for diagnostics and therapeutics - Google Patents
Peptide probes for diagnostics and therapeutics Download PDFInfo
- Publication number
- US20130108549A1 US20130108549A1 US13/176,045 US201113176045A US2013108549A1 US 20130108549 A1 US20130108549 A1 US 20130108549A1 US 201113176045 A US201113176045 A US 201113176045A US 2013108549 A1 US2013108549 A1 US 2013108549A1
- Authority
- US
- United States
- Prior art keywords
- target protein
- protein
- peptide probe
- probe
- peptide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003814 drug Substances 0.000 title claims abstract description 47
- 239000000523 sample Substances 0.000 title claims description 806
- 108090000765 processed proteins & peptides Proteins 0.000 title claims description 575
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 686
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 678
- 238000000034 method Methods 0.000 claims abstract description 222
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 129
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 109
- 201000010099 disease Diseases 0.000 claims abstract description 106
- 108020001507 fusion proteins Proteins 0.000 claims description 141
- 102000037865 fusion proteins Human genes 0.000 claims description 140
- 238000004220 aggregation Methods 0.000 claims description 116
- 150000001413 amino acids Chemical group 0.000 claims description 107
- 238000012360 testing method Methods 0.000 claims description 86
- 102000029797 Prion Human genes 0.000 claims description 83
- 108091000054 Prion Proteins 0.000 claims description 83
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 83
- 239000005090 green fluorescent protein Substances 0.000 claims description 82
- 108010043121 Green Fluorescent Proteins Proteins 0.000 claims description 78
- 102000004144 Green Fluorescent Proteins Human genes 0.000 claims description 78
- 229920001184 polypeptide Polymers 0.000 claims description 71
- 230000002776 aggregation Effects 0.000 claims description 67
- 239000000178 monomer Substances 0.000 claims description 43
- 230000015572 biosynthetic process Effects 0.000 claims description 41
- 229940124597 therapeutic agent Drugs 0.000 claims description 38
- 230000027455 binding Effects 0.000 claims description 34
- -1 cystallins Proteins 0.000 claims description 32
- 239000007787 solid Substances 0.000 claims description 31
- 239000012634 fragment Substances 0.000 claims description 28
- 108010071690 Prealbumin Proteins 0.000 claims description 24
- 102000009190 Transthyretin Human genes 0.000 claims description 24
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 24
- 102000009091 Amyloidogenic Proteins Human genes 0.000 claims description 22
- 108010048112 Amyloidogenic Proteins Proteins 0.000 claims description 22
- 238000001727 in vivo Methods 0.000 claims description 22
- 208000023105 Huntington disease Diseases 0.000 claims description 19
- 108010090849 Amyloid beta-Peptides Proteins 0.000 claims description 17
- 102000013455 Amyloid beta-Peptides Human genes 0.000 claims description 17
- 102000036770 Islet Amyloid Polypeptide Human genes 0.000 claims description 17
- 108010061642 Cystatin C Proteins 0.000 claims description 16
- 102000012192 Cystatin C Human genes 0.000 claims description 16
- 108010041872 Islet Amyloid Polypeptide Proteins 0.000 claims description 15
- 230000001419 dependent effect Effects 0.000 claims description 15
- 230000001965 increasing effect Effects 0.000 claims description 15
- 239000002243 precursor Substances 0.000 claims description 15
- 102000003802 alpha-Synuclein Human genes 0.000 claims description 14
- 108090000185 alpha-Synuclein Proteins 0.000 claims description 14
- 108010026424 tau Proteins Proteins 0.000 claims description 14
- 102000004878 Gelsolin Human genes 0.000 claims description 13
- 108090001064 Gelsolin Proteins 0.000 claims description 13
- 238000001228 spectrum Methods 0.000 claims description 13
- 102100022524 Alpha-1-antichymotrypsin Human genes 0.000 claims description 12
- 101800001288 Atrial natriuretic factor Proteins 0.000 claims description 12
- 102400001282 Atrial natriuretic peptide Human genes 0.000 claims description 12
- 101800001890 Atrial natriuretic peptide Proteins 0.000 claims description 12
- 102000001554 Hemoglobins Human genes 0.000 claims description 12
- 108010054147 Hemoglobins Proteins 0.000 claims description 12
- 102000004877 Insulin Human genes 0.000 claims description 12
- 108090001061 Insulin Proteins 0.000 claims description 12
- 102000008763 Neurofilament Proteins Human genes 0.000 claims description 12
- 108010088373 Neurofilament Proteins Proteins 0.000 claims description 12
- 108010048233 Procalcitonin Proteins 0.000 claims description 12
- 108700028909 Serum Amyloid A Proteins 0.000 claims description 12
- 102000054727 Serum Amyloid A Human genes 0.000 claims description 12
- 102000019197 Superoxide Dismutase Human genes 0.000 claims description 12
- 108010012715 Superoxide dismutase Proteins 0.000 claims description 12
- 108010091628 alpha 1-Antichymotrypsin Proteins 0.000 claims description 12
- NSQLIUXCMFBZME-MPVJKSABSA-N carperitide Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 NSQLIUXCMFBZME-MPVJKSABSA-N 0.000 claims description 12
- 229940125396 insulin Drugs 0.000 claims description 12
- CWCXERYKLSEGEZ-KDKHKZEGSA-N procalcitonin Chemical compound C([C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)NCC(O)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCSC)NC(=O)[C@H]1NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@@H](N)CSSC1)[C@@H](C)O)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 CWCXERYKLSEGEZ-KDKHKZEGSA-N 0.000 claims description 12
- 238000006467 substitution reaction Methods 0.000 claims description 12
- 230000006269 (delayed) early viral mRNA transcription Effects 0.000 claims description 11
- NCYCYZXNIZJOKI-IOUUIBBYSA-N 11-cis-retinal Chemical compound O=C/C=C(\C)/C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-IOUUIBBYSA-N 0.000 claims description 11
- 102000007592 Apolipoproteins Human genes 0.000 claims description 11
- 108010071619 Apolipoproteins Proteins 0.000 claims description 11
- 102000055006 Calcitonin Human genes 0.000 claims description 11
- 108060001064 Calcitonin Proteins 0.000 claims description 11
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 claims description 11
- 102000008186 Collagen Human genes 0.000 claims description 11
- 108010035532 Collagen Proteins 0.000 claims description 11
- 201000003883 Cystic fibrosis Diseases 0.000 claims description 11
- 101710137044 Fibrinogen alpha chain Proteins 0.000 claims description 11
- 102400000524 Fibrinogen alpha chain Human genes 0.000 claims description 11
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 claims description 11
- 108060003951 Immunoglobulin Proteins 0.000 claims description 11
- 102000000853 LDL receptors Human genes 0.000 claims description 11
- 108010001831 LDL receptors Proteins 0.000 claims description 11
- 108010069013 Phenylalanine Hydroxylase Proteins 0.000 claims description 11
- 102100038223 Phenylalanine-4-hydroxylase Human genes 0.000 claims description 11
- 102000015499 Presenilins Human genes 0.000 claims description 11
- 108010050254 Presenilins Proteins 0.000 claims description 11
- 102000004330 Rhodopsin Human genes 0.000 claims description 11
- 108090000820 Rhodopsin Proteins 0.000 claims description 11
- 108010085377 beta-N-Acetylhexosaminidases Proteins 0.000 claims description 11
- 102000007478 beta-N-Acetylhexosaminidases Human genes 0.000 claims description 11
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 claims description 11
- 229960004015 calcitonin Drugs 0.000 claims description 11
- 229920001436 collagen Polymers 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 11
- 102000018358 immunoglobulin Human genes 0.000 claims description 11
- 229940072221 immunoglobulins Drugs 0.000 claims description 11
- 230000003247 decreasing effect Effects 0.000 claims description 10
- 102000013498 tau Proteins Human genes 0.000 claims description 10
- 230000004845 protein aggregation Effects 0.000 claims description 7
- 238000012217 deletion Methods 0.000 claims description 4
- 230000037430 deletion Effects 0.000 claims description 4
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 229940079593 drug Drugs 0.000 abstract description 8
- 235000018102 proteins Nutrition 0.000 description 219
- 125000003275 alpha amino acid group Chemical group 0.000 description 109
- 235000001014 amino acid Nutrition 0.000 description 103
- 229940024606 amino acid Drugs 0.000 description 100
- 108010064539 amyloid beta-protein (1-42) Proteins 0.000 description 70
- 108010064397 amyloid beta-protein (1-40) Proteins 0.000 description 42
- 208000024777 Prion disease Diseases 0.000 description 39
- 238000001514 detection method Methods 0.000 description 36
- 241001494479 Pecora Species 0.000 description 35
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 34
- 210000004027 cell Anatomy 0.000 description 32
- 230000000875 corresponding effect Effects 0.000 description 29
- 125000000539 amino acid group Chemical group 0.000 description 28
- 210000004556 brain Anatomy 0.000 description 23
- 239000002738 chelating agent Substances 0.000 description 23
- 208000010544 human prion disease Diseases 0.000 description 23
- 108020004414 DNA Proteins 0.000 description 21
- 230000014509 gene expression Effects 0.000 description 20
- 239000000463 material Substances 0.000 description 20
- 230000009257 reactivity Effects 0.000 description 20
- 210000002966 serum Anatomy 0.000 description 20
- 239000013604 expression vector Substances 0.000 description 19
- 230000003993 interaction Effects 0.000 description 19
- 241001465754 Metazoa Species 0.000 description 18
- 239000000306 component Substances 0.000 description 18
- 101710138751 Major prion protein Proteins 0.000 description 17
- 230000008859 change Effects 0.000 description 17
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 17
- 208000037259 Amyloid Plaque Diseases 0.000 description 16
- 238000003556 assay Methods 0.000 description 16
- 208000015181 infectious disease Diseases 0.000 description 16
- 210000004369 blood Anatomy 0.000 description 15
- 239000008280 blood Substances 0.000 description 15
- 108010064571 PrPC Proteins Proteins 0.000 description 13
- 108010007288 PrPSc Proteins Proteins 0.000 description 13
- 238000002983 circular dichroism Methods 0.000 description 13
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 13
- 208000008864 scrapie Diseases 0.000 description 13
- 210000001519 tissue Anatomy 0.000 description 13
- 239000013543 active substance Substances 0.000 description 12
- 230000002596 correlated effect Effects 0.000 description 12
- 102000034287 fluorescent proteins Human genes 0.000 description 12
- 108091006047 fluorescent proteins Proteins 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000000527 sonication Methods 0.000 description 12
- 239000012099 Alexa Fluor family Substances 0.000 description 11
- 102100034004 Gamma-adducin Human genes 0.000 description 11
- 241000282412 Homo Species 0.000 description 11
- 101000799011 Homo sapiens Gamma-adducin Proteins 0.000 description 11
- 238000005481 NMR spectroscopy Methods 0.000 description 11
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 10
- 208000005145 Cerebral amyloid angiopathy Diseases 0.000 description 10
- 102100025818 Major prion protein Human genes 0.000 description 10
- 108091034117 Oligonucleotide Proteins 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 229910001385 heavy metal Inorganic materials 0.000 description 10
- 230000002458 infectious effect Effects 0.000 description 10
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 9
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 9
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 9
- 238000012216 screening Methods 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 8
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 8
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 8
- 230000003942 amyloidogenic effect Effects 0.000 description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 8
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 8
- 230000005284 excitation Effects 0.000 description 8
- 230000001524 infective effect Effects 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000011285 therapeutic regimen Methods 0.000 description 8
- 102000001049 Amyloid Human genes 0.000 description 7
- 108010094108 Amyloid Proteins 0.000 description 7
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 7
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 7
- 108091028043 Nucleic acid sequence Proteins 0.000 description 7
- 208000018756 Variant Creutzfeldt-Jakob disease Diseases 0.000 description 7
- 208000005881 bovine spongiform encephalopathy Diseases 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 239000000539 dimer Substances 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- GLDQAMYCGOIJDV-UHFFFAOYSA-N 2,3-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=CC(O)=C1O GLDQAMYCGOIJDV-UHFFFAOYSA-N 0.000 description 6
- ICSNLGPSRYBMBD-UHFFFAOYSA-N 2-aminopyridine Chemical compound NC1=CC=CC=N1 ICSNLGPSRYBMBD-UHFFFAOYSA-N 0.000 description 6
- CUYKNJBYIJFRCU-UHFFFAOYSA-N 3-aminopyridine Chemical compound NC1=CC=CN=C1 CUYKNJBYIJFRCU-UHFFFAOYSA-N 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 6
- 241000283690 Bos taurus Species 0.000 description 6
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 6
- 102000053602 DNA Human genes 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- 108020004511 Recombinant DNA Proteins 0.000 description 6
- UYXTWWCETRIEDR-UHFFFAOYSA-N Tributyrin Chemical compound CCCC(=O)OCC(OC(=O)CCC)COC(=O)CCC UYXTWWCETRIEDR-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 231100000673 dose–response relationship Toxicity 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 230000001939 inductive effect Effects 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000004770 neurodegeneration Effects 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 108091033319 polynucleotide Proteins 0.000 description 6
- 102000040430 polynucleotide Human genes 0.000 description 6
- 239000002157 polynucleotide Substances 0.000 description 6
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- 208000024827 Alzheimer disease Diseases 0.000 description 5
- 102000014303 Amyloid beta-Protein Precursor Human genes 0.000 description 5
- 108010079054 Amyloid beta-Protein Precursor Proteins 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 108091029865 Exogenous DNA Proteins 0.000 description 5
- 208000034846 Familial Amyloid Neuropathies Diseases 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- 229920002683 Glycosaminoglycan Polymers 0.000 description 5
- 206010019889 Hereditary neuropathic amyloidosis Diseases 0.000 description 5
- 239000004472 Lysine Substances 0.000 description 5
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 5
- 239000004098 Tetracycline Substances 0.000 description 5
- 229960002685 biotin Drugs 0.000 description 5
- 235000020958 biotin Nutrition 0.000 description 5
- 239000011616 biotin Substances 0.000 description 5
- 230000005714 functional activity Effects 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- HCZKYJDFEPMADG-TXEJJXNPSA-N masoprocol Chemical compound C([C@H](C)[C@H](C)CC=1C=C(O)C(O)=CC=1)C1=CC=C(O)C(O)=C1 HCZKYJDFEPMADG-TXEJJXNPSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000002887 neurotoxic effect Effects 0.000 description 5
- 235000019364 tetracycline Nutrition 0.000 description 5
- 229960002180 tetracycline Drugs 0.000 description 5
- 229930101283 tetracycline Natural products 0.000 description 5
- 201000007905 transthyretin amyloidosis Diseases 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- AUUIARVPJHGTSA-UHFFFAOYSA-N 3-(aminomethyl)chromen-2-one Chemical compound C1=CC=C2OC(=O)C(CN)=CC2=C1 AUUIARVPJHGTSA-UHFFFAOYSA-N 0.000 description 4
- HSHNITRMYYLLCV-UHFFFAOYSA-N 4-methylumbelliferone Chemical compound C1=C(O)C=CC2=C1OC(=O)C=C2C HSHNITRMYYLLCV-UHFFFAOYSA-N 0.000 description 4
- 108090001008 Avidin Proteins 0.000 description 4
- 241000699800 Cricetinae Species 0.000 description 4
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 4
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 4
- YHIPILPTUVMWQT-UHFFFAOYSA-N Oplophorus luciferin Chemical compound C1=CC(O)=CC=C1CC(C(N1C=C(N2)C=3C=CC(O)=CC=3)=O)=NC1=C2CC1=CC=CC=C1 YHIPILPTUVMWQT-UHFFFAOYSA-N 0.000 description 4
- 208000018737 Parkinson disease Diseases 0.000 description 4
- KPKZJLCSROULON-QKGLWVMZSA-N Phalloidin Chemical compound N1C(=O)[C@@H]([C@@H](O)C)NC(=O)[C@H](C)NC(=O)[C@H](C[C@@](C)(O)CO)NC(=O)[C@H](C2)NC(=O)[C@H](C)NC(=O)[C@@H]3C[C@H](O)CN3C(=O)[C@@H]1CSC1=C2C2=CC=CC=C2N1 KPKZJLCSROULON-QKGLWVMZSA-N 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 108010004469 allophycocyanin Proteins 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000001574 biopsy Methods 0.000 description 4
- 210000005013 brain tissue Anatomy 0.000 description 4
- DEGAKNSWVGKMLS-UHFFFAOYSA-N calcein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(O)=O)CC(O)=O)=C(O)C=C1OC1=C2C=C(CN(CC(O)=O)CC(=O)O)C(O)=C1 DEGAKNSWVGKMLS-UHFFFAOYSA-N 0.000 description 4
- 208000017580 chronic wasting disease Diseases 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 229960003638 dopamine Drugs 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 210000002216 heart Anatomy 0.000 description 4
- 238000011503 in vivo imaging Methods 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 4
- 229930027917 kanamycin Natural products 0.000 description 4
- 229960000318 kanamycin Drugs 0.000 description 4
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 4
- 229930182823 kanamycin A Natural products 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 210000002751 lymph Anatomy 0.000 description 4
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 4
- FNEZBBILNYNQGC-UHFFFAOYSA-N methyl 2-(3,6-diamino-9h-xanthen-9-yl)benzoate Chemical compound COC(=O)C1=CC=CC=C1C1C2=CC=C(N)C=C2OC2=CC(N)=CC=C21 FNEZBBILNYNQGC-UHFFFAOYSA-N 0.000 description 4
- 230000001537 neural effect Effects 0.000 description 4
- 229960002378 oftasceine Drugs 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000816 peptidomimetic Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 4
- 150000003522 tetracyclines Chemical class 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- UYPYRKYUKCHHIB-UHFFFAOYSA-N trimethylamine N-oxide Chemical compound C[N+](C)(C)[O-] UYPYRKYUKCHHIB-UHFFFAOYSA-N 0.000 description 4
- 238000002424 x-ray crystallography Methods 0.000 description 4
- BMKDZUISNHGIBY-ZETCQYMHSA-N (+)-dexrazoxane Chemical compound C([C@H](C)N1CC(=O)NC(=O)C1)N1CC(=O)NC(=O)C1 BMKDZUISNHGIBY-ZETCQYMHSA-N 0.000 description 3
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 3
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 3
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 3
- 229940082044 2,3-dihydroxybenzoic acid Drugs 0.000 description 3
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 3
- CSDSSGBPEUDDEE-UHFFFAOYSA-N 2-formylpyridine Chemical compound O=CC1=CC=CC=N1 CSDSSGBPEUDDEE-UHFFFAOYSA-N 0.000 description 3
- YJCCSLGGODRWKK-NSCUHMNNSA-N 4-Acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid Chemical compound OS(=O)(=O)C1=CC(NC(=O)C)=CC=C1\C=C\C1=CC=C(N=C=S)C=C1S(O)(=O)=O YJCCSLGGODRWKK-NSCUHMNNSA-N 0.000 description 3
- OBKXEAXTFZPCHS-UHFFFAOYSA-N 4-phenylbutyric acid Chemical compound OC(=O)CCCC1=CC=CC=C1 OBKXEAXTFZPCHS-UHFFFAOYSA-N 0.000 description 3
- BGWLYQZDNFIFRX-UHFFFAOYSA-N 5-[3-[2-[3-(3,8-diamino-6-phenylphenanthridin-5-ium-5-yl)propylamino]ethylamino]propyl]-6-phenylphenanthridin-5-ium-3,8-diamine;dichloride Chemical compound [Cl-].[Cl-].C=1C(N)=CC=C(C2=CC=C(N)C=C2[N+]=2CCCNCCNCCC[N+]=3C4=CC(N)=CC=C4C4=CC=C(N)C=C4C=3C=3C=CC=CC=3)C=1C=2C1=CC=CC=C1 BGWLYQZDNFIFRX-UHFFFAOYSA-N 0.000 description 3
- NJYVEMPWNAYQQN-UHFFFAOYSA-N 5-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C21OC(=O)C1=CC(C(=O)O)=CC=C21 NJYVEMPWNAYQQN-UHFFFAOYSA-N 0.000 description 3
- YMZMTOFQCVHHFB-UHFFFAOYSA-N 5-carboxytetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=C(C(O)=O)C=C1C([O-])=O YMZMTOFQCVHHFB-UHFFFAOYSA-N 0.000 description 3
- UDYUIWXQUBNDHC-UHFFFAOYSA-N 6-[[4-(4-chlorophenoxy)phenoxy]methyl]-1-hydroxy-4-methylpyridin-2-one Chemical compound ON1C(=O)C=C(C)C=C1COC(C=C1)=CC=C1OC1=CC=C(Cl)C=C1 UDYUIWXQUBNDHC-UHFFFAOYSA-N 0.000 description 3
- IHHSSHCBRVYGJX-UHFFFAOYSA-N 6-chloro-2-methoxyacridin-9-amine Chemical compound C1=C(Cl)C=CC2=C(N)C3=CC(OC)=CC=C3N=C21 IHHSSHCBRVYGJX-UHFFFAOYSA-N 0.000 description 3
- FWEOQOXTVHGIFQ-UHFFFAOYSA-N 8-anilinonaphthalene-1-sulfonic acid Chemical compound C=12C(S(=O)(=O)O)=CC=CC2=CC=CC=1NC1=CC=CC=C1 FWEOQOXTVHGIFQ-UHFFFAOYSA-N 0.000 description 3
- 101150037123 APOE gene Proteins 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000005711 Benzoic acid Substances 0.000 description 3
- 241000283707 Capra Species 0.000 description 3
- QCDFBFJGMNKBDO-UHFFFAOYSA-N Clioquinol Chemical compound C1=CN=C2C(O)=C(I)C=C(Cl)C2=C1 QCDFBFJGMNKBDO-UHFFFAOYSA-N 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 101100216294 Danio rerio apoeb gene Proteins 0.000 description 3
- 108010067770 Endopeptidase K Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 239000001263 FEMA 3042 Substances 0.000 description 3
- 201000011240 Frontotemporal dementia Diseases 0.000 description 3
- 229920002971 Heparan sulfate Polymers 0.000 description 3
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 3
- 101001081479 Homo sapiens Islet amyloid polypeptide Proteins 0.000 description 3
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 3
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 229940123934 Reductase inhibitor Drugs 0.000 description 3
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 3
- 102000000505 Ribonucleotide Reductases Human genes 0.000 description 3
- 108010041388 Ribonucleotide Reductases Proteins 0.000 description 3
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 3
- DFPAKSUCGFBDDF-ZQBYOMGUSA-N [14c]-nicotinamide Chemical compound N[14C](=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-ZQBYOMGUSA-N 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000003941 amyloidogenesis Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- CREXVNNSNOKDHW-UHFFFAOYSA-N azaniumylideneazanide Chemical group N[N] CREXVNNSNOKDHW-UHFFFAOYSA-N 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 235000010233 benzoic acid Nutrition 0.000 description 3
- 229960004365 benzoic acid Drugs 0.000 description 3
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 3
- 230000008827 biological function Effects 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 239000010836 blood and blood product Substances 0.000 description 3
- 239000012503 blood component Substances 0.000 description 3
- 229940125691 blood product Drugs 0.000 description 3
- OZVBMTJYIDMWIL-AYFBDAFISA-N bromocriptine Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@]2(C(=O)N3[C@H](C(N4CCC[C@H]4[C@]3(O)O2)=O)CC(C)C)C(C)C)C2)=C3C2=C(Br)NC3=C1 OZVBMTJYIDMWIL-AYFBDAFISA-N 0.000 description 3
- 229960002802 bromocriptine Drugs 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- SCKYRAXSEDYPSA-UHFFFAOYSA-N ciclopirox Chemical compound ON1C(=O)C=C(C)C=C1C1CCCCC1 SCKYRAXSEDYPSA-UHFFFAOYSA-N 0.000 description 3
- 229960005228 clioquinol Drugs 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229960000605 dexrazoxane Drugs 0.000 description 3
- 206010012601 diabetes mellitus Diseases 0.000 description 3
- 125000005594 diketone group Chemical group 0.000 description 3
- YJHDFAAFYNRKQE-YHPRVSEPSA-L disodium;5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 YJHDFAAFYNRKQE-YHPRVSEPSA-L 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 201000006061 fatal familial insomnia Diseases 0.000 description 3
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 3
- 108010021843 fluorescent protein 583 Proteins 0.000 description 3
- 210000001652 frontal lobe Anatomy 0.000 description 3
- 229960002442 glucosamine Drugs 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 150000007857 hydrazones Chemical class 0.000 description 3
- 230000003100 immobilizing effect Effects 0.000 description 3
- 206010023497 kuru Diseases 0.000 description 3
- 229960004502 levodopa Drugs 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 208000015122 neurodegenerative disease Diseases 0.000 description 3
- 231100000189 neurotoxic Toxicity 0.000 description 3
- 229960002715 nicotine Drugs 0.000 description 3
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- YEHCICAEULNIGD-MZMPZRCHSA-N pergolide Chemical compound C1=CC([C@H]2C[C@@H](CSC)CN([C@@H]2C2)CCC)=C3C2=CNC3=C1 YEHCICAEULNIGD-MZMPZRCHSA-N 0.000 description 3
- 229960004851 pergolide Drugs 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229950009215 phenylbutanoic acid Drugs 0.000 description 3
- OIQJEQLSYJSNDS-UHFFFAOYSA-N piroctone Chemical compound CC(C)(C)CC(C)CC1=CC(C)=CC(=O)N1O OIQJEQLSYJSNDS-UHFFFAOYSA-N 0.000 description 3
- 229950001046 piroctone Drugs 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 150000008442 polyphenolic compounds Chemical class 0.000 description 3
- 235000013824 polyphenols Nutrition 0.000 description 3
- 230000004481 post-translational protein modification Effects 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 208000022256 primary systemic amyloidosis Diseases 0.000 description 3
- QJZUKDFHGGYHMC-UHFFFAOYSA-N pyridine-3-carbaldehyde Chemical compound O=CC1=CC=CN=C1 QJZUKDFHGGYHMC-UHFFFAOYSA-N 0.000 description 3
- 229960003581 pyridoxal Drugs 0.000 description 3
- 239000011674 pyridoxal Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 229950006862 rilopirox Drugs 0.000 description 3
- 229960004889 salicylic acid Drugs 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- MEZLKOACVSPNER-GFCCVEGCSA-N selegiline Chemical compound C#CCN(C)[C@H](C)CC1=CC=CC=C1 MEZLKOACVSPNER-GFCCVEGCSA-N 0.000 description 3
- 229960003946 selegiline Drugs 0.000 description 3
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 3
- 235000021286 stilbenes Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229920002258 tannic acid Polymers 0.000 description 3
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 3
- 229940033123 tannic acid Drugs 0.000 description 3
- 235000015523 tannic acid Nutrition 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- JADVWWSKYZXRGX-UHFFFAOYSA-M thioflavine T Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C1=[N+](C)C2=CC=C(C)C=C2S1 JADVWWSKYZXRGX-UHFFFAOYSA-M 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- WAEXFXRVDQXREF-UHFFFAOYSA-N vorinostat Chemical compound ONC(=O)CCCCCCC(=O)NC1=CC=CC=C1 WAEXFXRVDQXREF-UHFFFAOYSA-N 0.000 description 3
- 229960000237 vorinostat Drugs 0.000 description 3
- 108091005957 yellow fluorescent proteins Proteins 0.000 description 3
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-catechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- VGIRNWJSIRVFRT-UHFFFAOYSA-N 2',7'-difluorofluorescein Chemical compound OC(=O)C1=CC=CC=C1C1=C2C=C(F)C(=O)C=C2OC2=CC(O)=C(F)C=C21 VGIRNWJSIRVFRT-UHFFFAOYSA-N 0.000 description 2
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 2
- XDFNWJDGWJVGGN-UHFFFAOYSA-N 2-(2,7-dichloro-3,6-dihydroxy-9h-xanthen-9-yl)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1C1C2=CC(Cl)=C(O)C=C2OC2=CC(O)=C(Cl)C=C21 XDFNWJDGWJVGGN-UHFFFAOYSA-N 0.000 description 2
- ZVDGOJFPFMINBM-UHFFFAOYSA-N 3-(6-methoxyquinolin-1-ium-1-yl)propane-1-sulfonate Chemical compound [O-]S(=O)(=O)CCC[N+]1=CC=CC2=CC(OC)=CC=C21 ZVDGOJFPFMINBM-UHFFFAOYSA-N 0.000 description 2
- NJIRSTSECXKPCO-UHFFFAOYSA-M 3-[n-methyl-4-[2-(1,3,3-trimethylindol-1-ium-2-yl)ethenyl]anilino]propanenitrile;chloride Chemical compound [Cl-].C1=CC(N(CCC#N)C)=CC=C1\C=C\C1=[N+](C)C2=CC=CC=C2C1(C)C NJIRSTSECXKPCO-UHFFFAOYSA-M 0.000 description 2
- MJKVTPMWOKAVMS-UHFFFAOYSA-N 3-hydroxy-1-benzopyran-2-one Chemical compound C1=CC=C2OC(=O)C(O)=CC2=C1 MJKVTPMWOKAVMS-UHFFFAOYSA-N 0.000 description 2
- BUJRUSRXHJKUQE-UHFFFAOYSA-N 5-carboxy-X-rhodamine triethylammonium salt Chemical compound CC[NH+](CC)CC.[O-]C(=O)C1=CC(C(=O)[O-])=CC=C1C1=C(C=C2C3=C4CCCN3CCC2)C4=[O+]C2=C1C=C1CCCN3CCCC2=C13 BUJRUSRXHJKUQE-UHFFFAOYSA-N 0.000 description 2
- VWOLRKMFAJUZGM-UHFFFAOYSA-N 6-carboxyrhodamine 6G Chemical compound [Cl-].C=12C=C(C)C(NCC)=CC2=[O+]C=2C=C(NCC)C(C)=CC=2C=1C1=CC(C(O)=O)=CC=C1C(=O)OCC VWOLRKMFAJUZGM-UHFFFAOYSA-N 0.000 description 2
- YXHLJMWYDTXDHS-IRFLANFNSA-N 7-aminoactinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=C(N)C=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 YXHLJMWYDTXDHS-IRFLANFNSA-N 0.000 description 2
- 108700012813 7-aminoactinomycin D Proteins 0.000 description 2
- 102100029470 Apolipoprotein E Human genes 0.000 description 2
- 101710095339 Apolipoprotein E Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 2
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 2
- 241000282994 Cervidae Species 0.000 description 2
- 108090000197 Clusterin Proteins 0.000 description 2
- 102000003780 Clusterin Human genes 0.000 description 2
- 108091005941 EBFP Proteins 0.000 description 2
- 108091005942 ECFP Proteins 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- OZLGRUXZXMRXGP-UHFFFAOYSA-N Fluo-3 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=C(C=2)C2=C3C=C(Cl)C(=O)C=C3OC3=CC(O)=C(Cl)C=C32)N(CC(O)=O)CC(O)=O)=C1 OZLGRUXZXMRXGP-UHFFFAOYSA-N 0.000 description 2
- 102220566469 GDNF family receptor alpha-1_S65T_mutation Human genes 0.000 description 2
- 102220566451 GDNF family receptor alpha-1_Y66H_mutation Human genes 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 101000772194 Homo sapiens Transthyretin Proteins 0.000 description 2
- 102000002265 Human Growth Hormone Human genes 0.000 description 2
- 108010000521 Human Growth Hormone Proteins 0.000 description 2
- 239000000854 Human Growth Hormone Substances 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- 125000000174 L-prolyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])[C@@]1([H])C(*)=O 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- FGBAVQUHSKYMTC-UHFFFAOYSA-M LDS 751 dye Chemical compound [O-]Cl(=O)(=O)=O.C1=CC2=CC(N(C)C)=CC=C2[N+](CC)=C1C=CC=CC1=CC=C(N(C)C)C=C1 FGBAVQUHSKYMTC-UHFFFAOYSA-M 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 102000007474 Multiprotein Complexes Human genes 0.000 description 2
- 108010085220 Multiprotein Complexes Proteins 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 206010029350 Neurotoxicity Diseases 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 108010009711 Phalloidine Proteins 0.000 description 2
- 108010004729 Phycoerythrin Proteins 0.000 description 2
- 208000000609 Pick Disease of the Brain Diseases 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 102000012412 Presenilin-1 Human genes 0.000 description 2
- 108010036933 Presenilin-1 Proteins 0.000 description 2
- 102000012419 Presenilin-2 Human genes 0.000 description 2
- 108010036908 Presenilin-2 Proteins 0.000 description 2
- 208000014675 Prion-associated disease Diseases 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- REFJWTPEDVJJIY-UHFFFAOYSA-N Quercetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 REFJWTPEDVJJIY-UHFFFAOYSA-N 0.000 description 2
- 102000003800 Selectins Human genes 0.000 description 2
- 108090000184 Selectins Proteins 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 108010045517 Serum Amyloid P-Component Proteins 0.000 description 2
- 102100036202 Serum amyloid P-component Human genes 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 241000723873 Tobacco mosaic virus Species 0.000 description 2
- 206010044221 Toxic encephalopathy Diseases 0.000 description 2
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 241000726445 Viroids Species 0.000 description 2
- 102220506784 Vitelline membrane outer layer protein 1 homolog_A42Q_mutation Human genes 0.000 description 2
- 108091005971 Wild-type GFP Proteins 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- PEJLNXHANOHNSU-UHFFFAOYSA-N acridine-3,6-diamine;10-methylacridin-10-ium-3,6-diamine;chloride Chemical compound [Cl-].C1=CC(N)=CC2=NC3=CC(N)=CC=C3C=C21.C1=C(N)C=C2[N+](C)=C(C=C(N)C=C3)C3=CC2=C1 PEJLNXHANOHNSU-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- 230000001896 anti-amyloidogenic effect Effects 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 108091005948 blue fluorescent proteins Proteins 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011111 cardboard Substances 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- TUESWZZJYCLFNL-DAFODLJHSA-N chembl1301 Chemical compound C1=CC(C(=N)N)=CC=C1\C=C\C1=CC=C(C(N)=N)C=C1O TUESWZZJYCLFNL-DAFODLJHSA-N 0.000 description 2
- JQXXHWHPUNPDRT-YOPQJBRCSA-N chembl1332716 Chemical compound O([C@](C1=O)(C)O\C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)/C=C\C=C(C)/C(=O)NC=2C(O)=C3C(O)=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CCN(C)CC1 JQXXHWHPUNPDRT-YOPQJBRCSA-N 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 239000013611 chromosomal DNA Substances 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000008876 conformational transition Effects 0.000 description 2
- IQFVPQOLBLOTPF-HKXUKFGYSA-L congo red Chemical compound [Na+].[Na+].C1=CC=CC2=C(N)C(/N=N/C3=CC=C(C=C3)C3=CC=C(C=C3)/N=N/C3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)N)=CC(S([O-])(=O)=O)=C21 IQFVPQOLBLOTPF-HKXUKFGYSA-L 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- GLNDAGDHSLMOKX-UHFFFAOYSA-N coumarin 120 Chemical compound C1=C(N)C=CC2=C1OC(=O)C=C2C GLNDAGDHSLMOKX-UHFFFAOYSA-N 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- GFZPJHFJZGRWMQ-UHFFFAOYSA-M diOC18(3) dye Chemical compound [O-]Cl(=O)(=O)=O.O1C2=CC=CC=C2[N+](CCCCCCCCCCCCCCCCCC)=C1C=CC=C1N(CCCCCCCCCCCCCCCCCC)C2=CC=CC=C2O1 GFZPJHFJZGRWMQ-UHFFFAOYSA-M 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- JVXZRNYCRFIEGV-UHFFFAOYSA-M dilC18(3) dye Chemical compound [O-]Cl(=O)(=O)=O.CC1(C)C2=CC=CC=C2N(CCCCCCCCCCCCCCCCCC)C1=CC=CC1=[N+](CCCCCCCCCCCCCCCCCC)C2=CC=CC=C2C1(C)C JVXZRNYCRFIEGV-UHFFFAOYSA-M 0.000 description 2
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 2
- OOYIOIOOWUGAHD-UHFFFAOYSA-L disodium;2',4',5',7'-tetrabromo-4,5,6,7-tetrachloro-3-oxospiro[2-benzofuran-1,9'-xanthene]-3',6'-diolate Chemical compound [Na+].[Na+].O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(Br)=C([O-])C(Br)=C1OC1=C(Br)C([O-])=C(Br)C=C21 OOYIOIOOWUGAHD-UHFFFAOYSA-L 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 2
- 239000010976 emerald Substances 0.000 description 2
- 229910052876 emerald Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- HCZKYJDFEPMADG-UHFFFAOYSA-N erythro-nordihydroguaiaretic acid Natural products C=1C=C(O)C(O)=CC=1CC(C)C(C)CC1=CC=C(O)C(O)=C1 HCZKYJDFEPMADG-UHFFFAOYSA-N 0.000 description 2
- IINNWAYUJNWZRM-UHFFFAOYSA-L erythrosin B Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 IINNWAYUJNWZRM-UHFFFAOYSA-L 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- DVGHHMFBFOTGLM-UHFFFAOYSA-L fluorogold Chemical compound F[Au][Au]F DVGHHMFBFOTGLM-UHFFFAOYSA-L 0.000 description 2
- YFHXZQPUBCBNIP-UHFFFAOYSA-N fura-2 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=3OC(=CC=3C=2)C=2OC(=CN=2)C(O)=O)N(CC(O)=O)CC(O)=O)=C1 YFHXZQPUBCBNIP-UHFFFAOYSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 235000020993 ground meat Nutrition 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 210000001320 hippocampus Anatomy 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 102000056556 human TTR Human genes 0.000 description 2
- 229950005911 hydroxystilbamidine Drugs 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- IYRMWMYZSQPJKC-UHFFFAOYSA-N kaempferol Chemical compound C1=CC(O)=CC=C1C1=C(O)C(=O)C2=C(O)C=C(O)C=C2O1 IYRMWMYZSQPJKC-UHFFFAOYSA-N 0.000 description 2
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 210000004558 lewy body Anatomy 0.000 description 2
- SXQCTESRRZBPHJ-UHFFFAOYSA-M lissamine rhodamine Chemical compound [Na+].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=C(S([O-])(=O)=O)C=C1S([O-])(=O)=O SXQCTESRRZBPHJ-UHFFFAOYSA-M 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 229960003951 masoprocol Drugs 0.000 description 2
- HQCYVSPJIOJEGA-UHFFFAOYSA-N methoxycoumarin Chemical compound C1=CC=C2OC(=O)C(OC)=CC2=C1 HQCYVSPJIOJEGA-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- AHEWZZJEDQVLOP-UHFFFAOYSA-N monobromobimane Chemical compound BrCC1=C(C)C(=O)N2N1C(C)=C(C)C2=O AHEWZZJEDQVLOP-UHFFFAOYSA-N 0.000 description 2
- UXOUKMQIEVGVLY-UHFFFAOYSA-N morin Natural products OC1=CC(O)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UXOUKMQIEVGVLY-UHFFFAOYSA-N 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 231100000228 neurotoxicity Toxicity 0.000 description 2
- 230000007135 neurotoxicity Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- AFAIELJLZYUNPW-UHFFFAOYSA-N pararosaniline free base Chemical compound C1=CC(N)=CC=C1C(C=1C=CC(N)=CC=1)=C1C=CC(=N)C=C1 AFAIELJLZYUNPW-UHFFFAOYSA-N 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 2
- 230000007505 plaque formation Effects 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 108010040003 polyglutamine Proteins 0.000 description 2
- 229920000155 polyglutamine Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 102000054765 polymorphisms of proteins Human genes 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- RSRNHSYYBLEMOI-UHFFFAOYSA-M primuline Chemical compound [Na+].S1C2=C(S([O-])(=O)=O)C(C)=CC=C2N=C1C(C=C1S2)=CC=C1N=C2C1=CC=C(N)C=C1 RSRNHSYYBLEMOI-UHFFFAOYSA-M 0.000 description 2
- AAEVYOVXGOFMJO-UHFFFAOYSA-N prometryn Chemical compound CSC1=NC(NC(C)C)=NC(NC(C)C)=N1 AAEVYOVXGOFMJO-UHFFFAOYSA-N 0.000 description 2
- 230000012743 protein tagging Effects 0.000 description 2
- INCIMLINXXICKS-UHFFFAOYSA-M pyronin Y Chemical compound [Cl-].C1=CC(=[N+](C)C)C=C2OC3=CC(N(C)C)=CC=C3C=C21 INCIMLINXXICKS-UHFFFAOYSA-M 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 229940043267 rhodamine b Drugs 0.000 description 2
- 229960001225 rifampicin Drugs 0.000 description 2
- 229940016590 sarkosyl Drugs 0.000 description 2
- 108700004121 sarkosyl Proteins 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000003307 slaughter Methods 0.000 description 2
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- JGVWCANSWKRBCS-UHFFFAOYSA-N tetramethylrhodamine thiocyanate Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=C(SC#N)C=C1C(O)=O JGVWCANSWKRBCS-UHFFFAOYSA-N 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 241000701447 unidentified baculovirus Species 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 229930013915 (+)-catechin Natural products 0.000 description 1
- 235000007219 (+)-catechin Nutrition 0.000 description 1
- PFTAWBLQPZVEMU-UKRRQHHQSA-N (-)-epicatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-UKRRQHHQSA-N 0.000 description 1
- 229930013783 (-)-epicatechin Natural products 0.000 description 1
- 235000007355 (-)-epicatechin Nutrition 0.000 description 1
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- LORKUZBPMQEQET-UHFFFAOYSA-M (2e)-1,3,3-trimethyl-2-[(2z)-2-(1-methyl-2-phenylindol-1-ium-3-ylidene)ethylidene]indole;chloride Chemical compound [Cl-].CC1(C)C2=CC=CC=C2N(C)\C1=C/C=C(C1=CC=CC=C1[N+]=1C)/C=1C1=CC=CC=C1 LORKUZBPMQEQET-UHFFFAOYSA-M 0.000 description 1
- WIHBNMPFWRHGDF-SLVFWPMISA-N (2s)-2-[[(2s)-2-[[2-[[(2s,3s)-2-[[(2s,3s)-2-[[(2s)-2-[[2-[[(2s)-6-amino-2-[[(2s)-4-amino-2-[[(2s)-2-[(2-aminoacetyl)amino]-3-hydroxypropanoyl]amino]-4-oxobutanoyl]amino]hexanoyl]amino]acetyl]amino]propanoyl]amino]-3-methylpentanoyl]amino]-3-methylpentanoy Chemical compound CSCC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](C)NC(=O)CNC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CO)NC(=O)CN WIHBNMPFWRHGDF-SLVFWPMISA-N 0.000 description 1
- CEIJUIXPDWEGOA-NSHGFSBMSA-N (3R,4S,6S)-3-amino-6-(hydroxymethyl)oxane-2,4-diol Chemical compound N[C@@H]1[C@@H](O)C[C@@H](CO)OC1O CEIJUIXPDWEGOA-NSHGFSBMSA-N 0.000 description 1
- VQVUBYASAICPFU-UHFFFAOYSA-N (6'-acetyloxy-2',7'-dichloro-3-oxospiro[2-benzofuran-1,9'-xanthene]-3'-yl) acetate Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Cl)=C(OC(C)=O)C=C1OC1=C2C=C(Cl)C(OC(=O)C)=C1 VQVUBYASAICPFU-UHFFFAOYSA-N 0.000 description 1
- CHADEQDQBURGHL-UHFFFAOYSA-N (6'-acetyloxy-3-oxospiro[2-benzofuran-1,9'-xanthene]-3'-yl) acetate Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(OC(C)=O)C=C1OC1=CC(OC(=O)C)=CC=C21 CHADEQDQBURGHL-UHFFFAOYSA-N 0.000 description 1
- MRMZOCFJABEOLE-QBARFFCXSA-N 1-[(3R,4S,6S)-3-amino-2,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]ethanone Chemical compound C(C)(=O)C1(O)[C@H](N)[C@@H](O)C[C@H](O1)CO MRMZOCFJABEOLE-QBARFFCXSA-N 0.000 description 1
- CTTVWDKXMPBZMQ-UHFFFAOYSA-N 1-[6-(dimethylamino)naphthalen-2-yl]undecan-1-one Chemical compound CCCCCCCCCCC(=O)c1ccc2cc(ccc2c1)N(C)C CTTVWDKXMPBZMQ-UHFFFAOYSA-N 0.000 description 1
- VAPDZNUFNKUROY-UHFFFAOYSA-N 2,4,6-triiodophenol Chemical compound OC1=C(I)C=C(I)C=C1I VAPDZNUFNKUROY-UHFFFAOYSA-N 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- ADAOOVVYDLASGJ-UHFFFAOYSA-N 2,7,10-trimethylacridin-10-ium-3,6-diamine;chloride Chemical compound [Cl-].CC1=C(N)C=C2[N+](C)=C(C=C(C(C)=C3)N)C3=CC2=C1 ADAOOVVYDLASGJ-UHFFFAOYSA-N 0.000 description 1
- NOFPXGWBWIPSHI-UHFFFAOYSA-N 2,7,9-trimethylacridine-3,6-diamine;hydrochloride Chemical compound Cl.CC1=C(N)C=C2N=C(C=C(C(C)=C3)N)C3=C(C)C2=C1 NOFPXGWBWIPSHI-UHFFFAOYSA-N 0.000 description 1
- JNGRENQDBKMCCR-UHFFFAOYSA-N 2-(3-amino-6-iminoxanthen-9-yl)benzoic acid;hydrochloride Chemical compound [Cl-].C=12C=CC(=[NH2+])C=C2OC2=CC(N)=CC=C2C=1C1=CC=CC=C1C(O)=O JNGRENQDBKMCCR-UHFFFAOYSA-N 0.000 description 1
- IXZONVAEGFOVSF-UHFFFAOYSA-N 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone Chemical compound OP(O)(=O)OC1=CC=C(Cl)C=C1C1=NC(=O)C2=CC(Cl)=CC=C2N1 IXZONVAEGFOVSF-UHFFFAOYSA-N 0.000 description 1
- RUVJFMSQTCEAAB-UHFFFAOYSA-M 2-[3-[5,6-dichloro-1,3-bis[[4-(chloromethyl)phenyl]methyl]benzimidazol-2-ylidene]prop-1-enyl]-3-methyl-1,3-benzoxazol-3-ium;chloride Chemical compound [Cl-].O1C2=CC=CC=C2[N+](C)=C1C=CC=C(N(C1=CC(Cl)=C(Cl)C=C11)CC=2C=CC(CCl)=CC=2)N1CC1=CC=C(CCl)C=C1 RUVJFMSQTCEAAB-UHFFFAOYSA-M 0.000 description 1
- ALVZYHNBPIMLFM-UHFFFAOYSA-N 2-[4-[2-(4-carbamimidoylphenoxy)ethoxy]phenyl]-1h-indole-6-carboximidamide;dihydrochloride Chemical compound Cl.Cl.C1=CC(C(=N)N)=CC=C1OCCOC1=CC=C(C=2NC3=CC(=CC=C3C=2)C(N)=N)C=C1 ALVZYHNBPIMLFM-UHFFFAOYSA-N 0.000 description 1
- PDURUKZNVHEHGO-UHFFFAOYSA-N 2-[6-[bis(carboxymethyl)amino]-5-(carboxymethoxy)-1-benzofuran-2-yl]-1,3-oxazole-5-carboxylic acid Chemical compound O1C=2C=C(N(CC(O)=O)CC(O)=O)C(OCC(=O)O)=CC=2C=C1C1=NC=C(C(O)=O)O1 PDURUKZNVHEHGO-UHFFFAOYSA-N 0.000 description 1
- RJPSHDMGSVVHFA-UHFFFAOYSA-N 2-[carboxymethyl-[(7-hydroxy-4-methyl-2-oxochromen-8-yl)methyl]amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)CC1=C(O)C=CC2=C1OC(=O)C=C2C RJPSHDMGSVVHFA-UHFFFAOYSA-N 0.000 description 1
- UCSBOFLEOACXIR-UHFFFAOYSA-N 2-benzyl-8-(cyclopentylmethyl)-6-(4-hydroxyphenyl)imidazo[1,2-a]pyrazin-3-ol Chemical compound Oc1c(Cc2ccccc2)nc2c(CC3CCCC3)nc(cn12)-c1ccc(O)cc1 UCSBOFLEOACXIR-UHFFFAOYSA-N 0.000 description 1
- WFOTVGYJMFZMTD-UHFFFAOYSA-N 3',10'-dihydroxyspiro[2-benzofuran-3,7'-benzo[c]xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C(C=CC=1C3=CC=C(O)C=1)=C3OC1=CC(O)=CC=C21 WFOTVGYJMFZMTD-UHFFFAOYSA-N 0.000 description 1
- KFKRXESVMDBTNQ-UHFFFAOYSA-N 3-[18-(2-carboxylatoethyl)-8,13-bis(1-hydroxyethyl)-3,7,12,17-tetramethyl-22,23-dihydroporphyrin-21,24-diium-2-yl]propanoate Chemical compound N1C2=C(C)C(C(C)O)=C1C=C(N1)C(C)=C(C(O)C)C1=CC(C(C)=C1CCC(O)=O)=NC1=CC(C(CCC(O)=O)=C1C)=NC1=C2 KFKRXESVMDBTNQ-UHFFFAOYSA-N 0.000 description 1
- HAPJROQJVSPKCJ-UHFFFAOYSA-N 3-[4-[2-[6-(dibutylamino)naphthalen-2-yl]ethenyl]pyridin-1-ium-1-yl]propane-1-sulfonate Chemical compound C1=CC2=CC(N(CCCC)CCCC)=CC=C2C=C1C=CC1=CC=[N+](CCCS([O-])(=O)=O)C=C1 HAPJROQJVSPKCJ-UHFFFAOYSA-N 0.000 description 1
- IXFSUSNUALIXLU-UHFFFAOYSA-N 3-[4-[2-[6-(dioctylamino)naphthalen-2-yl]ethenyl]pyridin-1-ium-1-yl]propane-1-sulfonate Chemical compound C1=CC2=CC(N(CCCCCCCC)CCCCCCCC)=CC=C2C=C1C=CC1=CC=[N+](CCCS([O-])(=O)=O)C=C1 IXFSUSNUALIXLU-UHFFFAOYSA-N 0.000 description 1
- QWZHDKGQKYEBKK-UHFFFAOYSA-N 3-aminochromen-2-one Chemical compound C1=CC=C2OC(=O)C(N)=CC2=C1 QWZHDKGQKYEBKK-UHFFFAOYSA-N 0.000 description 1
- VIIIJFZJKFXOGG-UHFFFAOYSA-N 3-methylchromen-2-one Chemical compound C1=CC=C2OC(=O)C(C)=CC2=C1 VIIIJFZJKFXOGG-UHFFFAOYSA-N 0.000 description 1
- PQJVKBUJXQTCGG-UHFFFAOYSA-N 3-n,6-n-dibenzylacridine-3,6-diamine;hydrochloride Chemical compound Cl.C=1C=CC=CC=1CNC(C=C1N=C2C=3)=CC=C1C=C2C=CC=3NCC1=CC=CC=C1 PQJVKBUJXQTCGG-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- YSCNMFDFYJUPEF-OWOJBTEDSA-N 4,4'-diisothiocyano-trans-stilbene-2,2'-disulfonic acid Chemical compound OS(=O)(=O)C1=CC(N=C=S)=CC=C1\C=C\C1=CC=C(N=C=S)C=C1S(O)(=O)=O YSCNMFDFYJUPEF-OWOJBTEDSA-N 0.000 description 1
- LHYQAEFVHIZFLR-UHFFFAOYSA-L 4-(4-diazonio-3-methoxyphenyl)-2-methoxybenzenediazonium;dichloride Chemical compound [Cl-].[Cl-].C1=C([N+]#N)C(OC)=CC(C=2C=C(OC)C([N+]#N)=CC=2)=C1 LHYQAEFVHIZFLR-UHFFFAOYSA-L 0.000 description 1
- YPGZWUVVEWKKDQ-UHFFFAOYSA-M 4-(4-dihexadecylaminostyryl)-N-methylpyridium iodide Chemical compound [I-].C1=CC(N(CCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCC)=CC=C1C=CC1=CC=[N+](C)C=C1 YPGZWUVVEWKKDQ-UHFFFAOYSA-M 0.000 description 1
- YOQMJMHTHWYNIO-UHFFFAOYSA-N 4-[6-[16-[2-(2,4-dicarboxyphenyl)-5-methoxy-1-benzofuran-6-yl]-1,4,10,13-tetraoxa-7,16-diazacyclooctadec-7-yl]-5-methoxy-1-benzofuran-2-yl]benzene-1,3-dicarboxylic acid Chemical compound COC1=CC=2C=C(C=3C(=CC(=CC=3)C(O)=O)C(O)=O)OC=2C=C1N(CCOCCOCC1)CCOCCOCCN1C(C(=CC=1C=2)OC)=CC=1OC=2C1=CC=C(C(O)=O)C=C1C(O)=O YOQMJMHTHWYNIO-UHFFFAOYSA-N 0.000 description 1
- NZVGXJAQIQJIOY-UHFFFAOYSA-N 4-[6-[6-(4-methylpiperazin-1-yl)-1h-benzimidazol-2-yl]-1h-benzimidazol-2-yl]benzenesulfonamide;trihydrochloride Chemical compound Cl.Cl.Cl.C1CN(C)CCN1C1=CC=C(N=C(N2)C=3C=C4NC(=NC4=CC=3)C=3C=CC(=CC=3)S(N)(=O)=O)C2=C1 NZVGXJAQIQJIOY-UHFFFAOYSA-N 0.000 description 1
- WCKQPPQRFNHPRJ-UHFFFAOYSA-N 4-[[4-(dimethylamino)phenyl]diazenyl]benzoic acid Chemical compound C1=CC(N(C)C)=CC=C1N=NC1=CC=C(C(O)=O)C=C1 WCKQPPQRFNHPRJ-UHFFFAOYSA-N 0.000 description 1
- JMHHECQPPFEVMU-UHFFFAOYSA-N 5-(dimethylamino)naphthalene-1-sulfonyl fluoride Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(F)(=O)=O JMHHECQPPFEVMU-UHFFFAOYSA-N 0.000 description 1
- IPJDHSYCSQAODE-UHFFFAOYSA-N 5-chloromethylfluorescein diacetate Chemical compound O1C(=O)C2=CC(CCl)=CC=C2C21C1=CC=C(OC(C)=O)C=C1OC1=CC(OC(=O)C)=CC=C21 IPJDHSYCSQAODE-UHFFFAOYSA-N 0.000 description 1
- ZMERMCRYYFRELX-UHFFFAOYSA-N 5-{[2-(iodoacetamido)ethyl]amino}naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1NCCNC(=O)CI ZMERMCRYYFRELX-UHFFFAOYSA-N 0.000 description 1
- VDBJCDWTNCKRTF-UHFFFAOYSA-N 6'-hydroxyspiro[2-benzofuran-3,9'-9ah-xanthene]-1,3'-dione Chemical compound O1C(=O)C2=CC=CC=C2C21C1C=CC(=O)C=C1OC1=CC(O)=CC=C21 VDBJCDWTNCKRTF-UHFFFAOYSA-N 0.000 description 1
- HWQQCFPHXPNXHC-UHFFFAOYSA-N 6-[(4,6-dichloro-1,3,5-triazin-2-yl)amino]-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound C=1C(O)=CC=C2C=1OC1=CC(O)=CC=C1C2(C1=CC=2)OC(=O)C1=CC=2NC1=NC(Cl)=NC(Cl)=N1 HWQQCFPHXPNXHC-UHFFFAOYSA-N 0.000 description 1
- IDLISIVVYLGCKO-UHFFFAOYSA-N 6-carboxy-4',5'-dichloro-2',7'-dimethoxyfluorescein Chemical compound O1C(=O)C2=CC=C(C(O)=O)C=C2C21C1=CC(OC)=C(O)C(Cl)=C1OC1=C2C=C(OC)C(O)=C1Cl IDLISIVVYLGCKO-UHFFFAOYSA-N 0.000 description 1
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 1
- WJOLQGAMGUBOFS-UHFFFAOYSA-N 8-(cyclopentylmethyl)-2-[(4-fluorophenyl)methyl]-6-(4-hydroxyphenyl)imidazo[1,2-a]pyrazin-3-ol Chemical compound Oc1c(Cc2ccc(F)cc2)nc2c(CC3CCCC3)nc(cn12)-c1ccc(O)cc1 WJOLQGAMGUBOFS-UHFFFAOYSA-N 0.000 description 1
- MEMQQZHHXCOKGG-UHFFFAOYSA-N 8-benzyl-2-[(4-fluorophenyl)methyl]-6-(4-hydroxyphenyl)imidazo[1,2-a]pyrazin-3-ol Chemical compound Oc1c(Cc2ccc(F)cc2)nc2c(Cc3ccccc3)nc(cn12)-c1ccc(O)cc1 MEMQQZHHXCOKGG-UHFFFAOYSA-N 0.000 description 1
- ONVKEAHBFKWZHK-UHFFFAOYSA-N 8-benzyl-6-(4-hydroxyphenyl)-2-(naphthalen-1-ylmethyl)imidazo[1,2-a]pyrazin-3-ol Chemical compound Oc1c(Cc2cccc3ccccc23)nc2c(Cc3ccccc3)nc(cn12)-c1ccc(O)cc1 ONVKEAHBFKWZHK-UHFFFAOYSA-N 0.000 description 1
- SGAOZXGJGQEBHA-UHFFFAOYSA-N 82344-98-7 Chemical compound C1CCN2CCCC(C=C3C4(OC(C5=CC(=CC=C54)N=C=S)=O)C4=C5)=C2C1=C3OC4=C1CCCN2CCCC5=C12 SGAOZXGJGQEBHA-UHFFFAOYSA-N 0.000 description 1
- TUCVPZNBGBRVRL-UHFFFAOYSA-N 9'-chloro-3',10'-dihydroxyspiro[2-benzofuran-3,7'-benzo[c]xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Cl)=C(O)C=C1OC1=C2C=CC2=CC(O)=CC=C21 TUCVPZNBGBRVRL-UHFFFAOYSA-N 0.000 description 1
- ICISKFRDNHZCKS-UHFFFAOYSA-N 9-(4-aminophenyl)-2-methylacridin-3-amine;nitric acid Chemical compound O[N+]([O-])=O.C12=CC=CC=C2N=C2C=C(N)C(C)=CC2=C1C1=CC=C(N)C=C1 ICISKFRDNHZCKS-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 241000282979 Alces alces Species 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102000002659 Amyloid Precursor Protein Secretases Human genes 0.000 description 1
- 108010043324 Amyloid Precursor Protein Secretases Proteins 0.000 description 1
- 241000024188 Andala Species 0.000 description 1
- 206010059245 Angiopathy Diseases 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- 102000013918 Apolipoproteins E Human genes 0.000 description 1
- 108010025628 Apolipoproteins E Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- MWNLTKCQHFZFHN-UHFFFAOYSA-N CBQCA reagent Chemical compound C1=CC(C(=O)O)=CC=C1C(=O)C1=CC2=CC=CC=C2N=C1C=O MWNLTKCQHFZFHN-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 206010007509 Cardiac amyloidosis Diseases 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- 108091005944 Cerulean Proteins 0.000 description 1
- 241000579895 Chlorostilbon Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 108091005943 CyPet Proteins 0.000 description 1
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 1
- BRDJPCFGLMKJRU-UHFFFAOYSA-N DDAO Chemical compound ClC1=C(O)C(Cl)=C2C(C)(C)C3=CC(=O)C=CC3=NC2=C1 BRDJPCFGLMKJRU-UHFFFAOYSA-N 0.000 description 1
- 102000007528 DNA Polymerase III Human genes 0.000 description 1
- 108010071146 DNA Polymerase III Proteins 0.000 description 1
- 101100055841 Danio rerio apoa1 gene Proteins 0.000 description 1
- XPDXVDYUQZHFPV-UHFFFAOYSA-N Dansyl Chloride Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(Cl)(=O)=O XPDXVDYUQZHFPV-UHFFFAOYSA-N 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- UBSCDKPKWHYZNX-UHFFFAOYSA-N Demethoxycapillarisin Natural products C1=CC(O)=CC=C1OC1=CC(=O)C2=C(O)C=C(O)C=C2O1 UBSCDKPKWHYZNX-UHFFFAOYSA-N 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 208000032274 Encephalopathy Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 206010016202 Familial Amyloidosis Diseases 0.000 description 1
- OUVXYXNWSVIOSJ-UHFFFAOYSA-N Fluo-4 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=C(C=2)C2=C3C=C(F)C(=O)C=C3OC3=CC(O)=C(F)C=C32)N(CC(O)=O)CC(O)=O)=C1 OUVXYXNWSVIOSJ-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 102220566467 GDNF family receptor alpha-1_S65A_mutation Human genes 0.000 description 1
- 102220566453 GDNF family receptor alpha-1_Y66F_mutation Human genes 0.000 description 1
- 102220566455 GDNF family receptor alpha-1_Y66W_mutation Human genes 0.000 description 1
- 206010056740 Genital discharge Diseases 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 102000016252 Huntingtin Human genes 0.000 description 1
- 108050004784 Huntingtin Proteins 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 1
- 102000007547 Laminin Human genes 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- 239000006137 Luria-Bertani broth Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000009018 Medullary thyroid cancer Diseases 0.000 description 1
- YXOLAZRVSSWPPT-UHFFFAOYSA-N Morin Chemical compound OC1=CC(O)=CC=C1C1=C(O)C(=O)C2=C(O)C=C(O)C=C2O1 YXOLAZRVSSWPPT-UHFFFAOYSA-N 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102100030856 Myoglobin Human genes 0.000 description 1
- 108010062374 Myoglobin Proteins 0.000 description 1
- IKMDFBPHZNJCSN-UHFFFAOYSA-N Myricetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC(O)=C(O)C(O)=C1 IKMDFBPHZNJCSN-UHFFFAOYSA-N 0.000 description 1
- SNIXRMIHFOIVBB-UHFFFAOYSA-N N-Hydroxyl-tryptamine Chemical compound C1=CC=C2C(CCNO)=CNC2=C1 SNIXRMIHFOIVBB-UHFFFAOYSA-N 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001326055 Pachyptila desolata Species 0.000 description 1
- 208000002774 Paraproteinemias Diseases 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- QBKMWMZYHZILHF-UHFFFAOYSA-L Po-Pro-1 Chemical compound [I-].[I-].O1C2=CC=CC=C2[N+](C)=C1C=C1C=CN(CCC[N+](C)(C)C)C=C1 QBKMWMZYHZILHF-UHFFFAOYSA-L 0.000 description 1
- CZQJZBNARVNSLQ-UHFFFAOYSA-L Po-Pro-3 Chemical compound [I-].[I-].O1C2=CC=CC=C2[N+](C)=C1C=CC=C1C=CN(CCC[N+](C)(C)C)C=C1 CZQJZBNARVNSLQ-UHFFFAOYSA-L 0.000 description 1
- BOLJGYHEBJNGBV-UHFFFAOYSA-J PoPo-1 Chemical compound [I-].[I-].[I-].[I-].O1C2=CC=CC=C2[N+](C)=C1C=C1C=CN(CCC[N+](C)(C)CCC[N+](C)(C)CCCN2C=CC(=CC3=[N+](C4=CC=CC=C4O3)C)C=C2)C=C1 BOLJGYHEBJNGBV-UHFFFAOYSA-J 0.000 description 1
- GYPIAQJSRPTNTI-UHFFFAOYSA-J PoPo-3 Chemical compound [I-].[I-].[I-].[I-].O1C2=CC=CC=C2[N+](C)=C1C=CC=C1C=CN(CCC[N+](C)(C)CCC[N+](C)(C)CCCN2C=CC(=CC=CC3=[N+](C4=CC=CC=C4O3)C)C=C2)C=C1 GYPIAQJSRPTNTI-UHFFFAOYSA-J 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 206010036105 Polyneuropathy Diseases 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 108700021402 PrP 27-30 Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 108010041520 Pulmonary Surfactant-Associated Proteins Proteins 0.000 description 1
- 102000000528 Pulmonary Surfactant-Associated Proteins Human genes 0.000 description 1
- BDJDTKYGKHEMFF-UHFFFAOYSA-M QSY7 succinimidyl ester Chemical compound [Cl-].C=1C=C2C(C=3C(=CC=CC=3)S(=O)(=O)N3CCC(CC3)C(=O)ON3C(CCC3=O)=O)=C3C=C\C(=[N+](\C)C=4C=CC=CC=4)C=C3OC2=CC=1N(C)C1=CC=CC=C1 BDJDTKYGKHEMFF-UHFFFAOYSA-M 0.000 description 1
- ZVOLCUVKHLEPEV-UHFFFAOYSA-N Quercetagetin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=C(O)C(O)=C(O)C=C2O1 ZVOLCUVKHLEPEV-UHFFFAOYSA-N 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 108010009460 RNA Polymerase II Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- KAEGGIFPLJZUOZ-UHFFFAOYSA-N Renilla luciferin Chemical compound C1=CC(O)=CC=C1C(N1)=CN2C(=O)C(CC=3C=CC=CC=3)=NC2=C1CC1=CC=CC=C1 KAEGGIFPLJZUOZ-UHFFFAOYSA-N 0.000 description 1
- HWTZYBCRDDUBJY-UHFFFAOYSA-N Rhynchosin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=CC(O)=C(O)C=C2O1 HWTZYBCRDDUBJY-UHFFFAOYSA-N 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 108010032838 Sialoglycoproteins Proteins 0.000 description 1
- 102000007365 Sialoglycoproteins Human genes 0.000 description 1
- 241000497386 Silveira Species 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 208000032851 Subarachnoid Hemorrhage Diseases 0.000 description 1
- 208000034972 Sudden Infant Death Diseases 0.000 description 1
- 206010042440 Sudden infant death syndrome Diseases 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 101150091380 TTR gene Proteins 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- 229920000398 Thiolyte Polymers 0.000 description 1
- DPXHITFUCHFTKR-UHFFFAOYSA-L To-Pro-1 Chemical compound [I-].[I-].S1C2=CC=CC=C2[N+](C)=C1C=C1C2=CC=CC=C2N(CCC[N+](C)(C)C)C=C1 DPXHITFUCHFTKR-UHFFFAOYSA-L 0.000 description 1
- QHNORJFCVHUPNH-UHFFFAOYSA-L To-Pro-3 Chemical compound [I-].[I-].S1C2=CC=CC=C2[N+](C)=C1C=CC=C1C2=CC=CC=C2N(CCC[N+](C)(C)C)C=C1 QHNORJFCVHUPNH-UHFFFAOYSA-L 0.000 description 1
- MZZINWWGSYUHGU-UHFFFAOYSA-J ToTo-1 Chemical compound [I-].[I-].[I-].[I-].C12=CC=CC=C2C(C=C2N(C3=CC=CC=C3S2)C)=CC=[N+]1CCC[N+](C)(C)CCC[N+](C)(C)CCC[N+](C1=CC=CC=C11)=CC=C1C=C1N(C)C2=CC=CC=C2S1 MZZINWWGSYUHGU-UHFFFAOYSA-J 0.000 description 1
- 102220615016 Transcription elongation regulator 1_S65C_mutation Human genes 0.000 description 1
- APJYDQYYACXCRM-UHFFFAOYSA-N Tryptamine Natural products C1=CC=C2C(CCN)=CNC2=C1 APJYDQYYACXCRM-UHFFFAOYSA-N 0.000 description 1
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 1
- ULHRKLSNHXXJLO-UHFFFAOYSA-L Yo-Pro-1 Chemical compound [I-].[I-].C1=CC=C2C(C=C3N(C4=CC=CC=C4O3)C)=CC=[N+](CCC[N+](C)(C)C)C2=C1 ULHRKLSNHXXJLO-UHFFFAOYSA-L 0.000 description 1
- ZVUUXEGAYWQURQ-UHFFFAOYSA-L Yo-Pro-3 Chemical compound [I-].[I-].O1C2=CC=CC=C2[N+](C)=C1C=CC=C1C2=CC=CC=C2N(CCC[N+](C)(C)C)C=C1 ZVUUXEGAYWQURQ-UHFFFAOYSA-L 0.000 description 1
- GRRMZXFOOGQMFA-UHFFFAOYSA-J YoYo-1 Chemical compound [I-].[I-].[I-].[I-].C12=CC=CC=C2C(C=C2N(C3=CC=CC=C3O2)C)=CC=[N+]1CCC[N+](C)(C)CCC[N+](C)(C)CCC[N+](C1=CC=CC=C11)=CC=C1C=C1N(C)C2=CC=CC=C2O1 GRRMZXFOOGQMFA-UHFFFAOYSA-J 0.000 description 1
- JSBNEYNPYQFYNM-UHFFFAOYSA-J YoYo-3 Chemical compound [I-].[I-].[I-].[I-].C12=CC=CC=C2C(C=CC=C2N(C3=CC=CC=C3O2)C)=CC=[N+]1CCC(=[N+](C)C)CCCC(=[N+](C)C)CC[N+](C1=CC=CC=C11)=CC=C1C=CC=C1N(C)C2=CC=CC=C2O1 JSBNEYNPYQFYNM-UHFFFAOYSA-J 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- APERIXFHHNDFQV-UHFFFAOYSA-N [2-[2-[2-[bis(carboxymethyl)amino]-5-methylphenoxy]ethoxy]-4-[3,6-bis(dimethylamino)xanthen-9-ylidene]cyclohexa-2,5-dien-1-ylidene]-bis(carboxymethyl)azanium;chloride Chemical compound [Cl-].C12=CC=C(N(C)C)C=C2OC2=CC(N(C)C)=CC=C2C1=C(C=1)C=CC(=[N+](CC(O)=O)CC(O)=O)C=1OCCOC1=CC(C)=CC=C1N(CC(O)=O)CC(O)=O APERIXFHHNDFQV-UHFFFAOYSA-N 0.000 description 1
- ZYVSOIYQKUDENJ-UHFFFAOYSA-N [6-[[6-[4-[4-(5-acetyloxy-4-hydroxy-4,6-dimethyloxan-2-yl)oxy-5-hydroxy-6-methyloxan-2-yl]oxy-5-hydroxy-6-methyloxan-2-yl]oxy-7-(3,4-dihydroxy-1-methoxy-2-oxopentyl)-4,10-dihydroxy-3-methyl-5-oxo-7,8-dihydro-6h-anthracen-2-yl]oxy]-4-(4-hydroxy-5-methoxy-6 Chemical compound CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(OC(C)=O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1OC(C)=O)CC1OC1CC(O)C(OC)C(C)O1 ZYVSOIYQKUDENJ-UHFFFAOYSA-N 0.000 description 1
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- RZUBARUFLYGOGC-MTHOTQAESA-L acid fuchsin Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=C(N)C(C)=CC(C(=C\2C=C(C(=[NH2+])C=C/2)S([O-])(=O)=O)\C=2C=C(C(N)=CC=2)S([O-])(=O)=O)=C1 RZUBARUFLYGOGC-MTHOTQAESA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- DPKHZNPWBDQZCN-UHFFFAOYSA-N acridine orange free base Chemical compound C1=CC(N(C)C)=CC2=NC3=CC(N(C)C)=CC=C3C=C21 DPKHZNPWBDQZCN-UHFFFAOYSA-N 0.000 description 1
- IVHDZUFNZLETBM-IWSIBTJSSA-N acridine red 3B Chemical compound [Cl-].C1=C\C(=[NH+]/C)C=C2OC3=CC(NC)=CC=C3C=C21 IVHDZUFNZLETBM-IWSIBTJSSA-N 0.000 description 1
- BGLGAKMTYHWWKW-UHFFFAOYSA-N acridine yellow Chemical compound [H+].[Cl-].CC1=C(N)C=C2N=C(C=C(C(C)=C3)N)C3=CC2=C1 BGLGAKMTYHWWKW-UHFFFAOYSA-N 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- RGCKGOZRHPZPFP-UHFFFAOYSA-N alizarin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 1
- PWIGYBONXWGOQE-UHFFFAOYSA-N alizarin complexone Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=C(CN(CC(O)=O)CC(=O)O)C(O)=C2O PWIGYBONXWGOQE-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- FEWOUVRMGWFWIH-ILZZQXMPSA-N amyloid-beta polypeptide 40 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 FEWOUVRMGWFWIH-ILZZQXMPSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- JPIYZTWMUGTEHX-UHFFFAOYSA-N auramine O free base Chemical compound C1=CC(N(C)C)=CC=C1C(=N)C1=CC=C(N(C)C)C=C1 JPIYZTWMUGTEHX-UHFFFAOYSA-N 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Natural products C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- OJVABJMSSDUECT-UHFFFAOYSA-L berberin sulfate Chemical compound [O-]S([O-])(=O)=O.C1=C2CC[N+]3=CC4=C(OC)C(OC)=CC=C4C=C3C2=CC2=C1OCO2.C1=C2CC[N+]3=CC4=C(OC)C(OC)=CC=C4C=C3C2=CC2=C1OCO2 OJVABJMSSDUECT-UHFFFAOYSA-L 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- YCRNRLUOZIMHNE-UHFFFAOYSA-N butane-1,4-diol;sulfo hydrogen sulfate Chemical compound OCCCCO.OS(=O)(=O)OS(O)(=O)=O YCRNRLUOZIMHNE-UHFFFAOYSA-N 0.000 description 1
- VERAMNDAEAQRGS-UHFFFAOYSA-N butane-1,4-disulfonic acid Chemical compound OS(=O)(=O)CCCCS(O)(=O)=O VERAMNDAEAQRGS-UHFFFAOYSA-N 0.000 description 1
- NMUGYJRMGWBCPU-UHFFFAOYSA-N calcium orange Chemical compound C=12C=CC(=[N+](C)C)C=C2OC2=CC(N(C)C)=CC=C2C=1C(C(=C1)C([O-])=O)=CC=C1NC(=S)NC(C=1)=CC=C(N(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O)C=1OCCOC1=CC=CC=C1N(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O NMUGYJRMGWBCPU-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-BJUDXGSMSA-N carbon-11 Chemical group [11C] OKTJSMMVPCPJKN-BJUDXGSMSA-N 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000003943 catecholamines Chemical class 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000010001 cellular homeostasis Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- NAXWWTPJXAIEJE-UHFFFAOYSA-N chembl1398678 Chemical compound C1=CC=CC2=C(O)C(N=NC3=CC=C(C=C3)C3=NC4=CC=C(C(=C4S3)S(O)(=O)=O)C)=CC(S(O)(=O)=O)=C21 NAXWWTPJXAIEJE-UHFFFAOYSA-N 0.000 description 1
- HQKOBNMULFASAN-UHFFFAOYSA-N chembl1991515 Chemical compound OC1=CC=C(Cl)C=C1N=NC1=C(O)C=CC2=CC=CC=C12 HQKOBNMULFASAN-UHFFFAOYSA-N 0.000 description 1
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000005081 chemiluminescent agent Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 208000020832 chronic kidney disease Diseases 0.000 description 1
- 208000022831 chronic renal failure syndrome Diseases 0.000 description 1
- 238000001142 circular dichroism spectrum Methods 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- AFYCEAFSNDLKSX-UHFFFAOYSA-N coumarin 460 Chemical compound CC1=CC(=O)OC2=CC(N(CC)CC)=CC=C21 AFYCEAFSNDLKSX-UHFFFAOYSA-N 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 108010082025 cyan fluorescent protein Proteins 0.000 description 1
- 229940095074 cyclic amp Drugs 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 125000001295 dansyl group Chemical group [H]C1=C([H])C(N(C([H])([H])[H])C([H])([H])[H])=C2C([H])=C([H])C([H])=C(C2=C1[H])S(*)(=O)=O 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- BMAUDWDYKLUBPY-UHFFFAOYSA-L disodium;3-[[4-[(4,6-dichloro-1,3,5-triazin-2-yl)amino]-2-methylphenyl]diazenyl]naphthalene-1,5-disulfonate Chemical compound [Na+].[Na+].C=1C=C(N=NC=2C=C3C(=CC=CC3=C(C=2)S([O-])(=O)=O)S([O-])(=O)=O)C(C)=CC=1NC1=NC(Cl)=NC(Cl)=N1 BMAUDWDYKLUBPY-UHFFFAOYSA-L 0.000 description 1
- BDYOOAPDMVGPIQ-QDBORUFSSA-L disodium;5-[(4-anilino-6-methoxy-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-methoxy-1,3,5-triazin-2-yl)amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(OC)N=C(NC=5C=CC=CC=5)N=4)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(OC)=NC=1NC1=CC=CC=C1 BDYOOAPDMVGPIQ-QDBORUFSSA-L 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- PAGQVVVNLJPSFU-UHFFFAOYSA-N ethane-1,2-diol;sulfo hydrogen sulfate Chemical compound OCCO.OS(=O)(=O)OS(O)(=O)=O PAGQVVVNLJPSFU-UHFFFAOYSA-N 0.000 description 1
- AFAXGSQYZLGZPG-UHFFFAOYSA-N ethanedisulfonic acid Chemical compound OS(=O)(=O)CCS(O)(=O)=O AFAXGSQYZLGZPG-UHFFFAOYSA-N 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- NNMXSTWQJRPBJZ-UHFFFAOYSA-K europium(iii) chloride Chemical compound Cl[Eu](Cl)Cl NNMXSTWQJRPBJZ-UHFFFAOYSA-K 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000695 excitation spectrum Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 208000037957 feline spongiform encephalopathy Diseases 0.000 description 1
- 230000035557 fibrillogenesis Effects 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001249 flow field-flow fractionation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- YCKRFDGAMUMZLT-BJUDXGSMSA-N fluorine-18 atom Chemical compound [18F] YCKRFDGAMUMZLT-BJUDXGSMSA-N 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 229920000140 heteropolymer Polymers 0.000 description 1
- FEVYVSQHKFKUEZ-UHFFFAOYSA-N hexane-1,6-disulfonic acid Chemical compound OS(=O)(=O)CCCCCCS(O)(=O)=O FEVYVSQHKFKUEZ-UHFFFAOYSA-N 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000000642 iatrogenic effect Effects 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 238000000760 immunoelectrophoresis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- PNDZEEPOYCVIIY-UHFFFAOYSA-N indo-1 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=C(C=2)C=2N=C3[CH]C(=CC=C3C=2)C(O)=O)N(CC(O)=O)CC(O)=O)=C1 PNDZEEPOYCVIIY-UHFFFAOYSA-N 0.000 description 1
- 230000006759 inflammatory activation Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 235000008777 kaempferol Nutrition 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 201000010901 lateral sclerosis Diseases 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- IOOMXAQUNPWDLL-UHFFFAOYSA-M lissamine rhodamine anion Chemical compound C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=C(S([O-])(=O)=O)C=C1S([O-])(=O)=O IOOMXAQUNPWDLL-UHFFFAOYSA-M 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- DLBFLQKQABVKGT-UHFFFAOYSA-L lucifer yellow dye Chemical compound [Li+].[Li+].[O-]S(=O)(=O)C1=CC(C(N(C(=O)NN)C2=O)=O)=C3C2=CC(S([O-])(=O)=O)=CC3=C1N DLBFLQKQABVKGT-UHFFFAOYSA-L 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- NGCVJRFIBJVSFI-UHFFFAOYSA-I magnesium green Chemical compound [K+].[K+].[K+].[K+].[K+].C1=C(N(CC([O-])=O)CC([O-])=O)C(OCC(=O)[O-])=CC(NC(=O)C=2C=C3C(C4(C5=CC(Cl)=C([O-])C=C5OC5=CC([O-])=C(Cl)C=C54)OC3=O)=CC=2)=C1 NGCVJRFIBJVSFI-UHFFFAOYSA-I 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 229940107698 malachite green Drugs 0.000 description 1
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 229960000901 mepacrine Drugs 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- DWCZIOOZPIDHAB-UHFFFAOYSA-L methyl green Chemical compound [Cl-].[Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)[N+](C)(C)C)=C1C=CC(=[N+](C)C)C=C1 DWCZIOOZPIDHAB-UHFFFAOYSA-L 0.000 description 1
- VWKNUUOGGLNRNZ-UHFFFAOYSA-N methylbimane Chemical compound CC1=C(C)C(=O)N2N1C(C)=C(C)C2=O VWKNUUOGGLNRNZ-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000002025 microglial effect Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 1
- FZTMEYOUQQFBJR-UHFFFAOYSA-M mitoTracker Orange Chemical compound [Cl-].C=12C=CC(=[N+](C)C)C=C2OC2=CC(N(C)C)=CC=C2C=1C1=CC=C(CCl)C=C1 FZTMEYOUQQFBJR-UHFFFAOYSA-M 0.000 description 1
- IKEOZQLIVHGQLJ-UHFFFAOYSA-M mitoTracker Red Chemical compound [Cl-].C1=CC(CCl)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 IKEOZQLIVHGQLJ-UHFFFAOYSA-M 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- SUIPVTCEECPFIB-UHFFFAOYSA-N monochlorobimane Chemical compound ClCC1=C(C)C(=O)N2N1C(C)=C(C)C2=O SUIPVTCEECPFIB-UHFFFAOYSA-N 0.000 description 1
- MLEBFEHOJICQQS-UHFFFAOYSA-N monodansylcadaverine Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(=O)(=O)NCCCCCN MLEBFEHOJICQQS-UHFFFAOYSA-N 0.000 description 1
- 235000007708 morin Nutrition 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 208000005264 motor neuron disease Diseases 0.000 description 1
- PCOBUQBNVYZTBU-UHFFFAOYSA-N myricetin Natural products OC1=C(O)C(O)=CC(C=2OC3=CC(O)=C(O)C(O)=C3C(=O)C=2)=C1 PCOBUQBNVYZTBU-UHFFFAOYSA-N 0.000 description 1
- 235000007743 myricetin Nutrition 0.000 description 1
- 229940116852 myricetin Drugs 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- VMCOQLKKSNQANE-UHFFFAOYSA-N n,n-dimethyl-4-[6-[6-(4-methylpiperazin-1-yl)-1h-benzimidazol-2-yl]-1h-benzimidazol-2-yl]aniline Chemical compound C1=CC(N(C)C)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 VMCOQLKKSNQANE-UHFFFAOYSA-N 0.000 description 1
- CSJXLKVNKAXFSI-UHFFFAOYSA-N n-(2-aminoethyl)-5-(dimethylamino)naphthalene-1-sulfonamide Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(=O)(=O)NCCN CSJXLKVNKAXFSI-UHFFFAOYSA-N 0.000 description 1
- HSEVJGUFKSTHMH-UHFFFAOYSA-N n-(2-chloroethyl)-n-ethyl-3-methyl-4-[2-(1,3,3-trimethylindol-1-ium-2-yl)ethenyl]aniline Chemical compound CC1=CC(N(CCCl)CC)=CC=C1C=CC1=[N+](C)C2=CC=CC=C2C1(C)C HSEVJGUFKSTHMH-UHFFFAOYSA-N 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 210000002682 neurofibrillary tangle Anatomy 0.000 description 1
- 210000005044 neurofilament Anatomy 0.000 description 1
- 230000002981 neuropathic effect Effects 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- VOFUROIFQGPCGE-UHFFFAOYSA-N nile red Chemical compound C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=O)C2=C1 VOFUROIFQGPCGE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-BJUDXGSMSA-N oxygen-15 atom Chemical compound [15O] QVGXLLKOCUKJST-BJUDXGSMSA-N 0.000 description 1
- VYNDHICBIRRPFP-UHFFFAOYSA-N pacific blue Chemical compound FC1=C(O)C(F)=C2OC(=O)C(C(=O)O)=CC2=C1 VYNDHICBIRRPFP-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- LQRJAEQXMSMEDP-XCHBZYMASA-N peptide a Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](C)C(=O)NCCCC[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)C(\NC(=O)[C@@H](CCCCN)NC(=O)CNC(C)=O)=C/C=1C=CC=CC=1)C(N)=O)C(=O)C(\NC(=O)[C@@H](CCCCN)NC(=O)CNC(C)=O)=C\C1=CC=CC=C1 LQRJAEQXMSMEDP-XCHBZYMASA-N 0.000 description 1
- 230000006919 peptide aggregation Effects 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- NTGBUUXKGAZMSE-UHFFFAOYSA-N phenyl n-[4-[4-(4-methoxyphenyl)piperazin-1-yl]phenyl]carbamate Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(NC(=O)OC=3C=CC=CC=3)=CC=2)CC1 NTGBUUXKGAZMSE-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 239000005080 phosphorescent agent Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- INAAIJLSXJJHOZ-UHFFFAOYSA-N pibenzimol Chemical compound C1CN(C)CCN1C1=CC=C(N=C(N2)C=3C=C4NC(=NC4=CC=3)C=3C=CC(O)=CC=3)C2=C1 INAAIJLSXJJHOZ-UHFFFAOYSA-N 0.000 description 1
- 229960003171 plicamycin Drugs 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000889 poly(m-phenylene isophthalamide) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 230000007824 polyneuropathy Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- NBNUZZFEOOHAFP-UHFFFAOYSA-N prop-1-ene-1,3-disulfonic acid Chemical compound OS(=O)(=O)CC=CS(O)(=O)=O NBNUZZFEOOHAFP-UHFFFAOYSA-N 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- FJEDAOMERWWOGQ-UHFFFAOYSA-N propane-1,3-diol;sulfo hydrogen sulfate Chemical compound OCCCO.OS(=O)(=O)OS(O)(=O)=O FJEDAOMERWWOGQ-UHFFFAOYSA-N 0.000 description 1
- KCXFHTAICRTXLI-UHFFFAOYSA-N propane-1-sulfonic acid Chemical compound CCCS(O)(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-N 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 239000011546 protein dye Substances 0.000 description 1
- 230000018883 protein targeting Effects 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- KXXXUIKPSVVSAW-UHFFFAOYSA-K pyranine Chemical compound [Na+].[Na+].[Na+].C1=C2C(O)=CC(S([O-])(=O)=O)=C(C=C3)C2=C2C3=C(S([O-])(=O)=O)C=C(S([O-])(=O)=O)C2=C1 KXXXUIKPSVVSAW-UHFFFAOYSA-K 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- CXZRDVVUVDYSCQ-UHFFFAOYSA-M pyronin B Chemical compound [Cl-].C1=CC(=[N+](CC)CC)C=C2OC3=CC(N(CC)CC)=CC=C3C=C21 CXZRDVVUVDYSCQ-UHFFFAOYSA-M 0.000 description 1
- 235000005875 quercetin Nutrition 0.000 description 1
- 229960001285 quercetin Drugs 0.000 description 1
- GPKJTRJOBQGKQK-UHFFFAOYSA-N quinacrine Chemical compound C1=C(OC)C=C2C(NC(C)CCCN(CC)CC)=C(C=CC(Cl)=C3)C3=NC2=C1 GPKJTRJOBQGKQK-UHFFFAOYSA-N 0.000 description 1
- UKOBAUFLOGFCMV-UHFFFAOYSA-N quinacrine mustard Chemical compound C1=C(Cl)C=CC2=C(NC(C)CCCN(CCCl)CCCl)C3=CC(OC)=CC=C3N=C21 UKOBAUFLOGFCMV-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 108010054624 red fluorescent protein Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- HSSLDCABUXLXKM-UHFFFAOYSA-N resorufin Chemical compound C1=CC(=O)C=C2OC3=CC(O)=CC=C3N=C21 HSSLDCABUXLXKM-UHFFFAOYSA-N 0.000 description 1
- MYFATKRONKHHQL-UHFFFAOYSA-N rhodamine 123 Chemical compound [Cl-].COC(=O)C1=CC=CC=C1C1=C2C=CC(=[NH2+])C=C2OC2=CC(N)=CC=C21 MYFATKRONKHHQL-UHFFFAOYSA-N 0.000 description 1
- XFKVYXCRNATCOO-UHFFFAOYSA-M rhodamine 6G Chemical compound [Cl-].C=12C=C(C)C(NCC)=CC2=[O+]C=2C=C(NCC)C(C)=CC=2C=1C1=CC=CC=C1C(=O)OCC XFKVYXCRNATCOO-UHFFFAOYSA-M 0.000 description 1
- 239000003161 ribonuclease inhibitor Substances 0.000 description 1
- 102200089551 rs5030826 Human genes 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 239000004054 semiconductor nanocrystal Substances 0.000 description 1
- DYPYMMHZGRPOCK-UHFFFAOYSA-N seminaphtharhodafluor Chemical compound O1C(=O)C2=CC=CC=C2C21C(C=CC=1C3=CC=C(O)C=1)=C3OC1=CC(N)=CC=C21 DYPYMMHZGRPOCK-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 229940126586 small molecule drug Drugs 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- ZSOMPVKQDGLTOT-UHFFFAOYSA-J sodium green Chemical compound C[N+](C)(C)C.C[N+](C)(C)C.C[N+](C)(C)C.C[N+](C)(C)C.COC=1C=C(NC(=O)C=2C=C(C(=CC=2)C2=C3C=C(Cl)C(=O)C=C3OC3=CC([O-])=C(Cl)C=C32)C([O-])=O)C(OC)=CC=1N(CCOCC1)CCOCCOCCN1C(C(=C1)OC)=CC(OC)=C1NC(=O)C1=CC=C(C2=C3C=C(Cl)C(=O)C=C3OC3=CC([O-])=C(Cl)C=C32)C(C([O-])=O)=C1 ZSOMPVKQDGLTOT-UHFFFAOYSA-J 0.000 description 1
- UGJCNRLBGKEGEH-UHFFFAOYSA-N sodium-binding benzofuran isophthalate Chemical compound COC1=CC=2C=C(C=3C(=CC(=CC=3)C(O)=O)C(O)=O)OC=2C=C1N(CCOCC1)CCOCCOCCN1C(C(=CC=1C=2)OC)=CC=1OC=2C1=CC=C(C(O)=O)C=C1C(O)=O UGJCNRLBGKEGEH-UHFFFAOYSA-N 0.000 description 1
- GFWRVVCDTLRWPK-KPKJPENVSA-N sofalcone Chemical compound C1=CC(OCC=C(C)C)=CC=C1\C=C\C(=O)C1=CC=C(OCC=C(C)C)C=C1OCC(O)=O GFWRVVCDTLRWPK-KPKJPENVSA-N 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000010414 supernatant solution Substances 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- OFVLGDICTFRJMM-WESIUVDSSA-N tetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O OFVLGDICTFRJMM-WESIUVDSSA-N 0.000 description 1
- WGTODYJZXSJIAG-UHFFFAOYSA-N tetramethylrhodamine chloride Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C(O)=O WGTODYJZXSJIAG-UHFFFAOYSA-N 0.000 description 1
- LQSATJAZEBYDQQ-UHFFFAOYSA-J tetrapotassium;2-[4-[bis(carboxylatomethyl)amino]-3-(carboxylatomethoxy)phenyl]-1h-indole-6-carboxylate Chemical compound [K+].[K+].[K+].[K+].C1=C(N(CC([O-])=O)CC([O-])=O)C(OCC(=O)[O-])=CC(C=2NC3=CC(=CC=C3C=2)C([O-])=O)=C1 LQSATJAZEBYDQQ-UHFFFAOYSA-J 0.000 description 1
- QOFZZTBWWJNFCA-UHFFFAOYSA-N texas red-X Chemical compound [O-]S(=O)(=O)C1=CC(S(=O)(=O)NCCCCCC(=O)O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 QOFZZTBWWJNFCA-UHFFFAOYSA-N 0.000 description 1
- ACOJCCLIDPZYJC-UHFFFAOYSA-M thiazole orange Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.C1=CC=C2C(C=C3N(C4=CC=CC=C4S3)C)=CC=[N+](C)C2=C1 ACOJCCLIDPZYJC-UHFFFAOYSA-M 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 239000003656 tris buffered saline Substances 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 1
- HFTAFOQKODTIJY-UHFFFAOYSA-N umbelliferone Natural products Cc1cc2C=CC(=O)Oc2cc1OCC=CC(C)(C)O HFTAFOQKODTIJY-UHFFFAOYSA-N 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 231100000216 vascular lesion Toxicity 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 208000027121 wild type ATTR amyloidosis Diseases 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
- G01N33/6896—Neurological disorders, e.g. Alzheimer's disease
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/46—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
- G01N2333/47—Assays involving proteins of known structure or function as defined in the subgroups
- G01N2333/4701—Details
- G01N2333/4709—Amyloid plaque core protein
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
Definitions
- the present invention relates to the field of the detection of proteins in a specific structural form, including misfolded proteins, such as those associated with disease states, and to the treatment of those disease states. More particularly, the present invention relates to methods, probes, and kits for detecting proteins in a specific structural form in samples, such as biological and clinical samples or in vivo. In some embodiments, the proteins are associated with amyloidogenic diseases. The invention also relates to methods, agents, and kits for treating diseases associated with such proteins, and for identifying other agents useful for treating such diseases.
- a variety of diseases are associated with a specific structural form of a protein (e.g., a “misfolded protein” or a self-aggregated protein), while the protein in a different structural form (e.g., a “normal protein”) is not harmful.
- the normal protein is soluble, while the misfolded protein forms insoluble aggregates.
- insoluble proteins examples include prions in transmissible spongiform encephalopathy (TSE); A ⁇ -peptide in amyloid plaques of Alzheimer's disease (A ⁇ ), cerebral amyloid angiopathy (CAA), and cerebral vascular disease (CVD); a-synuclein deposits in Lewy bodies of Parkinson's disease, tau in neurofibrillary tangles in frontal temporal dementia and Pick's disease; superoxide dismutase in amylotrophic lateral sclerosis; and Huntingtin in Huntington's disease. See, e.g., Glenner et al., J. Neurol. Sci. 94:1-28, 1989; Haan et al., Clin. Neurol. Neurosurg. 92(4):305-310, 1990.
- TSE transmissible spongiform encephalopathy
- a ⁇ A ⁇ -peptide in amyloid plaques of Alzheimer's disease
- CAA cerebral amyloid angiopathy
- CVD cerebral
- amyloid can be present in cerebral and meningeal blood vessels (cerebrovascular deposits) and in brain parenchyma (plaques). Neuropathological studies in human and animal models indicate that cells proximal to amyloid deposits are disturbed in their normal functions. See, e.g., Mandybur, Acta Neuropathol. 78:329-331, 1989; Kawai et al., Brain Res. 623:142-146, 1993; Martin et al., Am. J. Pathol.
- Prions are infections pathogens that cause central nervous system spongiform encephalopathies in humans and animals. Prions are distinct from bacteria, viruses, and viroids.
- a potential prion precursor is a protein referred to as PrP 27-30, a 28 kilodalton hydrophobic glycoprotein that polymerizes (aggregates) into rod-like filaments found as plaques in infected brains.
- PrP 27-30 a protein referred to as PrP 27-30, a 28 kilodalton hydrophobic glycoprotein that polymerizes (aggregates) into rod-like filaments found as plaques in infected brains.
- the normal protein homologue differs from prions in that it is readily degradable, whereas prions are highly resistant to proteases. It has been suggested that prions might contain extremely small amounts of highly infectious nucleic acid, undetectable by conventional assay methods. See, e.g., Benjamin Lewin, “Genes IV”, Oxford Univ. Press, New York, 1990
- PrP C The normal cellular prion protein, PrP C , is encoded by a single-copy host gene and is normally found at the outer surface of neurons.
- PrP Sc a protein referred to as PrP Sc is formed from the normal, cellular PrP isoform (PrP C ), and prion disease results. PrP Sc is necessary for both the transmission and pathogenesis of the transmissible neurodegenerative diseases of animals and humans.
- the normal prion protein (PrP C ) is a cell-surface metallo-glycoprotein that has mostly an ⁇ -helix and coiled-loop structure. It is believed to serve as an antioxidant and is thought to be associated with cellular homeostasis.
- the abnormal form (PrP Sc ) is a conformer that is resistant to proteases and has a secondary structure that contains predominantly ⁇ -sheets. It is believed that this conformational change in secondary structure leads to aggregation and eventual neurotoxic plaque deposition in the prion disease process.
- Prion-associated diseases include scrapie of sheep and goats, chronic wasting disease of deer and elk, and bovine spongiform encephalopathy (BSE) of cattle. See, e.g., Wilesmith and Wells, Microbiol. Immunol. 172:21-38, 1991.
- BSE bovine spongiform encephalopathy
- CJD Creutzfeldt-Jakob disease
- GSS Gerstmann-Strassler-Scheinker Disease
- FFI fatal familial insomnia
- Prion diseases are transmissible and insidious.
- the long incubation times associated with prion diseases will not reveal the full extent of iatrogenic CJD for decades in thousands of people treated with cadaver-sourced human growth hormone (HGH) worldwide.
- HGH human growth hormone
- the importance of detecting prions in biological products has been heightened by the possibility that bovine prions have been transmitted to humans who developed new variant Creutzfeldt-Jakob disease (nvCJD). See, e.g., Chazot et al., Lancet 347:1181, 1996; Will et al., Lancet 347:921-925, 1996.
- Prionic-Check a diagnostic test for bovine spongiform encephalopathy, also entails slaughtering an animal to obtain a liquefied brain tissue sample, which is subjected to an antibody using Western Blot. Although results are obtained in six to seven hours, the test does not account for the six-month lag time between PrP Sc accumulation in the brain and the onset of clinical symptoms. Tonsillar biopsy sampling, and blood and cerebrospinal sampling, while accurate, can require surgical intervention and take weeks to obtain results.
- Electrospray ionization mass spectroscopy ESI-MS
- nuclear magnetic resonance NMR
- circular dichroism CD
- other non-amplified structural techniques require large amounts of sample and expensive equipment that is typically located a substantial distance form the sample source.
- Other diseases associated with conformationally-altered proteins present similar difficulties.
- TSEs Transmissible Spongiform Encephalopathies
- TSEs Transmissible Spongiform Encephalopathies or “TSEs” are fatal neurodegenerative diseases that include such human disorders as CJD and kuru.
- Animal forms of TSE include scrapie in sheep, CWD in deer and elk, and BSE in cattle. These diseases are characterized by the formation and accumulation in the brain of an abnormal proteinase K resistant isoform (PrP-res) of a normal protease-sensitive, host-encoded prion protein (PrP-sen).
- PrP-res is formed from PrP-sen by a post-translational process involving conformational changes that convert the PrP-sen into a PrP-res molecular aggregate having a higher n-sheet content.
- PrP-res abnormal proteinase K resistant isoform
- PrP-sen is formed from PrP-sen by a post-translational process involving conformational changes that convert the PrP-sen into a PrP-
- the cellular protein PrP-sen is a sialoglycoprotein encoded by a gene that, in humans, is located on chromosome 20.
- the PrP gene is expressed in both neural and non-neural tissues, with the highest concentration of its mRNA being found in neurons.
- the translation product of the PrP gene consists of 253 amino acids in humans, 254 amino acids in hamsters and mice, 264 amino acids in cows, and 256 amino acids in sheep (all of these sequences are disclosed in U.S. Pat. No. 5,565,186, which describes methods of making transgenic mice that express species-specific PrP and is incorporated herein by reference).
- the cellular PrP-sen is converted into the altered PrP-res.
- PrP-res is distinguishable from PrP-sen in that PrP-res aggregates (see, e.g., Caughey and Chesebro, Trends Cell Biol. 7:56-62, 1997); is at least partially resistant to proteinase K digestion (only approximately the N-terminal 67 amino acids are removed by proteinase K digestion under conditions in which PrP-sen is completely degraded) (see, e.g., Prusiner et al., Sem. Virol. 7:159-173, 1996); and has, as compared to PrP-sen, less ⁇ -helical structure and more ⁇ -sheet structure (see, e.g., Pan et al., Proc. Natl. Acad. Sci. USA 90:10962-10966, 1993).
- PrP-sen is not expressed in the brain tissue of animal recipients of scrapie-infected neurografts, no pathology occurs outside the graft, demonstrating that PrP-res and PrP-sen are both required for the pathology. See, e.g., Brander et al., Nature 379:339-343, 1996. The long latency period between infection and the appearance of disease (months to decades, depending on species) has prompted the development of a cell-free in vitro test, in which PrP-res induces the conversion of PrP-sen to PrP-res.
- PrP-res and PrP-sen interact to form PrP-res and promote TSE pathogenesis.
- the term “interact” as used herein is meant to include detectable interactions (e.g., biochemical interactions) between molecules, such as protein-protein, protein-nucleic acid, nucleic acid-nucleic acid, protein-small molecule, or nucleic acid-small molecule interactions.
- PrP-sen molecules have been shown to interact with PrP-sen molecules to form an aggregated complex with increased protease-resistance. See, e.g., Kaneko et al., Proc. Natl. Acad. Sci. USA 92:11160-11164, 1995; Kaneko et al., J. Mol. Biol. 270:574-586, 1997.
- amyloid beta protein In AD, CAA, and CVD, the main amyloid component is the amyloid beta protein (A ⁇ ).
- a ⁇ protein which is generated from the amyloid beta precursor protein (APP) by the action of two putative secretases, is present at low levels in the normal CNS and blood. Because APP can be cleaved at several site, the naturally-occurring A ⁇ protein is not a homogenous product.
- a ⁇ 1-40 also referred to as A ⁇ 40
- a ⁇ 1-42 also referred to as A ⁇ 42
- a ⁇ 40 and A ⁇ 42 have identical amino acid sequences, with A ⁇ 42 having two additional residues (Ile and Ala) and its C terminus. Although A ⁇ 40 is more abundant, A ⁇ 42 is the more fibrillogenic and is the major component of the two in amyloid deposits of both A ⁇ and CAA. See, e.g., Wurth et al., J. Mol. Biol. 319: 1279-90 (2002).
- Elevated plasma levels of A ⁇ 42 have been associated with A ⁇ , and with increased risk for A ⁇ . Also, the magnitude of the ratio of A ⁇ 42/A ⁇ 40 levels has been shown to have clinical significance for AD, CAA, and other conditions, such as late-life depression (LLMD). See, e.g., Pomara et al. Neurochem. Res. (2006). Plasma levels of A ⁇ 42 and A ⁇ 40 are typically determined using monoclonal antibodies.
- AD Alzheimer's disease
- a ⁇ 42 fibril formation Some molecules present in CSF have been reported to inhibit A ⁇ 42 fibril formation, such as apolipoprotein E (ApoE), apolipoprotein J (ApoJ), serum amyloid P component (SAP), transthyretin (TTR), antichymostrypsin (ACT), and ⁇ -macroglobulin (cOM), although apoE and ACT also have been reported to promote the assembly of A ⁇ 42 into filaments in vitro.
- Human anti-A ⁇ antibodies also have been shown to block A ⁇ 42 fibril formation and prevent A ⁇ 42 induced neurotoxicity in vitro. See, e.g., Ono et al., Neurobiol. Disease 20: 233-40 (2005).
- nucleation-dependent model The mechanism of A ⁇ fibril formation in vitro has been explained by a nucleation-dependent model, with two phases.
- the first phase nucleus formation, involves the association of monomers and is believed to be a thermodynamically unfavorable, rate-limiting step in fibril formation.
- the next phase, extension involves the addition of monomers to the ends of existing fibrils, and is more thermodynamically favored. See, e.g., Ono et al., supra.
- ADDLs A ⁇ oligomeric ligands
- TTR Human transthyretin
- SSA senile systemic amyloidosis
- FAP familial amyloid polyneuropathy
- amyloid fibrils in the brains of Alzheimer's and prion disease patients are known to result in the inflammatory activation of certain cells.
- primary microglial cultures and the THP-1 monocytic cell line are stimulated by fibrillar ⁇ -amyloid and prion peptides to activate identical tyrosine kinase-dependent inflammatory signal transduction cascades.
- the signaling response elicited by p-amyloid and prion fibrils leads to the production of neurotoxic products, which are in part responsible for the neurodegeneration. See, e.g., Combs et al., J. Neurosci. 19:928-939, 1999.
- Detection methods for conformationally altered proteins associated with the aforementioned disorders are also inadequate in that, like the previously mentioned prion detection techniques, they often require post-mortem tissue sampling. Also, antibody-based assays may not be effective because antibodies may not distinguish the disease-causing forms of the protein from normal protein.
- the present invention provides methods, probes, agents and kits that may be used to diagnose and treat a variety of diseases associated with proteins in a specific structural state.
- the agents and methods also may be used to identify other agents useful for treating or preventing such diseases.
- a method for identifying a target protein present in a specific state of self-aggregation in a sample comprising (a) contacting the sample with a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein in a specific state of self-aggregation; and (b) detecting any binding between the peptide probe and any target protein present in the specific state of self-aggregation, thereby identifying any target protein present in the specific state of self-aggregation.
- the peptide probe preferentially binds to the target protein in a specific state of self-aggregation selected from the group consisting of monomers, soluble oligomers, and insoluble self-aggregates. In some embodiments, the peptide probe preferentially binds to the target protein in a specific state of self-aggregation selected from the group consisting of insoluble amorphous self-aggregates, protofibrils, and fibrils.
- the target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or A ⁇ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof ⁇ 2 -microglobulin, ⁇ -synuclein, rhodopsin, ⁇ 1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein
- the peptide probe further comprises a detectable label. In some embodiments, the peptide probe is immobilized on a solid support.
- the peptide probe comprises an amino acid sequence selected from SEQ ID NO:36 and SEQ ID NO:45.
- an in vivo method for identifying a target protein present in a patient in a specific state of self-aggregation comprising (a) administering to the patient a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein in the specific state of self-aggregation and wherein the peptide probe is labeled with a detecable label; and (b) scanning the subject for labeled peptide probe localized at target protein present in the patient, thereby identifying target protein present in the patient in the specific state of self-aggregation.
- the peptide probe preferentially binds to to the target protein in a specific state of self-aggregation selected from the group consisting of monomers, soluble oligomers, and insoluble self-aggregates.
- the target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or A ⁇ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof ⁇ 2 -microglobulin, ⁇ -synuclein, rhodopsin, ⁇ 1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein
- a method for preventing the formation of protein aggregates of a target protein comprising contacting the target protein with a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein in a specific state of self-aggregation, thereby preventing the formation of higher order protein aggregates of the target protein.
- the peptide probe preferentially binds to to the target protein in a specific state of self-aggregation selected from the group consisting of monomers, soluble oligomers, and insoluble self-aggregates.
- the target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or A ⁇ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof ⁇ 2 -microglobulin, ⁇ -synuclein, rhodopsin, ⁇ 1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein
- a method of delivering a therapeutic agent to a target protein comprising combining the therapeutic agent with a peptide probe for the target protein and administering the peptide probe-therapeutic agent combination to a patient in need thereof.
- the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation and the peptide probe does not comprise the full-length sequence of the target protein.
- the peptide probe preferentially binds to the target protein in a specific state of self-aggregation, such as monomers, soluble oligomers and insoluble aggregates.
- the therapeutic agent has anti-amyloid activity.
- a method of assessing an agent's ability to inhibit aggregation of a target protein comprising (A) contacting a fusion protein and a test agent, the fusion protein comprising: (i) a peptide probe for the target protein, wherein (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and (ii) a label which generates a signal dependent on the aggregative state of the fusion protein; (B) detecting a signal generated by the label; and (C) correlating the signal with the ability of the agent to inhibit aggregation of the target protein.
- a method of assessing an agent's ability to inhibit aggregation of a target protein comprising (A) contacting the target protein, a fusion protein, and a test agent, the fusion protein comprising (i) a peptide probe for the target protein, wherein (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and (ii) a label which generates a signal dependent on the aggregative state of the fusion protein; (B) detecting a signal generated by the label; and (C) correlating the signal with the ability of the agent to inhibit aggregation of the target protein.
- a method of assessing an agent's ability to inhibit aggregation of a target protein comprising (A) subjecting a fusion protein to conditions that promote aggregation, the fusion protein comprising: (i) a peptide probe for the target protein, wherein (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and (ii) a label which generates a signal dependent on the aggregative state of the fusion protein; (B) detecting a first signal generated by the label; (C) subjecting the fusion protein to conditions that promote aggregation in the presence of a test agent, and detecting
- a method of assessing an agent's ability to inhibit aggregation of a target protein comprising (A) contacting a fusion protein and the target protein, wherein the fusion protein comprises (i) a peptide probe for the target protein, wherein (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and (ii) a label which generates a signal dependent on the aggregative state of the fusion protein; (B) detecting a first signal generated by the label; (C) contacting the fusion protein, the target protein, and a test agent, and detecting a second signal generated by the label; and
- a method of identifying a peptide probe for a target protein that exhibits an increased or decreased tendency to form aggregates relative to a reference peptide probe comprising (A) detecting a first signal generated by a reference fusion protein that comprises (i) a reference peptide probe comprising (a) an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) wherein the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the reference peptide probe does not comprise the full-length sequence of the target protein; and (ii) green fluorescent protein; (B) detecting a second signal generated by a test fusion protein comprising a test peptide probe and green fluorescent protein, wherein the test peptide probe is a mutant of the reference peptide probe that comprises an amino acid insertion, deletion
- a method of identifying a peptide probe specific for a target protein in a specific structural state that falls on a spectrum of structural states ranging from a low end of soluble monomers to a high end of insoluble self-aggregates comprising (A) subjecting a fusion protein to conditions that promote self-aggregation, the fusion protein comprising (i) a peptide probe for the target protein, wherein (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and (ii) green fluorescent protein; (B) detecting a signal generated by the fusion protein; and (C) correlating the intensity of the target protein
- a method for treating a disease associated with a target protein comprising contacting the target protein with a fusion protein comprising (i) a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein, and (ii) a therapeutic agent.
- FIG. 1 illustrates the a-helical monomer and ⁇ -sheet dimer of a TSE conformer, along with various embodiments of the disclosed probes.
- the normal wild-type (wt) form of prion protein (PrP C ) prefers a monomeric state, while the abnormal, disease-causing form (PrP Sc ) prefers the multimeric (dimeric or greater) state.
- FIG. 2 illustrates a diagnostic analysis of a sample containing TSE protein comprised of ⁇ -sheets.
- the top reaction indicates the process in the presence of a misfolded protein in a sample, while the bottom reaction indicates the process in the absence of a misfolded protein in a sample.
- FIG. 3 illustrates a palindromic probe for prion protein.
- FIG. 4 illustrates the GFP fluorescence measurement of Alzheimer probe peptide-GFP fusion (Alz) and Prion probe peptide-GFP fusion (Pri). Measurements were taken after inducing expression and incubating the cells for 3 hours at 37° C. (left graph) or 5 hours at 30° C. (right graph).
- FIG. 5 illustrates the characteristic fluorescence of pyrene-labeled peptide probe monomers (measured at 378 nm) and dimers (measured at 495 nm).
- FIG. 6 illustrates the reactivity of a peptide probe specific for PrP Sc protein with PrP Sc present in thirty fractions obtained from samples from scrapie-infected hamster brain.
- the y-axis shows the relative I D /I M ratios of each fraction.
- the size of the PrP Sc aggregates present in each fraction increases along the x-axis.
- FIG. 7 illustrates the reactivity of a peptide probe specific for PrP Sc with PrP Sc in sera from infected sheep, and its lack of reactivity with sera from normal sheep.
- HP 1 designates a sample from pooled serum of 3-month old healthy sheep
- HP 2 designates a sample from pooled serum of 2-year old healthy sheep
- ln1 designates serum from 18-24 month old scrapie sheep
- ln5 designates serum from a terminal sheep.
- FIG. 8 illustrates the improvement in the signal-to-noise ratio achieved by sonicating samples prior to analysis of the reactivity of a peptide probe specific for PrP Sc with PrP Sc in sera from infected sheep and normal sheep.
- HP 1 designates a sample from pooled serum of 3-month old healthy sheep
- HP 2 designates a sample from pooled serum of 2-year old healthy sheep
- ln1 to “ln4” designate serum from 18-24 month old scrapie sheep
- ln5 designates serum from a terminal sheep.
- FIG. 9 illustrates the reactivity of a peptide probe specific for PrP Sc with PrP Sc present in sheep blood components (buffy coat, serum and plasma).
- FIG. 10 illustrates the flourescense, in a cell-based GFP assay of fusion proteins comprising GFP and a peptide probe specific for A ⁇ (SEQ ID NO:36); A ⁇ 42 (SEQ ID NO:42), or the A ⁇ 42 mutant clone GM6 (SEQ ID NO:44).
- FIG. 11 illustrates the reactivity of a peptide probe specific for A ⁇ (SEQ ID NO:36) with different structural forms of A ⁇ 40 and A ⁇ 42.
- FIG. 11A shows reactivity with A ⁇ 40 and A ⁇ 42 fibers and non-reactivity with A ⁇ 40 nmomers.
- FIG. 11B shows reactivity with A ⁇ 40 and A ⁇ 42 oligomers.
- FIG. 12 illustrates the ability of a peptide probe specific for A ⁇ (SEQ ID NO:36) to detect A ⁇ 40 and A ⁇ 42 in samples of human cerebrospinal fluid (CSF) obtained from Alzheimer's patients.
- FIG. 12A presents the data for each patient, while FIG. 12B presents the average data for each patient group.
- FIG. 13 illustrates the ability of an immobilized peptide probe specific for A ⁇ (SEQ ID NO:36) to detect A ⁇ 40 and A ⁇ 42 in samples of human serum from Alzheimer's patients.
- the present invention provides probes and methods for the detection of proteins in a specific structural state, including misfolded proteins and self-aggregated proteins, such as those associated with disease states, and probes and methods for the treatment of those disease states. More particularly, the present invention provides methods, probes, and kits for detecting proteins in a specific structural state in a sample or in vivo. In some embodiments, the proteins are associated with amyloidogenic diseases. The invention also provides methods, agents, and kits for treating diseases associated with such proteins, and for identifying other agents useful for treating such diseases.
- Some aspects of the invention relate to the diagnosis and treatment of diseases and conditions associated with a specific structural state of a protein, such as a specific conformation or self-aggregative state of a protein.
- a specific structural state of a protein such as a specific conformation or self-aggregative state of a protein.
- Proteins that are associated with human disease when they adopt a specific conformational or self-aggregated state are known in the art. Examples of such diseases includes amyloidogenic diseases.
- the phrase “therapeutically effective amount” shall mean that drug dosage that provides the specific pharmacological response for which the drug is administered in a significant number of subjects in need of such treatment. It is emphasized that a therapeutically effective amount of a drug that is administered to a particular subject in a particular instance will not always be effective in treating the conditions/diseases described herein, even though such dosage is deemed to be a therapeutically effective amount by those of skill in the art.
- amyloidogenic diseases are diseases in which amyloid plaques or amyloid deposits are formed in the body. Amyloid formation is found in a number of disorders, such as diabetes, AD, scrapie, BSE, CJD, chronic wasting disease (CWD), related transmissible spongiform encephalopathies (TSEs), and other diseases disclosed herein.
- the invention is not limited to amyloidogenic diseases, however, and is useful in the diagnosis and treatment of any disease or condition associated with a specific conformation or aggregative state of a protein.
- protein refers to any polymer of two or more individual amino acids (whether or not naturally occurring) linked via a peptide bond, which occurs when the carboxyl carbon atom of the carboxylic acid group bonded to the ⁇ -carbon of one amino acid (or amino acid residue) becomes covalently bound to the amino nitrogen atom of amino group bonded to the ⁇ -carbon of an adjacent amino acid.
- peptide bonds and the atoms comprising them (i.e., ⁇ -carbon atoms, carboxyl carbon atoms and their substituent oxygen atoms, and amino nitrogen atoms and their substituent hydrogen atoms) form the “polypeptide backbone” of the protein.
- polypeptide backbone shall be understood to refer to the amino nitrogen atoms, a-carbon atoms, and carboxyl carbon atoms of the protein, and two or more of these atoms (with or without their substituent atoms) may also be represented as a pseudoatom. Any representation of a polypeptide backbone that may be used in a functional site descriptor as described herein will be understood to be included within the meaning of the term “polypeptide backbone”.
- protein is understood to include the terms “polypeptide” and “peptide” (which, at times, may be used interchangeably herein) within its meaning. Proteins may include infectious proteins or “prions” as disclosed herein. In addition, proteins comprising multiple polypeptide subunits (e.g., DNA polymerase III, RNA polymerase II) or other components (for example, an RNA molecule, as occurs in telomerase) will also be understood to be included within the meaning of “protein” as used herein.
- polypeptide and “peptide” (which, at times, may be used interchangeably herein) within its meaning. Proteins may include infectious proteins or “prions” as disclosed herein. In addition, proteins comprising multiple polypeptide subunits (e.g., DNA polymerase III, RNA polymerase II) or other components (for example, an RNA molecule, as occurs in telomerase) will also be understood to be included within the meaning of “protein” as used herein.
- fragments of proteins and polypeptides are also contemplated and may be referred to herein as “proteins.” Fragments may include at least 5 contiguous amino acids, at least 10 contiguous amino acids, at least 15 contiguous amino acids, at least 20 contiguous amino acids, or at least 25 contiguous amino acids of the full-length protein.
- conformational constraints refers to the presence of a particular protein conformation, for example, an ⁇ -helix, parallel and antiparallel ⁇ -strands, a leucine zipper, a zinc finger, etc.
- conformational constraints may include amino acid sequence information without additional structural information.
- “—C—X—X—C—” is a conformational constraint indicating that two cysteine residues must be separated by two other amino acid residues, the identities of each of which are irrelevant in the context of this particular constraint.
- a “conformational change” is a change from one conformation to another.
- PrP protein is a contraction of the words “protein” and “infection”.
- PrP protein is used interchangeably herein to mean both the infections particle form (“PrP Sc ”) known to cause diseases (such as spongiform encephalopathies) in humans and animals, and the non-infectious form (“PrP C ”) which, under appropriate conditions, is converted to the infectious PrP Sc form.
- PrP Sc infections particle form
- PrP C non-infectious form
- Prion particles are comprised largely, if not exclusively, of PrP Sc molecules encoded by a PrP gene. Prions are distinct from bacteria, viruses, and viroids.
- prions infect animals and cause scrapie, a transmissible, degenerative disease of the nervous system of sheep and goats, as well BSE (or mad cow disease) and feline spongiform encephalopathy of cats.
- BSE mad cow disease
- feline spongiform encephalopathy of cats Four prion diseases known to affect humans are (1) kuru, (2) CJD, (3) GSS, and (4) FFI.
- “prion” includes all forms of prions causing all or any of these diseases or others in any animals used, and in particular in humans and domesticated farm animals.
- PrP gene is used herein to describe genetic material that expresses proteins that include known polymorphisms and pathogenic mutations.
- PrP gene refers generally to any gene of any species that encodes any form of a prion protein.
- the PrP gene may be from any animal, and includes all polymorphisms and mutations thereof, it being recognized that the terms include other such PrP genes that are yet to be discovered.
- the protein expressed by such a gene may assume either a PrP C (non-disease) or PrP Sc (disease) form.
- a ⁇ protein is used herein to refer to all forms of the A ⁇ protein, including AB40 and AB42.
- Recombinant proteins or polypeptides refer to proteins or polypeptides produced by recombinant DNA techniques, i.e., produced from cells, microbial or mammalian, transformed by an exogenous recombinant DNA expression construct encoding the desired protein or polypeptide. Proteins or polypeptides expressed in most bacterial cultures will typically be free of glycan. Proteins or polypeptides expressed in yeast may have a glycosylation pattern different from that expressed in mammalian cells.
- Native or “naturally occurring” proteins or polypeptides refer to proteins or polypeptides recovered from a source occurring in nature.
- a native protein or polypeptide would include post-translational modifications, including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, acylation, and cleavage.
- a DNA or polynucleotide “coding sequence” is a DNA or polynucleotide sequence that is transcribed into mRNA and translated into a polypeptide in a host cell when placed under the control of appropriate regulatory sequences.
- the boundaries of the coding sequence are the start codon at the 5′ N-terminus and the translation stop codon at the 3′ C-terminus.
- a coding sequence can include prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic DNA, and synthetic DNA sequences.
- a transcription termination sequence will usually be located 3′ to the coding sequence.
- DNA or polynucleotide sequence is a heteropolymer of deoxyribonucleotides (bases adenine, guanine, thymine, cytosine).
- DNA or polynucleotide sequences encoding the proteins or polypeptides of this invention can be assembled from synthetic cDNA-derived DNA fragments and short oligonucleotide linkers to provide a synthetic gene that is capable of being expressed in a recombinant DNA expression vector.
- sequences may be described herein according to the normal convention of providing only the sequence in the 5′ to 3′ direction along the non-transcribed strand of cDNA.
- “Recombinant expression vector or plasmid” is a replicable DNA vector or plasmid construct used either to amplify or to express DNA encoding the proteins or polypeptides of the present invention.
- An expression vector or plasmid contains DNA control sequences and a coding sequence.
- DNA control sequences include promoter sequences, ribosome binding sites, polyadenylation signals, transcription termination sequences, upstream regulatory domains, and enhancers.
- Recombinant expression systems as defined herein will express the proteins or polypeptides of the invention upon induction of the regulatory elements.
- Transformed host cells refer to cells that have been transformed and transfected with exogenous DNA.
- Exogenous DNA may or may not be integrated (i.e., covalently linked) to chromosomal DNA making up the genome of the host cell.
- the exogenous DNA may be maintained on an episomal element, such as a plasmid, or stably integrated into chromosomal DNA.
- a stably transformed cell is one which is the exogenous DNA has become integrated into the chromosome. This stability is demonstrated by the ability of the eukaryotic cell lines or clones to produce via replication a population of daughter cells containing the exogenous DNA.
- polypeptides of this invention mean analogs, fragments, derivatives, and variants of such polypeptides that retain substantially similar functional activity or substantially the same biological function or activity as the reference polypeptides, as described herein.
- an “analog” includes a pro-polypeptide that includes within it, the amino acid sequence of a polypeptide of this invention.
- a “fragment” is a portion of a polypeptide of the present invention that retains substantially similar functional activity or substantially the same biological function or activity as the polypeptide, as shown in in vitro assays disclosed herein.
- a “derivative” includes all modifications to a polypeptide of this invention that substantially preserve the functions disclosed herein and include additional structure and attendant function, e.g., PEGylated polypeptides or albumin fused polypeptides, which have greater half-life.
- a “variant” includes polypeptides having an amino acid sequence sufficiently similar to the amino acid sequence of the polypeptides of this invention.
- the term “sufficiently similar’ means a first amino acid sequence that contains a sufficient or minimum number of identical or equivalent amino acid residues relative to a second amino acid sequence such that the first and second amino acid sequences have a common structural domain and/or common functional activity.
- amino acid sequences that comprise a common structural domain that is at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 100%, identical are defined herein as sufficiently similar.
- variants will be sufficiently similar to the amino acid sequence of the preferred polypeptides of this invention.
- Variants include variants of polypeptides encoded by a polynucleotide that hybridizes to a polynucleotide of this invention, or a complement thereof, under stringent conditions. Such variants generally retain the functional activity of the polypeptides of this invention. Variants include polypeptides that differ in amino acid sequence due to mutagenesis.
- substantially similar functional activity and “substantially the same biological function or activity” each means that the degree of biological activity is within about 50% to 100% or more, within 80% to 100% or more, or within about 90% to 100% or more, of that biological activity demonstrated by the polypeptide to which it is being compared when the biological activity of each polypeptide is determined by the same procedure or assay.
- Similarity between two polypeptides is determined by comparing the amino acid sequence of one polypeptide to the sequence of a second polypeptide.
- An amino acid of one polypeptide is similar to the corresponding amino acid of a second polypeptide if it is identical or a conservative amino acid substitution.
- Conservative substitutions include those described in Dayhoff, M. O., ed., The Atlas of Protein Sequence and Structure 5, National Biomedical Research Foundation, Washington, D.C. (1978), and in Argos, P. (1989) EMBO J. 8:779-785.
- amino acids belonging to one of the following groups represent conservative changes or substitutions:
- Patient means any mammal, including humans and domesticated animals, such as cats, dogs, swine, cattle, sheep, goats, horses, rabbits, and the like.
- a typical patient may be at risk of a disease associated with a misfolded protein, may be suspected of suffering from such a disease, or may be desirous of determining risk or status with respect to a disease associated with a misfolded protein.
- proteins exhibit a structural change from their soluble structure (comprising, for example, predominantly ⁇ -helix or random coil conformations) to more insoluble structures (comprising, for example, ⁇ -sheet conformations) that form self-aggregates associated with loss of function.
- insoluble structures comprising, for example, predominantly ⁇ -helix or random coil conformations
- insoluble structures comprising, for example, ⁇ -sheet conformations
- diseases are associated with insoluble forms of proteins that are not harmful in their soluble forms.
- one aspect of the present invention provides methods and probes for the detection of proteins in a specific structural state (a “target structural state”), such as a specific conformation or state of self-aggregation.
- a target structural state includes any three dimensional structure of a protein, including a protein's conformation and/or a protein's state of self-aggregation.
- the target structural state is associated with a disease while a different structural state is not associated with a disease.
- the target structural state may cause the disease, may be a factor in a symptom of the disease, may appear in a sample or in vivo as a result of other factors, or may otherwise be associated with the disease.
- the protein has the same amino acid sequence regardless of its structural state, and can adopt at least two different structural states, such as a disease-associated state and a non-disease-associated state.
- FIG. 1 illustrates both the ⁇ -helical monomer and the ⁇ -sheet dimer forms of a TSE conformer.
- the normal wild-type (wt) form of prion protein (PrP C ) prefers a monomeric state, while the abnormal, disease-causing form (PrP Sc ) more readily takes on a multimeric state.
- Alzheimer's Disease A ⁇ peptide, ⁇ 1-antichymotrypsin, tau, non-A ⁇ component, presenilin 1, presenilin 2, apoE); prion diseases, CJD, scrapie, and BSE (PrP Sc ); ALS (SOD and neurofilament); Pick's disease (Pick body); Parkinson's disease ( ⁇ -synuclein in Lewy bodies); frontotemporal dementia (tau in fibrils); diabetes type II (amylin); multiple myeloma-plasma cell dyscrasias (IgGL-chain); familial amyloidotic polyneuropathy (transthyretin); medullary carcinoma of thyroid (procalcitonin); chronic renal failure ( ⁇ 2 -microglobulin); congestive heart failure (atrial natriuretic factor); senile cardiac and systemic amyloidosis
- self-aggregated protein and/or protein fibrils could be a target structural state for detection of the disease, while soluble and/or non-aggregated protein could be a target structural state to confirm absence of the disease, or absence of an advanced stage of the disease.
- proteins identified in the preceding paragraph form self-aggregates and/or protein fibrils that are associated with disease states.
- amyloid islet polypeptide precursor protein amyloid beta protein or A ⁇ peptide (e.g., A ⁇ 42 and A ⁇ 40), serum amyloid A, insulin (e.g., which forms insulin-related amyloid), amylin, non-amyloid beta component, prions, hemoglobin (e.g.
- sickle cell anemia variant immunoglobulins or fragments thereof (e.g., IgG L-chain), ⁇ 2 -microglobulin, ⁇ -synuclein, rhodopsin, ⁇ 1-antichymotrypsin, cystallins, tau, p53, presenilins (e.g., presenilin 1 and presenilin 2), low-density lipoprotein receptor, apolipoproteins (e.g., apoA and apo E), superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein (i.e., Huntingtin), fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein. Insoluble proteins generally exhibit
- the A ⁇ 40 or A ⁇ 42 protein could be a target protein, and any of their states could be a target structural state, such as a state of self-aggregation such as soluble monomers, soluble oligomers, aggregates/ADDLs, insoluble amorphous aggregates, protofibrils, and fibrils.
- a target structural state such as a state of self-aggregation such as soluble monomers, soluble oligomers, aggregates/ADDLs, insoluble amorphous aggregates, protofibrils, and fibrils.
- the PrP Sc form of the PrP protein could be a target structural state for detection of the disease
- the PrP C form of the PrP protein could be a target structural state to confirm absence of the disease, or absence of an advanced stage of the disease.
- self-aggregates of the PrP Sc form could be a target structural state for detection of the disease.
- the most infective form of PrP Sc may be a small soluble aggregate, rather than the mature fibrils formed in the brain in late stages of the disease.
- the peptide probe includes an amino acid sequence corresponding to a region of the target protein which undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and the peptide probe itself undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation.
- the peptide probe may undergo a conformational shift when contacted with a target protein that is in the beta-sheet conformation.
- the peptide probes also are useful for identifying therapeutic agents and as therapeutic agents themselves.
- the probe comprises an amino acid sequence that is homologous or identical to a target protein, or to a region of the target protein.
- “Homology”, “homologs of”, “homologous”, “identity”, or “similarity” refers to sequence similarity between two polypeptides, with identity being a more strict comparison. Homology and identity may each be determined by comparing a position in each sequence that may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same amino acid, then the molecules are identical at that position. A degree of identity of amino acid sequences is a function of the number of identical amino acids at positions shared by the amino acid sequences.
- a degree of homology or similarity of amino acid sequences is a function of the number of amino acids, i.e., structurally related, at positions shared by the amino acid sequences.
- An “unrelated” or “non-homologous” sequence shares 10% or less identity, with one of the sequences described herein.
- Related sequences share more than 10% sequence identity, such as at least about 15% sequence identity, at least about 20% sequence identity, at least about 30% sequence identity, at least about 40% sequence identity, at least about 50% sequence identity, at least about 60% sequence identity, at least about 70% sequence identity, at least about 80% sequence identity, at least about 90% sequence identity, at least about 95% sequence identity, or at least about 99% sequence identity.
- percent identity refers to sequence identity between two amino acid sequences. Identity may be determined by comparing a position in each sequence that is aligned for purposes of comparison. When an equivalent position in one compared sequences is occupied by the same amino acid in the other at the same position, then the molecules are identical at that position; when the equivalent site occupied by the same or a similar amino acid residue (e.g., similar in stearic and/or electronic nature), then the molecules may be referred to as homologous (similar) at that position.
- Expression as a percentage of homology, similarity, or identity refers to a function of the number of identical or similar amino acids at positions shared by the compared sequences.
- FASTA FASTA
- BLAST BLAST
- ENTREZ is available through the National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Md.).
- percent identity of two sequences may be determined by the GCG program with a gap weight of 1, e.g., each amino acid gap is weighted as if it were a single amino acid mismatch between the two sequences. Other techniques for determining sequence identity are well known and described in the art.
- homolog of an insoluble protein includes all amino acid sequences that are encoded by a homolog of an insoluble protein gene, and all amino acid sequences that are equivalent or homologous to such sequence. Therefore, “homolog of an insoluble protein” includes proteins that are scored as hits in the Pfam family.
- the amino acid sequence of the protein may be searched against one of several databases (SwissProt, PIR, for example) using various default parameters.
- the hmmsf program which is available as part of the HM_MER package of search programs, is a family-specific default program for MILPAT0063 and a score of 15 is the default threshold score for determining a hit.
- the threshold score for determining a hit may be lowered (e.g., to 8 bits).
- a description of the Pfam database may be found in Sonham et al., Proteins 28(3):405-420, 1997, and a detailed description of HMMs may be found, for example, in Gribskov et al., Meth. Enzymol. 183:146-159, 1990; Gribskov et al., Proc. Natl. Acad. Sci.
- the probes disclosed herein may be used to detect protein present in a specific structural state in a sample or in vivo, e.g., a target structural state.
- the probes comprise amino acid sequences that are based on (e.g., homologous or identical to) at least a region of the amino acid sequence of the target protein.
- Such probes also are referred to as “corresponding” to a region of the amino acid sequence of the target protein.
- the amino acid sequence of the probe may be designed from the target protein based on existing information in sequence databases or, alternatively, may be readily determined experimentally.
- the probe may comprise a sequence based on any region of the target protein, in one embodiment, the sequence is based on a region of the target protein that is involved in the target structural state.
- the probes comprise amino acid sequences that are similar to (e.g., homologous to), or identical to, a region of the amino acid sequence of the target protein that undergoes a structural shift, such as a shift from an ⁇ -helix/random coil conformation to a ⁇ -sheet conformation.
- a probe may comprise a minimum number of contiguous amino acids from the target protein, such as at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, at least about 10, at least about 11, at least about 12, at least about 13, at least about 14, at least about 15, at least about 16, at least about 17, at least about 18, at least about 19, at least about 20, at least about 21, at least about 22, at least about 23, at least about 24, or at least about 25 contiguous amino acids from the target protein sequence, or any range between these numbers, such as about 10 to about 25 contiguous amino acids from the target protein sequence.
- the probes themselves may be at least about 5 amino acids units in length and may be up to about 300- about 400 amino acid units in length (-mer) or more, or any size in between the range of about 5 up to about 400 amino acids, such as about 10 amino acids to about 50 amino acids in length.
- probes are about 15 amino acids in length to about 100 amino acids in length.
- probes range from about 20 amino acids in length to about 40 amino acids in length.
- probes range from about 17 amino acids in length to about 34 amino acids in length.
- the length of a given probe may influence the probe's ability to complex and produce ⁇ -sheet formation with the target protein, and can be selected by the skilled artisan guided by the teachings herein.
- the invention also includes probes comprising amino acid sequences based on about 5 or more contiguous residues of the amino acid sequence of the target protein, with one or more residues added, deleted, or substituted by methods known in the art.
- the probes undergo a structural change similar to that of the target protein and, for example, may exist in either an ⁇ -helix/random coil conformation or a ⁇ -sheet conformation.
- the probes exist in an ⁇ -helix/random coil conformation in solution, and undergo a conformational change to a ⁇ -sheet conformation when contacted with target protein in a ⁇ -sheet conformation.
- the probe comprises a peptide or peptidomimetic of at least five, or ten, or more, amino acid residues that exhibit a random coil or ⁇ -helical conformation in solution.
- a peptide or peptidomimetic probe solvent may be aqueous and have a pH of between about 4 and about 10, such as between about 5 and about 8, and may have an ionic strength of between about 0.05 and about 0.5 (when typically prepared with a chloride salt, such as sodium chloride or potassium chloride).
- the solvent may also comprise a percentage of a water-miscible organic material, such as trifluoroethanol in amounts between about 30% to about 70% by volume, such as between about 45% to about 60%.
- the solvent may be prepared with a suitable buffering system such as acetate/acetic acid, Tris, or phosphate.
- Probes may be designed under the following constraints. Only a few kcal difference separate a population of a probe in an initial conformation state (e.g., alpha-helix) from a population the probe predominantly in the transformed conformational state (e.g., beta-sheet). The transformation from one conformational state to the other is provided by the driving force due either to the Kd of association between the probe molecule and its natural associate to form ⁇ -sheet complex, or to changes in the electrostatic interactions between the molecules (for example, changes caused by lowering the ionic strength of the solution). If metal ions, such as Al, or the binding of another ligand are involved, other electrostatic or stearic effects could contribute.
- an initial conformation state e.g., alpha-helix
- beta-sheet transformed conformational state
- the transformation from one conformational state to the other is provided by the driving force due either to the Kd of association between the probe molecule and its natural associate to form ⁇ -sheet complex, or to changes in the electrostatic interactions between the molecules
- the size of the probe peptide may vary, but should be of sufficient length to have “reasonably” well defined secondary structure under detection conditions and to have sufficient recognitional specificity for the target selected, such as a prion protein.
- the probe peptide should also accommodate single-site mutations to be generally applicable to mutated proteins or strains, recognizing that these changes and/or heterogeneities affect the thermodynamic stability of the molecule.
- the probe must be non-contagious to the patient population, whether that population is a human patient population, a domesticated animal population, or other mammalian population.
- a probe has a palindromic structure with two amino acid sequences corresponding to the amino sequence of the target protein.
- the term “palindromic” refers to the organization of a given probe sequence such that it comprises first and second peptide sequences corresponding to a portion of the target protein involved in the structural shift, which peptide sequences are presented in a palindromic manner, i.e., from the carboxy end to the amino end (or amino end to carboxy end) in the first peptide sequence, and from the amino end to the carboxy end (or carboxy end to amino end) in the second peptide sequence.
- the first and second peptide sequences in the palindromic probe do not have to be identical in length.
- the first and second peptide sequences are at least roughly equivalent in length. In some embodiments, the first and second peptide sequences comprise the same amino acid sequence. In some embodiments, the two peptide sequences (the “arms” of the palindromic probe) are not more than 15, not more than 10, or not more than 5 amino acids in length. In other embodiments, each arm comprises from about 10 to about 25 amino acids, such as from about 14 to about 20 amino acids.
- the first and second peptide sequences within a palindromic probe are separated by a linker, such as a peptide linker comprising between about 1 and about 5 amino acids, or between about 1 and about 3 amino acids, and which may comprise at least one proline amino acid, or may comprise primarily proline amino acids.
- a linker such as a peptide linker comprising between about 1 and about 5 amino acids, or between about 1 and about 3 amino acids, and which may comprise at least one proline amino acid, or may comprise primarily proline amino acids.
- Suitable peptide probes are described in U.S. 2006-057671, which is incorporated herein by reference in its entirety.
- FIG. 3 presents an exemplary palindromic 33-mer probe. Palindromic probes may be particularly useful for detecting prion proteins.
- probes may comprise a hydrophobic amino acid sequence that is based on portion of the amino acid sequence of the target protein (such as the portion of the target amino acid sequence that undergoes a structural shift), that may vary in length from about 1 amino acid to about 20 or more amino acids, such as about 2- about 10 amino acids in length, and that appears at or near one of the two ends of the probe.
- hydrophobic amino acid sequences may appear at the ends of each the two peptide arms of the probe.
- the probe also may include a synthetic hydrophobic amino acid sequence (i.e., not natural to the peptide sequence of the target protein) at at least one end of the probe and, in the case of palindromic probes, at or near one or both ends of the probe, which may vary in length from as few as about 1 amino acid to about 20 or more amino acids, such as about 2- about 10 amino acids in length.
- Probes may include N-terminal amino acids residues, C-terminal amino acids residues, or both, which are suitable for use in linking a lable to the probe (e.g., Lys, which includes a free amino group).
- a desired peptide sequence in a target protein comprises the sequence, reading from amino end to carboxy end, QRSTVVARLKAAAV (SEQ ID NO:15) (where AAAV (SEQ ID NO:30) is a hydrophobic amino acid sequence)
- the palindrome may comprise a first peptide sequence which is VAAAKLRAVVTSRQ (SEQ ID NO:31) and a second peptide sequence which is QRSTVVARLKAAAV (SEQ ID NO:15) (or a close variation to that sequence), with the two sequences separated by a linker comprising from about 1 to about 5 amino acids, with at least one of those amino acids, and preferably most, if not all, of those amino acids, being proline amino acids.
- a suitable probe for this target protein therefore could be:
- VAAAKLRAVVTSRQPPPPQRSTVVARLKAAAV (SEQ ID NO: 28) (hypothetical palindromic probe).
- a probe may be specific for any target protein.
- the target protein may be a prion protein, such as PrP C , PrP Sc , or a mixture thereof.
- the target protein may include a protein of SEQ ID NO:13 (Human Prion Protein, Accession PO4156) or a fragment thereof.
- a “fragment thereof” may include at least about 5 contiguous amino acids up to the full length of the polypeptide sequence, or any number of contiguous amino acids in between the range of about 5 up to the full length protein.
- the probe comprises the full length protein; in other embodiments the probe does not comprise the full length protein.
- the probe can be at least about 10 contiguous amino acids, or at least about 15 amino acids of the full-length sequence, or may include a sequence with at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to those contiguous residues.
- a target protein also may be an amyloid beta protein, such as A ⁇ 42 (SEQ ID NO:32) or A ⁇ 40 (SEQ ID NO:4).
- a peptide probe of the fusion protein may include a sequence having at least about 15% sequence identity to SEQ ID NO:32 or SEQ ID NO:4, or fragments thereof.
- the peptide probe may include at least about 5 contiguous amino acids up to the full length of the protein (SEQ ID NO:32 or SEQ ID NO:4), or any number of contiguous amino acids from SEQ ID NO:32 or SEQ ID NO:4 in between these size ranges.
- the probe can be at least about 10 or at least about 15 contiguous amino acid residues of SEQ ID NO:32 or SEQ ID NO:4, or may include a sequence with at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to those contiguous residues.
- the peptide probe may include mutations in A ⁇ 42 (SEQ ID NO:32) or A ⁇ 40 (SEQ ID NO:4) as disclosed in the art (Wurth et al., J. Molec. Biol. 319:1279-1290 (2002); Kim et al., J. Biol. Chem. 41:35069-35076 (2005), which are incorporated herein by reference in their entireties).
- the peptide probe is specific for one of A ⁇ 42 or A ⁇ 40.
- the probe preferentially binds to one of A ⁇ 42 or A ⁇ 40 and thus is useful for distinguishing samples comprising A ⁇ 42 from those comprising A ⁇ 40, or for qualitatively assessing the relative amounts of A ⁇ 42 and A ⁇ 40 in a sample, or for quantitating the amount(s) of A ⁇ 42 and/or A ⁇ 40 in a sample.
- Such peptide probes can be used in similar in vivo methods, to detect and/or distinguish A ⁇ 42 and A ⁇ 40 in vivo.
- a target protein also may be amyloid islet polypeptide precursor protein.
- the peptide probe for such a target protein may include SEQ ID NO:11, a sequence having at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to SEQ ID NO:11, or fragments thereof.
- the peptide probe of the fusion protein may comprise at least about 5 contiguous amino acid residues up to the full length of SEQ ID NO:11, or any number of contiguous amino acids between these two ranges.
- the peptide probe of the fusion protein may comprise at least about 10 or at least about 15 contiguous amino acid residues of SEQ ID NO:11, or may comprise a sequence with at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to those contiguous residues
- a target protein also may be transthyretin protein.
- a peptide probe for such a target protein may include SEQ ID NO:26, a sequence having at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to SEQ ID NO:26, or fragments thereof.
- the peptide probe of the fusion protein may comprise at least about 5 contiguous amino acid residues up to the full length of SEQ ID NO:26, or any number of contiguous amino acids in between these two ranges.
- the peptide probe may comprise at least about 10 or at least about 15 contiguous amino acid residues of SEQ ID NO:26 or at least about 5 or at least about 10 amino acids of amino acid residues 11-19 of SEQ ID NO:26, or may include a sequence with at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%
- a target protein also may be cystatin C protein.
- a peptide probe for such a target protein may include SEQ ID NO:17, a sequence having at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to SEQ ID NO:17, or fragments thereof.
- the peptide probe of the fusion protein may comprise at least about 5 contiguous amino acid residues up to the full length of SEQ ID NO:17, or any number of contiguous amino acids in between these two ranges.
- the peptide probe comprises at least about 10 or at least about 15 contiguous amino acid residues of SEQ ID NO:17, or the peptide probe may comprise a sequence with at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to those contiguous residues
- a target protein may be Huntington's disease protein or “Huntingtin.”
- a peptide probe for such a target protein may include SEQ ID NO:19, a sequence having at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to SEQ ID NO:19, or fragments thereof.
- the peptide probe of the fusion protein may comprise at least about 5 contiguous amino acid residues up to the full length of SEQ ID NO:19, or any number of contiguous amino acids in between these two ranges.
- the peptide probe comprises at least about 10 or at least about 15 contiguous amino acid residues of SEQ ID NO:19, or may include a sequence with at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to those contiguous residues.
- a peptide probe may have an amino acid sequence that is equivalent to the amino acid sequence of a target protein, or fragment thereof.
- “Equivalent” refers to a protein having an amino acid sequence that is similar to the amino acid sequence of the protein to be analyzed. In some embodiments, an “equivalent” has at least one, but fewer than about 5 (e.g., 3 or fewer) differences in the amino acid sequence, such as by way of substitutions, additions, or deletions.
- an “equivalent” has at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to the target protein sequence or fragment thereof.
- an “equivalent” may include one or more “conservative amino acid substitutions” which are substitution in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
- Families of amino acid residues having similar side chains include those with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine), and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
- basic side chains e.g., lysine, arginine, histidine
- acidic side chains e.g., aspartic acid, glutamic acid
- Peptide probes may be synthesized chemically or by using recombinant DNA methodology.
- a peptide probe may be synthesized chemically by performing various solid-phase techniques (Roberge et al., Science 269:202 204 (1995)) and automated synthesis may be achieved, for example, using peptide synthesizers known in the art (e.g., ABI 431A Peptide Synthesizer, Perkin Elmer, Palo Alto, Calif.).
- a newly synthesized peptide may be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, Proteins, Structures and Molecular Principles (1983)) or other comparable techniques available in the art.
- the composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure).
- a label or reporter may be chemically coupled to the synthesized peptide probe, as discussed in more detail below.
- the nucleotide sequences encoding the polypeptide, or functional equivalents may be inserted into appropriate expression vector, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence.
- appropriate expression vector i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence.
- Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding a polypeptide of interest and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described in Sambrook et al., Molecular Cloning, A Laboratory Manual (1989), and Ausubel et al., Current Protocols in Molecular Biology (1989).
- a variety of expression vector/host systems may be utilized to contain and express polynucleotide sequences. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
- microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors
- yeast transformed with yeast expression vectors insect cell systems infected with virus expression vectors (e.g., baculovirus)
- plant cell systems transformed with virus expression vectors e.g., cauliflower mosaic virus, CaMV; tobacco mosaic
- a restriction fragment containing a DNA sequence that encodes the peptide probe may be cloned into an appropriate recombinant plasmid containing an origin of replication that functions in the host cell and an appropriate selectable marker.
- the plasmid may include a promoter for inducible expression of the peptide probe (e.g., pTrc (Amann et al., (1988) Gene 69:301 315) and pET11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif.
- the recombinant plasmid may be introduced into the host cell by, for example, electroporation and cells containing the recombinant plasmid may be identified by selection for the marker on the plasmid. Expression of the peptide probe may be induced and detected in the host cell using an assay specific for the peptide probe.
- a suitable host cell for expression of a peptide probe may be any prokaryotic or eukaryotic cell (e.g., bacterial cells such as E. coli or B. subtilis , insect cells (baculovirus), yeast, or mammalian cells such as Chinese hamster ovary cell (CHO)).
- the DNA that encodes the peptide may be optimized for expression in the host cell.
- the DNA may include codons for one or more amino acids that are predominant in the host cell relative to other codons for the same amino acid.
- Alpha-helix or random coil probes i.e., probes that exhibit ⁇ -helix or random coil conformation in solution
- Alpha-helix or random coil probes may include the following:
- a palindromic 33-mer comprising amino acid sequences that are identical to amino acids 122-104 and 109-122 of the PrP Sc protein (SEQ ID NO:13 and 14) (SwissProt PO 4156 ; Pfam ID Prion PfD0377 & 03991): VVAGAAAAGAVHKLNTKPKLKHVAGAAAAGAVV (SEQ ID NO:29) (murine); VVAGAAAAGAMHKMNTKPKMKHMAGAAAAGAVV (SEQ ID NO:1) (human).
- a C-terminal lysine may be added to the palindromic 33-mer to form a 34-mer (e.g., VVAGAAAAGAMHKMNTKPKMKHMAGAAAAGAVVK (SEQ ID NO:33) and VVAGAAAAGAVHKLNTKPKLKHVAGAAAAGAVVK (SEQ ID NO:34)).
- the C-terminal lysine may be suitable for use in linking the probe to a suitable lable (e.g., pyrene).
- a palindromic 33-mer comprising amino acid sequences that are equivalent to amino acids 122-104 and 109-122 of the PrP Sc protein (SEQ ID NO:13 and 14) (SwissProt P04156; Pfam ID Prion Pf00377 & 03991).
- a palindromic 33-mer comprising amino acid sequences that are between about 70% to about 90% identical to amino acids 122-104 and 109-122 of the PrP Sc protein (SEQ ID NO:13 and 14) (SwissProt P04156; Pfam ID Prion Pf00377 & 03991).
- a probe comprising amino acid sequences that include at least 10 contiguous amino acid residues of amino acids 104-122 of the human PrP Sc or amino acids 103-121 of the murine PrP Sc protein (SEQ ID NO:13 and 14) (SwissProt P04156; Pfam ID prion PF00377 & 03991) Human Prion Protein (Accession P04156).
- a probe comprising the amino acid sequence
- a palindromic 33-mer comprising the amino acid sequence VVAGAAAAGAMHKM NTKPK MKHMAGAAAAGAVV (SEQ ID NO:40) (linker sequence for the two arms of the palindrome underlined).
- a palindromic 33-mer comprising the amino acid sequence VVAGAAAAGAMHKM KPKTN MKHMAGAAAAGAVV (SEQ ID NO:41) (linker sequence for the two arms of the palindrome underlined).
- a palindromic 33-mer comprising the amino acid sequence VVAGAAAAGAVHKM KPKTN MKHVAGAAAAGAVV (SEQ ID NO:42) (linker sequence for the two arms of the palindrome underlined).
- a probe comprising amino acid sequences that are identical to amino acids 1-40 of the A ⁇ peptide (Nref00111747; human): DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV (SEQ ID NO:4).
- a probe comprising amino acid sequences that are equivalent to amino acids 1-40 of the A ⁇ peptide (Nref00111747; human) (SEQ ID NO:4).
- a probe comprising amino acid sequences that are between about 70% to about 90% identical to amino acids 1-40 of the A ⁇ peptide (Nref001 11747; human) (SEQ ID NO:4).
- a probe comprising amino acid sequences that are identical to amino acids 11-34 of the A ⁇ peptide (Nref00111747; human):
- a probe comprising amino acid sequences that are identical to amino acids 11-34 of the A ⁇ peptide (Nref00111747; human), but with residue H13 substituted with R to reduce metal ion interactions and to increase the solubility of the peptide:
- a probe comprising amino acid sequences that are identical to amino acids 25-35 of the A ⁇ peptide (Nref0011747; human): GSNKGAIIGLM (SEQ ID NO:7).
- a probe comprising amino acid sequences that are identical to amino acids 17-35 of the A ⁇ peptide (Nref0011747; human): LVFFAEDVGSNKGAIIGLM (SEQ ID NO:35).
- the probe may include an additional N-terminal lysine (K) KLVFFAEDVGSNKGAIIGLM (SEQ ID NO:36), a C-terminal lysine (K) LVFFAEDVGSNKGAIIGLMK (SEQ ID NO:37), or both KLVFFAEDVGSNKGAIIGLMK (SEQ ID NO:38).
- a probe comprising amino acid sequences that are homologous to amino acids 104-122 or wild-type (wt) TSE (human Nref00130350):
- a probe comprising amino acid squences that are equivalent to amino acids 104-122 of wild-type (wt) TSE (human Nref00130350) (SEQ ID NO:10).
- a probe comprising amino acid sequences that are between about 70% to about 90% identical to amino acid sequences 104-122 of wild-type (wt) TSE (human Nref130130350) (SEQ ID NO:10).
- a probe comprising amino acid sequences that are identical to at least 10 contiguous amino acid residues within the sequence corresponding to amino acids 1-38 of the human islet amyloid polypeptide precursor (amylin) protein (Accession # NP — 000406; human) (SEQ ID NO:11).
- a probe comprising amino acid sequences which include at least 10 contiguous amino acid residues of amino acids 235-269 (emphasized below by double underlining) of the human plasma gelsolin (P06396; Muary et al., FEBS Lett. 260(1):85-87, 1990):
- a probe comprising amino acid sequences that include at least 10 contiguous amino acid residues of the amyloid forming region (amino acids 26-147; emphasized by double underlining below) of the cystatin C protein sequence, as depicted below and reported by Levy et al., J. Exp. Med. 169(5):1771-1778, 1989 (P01034).
- An appropriate probe is any portion thereof of at least 10 amino acids. Numerous probes may be positioned accordingly.
- a probe comprising amino acid sequences that include between 10 and 23, inclusive, contiguous glutamine resides of oligo or polyglutamine from residues 18-40 (emphasized by double underlining below) of the Huntingtin protein (Huntington's disease protein) protein sequence depicted below:
- a probe comprising amino acid sequences that include at least 6 contiguous amino acid residues of amino acid residues 45-50 and 48-53 (emphasized below) of the human islet amyloid polypeptide involved in fibrillogenesis, sequence depicted below, NP.sub.--000406 [gi:4557655] Scrocchi et al., J Struct. Biol. 141(3):218-227, 2003:
- Exemplary probes may contain the following sequences, which are sequences within the sequence 45-53 of the above peptide sequence of SEQ ID NO:21, which may be used without modification or may be used to form palindromic probes described herein:
- SEQ D NO: 22 LANFV (SEQ ID NO: 23) VFNALPPPPLAKFV (palindromic probe) (SEQ ID NO: 24) FLVHSS (SEQ ID NO: 25) SSHVLFPPPPFLVHSS (palindromic probe).
- Lys which provides a free amino group for linking a label to the probe.
- probes may be readily produced without undue experimentation using standard laboratory techniques and peptide a related chemical syntheses.
- Other probes and methods of designing probes which may be used in the presently disclosed methods or modified for use in the presently disclosed methods may be readily obtained and are described in U.S. 2006-0057671; Wurth et al., J. Mol. Biol. 319:1279-1290 (2002); and Kim et al., J. Biol. Chem. 280:35059-35076 (2005), which are incorporated by reference herein in their entireties.
- the probes disclosed herein may comprise a label.
- the probe may comprise a peptide probe that is coupled or fused, either covalently or non-covalently, to a label.
- the peptide probe is endcapped (at one or both ends of the peptide) with a moiety or chemical entity that may facilitate analysis of the peptide probe, including detection of the probe per se and detection of the structural state of the probe.
- the specific label chosen may vary widely, depending upon the analytical technique to be used for analysis.
- the label may be complexed or covalently bonded at or near the amino or carboxy end of the peptide, which may be endcapped with a short, hydrophobic peptide sequence.
- both the amino and carboxy ends of the probe peptides are endcapped with small hydrophobic peptides ranging in size from about 1 to about 5 amino acids.
- These peptides may be natural or synthetic, but are preferably natural (i.e., derived from the target protein).
- a label may be attached at or near the amino and/or carboxy end of the probe.
- a “label” is a chemical or biochemical moiety useful for labeling the probe, and which, optionally, may be utilized to assess the specific structural state of the probe.
- a label may emit a first signal based on a first structural state and a second signal based on a second structural state.
- the first signal and second signal may differ in intensity.
- the signal includes emission of light
- the first signal and second signal may differ in excitation wavelength and/or emission wavelength.
- Labelels may include fluorescent agents (e.g., fluorophores, fluorescent proteins, fluorescent semiconductor nanocrystals), phosphorescent agents, chemiluminescent agents, chromogenic agents, quenching agents, dyes, radionuclides, metal ions, metal sols, ligands (e.g., biotin, streptavidin haptens, and the like), enzymes (e.g., beta-galactosidase, horseradish peroxidase, glucose oxidase, alkaline phosphatase, and the like), enzyme substrates, enzyme cofactors (e.g., NADPH), enzyme inhibitors, scintillation agents, inhibitors, magnetic particles, oligonucleotides, and other moieties known in the art.
- fluorescent agents e.g., fluorophores, fluorescent proteins, fluorescent semiconductor nanocrystals
- phosphorescent agents e.g., phosphorescent agents, chemiluminescent agents, chromogenic
- the label is a fluorophore
- one or more characteristics of the fluorophore may be used to assess the structural state of the labeled probe.
- the excitation wavelength of the fluorophore may differ based on the structural state of the labeled probe.
- the emission wavelength, intensity, or polarization of fluorescence may vary based on the structural state of the labeled probe.
- a “fluorophore” is a chemical group that may be excited by light to emit fluorescence or phosphorescence.
- a “quencher” is an agent that is capable of quenching a fluorescent signal from a fluorescent donor.
- a first fluorophore may emit a fluorescent signal that excites a second fluorophore.
- a first fluorophore may emit a signal that is quenched by a second fluorophore.
- the probes disclosed herein may undergo fluorescence resonance energy transfer (FRET).
- Fluorophores and quenchers may include the following agent (or fluorophores and quenchers sold under the following tradenames): 1,5 IAEDANS; 1,8-ANS; umbelliferone (e.g., 4-Methylumbelliferone); acradimum esters, 5-carboxy-2,7-dichlorofluorescein; 5-Carboxyfluorescein (5-FAM); 5-Carboxytetramethylrhodamine (5-TAMRA); 5-FAM (5-C arboxyfluorescein); 5-HAT (Hydroxy Tryptamine); 5-Hydroxy Tryptamine (HAT); 5-ROX (carboxy-X-rhodamine); 5-TAMRA (5-C arboxytetramethylrhodamine); 6-Carboxyrhodamine 6G; 6-CR 6G; 6-JOE; 7-Amino-4-methylcoumarin; 7-Aminoactinomycin D (7-AAD); 7-Hydroxy
- Labels may include derivatives of fluorophores that have been modified to facilitate conjugation to another reactive molecule.
- labels may include amine-reactive derivatives such as isothiocyanate derivatives and/or succinimidyl ester derivatives of the label.
- Labels may include a fluorescent protein which is incorporated into a probe as part of a fusion protein.
- Fluorescent proteins may include green fluorescent proteins (e.g., GFP, eGFP, AcGFP, TurboGFP, Emerald, Azami Green, and ZsGreen), blue fluorescent proteins (e.g., EBFP, Sapphire, and T-Sapphire), cyan fluorescent proteins (e.g., ECFP, mCFP, Cerulean, CyPet, AmCyanl, and Midoriishi Cyan), yellow fluorescent proteins (e.g., EYFP, Topaz, Venus, mCitrine, YPet, PhiYFP, ZsYellowl, and mBanana), and orange and red fluorescent proteins (e.g., Kusabira Orange, mOrange, dTomato, dTomato-Tandem, DsRed, DsRed2, DsRed-Express (T1), DsREd-Monomer, m
- the probes may be comprised in fusion proteins that also include a fluorescent protein coupled at the N-terminus or C-terminus of the probe.
- the fluorescent protein may be coupled via a peptide linker as described in the art (U.S. Pat. No. 6,448,087; Wurth et al., J. Mol. Biol. 319:1279-1290 (2002); and Kim et al., J. Biol. Chem. 280:35059-35076 (2005), which are incorporated herein by reference in their entireties).
- suitable linkers may be about 8-12 amino acids in length.
- greater than about 75% of the amino acid residues of the linker are selected from serine, glycine, and alanine residues.
- labels useful for in vivo imaging can be used.
- labels useful for magnetic resonance imaging such as fluorine-18 can be used, as can chemiluminescent labels.
- the probe is labeled with a radioactive label.
- the label may provide positron emission of a sufficient energy to be detected by machines currently employed for this purpose.
- One example of such an entity comprises oxygen-15 (an isotope of oxygen that decays by positron emission) or other radionuclide.
- Another example is carbon-11.
- Probes labeled with such labels can be administered to a patient, permitted to localize at target protein, and the patient can be imaged (scanned) to detect localized probe, and thus identify sites of localized target protein.
- Labeled probes can be administered by any suitable means that will permit localization at sites of target protein, such as by direct injection, intranasally or orally.
- radiolabeled probes can be injected into a patient and the binding of the probe to the protein target monitored externally.
- Labels may include oligonucleotides.
- the peptide probes may be coupled to an oligonucleotide tag which may be detected by known methods in the art (e.g., amplification assays such as PCR, TMA, b-DNA, NASBA, and the like).
- the peptide probes are immobilized on a solid support. This can be achieved by methods known in the art, such as methods comprising exposing a probe to a solid support for a sufficient amount of time to permit immobilization of the probe to the solid support. The methods may further comprise removing unbound probe, cross-linking the probe to the solid support (e.g., chemically and/or by exposure to UV-irradiation), and drying the solid support and probe. Methods of immobilizing peptides on solid supports are known in the art. In one embodiment, the probes are immobilized in a specific structural state, such as a specific conformation (e.g., predominantly ⁇ -helix/radon coil or predominantly ⁇ -sheet), as described in U.S. 2006-0057671, which is incorporated herein by reference in its entirety.
- a specific conformation e.g., predominantly ⁇ -helix/radon coil or predominantly ⁇ -sheet
- Probes immobilized to a solid support may be used to rapidly and efficiently detect the presence of target protein in a sample. Immobilized probes also are useful for binding some, essentially all, or all of a target protein present in a sample, after which the target protein can be separated from the rest of the sample, for example, to provide a purified sample that has a reduced target protein content, that is essentially free of target protein, or that is completely free of target protein.
- biological, medical or consumable compositions can be prepared that have a reduced content of target protein.
- the solid support can be any known solid substance that is suitable for binding peptides and suitable for use with biological materials. Many such solid supports are known to those of skill in the art. Examples of materials that are useful as solid supports, include, but are not limited to, plastics, including polystyrene, glass, polysaccharides, metal, and various polymers, including latex, acrylics, and nylons. Examples of forms of solid supports include, but are not limited to, plates, beads, and membranes.
- a method of detecting a target protein using an immobilized probe comprises providing an immobilized probe, providing a sample containing or suspected of containing a target protein, exposing the sample to the immobilized probe under conditions and for an amount of time sufficient for the immobilized probe to bind to a target protein in the sample (if present), and detecting the presence of target protein bound to the immobilized probe.
- Detection may be by way of any known technique, as discussed and detailed above.
- detection comprises assaying emission of light from a label, such as by fluorescence or luminescence.
- detection is by PAGE and staining of proteins present in the gel.
- detection is by reaction with an antibody specific for a target protein of interest. Other non-limiting examples of detection techniques are given above with reference to labels.
- Reaction conditions can be selected by those skilled in the art according to routine considerations. Suitable conditions include an aqueous environment, neutral pH (e.g., pH from about 6.0 to about 8.0), moderate salt (e.g., from about 100 mM to about 400 mM salt), and little or no detergents, emulsifiers, or other ancillary substances that might inhibit protein-protein interactions.
- neutral pH e.g., pH from about 6.0 to about 8.0
- moderate salt e.g., from about 100 mM to about 400 mM salt
- little or no detergents, emulsifiers, or other ancillary substances that might inhibit protein-protein interactions.
- the amounts of immobilized probe and sample to be used will vary depending on the amount of sample available, the amount of target protein suspected of being present in the sample, the amount of time the user wishes to expose the sample to the immobilized probe, and other considerations.
- a method of reducing the target protein content of a sample comprises providing an immobilized probe, providing a sample containing or suspected of containing a target protein, exposing the sample to the immobilized probe under conditions and for an amount of time sufficient for the immobilized probe to bind to at least some of the target proteins in the sample (if present), and separating the immobilized probe and immobilized probe-target protein complexes from the sample.
- the method reduces the amount of target protein in the sample by an amount that is detectable.
- the method reduces the amount of target protein in the sample to an amount below detection limits.
- the method completely eliminates target proteins from a sample.
- Methods of reducing target protein content of a sample can be effected under conditions similar to those described above for detecting target protein.
- Separating the immobilized probe and immobilized probe-target protein complexes from the sample may be by any suitable technique, such as by pouring off of the sample, by physical removal of the immobilized probe and complexes from the sample, etc.
- the immobilized probe is a probe bound to a membrane that is permeable to the sample, such as blood or blood products, such as plasma.
- the sample is filtered through the probe-bound membrane to remove some or all of the target proteins from the sample, e.g., from the blood or blood product. Passing of the last of the sample across the membrane causes separation of the probe-bound membrane and the sample. After the sample has been filtered, the probe-bound membrane may be assayed for the presence of target proteins.
- the invention also includes detecting the presence of target protein bound to the immobilized probe. Detection may be by way of any known technique, as discussed and detailed above. Likewise, various additional steps may be included in the methods, as long as those steps do not render the methods incapable of removing some or all of the prion proteins present in a sample.
- one aspect of the invention provides probes for detecting proteins in a sample or in vivo, and for detecting proteins in a specific structural state (e.g., a target structural state).
- a peptide probe may be labeled such that it fluoresces when the peptide probe is an alpha-helix or random coil conformation (or soluble state), and does not fluoresce when the peptide probe is in a beta-sheet conformation (or insoluble aggregated state).
- a peptide probe may be labeled such that it does not form excimers when the peptide probe is an alpha-helix or random coil conformation (or soluble state), but does form excimers when the peptide probe is in a beta-sheet conformation (or insoluble aggregated state).
- exemplary labels include fluorophores or fluorescent proteins, such as pyrene, tryptophan, fluorescein, rhodamine, GFP, and numerous others as described herein.
- protein structures have been determined by a variety of experimental or computational methods described in the art. See, e.g., U.S. 2006-0057671; U.S. Pat. No. 6,448,087; Waldo et al., Nat. Biotech. 17:691-695 (1999); Wurth et al., J. Mol. Biol. 319:1279-1290 (2002); Kim et al., J. Biol. Chem. 280:35069-35076 (2005), which are incorporated by reference herein in their entireties.
- protein structure may be assessed experimentally by any method capable of producing at least low resolution structures. Such methods currently include X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy.
- X-ray crystallography is one method for protein structural evaluation, and is based on the diffraction of X-ray radiation of a characteristic wavelength by electron clouds surrounding the atomic nuclei in the crystal.
- X-ray crystallography uses crystals of purified biomolecules (but these frequently include solvent components, co-factors, substrates, or other ligands) to determine near atomic resolution of the atoms making up the particular biomolecule.
- Techniques for crystal growth are known in the art, and typically vary from biomolecule to biomolecule. Automated crystal growth techniques are also known.
- Nuclear magnetic resonance (NMR) currently enables determination of the solution conformation (rather than crystal structure) of biomolecules.
- small molecules for example proteins of less than about 100-150 amino acids, are amenable to this technique.
- recent advances have lead to the experimental elucidation of the solution structures of large proteins, using such techniques as isotopic labeling.
- the advantage of NMR spectroscopy over X-ray crystallography is that the structure is determined in solution, rather than in a crystal lattice, where lattice neighbor interactions may alter the protein structure.
- the disadvantage of NMR spectroscopy is that the NMR structure is not as detailed or as accurate as a crystal structure.
- biomolecule structures determined by NMR spectroscopy are of moderate resolution compared to those determined by crystallography.
- the native or altered (e.g., after contact with a target protein) conformation of a peptide probe may be determined by one or more methods such as CD, Fourier transform infra-red, ultra-violet, NMR, or fluorescence, light scattering, hydrophobicity detection using extrinsic fluors, such as 1-anilino-8-naphthalene sulfonate (ANS) or Congo Red stain, fluorescence resonance energy transfer (FRET), quenching of intrinsic tryptophan fluorescence through either conformational change or monomer or binding at an interface in an ⁇ - ⁇ heterodimer, equilibrium ultracentrifugation, and size-exclusion chromatography.
- CD Fourier transform infra-red, ultra-violet, NMR, or fluorescence, light scattering
- hydrophobicity detection using extrinsic fluors such as 1-anilino-8-naphthalene sulfonate (ANS) or Congo Red stain
- FRET flu
- the probe is modified to comprise labels that are detectable by optical means.
- labels may include tryptophan (an amino acid), pyrene or similar fluorophores, or a fluorescent protein, attached at or near the terminal positions of the peptide probe. Attachment of labels such as fluorophores is achieved according to conventional methods which are well known in the art.
- the labels have the capability to interact in such a manner as to produce a species known as an excimer.
- An excimer is an adduct that is not necessarily covalent and that is formed between a molecular entity that has been excited by a photon and an identical unexcited molecular entity. The adduct is transient in nature and exists until it fluoresces by emission of a photon.
- An excimer represents the interaction of two fluorophores that, upon excitation with light of a specific wavelength, emits light at a different wavelength, which is also different in magnitude from that emitted by either fluorophor acting alone.
- An excimer may be distinguished from fluorescence resonance energy transfer since the excitation spectrum is identical to that of the monomer.
- the formation of the excimer is dependent on the geometric alignment of the fluorophores and is heavily influenced by the distance between them.
- fluorophores are present at each probe terminus and excimer formation between fluorophores is negligible as long as the overall probe conformation is a-helix or random coil. This is readily determined by measurement of the fluorescent behavior of the probe in the solvent to be used for analysis in the absence of the target protein.
- interaction of the probe with the target protein causes a structural change (such as a conformational change) in the probe such that excimer formation occurs. This is readily measured by the procedures described herein.
- conversion of the probe structure from that exhibited in the absence of analyte ( ⁇ -helix or random coil) to a ⁇ -sheet structure may enable fluorophores attached to the probes to form excimers that may be readily identified. Further, the magnitude of excimer formation is directly related to the amount of protein analyte present.
- labeled probes form excimers when they adopt a specific structural state, such as a target structural state, such as may occur when the probes interact with target protein in the target structural state.
- the formation of excimers may be detected by a change in optical properties. Such changes may be measured by known fluorimetric techniques, including UV, TR, CD, NMR, or fluorescence, among numerous others, depending upon the fluorophore attached to the probe.
- fluorimetric techniques including UV, TR, CD, NMR, or fluorescence, among numerous others, depending upon the fluorophore attached to the probe.
- the magnitude of these changes in optical properties is directly related to the amount of probe that has adopted the structural state associated with the change, and this is directly related to the amount of target protein present.
- CD “Circular dichroism”
- CD spectropolarimeter Differences are very small and represent fractions of degrees in ellipticity.
- CD spectra for distinct types of secondary structure present in peptides and proteins are distinct. Measuring and comparing CD curves of complexed vs. uncomplexed protein represents an accurate measuring means for the methods disclosed herein.
- a GFP fusion protein system is used to determine the specific structural state of probe or a test protein.
- Fusion proteins that include a test protein and green fluorescent protein (GFP) have been described to determine solubility of the test protein. See, e.g., Waldo et al., Nat. Biotech. 17:691-695 (1999); U.S. Pat. No. 6,448,087, Wurth et al., J. Mol. Biol. 319:1279-1290 (2002); Kim et al., J. Biol. Chem. 280:35059-35076 (2005), each of which are incorporated herein by reference in their entireties.
- the fluorescence of a GFP fusion protein may depend on the solubility of the test protein. If the test protein is insoluble, the GFP portion of the fusion protein may be pulled out of solution with the test protein, and thereby prevented from folding into its fluorescent structure.
- GFP fusion proteins are useful for identifying a probe or test protein in a specific structural state, for identifying a probe specific for a test protein in a specific structural state, and for identifying agents that affect the structural state of the target protein.
- the fluorescence of a GFP-probe fusion or GFP-test protein fusion is indicative of a soluble probe or test protein with a low tendency to form self-aggregates.
- a lack of fluorescence is indicative of the presence of an insoluble or self-aggregating probe or test protein.
- one aspect of the invention provides a fusion protein comprising (a) a peptide probe for a target protein, such as a peptide probe comprising an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, where the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation and the peptide probe does not comprise the full-length sequence of the target protein; and (b) a fluorescent protein (e.g., green fluorescent protein (GFP)).
- the fusion protein further includes a polypeptide linker that links the peptide probe and the fluorescent polypeptide.
- GFP includes proteins exhibiting equivalent folding and fluorescent properties of the full-length GFP protein, such as derivatives or fragments of the full-length GFP protein having at least about 60% sequence identity to the full-length GFP protein.
- Suitable target proteins include amyloid islet polypeptide precursor protein, amyloid beta protein or A ⁇ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof ⁇ 2 -microglobulin, ⁇ -synuclein, rhodopsin, ⁇ 1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein.
- the target protein is the prion protein (e.g., PrP C , PrP Sc , or a mixture thereof), and the peptide probe may include SEQ ID NO:13 or a related sequence.
- the target protein is amyloid beta protein (e.g., A ⁇ 42, A ⁇ 40, or a mixture thereof), and the peptide probe may include SEQ ID NO:32, SEQ ID NO:4, or a related sequence.
- the target protein is amyloid islet polypeptide precursor protein, and the peptide probe may include SEQ ID NO:11 or a related sequence.
- the target protein is transthyretin protein, and the peptide probe may include SEQ ID NO:26, or a related sequence.
- the target protein is cystatin C protein, and the peptide probe may include SEQ ID NO:17 or a related sequence.
- the target protein is Huntington's disease protein (i.e., Huntingin), and the peptide probe includes SEQ ID NO:19, or a related sequence.
- the fusion protein may emit a fluorescent signal correlated with its solubility.
- a soluble fusion protein may exhibit a strong fluorescent signal while an insoluble protein will not fluoresce.
- the fluorescence of a fusion protein also is correlated with the conformational state of the peptide probe.
- the fusion protein may emit a fluorescent signal when the peptide probe is in an alpha-helical conformation, while the fusion protein may not emit a fluorescent signal when the peptide probe is in a beta-sheet conformation.
- the peptide probe is in an alpha-helical conformation when present in a solution of 1.0% SDS having a pH of about 7. In further embodiments, the peptide probe is in a beta-sheet conformation when present in a solution having a pH of about 4.5.
- the fusion protein is immobilized on a solid support (e.g., where the fusion protein further comprises an avidin moiety, and is coupled to the solid support via a biotin moiety).
- the fusion proteins may be prepared by cloning a DNA sequence that encodes the peptide probe into a GFP expression vector (see, e.g., Waldo et al., Nature Biotechnol. 17, 691-695 (1999)).
- the DNA sequence that encodes the peptide probe may be obtained by PCR amplification of a target sequence that encodes the peptide probe, or alternatively, by preparing overlapping oligonucleotides that encode the peptide probe when annealed (see, e.g., Kim et al., J. Mol. Biol. 319:1279-1290 (2002)).
- the DNA sequence that encodes the peptide probe may be treated with restriction enzymes and cloned into the GFP expression vector.
- Biomolecular structures may also be studied by assessing “surface plasmon resonance” or “SPR.”
- SPR surface plasmon resonance
- the phenomenon of SPR is observed as a dip in intensity of light reflected at a specific angle from the interface between an optically transparent material (e.g., glass), and an opaque material, and depends on among other factors the refractive index of the medium (e.g., a sample solution) close to the surface of the opaque material (see WO 90/05295).
- a change of refractive index at the surface of the opaque material such as by the adsorption or binding of material thereto, will cause a corresponding shift in the angle at which SPR occurs.
- a peptide probe may be contacted with a target protein that is immobilized on a surface of an opaque support.
- the interaction of the peptide probe with the target protein thereafter may be assessed by monitoring SPR between the interface of the surface of the opaque support and a transparent material.
- peptide probes are selected for addition to an unknown or test sample or for use in vivo, to detect target protein present in the sample or in vivo, including target protein present in a specific structural state. Detection methods can be carried out along the general lines set forth in U.S. Pat. No. 7,166,471; U.S. patent application Ser. No. 10/728,246; PCT application PCT/US2006/005095, and/or U.S. application Ser. No. 11/030,300, the entire contents of which are incorporated herein by reference in their entireties.
- a peptide probe is added to a test sample.
- the disaggregation step allows any potentially aggregated sample material to break apart so that these disaggregated sample materials are free to combine with the newly introduced peptide probe, thereby facilitating interaction between the probe and the target protein, and detection of the target protein.
- the resulting mixture is then subjected to analytical methods commonly known in the art for the detection of interaction between the probe and the target protein.
- the target protein is immobilized on a solid support.
- the peptide probe is contacted with the target protein and allowed to interact. Subsequently, non-bound peptide probe is removed and bound peptide probe is observed by detecting a signal from a detectable label on the probe. For example, where the detectable label is a fluorophore, the bound peptide probe may be illuminated to stimulate emission from the fluorophore.
- the bound peptide may be contacted with a scintillant to stimulate emission from the scintillant.
- detection may be effected using antibodies, such as antibodies for the target protein which will bind to any target protein bound by the probe.
- the peptide probe and target protein may be contacted in the presence of a test agent to assess the ability of the test agent to inhibit an interaction between the peptide probe and target protein.
- the probe has a predominately ⁇ -helix or random coil conformation prior to being contacted with the target protein, and undergoes a shift to a ⁇ -sheet conformation when contacted with target protein in a ⁇ -sheet conformation.
- the conformational change of the probe propagates further conformational changes in other probes that come into contact with the probe that has undergone the conformational change, thereby amplifying the detection reaction signal.
- unknown or test samples containing ⁇ -sheet conformation characteristic of abnormally folded or disease-causing proteins result in an increase in ⁇ -sheet formation and, often, the formation of insoluble aggregates in the text mixture containing both the test sample and the peptide probes.
- unknown or test samples that lack any predominantly ⁇ -sheet secondary structures will neither catalyze a transition to ⁇ -sheet structure nor induce the formation of aggregates.
- This aspect of the invention may be particularly advantageous when the target protein is a prion protein.
- a sample comprising TSE may be analyzed as follows.
- the top row of the schematic illustrates an unknown sample of TSE protein represented as containing ⁇ -sheets.
- the ⁇ -sheets are disaggregated by sonication.
- Labeled peptide probes are added and are allowed to bind to the sample.
- the ⁇ -sheet conformation in the sample induces the peptide probes to conform to a ⁇ -sheet conformation.
- Beta-sheet propagation among the peptide probes forms aggregates.
- the resulting transition to a predominantly ⁇ -sheet form and amplified aggregate formation is detected by techniques such as light scattering and CD.
- the peptide probe is fluorescently labeled and fluorescence detection is used.
- any propagated conformational change is directly correlated with levels of disease-associated proteins (such as prions) with the progressive state (or infectivity) of the disease.
- prion proteins it may be preferable to utilize the presently disclosed methods manner in which there is no increase in infectious products as a result of the propagation. This may be achieved by placing a “break” in the links between the chain of infection, transmission, and propagation of the abnormal form. Such a break may occur at the transitional stage between the dimer and multimer forms of the aggregate. The physical formation of the multimer form may be blocked by simply impeding the step that leads to its formation.
- probes on linkers or “tethers” are more likely to encounter each other and result in amplifying the signal.
- the test sample is subject to conditions that promote the structural shift, for example, a conformational shift from an alpha-helical conformation to a beta-sheet conformation which may result in aggregation.
- a conformational shift from an alpha-helical conformation to a beta-sheet conformation which may result in aggregation.
- Such conditions are known in the art.
- the binding of a metal ligand could direct a change in the protein conformation and favor aggregation; the expression or cleavage of different peptide sequences may promote advanced aggregation leading to fibril and plaque formation; genetic point mutations also may alter the relative energy levels required of the two distinct conformations, resulting in midpoint shifts in structural transitions; an increase in concentration levels could be sufficient to favor a conformational transition.
- the test sample is “seeded” with aggregates of short peptide sequences.
- synthetic and/or recombinant prion proteins and fibrils may be less reactive with peptide probes than biologically derived prion protein.
- This reduced reactivity can be overcome, however, by seeding the reaction mixture with aggregates of small prion-derived sequences, such as, for example a prion peptide comprising residues 106-126 (PrP 106-126 ).
- the end result may be the catalytic propagation of the abnormal conformation, resulting in structural transformation of previously normal protein.
- a labeled peptide probe is administered to a patient, such as by local injection, allowed to localize at any sites of target protein or higher order target protein structures present within the patient, and then the patient can be scanned to detect the sites of labeled probe localized at sites of target protein or higher order target protein structures.
- Other routes of administration also are contemplated, including intranasal and oral.
- the probe can be labeled with any label suitable for in vivo imaging.
- the patient can be subject to a full body scan to identify any site of target protein.
- specific areas of the patient can be scanned to determine whether target protein is localized in the specific areas. Specific areas of interest may include vascular tissue, lymph tissue or brain (including the hippocampus or frontal lobes), or other organs such as the heart, kidney, liver or lungs.
- a peptide probe is specific for a target protein in a specific structural state.
- a peptide probe may preferentially bind to target protein in an alpha-helix or random coil conformation, and have a lower (or no) affinity for target protein in a beta-sheet conformation.
- a peptide probe may preferentially bind to target protein in a beta-sheet conformation and have a lower (or no) affinity for target protein in an alpha-helix or random coil conformation.
- a peptide probe may preferentially bind to a target protein in a specific state of self-aggregation.
- a peptide probe may preferentially bind to soluble monomers of the target protein, to soluble oligomers of the target protein, to insoluble self-aggregates (including amorphones self-aggregates), to protobrils or to fibrils, and have a lower (or no) affinity for target protein in a different state.
- Such probes are useful for identifying target protein in the specific structural state preferentially recognized by the peptide probe.
- a peptide probe that “preferentially binds to the target protein in a specific state of self-aggregation” means that the peptide probe binds in a dose-dependent manner to target protein in a specific state of self-aggregation, and does not bind in a dose-dependent manner to target protein in a different state of self-aggregation.
- a peptide probe may preferentially bind to target protein in higher-order states of self-aggregation, such that the peptide probe binds in a dose-dependent manner to oligomers and fibers and does not bind in a dose-dependnet manner to monomers.
- peptide probes consisting of or comprising the amino acid sequence of SEQ ID NO:36 or SEQ ID NO:45 specifcially react with A ⁇ 40 and A ⁇ 42 oligomers, and do not specifically react with A ⁇ 40 and A ⁇ 42 monomers.
- these peptide probes are useful for identifying higher order structures of A ⁇ 40 and A ⁇ 42.
- one aspect of the invention provides methods for identifying a target protein present in a specific structural form in a sample, comprising (a) contacting the sample with a peptide probe for the target protein, where the peptide probe preferentially binds to the specific structural form of the target protein, and (b) detecting any binding between the peptide probe and any target protein present in the specific structural form.
- the peptide probe may further include a label (e.g., pyrene, tryptophan, a fluorescent polypeptide label such as green fluorescent protein (GFP), and a radionuclide label), and may optionally be immobilized on a solid support.
- a label e.g., pyrene, tryptophan, a fluorescent polypeptide label such as green fluorescent protein (GFP), and a radionuclide label
- in vivo methods for identifying a target protein present in a specific structural form in a patient may comprise (a) administering to the patient a peptide probe for the target protein, where the peptide probe preferentially binds to the specific structural form of the target protein, and (b) scanning the patient to detect any localized peptide probe, thereby detecting and any target protein in the specific structural form that may be present in the patient.
- the peptide probe may be labeled with any label suitable for detection by in vivo imaging, and the probe can be administered by any suitable route of administration.
- the patient can be subject to a full body scan, or specific areas can be scanned or imaged, such as vascular tissue, lymph tissue or brain (including the hippocampus or frontal lobes), or other organs such as the heart, kidney, liver or lungs.
- specific areas can be scanned or imaged, such as vascular tissue, lymph tissue or brain (including the hippocampus or frontal lobes), or other organs such as the heart, kidney, liver or lungs.
- the structural form of the target protein may include a beta-sheet conformation or an alpha-helical conformation.
- the structural form of the target protein is a monomer of the protein.
- the structural form of the target protein is a soluble oligomer of the protein.
- Structural forms also may include insoluble self-aggregates of the protein (e.g., insoluble amorphous self-aggregates, protofibrils, and fibrils).
- peptide probes can be used to identify soluble A ⁇ protein, ADDLs, insoluble aggregates of A ⁇ protein, protofibrils and fibrils present in a sample.
- the ability to identify specific structural forms of A ⁇ protein offers significant clinical advantages.
- the presence and load of A ⁇ 42 protein and higher order A ⁇ structures e.g., ADDLs, protofibrils, and fibrils
- ADDLs, protofibrils, and fibrils can be used to identify a patient at risk for AD or a patient suffering from AD, and/or the extent to which the disease has progressed.
- the same information also could be used to determine the need for a therapeutic regimen or for a more or less aggressive regimen than currently being used, and to monitor the efficacy of a given therapeutic regimen.
- peptide probes are used to determine the location of A ⁇ 42 protein or higher order A ⁇ structures within the patient. For example, biological samples from specific segments of the brain can be obtained and analyzed for the presence of A ⁇ 42 protein or higher order A ⁇ structures.
- labeled probes can be administered to the patient, such as by local injection, allowed to localize at any sites of A ⁇ 42 protein or higher order A ⁇ structures present within the patient, and then the patient can be scanned to detect the sites of labeled probe localized at sites of A ⁇ 42 protein or higher order A ⁇ structures.
- Specific sites of interest might include the hypocampus or frontal lobes of the brain. Other sites of homont might include vascular tissue, lymph tissue, and other organs such as the heart, kidney, liver or lungs.
- Another aspect of the invention provides a method for determining the amounts of A ⁇ 42 and/or A ⁇ 40 in a sample, and the ratio of A ⁇ 42 to A ⁇ 40 in a sample.
- the amount of A ⁇ 42 (or “load”) circulating in patient plasma or CSF is correlated with diseases such as A ⁇ and LLMD.
- a high ratio of A ⁇ 42 to A ⁇ 40 is indicative of a disease state.
- the present invention provides methods of determining these values using peptide probes that preferentially bind to either A ⁇ 42 or A ⁇ 40, and thus can be used to quantify the amount of A ⁇ 42 or A ⁇ 40 present in a sample. By testing a sample with each type of probe (simultaneously or sequentially), the absolute and relative loads can be determined.
- That information can be used, for example, to identify a patient at risk for AD or a patient suffering from AD, and/or the extent to which the disease has progressed.
- the same information also could be used to determine the need for a therapeutic regimen or for a more or less aggressive regimen than currently being used, and to monitor the efficacy of a given therapeutic regimen. Similar information could be obtained by in vivo methods, along the lines discussed above.
- peptide probes can be used to identify soluble monomers of PrP Sc , soluble aggregates of PrP Sc , insoluble aggregates of PrP Sc , protofibrils and/or fibrils present in a sample or in vivo.
- the ability to identify specific structural forms of PrP Sc offers significant clinical advantages.
- the soluble aggregate form of PrP Sc is believed to be the most infective form; thus, the identification of that form of PrP Sc can be used to identify an infected subject.
- the same information also could be used to determine the need for a therapeutic regimen or for a more or less aggressive regimen than currently being used, and to monitor the efficacy of a given therapeutic regimen.
- peptide probes are used to determine the location of PrP Sc protein or higher order PrP Sc structures (such as soluble aggregates) within a patient. For example, biological samples from specific segments of the brain can be obtained and analyzed for the presence of PrP Sc protein or higher order PrP Sc structures.
- labeled probes can be administered to the patient, such as by local injection, allowed to localize at any sites of PrP Sc protein or higher order PrP Sc structures present within the patient, and then the patient can be scanned to detect the sites of labeled probe localized at sites of PrP Sc protein or higher order PrP Sc structures.
- Another aspect of the invention provides a method for determining the amounts of PrP Sc in a sample, or the amount of a specific form of PrP Sc in a sample.
- the soluble aggregate form of PrP Sc is highly infective.
- the present invention provides methods of determining the amount of that form of PrP Sc present in a sample, using peptide probes that preferentially bind to the soluble aggregate form of PrP Sc . That information can be used, for example, to evaluate the infective burden of a patient and/or the extent to which the disease has progressed. The same information also could be used to determine the need for a therapeutic regimen or for a more or less aggressive regimen than currently being used, and to monitor the efficacy of a given therapeutic regimen. Similar information could be obtained by in vivo methods, along the lines discussed above.
- the invention also provides methods of identifying probes that are specific for a target protein in a specific structural state.
- the tendency of a probe to adopt a specific structural state corresponds with the probe's specificity for a target protein in that specific structural state.
- a probe with a high tendency to form insoluble self-aggregates is specific for target protein in an insoluble self-aggregated state;
- a probe with a tendency to form soluble self-aggregates is specific for target protein in a soluble self-aggregated state, and
- a probe with no tendency to form aggregates is specific for target protein in a non-aggregated state (such as a monomeric state).
- the probe may exhibit a low tendency to form self-aggregates.
- the probe may include the amino acid sequence of a variant of A ⁇ 42 having amino acid substitutions 141D and A42Q (i.e., “the DQ mutant”).
- Probes specific for a target protein in a specific structural state that falls on a spectrum of structural states ranging from a low end of soluble monomers to a high end of insoluble self-aggregates can be identified in accordance with the present invention, such as by using the GFP system.
- a fusion protein comprising (i) a peptide probe for the target protein and (ii) GFP can be subjected to conditions that promote self-aggregation, and any fluorescent signal can be detected. The intensity of the signal can be correlated with the specificity of the probe for a target protein in a specific structural state.
- a higher intensity signal indicates that the probe has a low tendency to form aggregates, and thus is specific for a target protein at a lower end of the spectrum of structural states, such as a soluble monomer.
- a lower intensity signal indicates that the probe has a higher tendency to form aggregates and is specific for a target protein at a higher end of the spectrum of structural states, such as an insoluble aggregate.
- An intermediate signal may indicate that the probe has an intermediate tendency to form aggregates and is specific for a target protein at an intermediate end of the spectrum of structural states, such as a soluble oligomer.
- Probes specific for a target protein in a specific structural state also can be identified by preparing samples of protein in different specific structural states, and then assessing the ability of a peptide probe to preferentially bind to protein in one or more of the different specific structural states. For example, a peptide probe can be contacted with a sample of a protein in a specific structural state, and its interaction with the protein assessed using, for example, any of the methodologies described above. This process can be repeated using samples of protein in different specific structural states, and the results can be compared to determine whether the peptide probe preferentially binds to protein in one or more of the different specific structural states.
- the probes disclosed herein may be used in screening methods for identifying agents that modulate self-aggregation of a target protein.
- a fusion protein which comprises a peptide probe for the target protein and a label which generates a signal dependant on the aggregative state of the protin, such as GFP.
- the label is linked to the C-terminus of the peptide probe, directly or through a linker.
- the fluorescence of the fusion protein is inversely correlated with the peptide probe's tendency to form insoluble self-aggregates.
- the peptide probe has a low tendency to form insoluble self-aggregates.
- the fusion protein Conversely, if the fusion protein is observed to not emit a fluorescent signal, the peptide probe has a higher tendency to form insoluble self-aggregates.
- Other labels described above can be used in place of GFP. Those skilled in the art recognize that some labels will emit a signal that is inversely correlated with aggregation, while others will emit a signal that is directly correlated with aggregation. For convenience, the invention is described with reference to the GFP system.
- a signal generated by a reference fusion protein e.g., comprising GFP and a reference peptide probe
- a test fusion protein e.g., comprising GFP and a test peptide probe
- peptide probes with a high tendency to form insoluble self-aggregates are used in screening methods for identifying agents that modulate self-aggregation of a target protein.
- the GFP fusion protein e.g., peptide probe-GFP
- a host cell e.g., E. coli
- Expression is induced in E. coli in the presence of a test agent for inhibiting self-aggregation of target protein. Fluorescence of the fusion protein (due to the GFP moiety) is measured, and fluorescence in the presence of a test agent identifies the test agent as a potential inhibitor of target protein self-aggregation.
- the screening method comprises an in vitro assay.
- a GFP fusion protein is cloned into a vector for “cell-free” expression as known in the art.
- the fusion protein then is expressed in the presence of a test agent and fluorescence is measured. Again, fluorescence in the presence of a test agent identifies the test agent as a potential inhibitor of target protein self-aggregation.
- a GFP fusion protein is expressed in the absence of the test agent and in the presence of the test agent, and an increase in fluorescence identifies a test agent that inhibits aggregation.
- the fusion protein is expressed in the presence of the test protein (and test agent).
- Suitable test agents for the screening methods may include antibodies, chelating agents, tridentate iron chelators, diketones, 2-pyridoxal isonicontinyl hydrazone analogues, tachypyridine, clioquinol, ribonucleotide reductase inhibitor chelators, 2,3-dihydroxybenzoic acid, Picolinaldehyde, Nicotinaldehyde, 2-Aminopyridine, 3-Aminopyridine, topical 2-furildioxime, n-Butyric acid, Phenylbutyrate, Tributyrin, suberoylanilide hydroxamic acid, 6-cyclohexyl-1-hydroxy-4-methyl-2(1H)-pyridinone, rilopirox, piroctone, benzoic acid-related chelators, salicylic acid, nicotinamide, Clioquniol, heparin sulfate, trimethylamine N-oxide, polyethylene glycol
- Suitable target proteins for the screening methods may be any of those discussed above.
- the screening methods can be used to identify agents that modulate aggregation of any target protein that is susceptible to self-aggregation, including prion proteins and A ⁇ 42. These methods also can identify agents that bind to target protein. Binding of an agent to a monomer of the target protein will prevent self-aggregation of the target protein. Similarly, binding of an agent to a soluble oligomer or an insoluble aggregate will prevent further aggregation and protofibril and fibril formation, while binding of an agent to a protofibril or fibril will prevent further extension of that structure. In addition to blocking further aggregation, this binding also may shift the equilibrium back to a state more favorable to soluble monomers, further halting the progression of the disease and alleviating disease symptoms.
- Binding of target protein by an agent also may directly interfere with any detrimental activity exhibited by the target protein.
- the activity of a test agent identified as described above is confirmed in a further assay.
- a soluble form of the target protein or a peptide probe for the target protein is prepared using organic solvents, sonication, and filtration (Bitan et al., Methods in Molec. Biol., pp. 3-9 (2005, Humana Press). After preparation, the soluble form of the target protein or probe is diluted in aqueous buffer that includes a test agent identified as described above, and the target protein or probe is allowed to aggregate under agitation or under quiescence.
- Aggregation then is measured by any of the methods described above, such as by using a labeled probe and detecting excimer formation or CD, or by other methods known in the art such as measuring fluorescence of Thioflavin T (Levine-III, H., Protein Sci. 2:404-410 (1993) or Congo-red binding, to confirm that a test agent inhibits aggregation.
- the activity of a test agent identified as described above using a GFP-peptide probe fusion protein is confirmed by assessing the fluorescence of a GFP-target protein fusion protein in the presence of the test agent.
- test agent to inhibit aggregation also may be assessed by observing aggregation of a target protein (or a probe) in the presence of the test agent under electron microscopy. A dose dependent decrease in aggregation confirms that the test agent inhibits aggregation.
- the invention also provides for more tailored drug screening, i.e., by identifying active agents that interact with specific structural states of the target protein.
- the ability of a test agent to interact with a probe with a tendency to form a specific structural state is used to identify agents that interact with target protein in that specific structural state.
- probes with a low tendency to self-aggregate can be used to identify active agents that bind to monomers of the target protein;
- probes with a tendency to form soluble oligomers (such as those that mimic the structure of A ⁇ ADDLs) can be used to identify active agents that bind to soluble oligomers;
- probes with a tendency to form insoluble aggregates can be used to identify active agents that bind to insoluble monomers of the target protein.
- probes with a low tendency to self-aggregate may be used to identify active agents that bind to the target protein in competition assays.
- additional probe which optionally may be derivatized, can be used to compete off the probe from the complex.
- active agents that interact with a specific structural state of the target protein are identified by contacting the active agent with a sample of target protein, separating complexed active agent-target protein moieties from non complexed target protein, and determining the specific structural state of the complexed target protein using probes for specific structural states, as described herein.
- Any agent known or suspected of inhibiting the specific structural state associated with a disease state may be used in screening methods to assess its ability to modulate aggregation, and thus its candidacy as a therapeutic agent.
- agents known or suspected of inhibiting formation of the O-sheet conformation of a target protein, of inhibiting the formation of oligomers or insoluble amorphous self-aggregates of the target protein, or of inhibiting formation of fibrils can be screened by the present methods to identify therapeutic agents.
- Peptide probes designed as described above (with or without a label) also are suitable as test agents to assess their likely usefulness as therapeutic agents.
- therapeutic test agents include agents known or suspected to have anti-amyloid activity or anti-amyloidogenic activity.
- An “anti-amyloid agent” or “anti-amyloidogenic agent” is an agent which, directly or indirectly, inhibits proteins from aggregating and/or forming amyloid plaques or deposits and/or promotes disaggregation or reduction of amyloid plaques or deposits.
- an anti-amyloid agent may inhibit a protein from assuming a conformation that is involved in aggregation and/or formation of oligomers, fibrils, amyloid plaques, etc.
- an anti-amyloid agent may inhibit a protein from assuming a beta-sheet conformation.
- Anti-amyloid agents include proteins, such as anti-amyloid antibodies and peptide probes, and also include small chemical molecules, such as small molecule drugs.
- Anti-amyloid agents include chelating agents (e.g., chelating agents for transition metals such as copper and iron such as tridentate iron chelators), diketones
- Anti-amyloid agents also include agents generally referred to in the art as “amyloid busters” or “plaque busters.” These include drugs which are peptidomimetic and interact with amyloid fibrils to slowly dissolve them. “Peptidomimetic” means that a biomolecule mimics the activity of another biologically active peptide molecule. “Amyloid busters” or “plaque busters” also include agents which absorb co-factors necessary for the amyloid fibrils to remain stable.
- Anti-amyloid agents also include dopamine, tannic acid, triazine, levodopa, pergolide, bromocriptine, selegiline, glucosamine or analogs thereof (e.g., 4-deoxy-D-glucosamine or 4-deoxy-acetylglucosamine), tetrapyrroles, nordihydroguaiaretic acid (NDGA), polyphenols (e.g., myricetin (Myr), morin (Mor), quercetin (Qur), kaempferol (Kmp), (+)-catechin (Cat), ( ⁇ )-epicatechin (epi-Cat)), rifampicin (RIF), tetracycline (TC), small molecule sulfonic acids (e.g., polyvinylsulfonic acid and 1,3,-propanedisulfonic acid), small molecule sulphonates and sulfates (e.g., ethanesul
- Anti-amyloid agents also may include antibodies, such as antibodies specific to the target protein, or antibodies specific to a specific structural state of the target protein.
- peptide probes of the present invention are useful as anti-amyloid agents in the prevention and treatment of amyloidogenic diseases such as AD, and in the prevention of advanced stages of amyloidogenic diseases.
- a peptide probe for a given target protein specifically binds to that protein, and may preferentially bind to a specific structural form of the target protein.
- binding of target protein by a peptide probe will prevent the formation of higher order assemblies of the target protein, thereby preventing or treating the disease associated with the target protein, and/or preventing further progression of the disease.
- binding of a peptide probe to a monomer of the target protein will prevent self-aggregation of the target protein.
- binding of a peptide probe to a soluble oligomer or an insoluble aggregate will prevent further aggregation and protofibril and fibril formation, while binding of a peptide probe to a protofibril or fibril will prevent further extension of that structure.
- this binding also may shift the equilibrium back to a state more favorable to soluble monomers, further halting the progression of the disease and alleviating disease symptoms.
- Binding of target protein by a peptide probe also may directly interfere with any detrimental activity exhibited by the target protein.
- the neurotoxic effects of ADDLs could be inhibiting by the binding action of a peptide probe specific for the ADDLs.
- binding by peptide probes blocks the interaction of ADDLs and protofibrils with synapses and neuronal membranes.
- the peptide probes may be designed to compete with the target protein for binding to the other protein.
- a peptide probe may be designed to compete for binding to a receptor for the target protein, where the receptor is present in neuronal membranes or basement cell membranes.
- peptide probes may be designed to bind to proteins such as laminin, effector cell adhesion molecules (ECAMS) (e.g., selectin), and glycosaminoglycans (GAGS). (See U.S. 2006-0135529).
- ECAMS effector cell adhesion molecules
- GGS glycosaminoglycans
- the peptide probes may be designed to bind to glycosaminoglycan (GAG) and inhibit GAG interactions with effector cell adhesion molecules (ECAM) such as selectin.
- GAG glycosaminoglycan
- ECAM effector cell adhesion molecules
- a method for preventing the formation of protein aggregates of a target protein comprising contacting the target protein with a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein, thereby preventing the formation of higher order protein aggregates of the target protein.
- the peptide probe preferentially binds to a specific structural state of the target protein.
- the peptide probe preferentially binds to monomers of the target protein, thereby preventing the formation of protein aggregates.
- the peptide probe preferentially binds to soluble oligomers of the target protein, thereby preventing the formation of insoluble protein aggregates.
- the peptide probe preferentially binds to insoluble aggregates of the target protein, thereby preventing the formation of fibrils of the target protein.
- the peptide probe preferentially binds to insoluble aggregates such as amorphous self-aggregates, protofibrils, and fibrils.
- the contacting can be effected by any means that results in the peptide probe contacting the target protein.
- the peptide probe can be administered to the patient by any suitable means, such as by direct injection, for example, into a site of localized target protein or into a site of interest, such as those described above, or by intranasal or oral administration.
- Peptide probes of the invention also are useful as targeting agents to deliver other active agents (such as any of the agents listed above) to target proteins, such as to A ⁇ proteins, or to specific forms of A ⁇ , such as A ⁇ 42, A ⁇ 42 monomers, A ⁇ 42 ADDLs, insoluble aggregates of A ⁇ 42, fibrils, etc.
- a peptide probe is combined with one or more active agents, such as by conjugation directly or through a linker, by methods known in the art.
- the active agent may be a therapeutic active agent, such as any of those known in the art and those mentioned above, or it may be a detection agent, such as any of those known in the art and those described above with regard to peptide probe labels.
- the peptide probe localizes at target protein present at a specific site in the patient, such one or more of vascular tissue, lymph tissue, brain, or other organs, such as kidney, liver, heart or lungs, thereby delivering therapeutic agent to such specific sites.
- a specific site in the patient such one or more of vascular tissue, lymph tissue, brain, or other organs, such as kidney, liver, heart or lungs, thereby delivering therapeutic agent to such specific sites.
- a method for treating a disease associated with a target protein comprising contacting the target protein with a fusion protein comprising (i) a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein, and (ii) a therapeutic agent.
- the peptide probe preferentially binds to a specific structural state of the target protein.
- the contacting can be effected by any means that results in the peptide probe contacting the target protein, as discussed above, such as by injection, intranasally or orally.
- the disease is Alzheimer's disease
- the target protein is A ⁇ 342, A ⁇ 40, or both
- the therapeutic agent is selected from the group consisting of antibodies, heavy metal chelators and charge moieties.
- the disease is TSE
- the target protein is prion protein
- the therapeutic agent is selected from the group consisting of antibodies, heavy metal chelators and charge moieties.
- the disease is senile systemic amylodiosis or familial amyloid polyneuropathy
- the target protein is transthyretin
- the therapeutic agent is selected from the group consisting of antibodies, heavy metal chelators and charge moieties.
- the disease is Huntington's disease
- the target protein is Huntingtin
- the therapeutic agent is selected from the group consisting of heavy metal chelators and charge moieties.
- the disease is Parkinson's disease
- the target protein is alpha-synuclein
- the therapeutic agent is selected from the group consisting of heavy metal chelators and charge moieties.
- a method of delivering a therapeutic agent comprising combining the therapeutic agent with a peptide probe for the target protein and administering the peptide probe-therapeutic agent combination to a patient in need thereof.
- the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, but does not comprise the full-length sequence of the target protein.
- the peptide probe preferentially binds to the target protein in a specific state of self-aggregation.
- the peptide probe preferentially binds to the target protein in a specific state of self-aggregation selected from the group consisting of monomers, soluble oligomers and insoluble aggregates.
- the therapeutic agent has anti-amyloid activity.
- the peptide probe is combined with the therapeutic agent via conjugation, directly or through a linker.
- Suitable patients for prevention or treatment can be identified by those skilled in the art.
- patients can be identified by detecting target protein in biological samples obtained from the patients or by in vivo methods described above, by identifying other risk factors (such as a genetic mutation, apoE, or PET scanning showing amyloid deposits or plaques), or by a family history of amyloidogenic disease (including AD and LLMD).
- blood samples are screened for the presence of one or more amyloid proteins, such as A ⁇ 42, and patients with high levels of that protein, or with high A ⁇ 42/A ⁇ 40 ratios, are selected for treatment.
- controls may be run to validate the assay.
- Positive controls generally comprise performing the methods with samples that are known to comprise at least one target protein (typically of a specific, known type), and may be used to confirm that the methods are capable of detecting that protein and/or are specific for that particular protein.
- a positive control comprises a sample (at any stage of the procedure) to which is intentionally added a known target protein, typically in a known amount.
- Negative controls generally comprise performing the methods with samples that are known not to contain any target proteins, and may be used to confirm that the methods are not providing systematic false positive results.
- Other controls may be run at one or more particular stages in the methods to verify that those stages are functioning as expected.
- Test specimen is a sample of material to be tested and is equivalent in meaning to, and used interchangeably with “sample.”
- the sample may be prepared from tissue (e.g. a portion of ground meat, an amount of tissue obtained by a biopsy procedure, blood or a fraction of blood, such as plasma) by homogenization in a glass homogenizer or may be used directly as obtained.
- the amount of sample may be any amount suitable for the application in which the sample is used. For example, if blood or a blood fraction is used, it may be about 1 ⁇ l, about 100 ⁇ l, about 1 ml, about 10 ml., about 100 ml., about one liter (or one pint), or more.
- large volumes of blood or blood products may be used as a sample, including amounts greater than one liter (or one pint).
- the sample should be between about 1 mg and 1 gm, preferably between 10 mg and 250 mg, ideally between 20 and 100 mg.
- Proteins in samples or specimens may be detected in aggregated form or in the presence of other cellular constituents, such as lipids, other proteins, or carbohydrates.
- a sample preparation for analysis may be homogenized or subjected to a similar disruption of tissue or aggregate structures, and cellular debris may be removed by centrifugation. This process may be performed in the presence of a buffered salt solution and may utilize one of several detergents such as SDS, Triton X-100, or sarkosyl. Further concentration of the sample may be achieved by treatment with any of several agents; (e.g., phosphotungstate), which is employed according to the method of Safar et al., Nature Medicine 4:1157-1165, 1998.
- agents e.g., phosphotungstate
- a sample may be obtained for testing and diagnosis as follows.
- a sample may be prepared from tissue (e.g., a portion of ground meat, or an amount of tissue obtained by a biopsy procedure) by homogenization in a glass homogenizer or by mortar and pestle in the presence of liquid nitrogen.
- the amount of material should be between about 1 mg and 1 gm, preferably between 10 mg and 250 mg, such as between 20 mg and 100 mg.
- the material to be sampled may be suspended in a suitable solvent, preferably phosphate-buffered saline at a pH between 7.0 and 7.8.
- the addition of RNase inhibitors is optional.
- the solvent may contain a detergent (e.g., Triton X-100, SDS, sarkosyl, dioxycholate, IgePal (NP40)). Homogenization is performed for a number of excursions of the homogenizer, preferably between 10 and 25 strokes; such as between 15 and 20 strokes.
- the suspended sample is preferably centrifuged at between 100 and 1,000 ⁇ g for 5-10 minutes and the supernatant material sampled for analysis. In some samples, it may be preferable to treat the supernatant material with an additional reagent, such as phosphotungstic acid according to the procedure described by Safar et al., Nature Medicine 4:1157-1165, 1998, and as modified by Wadsworth, The Lancet 358:171-180, 2001.
- a detergent e.g., Triton X-100, SDS, sarkosyl, dioxycholate, IgePal (NP40)
- Homogenization is performed for a number of excursions of the homogenizer,
- the amount of sample to be tested is based on a determination of the protein content of the supernatant solution as measured by the procedure described by Bradford ( Anal. Biochem. 72:248-254, 1976).
- a rapid and sensitive method for determining microgram quantities of protein utilizes the principle of protein-dye binding.
- the amount of protein in the sample to be tested is between about 0.5 mg and 2 mg of protein.
- test samples may be obtained from serum, pharmaceutical formulations that might contain products of animal origin, spinal fluid, saliva, urine, or other bodily fluids. Liquid samples may be tested directly or may be subjected to treatment with agents such as phosphotungstic acid, as described above.
- Kits may be prepared for practicing the methods disclosed herein.
- the kits include at least one component or a packaged combination of components for practicing a disclosed method.
- packaged combination it is meant that the kits provide a single package that contains a combination of one or more components, such as probes, buffers, instructions, and the like.
- a kit containing a single container is included within the definition of “packaged combination.”
- the kits include at least one probe.
- the kits may include a probe that is labeled with a fluorophore or a probe that is a member of a fusion protein.
- the probe may be immobilized, and may be immobilized in a specific conformation.
- an immobilized probe may be provided in a kit to specifically bind target protein, to detect target protein in a sample and/or to remove target protein from a sample.
- kits may include some or all of the components necessary to practice a method disclosed herein.
- the kits include at least one probe, optionally immobilized, in at least one container.
- the kits may include multiple probes, optionally immobilized, in one or more containers.
- the multiple probes may be present in a single container or in separate containers, each containing a single probe.
- a single probe (including multiple copies of the same probe) is immobilized on a single solid support and provided in a single container.
- two or more probes, each specific for a different target protein or a different form of a single target protein, are provided in a single container.
- the same immobilized probe is provided in multiple different containers (e.g., in single-use form), or multiple immobilized probes are provided in multiple different containers.
- the probes are immobilized on multiple different types of solid supports. Any combination of immobilized probe(s) and container(s) is contemplated for the kits disclosed herein, and the practitioner is free to select among the combinations to achieve a suitable kit for a desired use.
- a container of the kits may be any container that is suitable for packaging and/or containing the probes disclosed herein. Suitable materials include, but are not limited to, glass, plastic, cardboard or other paper product, and metal.
- the container may completely encase the immobilized probes or may simple cover the probe to minimize contamination by dust, oils, etc.
- the kits may comprise a single container or multiple containers, and where multiple containers are present, each container may be the same as all other containers, different than others, or different than some, but not all other containers.
- kits themselves may be made of any suitable material.
- kit materials are cardboard or other paper product, plastic, glass, and metal.
- Kits may comprise some or all of the reagents and supplies needed for immobilizing one or more probes to the solid support, or some or all of the reagents and supplies needed for binding of immobilized probes to prion proteins in a sample.
- kits disclosed herein may include one or more non-immobilized probes and one or more solid supports that do or do not include an immobilized probe. Such kits may comprise some or all of the reagents and supplies needed for immobilizing one or more probes to the solid support, or some or all of the reagents and supplies needed for binding of immobilized probes to prion proteins in a sample.
- a fusion protein comprising:
- the fusion protein of embodiment 1, wherein the target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or A ⁇ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof ⁇ 2 -microglobulin, ⁇ -synuclein, rhodopsin, ⁇ 1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and
- amyloid beta protein is A ⁇ 42, A ⁇ 40, or a mixture thereof.
- peptide probe comprises the sequence of SEQ ID NO:32, the sequence of SEQ ID NO:4, or a sequence having at least about 90% sequence identity to SEQ ID NO:32 or SEQ ID NO:4.
- peptide probe comprises the sequence of SEQ ID NO:11 or a sequence having at least about 90% sequence identity to SEQ ID NO:11.
- peptide probe comprises the sequence of SEQ ID NO:26 or a sequence having at least about 90% sequence identity to SEQ ID NO:26.
- peptide probe comprises the sequence of SEQ ID NO:17 or a sequence having at least about 90% sequence identity to SEQ ID NO:17.
- peptide probe comprises the sequence of SEQ ID NO:19 or a sequence having at least about 90% sequence identity to SEQ ID NO:19.
- a method of assessing an agent's ability to inhibit aggregation of a target protein comprising:
- the target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or A ⁇ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof ⁇ 2 -microglobulin, ⁇ -synuclein, rhodopsin, ⁇ 1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cyst
- test agent is a chelating agent.
- test agent is selected from the group tridentate iron chelators, diketones, 2-pyridoxal isonicontinyl hydrazone analogues, tachypyridine, clioquinol, ribonucleotide reductase inhibitor chelators, 2,3-dihydroxybenzoic acid, Picolinaldehyde, Nicotinaldehyde, 2-Aminopyridine, 3-Aminopyridine, topical 2-furildioxime, n-Butyric acid, Phenylbutyrate, Tributyrin, suberoylanilide hydroxamic acid, 6-cyclohexyl-1-hydroxy-4-methyl-2(1H)-pyridinone, rilopirox, piroctone, benzoic acid-related chelators, salicylic acid, nicotinamide, heparin sulfate, trimethylamine N-oxide, polyethylene glycol (PEG), copper cations, di
- a method of assessing an agent's ability to inhibit aggregation of a target protein comprising:
- a method of assessing an agent's ability to inhibit aggregation of a target protein comprising:
- a method of assessing an agent's ability to inhibit aggregation of a target protein comprising:
- a method for identifying a target protein present in a specific structural form in a sample comprising:
- target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or A ⁇ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof ⁇ 2 -microglobulin, ⁇ -synuclein, rhodopsin, ⁇ 1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cyst
- a method of identifying a peptide probe for a target protein that exhibits an increased or decreased tendency to form aggregates relative to a reference peptide probe comprising:
- test peptide probe has at least about 15% sequence identity to the reference peptide probe.
- test peptide probe is designed by a process comprising introducing a random sequence mutation into the amino acid sequence of the reference peptide probe.
- a method for preventing the formation of protein aggregates of a target protein comprising contacting the target protein with a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein, thereby preventing the formation of higher order protein aggregates of the target protein.
- insoluble protein aggregates comprise one or more of amorphous self-aggregates, protofibrils, and fibrils.
- a method for treating a disease associated with a target protein comprising contacting the target protein with a fusion protein comprising (i) a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein, and (ii) a therapeutic agent.
- the disease is Alzheimer's disease
- the target protein is A ⁇ 42, A ⁇ 40, or both
- the therapeutic agent is selected from the group consisting of heavy metal chelators and charge moieties.
- the disease is Parkinson's disease
- the target protein is alpha-synuclein
- the therapeutic agent is selected from the group consisting of heavy metal chelators and charge moieties.
- a therapeutic composition comprising:
- composition of embodiment 81 further comprising an additional therapeutic agent.
- composition of embodiment 82, wherein the additional therapeutic agent has anti-amyloid activity.
- a method of delivering a therapeutic agent for preventing aggregation of a target protein comprising combining the therapeutic agent with a peptide probe for the target protein, wherein the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation and wherein the peptide probe does not comprise the full-length sequence of the target protein.
- a dsDNA oligonucleotide encoding a peptide probe for human prion protein or A ⁇ 42 is synthesized.
- the dsDNA oligonucleotide includes restriction sites at the 5′ and 3′ ends for cloning the dsDNA oligonucleotide into a GFP expression vector (see Waldo et al., Nature Biotechnol. 17:691-695 (1999)).
- a dsDNA oligonucleotide and GFP expression vector are digested with the corresponding restriction enzymes and the dsDNA oligonucleotide is ligated into the GFP expression vector to create a GFP-fusion protein expression vector.
- the expression vector is used to transform E.
- GFP-Peptide Probe a GFP-fusion protein expression vector is created which includes a mutant full-length A ⁇ 42 having 141D and A42Q substitutions (i.e., “the DQ mutant”), which mutant is observed to undergo slow aggregation.
- DNA libraries are isolated from the transformed E. coli strain and transformed into another suitable strain for IPTG-inducible protein expression.
- the transformed bacteria are plated onto nitrocellulose paper. After overnight growth at 37° C., the nitrocellulose papers are transferred to LB plates which include kanamycin for selection and IPTG (1 mM) for inducing expression. Colonies are counted and the green versus white phenotype is noted, with green phenotype corresponding to soluble fusion protein (e.g., non-aggregated peptide probe) and white phenotype corresponding to insoluble fusion protein (e.g., aggregated peptide probe).
- FIG. 4 provides exemplary results of the GFP fluorescence measurement of Alzheimer probe peptide-GFP fusion (Alz) and Prion probe peptide-GFP fusion (Pri).
- a GFP-peptide probe fusion protein known to yield a white phenotype in the assay described above is used to identify agents that inhibit aggregation.
- the vector for expressing a GFP-peptide probe (prion) fusion protein is transformed into bacterial cells for IPTG inducible expression.
- test agents are tested at multiple concentrations. Test agents that yield a green phenotype are identified as agents that inhibit aggregation.
- a peptide probe specific for a highly infective form of PrP Sc is identified as follows.
- PrP Sc protein in different aggregated states are prepared, for example, by the methods described in Silveira et al., Nature 437: 257-61 (2005).
- a preparation of purified PrP Sc protein (such as from scrapie-infected hamster brain) is subjected to treatment with, for example, detergents and/or sonication, and then fractionated by size (using, for example flow field-flow fractionation, or “F1FFF”) into a plurality of fractions (such as the thirty fractions reported in Silveira) to obtain samples of prion protein in different aggregated states.
- F1FFF flow field-flow fractionation
- a parallel sample preparation is carried out using equivalent samples from normal brain.
- Pyrene-labeled peptide probe specific for PrP Sc protein is contacted with each sample and its interaction with any PrP Sc present in the sample is assessed.
- the interaction of pyrene-labeled peptide probes with PrP Sc can be assessed using steady-state fluorescence.
- the interaction between pyrene labels that is observed when labeled peptide probes interact with PrP Sc leads to the formation of fluorescent dimers and/or excimers.
- the characteristic ratio of the fluorescent intensity associated with pyrene dimers (I D , measured at 495 nm) to that of pyrene monomers (I M , measured at 378 nm) can be used to assess the interaction between the labeled probes and any PrP Sc present in the sample, with higher I D /I M correlating with greater reactivity.
- FIG. 5 illustrates the characteristic fluorescence of pyrene-labeled peptide probe monomers and dimers.
- FIG. 6 illustrates the reactivity of a peptide probe specific for PrP Sc protein with PrP Sc present in each of the thirty fractions obtained as described above.
- the y-axis shows the relative I D /I M ratios; the size of the PrP Sc aggregates present in each fraction increases along the x-axis).
- the peptide probe had the following amino acid sequence: VVAGAAAAGAVHKWINTKPKMKFIVAGAAAAGAVV (SEQ ID NO: 43).
- the peptide probe reacts with smaller PrP Sc aggregates over larger PrP Sc aggregates.
- the reactivity of the peptide probe with smaller PrP Sc aggregates may offer clinical significance because, for example, the current state of the art indicates that the most infective forms of PrP Sc are smaller aggregate forms, rather than larger aggregates or fibrils.
- the reactivity of the peptide probe with the fractionated particles is periodic rather than linear, with highest sensitivity per ⁇ g of PrP Sc observed with fractions corresponding to PrP Sc aggregates ranging from ⁇ 30 kD up to 1,000 kD.
- This periodicity may reflect a hierarchical structural assembly of PrP Sc oligomeric units which act as unique substrates for the peptide probe.
- the periodicity also underscores the potential significance of the ability to design peptide probes that preferentially bind to PrP Sc in different structural states, for targeting infectious PrP Sc structures across species, e.g., to detect species variants that are of particular importance clinically with zoonotic sources of PrP Sc in humans.
- the preferential binding of the peptide probe with smaller PrP Sc aggregates over larger PrP Sc aggregates can be further demonstrated with sonication experiments. For example, un-fractionated samples of infected hamster brain homegenates that exhibit little or no reactivity with the peptide probe were demonstrated to exhibit increased reactivity after being subjected to sonication. The reactivity increases with sonication time, with increased reactivity observed after 5 to 10 minutes of sonication. Because sonication breaks up the PrP Sc aggregates present in the extracted samples into smaller PrP Sc aggregates, these results may indicate that the peptide probe is directly reacting with a new pool of smaller PrP Sc oligomeric structures generated by sonication.
- sonication may be driving the reorganization of the PrP Sc aggregates into different structural states (such as different conformational states) that are more reactive with the peptide probe.
- the reactivity of the peptide probe with smaller PrP Sc aggregates may offer clinical significance, as discussed above.
- a peptide probe specific for PrP Sc (SEQ ID NO:43) is used to detect PrP Sc in sheep blood as follows. Pyrene-labeled peptide probe is contacted with samples prepared from sera obtained from scrapie sheep, terminal sheep and normal sheep, and the resulting fluorescence is measured as described above. (Samples are prepared as described in Grosset et al., Peptides 26: 2193-200 (2005), adopting the tissue-prep method for serum). FIG. 7 illustrates that the peptide probe reacted with PrP Sc in sera from infected sheep, and did not react with sera from normal sheep.
- HP 1 designates a sample from pooled serum of 3-month old healthy sheep
- HP 2 designates a sample from pooled serum of 2-year old healthy sheep
- ln1 designates serum from 18-24 month old scrapie sheep
- ln5 designates serum from a terminal sheep.
- FIG. 8 illustrates that sonication improved the signal-to-noise ration by reducing the background in the “normal” samples.
- FIG. 8 also illustrates a better distincition of infected samples with the age matched normal pool (HP 2) from 2 year old animals versus the pool from 3 month old animals.
- a peptide probe specific for PrP Sc (SEQ ID NO:43) is used to detect PrP Sc in sheep blood components as follows. Pyrene-labeled peptide probe is contacted with buffy coat, serum, and plasma samples from infected (scrapie) and normal (healthy) sheep, and the resulting fluorescence is measured as described above. FIG. 9 illustrates that the peptide probe exhibits a relative reactivity with sheep blood components in the order of buffy coat>serum>plasma.
- a ⁇ peptide probe is identified as follows.
- a fusion protein is constructed that comprises a peptide probe specific for A ⁇ (SEQ ID NO:36) and GFP.
- Reference fusion proteins are constructed that comprise (i) A ⁇ 42 (SEQ ID NO:42) and GFP or (ii) the A ⁇ 42 mutant clone GM6 (SEQ ID NO:44) and GFP.
- the proteins are expressed and GFP fluorescence is detected as described above.
- the A ⁇ 42-GFP fusion protein exhibits little fluorescence because rapid aggregation of the A ⁇ 42 moiety prevents proper folding of the GFP moiety required for fluorescence.
- the mutant-GFP fusion protein exhibits a high level of fluorescence because GM6 is a slow folding mutant of A ⁇ 42; thus the GM6 moiety does not interfere as much with the folding of the GFP moiety required for fluorescence.
- the peptide probe-GFP fusion protein exhbits an intermediate level of fluorescence, indicating that the peptide probe moiety interferes at a moderate level with GFP folding.
- a peptide probe specific for A ⁇ (SEQ ID NO:36) is used to detect specific structural forms of A ⁇ 40 and A ⁇ 42.
- the peptide probe is labeled at each terminus with pyrene.
- the peptide probe is contacted with different samples comprising A ⁇ 42 oligomers, A ⁇ 40 oligomers, and A ⁇ 40 monomers.
- the morphological states of the A ⁇ protein is determined both by thioflavin T binding and by circular dichroism, using methodology described above. For example, peptides are brought up in 30% TFE/Tris for circular dichroism measurement and CDPRO deconvolution software is used for secondary structure calculation (Cellcon II (Freeware), Robert Woody, Colorado State Universtiy).
- the labeled peptide probe exhibits 18.3% ⁇ helix structure, 27.6% ⁇ strand (sheet) structure, and 54.1% turn/unordered structure.
- the peptide probe exhibits 19.4% ⁇ helix structure, 25.1% ⁇ strand (sheet) structure, and 55.5% turn/unordered structure.
- a ⁇ 42 fibers exhibit 12.6% ⁇ helix structure, 60.2% ⁇ strand (sheet) structure, and 27.2% turn/unordered structure.
- a ⁇ 40 fibers exhibit 5.6% ⁇ helix structure, 58.4% ⁇ strand (sheet) structure, and 35.9% turn/unordered structure.
- a sample of oligomers of A ⁇ 42 (including dimers, trimers, tetramers, hexamers and 12-mers) exhibits 3.2% ⁇ helix structure, 52.7% ⁇ strand (sheet) structure, and 45.4% turn/unordered structure.
- FIG. 11A fibers and monomer
- 11 B oligomers
- a peptide probe specific for A ⁇ (SEQ ID NO:36) is used to detect A ⁇ 40 and A ⁇ 42 in samples of human cerebrospinal fluid (CSF) obtained from Alzheimer's patients and from age-matched healthy patients.
- CSF human cerebrospinal fluid
- the peptide probe is labeled at each terminus with pyrene. 40 ⁇ L samples of CSF are incubated with 2 ⁇ M peptide probe and allowed to incubate for 1 hour, prior to exciting at 350 nm and scanning fluorescence from 360 to 600 nm.
- the data is presented in FIG. 12 as the ratio of the excimeric region (430-530 nm) over the monomeric region (370-385 nm).
- the peptide probe is able to stratify Alzheimer's patients (black) from age-matched healthy patients (white).
- FIG. 12A presents the data for each patient, while FIG. 12B presents the average data for each patient group.
- the patient samples also were assayed for A ⁇ protein using a commercial antibody-based kit (Biosource ELISA, Invitrogen), but that assay did not detect A ⁇ protein, indicating that the peptide probe is more sensitive.
- a similar assay is carried out using a biotinylated peptide probe specific for A ⁇ (SEQ ID NO:36) that is immobilized on magnetic beads and 200 ⁇ L samples of serum from Alzheimer's patients and age-matched healthy patients.
- Biotinylated peptide probe is immobilized to Dynal magnetic beads coated with streptavidin. These beads are incubated directly with the serum samples for 1 hour, then the magnetic beads and the captured material are pulled down to remove the serum samples.
- the peptide probe is able to stratify Alzheimer's patients (black) from age-matched healthy patients (white).
- the results, shown in FIG. 13 have a p value of 0.045.
- the patient samples also were assayed for A ⁇ protein using a commercial antibody-based kit (Biosource ELISA, Invitrogen), but again that assay did not detect A ⁇ protein, indicating that the peptide probe is more sensitive.
- a ⁇ plaques e.g., insoluble self-aggregates of A ⁇ protein associated with Alheimer's disease
- a peptide probe specific for A ⁇ SEQ ID NO:36
- labeled at each terminus with pyrene is used.
- tissue slices Two different types are evaluated: cyro-cut (frozen and sliced) and paraffin embedded and sliced.
- the peptide probe is incubated on the brain slices and binding of the peptide probe to the brain, and to the amyloid deposits/plaques in particular, are qualitatively evaluated.
- consecutive slices are immunohistochemicallly stained with an anti-A ⁇ antibody, the 6E10 antibody or Thioflavin S.
- the use of anti-A ⁇ controls confirms the specificity of the staining on neuritic plaques.
- Images are recorded on a Nikon E800 microscope with a mounted PixelFly camera. For tiled image recordings, the microscope is equipped with a StagePro software controlled automatic table. Images of peptide probe staining and antibody and ThioflavinS staining, respectively, are overlaid in Adobe Photo Shop software
- plaque-specific staining is apparent, both on paraffin or cryo-cut slices. Overlaying with antibody staining from consecutive slices revealed that staining on paraffin slices is more specific to plaques than staining on cryo-cut slices. In the latter samples, cells from the neuronal layer of the hippocampus are marked, as are brain tissue around plaques in the cortex. Thus, the quality of the stain may be better on paraffin sections.
- the peptide probe also specifically stained human amyloid peptide bearing blood vessels, which are typically present in hAPP751 SL transgenics.
- mice are sacrificed and CSF and brains are extracted. (All mice are sedated by standard inhalation anaesthesia, Isofluran, Baxter).
- Cerebrospinal fluid is obtained by blunt dissection and exposure of the foramen magnum. Upon exposure, a Pasteur pipette is inserted to the approximate depth of 0.3-1 mm into the foramen magnum. CSF is collected by suctioning and capillary action until flow fully ceases. CSF is immediately frozen and kept at ⁇ 80° C. until use.
- mice After CSF sampling, the stomach, stomach content and the brains are rapidly removed. Brains are hemisected, and the right hemisphere of all mice are immersion fixed in freshly produced 4% Paraformaldehyde/PBS (pH 7.4) for one hour at room temperature, and transferred to a 15% sucrose/PBS solution for 24 hours to ensure cryoprotection. Thereafter, brains are frozen in liquid isopentane on the next day and stored at ⁇ 80° C. until used for histological investigations. The other brain half is immediately shock frozen in liquid isopentane for future use.
- Paraformaldehyde/PBS pH 7.4
- Images are recorded from transgenic mice treated with the highest dose of peptide probe and from control mice and from a transgenic vehicle control (e.g., the diluent used for the peptide probe) to confirm that the peptide probe crosses the blood-brain barrier (BBB), which it does.
- BBB blood-brain barrier
- fluorescence is excited using a UV-2A and B-1E filter of a microscope to detect probable auto-fluorescence in the lower spectrum. Fluorescent parts are recorded in the consecutive slice to ensure that impurity (e.g. dust) does not causes fluorescence. Transgenic slices are stained with ThioflavinS to assess plaque load.
- hAPP751 SL transgenic mice express hAPP in certain blood vessels in the periphery of the brain.
- the peptide probe binds to the amyloid and agglomerates outside the blood vessel in the brain.
- the peptide probe reaches the olfactory bulb, but does not bind to a specifiable morphological structure.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
Disclosed are agents and methods that may be used to diagnose and treat a variety of diseases associated with conformationally-altered proteins. The agents and methods may be used to identify and deliver drugs useful for treating diseases associated with conformationally-altered proteins.
Description
- This application claims the benefit of priority under 35 U.S.C. §119(e) to U.S. provisional application 60/833,854, filed Jul. 28, 2006, and U.S. provisional application 60/848,358, filed Oct. 2, 2006, the entire contents of which are incorporated by reference herein in their entireties.
- 1. Field of the Invention
- The present invention relates to the field of the detection of proteins in a specific structural form, including misfolded proteins, such as those associated with disease states, and to the treatment of those disease states. More particularly, the present invention relates to methods, probes, and kits for detecting proteins in a specific structural form in samples, such as biological and clinical samples or in vivo. In some embodiments, the proteins are associated with amyloidogenic diseases. The invention also relates to methods, agents, and kits for treating diseases associated with such proteins, and for identifying other agents useful for treating such diseases.
- 2. Background
- A variety of diseases are associated with a specific structural form of a protein (e.g., a “misfolded protein” or a self-aggregated protein), while the protein in a different structural form (e.g., a “normal protein”) is not harmful. In many cases, the normal protein is soluble, while the misfolded protein forms insoluble aggregates. Examples of such insoluble proteins include prions in transmissible spongiform encephalopathy (TSE); Aβ-peptide in amyloid plaques of Alzheimer's disease (Aβ), cerebral amyloid angiopathy (CAA), and cerebral vascular disease (CVD); a-synuclein deposits in Lewy bodies of Parkinson's disease, tau in neurofibrillary tangles in frontal temporal dementia and Pick's disease; superoxide dismutase in amylotrophic lateral sclerosis; and Huntingtin in Huntington's disease. See, e.g., Glenner et al., J. Neurol. Sci. 94:1-28, 1989; Haan et al., Clin. Neurol. Neurosurg. 92(4):305-310, 1990.
- Often, these insoluble proteins form aggregates composed of non-branching fibrils with the common characteristic of a (3-pleated sheet conformation. In the CNS, amyloid can be present in cerebral and meningeal blood vessels (cerebrovascular deposits) and in brain parenchyma (plaques). Neuropathological studies in human and animal models indicate that cells proximal to amyloid deposits are disturbed in their normal functions. See, e.g., Mandybur, Acta Neuropathol. 78:329-331, 1989; Kawai et al., Brain Res. 623:142-146, 1993; Martin et al., Am. J. Pathol. 145:1348-1381, 1994; Kalaria et al., Neuroreport 6:477-80, 1995; Masliah et al., J. Neurosci. 16:5795-5811, 1996. Other studies additionally indicate that amyloid fibrils may actually initiate neurodegeneration. See, e.g., Lendon et al., J. Am. Med. Assoc. 277:825-831, 1997; Yankner, Nat. Med. 2:850-852, 1996; Selkoe, J. Biol. Chem. 271:18295-18298, 1996; Hardy, Trends Neurosci. 20:154-159, 1997.
- Prions are infections pathogens that cause central nervous system spongiform encephalopathies in humans and animals. Prions are distinct from bacteria, viruses, and viroids. A potential prion precursor is a protein referred to as PrP 27-30, a 28 kilodalton hydrophobic glycoprotein that polymerizes (aggregates) into rod-like filaments found as plaques in infected brains. The normal protein homologue differs from prions in that it is readily degradable, whereas prions are highly resistant to proteases. It has been suggested that prions might contain extremely small amounts of highly infectious nucleic acid, undetectable by conventional assay methods. See, e.g., Benjamin Lewin, “Genes IV”, Oxford Univ. Press, New York, 1990, at page 1080. However, the predominant hypothesis at present is that no nucleic acid component is necessary for the infectivity of prion protein.
- Complete prion protein-encoding genes have been cloned, sequenced, and expressed in transgenic animals. The normal cellular prion protein, PrPC, is encoded by a single-copy host gene and is normally found at the outer surface of neurons. During a post-translational process, a protein referred to as PrPSc is formed from the normal, cellular PrP isoform (PrPC), and prion disease results. PrPSc is necessary for both the transmission and pathogenesis of the transmissible neurodegenerative diseases of animals and humans.
- The normal prion protein (PrPC) is a cell-surface metallo-glycoprotein that has mostly an α-helix and coiled-loop structure. It is believed to serve as an antioxidant and is thought to be associated with cellular homeostasis. The abnormal form (PrPSc) is a conformer that is resistant to proteases and has a secondary structure that contains predominantly β-sheets. It is believed that this conformational change in secondary structure leads to aggregation and eventual neurotoxic plaque deposition in the prion disease process.
- Prion-associated diseases include scrapie of sheep and goats, chronic wasting disease of deer and elk, and bovine spongiform encephalopathy (BSE) of cattle. See, e.g., Wilesmith and Wells, Microbiol. Immunol. 172:21-38, 1991. Four prion diseases of humans have been identified: (1) kuru, (2) Creutzfeldt-Jakob disease (CJD), (3) Gerstmann-Strassler-Scheinker Disease (GSS), and (4) fatal familial insomnia (FFI). See, e.g., Gajdusek, D. C., Science 197:943-969, 1977; Medori et al. N. Engl. J. Med. 326:444-449, 1992.
- Prion diseases are transmissible and insidious. For example, the long incubation times associated with prion diseases will not reveal the full extent of iatrogenic CJD for decades in thousands of people treated with cadaver-sourced human growth hormone (HGH) worldwide. The importance of detecting prions in biological products has been heightened by the possibility that bovine prions have been transmitted to humans who developed new variant Creutzfeldt-Jakob disease (nvCJD). See, e.g., Chazot et al., Lancet 347:1181, 1996; Will et al., Lancet 347:921-925, 1996.
- Diseases caused by prions are hard to diagnose. The disease can be latent or subclinical (abnormal prions are detectable, but symptoms are not). Moreover, normal homologues of a prion-associated protein exist in the brains of uninfected organisms, further complicating detection. See, e.g., Ivan Roitt et al., “Immunology”, Mosby-Year Book Europe Limited, 1993, at page 15.1.
- Current techniques used to detect the presence of prion-related infections rely on gross morphological changes in the brain, and on immunochemical techniques that are generally applied only after symptoms are manifest. Many of the current detection methods are antibody-based assays, or rely on affinity chromatography. They use brain tissue from dead animals, or, in some cases, capillary immunoelectrophoresis of blood samples.
- Brain tissue based assays can lead to late detection and required slaughtering the animal to be tested. Prionic-Check (Prionics AG), a diagnostic test for bovine spongiform encephalopathy, also entails slaughtering an animal to obtain a liquefied brain tissue sample, which is subjected to an antibody using Western Blot. Although results are obtained in six to seven hours, the test does not account for the six-month lag time between PrPSc accumulation in the brain and the onset of clinical symptoms. Tonsillar biopsy sampling, and blood and cerebrospinal sampling, while accurate, can require surgical intervention and take weeks to obtain results. Electrospray ionization mass spectroscopy (ESI-MS), nuclear magnetic resonance (NMR), circular dichroism (CD), and other non-amplified structural techniques require large amounts of sample and expensive equipment that is typically located a substantial distance form the sample source. Other diseases associated with conformationally-altered proteins present similar difficulties.
- Transmissible Spongiform Encephalopathies or “TSEs” are fatal neurodegenerative diseases that include such human disorders as CJD and kuru. Animal forms of TSE include scrapie in sheep, CWD in deer and elk, and BSE in cattle. These diseases are characterized by the formation and accumulation in the brain of an abnormal proteinase K resistant isoform (PrP-res) of a normal protease-sensitive, host-encoded prion protein (PrP-sen). PrP-res is formed from PrP-sen by a post-translational process involving conformational changes that convert the PrP-sen into a PrP-res molecular aggregate having a higher n-sheet content. The formation of these macromolecular aggregates of PrP-res is closely associated with TSE-mediated brain pathology, in which amyloid deposits of PrP-res are formed in the brain, which eventually becomes “spongiform” (filled with holes).
- The cellular protein PrP-sen is a sialoglycoprotein encoded by a gene that, in humans, is located on
chromosome 20. The PrP gene is expressed in both neural and non-neural tissues, with the highest concentration of its mRNA being found in neurons. The translation product of the PrP gene consists of 253 amino acids in humans, 254 amino acids in hamsters and mice, 264 amino acids in cows, and 256 amino acids in sheep (all of these sequences are disclosed in U.S. Pat. No. 5,565,186, which describes methods of making transgenic mice that express species-specific PrP and is incorporated herein by reference). In prion protein related encephalopathies, the cellular PrP-sen is converted into the altered PrP-res. PrP-res is distinguishable from PrP-sen in that PrP-res aggregates (see, e.g., Caughey and Chesebro, Trends Cell Biol. 7:56-62, 1997); is at least partially resistant to proteinase K digestion (only approximately the N-terminal 67 amino acids are removed by proteinase K digestion under conditions in which PrP-sen is completely degraded) (see, e.g., Prusiner et al., Sem. Virol. 7:159-173, 1996); and has, as compared to PrP-sen, less α-helical structure and more β-sheet structure (see, e.g., Pan et al., Proc. Natl. Acad. Sci. USA 90:10962-10966, 1993). - If PrP-sen is not expressed in the brain tissue of animal recipients of scrapie-infected neurografts, no pathology occurs outside the graft, demonstrating that PrP-res and PrP-sen are both required for the pathology. See, e.g., Brander et al., Nature 379:339-343, 1996. The long latency period between infection and the appearance of disease (months to decades, depending on species) has prompted the development of a cell-free in vitro test, in which PrP-res induces the conversion of PrP-sen to PrP-res. See, e.g., Kockisko et al., Nature 370:471-474, 1994; Prusiner et al., WO 97/16728). These in vivo and in vitro observations indicated that PrP-res and PrP-sen interact to form PrP-res and promote TSE pathogenesis. The term “interact” as used herein is meant to include detectable interactions (e.g., biochemical interactions) between molecules, such as protein-protein, protein-nucleic acid, nucleic acid-nucleic acid, protein-small molecule, or nucleic acid-small molecule interactions.
- Small synthetic peptides containing certain PrP sequences have previously been shown to spontaneously aggregate to form fibrils with a high degree of β-sheet secondary structure of the type seen in the insoluble deposits in TSE afflicted brains. See, e.g., Gasset et al., Proc. Natl. Acad. Sci. USA 89:10940-10944, 1992; Come et al., Proc. Natl. Acad. Sci. USA 90:5959-5963, 1993; Forloni et al., Nature 362:543-546, 1993; Hope et al., Neurodegeneration 5:1-11, 1996. Moreover, other synthetic PrP peptides have been shown to interact with PrP-sen molecules to form an aggregated complex with increased protease-resistance. See, e.g., Kaneko et al., Proc. Natl. Acad. Sci. USA 92:11160-11164, 1995; Kaneko et al., J. Mol. Biol. 270:574-586, 1997.
- In AD, CAA, and CVD, the main amyloid component is the amyloid beta protein (Aβ). The Aβ protein, which is generated from the amyloid beta precursor protein (APP) by the action of two putative secretases, is present at low levels in the normal CNS and blood. Because APP can be cleaved at several site, the naturally-occurring Aβ protein is not a homogenous product. Two abundant forms found in amyloid plaques are Aβ1-40 (also referred to as Aβ40) and Aβ1-42 (also referred to as Aβ42), which are produced by alternative carboxy-terminal truncation of APP. See, e.g., Selkoe et al., PNAS USA 85:7341-7345, 1988; Selkoe, Trends Neurosci. 16:403-409, 1993. Aβ40 and Aβ42 have identical amino acid sequences, with Aβ42 having two additional residues (Ile and Ala) and its C terminus. Although Aβ40 is more abundant, Aβ42 is the more fibrillogenic and is the major component of the two in amyloid deposits of both Aβ and CAA. See, e.g., Wurth et al., J. Mol. Biol. 319: 1279-90 (2002).
- Elevated plasma levels of Aβ42 have been associated with Aβ, and with increased risk for Aβ. Also, the magnitude of the ratio of Aβ42/Aβ40 levels has been shown to have clinical significance for AD, CAA, and other conditions, such as late-life depression (LLMD). See, e.g., Pomara et al. Neurochem. Res. (2006). Plasma levels of Aβ42 and Aβ40 are typically determined using monoclonal antibodies.
- In addition to the amyloid deposits in Aβ cases described above, most Aβ cases are also associated with amyloid deposition in the vascular walls. See, e.g., Hardy, 1997, supra; Haan et al., 1990, supra; Terry et al., supra; Vinters H. V., Cerebral amyloid angiopathy, Stroke March-April; 18(2):311-324, 1987; Itoh Y., et al. Subpial beta/A4 peptide deposits are closely associated with amyloid angiopathy in the elderly, Neurosci. Lett. 155(2):144-147, Jun. 11, 1993; Yamada M., et al., Subarachnoid haemorrhage in the elderly: a necropsy study of the association with cerebral amyloid angiopathy, J. Neurol. Neurosurg. Psychiatry 56(5):543-547, May, 1993; Greenberg S. M., et al., The clinical spectrum of cerebral amyloid angiopathy: presentations without lobar hemorrhage, Neurology 43(10):2073-2079, October 1993. These vascular lesions are the hallmark of CAA, which can exist in the absence of AD.
- Although the molecular basis of AD has not been established, the disease is associated with neurotoxic assemblies of Aβ42. Normal people have soluble Aβ protein circulating in their plasma and cerebrospinal fluid (CSF). Some in vitro studies indicate that neurotoxicity is correlated with the presence of fibrillar assemblies of Aβ42 and with the β-sheet conformation of Aβ42. Some molecules present in CSF have been reported to inhibit Aβ42 fibril formation, such as apolipoprotein E (ApoE), apolipoprotein J (ApoJ), serum amyloid P component (SAP), transthyretin (TTR), antichymostrypsin (ACT), and α-macroglobulin (cOM), although apoE and ACT also have been reported to promote the assembly of Aβ42 into filaments in vitro. Human anti-Aβ antibodies also have been shown to block Aβ42 fibril formation and prevent Aβ42 induced neurotoxicity in vitro. See, e.g., Ono et al., Neurobiol. Disease 20: 233-40 (2005).
- The mechanism of Aβ fibril formation in vitro has been explained by a nucleation-dependent model, with two phases. The first phase, nucleus formation, involves the association of monomers and is believed to be a thermodynamically unfavorable, rate-limiting step in fibril formation. The next phase, extension, involves the addition of monomers to the ends of existing fibrils, and is more thermodynamically favored. See, e.g., Ono et al., supra.
- Another pathogenic form of the Aβ protein is soluble Aβ oligomers (also know as Aβ oligomeric ligands, or ADDLs). The neurotoxic activity of ADDLs has been established in several in vitro models, and human brain levels of ADDL has been found to be greatly elevated in AD patients. See, e.g., Gong et al., PNAS 100: 10417-22 (2003).
- Human transthyretin (TTR) is a normal plasma protein composed of four identical, predominantly β-sheet structured units, and it serves as a transporter of the hormone thyroxin. Abnormal self assembly of TTR into amyloid fibrils causes two forms of human disease, namely senile systemic amyloidosis (SSA) and familial amyloid polyneuropathy (FAP). See, e.g., Kelly, Curr. Opin. Struct. Biol. 6(1): 11-17, 1996. The cause of amyloid formation in FAP is point mutations in the TTR gene; the cause of SSA is unknown. The clinical diagnosis is established histologically by detecting deposits of amyloid in situ in biopsy material.
- To date, little is known about the mechanism of TTR conversion into amyloid in vivo. However, several laboratories have demonstrated that amyloid conversion can be simulated in vitro by partial denaturation of normal human TTR. See, e.g., McCutchen et al., Biochemistry 32(45):12119-12127, 1993; McCutchen and Kelly, Biochem. Biophys. Res. Comm. 197(2):415-421, 1993. The mechanism of conformational transition involves a monomeric conformational intermediate that polymerizes into linear β-sheet structured amyloid fibrils. Lai et al., Biochemistry 35(20):6470-6482, 1996. The process can be mitigated by binding with stabilizing molecules, such as thyroxin or triiodophenol. Miroy et al., Proc. Natl. Acad. Sci. USA 93(26):15051-15056, 1996.
- The precise mechanism by which neuritic plaques are formed and the relationship of plaque formation to the disease-associated neurodegenerative processes are not well-defined. The amyloid fibrils in the brains of Alzheimer's and prion disease patients are known to result in the inflammatory activation of certain cells. For example, primary microglial cultures and the THP-1 monocytic cell line are stimulated by fibrillar β-amyloid and prion peptides to activate identical tyrosine kinase-dependent inflammatory signal transduction cascades. The signaling response elicited by p-amyloid and prion fibrils leads to the production of neurotoxic products, which are in part responsible for the neurodegeneration. See, e.g., Combs et al., J. Neurosci. 19:928-939, 1999.
- Detection methods for conformationally altered proteins associated with the aforementioned disorders, such as AD, CAA, and CVD, are also inadequate in that, like the previously mentioned prion detection techniques, they often require post-mortem tissue sampling. Also, antibody-based assays may not be effective because antibodies may not distinguish the disease-causing forms of the protein from normal protein.
- The present invention provides methods, probes, agents and kits that may be used to diagnose and treat a variety of diseases associated with proteins in a specific structural state. The agents and methods also may be used to identify other agents useful for treating or preventing such diseases.
- In accordance with one embodiment, there is provided a method for identifying a target protein present in a specific state of self-aggregation in a sample, comprising (a) contacting the sample with a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein in a specific state of self-aggregation; and (b) detecting any binding between the peptide probe and any target protein present in the specific state of self-aggregation, thereby identifying any target protein present in the specific state of self-aggregation. In some embodiments, the peptide probe preferentially binds to the target protein in a specific state of self-aggregation selected from the group consisting of monomers, soluble oligomers, and insoluble self-aggregates. In some embodiments, the peptide probe preferentially binds to the target protein in a specific state of self-aggregation selected from the group consisting of insoluble amorphous self-aggregates, protofibrils, and fibrils.
- In some embodiments, the target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or Aβ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof β2-microglobulin, α-synuclein, rhodopsin, α1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein.
- In some embodiments, the peptide probe further comprises a detectable label. In some embodiments, the peptide probe is immobilized on a solid support.
- In specific embodiments, the peptide probe comprises an amino acid sequence selected from SEQ ID NO:36 and SEQ ID NO:45.
- In accordance with another embodiment, there is provided an in vivo method for identifying a target protein present in a patient in a specific state of self-aggregation, comprising (a) administering to the patient a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein in the specific state of self-aggregation and wherein the peptide probe is labeled with a detecable label; and (b) scanning the subject for labeled peptide probe localized at target protein present in the patient, thereby identifying target protein present in the patient in the specific state of self-aggregation. In some embodiments, the peptide probe preferentially binds to to the target protein in a specific state of self-aggregation selected from the group consisting of monomers, soluble oligomers, and insoluble self-aggregates.
- In some embodiments, the target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or Aβ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof β2-microglobulin, α-synuclein, rhodopsin, α1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein.
- In accordance with another embodiment, there is provided a method for preventing the formation of protein aggregates of a target protein, comprising contacting the target protein with a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein in a specific state of self-aggregation, thereby preventing the formation of higher order protein aggregates of the target protein. In some embodiments, the peptide probe preferentially binds to to the target protein in a specific state of self-aggregation selected from the group consisting of monomers, soluble oligomers, and insoluble self-aggregates.
- In some embodiments, the target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or Aβ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof β2-microglobulin, α-synuclein, rhodopsin, α1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein.
- In accordance with another embodiment, there is provided a method of delivering a therapeutic agent to a target protein, comprising combining the therapeutic agent with a peptide probe for the target protein and administering the peptide probe-therapeutic agent combination to a patient in need thereof. In some embodiments, the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation and the peptide probe does not comprise the full-length sequence of the target protein. In some embodiments, the peptide probe preferentially binds to the target protein in a specific state of self-aggregation, such as monomers, soluble oligomers and insoluble aggregates. In some embodiments, the therapeutic agent has anti-amyloid activity.
- In accordance with another embodiment, there is provided a method of assessing an agent's ability to inhibit aggregation of a target protein, comprising (A) contacting a fusion protein and a test agent, the fusion protein comprising: (i) a peptide probe for the target protein, wherein (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and (ii) a label which generates a signal dependent on the aggregative state of the fusion protein; (B) detecting a signal generated by the label; and (C) correlating the signal with the ability of the agent to inhibit aggregation of the target protein.
- In accordance with another embodiment, there is provided a method of assessing an agent's ability to inhibit aggregation of a target protein, comprising (A) contacting the target protein, a fusion protein, and a test agent, the fusion protein comprising (i) a peptide probe for the target protein, wherein (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and (ii) a label which generates a signal dependent on the aggregative state of the fusion protein; (B) detecting a signal generated by the label; and (C) correlating the signal with the ability of the agent to inhibit aggregation of the target protein.
- In accordance with another embodiment, there is provided a method of assessing an agent's ability to inhibit aggregation of a target protein, comprising (A) subjecting a fusion protein to conditions that promote aggregation, the fusion protein comprising: (i) a peptide probe for the target protein, wherein (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and (ii) a label which generates a signal dependent on the aggregative state of the fusion protein; (B) detecting a first signal generated by the label; (C) subjecting the fusion protein to conditions that promote aggregation in the presence of a test agent, and detecting a second signal generated by the label; and (D) assessing the relative intensities of the first and second signals, thereby identifying an agent that inhibits aggregation of the target protein.
- In accordance with another embodiment, there is provided a method of assessing an agent's ability to inhibit aggregation of a target protein, comprising (A) contacting a fusion protein and the target protein, wherein the fusion protein comprises (i) a peptide probe for the target protein, wherein (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and (ii) a label which generates a signal dependent on the aggregative state of the fusion protein; (B) detecting a first signal generated by the label; (C) contacting the fusion protein, the target protein, and a test agent, and detecting a second signal generated by the label; and (D) assessing the relative intensities of the first and second signals, thereby identifying an agent that inhibits aggregation of the target protein.
- In accordance with another embodiment, there is provided a method of identifying a peptide probe for a target protein that exhibits an increased or decreased tendency to form aggregates relative to a reference peptide probe, comprising (A) detecting a first signal generated by a reference fusion protein that comprises (i) a reference peptide probe comprising (a) an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) wherein the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the reference peptide probe does not comprise the full-length sequence of the target protein; and (ii) green fluorescent protein; (B) detecting a second signal generated by a test fusion protein comprising a test peptide probe and green fluorescent protein, wherein the test peptide probe is a mutant of the reference peptide probe that comprises an amino acid insertion, deletion or substitution relative to the amino acid sequence of the reference peptide probe; and (C) correlating the intensity of the second signal relative to the first signal, thereby identifying a peptide probe for a target protein that exhibits an increased or decreased tendency to form aggregates relative to the reference peptide probe.
- In accordance with another embodiment, there is provided a method of identifying a peptide probe specific for a target protein in a specific structural state that falls on a spectrum of structural states ranging from a low end of soluble monomers to a high end of insoluble self-aggregates, comprising (A) subjecting a fusion protein to conditions that promote self-aggregation, the fusion protein comprising (i) a peptide probe for the target protein, wherein (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and (ii) green fluorescent protein; (B) detecting a signal generated by the fusion protein; and (C) correlating the intensity of the signal with the specificity of the peptide probe for a target protein in a specific structural state, thereby identifying a peptide probe specific for a target protein in a specific structural state.
- In accordance with another embodiment, there is provided a method for treating a disease associated with a target protein, comprising contacting the target protein with a fusion protein comprising (i) a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein, and (ii) a therapeutic agent.
-
FIG. 1 illustrates the a-helical monomer and β-sheet dimer of a TSE conformer, along with various embodiments of the disclosed probes. The normal wild-type (wt) form of prion protein (PrPC) prefers a monomeric state, while the abnormal, disease-causing form (PrPSc) prefers the multimeric (dimeric or greater) state. -
FIG. 2 illustrates a diagnostic analysis of a sample containing TSE protein comprised of β-sheets. The top reaction indicates the process in the presence of a misfolded protein in a sample, while the bottom reaction indicates the process in the absence of a misfolded protein in a sample. -
FIG. 3 illustrates a palindromic probe for prion protein. -
FIG. 4 illustrates the GFP fluorescence measurement of Alzheimer probe peptide-GFP fusion (Alz) and Prion probe peptide-GFP fusion (Pri). Measurements were taken after inducing expression and incubating the cells for 3 hours at 37° C. (left graph) or 5 hours at 30° C. (right graph). -
FIG. 5 illustrates the characteristic fluorescence of pyrene-labeled peptide probe monomers (measured at 378 nm) and dimers (measured at 495 nm). -
FIG. 6 illustrates the reactivity of a peptide probe specific for PrPSc protein with PrPSc present in thirty fractions obtained from samples from scrapie-infected hamster brain. The y-axis shows the relative ID/IM ratios of each fraction. The size of the PrPSc aggregates present in each fraction increases along the x-axis. -
FIG. 7 illustrates the reactivity of a peptide probe specific for PrPSc with PrPSc in sera from infected sheep, and its lack of reactivity with sera from normal sheep. In the Figure, “HP 1” designates a sample from pooled serum of 3-month old healthy sheep; “HP 2” designates a sample from pooled serum of 2-year old healthy sheep; “ln1” to “ln4” designate serum from 18-24 month old scrapie sheep, and “ln5” designates serum from a terminal sheep. -
FIG. 8 illustrates the improvement in the signal-to-noise ratio achieved by sonicating samples prior to analysis of the reactivity of a peptide probe specific for PrPSc with PrPSc in sera from infected sheep and normal sheep. In the Figure, “HP 1” designates a sample from pooled serum of 3-month old healthy sheep; “HP 2” designates a sample from pooled serum of 2-year old healthy sheep; “ln1” to “ln4” designate serum from 18-24 month old scrapie sheep, and “ln5” designates serum from a terminal sheep. -
FIG. 9 illustrates the reactivity of a peptide probe specific for PrPSc with PrPSc present in sheep blood components (buffy coat, serum and plasma). -
FIG. 10 illustrates the flourescense, in a cell-based GFP assay of fusion proteins comprising GFP and a peptide probe specific for Aβ (SEQ ID NO:36); Aβ42 (SEQ ID NO:42), or the Aβ42 mutant clone GM6 (SEQ ID NO:44). -
FIG. 11 illustrates the reactivity of a peptide probe specific for Aβ (SEQ ID NO:36) with different structural forms of Aβ40 and Aβ42.FIG. 11A shows reactivity with Aβ40 and Aβ42 fibers and non-reactivity with Aβ40 nmomers.FIG. 11B shows reactivity with Aβ40 and Aβ42 oligomers. -
FIG. 12 illustrates the ability of a peptide probe specific for Aβ (SEQ ID NO:36) to detect Aβ40 and Aβ42 in samples of human cerebrospinal fluid (CSF) obtained from Alzheimer's patients. The peptide probe is able to stratify Alzheimer's patients (black) from age-matched healthy patients (white) with a p value=0.0005.FIG. 12A presents the data for each patient, whileFIG. 12B presents the average data for each patient group. -
FIG. 13 illustrates the ability of an immobilized peptide probe specific for Aβ (SEQ ID NO:36) to detect Aβ40 and Aβ42 in samples of human serum from Alzheimer's patients. The peptide probe is able to stratify Alzheimer's patients (black) from age-matched healthy patients (white) with a p value=0.045. - The present invention provides probes and methods for the detection of proteins in a specific structural state, including misfolded proteins and self-aggregated proteins, such as those associated with disease states, and probes and methods for the treatment of those disease states. More particularly, the present invention provides methods, probes, and kits for detecting proteins in a specific structural state in a sample or in vivo. In some embodiments, the proteins are associated with amyloidogenic diseases. The invention also provides methods, agents, and kits for treating diseases associated with such proteins, and for identifying other agents useful for treating such diseases.
- Some aspects of the invention relate to the diagnosis and treatment of diseases and conditions associated with a specific structural state of a protein, such as a specific conformation or self-aggregative state of a protein. Proteins that are associated with human disease when they adopt a specific conformational or self-aggregated state are known in the art. Examples of such diseases includes amyloidogenic diseases.
- The references cited herein, including patents and patent applications, are incorporated by reference, in their entirety.
- Technical and scientific terms used herein have the meanings commonly understood by one of ordinary skill in the art to which the present invention pertains, unless otherwise defined. Reference is made herein to various methodologies known to those of ordinary skill in the art. Publications and other materials setting forth such known methodologies to which reference is made are incorporated herein by reference in their entireties as though set forth in full. Standard reference works setting forth the general principles of recombinant DNA technology include Sambrook, J., et al. (1989) Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Planview, N.Y.; McPherson, M. J. Ed. (1991) Directed Mutagenesis: A Practical Approach, IRL Press, Oxford; Jones, J. (1992) Amino Acid and Peptide Synthesis, Oxford Science Publications, Oxford; Austen, B. M. and Westwood, O. M. R. (1991) Protein Targeting and Secretion, IRL Press, Oxford. Any suitable materials and/or methods known to those of ordinary skill in the art can be utilized in carrying out the present invention. However, preferred materials and methods are described. Materials, reagents and the like to which reference is made in the following description and examples are obtainable from commercial sources, unless otherwise noted.
- As used herein, the singular forms “a,” “an,” and “the” designate both the singular and the plural, unless expressly stated to designate the singular only.
- As used herein, “about” will be understood by persons of ordinary skill in the art and will vary to some extent on the context in which it is used. If there are uses of the term which are not clear to persons of ordinary skill in the art given the context in which it is used, “about” will mean up to plus or minus 10% of the particular term.
- As used herein, the phrase “therapeutically effective amount” shall mean that drug dosage that provides the specific pharmacological response for which the drug is administered in a significant number of subjects in need of such treatment. It is emphasized that a therapeutically effective amount of a drug that is administered to a particular subject in a particular instance will not always be effective in treating the conditions/diseases described herein, even though such dosage is deemed to be a therapeutically effective amount by those of skill in the art.
- As described herein, “amyloidogenic diseases” are diseases in which amyloid plaques or amyloid deposits are formed in the body. Amyloid formation is found in a number of disorders, such as diabetes, AD, scrapie, BSE, CJD, chronic wasting disease (CWD), related transmissible spongiform encephalopathies (TSEs), and other diseases disclosed herein. The invention is not limited to amyloidogenic diseases, however, and is useful in the diagnosis and treatment of any disease or condition associated with a specific conformation or aggregative state of a protein.
- As used herein, “protein” refers to any polymer of two or more individual amino acids (whether or not naturally occurring) linked via a peptide bond, which occurs when the carboxyl carbon atom of the carboxylic acid group bonded to the α-carbon of one amino acid (or amino acid residue) becomes covalently bound to the amino nitrogen atom of amino group bonded to the α-carbon of an adjacent amino acid. These peptide bonds, and the atoms comprising them (i.e., α-carbon atoms, carboxyl carbon atoms and their substituent oxygen atoms, and amino nitrogen atoms and their substituent hydrogen atoms) form the “polypeptide backbone” of the protein. In simplest terms, the polypeptide backbone shall be understood to refer to the amino nitrogen atoms, a-carbon atoms, and carboxyl carbon atoms of the protein, and two or more of these atoms (with or without their substituent atoms) may also be represented as a pseudoatom. Any representation of a polypeptide backbone that may be used in a functional site descriptor as described herein will be understood to be included within the meaning of the term “polypeptide backbone”.
- The term “protein” is understood to include the terms “polypeptide” and “peptide” (which, at times, may be used interchangeably herein) within its meaning. Proteins may include infectious proteins or “prions” as disclosed herein. In addition, proteins comprising multiple polypeptide subunits (e.g., DNA polymerase III, RNA polymerase II) or other components (for example, an RNA molecule, as occurs in telomerase) will also be understood to be included within the meaning of “protein” as used herein. Similarly, fragments of proteins and polypeptides are also contemplated and may be referred to herein as “proteins.” Fragments may include at least 5 contiguous amino acids, at least 10 contiguous amino acids, at least 15 contiguous amino acids, at least 20 contiguous amino acids, or at least 25 contiguous amino acids of the full-length protein.
- As used herein, “conformation” or “conformational constraint” refers to the presence of a particular protein conformation, for example, an α-helix, parallel and antiparallel β-strands, a leucine zipper, a zinc finger, etc. In addition, conformational constraints may include amino acid sequence information without additional structural information. As an example, “—C—X—X—C—” is a conformational constraint indicating that two cysteine residues must be separated by two other amino acid residues, the identities of each of which are irrelevant in the context of this particular constraint. A “conformational change” is a change from one conformation to another.
- “Prion” is a contraction of the words “protein” and “infection”. “PrP protein”, “PrP”, and the like are used interchangeably herein to mean both the infections particle form (“PrPSc”) known to cause diseases (such as spongiform encephalopathies) in humans and animals, and the non-infectious form (“PrPC”) which, under appropriate conditions, is converted to the infectious PrPSc form. The terms “prion”, “prion protein”, “PrPSc protein”, and the like are used interchangeably herein to refer to the infectious PrPSc form of a PrP protein. Prion particles are comprised largely, if not exclusively, of PrPSc molecules encoded by a PrP gene. Prions are distinct from bacteria, viruses, and viroids. Known prions infect animals and cause scrapie, a transmissible, degenerative disease of the nervous system of sheep and goats, as well BSE (or mad cow disease) and feline spongiform encephalopathy of cats. Four prion diseases known to affect humans are (1) kuru, (2) CJD, (3) GSS, and (4) FFI. As used herein, “prion” includes all forms of prions causing all or any of these diseases or others in any animals used, and in particular in humans and domesticated farm animals.
- The term “PrP gene” is used herein to describe genetic material that expresses proteins that include known polymorphisms and pathogenic mutations. The term “PrP gene” refers generally to any gene of any species that encodes any form of a prion protein. The PrP gene may be from any animal, and includes all polymorphisms and mutations thereof, it being recognized that the terms include other such PrP genes that are yet to be discovered. The protein expressed by such a gene may assume either a PrPC (non-disease) or PrPSc (disease) form.
- The term “Aβ protein” is used herein to refer to all forms of the Aβ protein, including AB40 and AB42.
- “Recombinant proteins or polypeptides” refer to proteins or polypeptides produced by recombinant DNA techniques, i.e., produced from cells, microbial or mammalian, transformed by an exogenous recombinant DNA expression construct encoding the desired protein or polypeptide. Proteins or polypeptides expressed in most bacterial cultures will typically be free of glycan. Proteins or polypeptides expressed in yeast may have a glycosylation pattern different from that expressed in mammalian cells.
- “Native” or “naturally occurring” proteins or polypeptides refer to proteins or polypeptides recovered from a source occurring in nature. A native protein or polypeptide would include post-translational modifications, including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, acylation, and cleavage.
- A DNA or polynucleotide “coding sequence” is a DNA or polynucleotide sequence that is transcribed into mRNA and translated into a polypeptide in a host cell when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are the start codon at the 5′ N-terminus and the translation stop codon at the 3′ C-terminus. A coding sequence can include prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic DNA, and synthetic DNA sequences. A transcription termination sequence will usually be located 3′ to the coding sequence.
- “DNA or polynucleotide sequence” is a heteropolymer of deoxyribonucleotides (bases adenine, guanine, thymine, cytosine). DNA or polynucleotide sequences encoding the proteins or polypeptides of this invention can be assembled from synthetic cDNA-derived DNA fragments and short oligonucleotide linkers to provide a synthetic gene that is capable of being expressed in a recombinant DNA expression vector. In discussing the structure of particular double-stranded DNA molecules, sequences may be described herein according to the normal convention of providing only the sequence in the 5′ to 3′ direction along the non-transcribed strand of cDNA.
- “Recombinant expression vector or plasmid” is a replicable DNA vector or plasmid construct used either to amplify or to express DNA encoding the proteins or polypeptides of the present invention. An expression vector or plasmid contains DNA control sequences and a coding sequence. DNA control sequences include promoter sequences, ribosome binding sites, polyadenylation signals, transcription termination sequences, upstream regulatory domains, and enhancers. Recombinant expression systems as defined herein will express the proteins or polypeptides of the invention upon induction of the regulatory elements.
- “Transformed host cells” refer to cells that have been transformed and transfected with exogenous DNA. Exogenous DNA may or may not be integrated (i.e., covalently linked) to chromosomal DNA making up the genome of the host cell. In prokaryotes and yeast, for example, the exogenous DNA may be maintained on an episomal element, such as a plasmid, or stably integrated into chromosomal DNA. With respect to eukaryotic cells, a stably transformed cell is one which is the exogenous DNA has become integrated into the chromosome. This stability is demonstrated by the ability of the eukaryotic cell lines or clones to produce via replication a population of daughter cells containing the exogenous DNA.
- The terms “analog”, “fragment”, “derivative”, and “variant”, when referring to polypeptides of this invention mean analogs, fragments, derivatives, and variants of such polypeptides that retain substantially similar functional activity or substantially the same biological function or activity as the reference polypeptides, as described herein.
- An “analog” includes a pro-polypeptide that includes within it, the amino acid sequence of a polypeptide of this invention.
- A “fragment” is a portion of a polypeptide of the present invention that retains substantially similar functional activity or substantially the same biological function or activity as the polypeptide, as shown in in vitro assays disclosed herein.
- A “derivative” includes all modifications to a polypeptide of this invention that substantially preserve the functions disclosed herein and include additional structure and attendant function, e.g., PEGylated polypeptides or albumin fused polypeptides, which have greater half-life.
- A “variant” includes polypeptides having an amino acid sequence sufficiently similar to the amino acid sequence of the polypeptides of this invention. The term “sufficiently similar’ means a first amino acid sequence that contains a sufficient or minimum number of identical or equivalent amino acid residues relative to a second amino acid sequence such that the first and second amino acid sequences have a common structural domain and/or common functional activity. For example, amino acid sequences that comprise a common structural domain that is at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 100%, identical are defined herein as sufficiently similar. Preferably, variants will be sufficiently similar to the amino acid sequence of the preferred polypeptides of this invention. Variants include variants of polypeptides encoded by a polynucleotide that hybridizes to a polynucleotide of this invention, or a complement thereof, under stringent conditions. Such variants generally retain the functional activity of the polypeptides of this invention. Variants include polypeptides that differ in amino acid sequence due to mutagenesis.
- “Substantially similar functional activity” and “substantially the same biological function or activity” each means that the degree of biological activity is within about 50% to 100% or more, within 80% to 100% or more, or within about 90% to 100% or more, of that biological activity demonstrated by the polypeptide to which it is being compared when the biological activity of each polypeptide is determined by the same procedure or assay.
- “Similarity” between two polypeptides is determined by comparing the amino acid sequence of one polypeptide to the sequence of a second polypeptide. An amino acid of one polypeptide is similar to the corresponding amino acid of a second polypeptide if it is identical or a conservative amino acid substitution. Conservative substitutions include those described in Dayhoff, M. O., ed., The Atlas of Protein Sequence and
Structure 5, National Biomedical Research Foundation, Washington, D.C. (1978), and in Argos, P. (1989) EMBO J. 8:779-785. For example, amino acids belonging to one of the following groups represent conservative changes or substitutions: - Ala, Pro, Gly, Gln, Asn, Ser, Thr:
- Cys, Ser, Tyr, Thr;
- Val, Ile, Leu, Met, Ala, Phe;
- Lys, Arg, H is;
- Phe, Tyr, Trp, H is; and
- Asp, Glu.
- “Patient,” as used herein means any mammal, including humans and domesticated animals, such as cats, dogs, swine, cattle, sheep, goats, horses, rabbits, and the like. A typical patient may be at risk of a disease associated with a misfolded protein, may be suspected of suffering from such a disease, or may be desirous of determining risk or status with respect to a disease associated with a misfolded protein.
- The exact mechanism by which the sequence of a protein directs the formation of a specific three dimensional conformation is unknown. To achieve the native conformational state, the protein molecule must adopt a unique conformation out of many alternatives. Functional proteins are typically soluble and may adopt a variety of structures including coils and ordered elements. Ordered elements include the α-helix predominant in proteins such a myoglobin and hemoglobin.
- During the human aging process, some proteins exhibit a structural change from their soluble structure (comprising, for example, predominantly α-helix or random coil conformations) to more insoluble structures (comprising, for example, β-sheet conformations) that form self-aggregates associated with loss of function. Moreover, some diseases are associated with insoluble forms of proteins that are not harmful in their soluble forms.
- Thus, one aspect of the present invention provides methods and probes for the detection of proteins in a specific structural state (a “target structural state”), such as a specific conformation or state of self-aggregation. A target structural state includes any three dimensional structure of a protein, including a protein's conformation and/or a protein's state of self-aggregation. Often, the target structural state is associated with a disease while a different structural state is not associated with a disease. The target structural state may cause the disease, may be a factor in a symptom of the disease, may appear in a sample or in vivo as a result of other factors, or may otherwise be associated with the disease. In one embodiment, the protein has the same amino acid sequence regardless of its structural state, and can adopt at least two different structural states, such as a disease-associated state and a non-disease-associated state.
- A number of diseases are associated with proteins in a β-sheet conformation. For many of these diseases, the same proteins in an α-helix and/or random coil conformation are not associated with the disease. Thus, for these conditions, a β-sheet conformation could be a target structural state for detection of the disease, while an α-helix and/or random coil conformation could be a target structural state to confirm absence of the disease, or to identify absence of an advanced state of the disease. For example,
FIG. 1 illustrates both the α-helical monomer and the β-sheet dimer forms of a TSE conformer. The normal wild-type (wt) form of prion protein (PrPC) prefers a monomeric state, while the abnormal, disease-causing form (PrPSc) more readily takes on a multimeric state. - The following is a non-limiting list of diseases associated with specific structural protein states, followed parenthetically by the involved protein: Alzheimer's Disease (APP, Aβ peptide, α1-antichymotrypsin, tau, non-Aβ component,
presenilin 1,presenilin 2, apoE); prion diseases, CJD, scrapie, and BSE (PrPSc); ALS (SOD and neurofilament); Pick's disease (Pick body); Parkinson's disease (α-synuclein in Lewy bodies); frontotemporal dementia (tau in fibrils); diabetes type II (amylin); multiple myeloma-plasma cell dyscrasias (IgGL-chain); familial amyloidotic polyneuropathy (transthyretin); medullary carcinoma of thyroid (procalcitonin); chronic renal failure (β2-microglobulin); congestive heart failure (atrial natriuretic factor); senile cardiac and systemic amyloidosis (transthyretin); chronic inflammation (serum amyloid A); atherosclerosis (ApoA1); familial amyloidosis (gelsolin); and Huntington's disease (Huntingtin). - As discussed above, a number of diseases are associated with self-aggregated proteins, such as insoluble protein aggregates or protein fibrils. For these conditions, self-aggregated protein and/or protein fibrils could be a target structural state for detection of the disease, while soluble and/or non-aggregated protein could be a target structural state to confirm absence of the disease, or absence of an advanced stage of the disease. Many of the proteins identified in the preceding paragraph form self-aggregates and/or protein fibrils that are associated with disease states. Other such proteins include amyloid islet polypeptide precursor protein, amyloid beta protein or Aβ peptide (e.g., Aβ42 and Aβ40), serum amyloid A, insulin (e.g., which forms insulin-related amyloid), amylin, non-amyloid beta component, prions, hemoglobin (e.g. sickle cell anemia variant), immunoglobulins or fragments thereof (e.g., IgG L-chain), β2-microglobulin, α-synuclein, rhodopsin, α1-antichymotrypsin, cystallins, tau, p53, presenilins (e.g.,
presenilin 1 and presenilin 2), low-density lipoprotein receptor, apolipoproteins (e.g., apoA and apo E), superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein (i.e., Huntingtin), fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein. Insoluble proteins generally exhibit n-sheet formation in the aggregate. - For AD, the Aβ40 or Aβ42 protein could be a target protein, and any of their states could be a target structural state, such as a state of self-aggregation such as soluble monomers, soluble oligomers, aggregates/ADDLs, insoluble amorphous aggregates, protofibrils, and fibrils. Current thinking on the significance of these different structural states with risk of disease, diagnosis of disease, and disease progression and etiology is reviewed in the background section above.
- For prion proteins, the PrPSc form of the PrP protein could be a target structural state for detection of the disease, while the PrPC form of the PrP protein could be a target structural state to confirm absence of the disease, or absence of an advanced stage of the disease. Additionally, self-aggregates of the PrPSc form could be a target structural state for detection of the disease. For example, the most infective form of PrPSc may be a small soluble aggregate, rather than the mature fibrils formed in the brain in late stages of the disease. See, e.g., Silveira et al., Nature 437: 257-61 (1005) (identifying PrPSc particles with an approximate molecular weight of 300-600 kDa and a roughly spherical to elliptical shape with a diameter of 17-27 nm as having the highest infectivity and converting activity). Thus, this soluble aggregate form of PrPSc could be a target structural state.
- One aspect of the invention relates to peptide probes useful for detecting a specific structural state of a target protein in a sample or in vivo, i.e., useful for detecting protein in a target structural state. Typically, the peptide probe includes an amino acid sequence corresponding to a region of the target protein which undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and the peptide probe itself undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation. For example, the peptide probe may undergo a conformational shift when contacted with a target protein that is in the beta-sheet conformation. As discussed in more detail below, in some embodiments the peptide probes also are useful for identifying therapeutic agents and as therapeutic agents themselves.
- In one embodiment, the probe comprises an amino acid sequence that is homologous or identical to a target protein, or to a region of the target protein. “Homology”, “homologs of”, “homologous”, “identity”, or “similarity” refers to sequence similarity between two polypeptides, with identity being a more strict comparison. Homology and identity may each be determined by comparing a position in each sequence that may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same amino acid, then the molecules are identical at that position. A degree of identity of amino acid sequences is a function of the number of identical amino acids at positions shared by the amino acid sequences. A degree of homology or similarity of amino acid sequences is a function of the number of amino acids, i.e., structurally related, at positions shared by the amino acid sequences. An “unrelated” or “non-homologous” sequence shares 10% or less identity, with one of the sequences described herein. Related sequences share more than 10% sequence identity, such as at least about 15% sequence identity, at least about 20% sequence identity, at least about 30% sequence identity, at least about 40% sequence identity, at least about 50% sequence identity, at least about 60% sequence identity, at least about 70% sequence identity, at least about 80% sequence identity, at least about 90% sequence identity, at least about 95% sequence identity, or at least about 99% sequence identity.
- The term “percent identity” refers to sequence identity between two amino acid sequences. Identity may be determined by comparing a position in each sequence that is aligned for purposes of comparison. When an equivalent position in one compared sequences is occupied by the same amino acid in the other at the same position, then the molecules are identical at that position; when the equivalent site occupied by the same or a similar amino acid residue (e.g., similar in stearic and/or electronic nature), then the molecules may be referred to as homologous (similar) at that position. Expression as a percentage of homology, similarity, or identity refers to a function of the number of identical or similar amino acids at positions shared by the compared sequences. Various alignment algorithms and/or programs may be used, including FASTA, BLAST, or ENTREZ. FASTA and BLAST are available as part of the GCG sequence analysis package (University of Wisconsin, Madison, Wis.), and may be used with, e.g., default settings. ENTREZ is available through the National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Md.). In one embodiment, the percent identity of two sequences may be determined by the GCG program with a gap weight of 1, e.g., each amino acid gap is weighted as if it were a single amino acid mismatch between the two sequences. Other techniques for determining sequence identity are well known and described in the art.
- The term “homolog of an insoluble protein” includes all amino acid sequences that are encoded by a homolog of an insoluble protein gene, and all amino acid sequences that are equivalent or homologous to such sequence. Therefore, “homolog of an insoluble protein” includes proteins that are scored as hits in the Pfam family. To the identify the presence of an “insoluble protein” domain in a protein sequence, and make the determination that a polypeptide or protein of interest has a particular profile, the amino acid sequence of the protein may be searched against one of several databases (SwissProt, PIR, for example) using various default parameters. For example, the hmmsf program, which is available as part of the HM_MER package of search programs, is a family-specific default program for MILPAT0063 and a score of 15 is the default threshold score for determining a hit. Alternatively, the threshold score for determining a hit may be lowered (e.g., to 8 bits). A description of the Pfam database may be found in Sonham et al., Proteins 28(3):405-420, 1997, and a detailed description of HMMs may be found, for example, in Gribskov et al., Meth. Enzymol. 183:146-159, 1990; Gribskov et al., Proc. Natl. Acad. Sci. USA 84:4355-4358, 1987; Krogh et al., J. Mol. Biol. 234:1501-1531, 1994; and Stultz et al., Protein Sci. 2:305-314, 1993, the contents of which are incorporated herein by reference.
- The probes disclosed herein may be used to detect protein present in a specific structural state in a sample or in vivo, e.g., a target structural state. In one embodiment, the probes comprise amino acid sequences that are based on (e.g., homologous or identical to) at least a region of the amino acid sequence of the target protein. Such probes also are referred to as “corresponding” to a region of the amino acid sequence of the target protein. Thus, the amino acid sequence of the probe may be designed from the target protein based on existing information in sequence databases or, alternatively, may be readily determined experimentally. While the probe may comprise a sequence based on any region of the target protein, in one embodiment, the sequence is based on a region of the target protein that is involved in the target structural state. For example, in one embodiment, the probes comprise amino acid sequences that are similar to (e.g., homologous to), or identical to, a region of the amino acid sequence of the target protein that undergoes a structural shift, such as a shift from an α-helix/random coil conformation to a β-sheet conformation.
- A probe may comprise a minimum number of contiguous amino acids from the target protein, such as at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, at least about 10, at least about 11, at least about 12, at least about 13, at least about 14, at least about 15, at least about 16, at least about 17, at least about 18, at least about 19, at least about 20, at least about 21, at least about 22, at least about 23, at least about 24, or at least about 25 contiguous amino acids from the target protein sequence, or any range between these numbers, such as about 10 to about 25 contiguous amino acids from the target protein sequence.
- The probes themselves may be at least about 5 amino acids units in length and may be up to about 300- about 400 amino acid units in length (-mer) or more, or any size in between the range of about 5 up to about 400 amino acids, such as about 10 amino acids to about 50 amino acids in length. In some embodiments, probes are about 15 amino acids in length to about 100 amino acids in length. In other embodiments, probes range from about 20 amino acids in length to about 40 amino acids in length. In further embodiments, probes range from about 17 amino acids in length to about 34 amino acids in length. The length of a given probe may influence the probe's ability to complex and produce β-sheet formation with the target protein, and can be selected by the skilled artisan guided by the teachings herein.
- The invention also includes probes comprising amino acid sequences based on about 5 or more contiguous residues of the amino acid sequence of the target protein, with one or more residues added, deleted, or substituted by methods known in the art.
- In one embodiment, the probes undergo a structural change similar to that of the target protein and, for example, may exist in either an α-helix/random coil conformation or a β-sheet conformation. In one specific embodiment, the probes exist in an α-helix/random coil conformation in solution, and undergo a conformational change to a β-sheet conformation when contacted with target protein in a β-sheet conformation. For example, in one embodiment, the probe comprises a peptide or peptidomimetic of at least five, or ten, or more, amino acid residues that exhibit a random coil or α-helical conformation in solution. A peptide or peptidomimetic probe solvent may be aqueous and have a pH of between about 4 and about 10, such as between about 5 and about 8, and may have an ionic strength of between about 0.05 and about 0.5 (when typically prepared with a chloride salt, such as sodium chloride or potassium chloride). The solvent may also comprise a percentage of a water-miscible organic material, such as trifluoroethanol in amounts between about 30% to about 70% by volume, such as between about 45% to about 60%. The solvent may be prepared with a suitable buffering system such as acetate/acetic acid, Tris, or phosphate.
- Probes may be designed under the following constraints. Only a few kcal difference separate a population of a probe in an initial conformation state (e.g., alpha-helix) from a population the probe predominantly in the transformed conformational state (e.g., beta-sheet). The transformation from one conformational state to the other is provided by the driving force due either to the Kd of association between the probe molecule and its natural associate to form β-sheet complex, or to changes in the electrostatic interactions between the molecules (for example, changes caused by lowering the ionic strength of the solution). If metal ions, such as Al, or the binding of another ligand are involved, other electrostatic or stearic effects could contribute. The size of the probe peptide may vary, but should be of sufficient length to have “reasonably” well defined secondary structure under detection conditions and to have sufficient recognitional specificity for the target selected, such as a prion protein. The probe peptide should also accommodate single-site mutations to be generally applicable to mutated proteins or strains, recognizing that these changes and/or heterogeneities affect the thermodynamic stability of the molecule. Moreover, the probe must be non-contagious to the patient population, whether that population is a human patient population, a domesticated animal population, or other mammalian population.
- In one embodiment, a probe has a palindromic structure with two amino acid sequences corresponding to the amino sequence of the target protein. The term “palindromic” refers to the organization of a given probe sequence such that it comprises first and second peptide sequences corresponding to a portion of the target protein involved in the structural shift, which peptide sequences are presented in a palindromic manner, i.e., from the carboxy end to the amino end (or amino end to carboxy end) in the first peptide sequence, and from the amino end to the carboxy end (or carboxy end to amino end) in the second peptide sequence. The first and second peptide sequences in the palindromic probe do not have to be identical in length. In some embodiments, the first and second peptide sequences are at least roughly equivalent in length. In some embodiments, the first and second peptide sequences comprise the same amino acid sequence. In some embodiments, the two peptide sequences (the “arms” of the palindromic probe) are not more than 15, not more than 10, or not more than 5 amino acids in length. In other embodiments, each arm comprises from about 10 to about 25 amino acids, such as from about 14 to about 20 amino acids. In some embodiments, the first and second peptide sequences within a palindromic probe are separated by a linker, such as a peptide linker comprising between about 1 and about 5 amino acids, or between about 1 and about 3 amino acids, and which may comprise at least one proline amino acid, or may comprise primarily proline amino acids. Suitable peptide probes are described in U.S. 2006-057671, which is incorporated herein by reference in its entirety.
FIG. 3 presents an exemplary palindromic 33-mer probe. Palindromic probes may be particularly useful for detecting prion proteins. - In some embodiments, probes may comprise a hydrophobic amino acid sequence that is based on portion of the amino acid sequence of the target protein (such as the portion of the target amino acid sequence that undergoes a structural shift), that may vary in length from about 1 amino acid to about 20 or more amino acids, such as about 2- about 10 amino acids in length, and that appears at or near one of the two ends of the probe. In the case of palindromic probes, hydrophobic amino acid sequences may appear at the ends of each the two peptide arms of the probe. Optionally, the probe also may include a synthetic hydrophobic amino acid sequence (i.e., not natural to the peptide sequence of the target protein) at at least one end of the probe and, in the case of palindromic probes, at or near one or both ends of the probe, which may vary in length from as few as about 1 amino acid to about 20 or more amino acids, such as about 2- about 10 amino acids in length. Probes may include N-terminal amino acids residues, C-terminal amino acids residues, or both, which are suitable for use in linking a lable to the probe (e.g., Lys, which includes a free amino group).
- By way of example and without limitation, if a desired peptide sequence in a target protein comprises the sequence, reading from amino end to carboxy end, QRSTVVARLKAAAV (SEQ ID NO:15) (where AAAV (SEQ ID NO:30) is a hydrophobic amino acid sequence) then the palindrome may comprise a first peptide sequence which is VAAAKLRAVVTSRQ (SEQ ID NO:31) and a second peptide sequence which is QRSTVVARLKAAAV (SEQ ID NO:15) (or a close variation to that sequence), with the two sequences separated by a linker comprising from about 1 to about 5 amino acids, with at least one of those amino acids, and preferably most, if not all, of those amino acids, being proline amino acids. A suitable probe for this target protein therefore could be:
-
VAAAKLRAVVTSRQPPPPQRSTVVARLKAAAV (SEQ ID NO: 28) (hypothetical palindromic probe). - A probe may be specific for any target protein. For example, the target protein may be a prion protein, such as PrPC, PrPSc, or a mixture thereof. Accordingly, the target protein may include a protein of SEQ ID NO:13 (Human Prion Protein, Accession PO4156) or a fragment thereof. In some embodiments, a “fragment thereof” may include at least about 5 contiguous amino acids up to the full length of the polypeptide sequence, or any number of contiguous amino acids in between the range of about 5 up to the full length protein. In some embodiments, the probe comprises the full length protein; in other embodiments the probe does not comprise the full length protein. In some embodiments, the probe can be at least about 10 contiguous amino acids, or at least about 15 amino acids of the full-length sequence, or may include a sequence with at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to those contiguous residues.
- A target protein also may be an amyloid beta protein, such as Aβ42 (SEQ ID NO:32) or Aβ40 (SEQ ID NO:4). A peptide probe of the fusion protein may include a sequence having at least about 15% sequence identity to SEQ ID NO:32 or SEQ ID NO:4, or fragments thereof. For example, the peptide probe may include at least about 5 contiguous amino acids up to the full length of the protein (SEQ ID NO:32 or SEQ ID NO:4), or any number of contiguous amino acids from SEQ ID NO:32 or SEQ ID NO:4 in between these size ranges. In other embodiments of the invention, the probe can be at least about 10 or at least about 15 contiguous amino acid residues of SEQ ID NO:32 or SEQ ID NO:4, or may include a sequence with at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to those contiguous residues.
- In some embodiments, the peptide probe may include mutations in Aβ42 (SEQ ID NO:32) or Aβ40 (SEQ ID NO:4) as disclosed in the art (Wurth et al., J. Molec. Biol. 319:1279-1290 (2002); Kim et al., J. Biol. Chem. 41:35069-35076 (2005), which are incorporated herein by reference in their entireties). In some embodiments, the peptide probe is specific for one of Aβ42 or Aβ40. That is, the probe preferentially binds to one of Aβ42 or Aβ40 and thus is useful for distinguishing samples comprising Aβ42 from those comprising Aβ40, or for qualitatively assessing the relative amounts of Aβ42 and Aβ40 in a sample, or for quantitating the amount(s) of Aβ42 and/or Aβ40 in a sample. Such peptide probes can be used in similar in vivo methods, to detect and/or distinguish Aβ42 and Aβ40 in vivo.
- A target protein also may be amyloid islet polypeptide precursor protein. The peptide probe for such a target protein may include SEQ ID NO:11, a sequence having at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to SEQ ID NO:11, or fragments thereof. For example, the peptide probe of the fusion protein may comprise at least about 5 contiguous amino acid residues up to the full length of SEQ ID NO:11, or any number of contiguous amino acids between these two ranges. In other embodiments of the invention, the peptide probe of the fusion protein may comprise at least about 10 or at least about 15 contiguous amino acid residues of SEQ ID NO:11, or may comprise a sequence with at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to those contiguous residues.
- A target protein also may be transthyretin protein. A peptide probe for such a target protein may include SEQ ID NO:26, a sequence having at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to SEQ ID NO:26, or fragments thereof. For example, the peptide probe of the fusion protein may comprise at least about 5 contiguous amino acid residues up to the full length of SEQ ID NO:26, or any number of contiguous amino acids in between these two ranges. In other embodiments of the invention, the peptide probe may comprise at least about 10 or at least about 15 contiguous amino acid residues of SEQ ID NO:26 or at least about 5 or at least about 10 amino acids of amino acid residues 11-19 of SEQ ID NO:26, or may include a sequence with at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to those contiguous residues.
- A target protein also may be cystatin C protein. A peptide probe for such a target protein may include SEQ ID NO:17, a sequence having at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to SEQ ID NO:17, or fragments thereof. For example, the peptide probe of the fusion protein may comprise at least about 5 contiguous amino acid residues up to the full length of SEQ ID NO:17, or any number of contiguous amino acids in between these two ranges. In other embodiments of the invention, the peptide probe comprises at least about 10 or at least about 15 contiguous amino acid residues of SEQ ID NO:17, or the peptide probe may comprise a sequence with at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to those contiguous residues.
- A target protein may be Huntington's disease protein or “Huntingtin.” A peptide probe for such a target protein may include SEQ ID NO:19, a sequence having at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to SEQ ID NO:19, or fragments thereof. For example, the peptide probe of the fusion protein may comprise at least about 5 contiguous amino acid residues up to the full length of SEQ ID NO:19, or any number of contiguous amino acids in between these two ranges. In other embodiments of the invention, the peptide probe comprises at least about 10 or at least about 15 contiguous amino acid residues of SEQ ID NO:19, or may include a sequence with at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to those contiguous residues.
- A peptide probe may have an amino acid sequence that is equivalent to the amino acid sequence of a target protein, or fragment thereof. “Equivalent” refers to a protein having an amino acid sequence that is similar to the amino acid sequence of the protein to be analyzed. In some embodiments, an “equivalent” has at least one, but fewer than about 5 (e.g., 3 or fewer) differences in the amino acid sequence, such as by way of substitutions, additions, or deletions. In other embodiments, an “equivalent” has at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to the target protein sequence or fragment thereof. The substitution of one or more amino acids in a given sequence that does not substantially change the basic function of the probe. In some embodiments, an “equivalent” may include one or more “conservative amino acid substitutions” which are substitution in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains include those with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine), and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
- Peptide probes may be synthesized chemically or by using recombinant DNA methodology.
- For example, a peptide probe may be synthesized chemically by performing various solid-phase techniques (Roberge et al., Science 269:202 204 (1995)) and automated synthesis may be achieved, for example, using peptide synthesizers known in the art (e.g., ABI 431A Peptide Synthesizer, Perkin Elmer, Palo Alto, Calif.). A newly synthesized peptide may be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, Proteins, Structures and Molecular Principles (1983)) or other comparable techniques available in the art. The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure). A label or reporter may be chemically coupled to the synthesized peptide probe, as discussed in more detail below.
- To express a desired polypeptide in a host cell, the nucleotide sequences encoding the polypeptide, or functional equivalents, may be inserted into appropriate expression vector, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding a polypeptide of interest and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described in Sambrook et al., Molecular Cloning, A Laboratory Manual (1989), and Ausubel et al., Current Protocols in Molecular Biology (1989).
- A variety of expression vector/host systems may be utilized to contain and express polynucleotide sequences. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
- To express a peptide probe in a host cell, a procedure such as the following can be used. A restriction fragment containing a DNA sequence that encodes the peptide probe may be cloned into an appropriate recombinant plasmid containing an origin of replication that functions in the host cell and an appropriate selectable marker. The plasmid may include a promoter for inducible expression of the peptide probe (e.g., pTrc (Amann et al., (1988) Gene 69:301 315) and pET11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 60 89)).) The recombinant plasmid may be introduced into the host cell by, for example, electroporation and cells containing the recombinant plasmid may be identified by selection for the marker on the plasmid. Expression of the peptide probe may be induced and detected in the host cell using an assay specific for the peptide probe.
- A suitable host cell for expression of a peptide probe may be any prokaryotic or eukaryotic cell (e.g., bacterial cells such as E. coli or B. subtilis, insect cells (baculovirus), yeast, or mammalian cells such as Chinese hamster ovary cell (CHO)). In some embodiments, the DNA that encodes the peptide may be optimized for expression in the host cell. For example, the DNA may include codons for one or more amino acids that are predominant in the host cell relative to other codons for the same amino acid.
- Alpha-helix or random coil probes (i.e., probes that exhibit α-helix or random coil conformation in solution) useful in the disclosed methods may include the following:
- a. PrP Probes
- A palindromic 33-mer comprising amino acid sequences that are identical to amino acids 122-104 and 109-122 of the PrPSc protein (SEQ ID NO:13 and 14) (SwissProt PO4156; Pfam ID Prion PfD0377 & 03991): VVAGAAAAGAVHKLNTKPKLKHVAGAAAAGAVV (SEQ ID NO:29) (murine); VVAGAAAAGAMHKMNTKPKMKHMAGAAAAGAVV (SEQ ID NO:1) (human). In some embodiments, a C-terminal lysine may be added to the palindromic 33-mer to form a 34-mer (e.g., VVAGAAAAGAMHKMNTKPKMKHMAGAAAAGAVVK (SEQ ID NO:33) and VVAGAAAAGAVHKLNTKPKLKHVAGAAAAGAVVK (SEQ ID NO:34)). The C-terminal lysine may be suitable for use in linking the probe to a suitable lable (e.g., pyrene).
- A palindromic 33-mer comprising amino acid sequences that are equivalent to amino acids 122-104 and 109-122 of the PrPSc protein (SEQ ID NO:13 and 14) (SwissProt P04156; Pfam ID Prion Pf00377 & 03991).
- A palindromic 33-mer comprising amino acid sequences that are between about 70% to about 90% identical to amino acids 122-104 and 109-122 of the PrPSc protein (SEQ ID NO:13 and 14) (SwissProt P04156; Pfam ID Prion Pf00377 & 03991).
- A probe comprising amino acid sequences that include at least 10 contiguous amino acid residues of amino acids 104-122 of the human PrPSc or amino acids 103-121 of the murine PrPSc protein (SEQ ID NO:13 and 14) (SwissProt P04156; Pfam ID prion PF00377 & 03991) Human Prion Protein (Accession P04156).
- A probe comprising the amino acid sequence
-
(SEQ ID NO: 39) KPKTNMKHMAGAAAAGAVV. - A palindromic 33-mer comprising the amino acid sequence VVAGAAAAGAMHKMNTKPKMKHMAGAAAAGAVV (SEQ ID NO:40) (linker sequence for the two arms of the palindrome underlined).
- A palindromic 33-mer comprising the amino acid sequence VVAGAAAAGAMHKMKPKTNMKHMAGAAAAGAVV (SEQ ID NO:41) (linker sequence for the two arms of the palindrome underlined).
- A palindromic 33-mer comprising the amino acid sequence VVAGAAAAGAVHKMKPKTNMKHVAGAAAAGAVV (SEQ ID NO:42) (linker sequence for the two arms of the palindrome underlined).
- b. Aβ Probes
- A probe comprising amino acid sequences that are identical to amino acids 1-40 of the Aβpeptide (Nref00111747; human): DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV (SEQ ID NO:4).
- A probe comprising amino acid sequences that are equivalent to amino acids 1-40 of the Aβ peptide (Nref00111747; human) (SEQ ID NO:4).
- A probe comprising amino acid sequences that are between about 70% to about 90% identical to amino acids 1-40 of the Aβ peptide (Nref001 11747; human) (SEQ ID NO:4).
- A probe comprising amino acid sequences that are identical to amino acids 11-34 of the Aβ peptide (Nref00111747; human):
-
(SEQ ID NO: 5) EVHHQKLVFFAEDVGSNKGAIIGL. - A probe comprising amino acid sequences that are identical to amino acids 11-34 of the Aβ peptide (Nref00111747; human), but with residue H13 substituted with R to reduce metal ion interactions and to increase the solubility of the peptide:
-
(SEQ ID NO: 6) EVRHQKLVFFAEDVGSNKGAIIGL. - A probe comprising amino acid sequences that are identical to amino acids 25-35 of the Aβ peptide (Nref0011747; human): GSNKGAIIGLM (SEQ ID NO:7).
- A probe comprising amino acid sequences that are identical to amino acids 17-35 of the Aβ peptide (Nref0011747; human): LVFFAEDVGSNKGAIIGLM (SEQ ID NO:35). Optionally, the probe may include an additional N-terminal lysine (K) KLVFFAEDVGSNKGAIIGLM (SEQ ID NO:36), a C-terminal lysine (K) LVFFAEDVGSNKGAIIGLMK (SEQ ID NO:37), or both KLVFFAEDVGSNKGAIIGLMK (SEQ ID NO:38).
- c. TSE Probes
- A probe comprising amino acid sequences that are homologous to amino acids 104-122 or wild-type (wt) TSE (human Nref00130350):
-
(SEQ ID NO: 10) KPKTNLKHVAGAAAAGAVV. - A probe comprising amino acid squences that are equivalent to amino acids 104-122 of wild-type (wt) TSE (human Nref00130350) (SEQ ID NO:10).
- A probe comprising amino acid sequences that are between about 70% to about 90% identical to amino acid sequences 104-122 of wild-type (wt) TSE (human Nref130130350) (SEQ ID NO:10).
- A probe that comprises an amino acid sequence that: (a) is a selectively mutated TSE sequence; (b) is destabilized and non-infectious; and (c) has an amino acid sequence that is homologous to amino acid sequences 104-122 or wild-type (wt) TSE (human Nref00130350) (SEQ ID NO:10).
- A probe that comprises an amino acid sequence that: (a) is a selectively mutated TSE sequence; (b) is destabilized and non-infectious; and (c) has an amino acid sequence that is equivalent to amino acid sequences 104-122 or wild-type (wt) TSE (human Nref00130350) (SEQ ID NO:10).
- A probe that comprises an amino acid sequence that: (a) is a selectively mutated TSE sequence; (b) is destabilized and non-infectious; and (c) has an amino acid sequence that is between about 70% and about 90% identical to amino acid sequences 104-122 or wild-type (wt) TSE (human Nref00130350) (SEQ ID NO:10).
- d. Amylin Probes
- A probe comprising amino acid sequences that are identical to amino acids 1-38 of the human islet amyloid polypeptide precursor (amylin) protein (Accession # NP.sub.--000406; human) implicated in human diabetes:
-
(SEQ ID NO: 11) MGILKLQVFLIVLSVALNHLKATPIESHQVEKRKCNTA. - A probe comprising amino acid sequences that are identical to at least 10 contiguous amino acid residues within the sequence corresponding to amino acids 1-38 of the human islet amyloid polypeptide precursor (amylin) protein (Accession # NP—000406; human) (SEQ ID NO:11).
- e. Other Probes
- A probe that has a helix-loop-helix conformation found in polylysine and an amino acid sequence that is at least 10 amino acid residues in length and is equivalent or homologous to KKKKKKKKKKKKKKKKKKKKK (27-mer) (SEQ ID NO:8).
- A probe that has a conformation found in polyglutamine and an amino acid sequence that is equivalent or homologous to
-
(SEQ ID NO: 9) QQQQQQQQQQQQQQQQQQQQQQQ (23-mer). - A probe comprising amino acid sequences that are identical to amino acids 1-25 of the human lung surfactant protein (NCBI Accession # AAH32785; human) implicated in human infant SIDS:
-
(SEQ ID NO: 12) MAESHLLQWLLLLLPTLCGPGTAAW - A probe comprising amino acid sequences which include at least 10 contiguous amino acid residues of amino acids 235-269 (emphasized below by double underlining) of the human plasma gelsolin (P06396; Muary et al., FEBS Lett. 260(1):85-87, 1990):
-
(SEQ ID NO: 16) MAPHRPAPALLCALSLALCALSLPVRAATASRGASQAGAPQGRVPEARP NSMVVEHPEFLKAGKEPGLQIWRVEKFDLVPVPTNLYGDFFTGDAYVIL KTVQLRNGNLQYDLHYWLGNECSQDESGAAAIFTVQLDDYLNGRAVQHR EVQGFESATFLGYFKSGLKYKKGGVASGFKHVVPNEVVVQRLFQVKGRR VVRATEVPVSWESFNNGDCFILDLGNNIHQWCGSNSNRYERLKATQVSK GIRDNERSGRARVHVSEEGTEPEAMLQVLGPKPALPAGTEDTAKEDAAN RKLAKLYKVSNGAGTMSVSLVADENPFAQGALKSEDCFILDHGKDGKIF VWKGKQANTEERKAALKTASDFITKMDYPKQTQVSVLPEGGETPLFKQF FKNWRDPDQTDGLGLSYLSSHIANVERVPFDAATLHTSTAMAAQHGMDD DGTGQKQIWRIEGSNKVPVDPATYGQFYGGDSYIILYNYRHGGRQGQII YNWQGAQSTQDEVAASAILTAQLDEELGGTPVQSRVVQGKEPAHLMSLF GGKPMIIYKGGTSREGGQTAPASTRLFQVRANSAGATRAVEVLPKAGAL NSNDAFVLKTPSAAYLWVGTGASEAEKTGAQELLRVLRAQPVQVAEGSE PDGFWEALGGKAAYRTSPRLKDKKMDAHPPRLFACSNKIGRFVIEEVPG ELMQEDLATDDVMLLDTWDQVFVWVGKDSQEEEKTEALTSAKRYIETDP ANRDRRTPITVVKQGFEPPSFVGWFLGWDDDYWSVDPLDRAMAELAAYE RLKATQVSKGIRDNERSGRARVHVSEEGTEPEAM. - A probe comprising amino acid sequences that include at least 10 contiguous amino acid residues of the amyloid forming region (amino acids 26-147; emphasized by double underlining below) of the cystatin C protein sequence, as depicted below and reported by Levy et al., J. Exp. Med. 169(5):1771-1778, 1989 (P01034). An appropriate probe is any portion thereof of at least 10 amino acids. Numerous probes may be positioned accordingly.
-
(SEQ ID NO: 17) MAGPLRAPLLLLAILAVALAVSPAAGSSPGKPPRLVGGPMDASVEEEGVR RALDFAVGEYNKASNDMYHSRALQVVRARQIVAGVNYFLDVELGRTTCTK TQPNLDNCPFHDQPHLKRKAFCSFQIYAVPWQGTMTLSKSTCQDA. - A palindromic probe of the cystatin C protein taken from amino acids 39-47 of the above sequence, with a four unit proline linker; such as
-
(SEQ ID NO: 18) EEEVSADMPPPPMDASVEEE - A probe comprising amino acid sequences that include between 10 and 23, inclusive, contiguous glutamine resides of oligo or polyglutamine from residues 18-40 (emphasized by double underlining below) of the Huntingtin protein (Huntington's disease protein) protein sequence depicted below:
-
(SEQ ID NO: 19) MATLEKLMKAFESLKSFQQQQQQQQQQQQQQQQQQQQQQQPPPPPPPPPP PQLPQPPPQAQPLLPQPQPPPPPPPPPPGPAVAEEPLHRPKKELSATKKD RVNHCLTICENIVAQSVRNSPEFQKLLGIMELFLLCSDDAESDVRMVADE CLNKVIKALMDSNLPRLQLELYKEIKKNGAPRSLRAALWRFAELAHLVRP QKCRPYLVNLLPCLTRTSKRPEESVQETLAAAVPKIMASFGNFANDNEIK VLLKAFIANLKSSSPTIRRTAAGSAVSICQHSRRTQYFYSWLLNVLLGLL VPVEDEHSTLLILG (P42858; gi:1170192). An exemplary probe: (SEQ ID NO: 20) QQQQQQQQQQQQQQQQQ. - A probe comprising amino acid sequences that include at least 6 contiguous amino acid residues of amino acid residues 45-50 and 48-53 (emphasized below) of the human islet amyloid polypeptide involved in fibrillogenesis, sequence depicted below, NP.sub.--000406 [gi:4557655] Scrocchi et al., J Struct. Biol. 141(3):218-227, 2003:
-
(SEQ ID NO: 21) MGILKLQVFLIVLSVALNHLKATPIESHQVEKRKCNTATCATQRLANFLV HSSNNFGAILSSTNVGSNTYGKRNAVEVLKREPLNYLPL. - Exemplary probes may contain the following sequences, which are sequences within the sequence 45-53 of the above peptide sequence of SEQ ID NO:21, which may be used without modification or may be used to form palindromic probes described herein:
-
(SEQ D NO: 22) LANFV (SEQ ID NO: 23) VFNALPPPPLAKFV (palindromic probe) (SEQ ID NO: 24) FLVHSS (SEQ ID NO: 25) SSHVLFPPPPFLVHSS (palindromic probe). - A probe comprising amino acid sequences that include at least 0.5 contiguous amino acid resides of amino acid residues 11-19 (emphasized below by double underlining) of the peptide fragment of transthyretin (AAH20791 [gi: 18089145]; MacPhee and Dobson, J. Mol. Biol., 279(5):1203-1215, 2000)
-
(SEQ ID NO: 26) MASHRLLLLCLAGLVFVSEAGPTGTGESKCPLMVKVLDAVRGSPAINVAV HVFRKAADDTWEPFASGKTSESGELHGLTTEEEFVEGIYKVEIDTKSYWK ALGISPFHEHAEVVFTANDSGPRRYTIAALLSPYSYSTTAVVTNPKE - A palindromic probe based on the above-referenced emphasized sequence of SEQ ID NO:26 (amino acid residues 11-19); such as
-
(SEQ ID NO: 27) ESVFVLGALPPPPLAGLVFVSE. - Probes having at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 99% to those exemplified above, and probes have equivalent sequences, also are included in the invention. Also included are probes that include the amino acid sequence of the above-referenced probes and have an additional N-terminal amino acid residue, C-terminal amino acid residue, or both, which is suitable for use in linking a label to the probe (e.g., Lys, which provides a free amino group for linking a label to the probe).
- Numerous other probes may be readily produced without undue experimentation using standard laboratory techniques and peptide a related chemical syntheses. Other probes and methods of designing probes which may be used in the presently disclosed methods or modified for use in the presently disclosed methods may be readily obtained and are described in U.S. 2006-0057671; Wurth et al., J. Mol. Biol. 319:1279-1290 (2002); and Kim et al., J. Biol. Chem. 280:35059-35076 (2005), which are incorporated by reference herein in their entireties.
- 5. Labels
- The probes disclosed herein may comprise a label. For example, the probe may comprise a peptide probe that is coupled or fused, either covalently or non-covalently, to a label. In one embodiment, the peptide probe is endcapped (at one or both ends of the peptide) with a moiety or chemical entity that may facilitate analysis of the peptide probe, including detection of the probe per se and detection of the structural state of the probe.
- The specific label chosen may vary widely, depending upon the analytical technique to be used for analysis. The label may be complexed or covalently bonded at or near the amino or carboxy end of the peptide, which may be endcapped with a short, hydrophobic peptide sequence. In some aspects of the invention, both the amino and carboxy ends of the probe peptides are endcapped with small hydrophobic peptides ranging in size from about 1 to about 5 amino acids. These peptides may be natural or synthetic, but are preferably natural (i.e., derived from the target protein). A label may be attached at or near the amino and/or carboxy end of the probe.
- As used herein, a “label” is a chemical or biochemical moiety useful for labeling the probe, and which, optionally, may be utilized to assess the specific structural state of the probe. For example, a label may emit a first signal based on a first structural state and a second signal based on a second structural state. The first signal and second signal may differ in intensity. In some embodiments where the signal includes emission of light, the first signal and second signal may differ in excitation wavelength and/or emission wavelength.
- “Labels” may include fluorescent agents (e.g., fluorophores, fluorescent proteins, fluorescent semiconductor nanocrystals), phosphorescent agents, chemiluminescent agents, chromogenic agents, quenching agents, dyes, radionuclides, metal ions, metal sols, ligands (e.g., biotin, streptavidin haptens, and the like), enzymes (e.g., beta-galactosidase, horseradish peroxidase, glucose oxidase, alkaline phosphatase, and the like), enzyme substrates, enzyme cofactors (e.g., NADPH), enzyme inhibitors, scintillation agents, inhibitors, magnetic particles, oligonucleotides, and other moieties known in the art. Where the label is a fluorophore, one or more characteristics of the fluorophore may be used to assess the structural state of the labeled probe. For example, the excitation wavelength of the fluorophore may differ based on the structural state of the labeled probe. In some embodiments, the emission wavelength, intensity, or polarization of fluorescence may vary based on the structural state of the labeled probe.
- As used herein, a “fluorophore” is a chemical group that may be excited by light to emit fluorescence or phosphorescence. A “quencher” is an agent that is capable of quenching a fluorescent signal from a fluorescent donor. A first fluorophore may emit a fluorescent signal that excites a second fluorophore. A first fluorophore may emit a signal that is quenched by a second fluorophore. The probes disclosed herein may undergo fluorescence resonance energy transfer (FRET).
- Fluorophores and quenchers may include the following agent (or fluorophores and quenchers sold under the following tradenames): 1,5 IAEDANS; 1,8-ANS; umbelliferone (e.g., 4-Methylumbelliferone); acradimum esters, 5-carboxy-2,7-dichlorofluorescein; 5-Carboxyfluorescein (5-FAM); 5-Carboxytetramethylrhodamine (5-TAMRA); 5-FAM (5-C arboxyfluorescein); 5-HAT (Hydroxy Tryptamine); 5-Hydroxy Tryptamine (HAT); 5-ROX (carboxy-X-rhodamine); 5-TAMRA (5-C arboxytetramethylrhodamine); 6-Carboxyrhodamine 6G; 6-CR 6G; 6-JOE; 7-Amino-4-methylcoumarin; 7-Aminoactinomycin D (7-AAD); 7-Hydroxy-4-methylcoumarin; 9-Amino-6-chloro-2-methoxyacridine; ABQ; Acid Fuchsin; ACMA (9-Amino-6-chloro-2-methoxyacridine); Acridine Orange; Acridine Red; Acridine Yellow; Acriflavin; Acriflavin Feulgen SITSA; Alexa Fluor 350™; Alexa Fluor 430™; Alexa Fluor 488™; Alexa Fluor 532™; Alexa Fluor 546™; Alexa Fluor 568™; Alexa Fluor 594™; Alexa Fluor 633™; Alexa Fluor 647™; Alexa Fluor 660™; Alexa Fluor 680™; Alizarin Complexon; Alizarin Red; Allophycocyanin (APC); AMC; AMCA-S; AMCA (Aminomethylcoumarin); AMCA-X; Aminoactinomycin D; Aminocoumarin; Aminomethylcoumarin (AMCA); Anilin Blue; Anthrocyl stearate; APC (Allophycocyanin); APC-Cy7; APTS; Astrazon Brilliant Red 4G; Astrazon Orange R; Astrazon Red 6B; Astrazon Yellow 7 GLL; Atabrine; ATTO-TAG™ CBQCA; ATTO-TAG™ FQ; Auramine; Aurophosphine G; Aurophosphine; BAO 9 (Bisaminophenyloxadiazole); Berberine Sulphate; Beta Lactamase; BFP blue shifted GFP(Y66H); Blue Fluorescent Protein; BFP/GFP FRET; Bimane; Bisbenzamide; Bisbenzimide (Hoechst); Blancophor FFG; Blancophor SV; BOBO™-1; BOBO™-3; Bodipy 492/515; Bodipy 493/503; Bodipy 500/510; Bodipy 505/515; Bodipy 530/550; Bodipy 542/563; Bodipy 558/568; Bodipy 564/570; Bodipy 576/589; Bodipy 581/591; Bodipy 630/650-X; Bodipy 650/665-X; Bodipy 665/676; Bodipy FL; Bodipy FL ATP; Bodipy Fl-Ceramide; Bodipy R6G SE; Bodipy TMR; Bodipy TMR-X conjugate; Bodipy TMR-X, SE; Bodipy TR; Bodipy TR ATP; Bodipy TR-X SE; BO-PRO™-1; BO-PRO™-3; Brilliant Sulphoflavin FF; Calcein; Calcein Blue; Calcium Crimson™; Calcium Green; Calcium Orange; Calcofluor White; Carboxy-X-rhodamine (5-ROX); Cascade Blue™; Cascade Yellow; Catecholamine; CCF2 (GeneBlazer); CFDA; CFP—Cyan Fluorescent Protein; CFP/YFP FRET; Chlorophyll; Chromomycin A; CL-NERF (Ratio Dye, pH); CMFDA; Coelenterazine f; Coelenterazine fcp; Coelenterazine h; Coelenterazine hcp; Coelenterazine ip; Coelenterazine n; Coelenterazine O; Coumarin Phalloidin; C-phycocyanine; CPM Methylcoumarin; CTC; CTC Formazan; Cy2™; Cy3.1 8; Cy3.5™; Cy3™; Cy5.1 8; Cy5.5™; Cy5™; Cy7™; Cyan GFP; cyclic AMP Fluorosensor (FiCRhR); Dabcyl; Dansyl; Dansyl Amine; Dansyl Cadaverine; Dansyl Chloride; Dansyl DHPE; Dansyl fluoride; DAPI; Dapoxyl; Dapoxyl 2; Dapoxyl 3; DCFDA; DCFH (Dichlorodihydrofluorescein Diacetate); DDAO; DHR (Dihydrorhodamine 123); Di-4-ANEPPS; Di-8-ANEPPS (non-ratio); DiA (4-Di-16-ASP); Dichlorodihydrofluorescein Diacetate (DCFH); DiD—Lipophilic Tracer; DiD (DiIC18(5)); DIDS; Dihydrorhodamine 123 (DHR); DiI (DiIC18(3)); Dinitrophenol; DiO (DiOC18(3)); DiR; DiR (DiIC18(7)); DNP; Dopamine; DsRed; DTAF; DY-630-NHS; DY-635—NHS; EBFP; ECFP; EGFP; ELF 97; Eosin; Erythrosin; Erythrosin ITC; Ethidium Bromide; Ethidium homodimer-1 (EthD-1); Euchrysin; EukoLight; Europium (III) chloride; EYFP; Fast Blue; FDA; Feulgen (Pararosaniline); FITC; Flazo Orange; Fluo-3; Fluo-4; Fluorescein (FITC); Fluorescein Diacetate; Fluoro-Emerald; Fluoro-Gold (Hydroxystilbamidine); Fluor-Ruby; Fluor X; FM 1-43™; FM 4-46; Fura Red™; Fura Red™/Fluo-3; Fura-2; Fura-2/BCECF; Genacryl Brilliant Red B; Genacryl Brilliant Yellow 10GF; Genacryl Pink 3G; Genacryl Yellow 5GF; GeneBlazer (CCF2); a fluorescent protein (e.g., GFP (S65T); GFP red shifted (rsGFP); GFP wild type, non-UV excitation (wtGFP); GFP wild type, UV excitation (wtGFP); and GFPuv); Gloxalic Acid; Granular Blue; Haematoporphyrin; Hoechst 33258; Hoechst 33342; Hoechst 34580; HPTS; Hydroxycoumarin; Hydroxystilbamidine (FluoroGold); Hydroxytryptamine; Indo-1; Indodicarbocyanine (DiD); Indotricarbocyanine (DiR); Intrawhite Cf; JC-1; JO-JO-1; JO-PRO-1; Laurodan; LDS 751 (DNA); LDS 751 (RNA); Leucophor PAF; Leucophor SF; Leucophor WS; Lissamine Rhodamine; Lissamine Rhodamine B; Calcein/Ethidium homodimer; LOLO-1; LO-PRO-1; Lucifer Yellow; luminol, Lyso Tracker Blue; Lyso Tracker Blue-White; Lyso Tracker Green; Lyso Tracker Red; Lyso Tracker Yellow; LysoSensor Blue; LysoSensor Green; LysoSensor Yellow/Blue; Mag Green; Magdala Red (Phloxin B); Mag-Fura Red; Mag-Fura-2; Mag-Fura-5; Mag-Indo-1; Magnesium Green; Magnesium Orange; Malachite Green; Marina Blue; Maxilon Brilliant Flavin 10 GFF; Maxilon Brilliant Flavin 8 GFF; Merocyanin; Methoxycoumarin; Mitotracker Green FM; Mitotracker Orange; Mitotracker Red; Mitramycin; Monobromobimane; Monobromobimane (mBBr-GSH); Monochlorobimane; MPS (Methyl Green Pyronine Stilbene); NBD; NBD Amine; Nile Red; NED™; Nitrobenzoxadidole; Noradrenaline; Nuclear Fast Red; Nuclear Yellow; Nylosan Brilliant lavin EBG; Oregon Green; Oregon Green 488-X; Oregon Green™; Oregon Green™ 488; Oregon Green™ 500; Oregon Green™ 514; Pacific Blue; Pararosaniline (FeuIgen); PBFI; PE-Cy5; PE-Cy7; PerCP; PerCP-Cy5.5; PE-TexasRed [Red 613]; Phloxin B (Magdala Red); Phorwite AR; Phorwite BKL; Phorwite Rev; Phorwite RPA; Phosphine 3R; Phycoerythrin B [PE]; Phycoerythrin R [PE]; PKH26 (Sigma); PKH67; PMIA; Pontochrome Blue Black; POPO-1; POPO-3; PO—PRO-1; PO—PRO-3; Primuline; Procion Yellow; Propidium lodid (PI); PyMPO; Pyrene; Pyronine; Pyronine B; Pyrozal Brilliant Flavin 7GF; QSY 7; Quinacrine Mustard; Red 613 [PE-TexasRed]; Resorufin; RH 414; Rhod-2; Rhodamine; Rhodamine 110; Rhodamine 123; Rhodamine 5 GLD; Rhodamine 6G; Rhodamine B; Rhodamine B 200; Rhodamine B extra; Rhodamine BB; Rhodamine BG; Rhodamine Green; Rhodamine Phallicidine; Rhodamine Phalloidine; Rhodamine Red; Rhodamine WT; Rose Bengal; R-phycocyanine; R-phycoerythrin (PE); RsGFP; S65A; S65C; S65L; S65T; Sapphire GFP; SBFI; Serotonin; Sevron Brilliant Red 2B; Sevron Brilliant Red 4G; Sevron Brilliant Red B; Sevron Orange; Sevron Yellow L; sgBFP™; sgBFP™ (super glow BFP); sgGFP™; sgGFP™ (super glow GFP); SITS; SITS (Primuline); SITS (Stilbene Isothiosulphonic Acid); SNAFL calcein; SNAFL-1; SNAFL-2; SNARF calcein; SNARF1; Sodium Green; SpectrumAqua; SpectrumGreen; SpectrumOrange; Spectrum Red; SPQ (6-methoxy-N-(3-sulfopropyl)quinolinium); Stilbene; Sulphorhodamine B can C; Sulphorhodamine G Extra; SYTO 11; SYTO 12; SYTO 13; SYTO 14; SYTO 15; SYTO 16; SYTO 17; SYTO 18; SYTO 20; SYTO 21; SYTO 22; SYTO 23; SYTO 24; SYTO 25; SYTO 40; SYTO 41; SYTO 42; SYTO 43; SYTO 44; SYTO 45; SYTO 59; SYTO 60; SYTO 61; SYTO 62; SYTO 63; SYTO 64; SYTO 80; SYTO 81; SYTO 82; SYTO 83; SYTO 84; SYTO 85; SYTOX Blue; SYTOX Green; SYTOX Orange; TET™; Tetracycline; Tetramethylrhodamine (TRITC); Texas Red™; Texas Red-X™ conjugate; Thiadicarbocyanine (DiSC3); Thiazine Red R; Thiazole Orange; Thioflavin 5; Thioflavin S; Thioflavin TCN; Thiolyte; Thiozole Orange; Tinopol CBS (Calcofluor White); TMR; TO-PRO-1; TO-PRO-3; TO-PRO-5; TOTO-1; TOTO-3; TriColor (PE-Cy5); TRITC TetramethylRodaminelsoThioCyanate; True Blue; TruRed; Ultralite; Uranine B; Uvitex SFC; VIC®; wt GFP; WW 781; X-Rhodamine; XRITC; Xylene Orange; Y66F; Y66H; Y66W; Yellow GFP; YFP; YO-PRO-1; YO-PRO-3; YOYO-1; YOYO-3; and salts thereof. Fluorophores may include fluorescent proteins.
- Labels may include derivatives of fluorophores that have been modified to facilitate conjugation to another reactive molecule. As such, labels may include amine-reactive derivatives such as isothiocyanate derivatives and/or succinimidyl ester derivatives of the label.
- Labels may include a fluorescent protein which is incorporated into a probe as part of a fusion protein. Fluorescent proteins may include green fluorescent proteins (e.g., GFP, eGFP, AcGFP, TurboGFP, Emerald, Azami Green, and ZsGreen), blue fluorescent proteins (e.g., EBFP, Sapphire, and T-Sapphire), cyan fluorescent proteins (e.g., ECFP, mCFP, Cerulean, CyPet, AmCyanl, and Midoriishi Cyan), yellow fluorescent proteins (e.g., EYFP, Topaz, Venus, mCitrine, YPet, PhiYFP, ZsYellowl, and mBanana), and orange and red fluorescent proteins (e.g., Kusabira Orange, mOrange, dTomato, dTomato-Tandem, DsRed, DsRed2, DsRed-Express (T1), DsREd-Monomer, mTangerine, mStrawberry, AsRed2, mRFP1, JRed, mCherry, HcRed1, mRaspberry, HcRed-Tandem, mPlum and AQ143). Other fluorescent proteins are described in the art (Tsien, R.Y., Annual. Rev. Biochem. 67:509-544 (1998); and Lippincott-Schwartz et al., Science 300:87-91 (2003)).
- As noted above, the probes may be comprised in fusion proteins that also include a fluorescent protein coupled at the N-terminus or C-terminus of the probe. The fluorescent protein may be coupled via a peptide linker as described in the art (U.S. Pat. No. 6,448,087; Wurth et al., J. Mol. Biol. 319:1279-1290 (2002); and Kim et al., J. Biol. Chem. 280:35059-35076 (2005), which are incorporated herein by reference in their entireties). In some embodiments, suitable linkers may be about 8-12 amino acids in length. In further embodiments, greater than about 75% of the amino acid residues of the linker are selected from serine, glycine, and alanine residues.
- In embodiments comprising in vivo imaging, labels useful for in vivo imaging can be used. For example, labels useful for magnetic resonance imaging, such as fluorine-18 can be used, as can chemiluminescent labels. In another embodiment, the probe is labeled with a radioactive label. For example, the label may provide positron emission of a sufficient energy to be detected by machines currently employed for this purpose. One example of such an entity comprises oxygen-15 (an isotope of oxygen that decays by positron emission) or other radionuclide. Another example is carbon-11. Probes labeled with such labels can be administered to a patient, permitted to localize at target protein, and the patient can be imaged (scanned) to detect localized probe, and thus identify sites of localized target protein. Labeled probes can be administered by any suitable means that will permit localization at sites of target protein, such as by direct injection, intranasally or orally. In some embodiments, radiolabeled probes can be injected into a patient and the binding of the probe to the protein target monitored externally.
- Labels may include oligonucleotides. For example, the peptide probes may be coupled to an oligonucleotide tag which may be detected by known methods in the art (e.g., amplification assays such as PCR, TMA, b-DNA, NASBA, and the like).
- Immobilized Probes and Uses Thereof
- In some embodiments the peptide probes are immobilized on a solid support. This can be achieved by methods known in the art, such as methods comprising exposing a probe to a solid support for a sufficient amount of time to permit immobilization of the probe to the solid support. The methods may further comprise removing unbound probe, cross-linking the probe to the solid support (e.g., chemically and/or by exposure to UV-irradiation), and drying the solid support and probe. Methods of immobilizing peptides on solid supports are known in the art. In one embodiment, the probes are immobilized in a specific structural state, such as a specific conformation (e.g., predominantly α-helix/radon coil or predominantly β-sheet), as described in U.S. 2006-0057671, which is incorporated herein by reference in its entirety.
- Probes immobilized to a solid support may be used to rapidly and efficiently detect the presence of target protein in a sample. Immobilized probes also are useful for binding some, essentially all, or all of a target protein present in a sample, after which the target protein can be separated from the rest of the sample, for example, to provide a purified sample that has a reduced target protein content, that is essentially free of target protein, or that is completely free of target protein. Thus for example, biological, medical or consumable compositions can be prepared that have a reduced content of target protein.
- The solid support can be any known solid substance that is suitable for binding peptides and suitable for use with biological materials. Many such solid supports are known to those of skill in the art. Examples of materials that are useful as solid supports, include, but are not limited to, plastics, including polystyrene, glass, polysaccharides, metal, and various polymers, including latex, acrylics, and nylons. Examples of forms of solid supports include, but are not limited to, plates, beads, and membranes.
- In general, a method of detecting a target protein using an immobilized probe comprises providing an immobilized probe, providing a sample containing or suspected of containing a target protein, exposing the sample to the immobilized probe under conditions and for an amount of time sufficient for the immobilized probe to bind to a target protein in the sample (if present), and detecting the presence of target protein bound to the immobilized probe. Detection may be by way of any known technique, as discussed and detailed above. In some embodiments, detection comprises assaying emission of light from a label, such as by fluorescence or luminescence. In other embodiments, detection is by PAGE and staining of proteins present in the gel. In yet other embodiments, detection is by reaction with an antibody specific for a target protein of interest. Other non-limiting examples of detection techniques are given above with reference to labels.
- Reaction conditions can be selected by those skilled in the art according to routine considerations. Suitable conditions include an aqueous environment, neutral pH (e.g., pH from about 6.0 to about 8.0), moderate salt (e.g., from about 100 mM to about 400 mM salt), and little or no detergents, emulsifiers, or other ancillary substances that might inhibit protein-protein interactions. The amounts of immobilized probe and sample to be used will vary depending on the amount of sample available, the amount of target protein suspected of being present in the sample, the amount of time the user wishes to expose the sample to the immobilized probe, and other considerations.
- In general, a method of reducing the target protein content of a sample comprises providing an immobilized probe, providing a sample containing or suspected of containing a target protein, exposing the sample to the immobilized probe under conditions and for an amount of time sufficient for the immobilized probe to bind to at least some of the target proteins in the sample (if present), and separating the immobilized probe and immobilized probe-target protein complexes from the sample. In some embodiments, the method reduces the amount of target protein in the sample by an amount that is detectable. In other embodiments, the method reduces the amount of target protein in the sample to an amount below detection limits. In other embodiments, the method completely eliminates target proteins from a sample.
- Methods of reducing target protein content of a sample can be effected under conditions similar to those described above for detecting target protein. Separating the immobilized probe and immobilized probe-target protein complexes from the sample may be by any suitable technique, such as by pouring off of the sample, by physical removal of the immobilized probe and complexes from the sample, etc. Those of skill in the art are aware of numerous ways of removing beads, membranes, and other solid supports from aqueous solutions, and any of those ways may be used to separate the immobilized probe and immobilized complexes from the sample. In some embodiments, the immobilized probe is a probe bound to a membrane that is permeable to the sample, such as blood or blood products, such as plasma. In these embodiments, the sample is filtered through the probe-bound membrane to remove some or all of the target proteins from the sample, e.g., from the blood or blood product. Passing of the last of the sample across the membrane causes separation of the probe-bound membrane and the sample. After the sample has been filtered, the probe-bound membrane may be assayed for the presence of target proteins.
- As is evident from the above disclosure, the invention also includes detecting the presence of target protein bound to the immobilized probe. Detection may be by way of any known technique, as discussed and detailed above. Likewise, various additional steps may be included in the methods, as long as those steps do not render the methods incapable of removing some or all of the prion proteins present in a sample.
- As noted above, one aspect of the invention provides probes for detecting proteins in a sample or in vivo, and for detecting proteins in a specific structural state (e.g., a target structural state). For example, a peptide probe may be labeled such that it fluoresces when the peptide probe is an alpha-helix or random coil conformation (or soluble state), and does not fluoresce when the peptide probe is in a beta-sheet conformation (or insoluble aggregated state). Likewise, a peptide probe may be labeled such that it does not form excimers when the peptide probe is an alpha-helix or random coil conformation (or soluble state), but does form excimers when the peptide probe is in a beta-sheet conformation (or insoluble aggregated state). Exemplary labels include fluorophores or fluorescent proteins, such as pyrene, tryptophan, fluorescein, rhodamine, GFP, and numerous others as described herein.
- Traditionally, protein structures have been determined by a variety of experimental or computational methods described in the art. See, e.g., U.S. 2006-0057671; U.S. Pat. No. 6,448,087; Waldo et al., Nat. Biotech. 17:691-695 (1999); Wurth et al., J. Mol. Biol. 319:1279-1290 (2002); Kim et al., J. Biol. Chem. 280:35069-35076 (2005), which are incorporated by reference herein in their entireties. For example, protein structure may be assessed experimentally by any method capable of producing at least low resolution structures. Such methods currently include X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. X-ray crystallography is one method for protein structural evaluation, and is based on the diffraction of X-ray radiation of a characteristic wavelength by electron clouds surrounding the atomic nuclei in the crystal. X-ray crystallography uses crystals of purified biomolecules (but these frequently include solvent components, co-factors, substrates, or other ligands) to determine near atomic resolution of the atoms making up the particular biomolecule. Techniques for crystal growth are known in the art, and typically vary from biomolecule to biomolecule. Automated crystal growth techniques are also known.
- Nuclear magnetic resonance (NMR) currently enables determination of the solution conformation (rather than crystal structure) of biomolecules. Typically, only small molecules, for example proteins of less than about 100-150 amino acids, are amenable to this technique. However, recent advances have lead to the experimental elucidation of the solution structures of large proteins, using such techniques as isotopic labeling. The advantage of NMR spectroscopy over X-ray crystallography is that the structure is determined in solution, rather than in a crystal lattice, where lattice neighbor interactions may alter the protein structure. The disadvantage of NMR spectroscopy is that the NMR structure is not as detailed or as accurate as a crystal structure. Generally, biomolecule structures determined by NMR spectroscopy are of moderate resolution compared to those determined by crystallography.
- In the context of the present invention, the native or altered (e.g., after contact with a target protein) conformation of a peptide probe may be determined by one or more methods such as CD, Fourier transform infra-red, ultra-violet, NMR, or fluorescence, light scattering, hydrophobicity detection using extrinsic fluors, such as 1-anilino-8-naphthalene sulfonate (ANS) or Congo Red stain, fluorescence resonance energy transfer (FRET), quenching of intrinsic tryptophan fluorescence through either conformational change or monomer or binding at an interface in an α-β heterodimer, equilibrium ultracentrifugation, and size-exclusion chromatography. See, e.g., P
HYSICAL BIOCHEMISTRY : APPLICATIONS TO BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2nd ed., W. H. Freeman & Co., New York, N.Y., 1982, for descriptions of these techniques. - As noted above, in some embodiments, the probe is modified to comprise labels that are detectable by optical means. Such labels may include tryptophan (an amino acid), pyrene or similar fluorophores, or a fluorescent protein, attached at or near the terminal positions of the peptide probe. Attachment of labels such as fluorophores is achieved according to conventional methods which are well known in the art.
- 1. Excimers
- In one embodiment, the labels have the capability to interact in such a manner as to produce a species known as an excimer. An excimer is an adduct that is not necessarily covalent and that is formed between a molecular entity that has been excited by a photon and an identical unexcited molecular entity. The adduct is transient in nature and exists until it fluoresces by emission of a photon. An excimer represents the interaction of two fluorophores that, upon excitation with light of a specific wavelength, emits light at a different wavelength, which is also different in magnitude from that emitted by either fluorophor acting alone. It is possible to recognize an excimer (or the formation of an excimer) by the production of a new fluorescent band at a wavelength that is longer than that of the usual emission spectrum. An excimer may be distinguished from fluorescence resonance energy transfer since the excitation spectrum is identical to that of the monomer.
- The formation of the excimer is dependent on the geometric alignment of the fluorophores and is heavily influenced by the distance between them. In one embodiment, fluorophores are present at each probe terminus and excimer formation between fluorophores is negligible as long as the overall probe conformation is a-helix or random coil. This is readily determined by measurement of the fluorescent behavior of the probe in the solvent to be used for analysis in the absence of the target protein. In some embodiments, interaction of the probe with the target protein causes a structural change (such as a conformational change) in the probe such that excimer formation occurs. This is readily measured by the procedures described herein. For example, conversion of the probe structure from that exhibited in the absence of analyte (α-helix or random coil) to a β-sheet structure may enable fluorophores attached to the probes to form excimers that may be readily identified. Further, the magnitude of excimer formation is directly related to the amount of protein analyte present.
- Thus, in accordance with one aspect of the invention, labeled probes form excimers when they adopt a specific structural state, such as a target structural state, such as may occur when the probes interact with target protein in the target structural state. The formation of excimers may be detected by a change in optical properties. Such changes may be measured by known fluorimetric techniques, including UV, TR, CD, NMR, or fluorescence, among numerous others, depending upon the fluorophore attached to the probe. The magnitude of these changes in optical properties is directly related to the amount of probe that has adopted the structural state associated with the change, and this is directly related to the amount of target protein present.
- 2. Circular Dichroism
- “Circular dichroism” (“CD”) is observed when optically active matter absorbs L and R hand circular polarized light slightly differently, as measured by a CD spectropolarimeter. Differences are very small and represent fractions of degrees in ellipticity. CD spectra for distinct types of secondary structure present in peptides and proteins are distinct. Measuring and comparing CD curves of complexed vs. uncomplexed protein represents an accurate measuring means for the methods disclosed herein.
- 3. The GFP System
- In one embodiment, a GFP fusion protein system is used to determine the specific structural state of probe or a test protein. Fusion proteins that include a test protein and green fluorescent protein (GFP) have been described to determine solubility of the test protein. See, e.g., Waldo et al., Nat. Biotech. 17:691-695 (1999); U.S. Pat. No. 6,448,087, Wurth et al., J. Mol. Biol. 319:1279-1290 (2002); Kim et al., J. Biol. Chem. 280:35059-35076 (2005), each of which are incorporated herein by reference in their entireties. Because folding of GFP into its native fluorescent structure is thought to occur slowly (Cubitt et al., Trends Biochem. Sci. 20:448-455 (1995), the fluorescence of a GFP fusion protein may depend on the solubility of the test protein. If the test protein is insoluble, the GFP portion of the fusion protein may be pulled out of solution with the test protein, and thereby prevented from folding into its fluorescent structure.
- In the context of the present invention, GFP fusion proteins are useful for identifying a probe or test protein in a specific structural state, for identifying a probe specific for a test protein in a specific structural state, and for identifying agents that affect the structural state of the target protein. For example, the fluorescence of a GFP-probe fusion or GFP-test protein fusion is indicative of a soluble probe or test protein with a low tendency to form self-aggregates. In contrast, a lack of fluorescence is indicative of the presence of an insoluble or self-aggregating probe or test protein.
- Thus, one aspect of the invention provides a fusion protein comprising (a) a peptide probe for a target protein, such as a peptide probe comprising an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, where the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation and the peptide probe does not comprise the full-length sequence of the target protein; and (b) a fluorescent protein (e.g., green fluorescent protein (GFP)). Optionally, the fusion protein further includes a polypeptide linker that links the peptide probe and the fluorescent polypeptide. In the context of this aspect of the invention, “GFP” includes proteins exhibiting equivalent folding and fluorescent properties of the full-length GFP protein, such as derivatives or fragments of the full-length GFP protein having at least about 60% sequence identity to the full-length GFP protein.
- Suitable target proteins include amyloid islet polypeptide precursor protein, amyloid beta protein or Aβ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof β2-microglobulin, α-synuclein, rhodopsin, α1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein.
- In some embodiments, the target protein is the prion protein (e.g., PrPC, PrPSc, or a mixture thereof), and the peptide probe may include SEQ ID NO:13 or a related sequence. In another embodiment, the target protein is amyloid beta protein (e.g., Aβ42, Aβ40, or a mixture thereof), and the peptide probe may include SEQ ID NO:32, SEQ ID NO:4, or a related sequence. In further embodiments, the target protein is amyloid islet polypeptide precursor protein, and the peptide probe may include SEQ ID NO:11 or a related sequence. In still further embodiments, the target protein is transthyretin protein, and the peptide probe may include SEQ ID NO:26, or a related sequence. In even further embodiments, the target protein is cystatin C protein, and the peptide probe may include SEQ ID NO:17 or a related sequence. In even further embodiments, the target protein is Huntington's disease protein (i.e., Huntingin), and the peptide probe includes SEQ ID NO:19, or a related sequence.
- As noted above, the fusion protein may emit a fluorescent signal correlated with its solubility. Thus, for example, a soluble fusion protein may exhibit a strong fluorescent signal while an insoluble protein will not fluoresce. While not wanting to be bound by any theory, it is belived that, at least in the context of amyloid proteins, the fluorescence of a fusion protein also is correlated with the conformational state of the peptide probe. Thus, for example, the fusion protein may emit a fluorescent signal when the peptide probe is in an alpha-helical conformation, while the fusion protein may not emit a fluorescent signal when the peptide probe is in a beta-sheet conformation.
- In some embodiments, the peptide probe is in an alpha-helical conformation when present in a solution of 1.0% SDS having a pH of about 7. In further embodiments, the peptide probe is in a beta-sheet conformation when present in a solution having a pH of about 4.5. Optionally, the fusion protein is immobilized on a solid support (e.g., where the fusion protein further comprises an avidin moiety, and is coupled to the solid support via a biotin moiety).
- The fusion proteins may be prepared by cloning a DNA sequence that encodes the peptide probe into a GFP expression vector (see, e.g., Waldo et al., Nature Biotechnol. 17, 691-695 (1999)). For example, the DNA sequence that encodes the peptide probe may be obtained by PCR amplification of a target sequence that encodes the peptide probe, or alternatively, by preparing overlapping oligonucleotides that encode the peptide probe when annealed (see, e.g., Kim et al., J. Mol. Biol. 319:1279-1290 (2002)). Subsequently, the DNA sequence that encodes the peptide probe may be treated with restriction enzymes and cloned into the GFP expression vector.
- 4. Surface Plasmon Resonance
- Biomolecular structures may also be studied by assessing “surface plasmon resonance” or “SPR.” The phenomenon of SPR is observed as a dip in intensity of light reflected at a specific angle from the interface between an optically transparent material (e.g., glass), and an opaque material, and depends on among other factors the refractive index of the medium (e.g., a sample solution) close to the surface of the opaque material (see WO 90/05295). A change of refractive index at the surface of the opaque material, such as by the adsorption or binding of material thereto, will cause a corresponding shift in the angle at which SPR occurs. In an SPR-based protein binding assay, a peptide probe may be contacted with a target protein that is immobilized on a surface of an opaque support. The interaction of the peptide probe with the target protein thereafter may be assessed by monitoring SPR between the interface of the surface of the opaque support and a transparent material.
- In some embodiments of the disclosed methods, peptide probes are selected for addition to an unknown or test sample or for use in vivo, to detect target protein present in the sample or in vivo, including target protein present in a specific structural state. Detection methods can be carried out along the general lines set forth in U.S. Pat. No. 7,166,471; U.S. patent application Ser. No. 10/728,246; PCT application PCT/US2006/005095, and/or U.S. application Ser. No. 11/030,300, the entire contents of which are incorporated herein by reference in their entireties.
- For in vitro embodiments, once a peptide probe is selected, it is added to a test sample. In some embodiments, such as with the detection of prion protein, it may be advantageous to subject the sample to disaggregation techniques commonly known in the art, such as sonication, prior to addition of the probe. The disaggregation step allows any potentially aggregated sample material to break apart so that these disaggregated sample materials are free to combine with the newly introduced peptide probe, thereby facilitating interaction between the probe and the target protein, and detection of the target protein.
- After the test sample or disaggregated test sample is allowed to interact with the peptide probes, the resulting mixture is then subjected to analytical methods commonly known in the art for the detection of interaction between the probe and the target protein. In some embodiments, the target protein is immobilized on a solid support. The peptide probe is contacted with the target protein and allowed to interact. Subsequently, non-bound peptide probe is removed and bound peptide probe is observed by detecting a signal from a detectable label on the probe. For example, where the detectable label is a fluorophore, the bound peptide probe may be illuminated to stimulate emission from the fluorophore. Where the detectable label is a radioisotope, the bound peptide may be contacted with a scintillant to stimulate emission from the scintillant. Alternatively, detection may be effected using antibodies, such as antibodies for the target protein which will bind to any target protein bound by the probe.
- In some embodiments, the peptide probe and target protein may be contacted in the presence of a test agent to assess the ability of the test agent to inhibit an interaction between the peptide probe and target protein.
- In one embodiment, the probe has a predominately α-helix or random coil conformation prior to being contacted with the target protein, and undergoes a shift to a β-sheet conformation when contacted with target protein in a β-sheet conformation. In accordance with specific aspects of this embodiment, the conformational change of the probe propagates further conformational changes in other probes that come into contact with the probe that has undergone the conformational change, thereby amplifying the detection reaction signal. Thus, unknown or test samples containing β-sheet conformation characteristic of abnormally folded or disease-causing proteins result in an increase in β-sheet formation and, often, the formation of insoluble aggregates in the text mixture containing both the test sample and the peptide probes. Conversely, unknown or test samples that lack any predominantly β-sheet secondary structures will neither catalyze a transition to β-sheet structure nor induce the formation of aggregates. This aspect of the invention may be particularly advantageous when the target protein is a prion protein.
- For example, a sample comprising TSE may be analyzed as follows. Referring to
FIG. 2 , the top row of the schematic illustrates an unknown sample of TSE protein represented as containing β-sheets. The β-sheets are disaggregated by sonication. Labeled peptide probes are added and are allowed to bind to the sample. The β-sheet conformation in the sample induces the peptide probes to conform to a β-sheet conformation. Beta-sheet propagation among the peptide probes forms aggregates. The resulting transition to a predominantly β-sheet form and amplified aggregate formation is detected by techniques such as light scattering and CD. In some embodiments, the peptide probe is fluorescently labeled and fluorescence detection is used. - In one further embodiment, any propagated conformational change is directly correlated with levels of disease-associated proteins (such as prions) with the progressive state (or infectivity) of the disease.
- In some embodiments, such as those relating to prion proteins, it may be preferable to utilize the presently disclosed methods manner in which there is no increase in infectious products as a result of the propagation. This may be achieved by placing a “break” in the links between the chain of infection, transmission, and propagation of the abnormal form. Such a break may occur at the transitional stage between the dimer and multimer forms of the aggregate. The physical formation of the multimer form may be blocked by simply impeding the step that leads to its formation. This may be achieved by using a probe in which the sequence of interest is attached to a non-relevant peptide, or by a neutral “blocker” segment, with the understanding that probes on linkers or “tethers” are more likely to encounter each other and result in amplifying the signal.
- In some embodiments, the test sample is subject to conditions that promote the structural shift, for example, a conformational shift from an alpha-helical conformation to a beta-sheet conformation which may result in aggregation. Such conditions are known in the art. For example, the binding of a metal ligand could direct a change in the protein conformation and favor aggregation; the expression or cleavage of different peptide sequences may promote advanced aggregation leading to fibril and plaque formation; genetic point mutations also may alter the relative energy levels required of the two distinct conformations, resulting in midpoint shifts in structural transitions; an increase in concentration levels could be sufficient to favor a conformational transition. In other embodiments, the test sample is “seeded” with aggregates of short peptide sequences. For example, synthetic and/or recombinant prion proteins and fibrils may be less reactive with peptide probes than biologically derived prion protein. This reduced reactivity can be overcome, however, by seeding the reaction mixture with aggregates of small prion-derived sequences, such as, for example a prion peptide comprising residues 106-126 (PrP106-126). Regardless of the initial trigger mechanism, the end result may be the catalytic propagation of the abnormal conformation, resulting in structural transformation of previously normal protein.
- In in vivo embodiments, a labeled peptide probe is administered to a patient, such as by local injection, allowed to localize at any sites of target protein or higher order target protein structures present within the patient, and then the patient can be scanned to detect the sites of labeled probe localized at sites of target protein or higher order target protein structures. Other routes of administration also are contemplated, including intranasal and oral. As discussed above, the probe can be labeled with any label suitable for in vivo imaging. The patient can be subject to a full body scan to identify any site of target protein. Alternatively, specific areas of the patient can be scanned to determine whether target protein is localized in the specific areas. Specific areas of interest may include vascular tissue, lymph tissue or brain (including the hippocampus or frontal lobes), or other organs such as the heart, kidney, liver or lungs.
- As noted above, in some embodiments, a peptide probe is specific for a target protein in a specific structural state. For example, a peptide probe may preferentially bind to target protein in an alpha-helix or random coil conformation, and have a lower (or no) affinity for target protein in a beta-sheet conformation. Conversely, a peptide probe may preferentially bind to target protein in a beta-sheet conformation and have a lower (or no) affinity for target protein in an alpha-helix or random coil conformation. Likewise, a peptide probe may preferentially bind to a target protein in a specific state of self-aggregation. For example, a peptide probe may preferentially bind to soluble monomers of the target protein, to soluble oligomers of the target protein, to insoluble self-aggregates (including amorphones self-aggregates), to protobrils or to fibrils, and have a lower (or no) affinity for target protein in a different state. Such probes are useful for identifying target protein in the specific structural state preferentially recognized by the peptide probe.
- As used herein, a peptide probe that “preferentially binds to the target protein in a specific state of self-aggregation” means that the peptide probe binds in a dose-dependent manner to target protein in a specific state of self-aggregation, and does not bind in a dose-dependent manner to target protein in a different state of self-aggregation. For example, a peptide probe may preferentially bind to target protein in higher-order states of self-aggregation, such that the peptide probe binds in a dose-dependent manner to oligomers and fibers and does not bind in a dose-dependnet manner to monomers.
- For example, peptide probes consisting of or comprising the amino acid sequence of SEQ ID NO:36 or SEQ ID NO:45 specifcially react with Aβ40 and Aβ42 oligomers, and do not specifically react with Aβ40 and Aβ42 monomers. Thus, these peptide probes are useful for identifying higher order structures of Aβ40 and Aβ42.
- Thus, one aspect of the invention provides methods for identifying a target protein present in a specific structural form in a sample, comprising (a) contacting the sample with a peptide probe for the target protein, where the peptide probe preferentially binds to the specific structural form of the target protein, and (b) detecting any binding between the peptide probe and any target protein present in the specific structural form.
- As discussed above, the peptide probe may further include a label (e.g., pyrene, tryptophan, a fluorescent polypeptide label such as green fluorescent protein (GFP), and a radionuclide label), and may optionally be immobilized on a solid support.
- Alternatively, in vivo methods for identifying a target protein present in a specific structural form in a patient may comprise (a) administering to the patient a peptide probe for the target protein, where the peptide probe preferentially binds to the specific structural form of the target protein, and (b) scanning the patient to detect any localized peptide probe, thereby detecting and any target protein in the specific structural form that may be present in the patient. As discussed above, the peptide probe may be labeled with any label suitable for detection by in vivo imaging, and the probe can be administered by any suitable route of administration. As noted above, the patient can be subject to a full body scan, or specific areas can be scanned or imaged, such as vascular tissue, lymph tissue or brain (including the hippocampus or frontal lobes), or other organs such as the heart, kidney, liver or lungs.
- The structural form of the target protein may include a beta-sheet conformation or an alpha-helical conformation. In some embodiments, the structural form of the target protein is a monomer of the protein. In other embodiments, the structural form of the target protein is a soluble oligomer of the protein. Structural forms also may include insoluble self-aggregates of the protein (e.g., insoluble amorphous self-aggregates, protofibrils, and fibrils).
- For example, in the context of Aβ, peptide probes can be used to identify soluble Aβ protein, ADDLs, insoluble aggregates of Aβ protein, protofibrils and fibrils present in a sample. The ability to identify specific structural forms of Aβ protein offers significant clinical advantages. For example, the presence and load of Aβ42 protein and higher order Aβ structures (e.g., ADDLs, protofibrils, and fibrils) can be used to identify a patient at risk for AD or a patient suffering from AD, and/or the extent to which the disease has progressed. The same information also could be used to determine the need for a therapeutic regimen or for a more or less aggressive regimen than currently being used, and to monitor the efficacy of a given therapeutic regimen.
- In one embodiment, peptide probes are used to determine the location of Aβ42 protein or higher order Aβ structures within the patient. For example, biological samples from specific segments of the brain can be obtained and analyzed for the presence of Aβ42 protein or higher order Aβ structures. Alternatively, labeled probes can be administered to the patient, such as by local injection, allowed to localize at any sites of Aβ42 protein or higher order Aβ structures present within the patient, and then the patient can be scanned to detect the sites of labeled probe localized at sites of Aβ42 protein or higher order Aβ structures. Specific sites of interest might include the hypocampus or frontal lobes of the brain. Other sites of interesnt might include vascular tissue, lymph tissue, and other organs such as the heart, kidney, liver or lungs.
- Another aspect of the invention provides a method for determining the amounts of Aβ42 and/or Aβ40 in a sample, and the ratio of Aβ42 to Aβ40 in a sample. As noted above, the amount of Aβ42 (or “load”) circulating in patient plasma or CSF is correlated with diseases such as Aβ and LLMD. Similarly, a high ratio of Aβ42 to Aβ40 is indicative of a disease state. The present invention provides methods of determining these values using peptide probes that preferentially bind to either Aβ42 or Aβ40, and thus can be used to quantify the amount of Aβ42 or Aβ40 present in a sample. By testing a sample with each type of probe (simultaneously or sequentially), the absolute and relative loads can be determined. That information can be used, for example, to identify a patient at risk for AD or a patient suffering from AD, and/or the extent to which the disease has progressed. The same information also could be used to determine the need for a therapeutic regimen or for a more or less aggressive regimen than currently being used, and to monitor the efficacy of a given therapeutic regimen. Similar information could be obtained by in vivo methods, along the lines discussed above.
- Likewise, in the context of prion proteins, peptide probes can be used to identify soluble monomers of PrPSc, soluble aggregates of PrPSc, insoluble aggregates of PrPSc, protofibrils and/or fibrils present in a sample or in vivo. The ability to identify specific structural forms of PrPSc offers significant clinical advantages. For example, the soluble aggregate form of PrPSc is believed to be the most infective form; thus, the identification of that form of PrPSc can be used to identify an infected subject. The same information also could be used to determine the need for a therapeutic regimen or for a more or less aggressive regimen than currently being used, and to monitor the efficacy of a given therapeutic regimen.
- In one embodiment, peptide probes are used to determine the location of PrPSc protein or higher order PrPSc structures (such as soluble aggregates) within a patient. For example, biological samples from specific segments of the brain can be obtained and analyzed for the presence of PrPSc protein or higher order PrPSc structures. Alternatively, labeled probes can be administered to the patient, such as by local injection, allowed to localize at any sites of PrPSc protein or higher order PrPSc structures present within the patient, and then the patient can be scanned to detect the sites of labeled probe localized at sites of PrPSc protein or higher order PrPSc structures.
- Another aspect of the invention provides a method for determining the amounts of PrPSc in a sample, or the amount of a specific form of PrPSc in a sample. As noted above, the soluble aggregate form of PrPSc is highly infective. The present invention provides methods of determining the amount of that form of PrPSc present in a sample, using peptide probes that preferentially bind to the soluble aggregate form of PrPSc. That information can be used, for example, to evaluate the infective burden of a patient and/or the extent to which the disease has progressed. The same information also could be used to determine the need for a therapeutic regimen or for a more or less aggressive regimen than currently being used, and to monitor the efficacy of a given therapeutic regimen. Similar information could be obtained by in vivo methods, along the lines discussed above.
- The invention also provides methods of identifying probes that are specific for a target protein in a specific structural state. In some embodiments, the tendency of a probe to adopt a specific structural state corresponds with the probe's specificity for a target protein in that specific structural state. Thus, a probe with a high tendency to form insoluble self-aggregates is specific for target protein in an insoluble self-aggregated state; a probe with a tendency to form soluble self-aggregates is specific for target protein in a soluble self-aggregated state, and a probe with no tendency to form aggregates is specific for target protein in a non-aggregated state (such as a monomeric state). In some embodiments, the probe may exhibit a low tendency to form self-aggregates. For example, the probe may include the amino acid sequence of a variant of Aβ42 having amino acid substitutions 141D and A42Q (i.e., “the DQ mutant”).
- Probes specific for a target protein in a specific structural state that falls on a spectrum of structural states ranging from a low end of soluble monomers to a high end of insoluble self-aggregates can be identified in accordance with the present invention, such as by using the GFP system. For example, a fusion protein comprising (i) a peptide probe for the target protein and (ii) GFP can be subjected to conditions that promote self-aggregation, and any fluorescent signal can be detected. The intensity of the signal can be correlated with the specificity of the probe for a target protein in a specific structural state. For example, in some embodiments, a higher intensity signal indicates that the probe has a low tendency to form aggregates, and thus is specific for a target protein at a lower end of the spectrum of structural states, such as a soluble monomer. Conversely, in some embodiments, a lower intensity signal indicates that the probe has a higher tendency to form aggregates and is specific for a target protein at a higher end of the spectrum of structural states, such as an insoluble aggregate. An intermediate signal may indicate that the probe has an intermediate tendency to form aggregates and is specific for a target protein at an intermediate end of the spectrum of structural states, such as a soluble oligomer.
- Probes specific for a target protein in a specific structural state also can be identified by preparing samples of protein in different specific structural states, and then assessing the ability of a peptide probe to preferentially bind to protein in one or more of the different specific structural states. For example, a peptide probe can be contacted with a sample of a protein in a specific structural state, and its interaction with the protein assessed using, for example, any of the methodologies described above. This process can be repeated using samples of protein in different specific structural states, and the results can be compared to determine whether the peptide probe preferentially binds to protein in one or more of the different specific structural states.
- The probes disclosed herein may be used in screening methods for identifying agents that modulate self-aggregation of a target protein.
- For example, to screen for agents that modulate self-aggregation of a target protein, a fusion protein is prepared which comprises a peptide probe for the target protein and a label which generates a signal dependant on the aggregative state of the protin, such as GFP. (In some embodiments, the label is linked to the C-terminus of the peptide probe, directly or through a linker). As discussed above, in the GFP system, the fluorescence of the fusion protein is inversely correlated with the peptide probe's tendency to form insoluble self-aggregates. Thus, for example, if the fusion protein is observed to emit a fluorescent signal, the peptide probe has a low tendency to form insoluble self-aggregates. Conversely, if the fusion protein is observed to not emit a fluorescent signal, the peptide probe has a higher tendency to form insoluble self-aggregates. Other labels described above can be used in place of GFP. Those skilled in the art recognize that some labels will emit a signal that is inversely correlated with aggregation, while others will emit a signal that is directly correlated with aggregation. For convenience, the invention is described with reference to the GFP system.
- In some circumstances, it may be desirable to determine the relative tendency of a peptide probe to form aggregates. To that end, a signal generated by a reference fusion protein (e.g., comprising GFP and a reference peptide probe) is compared to a signal generated by a test fusion protein (e.g., comprising GFP and a test peptide probe). In the GFP system, an increasing fluorescence signal correlates with a lower tendency to form aggregates.
- In some embodiments, peptide probes with a high tendency to form insoluble self-aggregates are used in screening methods for identifying agents that modulate self-aggregation of a target protein. In one aspect of this embodiment, the GFP fusion protein (e.g., peptide probe-GFP) is cloned into a vector for inducible expression in a host cell (e.g., E. coli). Expression is induced in E. coli in the presence of a test agent for inhibiting self-aggregation of target protein. Fluorescence of the fusion protein (due to the GFP moiety) is measured, and fluorescence in the presence of a test agent identifies the test agent as a potential inhibitor of target protein self-aggregation.
- In another aspect, the screening method comprises an in vitro assay. For example, a GFP fusion protein is cloned into a vector for “cell-free” expression as known in the art. The fusion protein then is expressed in the presence of a test agent and fluorescence is measured. Again, fluorescence in the presence of a test agent identifies the test agent as a potential inhibitor of target protein self-aggregation.
- In variations of these embodiments, a GFP fusion protein is expressed in the absence of the test agent and in the presence of the test agent, and an increase in fluorescence identifies a test agent that inhibits aggregation.
- In other variations of these embodiments the fusion protein is expressed in the presence of the test protein (and test agent).
- Suitable test agents for the screening methods may include antibodies, chelating agents, tridentate iron chelators, diketones, 2-pyridoxal isonicontinyl hydrazone analogues, tachypyridine, clioquinol, ribonucleotide reductase inhibitor chelators, 2,3-dihydroxybenzoic acid, Picolinaldehyde, Nicotinaldehyde, 2-Aminopyridine, 3-Aminopyridine, topical 2-furildioxime, n-Butyric acid, Phenylbutyrate, Tributyrin, suberoylanilide hydroxamic acid, 6-cyclohexyl-1-hydroxy-4-methyl-2(1H)-pyridinone, rilopirox, piroctone, benzoic acid-related chelators, salicylic acid, nicotinamide, Clioquniol, heparin sulfate, trimethylamine N-oxide, polyethylene glycol (PEG), copper cations, dimethylsulfoxide, Dexrazoxane, dopamine, tannic acid, triazine, levodopa, pergolide, bromocriptine, selegiline, glucosamine or analogs thereof, tetrapyrroles, nordihydroguaiaretic acid, polyphenols, tetracycline, polyvinylsulfonic acid, 1,3,-propanedisulfonic acid, β-sheet breaker peptide (iAβ5), nicotine, or salts or derivatives thereof.
- Suitable target proteins for the screening methods may be any of those discussed above. The screening methods can be used to identify agents that modulate aggregation of any target protein that is susceptible to self-aggregation, including prion proteins and Aβ42. These methods also can identify agents that bind to target protein. Binding of an agent to a monomer of the target protein will prevent self-aggregation of the target protein. Similarly, binding of an agent to a soluble oligomer or an insoluble aggregate will prevent further aggregation and protofibril and fibril formation, while binding of an agent to a protofibril or fibril will prevent further extension of that structure. In addition to blocking further aggregation, this binding also may shift the equilibrium back to a state more favorable to soluble monomers, further halting the progression of the disease and alleviating disease symptoms.
- Binding of target protein by an agent also may directly interfere with any detrimental activity exhibited by the target protein.
- In one specific embodiment, the activity of a test agent identified as described above is confirmed in a further assay. For example, a soluble form of the target protein or a peptide probe for the target protein is prepared using organic solvents, sonication, and filtration (Bitan et al., Methods in Molec. Biol., pp. 3-9 (2005, Humana Press). After preparation, the soluble form of the target protein or probe is diluted in aqueous buffer that includes a test agent identified as described above, and the target protein or probe is allowed to aggregate under agitation or under quiescence. Aggregation then is measured by any of the methods described above, such as by using a labeled probe and detecting excimer formation or CD, or by other methods known in the art such as measuring fluorescence of Thioflavin T (Levine-III, H., Protein Sci. 2:404-410 (1993) or Congo-red binding, to confirm that a test agent inhibits aggregation.
- In one embodiment, the activity of a test agent identified as described above using a GFP-peptide probe fusion protein is confirmed by assessing the fluorescence of a GFP-target protein fusion protein in the presence of the test agent.
- The ability of a test agent to inhibit aggregation also may be assessed by observing aggregation of a target protein (or a probe) in the presence of the test agent under electron microscopy. A dose dependent decrease in aggregation confirms that the test agent inhibits aggregation.
- The invention also provides for more tailored drug screening, i.e., by identifying active agents that interact with specific structural states of the target protein. In this embodiment, the ability of a test agent to interact with a probe with a tendency to form a specific structural state is used to identify agents that interact with target protein in that specific structural state. For example, probes with a low tendency to self-aggregate can be used to identify active agents that bind to monomers of the target protein; probes with a tendency to form soluble oligomers (such as those that mimic the structure of Aβ ADDLs) can be used to identify active agents that bind to soluble oligomers; probes with a tendency to form insoluble aggregates can be used to identify active agents that bind to insoluble monomers of the target protein. In some embodiments, probes with a low tendency to self-aggregate may be used to identify active agents that bind to the target protein in competition assays. For example, where the probe and active agent form a complex, additional probe, which optionally may be derivatized, can be used to compete off the probe from the complex.
- In another variation, active agents that interact with a specific structural state of the target protein are identified by contacting the active agent with a sample of target protein, separating complexed active agent-target protein moieties from non complexed target protein, and determining the specific structural state of the complexed target protein using probes for specific structural states, as described herein.
- Any agent known or suspected of inhibiting the specific structural state associated with a disease state may be used in screening methods to assess its ability to modulate aggregation, and thus its candidacy as a therapeutic agent. For example, agents known or suspected of inhibiting formation of the O-sheet conformation of a target protein, of inhibiting the formation of oligomers or insoluble amorphous self-aggregates of the target protein, or of inhibiting formation of fibrils, can be screened by the present methods to identify therapeutic agents. Peptide probes designed as described above (with or without a label) also are suitable as test agents to assess their likely usefulness as therapeutic agents.
- Examples of therapeutic test agents include agents known or suspected to have anti-amyloid activity or anti-amyloidogenic activity. An “anti-amyloid agent” or “anti-amyloidogenic agent” is an agent which, directly or indirectly, inhibits proteins from aggregating and/or forming amyloid plaques or deposits and/or promotes disaggregation or reduction of amyloid plaques or deposits. For example, an anti-amyloid agent may inhibit a protein from assuming a conformation that is involved in aggregation and/or formation of oligomers, fibrils, amyloid plaques, etc. Thus, for example, an anti-amyloid agent may inhibit a protein from assuming a beta-sheet conformation. Anti-amyloid agents include proteins, such as anti-amyloid antibodies and peptide probes, and also include small chemical molecules, such as small molecule drugs.
- 1. Traditional Anti Amyloid Agents
- Anti-amyloid agents include chelating agents (e.g., chelating agents for transition metals such as copper and iron such as tridentate iron chelators), diketones
- (e.g., beta-diketones), 2-pyridoxal isonicontinyl hydrazone analogues, tachypyridine, clioquinol, ribonucleotide reductase inhibitor chelators, 2,3-dihydroxybenzoic acid, Picolinaldehyde, Nicotinaldehyde, 2-Aminopyridine, 3-Aminopyridine, topical 2-furildioxime, n-Butyric acid, Phenylbutyrate, Tributyrin, suberoylanilide hydroxamic acid, 6-cyclohexyl-1-hydroxy-4-methyl-2(1H)-pyridinone, rilopirox, piroctone, benzoic acid-related chelators, salicylic acid, nicotinamide, Clioquniol, heparin sulfate, trimethylamine N-oxide (TMNO), polyethylene glycol (PEG), copper cations (e.g., Cu++), dimethylsulfoxide (DMSO), and Dexrazoxane.
- Anti-amyloid agents also include agents generally referred to in the art as “amyloid busters” or “plaque busters.” These include drugs which are peptidomimetic and interact with amyloid fibrils to slowly dissolve them. “Peptidomimetic” means that a biomolecule mimics the activity of another biologically active peptide molecule. “Amyloid busters” or “plaque busters” also include agents which absorb co-factors necessary for the amyloid fibrils to remain stable.
- Anti-amyloid agents also include dopamine, tannic acid, triazine, levodopa, pergolide, bromocriptine, selegiline, glucosamine or analogs thereof (e.g., 4-deoxy-D-glucosamine or 4-deoxy-acetylglucosamine), tetrapyrroles, nordihydroguaiaretic acid (NDGA), polyphenols (e.g., myricetin (Myr), morin (Mor), quercetin (Qur), kaempferol (Kmp), (+)-catechin (Cat), (−)-epicatechin (epi-Cat)), rifampicin (RIF), tetracycline (TC), small molecule sulfonic acids (e.g., polyvinylsulfonic acid and 1,3,-propanedisulfonic acid), small molecule sulphonates and sulfates (e.g., ethanesulfphonate, 1-propanesulphonate, 1,2-ethanedisulphonate, 1,3-propaendisulphonate, 1,4-butanedisulphonate, 1,5-propanedisulphonate, 1,6-hexanedisulphonate, poly(vinylsulphonate), 1,2-ethanediol disulphate, 1,3-propanediol disulphate, and 1,4-butanediol disulphate), cyclohexanehexyl (e.g., epi-cyclohexanehexyl, scyllo-cyclohexanehexyl, and myo-cyclohexanehexyl), O-sheet breaker peptide (iAβ5), nicotine, or salts, acids, or derivatives thereof.
- Anti-amyloid agents also may include antibodies, such as antibodies specific to the target protein, or antibodies specific to a specific structural state of the target protein.
- 2. Peptide Probes as Anti-Amyloid Agents
- As noted above, peptide probes of the present invention are useful as anti-amyloid agents in the prevention and treatment of amyloidogenic diseases such as AD, and in the prevention of advanced stages of amyloidogenic diseases. As described above, a peptide probe for a given target protein specifically binds to that protein, and may preferentially bind to a specific structural form of the target protein.
- While not wanting to be bound by any theory, it is believed that binding of target protein by a peptide probe will prevent the formation of higher order assemblies of the target protein, thereby preventing or treating the disease associated with the target protein, and/or preventing further progression of the disease. For example, binding of a peptide probe to a monomer of the target protein will prevent self-aggregation of the target protein. Similarly, binding of a peptide probe to a soluble oligomer or an insoluble aggregate will prevent further aggregation and protofibril and fibril formation, while binding of a peptide probe to a protofibril or fibril will prevent further extension of that structure. In addition to blocking further aggregation, this binding also may shift the equilibrium back to a state more favorable to soluble monomers, further halting the progression of the disease and alleviating disease symptoms.
- Binding of target protein by a peptide probe also may directly interfere with any detrimental activity exhibited by the target protein. Thus, for example, the neurotoxic effects of ADDLs could be inhibiting by the binding action of a peptide probe specific for the ADDLs. Thus, in one embodiment, binding by peptide probes blocks the interaction of ADDLs and protofibrils with synapses and neuronal membranes. In some embodiments, where the target protein binds to another protein (e.g., a receptor), the peptide probes may be designed to compete with the target protein for binding to the other protein. For example, a peptide probe may be designed to compete for binding to a receptor for the target protein, where the receptor is present in neuronal membranes or basement cell membranes.
- In some embodiments, peptide probes may be designed to bind to proteins such as laminin, effector cell adhesion molecules (ECAMS) (e.g., selectin), and glycosaminoglycans (GAGS). (See U.S. 2006-0135529). For example, the peptide probes may be designed to bind to glycosaminoglycan (GAG) and inhibit GAG interactions with effector cell adhesion molecules (ECAM) such as selectin.
- Thus, in one embodiment, there is provided a method for preventing the formation of protein aggregates of a target protein, comprising contacting the target protein with a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein, thereby preventing the formation of higher order protein aggregates of the target protein. In some embodiments, the peptide probe preferentially binds to a specific structural state of the target protein. In some embodiments, the peptide probe preferentially binds to monomers of the target protein, thereby preventing the formation of protein aggregates. In other embodiments, the peptide probe preferentially binds to soluble oligomers of the target protein, thereby preventing the formation of insoluble protein aggregates. In other embodiments, the peptide probe preferentially binds to insoluble aggregates of the target protein, thereby preventing the formation of fibrils of the target protein. In specific embodiments, the peptide probe preferentially binds to insoluble aggregates such as amorphous self-aggregates, protofibrils, and fibrils.
- The contacting can be effected by any means that results in the peptide probe contacting the target protein. For in vivo methods, to prevent the formation of protein aggregates of a target protein in a pateint, the peptide probe can be administered to the patient by any suitable means, such as by direct injection, for example, into a site of localized target protein or into a site of interest, such as those described above, or by intranasal or oral administration.
- Peptide probes of the invention also are useful as targeting agents to deliver other active agents (such as any of the agents listed above) to target proteins, such as to Aβ proteins, or to specific forms of Aβ, such as Aβ42, Aβ42 monomers, Aβ42 ADDLs, insoluble aggregates of Aβ42, fibrils, etc. In this embodiment of the invention, a peptide probe is combined with one or more active agents, such as by conjugation directly or through a linker, by methods known in the art. The active agent may be a therapeutic active agent, such as any of those known in the art and those mentioned above, or it may be a detection agent, such as any of those known in the art and those described above with regard to peptide probe labels. In some embodiments, the peptide probe localizes at target protein present at a specific site in the patient, such one or more of vascular tissue, lymph tissue, brain, or other organs, such as kidney, liver, heart or lungs, thereby delivering therapeutic agent to such specific sites.
- Thus, in one embodiment, there is provided a method for treating a disease associated with a target protein, comprising contacting the target protein with a fusion protein comprising (i) a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein, and (ii) a therapeutic agent. In some embodiments, the peptide probe preferentially binds to a specific structural state of the target protein. The contacting can be effected by any means that results in the peptide probe contacting the target protein, as discussed above, such as by injection, intranasally or orally.
- In some embodiments, the disease is Alzheimer's disease, the target protein is Aβ342, Aβ40, or both, and the therapeutic agent is selected from the group consisting of antibodies, heavy metal chelators and charge moieties. In other embodiments, the disease is TSE, the target protein is prion protein, and the therapeutic agent is selected from the group consisting of antibodies, heavy metal chelators and charge moieties. In other embodiments, the disease is senile systemic amylodiosis or familial amyloid polyneuropathy, the target protein is transthyretin, and the therapeutic agent is selected from the group consisting of antibodies, heavy metal chelators and charge moieties. In some embodiments, the disease is Huntington's disease, the target protein is Huntingtin, and the therapeutic agent is selected from the group consisting of heavy metal chelators and charge moieties. In other embodiments, the disease is Parkinson's disease, the target protein is alpha-synuclein, and the therapeutic agent is selected from the group consisting of heavy metal chelators and charge moieties.
- Also provided is a method of delivering a therapeutic agent comprising combining the therapeutic agent with a peptide probe for the target protein and administering the peptide probe-therapeutic agent combination to a patient in need thereof. In some embodiments, the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, but does not comprise the full-length sequence of the target protein. In some embodiments, the peptide probe preferentially binds to the target protein in a specific state of self-aggregation. In some embodiments, the peptide probe preferentially binds to the target protein in a specific state of self-aggregation selected from the group consisting of monomers, soluble oligomers and insoluble aggregates. In some embodiments, the therapeutic agent has anti-amyloid activity. In some embodiments, the peptide probe is combined with the therapeutic agent via conjugation, directly or through a linker.
- Suitable patients for prevention or treatment can be identified by those skilled in the art. For example, patients can be identified by detecting target protein in biological samples obtained from the patients or by in vivo methods described above, by identifying other risk factors (such as a genetic mutation, apoE, or PET scanning showing amyloid deposits or plaques), or by a family history of amyloidogenic disease (including AD and LLMD). In one embodiment of the invention, blood samples are screened for the presence of one or more amyloid proteins, such as Aβ42, and patients with high levels of that protein, or with high Aβ42/Aβ40 ratios, are selected for treatment.
- In any of the methods disclosed herein, controls (either positive, negative, or both) may be run to validate the assay. Positive controls generally comprise performing the methods with samples that are known to comprise at least one target protein (typically of a specific, known type), and may be used to confirm that the methods are capable of detecting that protein and/or are specific for that particular protein. Generally, a positive control comprises a sample (at any stage of the procedure) to which is intentionally added a known target protein, typically in a known amount. Negative controls generally comprise performing the methods with samples that are known not to contain any target proteins, and may be used to confirm that the methods are not providing systematic false positive results. Other controls may be run at one or more particular stages in the methods to verify that those stages are functioning as expected. One of skill in the art is well aware of suitable controls and may design and implement them without undue experimentation.
- “Test specimen” is a sample of material to be tested and is equivalent in meaning to, and used interchangeably with “sample.” The sample may be prepared from tissue (e.g. a portion of ground meat, an amount of tissue obtained by a biopsy procedure, blood or a fraction of blood, such as plasma) by homogenization in a glass homogenizer or may be used directly as obtained. The amount of sample may be any amount suitable for the application in which the sample is used. For example, if blood or a blood fraction is used, it may be about 1 μl, about 100 μl, about 1 ml, about 10 ml., about 100 ml., about one liter (or one pint), or more. In some applications, large volumes of blood or blood products may be used as a sample, including amounts greater than one liter (or one pint). When solid tissue is the source of the sample, the sample should be between about 1 mg and 1 gm, preferably between 10 mg and 250 mg, ideally between 20 and 100 mg.
- Proteins in samples or specimens may be detected in aggregated form or in the presence of other cellular constituents, such as lipids, other proteins, or carbohydrates. A sample preparation for analysis may be homogenized or subjected to a similar disruption of tissue or aggregate structures, and cellular debris may be removed by centrifugation. This process may be performed in the presence of a buffered salt solution and may utilize one of several detergents such as SDS, Triton X-100, or sarkosyl. Further concentration of the sample may be achieved by treatment with any of several agents; (e.g., phosphotungstate), which is employed according to the method of Safar et al., Nature Medicine 4:1157-1165, 1998.
- A sample may be obtained for testing and diagnosis as follows. A sample may be prepared from tissue (e.g., a portion of ground meat, or an amount of tissue obtained by a biopsy procedure) by homogenization in a glass homogenizer or by mortar and pestle in the presence of liquid nitrogen. The amount of material should be between about 1 mg and 1 gm, preferably between 10 mg and 250 mg, such as between 20 mg and 100 mg. The material to be sampled may be suspended in a suitable solvent, preferably phosphate-buffered saline at a pH between 7.0 and 7.8. The addition of RNase inhibitors is optional. The solvent may contain a detergent (e.g., Triton X-100, SDS, sarkosyl, dioxycholate, IgePal (NP40)). Homogenization is performed for a number of excursions of the homogenizer, preferably between 10 and 25 strokes; such as between 15 and 20 strokes. The suspended sample is preferably centrifuged at between 100 and 1,000×g for 5-10 minutes and the supernatant material sampled for analysis. In some samples, it may be preferable to treat the supernatant material with an additional reagent, such as phosphotungstic acid according to the procedure described by Safar et al., Nature Medicine 4:1157-1165, 1998, and as modified by Wadsworth, The Lancet 358:171-180, 2001.
- The amount of sample to be tested is based on a determination of the protein content of the supernatant solution as measured by the procedure described by Bradford (Anal. Biochem. 72:248-254, 1976). A rapid and sensitive method for determining microgram quantities of protein utilizes the principle of protein-dye binding. Preferably, the amount of protein in the sample to be tested is between about 0.5 mg and 2 mg of protein.
- In addition to the procedure described above for tissue material, test samples may be obtained from serum, pharmaceutical formulations that might contain products of animal origin, spinal fluid, saliva, urine, or other bodily fluids. Liquid samples may be tested directly or may be subjected to treatment with agents such as phosphotungstic acid, as described above.
- Kits may be prepared for practicing the methods disclosed herein. Typically, the kits include at least one component or a packaged combination of components for practicing a disclosed method. By “packaged combination” it is meant that the kits provide a single package that contains a combination of one or more components, such as probes, buffers, instructions, and the like. A kit containing a single container is included within the definition of “packaged combination.” In some embodiments, the kits include at least one probe. For example, the kits may include a probe that is labeled with a fluorophore or a probe that is a member of a fusion protein. In the kit, the probe may be immobilized, and may be immobilized in a specific conformation. For example, an immobilized probe may be provided in a kit to specifically bind target protein, to detect target protein in a sample and/or to remove target protein from a sample.
- The kits may include some or all of the components necessary to practice a method disclosed herein. Typically, the kits include at least one probe, optionally immobilized, in at least one container. The kits may include multiple probes, optionally immobilized, in one or more containers. For example, the multiple probes may be present in a single container or in separate containers, each containing a single probe.
- In certain embodiments, a single probe (including multiple copies of the same probe) is immobilized on a single solid support and provided in a single container. In other embodiments, two or more probes, each specific for a different target protein or a different form of a single target protein, are provided in a single container. In some embodiments, the same immobilized probe is provided in multiple different containers (e.g., in single-use form), or multiple immobilized probes are provided in multiple different containers. In further embodiments, the probes are immobilized on multiple different types of solid supports. Any combination of immobilized probe(s) and container(s) is contemplated for the kits disclosed herein, and the practitioner is free to select among the combinations to achieve a suitable kit for a desired use.
- A container of the kits may be any container that is suitable for packaging and/or containing the probes disclosed herein. Suitable materials include, but are not limited to, glass, plastic, cardboard or other paper product, and metal. The container may completely encase the immobilized probes or may simple cover the probe to minimize contamination by dust, oils, etc. The kits may comprise a single container or multiple containers, and where multiple containers are present, each container may be the same as all other containers, different than others, or different than some, but not all other containers.
- The kits themselves may be made of any suitable material. Non-limiting examples of kit materials are cardboard or other paper product, plastic, glass, and metal.
- Kits may comprise some or all of the reagents and supplies needed for immobilizing one or more probes to the solid support, or some or all of the reagents and supplies needed for binding of immobilized probes to prion proteins in a sample.
- The kits disclosed herein may include one or more non-immobilized probes and one or more solid supports that do or do not include an immobilized probe. Such kits may comprise some or all of the reagents and supplies needed for immobilizing one or more probes to the solid support, or some or all of the reagents and supplies needed for binding of immobilized probes to prion proteins in a sample.
- The following is a list of exemplary embodiments:
- 1. A fusion protein comprising:
- (a) a peptide probe for a target protein, wherein: (i) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (ii) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (iii) the peptide probe does not comprise the full-length sequence of the target protein; and
- (b) green fluorescent protein (GFP).
- 2. The fusion protein of
embodiment 1, further comprising a polypeptide linker that links the peptide probe and the GFP polypeptide. - 3. The fusion protein of
embodiment 1, wherein the target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or Aβ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof β2-microglobulin, α-synuclein, rhodopsin, α1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein. - 4. The fusion protein of
embodiment 3, wherein the target protein is a prion protein. - 5. The fusion protein of
embodiment 4, wherein the prion protein is PrPC, PrPSc, or a mixture thereof. - 6. The fusion protein of
embodiment 4, wherein the peptide probe comprises SEQ ID NO:13 or a sequence having at least about 90% sequence identity to SEQ ID NO:13. - 7. The fusion protein of
embodiment 3, wherein the target protein is amyloid beta protein. - 8. The fusion protein of
embodiment 7, wherein the amyloid beta protein is Aβ42, Aβ40, or a mixture thereof. - 9. The fusion protein of
embodiment 7, wherein the peptide probe comprises the sequence of SEQ ID NO:32, the sequence of SEQ ID NO:4, or a sequence having at least about 90% sequence identity to SEQ ID NO:32 or SEQ ID NO:4. - 10. The fusion protein of
embodiment 3, wherein the target protein is amyloid islet polypeptide precursor protein. - 11. The fusion protein of
embodiment 10, wherein the peptide probe comprises the sequence of SEQ ID NO:11 or a sequence having at least about 90% sequence identity to SEQ ID NO:11. - 12. The fusion protein of
embodiment 3, wherein the target protein is transthyretin protein. - 13. The fusion protein of
embodiment 12, wherein the peptide probe comprises the sequence of SEQ ID NO:26 or a sequence having at least about 90% sequence identity to SEQ ID NO:26. - 14. The fusion protein of
embodiment 3, wherein the target protein is cystatin C protein. - 15. The fusion protein of
embodiment 14, wherein the peptide probe comprises the sequence of SEQ ID NO:17 or a sequence having at least about 90% sequence identity to SEQ ID NO:17. - 16. The fusion protein of
embodiment 3, wherein the target protein is Huntington's disease protein. - 17. The fusion protein of
embodiment 15, wherein the peptide probe comprises the sequence of SEQ ID NO:19 or a sequence having at least about 90% sequence identity to SEQ ID NO:19. - 18. The fusion protein of
embodiment 1, wherein said fusion protein emits a fluorescent signal when the peptide probe is in an alpha-helical conformation. - 19. The fusion protein of
embodiment 1, wherein said fusion protein does not emit a fluorescent signal when the peptide probe is in a beta-sheet conformation. - 20. The fusion protein of
embodiment 1, wherein the peptide probe is in an alpha-helical conformation when present in a solution of 1.0% SDS having a pH of about 7. - 21. The fusion protein of
embodiment 1, wherein the peptide probe is in a beta-sheet conformation when present in a solution having a pH of about 4.5. - 22. The fusion protein of
embodiment 1, wherein the fusion protein is immobilized on a solid support. - 23. The fusion protein of
embodiment 22, wherein the fusion protein further comprises an avidin moiety, and is coupled to the solid support via a biotin moiety. - 24. A method of assessing an agent's ability to inhibit aggregation of a target protein, comprising:
- (A) contacting a fusion protein and a test agent, the fusion protein comprising:
- (i) a peptide probe for the target protein, wherein: (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and
- (ii) a label which generates a signal dependent on the aggregative state of the fusion protein;
- (B) detecting a signal generated by the label; and
- (C) correlating the signal with the ability of the agent to inhibit aggregation of the target protein.
- 25. The method of
embodiment 24, wherein a decrease in the signal correlates with the ability of the agent to inhibit aggregation of the target protein. - 26. The method of
embodiment 24, wherein an increase in the signal correlates with the ability of the agent to inhibit aggregation of the target protein. - 27. The method of
embodiment 24, wherein the target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or Aβ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof β2-microglobulin, α-synuclein, rhodopsin, α1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein. - 28. The method of
embodiment 24, wherein the test agent is a chelating agent. - 29. The method of
embodiment 24, wherein the test agent is selected from the group tridentate iron chelators, diketones, 2-pyridoxal isonicontinyl hydrazone analogues, tachypyridine, clioquinol, ribonucleotide reductase inhibitor chelators, 2,3-dihydroxybenzoic acid, Picolinaldehyde, Nicotinaldehyde, 2-Aminopyridine, 3-Aminopyridine, topical 2-furildioxime, n-Butyric acid, Phenylbutyrate, Tributyrin, suberoylanilide hydroxamic acid, 6-cyclohexyl-1-hydroxy-4-methyl-2(1H)-pyridinone, rilopirox, piroctone, benzoic acid-related chelators, salicylic acid, nicotinamide, heparin sulfate, trimethylamine N-oxide, polyethylene glycol (PEG), copper cations, dimethylsulfoxide, Dexrazoxane, dopamine, tannic acid, triazine, levodopa, pergolide, bromocriptine, selegiline, glucosamine or analogs thereof, tetrapyrroles, nordihydroguaiaretic acid, polyphenols, tetracycline, polyvinylsulfonic acid, 1,3,-propanedisulfonic acid, β-sheet breaker peptide (iAβ5), nicotine, or salts or derivatives thereof. - 30. The method of
embodiment 24, wherein the label comprises a fluorophore. - 31. The method of
embodiment 24, wherein the fluorophore comprises pyrene or tryptophan. - 32. The method of
embodiment 24, wherein the label comprises a fluorescent polypeptide. - 33. The method of embodiment 32, wherein the fluorescent polypeptide comprises green fluorescent protein (GFP).
- 34. The method of
embodiment 24, wherein the label comprises a radionuclide. - 35. The method of
embodiment 24, wherein the fusion protein is immobilized on a solid support. - 36. The method of
embodiment 24, where the fusion protein further comprises an avidin moiety, and is coupled to the solid support via a biotin moiety. - 37. The method of
embodiment 24, further comprising, prior to detecting step (b), subjecting the peptide probe to conditions that promote aggregation, wherein the intensity of the signal is directly correlated with the ability of the agent to inhibit aggregation. - 38. A method of assessing an agent's ability to inhibit aggregation of a target protein, comprising:
- (A) contacting the target protein, a fusion protein, and a test agent, the fusion protein comprising:
- (i) a peptide probe for the target protein, wherein: (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and
- (ii) a label which generates a signal dependent on the aggregative state of the fusion protein;
- (B) detecting a signal generated by the label; and
- (C) correlating the signal with the ability of the agent to inhibit aggregation of the target protein.
- 39. The method of embodiment 38, wherein the signal is directly correlated with the ability of the agent to inhibit aggregation.
- 40. The method of embodiment 38, wherein the signal is inversely correlated with the ability of the agent to inhibit aggregation.
- 41. A method of assessing an agent's ability to inhibit aggregation of a target protein, comprising:
- (A) subjecting a fusion protein to conditions that promote aggregation, the fusion protein comprising:
- (i) a peptide probe for the target protein, wherein: (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and
- (ii) a label which generates a signal dependent on the aggregative state of the fusion protein;
- (B) detecting a first signal generated by the label;
- (C) subjecting the fusion protein to conditions that promote aggregation in the presence of a test agent, and detecting a second signal generated by the label; and
- (D) assessing the relative intensities of the first and second signals, thereby identifying an agent that inhibits aggregation of the target protein.
- 42. The method of embodiment 41, wherein a greater intensity of the second signal, as compared to the first signal, identifies an agent that inhibits aggregation of the target protein.
- 43. The method of embodiment 41, wherein a greater intensity of the first signal, as compared to the second signal, identifies an agent that inhibits aggregation of the target protein.
- 44. A method of assessing an agent's ability to inhibit aggregation of a target protein, comprising:
- (A) contacting a fusion protein and the target protein, wherein the fusion protein comprises:
- (i) a peptide probe for the target protein, wherein: (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and
- (ii) a label which generates a signal dependent on the aggregative state of the fusion protein;
- (B) detecting a first signal generated by the label;
- (C) contacting the fusion protein, the target protein, and a test agent, and detecting a second signal generated by the label; and
- (D) assessing the relative intensities of the first and second signals, thereby identifying an agent that inhibits aggregation of the target protein.
- 45. The method of embodiment 44, wherein a greater intensity of the second signal, as compared to the first signal, identifies an agent that inhibits aggregation of the target protein.
- 46. The method of embodiment 44, wherein a greater intensity of the first signal, as compared to the second signal, identifies an agent that inhibits aggregation of the target protein.
- 47. A method for identifying a target protein present in a specific structural form in a sample, comprising:
- (a) contacting the sample with a peptide probe for the target protein, wherein the peptide probe preferentially binds to a specific structural form of the target protein;
- (b) detecting any binding between the peptide probe and any target protein present in the specific structural form.
- 48. The method of embodiment 47, wherein the structural form of the target protein is a beta-sheet conformation.
- 49. The method of embodiment 47, wherein the structural form of the target protein is an alpha-helical conformation.
- 50. The method of embodiment 47, wherein the structural form of the target protein is a monomer of the protein.
- 51. The method of embodiment 47, wherein the structural form of the target protein is a soluble oligomer of the protein.
- 52. The method of embodiment 47, wherein the structural form of the target protein is an insoluble self-aggregate of the protein.
- 53. The method of embodiment 52, wherein the structural form of the target protein is selected from insoluble amorphous self-aggregates, protofibrils, and fibrils.
- 54. The method of embodiment 47, wherein target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or Aβ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof β2-microglobulin, α-synuclein, rhodopsin, α1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein.
- 55. The method of embodiment 47, wherein the peptide probe further comprises a fluorophore label.
- 56. The method of embodiment 55, wherein the fluorophore comprises pyrene or tryptophan.
- 57. The method of embodiment 47, wherein the peptide probe further comprises a fluorescent polypeptide label.
- 58. The method of embodiment 57, wherein the fluorescent polypeptide label comprises green fluorescent protein (GFP).
- 59. The method of embodiment 47, wherein the peptide probe further comprises a radionuclide label.
- 60. The method of embodiment 47, wherein the peptide probe is immobilized on a solid support.
- 61. The method of embodiment 60, where the peptide probe further comprises an avidin moiety, and is coupled to the solid support via a biotin moiety.
- 62. A method of identifying a peptide probe for a target protein that exhibits an increased or decreased tendency to form aggregates relative to a reference peptide probe, comprising:
- (A) detecting a first signal generated by a reference fusion protein that comprises:
- (i) a reference peptide probe comprising: (a) an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) wherein the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the reference peptide probe does not comprise the full-length sequence of the target protein; and
- (ii) green fluorescent protein;
- (B) detecting a second signal generated by a test fusion protein comprising a test peptide probe and green fluorescent protein, wherein the test peptide probe is a mutant of the reference peptide probe that comprises an amino acid insertion, deletion or substitution relative to the amino acid sequence of the reference peptide probe; and
- (C) correlating the intensity of the second signal relative to the first signal, thereby identifying a peptide probe for a target protein that exhibits an increased or decreased tendency to form aggregates relative to the reference peptide probe.
- 63. The method of embodiment 62, wherein an increased intensity of the second signal relative to the intensity of the first signal indicates a decreased tendency of the test peptide probe to form aggregates, and a decreased intensity of the second signal relative to the intensity of the first signal probe indicates an increased tendency of the test peptide probe to form aggregates.
- 64. The method of embodiment 62, wherein an decreased intensity of the second signal relative to the intensity of the first signal indicates a decreased tendency of the test peptide probe to form aggregates, and an increased intensity of the second signal relative to the intensity of the first signal indicates an increased tendency of the test peptide probe to form aggregates.
- 65. The method of embodiment 62, wherein the test peptide probe has at least about 15% sequence identity to the reference peptide probe.
- 66. The method of embodiment 62, wherein the test peptide probe is designed by a process comprising introducing a random sequence mutation into the amino acid sequence of the reference peptide probe.
- 67. A method of identifying a peptide probe specific for a target protein in a specific structural state that falls on a spectrum of structural states ranging from a low end of soluble monomers to a high end of insoluble self-aggregates, comprising:
- (A) subjecting a fusion protein to conditions that promote self-aggregation, the fusion protein comprising:
- (i) a peptide probe for the target protein, wherein: (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and
- (ii) green fluorescent protein;
- (B) detecting a signal generated by the fusion protein; and
- (C) correlating the intensity of the signal with the specificity of the peptide probe for a target protein in a specific structural state, thereby identifying a peptide probe specific for a target protein in a specific structural state.
- 68. The method of embodiment 67, wherein a higher intensity signal indicates that the peptide probe is specific for a target protein at a lower end of the spectrum of structural states and a lower intensity signal indicates that the peptide probe is specific for a target protein at a higher end of the spectrum of structural states.
- 69. The method of embodiment 67, wherein a lower intensity signal indicates that the peptide probe is specific for a target protein at a lower end of the spectrum of structural states and a higher intensity signal indicates that the peptide probe is specific for a target protein at a higher end of the spectrum of structural states.
- 70. A method for preventing the formation of protein aggregates of a target protein, comprising contacting the target protein with a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein, thereby preventing the formation of higher order protein aggregates of the target protein.
- 71. The method of embodiment 70, wherein the peptide probe preferentially binds to monomers of the target protein, thereby preventing the formation of protein aggregates.
- 72. The method of embodiment 70, wherein the peptide probe preferentially binds to soluble oligomers of the target protein, thereby preventing the formation of insoluble protein aggregates.
- 73. The method of embodiment 70, wherein the peptide probe preferentially binds to insoluble aggregates of the target protein, thereby preventing the formation of fibrils of the target protein.
- 74. The method of embodiment 73, wherein the insoluble protein aggregates comprise one or more of amorphous self-aggregates, protofibrils, and fibrils.
- 75. A method for treating a disease associated with a target protein, comprising contacting the target protein with a fusion protein comprising (i) a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein, and (ii) a therapeutic agent.
- 76. The method of embodiment 75, wherein the disease is Alzheimer's disease, the target protein is Aβ42, Aβ40, or both, and the therapeutic agent is selected from the group consisting of heavy metal chelators and charge moieties.
- 77. The method of embodiment 75, wherein the disease is TSE, the target protein is prion protein, and the therapeutic agent is selected from the group consisting of heavy metal chelators and charge moieties.
- 78. The method of embodiment 75, wherein the disease is senile systemic amylodiosis or familial amyloid polyneuropathy, the target protein is transthyretin, and the therapeutic agent is selected from the group consisting of heavy metal chelators and charge moieties.
- 79. The method of embodiment 75, wherein the disease is Huntington's disease, the target protein is Huntingtin, and the therapeutic agent is selected from the group consisting of heavy metal chelators and charge moieties.
- 80. The method of embodiment 75, wherein the disease is Parkinson's disease, the target protein is alpha-synuclein, and the therapeutic agent is selected from the group consisting of heavy metal chelators and charge moieties.
- 81. A therapeutic composition comprising:
- (a) a peptide probe for a target protein, wherein: (i) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (ii) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (iii) the peptide probe does not comprise the full-length sequence of the target protein; and
- (b) a pharmaceutical excipient.
- 82. The composition of embodiment 81, further comprising an additional therapeutic agent.
- 83. The composition of embodiment 82, wherein the additional therapeutic agent has anti-amyloid activity.
- 84. A method of delivering a therapeutic agent for preventing aggregation of a target protein comprising combining the therapeutic agent with a peptide probe for the target protein, wherein the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation and wherein the peptide probe does not comprise the full-length sequence of the target protein.
- 85. The method of embodiment 84, wherein the therapeutic agent has anti-amyloid activity.
- The following examples are illustrative and should not be interpreted as limiting the present disclosure.
- A dsDNA oligonucleotide encoding a peptide probe for human prion protein or Aβ42 is synthesized. The dsDNA oligonucleotide includes restriction sites at the 5′ and 3′ ends for cloning the dsDNA oligonucleotide into a GFP expression vector (see Waldo et al., Nature Biotechnol. 17:691-695 (1999)). A dsDNA oligonucleotide and GFP expression vector are digested with the corresponding restriction enzymes and the dsDNA oligonucleotide is ligated into the GFP expression vector to create a GFP-fusion protein expression vector. The expression vector is used to transform E. coli which is grown under kanamycin selection. For one particular variant GFP-Peptide Probe, a GFP-fusion protein expression vector is created which includes a mutant full-length Aβ42 having 141D and A42Q substitutions (i.e., “the DQ mutant”), which mutant is observed to undergo slow aggregation.
- DNA libraries are isolated from the transformed E. coli strain and transformed into another suitable strain for IPTG-inducible protein expression. The transformed bacteria are plated onto nitrocellulose paper. After overnight growth at 37° C., the nitrocellulose papers are transferred to LB plates which include kanamycin for selection and IPTG (1 mM) for inducing expression. Colonies are counted and the green versus white phenotype is noted, with green phenotype corresponding to soluble fusion protein (e.g., non-aggregated peptide probe) and white phenotype corresponding to insoluble fusion protein (e.g., aggregated peptide probe).
- Colonies are picked and grown in LB liquid media containing kanamycin. After the cultures reach an absorbance (A600nm) of 0.8, expression is induced by addition of IPTG to a concentration of 1 mM and growth is continued at 37° C. or at 30° C. After induction, cultures are diluted in Tris-buffered saline to an A600nm of 0.15. Fluorescence is measured using a spectrofluorometer with excitation at 490 nm and emission at 510 nm.
FIG. 4 provides exemplary results of the GFP fluorescence measurement of Alzheimer probe peptide-GFP fusion (Alz) and Prion probe peptide-GFP fusion (Pri). Measurements are taken after inducing expression and incubating the cells for 3 hours at 37° C. (left graph) or 5 hours at 30° C. (right graph). Expression of GFP-fusion proteins also are assessed by removing 200 μA of cell culture and analyzing the whole cell content by SDS-PAGE. - A GFP-peptide probe fusion protein known to yield a white phenotype in the assay described above (e.g., to form aggregates) is used to identify agents that inhibit aggregation. The vector for expressing a GFP-peptide probe (prion) fusion protein is transformed into bacterial cells for IPTG inducible expression. The transformed bacteria are grown in LB media supplemented with kanamycin for selection. When cultures reach an OD600=0.8, an aliquot of culture (100 μl) is transferred to a well of a multi-well plate. Test agents are added to each well, and protein expression is induced by adding IPTG to a final concentration of 1 mM. Samples are incubated with gentle agitation at 37′C. Following 3 hours of incubation, the fluorescence of each well is measured at 512 nm (excitation 490 nm) using an automated plate reader. To confirm that cell densities are consistent across all samples, the 0D600 also is measured. Test agents are tested at multiple concentrations. Test agents that yield a green phenotype are identified as agents that inhibit aggregation.
- A peptide probe specific for a highly infective form of PrPSc is identified as follows.
- Samples of PrPSc protein in different aggregated states are prepared, for example, by the methods described in Silveira et al., Nature 437: 257-61 (2005). In brief, a preparation of purified PrPSc protein (such as from scrapie-infected hamster brain) is subjected to treatment with, for example, detergents and/or sonication, and then fractionated by size (using, for example flow field-flow fractionation, or “F1FFF”) into a plurality of fractions (such as the thirty fractions reported in Silveira) to obtain samples of prion protein in different aggregated states. Optionally, a parallel sample preparation is carried out using equivalent samples from normal brain.
- Pyrene-labeled peptide probe specific for PrPSc protein is contacted with each sample and its interaction with any PrPSc present in the sample is assessed. As discussed above, the interaction of pyrene-labeled peptide probes with PrPSc can be assessed using steady-state fluorescence. The interaction between pyrene labels that is observed when labeled peptide probes interact with PrPSc leads to the formation of fluorescent dimers and/or excimers. Thus, the characteristic ratio of the fluorescent intensity associated with pyrene dimers (ID, measured at 495 nm) to that of pyrene monomers (IM, measured at 378 nm) can be used to assess the interaction between the labeled probes and any PrPSc present in the sample, with higher ID/IM correlating with greater reactivity. (
FIG. 5 illustrates the characteristic fluorescence of pyrene-labeled peptide probe monomers and dimers.) -
FIG. 6 illustrates the reactivity of a peptide probe specific for PrPSc protein with PrPSc present in each of the thirty fractions obtained as described above. (The y-axis shows the relative ID/IM ratios; the size of the PrPSc aggregates present in each fraction increases along the x-axis). The peptide probe had the following amino acid sequence: VVAGAAAAGAVHKWINTKPKMKFIVAGAAAAGAVV (SEQ ID NO: 43). - These data indicate that this probe preferentially interacts with PrPSc present in
3, 16, 10-12, 23 and 29. (According to Silveira et al., supra, the most infective form of PrPSc is found infractions fraction 12.) At least two trends are evident from these data, the potential significance of which are outlined below. - First, the peptide probe reacts with smaller PrPSc aggregates over larger PrPSc aggregates. The reactivity of the peptide probe with smaller PrPSc aggregates may offer clinical significance because, for example, the current state of the art indicates that the most infective forms of PrPSc are smaller aggregate forms, rather than larger aggregates or fibrils.
- Second, the reactivity of the peptide probe with the fractionated particles is periodic rather than linear, with highest sensitivity per μg of PrPSc observed with fractions corresponding to PrPSc aggregates ranging from <30 kD up to 1,000 kD. This periodicity may reflect a hierarchical structural assembly of PrPSc oligomeric units which act as unique substrates for the peptide probe. The periodicity also underscores the potential significance of the ability to design peptide probes that preferentially bind to PrPSc in different structural states, for targeting infectious PrPSc structures across species, e.g., to detect species variants that are of particular importance clinically with zoonotic sources of PrPSc in humans.
- The preferential binding of the peptide probe with smaller PrPSc aggregates over larger PrPSc aggregates can be further demonstrated with sonication experiments. For example, un-fractionated samples of infected hamster brain homegenates that exhibit little or no reactivity with the peptide probe were demonstrated to exhibit increased reactivity after being subjected to sonication. The reactivity increases with sonication time, with increased reactivity observed after 5 to 10 minutes of sonication. Because sonication breaks up the PrPSc aggregates present in the extracted samples into smaller PrPSc aggregates, these results may indicate that the peptide probe is directly reacting with a new pool of smaller PrPSc oligomeric structures generated by sonication. Additionally or alternatively, sonication may be driving the reorganization of the PrPSc aggregates into different structural states (such as different conformational states) that are more reactive with the peptide probe. Again, the reactivity of the peptide probe with smaller PrPSc aggregates may offer clinical significance, as discussed above.
- A peptide probe specific for PrPSc (SEQ ID NO:43) is used to detect PrPSc in sheep blood as follows. Pyrene-labeled peptide probe is contacted with samples prepared from sera obtained from scrapie sheep, terminal sheep and normal sheep, and the resulting fluorescence is measured as described above. (Samples are prepared as described in Grosset et al., Peptides 26: 2193-200 (2005), adopting the tissue-prep method for serum).
FIG. 7 illustrates that the peptide probe reacted with PrPSc in sera from infected sheep, and did not react with sera from normal sheep. In the Figure, “HP 1” designates a sample from pooled serum of 3-month old healthy sheep; “HP 2” designates a sample from pooled serum of 2-year old healthy sheep; “ln1” to “ln4” designate serum from 18-24 month old scrapie sheep, and “ln5” designates serum from a terminal sheep. These data demonstrate that the peptide probe exhibited 100% sensitivity and specificity in this assay, and accurately detected PrPSc in sheep blood. - In another assay, the sheep blood samples described above were sonicated prior to reaction with the peptide probe.
FIG. 8 illustrates that sonication improved the signal-to-noise ration by reducing the background in the “normal” samples.FIG. 8 also illustrates a better distincition of infected samples with the age matched normal pool (HP 2) from 2 year old animals versus the pool from 3 month old animals. - A peptide probe specific for PrPSc (SEQ ID NO:43) is used to detect PrPSc in sheep blood components as follows. Pyrene-labeled peptide probe is contacted with buffy coat, serum, and plasma samples from infected (scrapie) and normal (healthy) sheep, and the resulting fluorescence is measured as described above.
FIG. 9 illustrates that the peptide probe exhibits a relative reactivity with sheep blood components in the order of buffy coat>serum>plasma. - An Aβ peptide probe is identified as follows. A fusion protein is constructed that comprises a peptide probe specific for Aβ (SEQ ID NO:36) and GFP. Reference fusion proteins are constructed that comprise (i) Aβ42 (SEQ ID NO:42) and GFP or (ii) the Aβ42 mutant clone GM6 (SEQ ID NO:44) and GFP. The proteins are expressed and GFP fluorescence is detected as described above. As shown in
FIG. 10 , the Aβ42-GFP fusion protein exhibits little fluorescence because rapid aggregation of the Aβ42 moiety prevents proper folding of the GFP moiety required for fluorescence. In contrast, the mutant-GFP fusion protein exhibits a high level of fluorescence because GM6 is a slow folding mutant of Aβ42; thus the GM6 moiety does not interfere as much with the folding of the GFP moiety required for fluorescence. The peptide probe-GFP fusion protein exhbits an intermediate level of fluorescence, indicating that the peptide probe moiety interferes at a moderate level with GFP folding. These data indicate that the Aβ peptide probe (SEQ ID NO:36) will be useful in methods of identifying agents that affect Aβ peptide aggregation. - A peptide probe specific for Aβ (SEQ ID NO:36) is used to detect specific structural forms of Aβ40 and Aβ42. The peptide probe is labeled at each terminus with pyrene. The peptide probe is contacted with different samples comprising Aβ42 oligomers, Aβ40 oligomers, and Aβ40 monomers.
- The morphological states of the Aβ protein is determined both by thioflavin T binding and by circular dichroism, using methodology described above. For example, peptides are brought up in 30% TFE/Tris for circular dichroism measurement and CDPRO deconvolution software is used for secondary structure calculation (Cellcon II (Freeware), Robert Woody, Colorado State Universtiy). The labeled peptide probe exhibits 18.3% α helix structure, 27.6% β strand (sheet) structure, and 54.1% turn/unordered structure. The peptide probe exhibits 19.4% α helix structure, 25.1% β strand (sheet) structure, and 55.5% turn/unordered structure. Aβ42 fibers exhibit 12.6% α helix structure, 60.2% β strand (sheet) structure, and 27.2% turn/unordered structure. Aβ40 fibers exhibit 5.6% α helix structure, 58.4% β strand (sheet) structure, and 35.9% turn/unordered structure. A sample of oligomers of Aβ42 (including dimers, trimers, tetramers, hexamers and 12-mers) exhibits 3.2% α helix structure, 52.7% β strand (sheet) structure, and 45.4% turn/unordered structure.
- Interaction between the peptide probe and sample is detected by excitation at 350 nm and scanning fluorescence from 360 to 600 nm. The peptide probe reacts with Aβ40 fibers and oligomers and Aβ42 fibers and oligomers in a dose-dependent manner, but dose not react with Aβ40 monomer in a dose dependent manner.
FIG. 11A (fibers and monomer) & 11B (oligomers). These data show that the peptide probe preferentially binds to oligomeric forms of Aβ40 and Aβ42. - A peptide probe specific for Aβ (SEQ ID NO:36) is used to detect Aβ40 and Aβ42 in samples of human cerebrospinal fluid (CSF) obtained from Alzheimer's patients and from age-matched healthy patients. The peptide probe is labeled at each terminus with pyrene. 40 μL samples of CSF are incubated with 2 μM peptide probe and allowed to incubate for 1 hour, prior to exciting at 350 nm and scanning fluorescence from 360 to 600 nm. The data is presented in
FIG. 12 as the ratio of the excimeric region (430-530 nm) over the monomeric region (370-385 nm). The peptide probe is able to stratify Alzheimer's patients (black) from age-matched healthy patients (white). The results shown inFIG. 12 have a p value=0.0005.FIG. 12A presents the data for each patient, whileFIG. 12B presents the average data for each patient group. The patient samples also were assayed for Aβ protein using a commercial antibody-based kit (Biosource ELISA, Invitrogen), but that assay did not detect Aβ protein, indicating that the peptide probe is more sensitive. - A similar assay is carried out using a biotinylated peptide probe specific for Aβ (SEQ ID NO:36) that is immobilized on magnetic beads and 200 μL samples of serum from Alzheimer's patients and age-matched healthy patients. Biotinylated peptide probe is immobilized to Dynal magnetic beads coated with streptavidin. These beads are incubated directly with the serum samples for 1 hour, then the magnetic beads and the captured material are pulled down to remove the serum samples. Then, 200 μl of dipyrene labeled peptide probe (SEQ ID NO:36) at 2 μM concentration preequilibrated in 40% trifluoroethanol:60% 10 mM Tris, pH 7.4 is added directly to the beads and the captured material and allowed to incubate for an additional 3-5 hours prior to pulling down the magnetic beads and transfering the liquid to a microtiter plate for analysis as described above.
- The peptide probe is able to stratify Alzheimer's patients (black) from age-matched healthy patients (white). The results, shown in
FIG. 13 , have a p value of 0.045. The patient samples also were assayed for Aβ protein using a commercial antibody-based kit (Biosource ELISA, Invitrogen), but again that assay did not detect Aβ protein, indicating that the peptide probe is more sensitive. - The following illustrates the ability of peptide probes to target Aβ plaques (e.g., insoluble self-aggregates of Aβ protein associated with Alheimer's disease) both in vitro and in vivo. A peptide probe specific for Aβ (SEQ ID NO:36) and labeled at each terminus with pyrene is used.
- In vitro studies are carried out on brain sections from transgenic mice over-expressing human APP751 with London and Swedish mutations (hAPP751SL). This protein is an Aβ mutatnt that forms neuritic plaques in the transgenic mice. Tissue from non-transgenic littermate mice served as control tissue.
- Two different types of tissue slices are evaluated: cyro-cut (frozen and sliced) and paraffin embedded and sliced. The peptide probe is incubated on the brain slices and binding of the peptide probe to the brain, and to the amyloid deposits/plaques in particular, are qualitatively evaluated. For reference purposes, consecutive slices are immunohistochemicallly stained with an anti-Aβ antibody, the 6E10 antibody or Thioflavin S. The use of anti-Aβ controls confirms the specificity of the staining on neuritic plaques.
- Images are recorded on a Nikon E800 microscope with a mounted PixelFly camera. For tiled image recordings, the microscope is equipped with a StagePro software controlled automatic table. Images of peptide probe staining and antibody and ThioflavinS staining, respectively, are overlaid in Adobe Photo Shop software
- Using 0.5 ml/mg concentration of peptide probe, plaque-specific staining is apparent, both on paraffin or cryo-cut slices. Overlaying with antibody staining from consecutive slices revealed that staining on paraffin slices is more specific to plaques than staining on cryo-cut slices. In the latter samples, cells from the neuronal layer of the hippocampus are marked, as are brain tissue around plaques in the cortex. Thus, the quality of the stain may be better on paraffin sections. In addition to staining neuritic plaques, the peptide probe also specifically stained human amyloid peptide bearing blood vessels, which are typically present in hAPP751SL transgenics.
- In vivo studies use four homozygous hAPP751SL transgenic 10 month old mice and four littermate controls (siblings not carrying the transgene). The labeled peptide probe is administered intranasally, at 10 μl liquid per administration (at concentrations of from 0.1 to 2.0 mg/ml) with an administration interval of a planned half of an hour, adjusted according to the condition of the animal after treatment.
- At the end of the treatment, mice are sacrificed and CSF and brains are extracted. (All mice are sedated by standard inhalation anaesthesia, Isofluran, Baxter).
- Cerebrospinal fluid is obtained by blunt dissection and exposure of the foramen magnum. Upon exposure, a Pasteur pipette is inserted to the approximate depth of 0.3-1 mm into the foramen magnum. CSF is collected by suctioning and capillary action until flow fully ceases. CSF is immediately frozen and kept at −80° C. until use.
- After CSF sampling, the stomach, stomach content and the brains are rapidly removed. Brains are hemisected, and the right hemisphere of all mice are immersion fixed in freshly produced 4% Paraformaldehyde/PBS (pH 7.4) for one hour at room temperature, and transferred to a 15% sucrose/PBS solution for 24 hours to ensure cryoprotection. Thereafter, brains are frozen in liquid isopentane on the next day and stored at −80° C. until used for histological investigations. The other brain half is immediately shock frozen in liquid isopentane for future use.
- Images are recorded from transgenic mice treated with the highest dose of peptide probe and from control mice and from a transgenic vehicle control (e.g., the diluent used for the peptide probe) to confirm that the peptide probe crosses the blood-brain barrier (BBB), which it does.
- To assess the specifity of staining by the peptide probe, fluorescence is excited using a UV-2A and B-1E filter of a microscope to detect probable auto-fluorescence in the lower spectrum. Fluorescent parts are recorded in the consecutive slice to ensure that impurity (e.g. dust) does not causes fluorescence. Transgenic slices are stained with ThioflavinS to assess plaque load.
- As noted above, hAPP751SL transgenic mice express hAPP in certain blood vessels in the periphery of the brain. The peptide probe binds to the amyloid and agglomerates outside the blood vessel in the brain. In the nontransgenic mice, the peptide probe reaches the olfactory bulb, but does not bind to a specifiable morphological structure.
- It will be apparent to those skilled in the art that various modifications and variations can be made in the practice of the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the invention being indicated by the following claims.
Claims (24)
1. A method for identifying a target protein present in a specific state of self-aggregation in a sample, comprising:
(a) contacting the sample with a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein in a specific state of self-aggregation; and
(b) detecting any binding between the peptide probe and any target protein present in the specific state of self-aggregation, thereby identifying any target protein present in the specific state of self-aggregation.
2. The method of claim 1 , wherein the peptide probe preferentially binds to the target protein in a specific state of self-aggregation selected from the group consisting of monomers, soluble oligomers, and insoluble self-aggregates.
3. The method of claim 2 , wherein the peptide probe preferentially binds to insoluble self-aggregates of the target protein selected from the group consisting of insoluble amorphous self-aggregates, protofibrils, and fibrils.
4. The method of claim 1 , wherein target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or Aβ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof β2-microglobulin, α-synuclein, rhodopsin, α1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein.
5. The method of claim 1 , wherein the peptide probe further comprises a detectable label.
6. The method of claim 1 , wherein the peptide probe comprises an amino acid sequence selected from SEQ ID NO:36 and SEQ ID NO:45.
7. The method of claim 1 , wherein the peptide probe is immobilized on a solid support.
8. An in vivo method for identifying a target protein present in a patient in a specific state of self-aggregation, comprising:
(a) administering to the patient a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein in the specific state of self-aggregation and wherein the peptide probe is labeled with a detecable label; and
(b) scanning the subject for labeled peptide probe localized at target protein present in the patient,
thereby identifying target protein present in the patient in the specific state of self-aggregation.
9. The method of claim 8 , wherein the peptide probe preferentially binds to the target protein in a specific state of self-aggregation selected from the group consisting of monomers, soluble oligomers, and insoluble self-aggregates.
10. The method of claim 8 , wherein target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or Aβ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof β2-microglobulin, α-synuclein, rhodopsin, α1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein.
11. A method for preventing the formation of protein aggregates of a target protein, comprising contacting the target protein with a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein in a specific state of self-aggregation, thereby preventing the formation of higher order protein aggregates of the target protein.
12. The method of claim 11 , wherein the peptide probe preferentially binds to the target protein in a specific state of self-aggregation selected from the group consisting of monomers, soluble oligomers, and insoluble self-aggregates.
13. The method of claim 11 , wherein target protein is selected from the group consisting of amyloid islet polypeptide precursor protein, amyloid beta protein or Aβ peptide, serum amyloid A, insulin, amylin, non-amyloid beta component, prions, hemoglobin, immunoglobulins or fragments thereof β2-microglobulin, α-synuclein, rhodopsin, α1-antichymotrypsin, cystallins, tau, p53, presenilins, low-density lipoprotein receptor, apolipoproteins, superoxide dismutase, neurofilament proteins, transthyretin, procalcitonin or calcitonin, atrial natriuretic factor, gelsolin, cystic fibrosis transmembrane regulator, Huntington's disease protein, fibrinogen alpha-chain, phenylalanine hydroxylase, collagen, beta-hexosaminidase, and cystatin C protein.
14. A method of delivering a therapeutic agent to a target protein, comprising combining the therapeutic agent with a peptide probe for the target protein,
wherein the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation and wherein the peptide probe does not comprise the full-length sequence of the target protein, and
administering the peptide probe-therapeutic agent combination to a patient in need thereof.
15. The method of claim 14 , wherein the therapeutic agent has anti-amyloid activity.
16. The method of claim 14 , wherein the peptide probe preferentially binds to the target protein in a specific state of self-aggregation.
17. The method of claim 16 , wherein the peptide probe preferentially binds to the target protein in a specific state of self-aggregation selected from the group consisting of monomers, soluble oligomers and insoluble aggregates.
18. A method of assessing an agent's ability to inhibit aggregation of a target protein, comprising:
(A) contacting a fusion protein and a test agent, the fusion protein comprising:
(i) a peptide probe for the target protein, wherein: (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and
(ii) a label which generates a signal dependent on the aggregative state of the fusion protein;
(B) detecting a signal generated by the label; and
(C) correlating the signal with the ability of the agent to inhibit aggregation of the target protein.
19. A method of assessing an agent's ability to inhibit aggregation of a target protein, comprising:
(A) contacting the target protein, a fusion protein, and a test agent, the fusion protein comprising:
(i) a peptide probe for the target protein, wherein: (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and
(ii) a label which generates a signal dependent on the aggregative state of the fusion protein;
(B) detecting a signal generated by the label; and
(C) correlating the signal with the ability of the agent to inhibit aggregation of the target protein.
20. A method of assessing an agent's ability to inhibit aggregation of a target protein, comprising:
(A) subjecting a fusion protein to conditions that promote aggregation, the fusion protein comprising:
(i) a peptide probe for the target protein, wherein: (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and
(ii) a label which generates a signal dependent on the aggregative state of the fusion protein;
(B) detecting a first signal generated by the label;
(C) subjecting the fusion protein to conditions that promote aggregation in the presence of a test agent, and detecting a second signal generated by the label; and
(D) assessing the relative intensities of the first and second signals, thereby identifying an agent that inhibits aggregation of the target protein.
21. A method of assessing an agent's ability to inhibit aggregation of a target protein, comprising:
(A) contacting a fusion protein and the target protein, wherein the fusion protein comprises:
(i) a peptide probe for the target protein, wherein: (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and
(ii) a label which generates a signal dependent on the aggregative state of the fusion protein;
(B) detecting a first signal generated by the label;
(C) contacting the fusion protein, the target protein, and a test agent, and detecting a second signal generated by the label; and
(D) assessing the relative intensities of the first and second signals, thereby identifying an agent that inhibits aggregation of the target protein.
22. A method of identifying a peptide probe for a target protein that exhibits an increased or decreased tendency to form aggregates relative to a reference peptide probe, comprising:
(A) detecting a first signal generated by a reference fusion protein that comprises:
(i) a reference peptide probe comprising: (a) an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) wherein the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the reference peptide probe does not comprise the full-length sequence of the target protein; and
(ii) green fluorescent protein;
(B) detecting a second signal generated by a test fusion protein comprising a test peptide probe and green fluorescent protein, wherein the test peptide probe is a mutant of the reference peptide probe that comprises an amino acid insertion, deletion or substitution relative to the amino acid sequence of the reference peptide probe; and
(C) correlating the intensity of the second signal relative to the first signal, thereby identifying a peptide probe for a target protein that exhibits an increased or decreased tendency to form aggregates relative to the reference peptide probe.
23. A method of identifying a peptide probe specific for a target protein in a specific structural state that falls on a spectrum of structural states ranging from a low end of soluble monomers to a high end of insoluble self-aggregates, comprising:
(A) subjecting a fusion protein to conditions that promote self-aggregation, the fusion protein comprising:
(i) a peptide probe for the target protein, wherein: (a) the peptide probe comprises an amino acid sequence corresponding to a region of the target protein that undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, (b) the peptide probe undergoes a conformational shift from an alpha-helical conformation to a beta-sheet conformation, and (c) the peptide probe does not comprise the full-length sequence of the target protein; and
(ii) green fluorescent protein;
(B) detecting a signal generated by the fusion protein; and
(C) correlating the intensity of the signal with the specificity of the peptide probe for a target protein in a specific structural state, thereby identifying a peptide probe specific for a target protein in a specific structural state.
24. A method for treating a disease associated with a target protein, comprising contacting the target protein with a fusion protein comprising (i) a peptide probe for the target protein, wherein the peptide probe preferentially binds to the target protein, and (ii) a therapeutic agent.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/176,045 US20130108549A1 (en) | 2006-07-28 | 2011-07-05 | Peptide probes for diagnostics and therapeutics |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US83385406P | 2006-07-28 | 2006-07-28 | |
| US84835806P | 2006-10-02 | 2006-10-02 | |
| US11/828,953 US8673579B2 (en) | 2006-07-28 | 2007-07-26 | Peptide probes for diagnostics and therapeutics |
| US13/176,045 US20130108549A1 (en) | 2006-07-28 | 2011-07-05 | Peptide probes for diagnostics and therapeutics |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/828,953 Division US8673579B2 (en) | 2006-07-28 | 2007-07-26 | Peptide probes for diagnostics and therapeutics |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130108549A1 true US20130108549A1 (en) | 2013-05-02 |
Family
ID=38982052
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/828,953 Active 2031-05-26 US8673579B2 (en) | 2006-07-28 | 2007-07-26 | Peptide probes for diagnostics and therapeutics |
| US13/176,045 Abandoned US20130108549A1 (en) | 2006-07-28 | 2011-07-05 | Peptide probes for diagnostics and therapeutics |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/828,953 Active 2031-05-26 US8673579B2 (en) | 2006-07-28 | 2007-07-26 | Peptide probes for diagnostics and therapeutics |
Country Status (9)
| Country | Link |
|---|---|
| US (2) | US8673579B2 (en) |
| EP (1) | EP2156181B1 (en) |
| JP (1) | JP5097206B2 (en) |
| CN (1) | CN101802609A (en) |
| AU (1) | AU2007277186B2 (en) |
| BR (1) | BRPI0714930A2 (en) |
| CA (1) | CA2657503C (en) |
| MX (1) | MX2009001079A (en) |
| WO (1) | WO2008013859A2 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014201435A1 (en) * | 2013-06-13 | 2014-12-18 | Biodesy, Inc. | Method of screening candidate biochemical entities targeting a target biochemical entity |
| US9238816B2 (en) | 2011-02-18 | 2016-01-19 | National University Corporation Tokyo University Of Agriculture And Technology | Amyloid protein oligomer-binding aptamer |
| US9638702B2 (en) | 2001-05-31 | 2017-05-02 | System Of Systems Analytics, Inc. | Detection of conformationally altered proteins |
| WO2019236486A1 (en) * | 2018-06-08 | 2019-12-12 | The Cleveland Clinic Foundation | Apoa1 exchange rate as a diagnostic for mace |
| US10670611B2 (en) | 2014-09-26 | 2020-06-02 | Somalogic, Inc. | Cardiovascular risk event prediction and uses thereof |
| WO2020152426A1 (en) * | 2019-01-25 | 2020-07-30 | Mexbrain | Device for joint extraction of a metal cation and a target molecule |
| US10768174B2 (en) | 2014-12-23 | 2020-09-08 | Bluelight Therapeutics, Inc. | Attachment of proteins to interfaces for use in nonlinear optical detection |
Families Citing this family (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2448981C (en) | 2001-05-31 | 2014-03-18 | Arete Associates | Misfolded protein sensor method |
| US20060057671A1 (en) * | 2004-09-10 | 2006-03-16 | Orser Cindy S | Immobilized probes and methods of detecting conformationally altered prion proteins |
| US8372593B2 (en) * | 2005-02-15 | 2013-02-12 | Adlyfe, Inc. | Method for detecting misfolded proteins and prions |
| NZ566020A (en) | 2005-09-09 | 2012-08-31 | Novartis Ag | Prion-specific peptoid reagents |
| WO2009117042A1 (en) * | 2008-03-21 | 2009-09-24 | Adlyfe, Inc. | Use of pyrene to carry non-peptide agents across the blood brain barrier |
| MX2010010266A (en) * | 2008-03-21 | 2010-12-14 | Adlyfe Inc | Use of pyrene to carry peptides across the blood brain barrier. |
| EP2278998A1 (en) * | 2008-04-17 | 2011-02-02 | Declion Pharmaceuticals, Inc. | Design and synthesis of directed sequence polymer compositions and antibodies thereof for the treatment of protein conformational disorders |
| US20100129290A1 (en) * | 2008-11-26 | 2010-05-27 | I.S.T. Corporation | Smart contrast agent and detection method for detecting transition metal ions |
| US20100227794A1 (en) * | 2008-11-26 | 2010-09-09 | I.S.T. Corporation | Smart contrast agent and method for detecting transition metal ions and treating related disorders |
| CN102365295A (en) * | 2009-01-30 | 2012-02-29 | 阿德利夫股份有限公司 | Conformationally dynamic peptides |
| WO2011056958A2 (en) | 2009-11-06 | 2011-05-12 | Adlyfe, Inc. | Detection and treatment of traumatic brain injury |
| US9556247B2 (en) | 2010-05-25 | 2017-01-31 | System Of Systems Analytics, Inc. | Stabilized amyloid-beta oligomers and uses thereof |
| EP2712425A2 (en) | 2011-04-27 | 2014-04-02 | Adlyfe, Inc. | Ocular detection of amyloid proteins |
| CA2859808A1 (en) * | 2011-12-19 | 2013-06-27 | The Washington University | Methods for diagnosing alzheimer's disease |
| TWI454450B (en) | 2012-11-02 | 2014-10-01 | Ind Tech Res Inst | Organic compound and organic electroluminescence device employing the same |
| GB2514407A (en) * | 2013-05-23 | 2014-11-26 | Stefan L Marklund | Aggregates of superoxide dismutase |
| MX389762B (en) * | 2014-03-12 | 2025-03-20 | Neurimmune Holding Ag | NOVEL COMPOUNDS CAPABLE OF ANTAGONISING ISLET AMYLOID POLYPEPTIDE (IAPP)-INDUCED BETA-CELL DAMAGE AND IMPAIRED GLUCOSE TOLERANCE. |
| CA2960193C (en) * | 2014-09-05 | 2022-10-18 | System Of Systems Analytics, Inc. | Methods for detecting amyloid beta oligomers |
| US11135213B2 (en) | 2015-10-28 | 2021-10-05 | Yale University | Quinoline amides and methods of using same |
| JP7178607B2 (en) * | 2018-02-23 | 2022-11-28 | 学校法人麻布獣医学園 | Reagent for extracting amyloid protein |
| KR101977410B1 (en) * | 2018-08-22 | 2019-05-10 | 주식회사 피플바이오 | Novel Biomarker Indicative of Diabetes and Their Uses |
| CN110333354A (en) * | 2019-03-11 | 2019-10-15 | 兰州大学 | A kind of peptide probe and its detection method targeting at recognizing denatured collagen |
| US12352719B2 (en) | 2019-09-20 | 2025-07-08 | KYCERA AVX Components Corporation | Somatic cell-based electrical biosensor |
| WO2023178704A1 (en) * | 2022-03-25 | 2023-09-28 | 京东方科技集团股份有限公司 | Polypeptide probe, and preparation method therefor and use thereof |
| WO2024262536A1 (en) * | 2023-06-22 | 2024-12-26 | 国立研究開発法人産業技術総合研究所 | Method for screening for proteins associated with neurodegenerative diseases and therapeutic or prophylactic drugs for neurodegenerative diseases |
Family Cites Families (50)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5434050A (en) * | 1991-08-13 | 1995-07-18 | Regents Of The University Of Minnesota | Labelled β-amyloid peptide and methods of screening for Alzheimer's disease |
| ES2128362T3 (en) * | 1991-12-03 | 1999-05-16 | Proteus Molecular Design | FRAGMENTS OF PRION PROTEINS. |
| CA2214247C (en) * | 1995-03-14 | 2004-02-10 | Praecis Pharmaceuticals Incorporated | Modulators of amyloid aggregation |
| US5854215A (en) * | 1995-03-14 | 1998-12-29 | Praecis Pharmaceuticals Incorporated | Modulators of β-amyloid peptide aggregation |
| US5750361A (en) * | 1995-11-02 | 1998-05-12 | The Regents Of The University Of California | Formation and use of prion protein (PRP) complexes |
| JP3745380B2 (en) * | 1996-05-14 | 2006-02-15 | ヴィンアッカー,エルンスト―ルートヴィッヒ | Chaperone that binds to prion protein and can distinguish between isoforms PrP ▲ up c ▼ and PrP ▲ up sc ▼ |
| US20060178302A1 (en) * | 1997-02-05 | 2006-08-10 | Northwestern University & The University Of Southern California | Amyloid beta protein (globular assembly and uses thereof) |
| US5891641A (en) * | 1997-02-21 | 1999-04-06 | The Regents Of The University Of California | Assay for disease related conformation of a protein |
| CA2301142A1 (en) * | 1997-08-14 | 1999-02-25 | The Regents Of The University Of California | Fluorescent amyloid a.beta. peptides and uses thereof |
| JP4223681B2 (en) * | 1997-09-19 | 2009-02-12 | エボテック・アーゲー | Method for measuring the association of the underlying structure of pathogenic protein deposition |
| WO1999041279A2 (en) * | 1998-02-13 | 1999-08-19 | Arch Development Corporation | Methods and compositions comprising the use of blocked b-amyloid peptide |
| US6214565B1 (en) * | 1998-10-09 | 2001-04-10 | The Regents Of The University Of California | Assay for disease related conformation of a protein and isolating same |
| US5977324A (en) * | 1998-02-20 | 1999-11-02 | The Regents Of The University Of California | Process for concentrating protein with disease-related conformation |
| US6211149B1 (en) * | 1998-08-03 | 2001-04-03 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors of formation of protease resistant prion protein |
| US6750025B1 (en) * | 1998-07-09 | 2004-06-15 | V.I. Technologies, Inc. | Method of detecting and isolating prion protein and variants thereof |
| US20050112607A1 (en) * | 1999-01-23 | 2005-05-26 | Bamdad Cynthia C. | Rapid and sensitive detection of protein aggregation |
| AU3474100A (en) | 1999-01-25 | 2000-08-07 | Minerva Biotechnologies Corporation | Rapid and sensitive detection of aberrant protein aggregation in neurodegenerative diseases |
| US6166187A (en) * | 1999-03-05 | 2000-12-26 | The Regents Of The University Of California | Method of concentrating prion proteins in blood samples |
| BR0012765A (en) | 1999-07-27 | 2002-04-02 | Imp College Innovations Ltd | Peptide, methods of making an antibody, making a binding agent capable of binding to a cell form of a prion protein, removing a cell form of a prion protein from a sample, and using an antibody and / or binding agent, antibody, binding agent, use of an antibody or binding agent, kit, and, peptide sequence of a cellular form of a prion protein |
| GB9917724D0 (en) * | 1999-07-28 | 1999-09-29 | Medical Res Council | Peptides |
| WO2001014412A1 (en) | 1999-08-23 | 2001-03-01 | The Regents Of The University Of California | Compounds useful to mimic peptide beta-strands |
| US6399314B1 (en) * | 1999-12-29 | 2002-06-04 | American Cyanamid Company | Methods of detection of amyloidogenic proteins |
| CA2405568A1 (en) | 2000-04-05 | 2001-10-18 | North Carolina State University | Prion-binding peptidic ligands and methods of using same |
| DE60121958T2 (en) | 2000-07-07 | 2007-02-01 | Applied Research Systems Ars Holding N.V. | EARLY DIAGNOSIS OF CONFORMATIONAL DISEASES |
| US6495335B2 (en) * | 2000-12-07 | 2002-12-17 | Mario Chojkier | Compositions and methods for diagnosing alzheimer's disease |
| US7303907B2 (en) * | 2001-01-08 | 2007-12-04 | Health Protection Agency | Degradation and detection of TSE infectivity |
| AU2007234617B2 (en) | 2001-03-20 | 2011-08-11 | Wista Laboratories Ltd. | Neurofibrillary labels |
| WO2002082919A1 (en) | 2001-04-17 | 2002-10-24 | Femtolink Biotechnologies Llc | Detection and quantification of prion isoforms in neurodegenerative diseases using mass spectrometry |
| US6821504B2 (en) * | 2001-05-23 | 2004-11-23 | New York University | Detection of alzheimer's amyloid by magnetic resonance imaging |
| CA2448981C (en) * | 2001-05-31 | 2014-03-18 | Arete Associates | Misfolded protein sensor method |
| US20050026165A1 (en) * | 2001-05-31 | 2005-02-03 | Cindy Orser | Detection of conformationally altered proteins and prions |
| US20040253647A1 (en) | 2001-06-26 | 2004-12-16 | Mathews Paul M. | Cell-based high-throughput screening methods |
| WO2003050139A2 (en) * | 2001-12-10 | 2003-06-19 | Applied Research Systems Ars Holding N.V. | Prion inhibiting peptides and derivatives thereof |
| US20040052928A1 (en) * | 2002-09-06 | 2004-03-18 | Ehud Gazit | Peptides and methods using same for diagnosing and treating amyloid-associated diseases |
| EP2301959A3 (en) * | 2002-04-09 | 2013-03-13 | The Scripps Research Institute | Motif-grafted hybrid polypeptides and uses thereof |
| JP2004155688A (en) | 2002-04-30 | 2004-06-03 | Biofrontier Kenkyusho:Kk | Synthetic peptide having chaperone activity, method for measuring decarbonation activity, medicine for transmissible spongiform encephalopathy, and its searching method |
| EP1534746A2 (en) * | 2002-08-23 | 2005-06-01 | Copenhagen Biotech Assets APS | Composite peptide compounds for diagnosis and treatment of diseases caused by prion proteins |
| US20040072236A1 (en) * | 2002-09-27 | 2004-04-15 | Neil Cashman | PrPSc -interacting molecules and uses thereof |
| ES2531926T3 (en) * | 2002-12-03 | 2015-03-20 | North Carolina State University | Prion protein ligands and use procedures |
| US7510848B2 (en) * | 2003-04-04 | 2009-03-31 | North Carolina State University | Prion protein binding materials and methods of use |
| WO2005010533A2 (en) * | 2003-07-31 | 2005-02-03 | Hadasit Medical Research Services & Development Ltd. | Methods and kits for the detection of prion diseases |
| US20060035242A1 (en) * | 2004-08-13 | 2006-02-16 | Michelitsch Melissa D | Prion-specific peptide reagents |
| DK1653844T3 (en) * | 2003-08-13 | 2013-03-11 | Novartis Vaccines & Diagnostic | Prion-Specific Peptide Reagents |
| JP3910569B2 (en) * | 2003-08-19 | 2007-04-25 | 独立行政法人科学技術振興機構 | Reagent for amplifying amyloid fibrillation of amyloid β protein |
| US20060057671A1 (en) * | 2004-09-10 | 2006-03-16 | Orser Cindy S | Immobilized probes and methods of detecting conformationally altered prion proteins |
| US8372593B2 (en) | 2005-02-15 | 2013-02-12 | Adlyfe, Inc. | Method for detecting misfolded proteins and prions |
| US20070077552A1 (en) * | 2005-10-04 | 2007-04-05 | Michael Hecht | High throughput screen for inhibitors of polypeptide aggregation |
| MX2010010266A (en) * | 2008-03-21 | 2010-12-14 | Adlyfe Inc | Use of pyrene to carry peptides across the blood brain barrier. |
| WO2009117042A1 (en) * | 2008-03-21 | 2009-09-24 | Adlyfe, Inc. | Use of pyrene to carry non-peptide agents across the blood brain barrier |
| CN102365295A (en) * | 2009-01-30 | 2012-02-29 | 阿德利夫股份有限公司 | Conformationally dynamic peptides |
-
2007
- 2007-07-26 AU AU2007277186A patent/AU2007277186B2/en not_active Ceased
- 2007-07-26 BR BRPI0714930-1A patent/BRPI0714930A2/en not_active Application Discontinuation
- 2007-07-26 MX MX2009001079A patent/MX2009001079A/en active IP Right Grant
- 2007-07-26 CA CA2657503A patent/CA2657503C/en active Active
- 2007-07-26 WO PCT/US2007/016738 patent/WO2008013859A2/en not_active Ceased
- 2007-07-26 CN CN200780033009A patent/CN101802609A/en active Pending
- 2007-07-26 US US11/828,953 patent/US8673579B2/en active Active
- 2007-07-26 JP JP2009521822A patent/JP5097206B2/en active Active
- 2007-07-26 EP EP07810769.5A patent/EP2156181B1/en active Active
-
2011
- 2011-07-05 US US13/176,045 patent/US20130108549A1/en not_active Abandoned
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9638702B2 (en) | 2001-05-31 | 2017-05-02 | System Of Systems Analytics, Inc. | Detection of conformationally altered proteins |
| US9238816B2 (en) | 2011-02-18 | 2016-01-19 | National University Corporation Tokyo University Of Agriculture And Technology | Amyloid protein oligomer-binding aptamer |
| WO2014201435A1 (en) * | 2013-06-13 | 2014-12-18 | Biodesy, Inc. | Method of screening candidate biochemical entities targeting a target biochemical entity |
| GB2538216A (en) * | 2013-06-13 | 2016-11-16 | Biodesy Inc | Method of screening candidate biochemical entities targeting a target biochemical entity |
| US10670611B2 (en) | 2014-09-26 | 2020-06-02 | Somalogic, Inc. | Cardiovascular risk event prediction and uses thereof |
| US10768174B2 (en) | 2014-12-23 | 2020-09-08 | Bluelight Therapeutics, Inc. | Attachment of proteins to interfaces for use in nonlinear optical detection |
| WO2019236486A1 (en) * | 2018-06-08 | 2019-12-12 | The Cleveland Clinic Foundation | Apoa1 exchange rate as a diagnostic for mace |
| US12292451B2 (en) | 2018-06-08 | 2025-05-06 | Cleveland Clinic Foundation | ApoA1 exchange rate assays in serum |
| WO2020152426A1 (en) * | 2019-01-25 | 2020-07-30 | Mexbrain | Device for joint extraction of a metal cation and a target molecule |
| FR3091999A1 (en) * | 2019-01-25 | 2020-07-31 | Mexbrain | Device for the joint extraction of a metal cation and a target molecule |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2008013859A2 (en) | 2008-01-31 |
| WO2008013859A3 (en) | 2009-12-10 |
| JP5097206B2 (en) | 2012-12-12 |
| US20080095706A1 (en) | 2008-04-24 |
| CN101802609A (en) | 2010-08-11 |
| CA2657503C (en) | 2014-10-21 |
| EP2156181B1 (en) | 2015-11-04 |
| AU2007277186A1 (en) | 2008-01-31 |
| BRPI0714930A2 (en) | 2013-05-21 |
| MX2009001079A (en) | 2009-02-10 |
| EP2156181A2 (en) | 2010-02-24 |
| CA2657503A1 (en) | 2008-01-31 |
| JP2010502938A (en) | 2010-01-28 |
| AU2007277186B2 (en) | 2014-01-30 |
| US8673579B2 (en) | 2014-03-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8673579B2 (en) | Peptide probes for diagnostics and therapeutics | |
| AU2010208181B2 (en) | Conformationally dynamic peptides | |
| US9638702B2 (en) | Detection of conformationally altered proteins | |
| US9795692B2 (en) | Ocular detection of amyloid proteins | |
| JP2007536502A5 (en) | ||
| US20060057671A1 (en) | Immobilized probes and methods of detecting conformationally altered prion proteins | |
| HK1164343B (en) | Conformationally dynamic peptides | |
| HK1156106A (en) | Detection of conformationally altered proteins and prions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |