US20130055593A1 - Shock absorbing shoes with improved assembly and operational performance - Google Patents
Shock absorbing shoes with improved assembly and operational performance Download PDFInfo
- Publication number
- US20130055593A1 US20130055593A1 US13/696,320 US201113696320A US2013055593A1 US 20130055593 A1 US20130055593 A1 US 20130055593A1 US 201113696320 A US201113696320 A US 201113696320A US 2013055593 A1 US2013055593 A1 US 2013055593A1
- Authority
- US
- United States
- Prior art keywords
- supporting member
- shock absorbing
- support
- guide part
- holding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000035939 shock Effects 0.000 title claims abstract description 59
- 125000006850 spacer group Chemical group 0.000 description 11
- 238000000926 separation method Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000000994 depressogenic effect Effects 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000007767 bonding agent Substances 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B21/00—Heels; Top-pieces or top-lifts
- A43B21/24—Heels; Top-pieces or top-lifts characterised by the constructive form
- A43B21/30—Heels with metal springs
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B7/00—Footwear with health or hygienic arrangements
- A43B7/14—Footwear with health or hygienic arrangements with foot-supporting parts
- A43B7/1405—Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form
- A43B7/1415—Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form characterised by the location under the foot
- A43B7/144—Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form characterised by the location under the foot situated under the heel, i.e. the calcaneus bone
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/14—Soles; Sole-and-heel integral units characterised by the constructive form
- A43B13/18—Resilient soles
- A43B13/181—Resiliency achieved by the structure of the sole
- A43B13/182—Helicoidal springs
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/14—Soles; Sole-and-heel integral units characterised by the constructive form
- A43B13/18—Resilient soles
- A43B13/181—Resiliency achieved by the structure of the sole
- A43B13/183—Leaf springs
Definitions
- the present invention relates to a shock absorbing shoe with improved assembly and operational performance, which is provided with a supporting member capable of preventing the removal or separation of an elastic member, thereby improving durability of the shock absorbing shoe, and in which an upper sole and a second support body of a support unit are provided with a guide portion and a guide part, respectively, so that when the elastic member is compressed and reverts back to its original shape after being compressed and the supporting member moves upward and downward during walking, it is possible to guide the movement of the supporting member, thereby realizing improved operational reliability of both the elastic member and the supporting member, and in which the elastic member and the support unit that supports the upper and lower ends of the elastic member can be easily and simply assembled thanks to the supporting member so that the shock absorbing shoe of the present invention can be easily assembled and can reduce the shoe assembling time in comparison with conventional shock absorbing shoes, thereby increasing the productivity, and of which respective elements can be easily disassembled by disassembling only the supporting member so that the shoe of the present invention can be easily repaired and maintained, thereby improving work efficiency.
- shoes function to protect the feet of a user and to absorb shocks, thereby providing the feet with relief from fatigue.
- shocks thereby providing the feet with relief from fatigue.
- a variety of functional shoes that have such foot protecting and shock absorbing functions have been proposed.
- coil springs are assembled in various manners in an effort to realize easy repair and easy maintenance of the coil springs that are elastically deformed in order to absorb shocks.
- the coil spring may be embedded in the heel of the shoe or may be assembled in the shoe using a support unit and a bolt or may be assembled to the support unit by inserting the coil spring into the support unit.
- the broken coil springs of the shoes must be repaired or replaced by new springs, thereby imposing a financial burden on users.
- the conventional shock absorbing shoes cannot realize reliability and cannot appeal to consumers.
- the present invention has been made keeping in mind the above problems occurring in the related art, and is intended to provide a shock absorbing shoe with improved assembly and operational performance, in which
- a supporting member is provided to prevent removal or separation of an elastic member, thereby improving durability of the shock absorbing shoe
- a guide portion and a guide part are provided in an upper sole and a second support body of a support unit, respectively, so that when the elastic member is compressed and reverts back to its original shape after being compressed and the supporting member moves upward and downward during walking, it is possible to guide the movement of the supporting member, thereby realizing improved operational reliability of both the elastic member and the supporting member,
- the elastic member and the support unit that supports the upper and lower ends of the elastic member can be easily and simply assembled by the supporting member so that the shock absorbing shoe of the present invention can be easily assembled and can reduce the shoe assembly time in comparison with conventional shock absorbing shoes, thereby increasing productivity, and
- respective elements can be easily disassembled by disassembling only the supporting member so that the shoe of the present invention can be easily repaired and maintained, thereby improving work efficiency.
- the present invention provides a shock absorbing shoe with improved assembly and operational performance, in which
- a holding means is provided both in a first holding body that is combined with the first support body of the support unit and in the lower end of the supporting member so that the present invention can prevent the supporting member from being released or loosened by vibrations or shocks that are applied to the shoe while walking, thereby improving reliability of the product, and
- respective elements can be easily and simply assembled and disassembled by the holding means so that productivity and work efficiency of the present invention are improved during a process of assembling or disassembling the elements.
- the present invention provides a shock absorbing shoe with improved assembly and operational performance, in which a stopping means is provided both in the second holding body that is combined with the second support body of the support unit and in the upper end of the supporting member so that the present invention can prevent the second holding body and the supporting member from being unexpectedly separated from each other during upward and downward movement of the supporting member, thereby allowing a user to safely use the shoe.
- the present invention provides a shock absorbing shoe with improved assembly and operational performance, including: an outsole; an upper sole arranged on the outsole and having a guide portion; a support unit including: a first support body connected to the outsole; and a second support body connected to the upper sole and having a guide part corresponding to the guide portion; an elastic member arranged between the first and second support bodies of the support unit; and a supporting member connected to the first and second support bodies of the support unit, the supporting member being movable upward and downward along the guide portion and the guide part of the second support body.
- the first and second support bodies of the support unit may include first and second holding bodies that are connected to the elastic member, and the first holding body and the supporting member may be provided with a holding means.
- the holding means may include: a seat groove formed in a lower surface of the first holding body; an insert hole formed in a lower end of the supporting member so as to correspond to the seat groove; and a locking pin inserted through the insert hole and seated in the seat groove.
- the second holding body may be provided with a corresponding guide part that corresponds to the guide part of the second support body, and the corresponding guide part of the second holding body and the supporting member may be provided with a stopping means.
- the shock absorbing shoe with improved assembly and operational performance according to the present invention is advantageous in that it has a supporting member capable of preventing removal or separation of the elastic member so that the present invention can realize a shock absorbing shoe that has improved durability.
- the guide portion and the guide part are provided in the upper sole and the second support body of the support unit, respectively, so that when the elastic member is compressed and reverts back to its original shape after being compressed and the supporting member moves upward and downward during walking, the present invention can guide the movement of the supporting member, thereby realizing improved operational reliability of both the elastic member and the supporting member.
- the elastic member and the support unit that supports the upper and lower ends of the elastic member can be easily and simply assembled by the supporting member so that the present invention can easily assemble the shoe and can reduce the shoe assembly time in comparison with conventional shock absorbing shoes, thereby increasing productivity.
- respective elements of the present invention can be easily disassembled by disassembling only the supporting member, thereby easily repairing and maintaining the shoe and, accordingly, improving work efficiency.
- the holding means is provided both in the first holding body that is combined with the first support body of the support unit and in the lower end of the supporting member, thereby preventing the supporting member from being released or loosened by vibrations or shocks that are applied to the shoe while walking and, accordingly, improving reliability of the product.
- the respective elements of the present invention can be easily and simply assembled and disassembled by the holding means, thereby improving productivity and work efficiency during a process of assembling or disassembling the elements.
- the stopping means is provided both in the second holding body that is combined with the second support body of the support unit and in the upper end of the supporting member so that the present invention can prevent the second holding body and the supporting member from being unexpectedly separated from each other during upward and downward movement of the supporting member, thereby allowing a user to safely use the shoe.
- FIG. 1 is a perspective view illustrating a shock absorbing shoe with improved assembly and operational performance according to the present invention
- FIG. 2 is an exploded perspective view illustrating the shock absorbing shoe with improved assembly and operational performance according to the present invention
- FIG. 3 is a sectional view illustrating the shock absorbing shoe according to the present invention.
- FIG. 4 is a side view illustrating the shock absorbing shoe according to the present invention.
- FIG. 5 is a side view illustrating holding bodies, an elastic member and a supporting member of the shock absorbing shoe according to the present invention
- FIG. 6 is an exploded perspective view illustrating a holding means and a stopping means of the shock absorbing shoe according to the present invention.
- FIG. 7 is an exploded perspective view illustrating a modification of the holding means of the shock absorbing shoe according to the present invention.
- the shock absorbing shoe with improved assembly and operational performance according to the present invention includes:
- an outsole 10 an outsole 10 ; an upper sole 20 which is arranged on top of the outsole 10 and has a guide portion 21 ; a support unit 30 which includes a first support body 30 A that is connected to the outsole 10 , and a second support body 30 B that is connected to the upper sole 20 and has a guide part 33 corresponding to the guide portion 21 ; an elastic member 40 which is arranged between the first and second support bodies 30 A and 30 B of the support unit 30 ; and a supporting member 50 which is connected to the first and second support bodies 30 A and 30 B of the support unit 30 and moves upward and downward through both the guide portion 21 and the guide part 33 of the second support body 30 B.
- the outsole 10 is configured as follows.
- the upper surface of the outsole 10 is firmly bonded to the lower surface of the first support body 30 A of the support unit 30 using a bonding agent or a strong adhesive. This outsole 10 makes direct contact with the ground surface.
- the lower surface of the outsole 10 is a part that comes into direct contact with the ground surface so that, in order to absorb shocks and prevent slipping when the lower surface of the outsole is brought into contact with the ground surface.
- the outsole be formed using an elastic material, such as elastomer, polyurethane or rubber.
- the outsole 10 is configured as follows using the above-mentioned elastic material.
- the outsole has an improved shock absorbing function and an improved slip preventing function.
- the outsole 10 has an integrated structure in which the front sole and the heel of the outsole are integrated into a single structure.
- the above-mentioned integrated structure of the outsole 10 can solve the problem that has been experienced with a separated outsole in which the front sole becomes separated from the heel so that a user may fall over a stone or a protruding object while walking.
- a stone or a protruding object may insert itself between the front sole and the heel of the separated outsole so that the stone or the protruding object causes the user discomfort while walking.
- the integrated structure of the outsole 10 of the present invention can solve the above-mentioned problem.
- the upper sole 20 is configured as follows.
- the upper sole is arranged on top of the outsole 10 .
- the lower surface of the upper sole is firmly bonded to the upper surface of the second support body 30 B of the support unit 30 using a bonding agent or a strong adhesive so that the sole of a user or an insole is laid on the upper surface of the upper sole.
- a shoe body SB is connected to the top of the upper sole 20 and covers the instep of the user, thereby safely protecting the instep of the user when the user walks or exercises.
- Each of the four guide portions 21 is arranged inside an associated elastic member 40 so that, when the supporting member 50 that is combined with the first and second support bodies 30 A and 30 B of the support unit 30 moves upward and downward, the guide portion 21 functions to guide the upper portion of the supporting member 50 .
- the guide portion 21 can guide the movement of the supporting member 50 that moves upward and downward relative to the elastic member 40 , thereby realizing improved operational reliability of the supporting member 50 .
- the support unit 30 is configured as follows.
- the support unit 30 is mounted to the upper surface of the outsole 10 and to the lower surface of the upper sole 20 and is combined with the elastic member 40 , thereby supporting the elastic member 40 at a desired location.
- the support unit 30 of the present invention includes the first and second support bodies 30 A and 30 B.
- the first support body 30 A is held in the upper surface of the outsole 10 .
- the second support body 30 B is held in the lower surface of the upper sole 20 .
- the guide part 33 having a hole shape is formed in the second support body 30 B so that the guide part 33 corresponds to the guide portion 21 of the upper sole 20 .
- the guide part 33 guides the movement of the supporting member 50 , thereby realizing the improved operational reliability of the supporting member 50 .
- the annular protrusions 32 are formed at locations at which the elastic members 40 are arranged.
- a depressed seat 31 is formed inside each of the annular protrusions 32 so as to hold the elastic member 40 therein.
- first and second holding bodies 35 and 37 having a disc shape are mounted to the depressed seats 31 of the first and second support bodies 30 A and 30 B by fitting or bonding.
- the first holding body 35 is combined with the lower end of the elastic member 40 and the second holding body 37 is combined with the upper end of the elastic member 40 .
- Respective annular rims 35 d and 37 d are formed along the edges of the first and second holding bodies 35 and 37 , and respective seat depressions 35 e and 37 e are formed inside the rims 35 d and 37 d.
- fitting protrusions 35 c and 37 c are formed in the centers of the respective seat depressions 35 e and 37 e so that the elastic member 40 can be held by the first and second holding bodies 35 and 37 as follows.
- the inner circumferential surfaces of the opposite ends of the elastic member 40 come into contact with the outer circumferential surfaces of the fitting protrusions 35 c and 37 c . Accordingly, the upper and lower ends of the elastic member 40 can be firmly held by the rims 35 d and 37 d , the seat depressions 35 e and 37 e , and the fitting protrusions 35 c and 37 c so that it is possible to prevent the elements from being removed or separated from each other.
- the elastic member 40 may be combined with the first and second holding bodies 35 and 37 through fitting or bonding.
- the elastic member 40 be fitted into the first and second holding bodies 35 and 37 .
- a protruding spacer part 36 is formed on the lower surface of the fitting protrusion 37 c of the second holding body 37 so that, when the elastic member 40 is compressed, the lower surface of the protruding spacer part 36 comes into contact with the upper surface of the first holding body 35 .
- the protruding spacer part 36 in the above state can space the first and second holding bodies 35 and 37 away from each other by a predetermined gap so that it is possible to prevent the turns of a coil spring 41 that is used as the elastic member 40 from coming into contact with each other or from striking each other when the user walks, thereby preventing the elastic member 40 from being broken by shocks.
- the protruding spacer part 36 is formed on the lower surface of the fitting protrusion 37 c of the second holding body 37 .
- the protruding spacer part 36 may be formed on the upper surface of the fitting protrusion 35 c of the first holding body 35 so that, when the elastic member is compressed, the protruding spacer part 36 comes into contact with the lower surface of the fitting protrusion of the second holding body 37 and spaces the first and second holding bodies 35 and 37 away from each other by a predetermined gap, thereby performing the same operational function as that described above.
- the second holding body 37 has a corresponding guide part 37 a , which is formed in the second holding body 37 in such a way that the corresponding guide part 37 a is defined inside the protruding spacer part 36 of the second holding body 37 .
- the corresponding guide part 37 a is formed inside the protruding spacer part 36 so as to correspond to the guide part 33 of the second support body 30 B so that, when the supporting member 50 moves upward and downward, the corresponding guide part 37 a can guide the movement of the supporting member 50 , thereby realizing improved operational reliability of the supporting member 50 .
- the guide portion 21 of the upper sole 20 , the guide part 33 of the second support body 30 B and the corresponding guide part 37 a of the second holding body 37 communicate with each other so that the supporting member 50 can move upward and downward thanks to the above-mentioned elements which are all in communication with each other.
- the guide portion 21 , the guide part 33 and the corresponding guide part 37 a allow the supporting member 50 to reliably move without interfering with the other elements.
- the configuration of the elastic member 40 is as follows.
- the elastic member is placed between the first and second support bodies 30 A and 30 B of the support unit 30 so that the elastic element can absorb and attenuate shocks that are applied to the heel of the user when the user walks, thereby relieving the feet of the user from fatigue and allowing the user to walk in comfort.
- a coil spring 41 is used as the elastic member 40 of the present invention, in which the lower and upper ends of the coil spring 41 are combined with the first and second holding bodies 35 and 37 , respectively.
- the coil spring 41 is firmly held by the inner circumferential surfaces of the rims 35 d and 37 d of the respective holding bodies 35 and 37 , and by the seat depressions 35 e and 37 e , and by the fitting protrusions 35 c and 37 c.
- the coil springs perform their functions as follows.
- the coil springs can efficiently absorb and attenuate the shocks that are applied to the feet and body of the user, thereby relieving the feet and the body from fatigue and realizing the healthful function of the shoes and allowing the user to feel comfortable.
- the coil springs 41 have a square cross-section.
- the coil springs 41 When the coil springs 41 are compressed by the load of the user, the coil springs that are arranged in the shoe may strike each other.
- coil springs 41 having a circular cross-section when used, the outer circumferential surfaces of the coil springs 41 may come into contact with each other, so that their striking each other may cause them to easily break.
- the supporting member 50 is configured as follows.
- the supporting member is connected to the first and second support bodies 30 A and 30 B of the support unit 30 at a location between the two support bodies so that, when the elastic member 40 repeats elastic deformation when the user walks, the supporting member can prevent removal or separation of the elastic member 40 .
- the supporting member 50 of the present invention is coupled to the first and second holding bodies 35 and 37 that are combined with the first and second support bodies 30 A and 30 B, respectively.
- the lower end of the supporting member 50 is combined with the first holding body 35 .
- the upper end of the supporting member 50 is combined with the second holding body 37 so that the supporting member can repeatedly move upward and downward when the user walks.
- the supporting member 50 includes a head 51 that is formed in the upper end of the supporting member, a shank 53 that extends downward from the lower surface of the head 51 , and a locking part 55 that is formed in the lower end of the shank 53 .
- the locking part 55 is connected to the first holding body 35 by a holding means FM.
- the head 51 is seated in the corresponding guide part 37 a of the second holding body 37 so that, when the elastic member 40 performs an elastic action, the head 51 can prevent the removal or separation of the supporting member 50 from the second holding body 37 . In the above state, the head 51 cooperates with a stopping means SP.
- a through hole 35 b is formed through the center of the first holding body 35 .
- seat grooves 35 a are symmetrically formed in the lower surface of the first holding body on opposite sides of the through hole 35 b.
- an insert hole 55 a is formed in the locking part 55 that is provided in the lower end of the supporting member 50 .
- a locking pin 60 is provided. To combine the supporting member and the first holding body with each other, the locking pin 60 is inserted into the insert hole 55 a after the supporting member 50 is inserted into the through hole 35 b . Thereafter, the locking pin 60 is seated in the seat grooves 35 a.
- the holding means FM When the lower end of the supporting member 50 is combined with the first holding body 35 , the holding means FM performs the following function.
- the holding means FM can more easily and efficiently combine the supporting member 50 and the first holding body 35 with each other.
- the assembled holding means can prevent the supporting member 50 and the first holding body 35 from being released from each other by vibrations or shocks that may be applied both to the supporting member and to the first holding body when a user wearing the shoes walks.
- the locking pin 60 of the holding means FM is seated in the seat grooves 35 a of the first holding body 35 after the locking pin 60 has been inserted into the insert hole 55 a of the supporting member 50 so that the locking pin 60 can hold and prevent rotation of the supporting member 50 irrespective of vibrations or shocks that are applied to the supporting member.
- FIG. 7 illustrates a modification of the holding means FM.
- an internal thread 35 f is formed on the inner circumferential surface of the through hole 35 b of the first holding body 35
- an external thread 55 b is formed around the outer circumferential surface of the locking part 55 of the supporting member 50 so that the supporting member 50 can be tightened to the holding body 35 by rotating the supporting member relative to the holding body.
- the upper surface of the head 51 of the supporting member 50 be recessed to form a straight recess, a cross recess or a combined recess so that the supporting member and the first holding body can be easily assembled and disassembled using a tool.
- a stopper 37 b is formed in the lower part of the corresponding guide part 37 a of the second holding body 37 .
- the stopper 37 b is formed on the lower surface of the protruding spacer part 36 of the second holding body 37 .
- a shank passing hole 37 f is formed through the center of the protruding spacer part 36 .
- the diameter of the shank passing hole 37 f is less than inner diameter of the corresponding guide part 37 a but is greater than that of the shank 53 .
- the stopper 37 b is formed in the shape of a step at an area around the shank passing hole 37 f.
- the shank 53 of the supporting member 50 passes through the shank passing hole 37 f , the shank 53 can move through the shank passing hole 37 f when the elastic member 40 is compressed and reverts back to its original shape after having been compressed.
- the head 51 that is connected to the upper end of the shank 53 of the supporting member 50 can be caught and held by the stopper 37 b.
- shock absorbing shoe with improved assembly and operational performance of the present invention has been disclosed based on specific shapes and directions in the above description, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
Abstract
A shock absorbing shoe with improved assembly and operational performance is disclosed. The shock absorbing shoe includes: an outsole; an upper sole arranged on the outsole and having a guide portion; a support unit including: a first support body connected to the outsole; and a second support body connected to the upper sole and having a guide part corresponding to the guide portion; an elastic member arranged between the first and second support bodies of the support unit; and a supporting member connected to the first and second support bodies of the support unit, the supporting member being movable upward and downward along the guide portion and the guide part of the second support body.
Description
- The present invention relates to a shock absorbing shoe with improved assembly and operational performance, which is provided with a supporting member capable of preventing the removal or separation of an elastic member, thereby improving durability of the shock absorbing shoe, and in which an upper sole and a second support body of a support unit are provided with a guide portion and a guide part, respectively, so that when the elastic member is compressed and reverts back to its original shape after being compressed and the supporting member moves upward and downward during walking, it is possible to guide the movement of the supporting member, thereby realizing improved operational reliability of both the elastic member and the supporting member, and in which the elastic member and the support unit that supports the upper and lower ends of the elastic member can be easily and simply assembled thanks to the supporting member so that the shock absorbing shoe of the present invention can be easily assembled and can reduce the shoe assembling time in comparison with conventional shock absorbing shoes, thereby increasing the productivity, and of which respective elements can be easily disassembled by disassembling only the supporting member so that the shoe of the present invention can be easily repaired and maintained, thereby improving work efficiency.
- Generally, shoes function to protect the feet of a user and to absorb shocks, thereby providing the feet with relief from fatigue. In recent years, a variety of functional shoes that have such foot protecting and shock absorbing functions have been proposed.
- Particularly, in shock absorbing shoes that have the specific function of absorbing shock, coil springs are assembled in various manners in an effort to realize easy repair and easy maintenance of the coil springs that are elastically deformed in order to absorb shocks.
- In the prior art, to assemble a coil spring in a shock absorbing shoe, the coil spring may be embedded in the heel of the shoe or may be assembled in the shoe using a support unit and a bolt or may be assembled to the support unit by inserting the coil spring into the support unit.
- However, the above-mentioned conventional manners for assembling the coil springs in the shock absorbing shoes cannot reliably support the coil springs.
- Further, when the coil springs of the conventional shock absorbing shoes are loaded and compressed, the turns of each coil spring may come into contact with each other so that the coil springs may be broken by shocks.
- The broken coil springs of the shoes must be repaired or replaced by new springs, thereby imposing a financial burden on users.
- Further, due to the above-mentioned coil springs, the conventional shock absorbing shoes cannot realize reliability and cannot appeal to consumers.
- Accordingly, the present invention has been made keeping in mind the above problems occurring in the related art, and is intended to provide a shock absorbing shoe with improved assembly and operational performance, in which
- a supporting member is provided to prevent removal or separation of an elastic member, thereby improving durability of the shock absorbing shoe,
- a guide portion and a guide part are provided in an upper sole and a second support body of a support unit, respectively, so that when the elastic member is compressed and reverts back to its original shape after being compressed and the supporting member moves upward and downward during walking, it is possible to guide the movement of the supporting member, thereby realizing improved operational reliability of both the elastic member and the supporting member,
- the elastic member and the support unit that supports the upper and lower ends of the elastic member can be easily and simply assembled by the supporting member so that the shock absorbing shoe of the present invention can be easily assembled and can reduce the shoe assembly time in comparison with conventional shock absorbing shoes, thereby increasing productivity, and
- respective elements can be easily disassembled by disassembling only the supporting member so that the shoe of the present invention can be easily repaired and maintained, thereby improving work efficiency.
- Further, the present invention provides a shock absorbing shoe with improved assembly and operational performance, in which
- a holding means is provided both in a first holding body that is combined with the first support body of the support unit and in the lower end of the supporting member so that the present invention can prevent the supporting member from being released or loosened by vibrations or shocks that are applied to the shoe while walking, thereby improving reliability of the product, and
- respective elements can be easily and simply assembled and disassembled by the holding means so that productivity and work efficiency of the present invention are improved during a process of assembling or disassembling the elements.
- Further, the present invention provides a shock absorbing shoe with improved assembly and operational performance, in which a stopping means is provided both in the second holding body that is combined with the second support body of the support unit and in the upper end of the supporting member so that the present invention can prevent the second holding body and the supporting member from being unexpectedly separated from each other during upward and downward movement of the supporting member, thereby allowing a user to safely use the shoe.
- In an aspect, the present invention provides a shock absorbing shoe with improved assembly and operational performance, including: an outsole; an upper sole arranged on the outsole and having a guide portion; a support unit including: a first support body connected to the outsole; and a second support body connected to the upper sole and having a guide part corresponding to the guide portion; an elastic member arranged between the first and second support bodies of the support unit; and a supporting member connected to the first and second support bodies of the support unit, the supporting member being movable upward and downward along the guide portion and the guide part of the second support body.
- In the present invention, the first and second support bodies of the support unit may include first and second holding bodies that are connected to the elastic member, and the first holding body and the supporting member may be provided with a holding means.
- Further, in the present invention, the holding means may include: a seat groove formed in a lower surface of the first holding body; an insert hole formed in a lower end of the supporting member so as to correspond to the seat groove; and a locking pin inserted through the insert hole and seated in the seat groove.
- Further, in the present invention, the second holding body may be provided with a corresponding guide part that corresponds to the guide part of the second support body, and the corresponding guide part of the second holding body and the supporting member may be provided with a stopping means.
- As described above, the shock absorbing shoe with improved assembly and operational performance according to the present invention is advantageous in that it has a supporting member capable of preventing removal or separation of the elastic member so that the present invention can realize a shock absorbing shoe that has improved durability.
- Further, the guide portion and the guide part are provided in the upper sole and the second support body of the support unit, respectively, so that when the elastic member is compressed and reverts back to its original shape after being compressed and the supporting member moves upward and downward during walking, the present invention can guide the movement of the supporting member, thereby realizing improved operational reliability of both the elastic member and the supporting member.
- Further, the elastic member and the support unit that supports the upper and lower ends of the elastic member can be easily and simply assembled by the supporting member so that the present invention can easily assemble the shoe and can reduce the shoe assembly time in comparison with conventional shock absorbing shoes, thereby increasing productivity.
- Further, respective elements of the present invention can be easily disassembled by disassembling only the supporting member, thereby easily repairing and maintaining the shoe and, accordingly, improving work efficiency.
- Further, in the present invention, the holding means is provided both in the first holding body that is combined with the first support body of the support unit and in the lower end of the supporting member, thereby preventing the supporting member from being released or loosened by vibrations or shocks that are applied to the shoe while walking and, accordingly, improving reliability of the product.
- Further, the respective elements of the present invention can be easily and simply assembled and disassembled by the holding means, thereby improving productivity and work efficiency during a process of assembling or disassembling the elements.
- Further, in the present invention, the stopping means is provided both in the second holding body that is combined with the second support body of the support unit and in the upper end of the supporting member so that the present invention can prevent the second holding body and the supporting member from being unexpectedly separated from each other during upward and downward movement of the supporting member, thereby allowing a user to safely use the shoe.
-
FIG. 1 is a perspective view illustrating a shock absorbing shoe with improved assembly and operational performance according to the present invention; -
FIG. 2 is an exploded perspective view illustrating the shock absorbing shoe with improved assembly and operational performance according to the present invention; -
FIG. 3 is a sectional view illustrating the shock absorbing shoe according to the present invention; -
FIG. 4 is a side view illustrating the shock absorbing shoe according to the present invention; -
FIG. 5 is a side view illustrating holding bodies, an elastic member and a supporting member of the shock absorbing shoe according to the present invention; -
FIG. 6 is an exploded perspective view illustrating a holding means and a stopping means of the shock absorbing shoe according to the present invention; and -
FIG. 7 is an exploded perspective view illustrating a modification of the holding means of the shock absorbing shoe according to the present invention. -
-
**Description of reference characters of important parts** 10: outsole 11: stud 20: upper sole 21: guide portion 30: support unit 30A: first support body 30B: second support body 31: depressed seat 32: annular protrusion 33: guide part 35: first holding body 35a: seat groove 35b: through hole 35f: internal thread 36: protruding spacer part 37: second holding body 37a: corresponding guide part 37b: stopper 35c, 37c: fitting protrusion 35d, 37d: rim 35e, 37e: seat depression 35f: internal thread 37f: shank passing hole 40: elastic member 41: coil spring 50: supporting member 51: head 53: shank 55: locking part 55a: insert hole 55b: external thread 60: locking pin FM: holding means SP: stopping means SB: shoe body - Hereinbelow, a shock absorbing shoe with improved assembly and operational performance according to the present invention will be described in detail with reference to the accompanying drawings.
- As shown in
FIGS. 1 through 7 , the shock absorbing shoe with improved assembly and operational performance according to the present invention includes: - an
outsole 10; an upper sole 20 which is arranged on top of theoutsole 10 and has aguide portion 21; asupport unit 30 which includes afirst support body 30A that is connected to theoutsole 10, and asecond support body 30B that is connected to the upper sole 20 and has aguide part 33 corresponding to theguide portion 21; anelastic member 40 which is arranged between the first and 30A and 30B of thesecond support bodies support unit 30; and a supportingmember 50 which is connected to the first and 30A and 30B of thesecond support bodies support unit 30 and moves upward and downward through both theguide portion 21 and theguide part 33 of thesecond support body 30B. - As shown in
FIGS. 1 through 4 , in the shock absorbing shoe with improved assembly performance and improved operational performance according to the present invention, theoutsole 10 is configured as follows. - The upper surface of the
outsole 10 is firmly bonded to the lower surface of thefirst support body 30A of thesupport unit 30 using a bonding agent or a strong adhesive. Thisoutsole 10 makes direct contact with the ground surface. - Here, the lower surface of the
outsole 10 is a part that comes into direct contact with the ground surface so that, in order to absorb shocks and prevent slipping when the lower surface of the outsole is brought into contact with the ground surface. For this reason, it is preferred that the outsole be formed using an elastic material, such as elastomer, polyurethane or rubber. - Further, in order to improve the shock absorbing and slip prevention function, the
outsole 10 is configured as follows using the above-mentioned elastic material. - That is,
studs 11 are formed on the lower surface of the outsole in such a way that a plurality of protrusions or a plurality of prominences and depressions are formed on the lower surface of the outsole. Accordingly, the outsole has an improved shock absorbing function and an improved slip preventing function. - Further, the
outsole 10 has an integrated structure in which the front sole and the heel of the outsole are integrated into a single structure. - The above-mentioned integrated structure of the
outsole 10 can solve the problem that has been experienced with a separated outsole in which the front sole becomes separated from the heel so that a user may fall over a stone or a protruding object while walking. - Further, a stone or a protruding object may insert itself between the front sole and the heel of the separated outsole so that the stone or the protruding object causes the user discomfort while walking. However, the integrated structure of the
outsole 10 of the present invention can solve the above-mentioned problem. - As shown in
FIGS. 1 through 4 , in the shock absorbing shoe with improved assembly and operational performance according to the present invention, the upper sole 20 is configured as follows. - The upper sole is arranged on top of the
outsole 10. The lower surface of the upper sole is firmly bonded to the upper surface of thesecond support body 30B of thesupport unit 30 using a bonding agent or a strong adhesive so that the sole of a user or an insole is laid on the upper surface of the upper sole. - Further, a shoe body SB is connected to the top of the upper sole 20 and covers the instep of the user, thereby safely protecting the instep of the user when the user walks or exercises.
- In the upper sole 20 of the present invention, four
guide portions 21 having a grooved shape are formed at four locations of a heel part at which fourelastic members 40 are arranged. - Each of the four
guide portions 21 is arranged inside an associatedelastic member 40 so that, when the supportingmember 50 that is combined with the first and 30A and 30B of thesecond support bodies support unit 30 moves upward and downward, theguide portion 21 functions to guide the upper portion of the supportingmember 50. - In other words, when the user walks and the
elastic member 40 is repeatedly compressed and reverts back to its original shape after being compressed, theguide portion 21 can guide the movement of the supportingmember 50 that moves upward and downward relative to theelastic member 40, thereby realizing improved operational reliability of the supportingmember 50. - As shown in
FIGS. 1 through 6 , in the shock absorbing shoe with improved assembly and operational performance according to the present invention, thesupport unit 30 is configured as follows. - The
support unit 30 is mounted to the upper surface of theoutsole 10 and to the lower surface of the upper sole 20 and is combined with theelastic member 40, thereby supporting theelastic member 40 at a desired location. - The
support unit 30 of the present invention includes the first and 30A and 30B.second support bodies - The
first support body 30A is held in the upper surface of theoutsole 10. Thesecond support body 30B is held in the lower surface of the upper sole 20. - Further, the
guide part 33 having a hole shape is formed in thesecond support body 30B so that theguide part 33 corresponds to theguide portion 21 of the upper sole 20. - When the supporting
member 50 moves upward and downward, theguide part 33 guides the movement of the supportingmember 50, thereby realizing the improved operational reliability of the supportingmember 50. - Further, in each of the first and
30A and 30B, thesecond support bodies annular protrusions 32 are formed at locations at which theelastic members 40 are arranged. Adepressed seat 31 is formed inside each of theannular protrusions 32 so as to hold theelastic member 40 therein. - Further, in the
support unit 30 of the present invention, first and second holding 35 and 37 having a disc shape are mounted to thebodies depressed seats 31 of the first and 30A and 30B by fitting or bonding.second support bodies - The
first holding body 35 is combined with the lower end of theelastic member 40 and thesecond holding body 37 is combined with the upper end of theelastic member 40. - Respective
35 d and 37 d are formed along the edges of the first and second holdingannular rims 35 and 37, andbodies 35 e and 37 e are formed inside therespective seat depressions 35 d and 37 d.rims - Further,
35 c and 37 c are formed in the centers of thefitting protrusions 35 e and 37 e so that therespective seat depressions elastic member 40 can be held by the first and second holding 35 and 37 as follows.bodies - When the opposite ends of the
elastic member 40 are fitted into the 35 e and 37 e, the outer circumferential surfaces of the opposite ends of therespective seat depressions elastic member 40 come into contact with the inner circumferential surfaces of therims 35d 37 d. - Further, the inner circumferential surfaces of the opposite ends of the
elastic member 40 come into contact with the outer circumferential surfaces of the 35 c and 37 c. Accordingly, the upper and lower ends of thefitting protrusions elastic member 40 can be firmly held by the 35 d and 37 d, therims 35 e and 37 e, and theseat depressions 35 c and 37 c so that it is possible to prevent the elements from being removed or separated from each other.fitting protrusions - Here, the
elastic member 40 may be combined with the first and second holding 35 and 37 through fitting or bonding.bodies - However, to realize easy assembly of the elements based on the structural characteristics of the first and second holding
35 and 37, it is preferred that thebodies elastic member 40 be fitted into the first and second holding 35 and 37.bodies - Further, a protruding
spacer part 36 is formed on the lower surface of thefitting protrusion 37 c of thesecond holding body 37 so that, when theelastic member 40 is compressed, the lower surface of the protrudingspacer part 36 comes into contact with the upper surface of the first holdingbody 35. - The protruding
spacer part 36 in the above state can space the first and second holding 35 and 37 away from each other by a predetermined gap so that it is possible to prevent the turns of abodies coil spring 41 that is used as theelastic member 40 from coming into contact with each other or from striking each other when the user walks, thereby preventing theelastic member 40 from being broken by shocks. - In
FIGS. 2 , 3 and 6, the protrudingspacer part 36 is formed on the lower surface of thefitting protrusion 37 c of thesecond holding body 37. - However, it should be understood that although it is not shown in the accompanying drawings, the protruding
spacer part 36 may be formed on the upper surface of thefitting protrusion 35 c of the first holdingbody 35 so that, when the elastic member is compressed, the protrudingspacer part 36 comes into contact with the lower surface of the fitting protrusion of thesecond holding body 37 and spaces the first and second holding 35 and 37 away from each other by a predetermined gap, thereby performing the same operational function as that described above.bodies - Further, the
second holding body 37 has acorresponding guide part 37 a, which is formed in thesecond holding body 37 in such a way that thecorresponding guide part 37 a is defined inside the protrudingspacer part 36 of thesecond holding body 37. - In other words, the
corresponding guide part 37 a is formed inside the protrudingspacer part 36 so as to correspond to theguide part 33 of thesecond support body 30B so that, when the supportingmember 50 moves upward and downward, thecorresponding guide part 37 a can guide the movement of the supportingmember 50, thereby realizing improved operational reliability of the supportingmember 50. - Here, the
guide portion 21 of the upper sole 20, theguide part 33 of thesecond support body 30B and thecorresponding guide part 37 a of thesecond holding body 37 communicate with each other so that the supportingmember 50 can move upward and downward thanks to the above-mentioned elements which are all in communication with each other. - In the above state, the
guide portion 21, theguide part 33 and thecorresponding guide part 37 a allow the supportingmember 50 to reliably move without interfering with the other elements. - As shown in
FIGS. 1 through 6 , in the shock absorbing shoe with improved assembly and operational performance according to the present invention, the configuration of theelastic member 40 is as follows. - The elastic member is placed between the first and
30A and 30B of thesecond support bodies support unit 30 so that the elastic element can absorb and attenuate shocks that are applied to the heel of the user when the user walks, thereby relieving the feet of the user from fatigue and allowing the user to walk in comfort. - Here, a
coil spring 41 is used as theelastic member 40 of the present invention, in which the lower and upper ends of thecoil spring 41 are combined with the first and second holding 35 and 37, respectively.bodies - In the above state, the
coil spring 41 is firmly held by the inner circumferential surfaces of the 35 d and 37 d of the respective holdingrims 35 and 37, and by thebodies 35 e and 37 e, and by theseat depressions 35 c and 37 c.fitting protrusions - Accordingly, when a user wearing the shoes having the coil springs 41 walks, exercises or is working, the coil springs perform their functions as follows.
- When a load formed by the weight of the user is applied to the ground surface through the shoes, a reactive shock is applied upward from the ground surface to the user. In the above state, the coil springs 41 elastically absorb and attenuate the shock.
- Accordingly, even when the user continuously walks, exercises or is working for a lengthy period of time, the coil springs can efficiently absorb and attenuate the shocks that are applied to the feet and body of the user, thereby relieving the feet and the body from fatigue and realizing the healthful function of the shoes and allowing the user to feel comfortable.
- Further, it is preferred that the coil springs 41 have a square cross-section.
- When the coil springs 41 are compressed by the load of the user, the coil springs that are arranged in the shoe may strike each other.
- Here, when coil springs 41 having a circular cross-section are used, the outer circumferential surfaces of the coil springs 41 may come into contact with each other, so that their striking each other may cause them to easily break.
- However, when the coil springs 41 having a square cross-section are used in the shoe and are compressed by the load, the
springs 41 come into contact with each other along the flat surfaces thereof, thereby minimizing the breakage of the springs even should the springs strike each other. - As shown in
FIGS. 1 through 6 , in the shock absorbing shoe with improved assembly and operational performance according to the present invention, the supportingmember 50 is configured as follows. - The supporting member is connected to the first and
30A and 30B of thesecond support bodies support unit 30 at a location between the two support bodies so that, when theelastic member 40 repeats elastic deformation when the user walks, the supporting member can prevent removal or separation of theelastic member 40. - In other words, the supporting
member 50 of the present invention is coupled to the first and second holding 35 and 37 that are combined with the first andbodies 30A and 30B, respectively.second support bodies - In the above state, the lower end of the supporting
member 50 is combined with the first holdingbody 35. - The upper end of the supporting
member 50 is combined with thesecond holding body 37 so that the supporting member can repeatedly move upward and downward when the user walks. - Described in detail, the supporting
member 50 includes ahead 51 that is formed in the upper end of the supporting member, ashank 53 that extends downward from the lower surface of thehead 51, and a lockingpart 55 that is formed in the lower end of theshank 53. - Here, the locking
part 55 is connected to the first holdingbody 35 by a holding means FM. - The
head 51 is seated in thecorresponding guide part 37 a of thesecond holding body 37 so that, when theelastic member 40 performs an elastic action, thehead 51 can prevent the removal or separation of the supportingmember 50 from thesecond holding body 37. In the above state, thehead 51 cooperates with a stopping means SP. - The construction for combining the supporting
member 50 and the first holdingbody 35 with each other using the holding means FM will be described hereinbelow with reference toFIGS. 2 through 6 . - A through
hole 35 b is formed through the center of the first holdingbody 35. - Further,
seat grooves 35 a are symmetrically formed in the lower surface of the first holding body on opposite sides of the throughhole 35 b. - Further, an
insert hole 55 a is formed in the lockingpart 55 that is provided in the lower end of the supportingmember 50. - Further, a locking
pin 60 is provided. To combine the supporting member and the first holding body with each other, the lockingpin 60 is inserted into theinsert hole 55 a after the supportingmember 50 is inserted into the throughhole 35 b. Thereafter, the lockingpin 60 is seated in theseat grooves 35 a. - When the lower end of the supporting
member 50 is combined with the first holdingbody 35, the holding means FM performs the following function. - The holding means FM can more easily and efficiently combine the supporting
member 50 and the first holdingbody 35 with each other. - Further, the assembled holding means can prevent the supporting
member 50 and the first holdingbody 35 from being released from each other by vibrations or shocks that may be applied both to the supporting member and to the first holding body when a user wearing the shoes walks. - To realize the above-mentioned function of the holding means FM, the locking
pin 60 of the holding means FM is seated in theseat grooves 35 a of the first holdingbody 35 after the lockingpin 60 has been inserted into theinsert hole 55 a of the supportingmember 50 so that the lockingpin 60 can hold and prevent rotation of the supportingmember 50 irrespective of vibrations or shocks that are applied to the supporting member. -
FIG. 7 illustrates a modification of the holding means FM. - In the modification, an
internal thread 35 f is formed on the inner circumferential surface of the throughhole 35 b of the first holdingbody 35, and an external thread 55 b is formed around the outer circumferential surface of the lockingpart 55 of the supportingmember 50 so that the supportingmember 50 can be tightened to the holdingbody 35 by rotating the supporting member relative to the holding body. - In the above state, it is preferred that the upper surface of the
head 51 of the supportingmember 50 be recessed to form a straight recess, a cross recess or a combined recess so that the supporting member and the first holding body can be easily assembled and disassembled using a tool. - Hereinbelow, the structure for combining the supporting
member 50 with thesecond holding body 37 using the stopping means SP will be described with reference toFIGS. 2 through 7 . - A
stopper 37 b is formed in the lower part of thecorresponding guide part 37 a of thesecond holding body 37. - That is, the
stopper 37 b is formed on the lower surface of the protrudingspacer part 36 of thesecond holding body 37. - Further, a
shank passing hole 37 f is formed through the center of the protrudingspacer part 36. Here, the diameter of theshank passing hole 37 f is less than inner diameter of thecorresponding guide part 37 a but is greater than that of theshank 53. - The
stopper 37 b is formed in the shape of a step at an area around theshank passing hole 37 f. - Accordingly, when the
shank 53 of the supportingmember 50 passes through theshank passing hole 37 f, theshank 53 can move through theshank passing hole 37 f when theelastic member 40 is compressed and reverts back to its original shape after having been compressed. - Further, when the
elastic member 40 fully extends and completely reverts back to its original shape, thehead 51 that is connected to the upper end of theshank 53 of the supportingmember 50 can be caught and held by thestopper 37 b. - Therefore, it is possible to prevent removal or separation of the supporting
member 50 from thesecond holding body 37. - Although the shock absorbing shoe with improved assembly and operational performance of the present invention has been disclosed based on specific shapes and directions in the above description, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Claims (5)
1. A shock absorbing shoe with improved assembly and operational performance, comprising:
an outsole;
an upper sole arranged on the outsole and having a guide portion;
a support unit including:
a first support body connected to the outsole; and
a second support body connected to the upper sole and having a guide part corresponding to the guide portion;
an elastic member arranged between the first and second support bodies of the support unit; and
a supporting member connected to the first and second support bodies of the support unit, the supporting member being movable upward and downward along the guide portion and the guide part of the second support body.
2. The shock absorbing shoe with improved assembly and operational performance as set forth in claim 1 , wherein
the first and second support bodies of the support unit include first and second holding bodies that are connected to the elastic member, and
the first holding body and the supporting member are provided with a holding means.
3. The shock absorbing shoe with improved assembly and operational performance as set forth in claim 2 , wherein the holding means comprises:
a seat groove formed in a lower surface of the first holding body;
an insert hole formed in a lower end of the supporting member so as to correspond to the seat groove; and
a locking pin inserted through the insert hole and seated in the seat groove.
4. The shock absorbing shoe with improved assembly and operational performance as set forth in claim 2 , wherein
the second holding body is provided with a corresponding guide part that corresponds to the guide part of the second support body, and
the corresponding guide part of the second holding body and the supporting member are provided with a stopping means.
5. The shock absorbing shoe with improved assembly and operational performance as set forth in claim 3 , wherein
the second holding body is provided with a corresponding guide part that corresponds to the guide part of the second support body, and
the corresponding guide part of the second holding body and the supporting member are provided with a stopping means.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2010-0049597 | 2010-05-27 | ||
| KR1020100049597A KR101034656B1 (en) | 2010-05-27 | 2010-05-27 | Shock-absorbing shoes with improved assembly and operating performance |
| PCT/KR2011/003729 WO2011149218A2 (en) | 2010-05-27 | 2011-05-20 | Shock absorbing shoes with improved assembly and operational performance |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/KR2011/003729 A-371-Of-International WO2011149218A2 (en) | 2010-05-27 | 2011-05-20 | Shock absorbing shoes with improved assembly and operational performance |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/222,041 Continuation-In-Part US9538809B2 (en) | 2010-05-27 | 2016-07-28 | Shock absorbing shoes with improved assembly and operational performance |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130055593A1 true US20130055593A1 (en) | 2013-03-07 |
Family
ID=44366039
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/696,320 Abandoned US20130055593A1 (en) | 2010-05-27 | 2011-05-20 | Shock absorbing shoes with improved assembly and operational performance |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US20130055593A1 (en) |
| EP (1) | EP2578101B1 (en) |
| JP (1) | JP5481601B2 (en) |
| KR (1) | KR101034656B1 (en) |
| CN (1) | CN102939024B (en) |
| CA (1) | CA2798780C (en) |
| PH (1) | PH12012502166A1 (en) |
| RU (1) | RU2520007C1 (en) |
| WO (1) | WO2011149218A2 (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150013191A1 (en) * | 2013-07-15 | 2015-01-15 | B&B Technologies L.P. | Quick Change Shock Mitigation Outsole Insert with Debris Shield |
| US20150047224A1 (en) * | 2013-08-16 | 2015-02-19 | Jing Zhao | Shoe having carbon fiber composite spring soles and upper support |
| US20150107132A1 (en) * | 2013-04-18 | 2015-04-23 | Mizuno Corporation | Sole Structure for a Shoe |
| US20160344309A1 (en) * | 2015-05-18 | 2016-11-24 | Mizuki Otagiri | Electricity-generating element unit, electric generator, footwear, and flooring material |
| US20170280824A1 (en) * | 2013-07-15 | 2017-10-05 | B&B Technologies L.P. | Quick change shock mitigation outsole insert with energy harvester |
| US20220087849A1 (en) * | 2019-01-23 | 2022-03-24 | The General Hospital Corporation | Systems and methods for preventing and managing sores, ulcers, and wounds |
| US11528962B2 (en) * | 2018-09-13 | 2022-12-20 | Gi Yeon KIM | Shock-absorbing shoe using spring |
| USD975985S1 (en) * | 2021-10-01 | 2023-01-24 | Nike, Inc. | Shoe |
| AU2023222873B2 (en) * | 2022-12-26 | 2025-05-08 | Shoealls Co., Ltd. | Health-promoting functional shoe having function of stimulating solar plexus point |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101217094B1 (en) * | 2011-06-14 | 2012-12-31 | 이철장 | Shoes for shock absorbing |
| KR101246053B1 (en) | 2011-09-01 | 2013-03-21 | 김준희 | Shock absorption for elasticity absence and elasticity absence a built-in shoe sole |
| US9826797B2 (en) * | 2015-02-04 | 2017-11-28 | Nike, Inc. | Support structures for an article of footwear and methods of manufacturing support structures |
| CN108348038B (en) * | 2015-11-03 | 2020-11-10 | 耐克创新有限合伙公司 | Article of footwear including bladder element with cushioning component and method of making the same |
| KR102421694B1 (en) | 2022-02-16 | 2022-07-15 | 김기연 | Shock-absorbing shoe using spring |
| KR102491791B1 (en) | 2022-02-18 | 2023-01-26 | 구남서 | Sole system of leaf spring type with selective function for elasticity |
| KR20240078807A (en) | 2022-11-28 | 2024-06-04 | 구남서 | Sole system of leaf spring type with selective function for elasticity |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3764154A (en) * | 1970-06-15 | 1973-10-09 | G Witting | Safety ski binding |
| JPH08107802A (en) * | 1994-09-29 | 1996-04-30 | Kolon Internatl Corp | Shoe sole cushion device |
| US5832629A (en) * | 1996-12-03 | 1998-11-10 | Wen; Jack | Shock-absorbing device for footwear |
| WO2004068987A1 (en) * | 2003-02-07 | 2004-08-19 | Cheol Su Park | Shock absorbing shoe |
| US20070209233A1 (en) * | 2004-08-04 | 2007-09-13 | Jong-sik Kim | Footwear |
Family Cites Families (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1261488A (en) * | 1917-11-17 | 1918-04-02 | Frank Cerar | Resilient shoe-heel. |
| GB892940A (en) * | 1959-12-08 | 1962-04-04 | Andre Verger | Improvements relating to shoe heels |
| SU1169599A1 (en) * | 1981-07-02 | 1985-07-30 | Pyatnitskij Igor | Shoe for walking on hard surface |
| KR880001084Y1 (en) * | 1985-09-24 | 1988-03-25 | 황세연 | Resilient heels |
| US5502901A (en) * | 1991-05-07 | 1996-04-02 | Brown; Jeffrey W. | Shock reducing footwear and method of manufacture |
| US5435079A (en) | 1993-12-20 | 1995-07-25 | Gallegos; Alvaro Z. | Spring athletic shoe |
| GB2296176B (en) * | 1994-12-22 | 1998-06-24 | Cornwell Components Manufactur | Heel top pieces |
| CN2262819Y (en) * | 1996-11-18 | 1997-09-24 | 温绍良 | Spring damping device for shoe body |
| IT238176Y1 (en) * | 1997-02-27 | 2000-10-16 | Sancisi Giancarlo | CUSHIONING SOLE FOR FOOTWEAR |
| CN2299491Y (en) * | 1997-10-16 | 1998-12-09 | 陈汉波 | air-conditioned shoes |
| FR2802780B1 (en) * | 1999-12-23 | 2002-06-07 | Emile Barbier Ets | SHOE HEEL |
| KR200208464Y1 (en) * | 2000-07-10 | 2001-01-15 | 이상훈 | Cushion shoes |
| US7082698B2 (en) * | 2003-01-08 | 2006-08-01 | Nike, Inc. | Article of footwear having a sole structure with adjustable characteristics |
| DE20312215U1 (en) * | 2003-08-04 | 2003-12-18 | Gellrich, Martin, Dr. | Spring sole and spring heel for long distance running shoe has sets of coil springs connecting outer sole to inner sole and has movement limiters inside coils of springs |
| CN2778029Y (en) * | 2005-04-11 | 2006-05-10 | 李超建 | Ventilating, dehumidifying and thermal-insulating shoes with vibration damping and decompression function |
| KR200398724Y1 (en) | 2005-05-20 | 2005-10-17 | 송종규 | Sock absorber Sole of the Rolling Shoes |
| RU70443U1 (en) * | 2006-04-06 | 2008-01-27 | Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Российский заочный институт текстильной и легкой промышленности (ГОУ ВПО "РосЗИТЛП") | HEEL WITH NONLINEAR SHOCK ABSORBER |
| WO2009064286A1 (en) * | 2007-11-13 | 2009-05-22 | Insightful Products | Multiple leaf spring assembly for foot support, and footwear and brace using same |
| ES1069112Y (en) * | 2008-11-10 | 2009-05-01 | Roldan Pascual Soria | CUSHIONED FOOTWEAR HEEL COVER |
| CN201308149Y (en) * | 2008-12-11 | 2009-09-16 | 陈启贤 | Dry and comfortable ventilating shoe |
-
2010
- 2010-05-27 KR KR1020100049597A patent/KR101034656B1/en active Active
-
2011
- 2011-05-20 CN CN2011800240705A patent/CN102939024B/en not_active Expired - Fee Related
- 2011-05-20 EP EP11786851.3A patent/EP2578101B1/en active Active
- 2011-05-20 US US13/696,320 patent/US20130055593A1/en not_active Abandoned
- 2011-05-20 RU RU2012155261/12A patent/RU2520007C1/en not_active IP Right Cessation
- 2011-05-20 WO PCT/KR2011/003729 patent/WO2011149218A2/en not_active Ceased
- 2011-05-20 PH PH1/2012/502166A patent/PH12012502166A1/en unknown
- 2011-05-20 CA CA2798780A patent/CA2798780C/en not_active Expired - Fee Related
- 2011-05-20 JP JP2013512527A patent/JP5481601B2/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3764154A (en) * | 1970-06-15 | 1973-10-09 | G Witting | Safety ski binding |
| JPH08107802A (en) * | 1994-09-29 | 1996-04-30 | Kolon Internatl Corp | Shoe sole cushion device |
| US5832629A (en) * | 1996-12-03 | 1998-11-10 | Wen; Jack | Shock-absorbing device for footwear |
| WO2004068987A1 (en) * | 2003-02-07 | 2004-08-19 | Cheol Su Park | Shock absorbing shoe |
| US20070209233A1 (en) * | 2004-08-04 | 2007-09-13 | Jong-sik Kim | Footwear |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150107132A1 (en) * | 2013-04-18 | 2015-04-23 | Mizuno Corporation | Sole Structure for a Shoe |
| US20150013191A1 (en) * | 2013-07-15 | 2015-01-15 | B&B Technologies L.P. | Quick Change Shock Mitigation Outsole Insert with Debris Shield |
| US20170280824A1 (en) * | 2013-07-15 | 2017-10-05 | B&B Technologies L.P. | Quick change shock mitigation outsole insert with energy harvester |
| US10959487B2 (en) * | 2013-07-15 | 2021-03-30 | B&B Technologies L.P. | Quick change shock mitigation outsole insert with energy harvester |
| US20150047224A1 (en) * | 2013-08-16 | 2015-02-19 | Jing Zhao | Shoe having carbon fiber composite spring soles and upper support |
| US20160344309A1 (en) * | 2015-05-18 | 2016-11-24 | Mizuki Otagiri | Electricity-generating element unit, electric generator, footwear, and flooring material |
| US9893652B2 (en) * | 2015-05-18 | 2018-02-13 | Ricoh Company, Ltd. | Electricity-generating element unit, electric generator, footwear, and flooring material |
| US11528962B2 (en) * | 2018-09-13 | 2022-12-20 | Gi Yeon KIM | Shock-absorbing shoe using spring |
| US20220087849A1 (en) * | 2019-01-23 | 2022-03-24 | The General Hospital Corporation | Systems and methods for preventing and managing sores, ulcers, and wounds |
| USD975985S1 (en) * | 2021-10-01 | 2023-01-24 | Nike, Inc. | Shoe |
| AU2023222873B2 (en) * | 2022-12-26 | 2025-05-08 | Shoealls Co., Ltd. | Health-promoting functional shoe having function of stimulating solar plexus point |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2578101B1 (en) | 2019-09-18 |
| EP2578101A4 (en) | 2016-03-16 |
| EP2578101A2 (en) | 2013-04-10 |
| CA2798780C (en) | 2016-08-09 |
| WO2011149218A3 (en) | 2012-05-03 |
| JP5481601B2 (en) | 2014-04-23 |
| CN102939024B (en) | 2013-11-13 |
| CN102939024A (en) | 2013-02-20 |
| KR101034656B1 (en) | 2011-05-16 |
| RU2520007C1 (en) | 2014-06-20 |
| JP2013526973A (en) | 2013-06-27 |
| PH12012502166A1 (en) | 2022-10-05 |
| CA2798780A1 (en) | 2011-12-01 |
| WO2011149218A2 (en) | 2011-12-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2798780C (en) | Shock absorbing shoes with improved assembly and operational performance | |
| US9538809B2 (en) | Shock absorbing shoes with improved assembly and operational performance | |
| KR101178266B1 (en) | Customized shoe sole having multi-level cushion column | |
| JP5008995B2 (en) | Walking correction sole | |
| US20120137541A1 (en) | Shock absorbing unit, sole and shoe having the same | |
| KR101006923B1 (en) | Shoe midsole | |
| US8732984B2 (en) | Shock absorbing shoes with triangle shock absorbing space | |
| US20030051373A1 (en) | Protective cage for footwear bladder | |
| KR101166466B1 (en) | Durability shoes for absorbing sock | |
| KR101251572B1 (en) | Shock absorbing shoes with a triangle shock absorbing space | |
| KR101166572B1 (en) | Shoe sole | |
| KR101020012B1 (en) | Functional shoes | |
| KR101217094B1 (en) | Shoes for shock absorbing | |
| KR20130025050A (en) | Sole | |
| KR20110030854A (en) | Shock-absorbing shoes with improved structure | |
| KR20120063413A (en) | Impact absorbing member, sole and shoe having the same | |
| KR100978122B1 (en) | Cushion shoes | |
| KR20150143981A (en) | Article of footwear | |
| KR20120063417A (en) | Impact absorbing member, sole and shoe having the same | |
| KR101246053B1 (en) | Shock absorption for elasticity absence and elasticity absence a built-in shoe sole | |
| KR20130031746A (en) | Shoes having shock absorb function | |
| JPH0420606B2 (en) | ||
| KR101464643B1 (en) | Shock absorbing shoes with a triangle shock absorbing space | |
| KR20110065107A (en) | Shock-absorbing shoes with spring support for improved assembly | |
| KR102024770B1 (en) | Bottom of shoe having trampoline structure and shoe having the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |