US20130011422A1 - Tumor Antigens for the Prevention and/or Treatment of Cancer - Google Patents
Tumor Antigens for the Prevention and/or Treatment of Cancer Download PDFInfo
- Publication number
- US20130011422A1 US20130011422A1 US13/485,668 US201213485668A US2013011422A1 US 20130011422 A1 US20130011422 A1 US 20130011422A1 US 201213485668 A US201213485668 A US 201213485668A US 2013011422 A1 US2013011422 A1 US 2013011422A1
- Authority
- US
- United States
- Prior art keywords
- clp
- vector
- alvac
- expression vector
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 89
- 239000000427 antigen Substances 0.000 title claims abstract description 74
- 108091007433 antigens Proteins 0.000 title claims abstract description 72
- 102000036639 antigens Human genes 0.000 title claims abstract description 72
- 201000011510 cancer Diseases 0.000 title claims abstract description 32
- 238000011282 treatment Methods 0.000 title abstract description 9
- 230000002265 prevention Effects 0.000 title 1
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 291
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 70
- 239000013598 vector Substances 0.000 claims abstract description 54
- 230000014509 gene expression Effects 0.000 claims abstract description 37
- 239000013604 expression vector Substances 0.000 claims description 61
- 229940023860 canarypox virus HIV vaccine Drugs 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 40
- 239000013603 viral vector Substances 0.000 claims description 37
- 239000000203 mixture Substances 0.000 claims description 32
- 239000012634 fragment Substances 0.000 claims description 27
- 239000013612 plasmid Substances 0.000 claims description 26
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 23
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 20
- 101150040947 BCY1 gene Proteins 0.000 claims description 19
- 230000003053 immunization Effects 0.000 claims description 19
- 239000003795 chemical substances by application Substances 0.000 claims description 17
- 206010046865 Vaccinia virus infection Diseases 0.000 claims description 12
- 208000007089 vaccinia Diseases 0.000 claims description 12
- 241000701161 unidentified adenovirus Species 0.000 claims description 11
- 241001430294 unidentified retrovirus Species 0.000 claims description 11
- 241000702421 Dependoparvovirus Species 0.000 claims description 10
- 208000000666 Fowlpox Diseases 0.000 claims description 10
- 241001529453 unidentified herpesvirus Species 0.000 claims description 9
- 230000033115 angiogenesis Effects 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 3
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 195
- 108090000623 proteins and genes Proteins 0.000 abstract description 86
- 229920001184 polypeptide Polymers 0.000 abstract description 84
- 102000039446 nucleic acids Human genes 0.000 abstract description 50
- 108020004707 nucleic acids Proteins 0.000 abstract description 50
- 238000003780 insertion Methods 0.000 abstract description 4
- 230000037431 insertion Effects 0.000 abstract description 4
- 230000001024 immunotherapeutic effect Effects 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 120
- 102100026396 ADP/ATP translocase 2 Human genes 0.000 description 59
- 101000884399 Homo sapiens Arylamine N-acetyltransferase 2 Proteins 0.000 description 59
- 210000001744 T-lymphocyte Anatomy 0.000 description 48
- 241000282414 Homo sapiens Species 0.000 description 44
- 235000001014 amino acid Nutrition 0.000 description 44
- 230000002163 immunogen Effects 0.000 description 40
- 150000001413 amino acids Chemical class 0.000 description 39
- 235000018102 proteins Nutrition 0.000 description 39
- 102000004169 proteins and genes Human genes 0.000 description 39
- 230000000694 effects Effects 0.000 description 34
- 102100037850 Interferon gamma Human genes 0.000 description 29
- 108010074328 Interferon-gamma Proteins 0.000 description 29
- 230000028993 immune response Effects 0.000 description 25
- 241000699670 Mus sp. Species 0.000 description 24
- 238000003114 enzyme-linked immunosorbent spot assay Methods 0.000 description 23
- 108010088729 HLA-A*02:01 antigen Proteins 0.000 description 20
- 108020004414 DNA Proteins 0.000 description 19
- 230000000638 stimulation Effects 0.000 description 19
- 238000006467 substitution reaction Methods 0.000 description 19
- 230000027455 binding Effects 0.000 description 18
- 239000003153 chemical reaction reagent Substances 0.000 description 18
- 238000002474 experimental method Methods 0.000 description 18
- 208000026310 Breast neoplasm Diseases 0.000 description 16
- 239000002246 antineoplastic agent Substances 0.000 description 16
- 239000002299 complementary DNA Substances 0.000 description 16
- 206010006187 Breast cancer Diseases 0.000 description 15
- 239000002671 adjuvant Substances 0.000 description 15
- 238000002649 immunization Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 15
- 108091026890 Coding region Proteins 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 14
- -1 for example Proteins 0.000 description 14
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 14
- 230000009257 reactivity Effects 0.000 description 14
- 210000004443 dendritic cell Anatomy 0.000 description 12
- 239000002773 nucleotide Substances 0.000 description 12
- 125000003729 nucleotide group Chemical group 0.000 description 12
- 238000003757 reverse transcription PCR Methods 0.000 description 12
- 238000011510 Elispot assay Methods 0.000 description 11
- 239000003623 enhancer Substances 0.000 description 11
- 102100032937 CD40 ligand Human genes 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 238000009396 hybridization Methods 0.000 description 10
- 230000001900 immune effect Effects 0.000 description 10
- 239000008194 pharmaceutical composition Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 229960005486 vaccine Drugs 0.000 description 10
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 9
- 108010029697 CD40 Ligand Proteins 0.000 description 9
- 241001529936 Murinae Species 0.000 description 9
- 241000700605 Viruses Species 0.000 description 9
- 108010084455 Zeocin Proteins 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 125000000539 amino acid group Chemical group 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 238000012217 deletion Methods 0.000 description 9
- 230000037430 deletion Effects 0.000 description 9
- 239000000284 extract Substances 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000004927 fusion Effects 0.000 description 9
- 201000001441 melanoma Diseases 0.000 description 9
- CWCMIVBLVUHDHK-ZSNHEYEWSA-N phleomycin D1 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC[C@@H](N=1)C=1SC=C(N=1)C(=O)NCCCCNC(N)=N)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C CWCMIVBLVUHDHK-ZSNHEYEWSA-N 0.000 description 9
- 230000001105 regulatory effect Effects 0.000 description 9
- 238000001890 transfection Methods 0.000 description 9
- 210000003719 b-lymphocyte Anatomy 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 210000004698 lymphocyte Anatomy 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 230000001225 therapeutic effect Effects 0.000 description 8
- 238000002255 vaccination Methods 0.000 description 8
- 102000004127 Cytokines Human genes 0.000 description 7
- 108090000695 Cytokines Proteins 0.000 description 7
- 241000725303 Human immunodeficiency virus Species 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 239000000839 emulsion Substances 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 230000002147 killing effect Effects 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 230000002103 transcriptional effect Effects 0.000 description 7
- 102100021571 B-cell CLL/lymphoma 6 member B protein Human genes 0.000 description 6
- 238000011740 C57BL/6 mouse Methods 0.000 description 6
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 6
- 241000283973 Oryctolagus cuniculus Species 0.000 description 6
- 102000035195 Peptidases Human genes 0.000 description 6
- 108091005804 Peptidases Proteins 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- 239000012636 effector Substances 0.000 description 6
- 230000005847 immunogenicity Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 150000002632 lipids Chemical class 0.000 description 6
- 239000002502 liposome Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 102000040430 polynucleotide Human genes 0.000 description 6
- 108091033319 polynucleotide Proteins 0.000 description 6
- 239000002157 polynucleotide Substances 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 102000019034 Chemokines Human genes 0.000 description 5
- 108010012236 Chemokines Proteins 0.000 description 5
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 5
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 5
- 101000971180 Homo sapiens B-cell CLL/lymphoma 6 member B protein Proteins 0.000 description 5
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 5
- 108060001084 Luciferase Proteins 0.000 description 5
- 239000005089 Luciferase Substances 0.000 description 5
- 108010042215 OX40 Ligand Proteins 0.000 description 5
- 102000004473 OX40 Ligand Human genes 0.000 description 5
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 230000000259 anti-tumor effect Effects 0.000 description 5
- 150000001720 carbohydrates Chemical class 0.000 description 5
- 230000009089 cytolysis Effects 0.000 description 5
- 229940127089 cytotoxic agent Drugs 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 239000013613 expression plasmid Substances 0.000 description 5
- 229960002949 fluorouracil Drugs 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 230000001177 retroviral effect Effects 0.000 description 5
- 235000004400 serine Nutrition 0.000 description 5
- 238000010561 standard procedure Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 210000004881 tumor cell Anatomy 0.000 description 5
- 230000004614 tumor growth Effects 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 4
- 102100032366 C-C motif chemokine 7 Human genes 0.000 description 4
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 4
- 238000011238 DNA vaccination Methods 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 102000001301 EGF receptor Human genes 0.000 description 4
- 108060006698 EGF receptor Proteins 0.000 description 4
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 4
- 108010065805 Interleukin-12 Proteins 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- 241000699660 Mus musculus Species 0.000 description 4
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 4
- 239000004365 Protease Substances 0.000 description 4
- 241000714474 Rous sarcoma virus Species 0.000 description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 4
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 4
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 4
- 108091023040 Transcription factor Proteins 0.000 description 4
- 102000040945 Transcription factor Human genes 0.000 description 4
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 230000000973 chemotherapeutic effect Effects 0.000 description 4
- 229960004397 cyclophosphamide Drugs 0.000 description 4
- 235000018417 cysteine Nutrition 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 229940000406 drug candidate Drugs 0.000 description 4
- 210000003162 effector t lymphocyte Anatomy 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 238000007901 in situ hybridization Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 102000006495 integrins Human genes 0.000 description 4
- 108010044426 integrins Proteins 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000002493 microarray Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 150000003904 phospholipids Chemical class 0.000 description 4
- 239000013641 positive control Substances 0.000 description 4
- 230000037452 priming Effects 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 239000001509 sodium citrate Substances 0.000 description 4
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 4
- 210000004989 spleen cell Anatomy 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 238000011830 transgenic mouse model Methods 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- 102100025248 C-X-C motif chemokine 10 Human genes 0.000 description 3
- 101710098119 Chaperonin GroEL 2 Proteins 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 108091029865 Exogenous DNA Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 3
- 108010050904 Interferons Proteins 0.000 description 3
- 108010002350 Interleukin-2 Proteins 0.000 description 3
- 102000000588 Interleukin-2 Human genes 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 3
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 3
- 108050008953 Melanoma-associated antigen Proteins 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 230000004988 N-glycosylation Effects 0.000 description 3
- 108010074687 Signaling Lymphocytic Activation Molecule Family Member 1 Proteins 0.000 description 3
- 102100029215 Signaling lymphocytic activation molecule Human genes 0.000 description 3
- 230000005867 T cell response Effects 0.000 description 3
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 3
- 108020004440 Thymidine kinase Proteins 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 102000003425 Tyrosinase Human genes 0.000 description 3
- 108060008724 Tyrosinase Proteins 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000000118 anti-neoplastic effect Effects 0.000 description 3
- 230000005975 antitumor immune response Effects 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- 230000003013 cytotoxicity Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 238000010195 expression analysis Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 239000003701 inert diluent Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 229960000485 methotrexate Drugs 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229950003608 prinomastat Drugs 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 108700012359 toxins Proteins 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 210000003501 vero cell Anatomy 0.000 description 3
- 210000002845 virion Anatomy 0.000 description 3
- GTXSRFUZSLTDFX-HRCADAONSA-N (2s)-n-[(2s)-3,3-dimethyl-1-(methylamino)-1-oxobutan-2-yl]-4-methyl-2-[[(2s)-2-sulfanyl-4-(3,4,4-trimethyl-2,5-dioxoimidazolidin-1-yl)butanoyl]amino]pentanamide Chemical compound CNC(=O)[C@H](C(C)(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](S)CCN1C(=O)N(C)C(C)(C)C1=O GTXSRFUZSLTDFX-HRCADAONSA-N 0.000 description 2
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 2
- BJHCYTJNPVGSBZ-YXSASFKJSA-N 1-[4-[6-amino-5-[(Z)-methoxyiminomethyl]pyrimidin-4-yl]oxy-2-chlorophenyl]-3-ethylurea Chemical compound CCNC(=O)Nc1ccc(Oc2ncnc(N)c2\C=N/OC)cc1Cl BJHCYTJNPVGSBZ-YXSASFKJSA-N 0.000 description 2
- HPZMWTNATZPBIH-UHFFFAOYSA-N 1-methyladenine Chemical compound CN1C=NC2=NC=NC2=C1N HPZMWTNATZPBIH-UHFFFAOYSA-N 0.000 description 2
- RFLVMTUMFYRZCB-UHFFFAOYSA-N 1-methylguanine Chemical compound O=C1N(C)C(N)=NC2=C1N=CN2 RFLVMTUMFYRZCB-UHFFFAOYSA-N 0.000 description 2
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 2
- YSAJFXWTVFGPAX-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetic acid Chemical compound OC(=O)COC1=CNC(=O)NC1=O YSAJFXWTVFGPAX-UHFFFAOYSA-N 0.000 description 2
- DLZKEQQWXODGGZ-KCJUWKMLSA-N 2-[[(2r)-2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]propanoyl]amino]acetic acid Chemical compound OC(=O)CNC(=O)[C@@H](C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 DLZKEQQWXODGGZ-KCJUWKMLSA-N 0.000 description 2
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- VPFUWHKTPYPNGT-UHFFFAOYSA-N 3-(3,4-dihydroxyphenyl)-1-(5-hydroxy-2,2-dimethylchromen-6-yl)propan-1-one Chemical compound OC1=C2C=CC(C)(C)OC2=CC=C1C(=O)CCC1=CC=C(O)C(O)=C1 VPFUWHKTPYPNGT-UHFFFAOYSA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 2
- 108010042708 Acetylmuramyl-Alanyl-Isoglutamine Proteins 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- XKJMBINCVNINCA-UHFFFAOYSA-N Alfalone Chemical compound CON(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XKJMBINCVNINCA-UHFFFAOYSA-N 0.000 description 2
- 108091093088 Amplicon Proteins 0.000 description 2
- 108010049777 Ankyrins Proteins 0.000 description 2
- 102000008102 Ankyrins Human genes 0.000 description 2
- 101150039990 B13R gene Proteins 0.000 description 2
- 101710155834 C-C motif chemokine 7 Proteins 0.000 description 2
- 101710098275 C-X-C motif chemokine 10 Proteins 0.000 description 2
- 108010084313 CD58 Antigens Proteins 0.000 description 2
- 102100025221 CD70 antigen Human genes 0.000 description 2
- 108091007914 CDKs Proteins 0.000 description 2
- 229940045513 CTLA4 antagonist Drugs 0.000 description 2
- 101100297347 Caenorhabditis elegans pgl-3 gene Proteins 0.000 description 2
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 2
- 108010055166 Chemokine CCL5 Proteins 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 2
- 102100036252 Cyclin-dependent kinase 4 Human genes 0.000 description 2
- 229940021995 DNA vaccine Drugs 0.000 description 2
- 102000050554 Eph Family Receptors Human genes 0.000 description 2
- 108091008815 Eph receptors Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 2
- 108010074032 HLA-A2 Antigen Proteins 0.000 description 2
- 102000025850 HLA-A2 Antigen Human genes 0.000 description 2
- 241000713858 Harvey murine sarcoma virus Species 0.000 description 2
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 2
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 2
- 108010022901 Heparin Lyase Proteins 0.000 description 2
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 2
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 2
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 description 2
- 101000797758 Homo sapiens C-C motif chemokine 7 Proteins 0.000 description 2
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 2
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 2
- 101000599940 Homo sapiens Interferon gamma Proteins 0.000 description 2
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 2
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 2
- 101000772560 Homo sapiens Zinc finger transcription factor Trps1 Proteins 0.000 description 2
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 2
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 2
- 102000006992 Interferon-alpha Human genes 0.000 description 2
- 108010047761 Interferon-alpha Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108090000978 Interleukin-4 Proteins 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 102100022430 Melanocyte protein PMEL Human genes 0.000 description 2
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 2
- 102000000440 Melanoma-associated antigen Human genes 0.000 description 2
- 241000713869 Moloney murine leukemia virus Species 0.000 description 2
- HYVABZIGRDEKCD-UHFFFAOYSA-N N(6)-dimethylallyladenine Chemical compound CC(C)=CCNC1=NC=NC2=C1N=CN2 HYVABZIGRDEKCD-UHFFFAOYSA-N 0.000 description 2
- 108700019961 Neoplasm Genes Proteins 0.000 description 2
- 102000048850 Neoplasm Genes Human genes 0.000 description 2
- 102100034640 PWWP domain-containing DNA repair factor 3A Human genes 0.000 description 2
- 108050007154 PWWP domain-containing DNA repair factor 3A Proteins 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 108010067372 Pancreatic elastase Proteins 0.000 description 2
- 108010067902 Peptide Library Proteins 0.000 description 2
- 102100035846 Pigment epithelium-derived factor Human genes 0.000 description 2
- 102000004211 Platelet factor 4 Human genes 0.000 description 2
- 108090000778 Platelet factor 4 Proteins 0.000 description 2
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 2
- 102100038358 Prostate-specific antigen Human genes 0.000 description 2
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 101150071286 SPI-2 gene Proteins 0.000 description 2
- 241000607142 Salmonella Species 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 101800001271 Surface protein Proteins 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- 102100031372 Thymidine phosphorylase Human genes 0.000 description 2
- 108700023160 Thymidine phosphorylases Proteins 0.000 description 2
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 2
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 241000700618 Vaccinia virus Species 0.000 description 2
- 102000016549 Vascular Endothelial Growth Factor Receptor-2 Human genes 0.000 description 2
- 102100030619 Zinc finger transcription factor Trps1 Human genes 0.000 description 2
- 238000001261 affinity purification Methods 0.000 description 2
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 2
- 230000001772 anti-angiogenic effect Effects 0.000 description 2
- 230000001093 anti-cancer Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000009566 cancer vaccine Methods 0.000 description 2
- 229940022399 cancer vaccine Drugs 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000006037 cell lysis Effects 0.000 description 2
- ZXFCRFYULUUSDW-OWXODZSWSA-N chembl2104970 Chemical compound C([C@H]1C2)C3=CC=CC(O)=C3C(=O)C1=C(O)[C@@]1(O)[C@@H]2CC(O)=C(C(=O)N)C1=O ZXFCRFYULUUSDW-OWXODZSWSA-N 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 210000000038 chest Anatomy 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000001246 colloidal dispersion Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000009261 endocrine therapy Methods 0.000 description 2
- 229940034984 endocrine therapy antineoplastic and immunomodulating agent Drugs 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical class OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 210000002443 helper t lymphocyte Anatomy 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 210000003000 inclusion body Anatomy 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 2
- BSOQXXWZTUDTEL-ZUYCGGNHSA-N muramyl dipeptide Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@@H](O)[C@@H]1NC(C)=O BSOQXXWZTUDTEL-ZUYCGGNHSA-N 0.000 description 2
- UPBAOYRENQEPJO-UHFFFAOYSA-N n-[5-[[5-[(3-amino-3-iminopropyl)carbamoyl]-1-methylpyrrol-3-yl]carbamoyl]-1-methylpyrrol-3-yl]-4-formamido-1-methylpyrrole-2-carboxamide Chemical compound CN1C=C(NC=O)C=C1C(=O)NC1=CN(C)C(C(=O)NC2=CN(C)C(C(=O)NCCC(N)=N)=C2)=C1 UPBAOYRENQEPJO-UHFFFAOYSA-N 0.000 description 2
- BSIZUMJRKYHEBR-QGZVFWFLSA-N n-hydroxy-2(r)-[[(4-methoxyphenyl)sulfonyl](3-picolyl)amino]-3-methylbutanamide hydrochloride Chemical compound C1=CC(OC)=CC=C1S(=O)(=O)N([C@H](C(C)C)C(=O)NO)CC1=CC=CN=C1 BSIZUMJRKYHEBR-QGZVFWFLSA-N 0.000 description 2
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 2
- 229940086322 navelbine Drugs 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 2
- 108090000102 pigment epithelium-derived factor Proteins 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- UVSMNLNDYGZFPF-UHFFFAOYSA-N pomalidomide Chemical compound O=C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O UVSMNLNDYGZFPF-UHFFFAOYSA-N 0.000 description 2
- 235000020004 porter Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 230000009465 prokaryotic expression Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 235000019833 protease Nutrition 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 238000007423 screening assay Methods 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 229960001603 tamoxifen Drugs 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 102000027257 transmembrane receptors Human genes 0.000 description 2
- 108091008578 transmembrane receptors Proteins 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- CILBMBUYJCWATM-PYGJLNRPSA-N vinorelbine ditartrate Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC CILBMBUYJCWATM-PYGJLNRPSA-N 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 description 1
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- SATCOUWSAZBIJO-UHFFFAOYSA-N 1-methyladenine Natural products N=C1N(C)C=NC2=C1NC=N2 SATCOUWSAZBIJO-UHFFFAOYSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- HLYBTPMYFWWNJN-UHFFFAOYSA-N 2-(2,4-dioxo-1h-pyrimidin-5-yl)-2-hydroxyacetic acid Chemical compound OC(=O)C(O)C1=CNC(=O)NC1=O HLYBTPMYFWWNJN-UHFFFAOYSA-N 0.000 description 1
- TZZNWMJZDWYJAZ-UHFFFAOYSA-N 2-(4-oxo-2-phenylchromen-8-yl)acetic acid Chemical compound OC(=O)CC1=CC=CC(C(C=2)=O)=C1OC=2C1=CC=CC=C1 TZZNWMJZDWYJAZ-UHFFFAOYSA-N 0.000 description 1
- SVBOROZXXYRWJL-UHFFFAOYSA-N 2-[(4-oxo-2-sulfanylidene-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=S)NC1=O SVBOROZXXYRWJL-UHFFFAOYSA-N 0.000 description 1
- XMSMHKMPBNTBOD-UHFFFAOYSA-N 2-dimethylamino-6-hydroxypurine Chemical compound N1C(N(C)C)=NC(=O)C2=C1N=CN2 XMSMHKMPBNTBOD-UHFFFAOYSA-N 0.000 description 1
- CQOQDQWUFQDJMK-SSTWWWIQSA-N 2-methoxy-17beta-estradiol Chemical compound C([C@@H]12)C[C@]3(C)[C@@H](O)CC[C@H]3[C@@H]1CCC1=C2C=C(OC)C(O)=C1 CQOQDQWUFQDJMK-SSTWWWIQSA-N 0.000 description 1
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 description 1
- KOLPWZCZXAMXKS-UHFFFAOYSA-N 3-methylcytosine Chemical compound CN1C(N)=CC=NC1=O KOLPWZCZXAMXKS-UHFFFAOYSA-N 0.000 description 1
- OWSRLHPWDZOHCR-UHFFFAOYSA-N 4,4-diaminobutanoic acid Chemical compound NC(N)CCC(O)=O OWSRLHPWDZOHCR-UHFFFAOYSA-N 0.000 description 1
- GJAKJCICANKRFD-UHFFFAOYSA-N 4-acetyl-4-amino-1,3-dihydropyrimidin-2-one Chemical compound CC(=O)C1(N)NC(=O)NC=C1 GJAKJCICANKRFD-UHFFFAOYSA-N 0.000 description 1
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 1
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- UACOJOVKHNAJPX-UHFFFAOYSA-N 5-(methoxyamino)-6-methyl-2-sulfanylidene-1H-pyrimidin-4-one Chemical compound CONC=1C(NC(NC=1C)=S)=O UACOJOVKHNAJPX-UHFFFAOYSA-N 0.000 description 1
- MQJSSLBGAQJNER-UHFFFAOYSA-N 5-(methylaminomethyl)-1h-pyrimidine-2,4-dione Chemical compound CNCC1=CNC(=O)NC1=O MQJSSLBGAQJNER-UHFFFAOYSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- KELXHQACBIUYSE-UHFFFAOYSA-N 5-methoxy-1h-pyrimidine-2,4-dione Chemical compound COC1=CNC(=O)NC1=O KELXHQACBIUYSE-UHFFFAOYSA-N 0.000 description 1
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- HSPHKCOAUOJLIO-UHFFFAOYSA-N 6-(aziridin-1-ylamino)-1h-pyrimidin-2-one Chemical compound N1C(=O)N=CC=C1NN1CC1 HSPHKCOAUOJLIO-UHFFFAOYSA-N 0.000 description 1
- GTSVFOOLVUMMCX-UHFFFAOYSA-N 6-(methylaminomethyl)-2,4-dioxo-1H-pyrimidine-5-carboxylic acid Chemical compound C(=O)(O)C=1C(NC(NC=1CNC)=O)=O GTSVFOOLVUMMCX-UHFFFAOYSA-N 0.000 description 1
- CKOMXBHMKXXTNW-UHFFFAOYSA-N 6-methyladenine Chemical compound CNC1=NC=NC2=C1N=CN2 CKOMXBHMKXXTNW-UHFFFAOYSA-N 0.000 description 1
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 description 1
- 102100026802 72 kDa type IV collagenase Human genes 0.000 description 1
- 101710151806 72 kDa type IV collagenase Proteins 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 101150095963 AAC2 gene Proteins 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- WQVFQXXBNHHPLX-ZKWXMUAHSA-N Ala-Ala-His Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](Cc1cnc[nH]1)C(O)=O WQVFQXXBNHHPLX-ZKWXMUAHSA-N 0.000 description 1
- NBTGEURICRTMGL-WHFBIAKZSA-N Ala-Gly-Ser Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O NBTGEURICRTMGL-WHFBIAKZSA-N 0.000 description 1
- YYAVDNKUWLAFCV-ACZMJKKPSA-N Ala-Ser-Gln Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(O)=O YYAVDNKUWLAFCV-ACZMJKKPSA-N 0.000 description 1
- 108010011170 Ala-Trp-Arg-His-Pro-Gln-Phe-Gly-Gly Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102100037982 Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 102000004400 Aminopeptidases Human genes 0.000 description 1
- 108090000915 Aminopeptidases Proteins 0.000 description 1
- 102100034608 Angiopoietin-2 Human genes 0.000 description 1
- 108010048036 Angiopoietin-2 Proteins 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 108090000644 Angiozyme Proteins 0.000 description 1
- 102100034280 Ankyrin repeat domain-containing protein 26 Human genes 0.000 description 1
- 102100023003 Ankyrin repeat domain-containing protein 30A Human genes 0.000 description 1
- BHSYMWWMVRPCPA-CYDGBPFRSA-N Arg-Arg-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CCCN=C(N)N BHSYMWWMVRPCPA-CYDGBPFRSA-N 0.000 description 1
- PTNFNTOBUDWHNZ-GUBZILKMSA-N Asn-Arg-Met Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(O)=O PTNFNTOBUDWHNZ-GUBZILKMSA-N 0.000 description 1
- LJUOLNXOWSWGKF-ACZMJKKPSA-N Asn-Asn-Glu Chemical compound C(CC(=O)O)[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)N)N LJUOLNXOWSWGKF-ACZMJKKPSA-N 0.000 description 1
- KHCNTVRVAYCPQE-CIUDSAMLSA-N Asn-Lys-Asn Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O KHCNTVRVAYCPQE-CIUDSAMLSA-N 0.000 description 1
- FANQWNCPNFEPGZ-WHFBIAKZSA-N Asp-Asp-Gly Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O FANQWNCPNFEPGZ-WHFBIAKZSA-N 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 241001213911 Avian retroviruses Species 0.000 description 1
- 101710201005 B-cell CLL/lymphoma 6 member B protein Proteins 0.000 description 1
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 1
- 108091067183 BAGE family Proteins 0.000 description 1
- 102000039506 BAGE family Human genes 0.000 description 1
- 108700020463 BRCA1 Proteins 0.000 description 1
- 102000036365 BRCA1 Human genes 0.000 description 1
- 108010001572 Basic-Leucine Zipper Transcription Factors Proteins 0.000 description 1
- 102000000806 Basic-Leucine Zipper Transcription Factors Human genes 0.000 description 1
- 108060000903 Beta-catenin Proteins 0.000 description 1
- 102000015735 Beta-catenin Human genes 0.000 description 1
- 241001446316 Bohle iridovirus Species 0.000 description 1
- 101100208237 Bos taurus THBS2 gene Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102100027305 Box C/D snoRNA protein 1 Human genes 0.000 description 1
- 206010055113 Breast cancer metastatic Diseases 0.000 description 1
- 108700012434 CCL3 Proteins 0.000 description 1
- 108010046080 CD27 Ligand Proteins 0.000 description 1
- 102100027207 CD27 antigen Human genes 0.000 description 1
- 108091008048 CMVpp65 Proteins 0.000 description 1
- 101100005789 Caenorhabditis elegans cdk-4 gene Proteins 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 1
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 102000000013 Chemokine CCL3 Human genes 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- 241000186581 Clostridium novyi Species 0.000 description 1
- 102100025414 Coiled-coil domain-containing protein 144A Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 102000009268 Collagen Receptors Human genes 0.000 description 1
- 108010048623 Collagen Receptors Proteins 0.000 description 1
- 108010001463 Collagen Type XVIII Proteins 0.000 description 1
- 102000047200 Collagen Type XVIII Human genes 0.000 description 1
- 102100031162 Collagen alpha-1(XVIII) chain Human genes 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 206010052358 Colorectal cancer metastatic Diseases 0.000 description 1
- HVXBOLULGPECHP-WAYWQWQTSA-N Combretastatin A4 Chemical compound C1=C(O)C(OC)=CC=C1\C=C/C1=CC(OC)=C(OC)C(OC)=C1 HVXBOLULGPECHP-WAYWQWQTSA-N 0.000 description 1
- 102000000989 Complement System Proteins Human genes 0.000 description 1
- 108010069112 Complement System Proteins Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108700032819 Croton tiglium crotin II Proteins 0.000 description 1
- 102000003903 Cyclin-dependent kinases Human genes 0.000 description 1
- 108090000266 Cyclin-dependent kinases Proteins 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- NAPULYCVEVVFRB-HEIBUPTGSA-N Cys-Thr-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](N)CS NAPULYCVEVVFRB-HEIBUPTGSA-N 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 230000007023 DNA restriction-modification system Effects 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 101100540419 Danio rerio kdrl gene Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 102100028570 Drebrin-like protein Human genes 0.000 description 1
- 108700006830 Drosophila Antp Proteins 0.000 description 1
- 208000006402 Ductal Carcinoma Diseases 0.000 description 1
- 108010031111 EBV-encoded nuclear antigen 1 Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 101150076616 EPHA2 gene Proteins 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102100037241 Endoglin Human genes 0.000 description 1
- 108010036395 Endoglin Proteins 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 102100030340 Ephrin type-A receptor 2 Human genes 0.000 description 1
- 102100038595 Estrogen receptor Human genes 0.000 description 1
- 101710082714 Exotoxin A Proteins 0.000 description 1
- 108010020195 FLAG peptide Proteins 0.000 description 1
- XZWYTXMRWQJBGX-VXBMVYAYSA-N FLAG peptide Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(O)=O)CC1=CC=C(O)C=C1 XZWYTXMRWQJBGX-VXBMVYAYSA-N 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- 108091072337 GAGE family Proteins 0.000 description 1
- 102000040452 GAGE family Human genes 0.000 description 1
- 241000701047 Gallid alphaherpesvirus 2 Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 101000609762 Gallus gallus Ovalbumin Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- QYKBTDOAMKORGL-FXQIFTODSA-N Gln-Gln-Asp Chemical compound C(CC(=O)N)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CC(=O)O)C(=O)O)N QYKBTDOAMKORGL-FXQIFTODSA-N 0.000 description 1
- NUSWUSKZRCGFEX-FXQIFTODSA-N Glu-Glu-Cys Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CS)C(O)=O NUSWUSKZRCGFEX-FXQIFTODSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 1
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 1
- 101710113864 Heat shock protein 90 Proteins 0.000 description 1
- 102100034051 Heat shock protein HSP 90-alpha Human genes 0.000 description 1
- 101710154606 Hemagglutinin Proteins 0.000 description 1
- 102100029100 Hematopoietic prostaglandin D synthase Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 102100023920 Histone H1t Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000780116 Homo sapiens Ankyrin repeat domain-containing protein 26 Proteins 0.000 description 1
- 101000757191 Homo sapiens Ankyrin repeat domain-containing protein 30A Proteins 0.000 description 1
- 101000937756 Homo sapiens Box C/D snoRNA protein 1 Proteins 0.000 description 1
- 101000858088 Homo sapiens C-X-C motif chemokine 10 Proteins 0.000 description 1
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 1
- 101000934356 Homo sapiens CD70 antigen Proteins 0.000 description 1
- 101000934951 Homo sapiens Coiled-coil domain-containing protein 144A Proteins 0.000 description 1
- 101000915399 Homo sapiens Drebrin-like protein Proteins 0.000 description 1
- 101000905044 Homo sapiens Histone H1t Proteins 0.000 description 1
- 101001008951 Homo sapiens Kinesin-like protein KIF15 Proteins 0.000 description 1
- 101001063392 Homo sapiens Lymphocyte function-associated antigen 3 Proteins 0.000 description 1
- 101001014223 Homo sapiens MAPK/MAK/MRK overlapping kinase Proteins 0.000 description 1
- 101000579484 Homo sapiens Period circadian protein homolog 1 Proteins 0.000 description 1
- 101000831887 Homo sapiens STE20-related kinase adapter protein alpha Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 101000851007 Homo sapiens Vascular endothelial growth factor receptor 2 Proteins 0.000 description 1
- 108010070875 Human Immunodeficiency Virus tat Gene Products Proteins 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 102000039966 ICAM family Human genes 0.000 description 1
- 108091069108 ICAM family Proteins 0.000 description 1
- IOVUXUSIGXCREV-DKIMLUQUSA-N Ile-Leu-Phe Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 IOVUXUSIGXCREV-DKIMLUQUSA-N 0.000 description 1
- 235000003325 Ilex Nutrition 0.000 description 1
- 241000209035 Ilex Species 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 108010043496 Immunoglobulin Idiotypes Proteins 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 102100025390 Integrin beta-2 Human genes 0.000 description 1
- 108010064600 Intercellular Adhesion Molecule-3 Proteins 0.000 description 1
- 102100037872 Intercellular adhesion molecule 2 Human genes 0.000 description 1
- 101710148794 Intercellular adhesion molecule 2 Proteins 0.000 description 1
- 102100037871 Intercellular adhesion molecule 3 Human genes 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 102100027630 Kinesin-like protein KIF15 Human genes 0.000 description 1
- 102100023426 Kinesin-like protein KIF2A Human genes 0.000 description 1
- 101710134365 Kinesin-like protein KIF2A Proteins 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- TYYLDKGBCJGJGW-UHFFFAOYSA-N L-tryptophan-L-tyrosine Natural products C=1NC2=CC=CC=C2C=1CC(N)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 TYYLDKGBCJGJGW-UHFFFAOYSA-N 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- 108010064548 Lymphocyte Function-Associated Antigen-1 Proteins 0.000 description 1
- 102100030984 Lymphocyte function-associated antigen 3 Human genes 0.000 description 1
- 102100031520 MAPK/MAK/MRK overlapping kinase Human genes 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 229940124761 MMP inhibitor Drugs 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 1
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 1
- 108010015302 Matrix metalloproteinase-9 Proteins 0.000 description 1
- 102100030412 Matrix metalloproteinase-9 Human genes 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 102100039364 Metalloproteinase inhibitor 1 Human genes 0.000 description 1
- 102100026262 Metalloproteinase inhibitor 2 Human genes 0.000 description 1
- 102100026261 Metalloproteinase inhibitor 3 Human genes 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 108010008707 Mucin-1 Proteins 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 101710107068 Myelin basic protein Proteins 0.000 description 1
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- KZNQNBZMBZJQJO-UHFFFAOYSA-N N-glycyl-L-proline Natural products NCC(=O)N1CCCC1C(O)=O KZNQNBZMBZJQJO-UHFFFAOYSA-N 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 1
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- MSHZHSPISPJWHW-UHFFFAOYSA-N O-(chloroacetylcarbamoyl)fumagillol Chemical compound O1C(CC=C(C)C)C1(C)C1C(OC)C(OC(=O)NC(=O)CCl)CCC21CO2 MSHZHSPISPJWHW-UHFFFAOYSA-N 0.000 description 1
- 230000004989 O-glycosylation Effects 0.000 description 1
- 108010016076 Octreotide Proteins 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 1
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 102100028293 Period circadian protein homolog 1 Human genes 0.000 description 1
- WEMYTDDMDBLPMI-DKIMLUQUSA-N Phe-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)N WEMYTDDMDBLPMI-DKIMLUQUSA-N 0.000 description 1
- KIQUCMUULDXTAZ-HJOGWXRNSA-N Phe-Tyr-Tyr Chemical compound N[C@@H](Cc1ccccc1)C(=O)N[C@@H](Cc1ccc(O)cc1)C(=O)N[C@@H](Cc1ccc(O)cc1)C(O)=O KIQUCMUULDXTAZ-HJOGWXRNSA-N 0.000 description 1
- 108010022233 Plasminogen Activator Inhibitor 1 Proteins 0.000 description 1
- 102000010752 Plasminogen Inactivators Human genes 0.000 description 1
- 108010077971 Plasminogen Inactivators Proteins 0.000 description 1
- 102100039418 Plasminogen activator inhibitor 1 Human genes 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 108091036414 Polyinosinic:polycytidylic acid Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 101710176177 Protein A56 Proteins 0.000 description 1
- 101000884281 Rattus norvegicus Signal transducer CD24 Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 108010041388 Ribonucleotide Reductases Proteins 0.000 description 1
- 102000000505 Ribonucleotide Reductases Human genes 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 108010005173 SERPIN-B5 Proteins 0.000 description 1
- 102100024171 STE20-related kinase adapter protein alpha Human genes 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- QMCDMHWAKMUGJE-IHRRRGAJSA-N Ser-Phe-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C(C)C)C(O)=O QMCDMHWAKMUGJE-IHRRRGAJSA-N 0.000 description 1
- DKGRNFUXVTYRAS-UBHSHLNASA-N Ser-Ser-Trp Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O DKGRNFUXVTYRAS-UBHSHLNASA-N 0.000 description 1
- 102100030333 Serpin B5 Human genes 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 101710173693 Short transient receptor potential channel 1 Proteins 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- UIRKNQLZZXALBI-MSVGPLKSSA-N Squalamine Chemical compound C([C@@H]1C[C@H]2O)[C@@H](NCCCNCCCCN)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@H](C)CC[C@H](C(C)C)OS(O)(=O)=O)[C@@]2(C)CC1 UIRKNQLZZXALBI-MSVGPLKSSA-N 0.000 description 1
- UIRKNQLZZXALBI-UHFFFAOYSA-N Squalamine Natural products OC1CC2CC(NCCCNCCCCN)CCC2(C)C2C1C1CCC(C(C)CCC(C(C)C)OS(O)(=O)=O)C1(C)CC2 UIRKNQLZZXALBI-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 230000010782 T cell mediated cytotoxicity Effects 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 102000004399 TNF receptor-associated factor 3 Human genes 0.000 description 1
- 108090000922 TNF receptor-associated factor 3 Proteins 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- 101710192266 Tegument protein VP22 Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108060008245 Thrombospondin Proteins 0.000 description 1
- 102000002938 Thrombospondin Human genes 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108010031374 Tissue Inhibitor of Metalloproteinase-1 Proteins 0.000 description 1
- 108010031372 Tissue Inhibitor of Metalloproteinase-2 Proteins 0.000 description 1
- 108010031429 Tissue Inhibitor of Metalloproteinase-3 Proteins 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 102400001320 Transforming growth factor alpha Human genes 0.000 description 1
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 206010051956 Trichorhinophalangeal syndrome Diseases 0.000 description 1
- LVTKHGUGBGNBPL-UHFFFAOYSA-N Trp-P-1 Chemical compound N1C2=CC=CC=C2C2=C1C(C)=C(N)N=C2C LVTKHGUGBGNBPL-UHFFFAOYSA-N 0.000 description 1
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 1
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 1
- 102100040418 Tumor protein D52 Human genes 0.000 description 1
- 101710190247 Tumor protein D52 Proteins 0.000 description 1
- 206010054094 Tumour necrosis Diseases 0.000 description 1
- 102400000731 Tumstatin Human genes 0.000 description 1
- ARJASMXQBRNAGI-YESZJQIVSA-N Tyr-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC2=CC=C(C=C2)O)N ARJASMXQBRNAGI-YESZJQIVSA-N 0.000 description 1
- 108010042606 Tyrosine transaminase Proteins 0.000 description 1
- 241001024096 Uleiota Species 0.000 description 1
- 102100031358 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 108091008605 VEGF receptors Proteins 0.000 description 1
- 101100534084 Vaccinia virus (strain Copenhagen) B14R gene Proteins 0.000 description 1
- 101100004092 Vaccinia virus (strain Western Reserve) VACWR196 gene Proteins 0.000 description 1
- PAPWZOJOLKZEFR-AVGNSLFASA-N Val-Arg-Lys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCCN)C(=O)O)N PAPWZOJOLKZEFR-AVGNSLFASA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Chemical compound CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 102100026497 Zinc finger protein 654 Human genes 0.000 description 1
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 108010024078 alanyl-glycyl-serine Proteins 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 1
- 108010034034 alpha-1,6-mannosylglycoprotein beta 1,6-N-acetylglucosaminyltransferase Proteins 0.000 description 1
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 1
- 102000005840 alpha-Galactosidase Human genes 0.000 description 1
- 108010030291 alpha-Galactosidase Proteins 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- XSDQTOBWRPYKKA-UHFFFAOYSA-N amiloride Chemical compound NC(=N)NC(=O)C1=NC(Cl)=C(N)N=C1N XSDQTOBWRPYKKA-UHFFFAOYSA-N 0.000 description 1
- 229960002576 amiloride Drugs 0.000 description 1
- 230000006229 amino acid addition Effects 0.000 description 1
- 229960003437 aminoglutethimide Drugs 0.000 description 1
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000005809 anti-tumor immunity Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000003886 aromatase inhibitor Substances 0.000 description 1
- 229940046844 aromatase inhibitors Drugs 0.000 description 1
- 239000000823 artificial membrane Substances 0.000 description 1
- 108010038633 aspartylglutamate Proteins 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- ISYJGPYKJNWIQE-BNOMVYTKSA-N butyl (2r)-2-[[(2s)-2-[[(2r)-2-[(2r,3r,4r,5r)-2-acetamido-4,5,6-trihydroxy-1-oxohexan-3-yl]oxypropanoyl]amino]propanoyl]amino]-5-amino-5-oxopentanoate Chemical compound CCCCOC(=O)[C@@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@@H]([C@H](O)[C@H](O)CO)[C@@H](NC(C)=O)C=O ISYJGPYKJNWIQE-BNOMVYTKSA-N 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229940088954 camptosar Drugs 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- FAKRSMQSSFJEIM-RQJHMYQMSA-N captopril Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O FAKRSMQSSFJEIM-RQJHMYQMSA-N 0.000 description 1
- 229960000830 captopril Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- WNRZHQBJSXRYJK-UHFFFAOYSA-N carboxyamidotriazole Chemical compound NC1=C(C(=O)N)N=NN1CC(C=C1Cl)=CC(Cl)=C1C(=O)C1=CC=C(Cl)C=C1 WNRZHQBJSXRYJK-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 229930183167 cerebroside Natural products 0.000 description 1
- 150000001784 cerebrosides Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 229950009003 cilengitide Drugs 0.000 description 1
- AMLYAMJWYAIXIA-VWNVYAMZSA-N cilengitide Chemical compound N1C(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](C(C)C)N(C)C(=O)[C@H]1CC1=CC=CC=C1 AMLYAMJWYAIXIA-VWNVYAMZSA-N 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229960005537 combretastatin A-4 Drugs 0.000 description 1
- HVXBOLULGPECHP-UHFFFAOYSA-N combretastatin A4 Natural products C1=C(O)C(OC)=CC=C1C=CC1=CC(OC)=C(OC)C(OC)=C1 HVXBOLULGPECHP-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 108010045325 cyclic arginine-glycine-aspartic acid peptide Proteins 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 238000007878 drug screening assay Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002121 endocytic effect Effects 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 108010028531 enomycin Proteins 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000002095 exotoxin Substances 0.000 description 1
- 231100000776 exotoxin Toxicity 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000008175 fetal development Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- VVIAGPKUTFNRDU-ABLWVSNPSA-N folinic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-ABLWVSNPSA-N 0.000 description 1
- 235000008191 folinic acid Nutrition 0.000 description 1
- 239000011672 folinic acid Substances 0.000 description 1
- 108010063718 gamma-glutamylaspartic acid Proteins 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 229940045109 genistein Drugs 0.000 description 1
- TZBJGXHYKVUXJN-UHFFFAOYSA-N genistein Natural products C1=CC(O)=CC=C1C1=COC2=CC(O)=CC(O)=C2C1=O TZBJGXHYKVUXJN-UHFFFAOYSA-N 0.000 description 1
- 235000006539 genistein Nutrition 0.000 description 1
- ZCOLJUOHXJRHDI-CMWLGVBASA-N genistein 7-O-beta-D-glucoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=C2C(=O)C(C=3C=CC(O)=CC=3)=COC2=C1 ZCOLJUOHXJRHDI-CMWLGVBASA-N 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000001456 gonadotroph Effects 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 239000000710 homodimer Substances 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000006058 immune tolerance Effects 0.000 description 1
- 230000002998 immunogenetic effect Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 239000000568 immunological adjuvant Substances 0.000 description 1
- 238000010324 immunological assay Methods 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 208000024312 invasive carcinoma Diseases 0.000 description 1
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 description 1
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- VDBNYAPERZTOOF-UHFFFAOYSA-N isoquinolin-1(2H)-one Chemical class C1=CC=C2C(=O)NC=CC2=C1 VDBNYAPERZTOOF-UHFFFAOYSA-N 0.000 description 1
- UHEBDUAFKQHUBV-UHFFFAOYSA-N jspy-st000261 Chemical compound C1=CC=C2C3=C(C(=O)NC4)C4=C(C=4C(=CC=C(C=4)COC(C)C)N4CCCOC(=O)CN(C)C)C4=C3CC2=C1 UHEBDUAFKQHUBV-UHFFFAOYSA-N 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000000370 laser capture micro-dissection Methods 0.000 description 1
- 229960003881 letrozole Drugs 0.000 description 1
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 1
- 229960001691 leucovorin Drugs 0.000 description 1
- 230000021633 leukocyte mediated immunity Effects 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 229950008959 marimastat Drugs 0.000 description 1
- OCSMOTCMPXTDND-OUAUKWLOSA-N marimastat Chemical compound CNC(=O)[C@H](C(C)(C)C)NC(=O)[C@H](CC(C)C)[C@H](O)C(=O)NO OCSMOTCMPXTDND-OUAUKWLOSA-N 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229960002985 medroxyprogesterone acetate Drugs 0.000 description 1
- PSGAAPLEWMOORI-PEINSRQWSA-N medroxyprogesterone acetate Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 PSGAAPLEWMOORI-PEINSRQWSA-N 0.000 description 1
- 229960004296 megestrol acetate Drugs 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 208000011645 metastatic carcinoma Diseases 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- IZAGSTRIDUNNOY-UHFFFAOYSA-N methyl 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetate Chemical compound COC(=O)COC1=CNC(=O)NC1=O IZAGSTRIDUNNOY-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 229960004023 minocycline Drugs 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- VYGYNVZNSSTDLJ-HKCOAVLJSA-N monorden Natural products CC1CC2OC2C=C/C=C/C(=O)CC3C(C(=CC(=C3Cl)O)O)C(=O)O1 VYGYNVZNSSTDLJ-HKCOAVLJSA-N 0.000 description 1
- 229940051875 mucins Drugs 0.000 description 1
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 1
- 108700017543 murabutide Proteins 0.000 description 1
- 229950009571 murabutide Drugs 0.000 description 1
- 125000001446 muramyl group Chemical group N[C@@H](C=O)[C@@H](O[C@@H](C(=O)*)C)[C@H](O)[C@H](O)CO 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 108010065781 myosin light chain 2 Proteins 0.000 description 1
- XJVXMWNLQRTRGH-UHFFFAOYSA-N n-(3-methylbut-3-enyl)-2-methylsulfanyl-7h-purin-6-amine Chemical compound CSC1=NC(NCCC(C)=C)=C2NC=NC2=N1 XJVXMWNLQRTRGH-UHFFFAOYSA-N 0.000 description 1
- AEMBWNDIEFEPTH-UHFFFAOYSA-N n-tert-butyl-n-ethylnitrous amide Chemical compound CCN(N=O)C(C)(C)C AEMBWNDIEFEPTH-UHFFFAOYSA-N 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000002276 neurotropic effect Effects 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 230000030648 nucleus localization Effects 0.000 description 1
- 229960002700 octreotide Drugs 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- UNEIHNMKASENIG-UHFFFAOYSA-N para-chlorophenylpiperazine Chemical compound C1=CC(Cl)=CC=C1N1CCNCC1 UNEIHNMKASENIG-UHFFFAOYSA-N 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 108010076042 phenomycin Proteins 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000001095 phosphatidyl group Chemical group 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229940012957 plasmin Drugs 0.000 description 1
- 239000002797 plasminogen activator inhibitor Substances 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229940115272 polyinosinic:polycytidylic acid Drugs 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 210000004896 polypeptide structure Anatomy 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229960000688 pomalidomide Drugs 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- AECPBJMOGBFQDN-YMYQVXQQSA-N radicicol Chemical compound C1CCCC(=O)C[C@H]2[C@H](Cl)C(=O)CC(=O)[C@H]2C(=O)O[C@H](C)C[C@H]2O[C@@H]21 AECPBJMOGBFQDN-YMYQVXQQSA-N 0.000 description 1
- 229930192524 radicicol Natural products 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 239000003087 receptor blocking agent Substances 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 210000003660 reticulum Anatomy 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 235000017709 saponins Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000009094 second-line therapy Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229950001248 squalamine Drugs 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 108010042747 stallimycin Proteins 0.000 description 1
- 229950009902 stallimycin Drugs 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- HKSZLNNOFSGOKW-FYTWVXJKSA-N staurosporine Chemical class C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1[C@H]1C[C@@H](NC)[C@@H](OC)[C@]4(C)O1 HKSZLNNOFSGOKW-FYTWVXJKSA-N 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- FIAFUQMPZJWCLV-UHFFFAOYSA-N suramin Chemical compound OS(=O)(=O)C1=CC(S(O)(=O)=O)=C2C(NC(=O)C3=CC=C(C(=C3)NC(=O)C=3C=C(NC(=O)NC=4C=C(C=CC=4)C(=O)NC=4C(=CC=C(C=4)C(=O)NC=4C5=C(C=C(C=C5C(=CC=4)S(O)(=O)=O)S(O)(=O)=O)S(O)(=O)=O)C)C=CC=3)C)=CC=C(S(O)(=O)=O)C2=C1 FIAFUQMPZJWCLV-UHFFFAOYSA-N 0.000 description 1
- 229960005314 suramin Drugs 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 229960000814 tetanus toxoid Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 229960003433 thalidomide Drugs 0.000 description 1
- 229940021747 therapeutic vaccine Drugs 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000031998 transcytosis Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 239000012096 transfection reagent Substances 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 108010044292 tryptophyltyrosine Proteins 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 108010012374 type IV collagen alpha3 chain Proteins 0.000 description 1
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 102000009816 urokinase plasminogen activator receptor activity proteins Human genes 0.000 description 1
- 108040001269 urokinase plasminogen activator receptor activity proteins Proteins 0.000 description 1
- 229950000578 vatalanib Drugs 0.000 description 1
- YCOYDOIWSSHVCK-UHFFFAOYSA-N vatalanib Chemical compound C1=CC(Cl)=CC=C1NC(C1=CC=CC=C11)=NN=C1CC1=CC=NC=C1 YCOYDOIWSSHVCK-UHFFFAOYSA-N 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 239000000304 virulence factor Substances 0.000 description 1
- 230000007923 virulence factor Effects 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4748—Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
Definitions
- the present invention relates to a nucleic acid encoding a polypeptide and the use of the nucleic acid or polypeptide in preventing and/or treating cancer.
- the invention relates to improved vectors for the insertion and expression of foreign genes encoding tumor antigens for use in immunotherapeutic treatment of cancer.
- TAAs Tumour-associated antigens
- Sgroi et al (1.999) identified several genes differentially expressed in invasive and metastatic carcinoma cells with combined use of laser capture microdissection and cDNA microarrays.
- Several delivery systems like DNA or viruses could be used for therapeutic vaccination against human cancers (Bonnet et al, 2000) and can elicit immune responses and also break immune tolerance against TAAs.
- Tumour cells can be rendered more immunogenic by inserting transgenes encoding T cell co-stimulatory molecules such as B7.1 or cytokines such as IFN- ⁇ , IL2, or GM-CSF, among others.
- Co-expression of a TAA and a cytokine or a co-stimulatory molecule has also been shown to be useful in developing effective therapeutic vaccines (Hodge et al, 95, Bronte et al, 1995, Chamberlain et al, 1996).
- the present invention provides an immunogenic target for administration to a patient to prevent and/or treat cancer.
- the immunogenic target is a tumor antigen (“TA”) and or an angiogenesis-associated antigen (“AA”).
- the immunogenic target is encoded by SEQ ID NO.: 34 or SEQ ID NO.: 36 or has the amino acid sequence of SEQ ID NO.: or SEQ ID NO.: 37.
- the TA and/or AA are administered to a patient as a nucleic acid contained within a plasmid or other delivery vector, such as a recombinant virus.
- the TA and/or AA may also be administered in combination with an immune stimulator, such as a co-stimulatory molecule or adjuvant.
- FIG. 1 A, B. Nucleotide sequences of AAC2-1 and AAC2-2. C. Alignment of predicted amino acid sequence of AAC2-1 and AAC2-2. Missing nucleotides or amino acids are indicated by a “*”. Differences between sequences are underlined.
- FIG. 2 Human lymphocytes differentiate into effector cells secreting IFN- ⁇ in response to peptides derived from the AAC2-2 protein. T cells were stimulated with the groups of peptides shown n in Table III (groups 1-9). After three rounds of stimulation, the lymphocytes were analyzed for peptide-specific IFN- ⁇ production by ELISPOT. The graph in the inset shows that activated cells stimulated by peptide Group #6 are capable of antigen-specific CTL activity killing peptide loaded T2 target cells. Peptide EC5 elicits dominant activity in inducing both CTL activity and IFN- ⁇ secretion.
- FIG. 3 Murine T cells from HLA-A2-Kb transgenic mice recognize and secrete IFN- ⁇ in response to DNA immunization with a human AAC2-2-encoding DNA plasmid.
- Spleen cells from pEF6-hAAC2-2-immunized mice were re-stimulated with the different groups of peptides. After six days, the cells were harvested and tested for IFN- ⁇ secretion in response to each respective peptide group or a control HLA-A2-binding 9-mer HIV peptide.
- ELISPOT plates were incubated over-night and developed. Each group responded with high levels of IFN- ⁇ production (over 250 spots) in response to PMA and ionomycin used as a positive control.
- One of the highly reactive peptides groups (group 6) is also recognized by human lymphocytes from the HLA-A-0201 + donors tested so far.
- FIG. 4 DNA vaccination with a gene encoding human AAC2-2 completely abrogates the growth of implanted B16F10 melanoma cells. This effect is not due to a non-specific immune response as shown by the inability of plasmid encoding flu-NP protein and the human flk1 (VEGFR-2) to prevent tumor growth.
- FIG. 5 Survival of mice after implantation of B16F10 melanoma cells into C57BL/6 mice showing the ability of DNA vaccination with a human AAC2-2 vector to completely protect against the effects of rumor growth. This protective effect is antigen-specific and can not be elicited through vaccination with other genes.
- FIG. 6 T lymphocytes from C57BL/6 mice exhibit effector cell activity and secrete IFN- ⁇ in response to peptides of human AAC2-2 following DNA vaccination with the pEF6-hAAC2-2 expression plasmid. These peptides can exhibit cross-reactivity on B6 MHC class I. The peptides in group 1 and group 5 induce strong reactivity by C57BL/6 T cells.
- FIG. 7 BFA4 cDNA sequence.
- FIG. 8 BFA4 amino acid sequence.
- FIG. 9 BCY1 nucleotide (A) and amino acid (B) sequences.
- FIG. 10 Immune response against specific BCY1 peptides.
- FIG. 11 BFA5 cDNA sequence.
- FIG. 12 BFA5 amino acid sequence.
- FIGS. 13A , B and C Immune response against BFA5-derived peptides.
- FIG. 14 BCZ4 cDNA (A) and amino acid (B) sequences.
- FIG. 15 Immune response against BCZ4-derived peptides (A: BCZ4 ELISPOT; B: BCZ4 Peptide Deconvolution; C: CTL response).
- FIG. 16 BFY3 cDNA (A) and amino acid (B) sequences.
- FIG. 17A-E Immune response against BFY3-derived peptides.
- the present invention provides reagents and methodologies useful for treating and/or preventing cancer. All references cited within this application are incorporated by reference.
- the present invention relates to the induction or enhancement of an immune response against one or more tumor antigens (“TA”) to prevent and/or treat cancer.
- TA tumor antigens
- one or more TAs may be combined.
- the immune response results from expression of a TA in a host cell following administration of a nucleic acid vector encoding the tumor antigen or the tumor antigen itself in the form of a peptide or polypeptide, for example.
- an “antigen” is a molecule such as a polypeptide or a portion thereof that produces an immune response in a host to whom the antigen has been administered.
- the immune response may include the production of antibodies that bind to at least one epitope of the antigen and/or the generation of a cellular immune response against cells expressing an epitope of the antigen.
- the response may be an enhancement of a current immune response by, for example, causing increased antibody production, production of antibodies with increased affinity for the antigen, or an increased or more effective cellular response (i.e., increased T cells or T cells with higher anti-tumor activity).
- An antigen that produces an immune response may alternatively be referred to as being immunogenic or as an immunogen.
- a TA may be referred to as an “immunogenic target”.
- TA includes both tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs), where a cancerous cell is the source of the antigen.
- TAA tumor-associated antigens
- TSA tumor-specific antigens
- a TAA is an antigen that is expressed on the surface of a tumor cell in higher amounts than is observed on normal cells or an antigen that is expressed on normal cells during fetal development.
- a TSA is an antigen that is unique to tumor cells and is not expressed on normal cells.
- TA further includes TAAs or TSAs, antigenic fragments thereof, and modified versions that retain their antigenicity.
- TAs are typically classified into five categories according to their expression pattern, function, or genetic origin: cancer-testis (CT) antigens (i.e., MAGE, NY-ESO-1); melanocyte differentiation antigens (i.e., Melan A/MART-1, tyrosinase, gp100); mutational antigens (i.e., MUM-1, p53, CDK-4); overexpressed ‘self’ antigens (i.e., HER-2/neu, p53); and, viral antigens (i.e., HPV, EBV).
- CT cancer-testis
- MAGE MAGE
- NY-ESO-1 melanocyte differentiation antigens
- mutational antigens i.e., MUM-1, p53, CDK-4
- overexpressed ‘self’ antigens i.e., HER-2/neu, p53
- viral antigens i.e., HPV, EBV.
- a suitable TA is any TA that
- Suitable TAs include, for example, gp100 (Cox et al., Science, 264:716-719 (1994)), MART-1/Melan A (Kawakami et al., J. Exp. Med., 180:347-352 (1994)), gp75 (TRP-1) (Wang et al., J. Exp. Med., 186:1131-1140 (1996)), tyrosinase (Wolfel et al., Eur. J.
- BCR-abl Bocchia et al., Blood, 85:2680-2684 (1995)
- p53 Theobald et al., Proc. Natl. Acad. Sci. USA, 92:11993-11997 (1995)
- p185 HER2/neu erb-B1; Fisk et al., J. Exp. Med., 181:2109-2117 (1995)
- EGFR epidermal growth factor receptor
- CEA carcinoembryonic antigens
- HIP-55 TGF ⁇ -1 anti-apoptotic factor (Toomey, et al. Br J Biomed Sci 2001; 58(3): 177-83), tumor protein D52 (Bryne J. A., et al., Genomics, 35:523-532 (1996)), H1FT, NY-BR-1 (WO 01/47959), NY-BR-62, NY-BR-75, NY-B R-85, NY-BR-87, NY-BR-96 (Scanlan, M.
- an AA is an immunogenic molecule (i.e., peptide, polypeptide) associated with cells involved in the induction and/or continued development of blood vessels.
- an AA may be expressed on an endothelial cell (“EC”), which is a primary structural component of blood vessels.
- EC endothelial cell
- Immunization of a patient against an AA preferably results in an anti-AA immune response whereby angiogenic processes that occur near or within tumors are prevented and/or inhibited.
- Exemplary AAs include, for example, vascular endothelial growth factor (i.e., VEGF; Bernardini, et al. J. Urol., 2001, 166(4): 1275-9; Starnes, et al. J. Thorac. Cardiovasc. Surg., 2001, 122(3): 518-23; Dias, et al. Blood, 2002, 99: 2179-2184), the VEGF receptor (i.e., VEGF-R, flk-1/KDR; Starnes, et al. J. Thorac. Cardiovasc. Surg., 2001, 122(3): 518-23), EPH receptors (i.e., EPHA2; Gerety, et al.
- VEGF vascular endothelial growth factor
- Bernardini et al. J. Urol., 2001, 166(4): 1275-9
- Starnes et al. J. Thorac. Cardiovasc. Surg., 2001,
- epidermal growth factor receptor i.e., EGFR; Ciardeillo, et al. Clin. Cancer Res., 2001, 7(10): 2958-70
- basic fibroblast growth factor i.e., bFGF; Davidson, et al. Clin. Exp. Metastasis 2000, 18(6): 501-7; Poon, et al. Am J. Surg., 2001, 182(3):298-304
- platelet-derived cell growth factor i.e., PDGF-B
- platelet-derived endothelial cell growth factor PD-ECGF; Hong, et al. J. Mol.
- transforming growth factors i.e., TGF- ⁇ ; Hong, et al. J. Mol. Med., 2001, 8(2):141-8
- endoglin Balza, et al., Int. J. Cancer, 2001, 94: 579-585
- Id proteins Benezra, R. Trends Cardiovasc. Med., 2001, 11(6):237-41
- proteases such as uPA, uPAR, and matrix metalloproteinases (MMP-2, MMP-9; Djonov, et al. J. Pathol., 2001, 195(2):147-55
- nitric oxide synthase Am. J.
- synthases i.e., ATP synthase, thymidilate synthase
- collagen receptors integrins (i.e., ⁇ 3, ⁇ 5, ⁇ 1 ⁇ 1, ⁇ 2 ⁇ 1, ⁇ 5 ⁇ 1)
- integrins i.e., ⁇ 3, ⁇ 5, ⁇ 1 ⁇ 1, ⁇ 2 ⁇ 1, ⁇ 5 ⁇ 1
- the surface proteolglycan NG2, AAC2-1 (SEQ ID NO.:1), or AAC2-2 (SEQ ID NO.:2) among others, including “wild-type” (i.e., normally encoded by the genome, naturally-occurring), modified, mutated versions as well as other fragments and derivatives thereof. Any of these targets may be suitable in practicing the present invention, either alone or in combination with one another or with other agents.
- nucleic acid molecule encoding an immunogenic target is utilized.
- the nucleic acid molecule may comprise or consist of a nucleotide sequence encoding one or more immunogenic targets, or fragments or derivatives thereof, such as that contained in a DNA insert in an ATCC Deposit.
- nucleic acid sequence or “nucleic acid molecule” refers to a DNA or RNA sequence.
- the term encompasses molecules formed from any of the known base analogs of DNA and RNA such as, but not limited to 4-acetylcytosine, 8-hydroxy-N-6-methyladenosine, aziridinyl-cytosine, pseudoisocytosine, 5-(carboxyhydroxylmethyl)uracil, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxy-methylaminomethyluracil, dihydrouracil, inosine, N6-iso-pentenyladenine, 1-methyladenine, 1-methylpseudouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethyl-guanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyamino-methyl-2-thiouracil, beta-D
- An isolated nucleic acid molecule is one that: (1) is separated from at least about 50 percent of proteins, lipids, carbohydrates, or other materials with which it is naturally found when total nucleic acid is isolated from the source cells; (2) is not linked to all or a portion of a polynucleotide to which the nucleic acid molecule is linked in nature; (3) is operably linked to a polynucleotide which it is not linked to in nature; and/or, (4) does not occur in nature as part of a larger polynucleotide sequence.
- the isolated nucleic acid molecule of the present invention is to substantially free from any other contaminating nucleic acid molecule(s) or other contaminants that are found in its natural environment that would interfere with its use in polypeptide production or its therapeutic, diagnostic, prophylactic or research use.
- the term “naturally occurring” or “native” or “naturally found” when used in connection with biological materials such as nucleic acid molecules, polypeptides, host cells, and the like refers to materials which are found in nature without manipulation by man.
- “non-naturally occurring” or “non-native” as used herein refers to a material that is not found in nature or that has been structurally modified or synthesized by man.
- identity means the degree of sequence relatedness between nucleic acid molecules or polypeptides as determined by the match between the units making up the molecules (i.e., nucleotides or amino acid residues). Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., an algorithm). Identity between nucleic acid sequences may also be determined by the ability of the related sequence to hybridize to the nucleic acid sequence or isolated nucleic acid molecule.
- highly stringent conditions and “moderately stringent conditions” refer to procedures that permit hybridization of nucleic acid strands whose sequences are complementary, and to exclude hybridization of significantly mismatched nucleic acids.
- “highly stringent conditions” for hybridization and washing are 0.015 M sodium chloride, 0.0015 M sodium citrate at 65-68° C. or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 50% formamide at 42° C. (see, for example, Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory, 1989); Anderson et al., Nucleic Acid Hybridisation: A Practical Approach Ch.
- moderately stringent conditions refers to conditions under which a DNA duplex with a greater degree of base pair mismatching than could occur under “highly stringent conditions” is able to form.
- exemplary moderately stringent conditions are 0.015 M sodium chloride, 0.0015 M sodium citrate at 50-65° C. or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 20% formamide at 37-50° C.
- moderately stringent conditions of 50° C. in 0.015 M sodium ion will allow about a 21% mismatch.
- other agents may be included in the hybridization and washing buffers for the purpose of reducing non-specific and/or background hybridization.
- Examples are 0.1% bovine serum albumin, 0.1% polyvinyl-pyrrolidone, 0.1% sodium pyrophosphate, 0.1% sodium dodecylsulfate, NaDodSO 4 , (SDS), ficoll, Denhardt's solution, sonicated salmon sperm DNA (or another non-complementary DNA), and dextran sulfate, although other suitable agents can also be used.
- concentration and types of these additives can be changed without substantially affecting the stringency of the hybridization conditions.
- Hybridization experiments are usually carried out at pH 6.8-7.4; however, at typical ionic strength conditions, the rate of hybridization is nearly independent of pH.
- vectors are used to transfer a nucleic acid sequence encoding a polypeptide to a cell.
- a vector is any molecule used to transfer a nucleic acid sequence to a host cell.
- an expression vector is utilized.
- An expression vector is a nucleic acid molecule that is suitable for transformation of a host cell and contains nucleic acid sequences that direct and/or control the expression of the transferred nucleic acid sequences. Expression includes, but is not limited to, processes such as transcription, translation, and splicing, if introns are present.
- Expression vectors typically comprise one or more flanking sequences operably linked to a heterologous nucleic acid sequence encoding a polypeptide.
- Flanking sequences may be homologous (i.e., from the same species and/or strain as the host cell), heterologous (i.e., from a species other than the host cell species or strain), hybrid (i.e., a combination of flanking sequences from more than one source), or synthetic, for example.
- a flanking sequence is preferably capable of effecting the replication, transcription and/or translation of the coding sequence and is operably linked to a coding sequence.
- operably linked refers to a linkage of polynucleotide elements in a functional relationship.
- a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the coding sequence.
- a flanking sequence need not necessarily be contiguous with the coding sequence, so long as it functions correctly.
- intervening untranslated yet transcribed sequences can be present between a promoter sequence and the coding sequence and the promoter sequence may still be considered operably linked to the coding sequence.
- an enhancer sequence may be located upstream or downstream from the coding sequence and affect transcription of the sequence.
- the flanking sequence is a transcriptional regulatory region that drives high-level gene expression in the target cell.
- the transcriptional regulatory region may comprise, for example, a promoter, enhancer, silencer, repressor element or combinations thereof.
- the transcriptional regulatory region may be either constitutive, tissue-specific, cell-type specific (i.e., the region is drives higher levels of transcription in a one type of tissue or cell as compared to another), or regulatable (i.e., responsive to interaction with a compound).
- the source of a transcriptional regulatory region may be any prokaryotic or eukaryotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence functions in a cell by causing transcription of a nucleic acid within that cell.
- a wide variety of transcriptional regulatory regions may be utilized in practicing the present invention.
- Suitable transcriptional regulatory regions include, for example, the CMV promoter (i.e., the CMV-immediate early promoter); promoters from eukaryotic genes (i.e., the estrogen-inducible chicken ovalbumin gene, the interferon genes, the gluco-corticoid-inducible tyrosine aminotransferase gene, and the thymidine kinase gene); and the major early and late adenovirus gene promoters; the SV40 early promoter region (Bernoist and Chambon, 1981 , Nature 290:304-10); the promoter contained in the 3′ long terminal repeat (LTR) of Rous sarcoma virus (RSV) (Yamamoto, et al., 1980 , Cell 22:787-97); the herpes simplex virus thymidine kinase (HSV-TK) promoter (Wagner et al., 1981 , Proc.
- CMV promoter i.e.
- Tissue- and/or cell-type specific transcriptional control regions include, for example, the elastase I gene control region which is active in pancreatic acinar cells (Swift et al., 1984 , Cell 38:639-46; Ornitz et al., 1986 , Cold Spring Harbor Symp. Quant. Biol.
- the beta-globin gene control region in myeloid cells (Mogram et al., 1985 , Nature 315:338-40; Kollias et al., 1986 , Cell 46:89-94); the myelin basic protein gene control region in oligodendrocyte cells in the brain (Readhead et al., 1987 , Cell 48:703-12); the myosin light chain-2 gene control region in skeletal muscle (Sani, 1985 , Nature 314:283-86); the gonadotropic releasing hormone gene control region in the hypothalamus (Mason et al, 1986 , Science 234:1372-78), and the tyrosinase promoter in melanoma cells (Hart, I.
- Inducible promoters that are activated in the presence of a certain compound or condition such as light, heat, radiation, tetracycline, or heat shock proteins, for example, may also be utilized (see, for example, WO 00/10612).
- Other suitable promoters are known in the art.
- enhancers may also be suitable flanking sequences.
- Enhancers are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription. Enhancers are typically orientation- and position-independent, having been identified both 5′ and 3′ to controlled coding sequences.
- enhancer sequences available from mammalian genes are known (i.e., globin, elastase, albumin, alpha-feto-protein and insulin).
- the SV40 enhancer, the cytomegalovirus early promoter enhancer, the polyoma enhancer, and adenovirus enhancers are useful with eukaryotic promoter sequences. While an enhancer may be spliced into the vector at a position 5′ or 3′ to nucleic acid coding sequence, it is typically located at a site 5′ from the promoter. Other suitable enhancers are known in the art, and would be applicable to the present invention.
- cells may need to be transfected or transformed.
- Transfection refers to the uptake of foreign or exogenous DNA by a cell, and a cell has been transfected when the exogenous DNA has been introduced inside the cell membrane.
- transfection techniques are well known in the art (i.e., Graham et al., 1973 , Virology, 52:456; Sambrook et al., Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratories, 1989); Davis et al., Basic Methods in Molecular Biology (Elsevier, 1986); and Chu et al., 1981 , Gene 13:197).
- Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells.
- transfection of a cell results in transformation of that cell.
- a cell is transformed when there is a change in a characteristic of the cell, being transformed when it has been modified to contain a new nucleic acid.
- the transfected nucleic acid may recombine with that of the cell by physically integrating into a chromosome of the cell, may be maintained transiently as an episomal element without being replicated, or may replicate independently as a plasmid.
- a cell is stably transformed when the nucleic acid is replicated with the division of the cell.
- the present invention further provides isolated immunogenic targets in polypeptide form.
- a polypeptide is considered isolated where it: (1) has been separated from at least about 50 percent of polynucleotides, lipids, carbohydrates, or other materials with which it is naturally found when isolated from the source cell: (2) is not linked (by covalent or noncovalent interaction) to all or a portion of a polypeptide to which the “isolated poly peptide” is linked in nature; (3) is operably linked (by covalent or noncovalent interaction) to a polypeptide with which it is not linked in nature; or, (4) does not occur in nature.
- the isolated polypeptide is substantially free from any other contaminating polypeptides or other contaminants that are found in its natural environment that would interfere with its therapeutic, diagnostic, prophylactic or research use.
- Immunogenic target polypeptides may be mature polypeptides, as defined herein, and may or may not have an amino terminal methionine residue, depending on the method by which they are prepared. Further contemplated are related polypeptides such as, for example, fragments, variants (i.e., allelic, splice), orthologs, homologues, and derivatives, for example, that possess at least one characteristic or activity (i.e., activity, antigenicity) of the immunogenic target. Also related are peptides, which refers to a series of contiguous amino acid residues having a sequence corresponding to at least a portion of the polypeptide from which its sequence is derived.
- the peptide comprises about 5-10 amino acids, 10-15 amino acids, 15-20 amino acids, 20-30 amino acids, or 30-50 amino acids. In a more preferred embodiment, a peptide comprises 9-12 amino acids, suitable for presentation upon Class I MHC molecules, for example.
- a fragment of a nucleic acid or polypeptide comprises a truncation, of the sequence (i.e., nucleic acid or polypeptide) at the amino terminus (with or without a leader sequence) and/or the carboxy terminus. Fragments may also include variants (i.e., allelic, splice), orthologs, homologues, and other variants having one or more amino acid additions or substitutions or internal deletions as compared to the parental sequence. In preferred embodiments, truncations and/or deletions comprise about 10 amino acids, 20 amino acids, 30 amino acids, 40 amino acids, 50 amino acids, or more.
- polypeptide fragments so produced will comprise about 10 amino acids, 25 amino acids, 30 amino acids, 40 amino acids, 50 amino acids, 60 amino acids, 70 amino acids, or more.
- Such polypeptide fragments may optionally comprise an amino terminal methionine residue, it will be appreciated that such fragments can be used, for example, to generate antibodies or cellular immune responses to immunogenic target polypeptides.
- a variant is a sequence having one or more sequence substitutions, deletions, and/or additions as compared to the subject sequence.
- Variants may be naturally occurring or artificially constructed. Such variants may be prepared from the corresponding nucleic acid molecules. In preferred embodiments, the variants have from 1 to 3, or from 1 to 5, or from 1 to 10, or from 1 to 15, or from 1 to 20, or from 1 to 25, or from 1 to 30, or from 1 to 40, or from 1 to 50, or more than 50 amino acid substitutions, insertions, additions and/or deletions.
- allelic variant is one of several possible naturally-occurring alternate forms of a gene occupying a given locus on a chromosome of an organism or a population of organisms.
- a splice variant is a polypeptide generated from one of several RNA transcript resulting from splicing of a primary transcript.
- An ortholog is a similar nucleic acid or polypeptide sequence from another species. For example, the mouse and human versions of an immunogenic target polypeptide may be considered orthologs of each other.
- a derivative of a sequence is one that is derived from a parental sequence those sequences having substitutions, additions, deletions, or chemically modified variants.
- Variants may also include fusion proteins, which refers to the fusion of one or more first sequences (such as a peptide) at the amino or carboxy terminus of at least one other sequence (such as a heterologous peptide).
- fusion proteins refers to the fusion of one or more first sequences (such as a peptide) at the amino or carboxy terminus of at least one other sequence (such as a heterologous peptide).
- Similarity is a concept related to identity, except that similarity refers to a measure of relatedness which includes both identical matches and conservative substitution matches. If two polypeptide sequences have, for example, 10/20 identical amino acids, and the remainder are all non-conservative substitutions, then the percent identity and similarity would both be 50%. If in the same example, there are five more positions where there are conservative substitutions, then the percent identity remains 50%, but the percent similarity would be 75% ( 15/20). Therefore, in cases where there are conservative substitutions, the percent similarity between two polypeptides will be higher than the percent identity between those two polypeptides.
- Substitutions may be conservative, or non-conservative, or any combination thereof.
- Conservative amino acid modifications to the sequence of a polypeptide may produce polypeptides having functional and chemical characteristics similar to those of a parental polypeptide.
- a “conservative amino acid substitution” may involve a substitution of a native amino acid residue with a non-native residue such that there is little or no effect on the size, polarity, charge, hydrophobicity, or hydrophilicity of the amino acid residue at that position and, in particular, does not result in decreased immunogenicity.
- Suitable conservative amino acid substitutions are shown in Table I.
- a skilled artisan will be able to determine suitable variants of polypeptide using well-known techniques. For identifying suitable areas of the molecule that may be changed without destroying biological activity (i.e., MHC binding, immunogenicity), one skilled in the art may target areas not believed to be important for that activity. For example, when similar polypeptides with similar activities from the same species or from other species are known, one skilled in the art may compare the amino acid sequence of a polypeptide to such similar polypeptides. By performing such analyses, one can identify residues and portions of the molecules that are conserved among similar polypeptides.
- polypeptide variants include glycosylation variants wherein the number and/or type of glycosylation sites have been altered compared to the subject amino acid sequence.
- polypeptide variants comprise a greater or a lesser number of N-linked glycosylation sites than the subject amino acid sequence.
- An N-linked glycosylation site is characterized by the sequence Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X may be any amino acid residue except proline.
- the substitution of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitutions that eliminate this sequence will remove an existing N-linked carbohydrate chain.
- N-linked carbohydrate chains wherein one or more N-linked glycosylation sites (typically those that are naturally occurring) are eliminated and one or more new N-linked sites are created.
- N-linked glycosylation sites typically those that are naturally occurring
- new N-linked sites are created.
- cysteine variants wherein one or more cysteine residues are deleted or substituted with another amino acid (e.g., serine) as compared to the subject amino acid sequence set.
- Cysteine variants are useful when polypeptides must be refolded into a biologically active conformation such as after the isolation of insoluble inclusion bodies, Cysteine variants generally have fewer cysteine residues than the native protein, and typically have an even number to minimize interactions resulting from unpaired cysteines.
- the isolated polypeptides of the current invention include fusion polypeptide segments that assist in purification of the polypeptides. Fusions can be made either at the amino terminus or at the carboxy terminus of the subject polypeptide variant thereof. Fusions may be direct with no linker or adapter molecule or may be through a linker or adapter molecule. A linker or adapter molecule may be one or more amino acid residues, typically from about 20 to about 50 amino acid residues. A linker or adapter molecule may also be designed with a cleavage site for a DNA restriction endonuclease or for a protease to allow for the separation of the fused moieties.
- fusion polypeptides can be derivatized according to the methods described herein.
- Suitable fusion segments include, among others, metal binding domains (e.g., a poly-histidine segment), immunoglobulin binding domains (i.e., Protein A, Protein G, T cell, B cell, Fc receptor, or complement protein antibody-binding domains), sugar binding domains (e.g., a maltose binding domain), and/or a “tag” domain (i.e., at least a portion of ⁇ -galactosidase, a strep tag peptide, a T7 tag peptide, a FLAG peptide, or other domains that can be purified using compounds that bind to the domain, such as monoclonal antibodies).
- metal binding domains e.g., a poly-histidine segment
- immunoglobulin binding domains i.e., Protein A, Protein G, T cell, B cell, Fc receptor, or complement protein antibody-binding domain
- This tag is typically fused to the polypeptide upon expression of the polypeptide, and can serve as a means for affinity purification of the sequence of interest polypeptide from the host cell. Affinity purification can be accomplished, for example, by column chromatography using antibodies against the tag as an affinity matrix.
- the tag can subsequently be removed from the purified sequence of interest polypeptide by various means such as using certain peptidases for cleavage. As described below, fusions may also be made between a TA and a co-stimulatory components such as the chemokines CXC10 (IP-10), CCL7 (MCP-3), or CCL5 (RANTES), for example.
- a fusion motif may enhance transport of an immunogenic target to an MHC processing compartment, such as the endoplasmic reticulum.
- transduction or transcytosis sequences include sequences derived from HIV tat (see Kim et al. 1997 J. Immunol. 159:1666), Drosophila antennapedia (see Schutze-Redelmeier et al. 1996 J. Immunol. 157:650), or human period-1 protein (hPER1; in particular, SRRHHCRSKAKRSHH (SEQ ID NO: 42)).
- polypeptide or variant thereof may be fused to a homologous polypeptide to form a homodimer or to a heterologous polypeptide to form a heterodimer.
- Heterologous peptides and polypeptides include, but are not limited to: an epitope to allow for the detection and/or isolation of a fusion polypeptide; a transmembrane receptor protein or a portion thereof, such as an extracellular domain or a transmembrane and intracellular domain; a ligand or a portion thereof which binds to a transmembrane receptor protein; an enzyme or portion thereof which is catalytically active; a polypeptide or peptide which promotes oligomerization, such as a leucine zipper domain; a polypeptide or peptide which increases stability, such as an immunoglobulin constant region; and a polypeptide which has a therapeutic activity different from the polypeptide or variant thereof.
- a nucleic acid sequence encoding an immunogenic target, polypeptide, or derivative thereof with one or more co-stimulator component(s) such as cell surface proteins, cytokines or chemokines in a composition of the present invention may be included in the composition as a polypeptide or as a nucleic acid encoding the polypeptide, for example.
- suitable co-stimulatory molecules include, for instance, polypeptides that bind members of the CD28 family (i.e., CD28, ICOS; Hutloff et al. Nature 1999, 397: 263-265: Peach, et al. J.
- CD28 binding polypeptides B7.1 CD80; Schwartz, 1992; Chen et al. 1992; Ellis, et al., J. Immunol., 156(8): 2700-9) and B7.2 (CD86; Ellis, et al., J. Immunol., 156(8): 2700-9); polypeptides which bind members of the integrin family (i.e., LFA-1 (CD11a/CD8); Sedwick, et al. J Immunol 1999, 162: 1367-1375; Wülfing, et al. Science 1998, 282: 2266-2269; Lub, et al.
- CD2 family members i.e., CD2, signalling lymphocyte activation molecule (CDw150 or “SLAM”; Aversa, et al. J Immunol 1997, 158: 4036-4044)
- CD58 LFA-3; CD2 ligand; Davis, et al. Immunol Today 1996, 17: 177-187) or SLAM ligands (Sayos, et al. Nature 1998, 395: 462-469); polypeptides which bind heat stable antigen (HSA or CD24; Zhou, et al. Eur J.
- CD154 CD40 ligand or “CD40L”; Gurunathan, et al. J. Immunol. 1998, 161: 4563-4571; Sine, et al. Hum. Gene Ther., 2001, 12: 1091-1102) may also be suitable.
- cytokines may also be suitable co-stimulatory components or “adjuvants”, either as polypeptides or being encoded by nucleic acids contained within the compositions of the present invention (Parmiani, et al. Immunol Lett 2000 Sep. 15; 74(1): 41-4; Berzofsky, et al. Nature Immunol. 1: 209-219).
- Suitable cytokines include, for example, interleukin-2 (IL-2) (Rosenberg, et al. Nature Med. 4: 321-327 (1998)), IL-4, IL-7, IL-12 (reviewed by Pardoll, 1992; Harries, et al. T. Gene Med.
- cytokines may also be suitable for practicing the present invention, as is known in the art.
- Chemokines may also be utilized.
- fusion proteins comprising CXCL10 (IP-10) and CCL7 (MCP-3) fused to a tumor self-antigen have been shown to induce anti-tumor immunity (Biragyn, et al. Nature Biotech. 1999, 17: 253-258).
- the chemokines CCL3 (MIP-1 ⁇ ) and CCL5 (RANTES) (Boyer, et al. Vaccine, 1999, 17 (Supp. 2): S53-S64) may also be of use in practicing the present invention.
- Other suitable chemokines are known in the art.
- any of these components may be used alone or in combination with other agents.
- a combination of CD80, ICAM-1 and LFA-3 (“TRICOM”) may potentiate anti-cancer immune responses (Hodge, et al. Cancer Res. 59: 5800-5807 (1999).
- Other effective combinations include, for example, IL-12+GM-CSF (Alers, et al. J. Immunol., 158: 3947-3958 (1997); Iwasaki, et al. J. Immunol. 158: 4591-4601 (1997)), IL-12-GM-CSF+TNF- ⁇ (Ahlers, et al. Int. Immunol.
- CD80+IL-12 (Fruend, et al. Int. J. Cancer, 85: 508-517 (2000); Rao, et al. supra), and CD86+GM-CSF+IL-12 (Iwasaki, supra).
- CD80+IL-12 Fruend, et al. Int. J. Cancer, 85: 508-517 (2000); Rao, et al. supra
- CD86+GM-CSF+IL-12 Iwasaki, supra.
- Additional strategies for improving the efficiency of nucleic acid-based immunization may also be used including, for example, the use of self-replicating viral replicons (Caley, et alt 1999, Vaccine, 17: 3124-2135; Dubensky, et al. 2000 . Mol. Med. 6: 723-732; Leitner, et al. 2000 . Cancer Res. 60: 51-55), codon optimization (Liu et al 2000 . Mol Ther., 1: 497-500; Dubensky, supra; Huang, et al 2001. J. Virol. 75: 4947-4951), in vivo electroporation (Widera, et al. 2000 . J. Immunol.
- Chemotherapeutic agents radiation, anti-angiogenic compounds, or other agents may also be utilized in treating and/or preventing cancer using immunogenic targets (Sebti, et alt Oncogene 2000 Dec. 27; 19(56):6566-73).
- useful chemotherapeutic agents include cyclophosphamide, doxorubicin, paclitaxel, docetaxel, navelbine, capecitabine, and mitomycin C, among others.
- Combination chemotherapeutic regimens have also proven effective including cyclophosphamide+methotrexate+5-fluorouracil; cyclophosphamide+doxorubicin-5-fluorouracil; or, cyclophosphamide+doxorubicin, for example.
- Other compounds such as prednisone, a taxane, navelbine, mitomycin C, or vinblastine have been utilized for various reasons.
- ER+ estrogen-receptor positive
- endocrine therapy i.e., tamoxifen
- tamoxifen or, as a second line therapy progestins (medroxyprogesterone acetate or megestrol acetate) are preferred.
- Aromatase inhibitors i.e., aminoglutethimide and analogs thereof such as letrozole
- metastatic colorectal cancer is typically treated with Camptosar (irinotecan or CPT-11), 5-fluorouracil or leucovorin, alone or in combination with one another.
- Proteinase and integrin inhibitors such as the MMP inhibitors marimastate (British Biotech), COL-3 (Collagenex), Neovastat (Aeterna), AG3340 (Agouron), BMS-275291 (Bristol Myers Squibb), CGS 27023A (Novartis) or the integrin inhibitors Vitaxin (Medimmune), or MED1522 (Merck KgaA) may also be suitable for use.
- immunological targeting of immunogenic targets associated with colorectal cancer could be performed in combination with a treatment using those chemotherapeutic agents.
- chemotherapeutic agents used to treat other types of cancers are well-known in the art and may be combined with the immunogenic targets described herein.
- agents include, for example, physiological agents such as growth factors (i.e., ANG-2, NK1,2,4 (HGF) transforming growth factor beta (TGF- ⁇ )), cytokines (i.e., interferons such as IFN- ⁇ , - ⁇ , - ⁇ , platelet factor 4 (PF-4), PR-39), proteases (i.e., cleaved AT-III, collagen XVIII fragment (Endostatin)), HmwKallikrein-d5 plasmin fragment (Angiostatin), prothrombin-F1-2, TSP-1), protease inhibitors (i.e., tissue inhibitor of metalloproteases such as TIMP-1, -2, or -3; maspin; plasminogen activator-in
- physiological agents such as growth factors (i.e., ANG-2, NK1,2,4 (HGF) transforming growth factor beta (TGF- ⁇ )), cytokines (i.e., interferons such as IFN- ⁇
- “Chemical” or modified physiological agents known or believed to have anti-angiogenic potential include, for example, viablastine, taxol, ketoconazole, thalidomide, dolestatin, combrestatin A, rapamycin (Guba, et al. 2002 , Nature Med., 8: 128-135), CEP-7055 (available from Cephalon, Inc.), flavone acetic acid, Bay 12-9566 (Bayer Corp.), AG3340 (Agouron, Inc.), CGS 27023A (Novartis), tetracylcine derivatives (i.e., COL-3 (Collagenix, Inc.)), Neovastat (Aeterna).
- BMS-275291 (Bristol-Myers Squibb), low dose 5-FU, low dose methotrexate (MTX), irsofladine, radicicol, cyclosporine, captopril, celecoxib, D45152-sulphated polysaccharide, cationic protein (Protamine), cationic peptide-VEGF, Suramin (polysulphonated napthyl urea), compounds that interfere with the function or production of VEGF (i.e., SU5416 or SU6668 (Sugen) PTK787/ZK22584 (Novartis)), Distamycin A, Angiozyme (ribozyme), isoflavinoids, staurosporine derivatives, genistein, EMD121974 (Merck KcgaA), tyrphostins, isoquinolones, retinoic acid, carboxyamidotriazole, TNP-470, octreotide
- Rh-Endostatin (WO 01/93897), cyclic-RGD peptide, accutin-disintegrin, benzodiazepenes, humanized anti-avb3 Ab, Rh-PAI-2, amiloride, p-amidobenzamidine, anti-uPA ab, anti-uPAR Ab L-phanylalanin-N-methyl amides (i.e., Batimistat, Marimastat), AG3340, and minocycline. Many other suitable agents are known in the art and would suffice in practicing the present invention.
- the present invention may also be utilized in combination with “non-traditional” methods of treating cancer.
- “non-traditional” methods of treating cancer For example, it has recently been demonstrated that administration of certain anaerobic bacteria may assist in slowing tumor growth.
- Clostridium novyi was modified to eliminate a toxin gene carried on a phage episome and administered to mice with colorectal tumors (Dang, et al. P.N.A.S. USA, 98(26): 15155-15160, 2001).
- the treatment was shown to cause tumor necrosis in the animals.
- the reagents and methodologies described in this application may be combined with such treatment methodologies.
- Nucleic acids encoding immunogenic targets may be administered to patients by any of several available techniques.
- Various viral vectors that have been successfully utilized for introducing a nucleic acid to a host include retrovirus, adenovirus, adeno-associated virus (AAV), herpes virus, and poxvirus, among others. It is understood in the art that many such viral vectors are available in the art.
- the vectors of the present invention may be constructed using standard recombinant techniques widely available to one skilled in the art. Such techniques may be found in common molecular biology references such as Molecular Cloning: A Laboratory Manual (Sambrook, et al., 1989, Cold Spring Harbor Laboratory Press), Gene Expression Technology (Methods in Enzymology, Vol. 185, edited by D. Goeddel, 1991. Academic Press, San Diego, Calif.), and PCR Protocols: A Guide to Methods and Applications (Innis, et al. 1990. Academic Press, San Diego, Calif.).
- retroviral vectors are derivatives of lentivirus as well as derivatives of murine or avian retroviruses.
- suitable retroviral vectors include, for example, Moloney murine leukemia virus (MoMuLV), Harvey murine sarcoma virus (HaMuSV), murine mammary tumor virus (MuMTV), SIV, BIV, HIV and Rous Sarcoma Virus (RSV).
- MoMuLV Moloney murine leukemia virus
- HaMuSV Harvey murine sarcoma virus
- MuMTV murine mammary tumor virus
- SIV BIV
- HIV Rous Sarcoma Virus
- retroviral vectors can incorporate multiple exogenous nucleic acid sequences. As recombinant retroviruses are defective, they require assistance in order to produce infectious vector particles. This assistance can be provided by, for example, helper cell lines encoding retrovirus structural genes.
- Suitable helper cell lines include ⁇ 2, PA317 and PA12, among others.
- the vector virions produced using such cell lines may then be used to infect a tissue cell line, such as NIH 3T3 cells, to produce large quantities of chimeric retroviral virions.
- Retroviral vectors may be administered by traditional methods (i.e., infection) or by implantation of a “producer cell line” in proximity to the target cell population (Culver, K., et al., 1994 , Hum. Gene Ther., 5 (3): 343-79; Culver, K., et al, Cold Spring Harb. Symp. Quant. Biol., 59: 685-90); Oldfield, E., 1993 , Hum.
- the producer cell line is engineered to produce a viral vector and releases viral particles in the vicinity of the target cell. A portion of the released viral particles contact the target cells and infect those cells, thus delivering a nucleic acid of the present invention to the target cell. Following infection of the target cell, expression of the nucleic acid of the vector occurs.
- Adenoviral vectors have proven especially useful for gene transfer into eukaryotic cells (Rosenfeld, M., et al, 1991 , Science, 252 (5004): 431-4; Crystal, R., et al., 1994 , Nat. Genet., 8 (1): 42-51), the study eukaryotic gene expression (Levrero, M., et al., 1991 , Gene, 101 (2): 195-202), vaccine development (Graham, F. and Prevec, L., 1992 , Biotechnology, 20: 363-90), and in animal models (Stratford-Perricaudet, L., et al., 1992 , Bone Marrow Transplant., 9 (Suppl.
- Adeno-associated virus demonstrates high-level infectivity, broad host range and specificity in integrating into the host cell genome (Hermonat, P., et al., 1984 , Proc. Natl. Acad. Sci. U.S.A., 81 (20): 6466-70).
- Herpes Simplex Virus type-1 HSV-1
- HSV-1 Herpes Simplex Virus type-1 is vet another attractive vector system, especially for use in the nervous system because of its neurotropic property (Geller, A., et al., 1991 , Trends Neurosci., 14 (10): 428-32; Glorioso, et al., 1995 , Mol. Biotechnol., 4 (1): 87-99; Glorioso, et al., 1995 , Annu. Rev. Microbiol., 49: 675-710).
- Poxvirus is another useful expression vector (Smith, et al. 1983, Gene, 25 (1): 21-8: Moss, et al, 1992 , Biotechnology, 20: 345-62; Moss, et al, 1992 , Curr. Top. Microbiol. Immunol., 158: 25-38: Moss, et al. 1991 . Science, 252: 1662-1667).
- Poxviruses shown to be useful include vaccinia, NYVAC, avipox, fowlpox, canarypox, ALVAC, and ALVAC(2), among others.
- NYVAC (vP866) was derived from the Copenhagen vaccine strain of vaccinia virus by deleting six nonessential regions of the genome encoding known or potential virulence factors (see, for example, U.S. Pat. Nos. 5,364,773 and 5,494,807). The deletion loci were also engineered as recipient loci for the insertion of foreign genes.
- the deleted regions are: thymidine kinase gene (TK; J2R); hemorrhagic region (u; B13R+B14R); A type inclusion body region (ATI; A26L); hemagglutinin gene (HA; A56R); host range gene region (C7L-K1L); and, large subunit, ribonucleotide reductase (I4L).
- TK thymidine kinase gene
- u thymidine kinase gene
- ATI thymidine kinase gene
- HA hemagglutinin gene
- C7L-K1L host range gene region
- I4L large subunit, ribonucleotide reductase
- NYVAC (vP866), vP994, vCP205, vCP1433, placZH6H4Lreverse, pMPC6H6K3E3 and pC3H6FHVB were also deposited with the ATCC under the terms of the Budapest Treaty, accession numbers VR-2559, VR-2558, VR-2557, VR-2556, ATCC-97913, ATCC-97912, and ATCC-97914, respectively.
- ALVAC-based recombinant viruses i.e., ALVAC-1 and ALVAC-2 are also suitable for use in practicing the present invention (see, for example, U.S. Pat. No. 5,756,103).
- ALVAC(2) is identical to ALVAC(1) except that ALVAC(2) genome comprises the vaccinia E3L and K3L genes under the control of vaccinia promoters (U.S. Pat. No. 6,130,066; Beattie et al., 1995a, 1995b, 1991; Chang et al., 1992; Davies et al., 1993).
- ALVAC(1) and ALVAC(2) have been demonstrated to be useful in expressing foreign DNA sequences, such as TAs (Tartaglia et al., 1993 a,b; U.S. Pat. No. 5,833,975).
- ALVAC was deposited under the terms of the Budapest Treaty with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209, USA, ATCC accession number VR-2547.
- TROVAC refers to an attenuated fowlpox that was a plaque-cloned isolate derived from the FP-1 vaccine strain of fowlpoxvirus which is licensed for vaccination of 1 day old chicks. TROVAC was likewise deposited under the terms of the Budapest Treaty with the ATCC, accession number 2553.
- Non-viral plasmid vectors may also be suitable in practicing the present invention.
- Preferred plasmid vectors are compatible with bacterial, insect, and/or mammalian host cells.
- Such vectors include, for example, PCR-II, pCR3, and pcDNA3.1 (Invitrogen, San Diego, Calif.), pBSII (Stratagene, La Jolla, Calif.), pET15 (Novagen, Madison, Wis.), pGEX (Pharmacia Biotech, Piscataway, N.J.), pEGFP-N2 (Clontech. Palo Alto, Calif.), pETL (BlueBacII, Invitrogen), pDSR-alpha (PCT pub.
- vectors include, for example, Shigella, Salmonella, Vibrio cholerae, Lactobacillus, Bacille calmette conditioningn (BCG) and Streptococcus (see for example, WO 88/6626; WO 90/0594; WO 91/13157; WO 92/1796; and WO 92/21376).
- BCG Bacille calmette conditioning
- Streptococcus see for example, WO 88/6626; WO 90/0594; WO 91/13157; WO 92/1796; and WO 92/21376).
- Many other non-viral plasmid expression vectors and systems are known in the art and could be used with the current invention.
- Suitable nucleic acid delivery techniques include DNA-ligand complexes, adenovirus-ligand-DNA complexes, direct injection of DNA, CaPO 4 precipitation, gene gun techniques, electroporation, and colloidal dispersion systems, among others.
- Colloidal dispersion systems include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes.
- the preferred colloidal system of this invention is a liposome, which are artificial membrane vesicles useful as delivery vehicles in vitro and in vivo, RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, R., et al., 1981 , Trends Biochem. Sci., 6: 77).
- the composition of the liposome is usually a combination of phospholipids, particularly high-phase-transition-temperature phospholipids, usually in combination with steroids, especially cholesterol. Other phospholipids or other lipids may also be used.
- the physical characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations.
- lipids useful in liposome production include phosphatidyl compounds, such as phosphatidylglycerol, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingolipids, cerebrosides, and gangliosides. Particularly useful are diacylphosphatidylglycerols, where the lipid moiety contains from 14-18 carbon atoms, particularly from 16-18 carbon atoms, and is saturated.
- Illustrative phospholipids include egg phosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine.
- An immunogenic target may also be administered in combination with one or more adjuvants to boost the immune response.
- adjuvants are shown in Table II below:
- coli labile toxin (LT)(Freytag and Clements, 1999) Endotoxin-based adjuvants Monophosphoryl lipid A (MPL) (Ulrich and Myers, 1995) Other bacterial CpG oligomicleotides (Corral and Petray, 2000), BCG sequences (Krieg, et al, Nature , 374: 576), tetanus toxoid (Rice, et al, J.
- the immunogenic targets of the present invention may also be used to generate antibodies for use in screening assays or for immunotherapy. Other uses would be apparent to one of skill in the art.
- the term “antibody” includes antibody fragments, as are known in the art, including Fab, Fab 2 , single chain antibodies (Fv for example), humanized antibodies, chimeric antibodies, human antibodies, produced by several methods as are known in the art. Methods of preparing and utilizing various types of antibodies are well-known to those of skill in the art and would be suitable in practicing the present invention (see, for example, Harlow, et al. Antibodies: A Laboratory Manual , Cold Spring Harbor Laboratory, 1988; Harlow, et al. Using Antibodies: A Laboratory, Manual, Portable Protocol No.
- the antibodies or derivatives therefrom may also be conjugated to therapeutic moieties such as cytotoxic drugs or toxins, or active fragments thereof such as diptheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin, among others. Cytotoxic agents may also include radiochemicals. Antibodies and their derivatives may be incorporated into compositions of the invention for use in vitro or in vivo.
- Nucleic acids, proteins, or derivatives thereof representing an immunogenic target may be used in assays to determine the presence of a disease state in a patient, to predict prognosis, or to determine the effectiveness of a chemotherapeutic or other treatment regimen.
- Expression profiles may be used to determine the relative level of expression of the immunogenic target. The level of expression may then be correlated with base levels to determine whether a particular disease is present within the patient, the patient's prognosis, or whether a particular treatment regimen is effective.
- nucleic acid probes corresponding to a nucleic acid encoding an immunogenic target may be attached to a biochip, as is known in the art, for the detection and quantification of expression in the host.
- nucleic acids, proteins, derivatives therefrom, or antibodies thereto may be used to ascertain the effect of a drug candidate on the expression of the immunogenic target in a cell line, or a cell or tissue of a patient.
- the expression profiling technique may be combined with high throughput screening techniques to allow rapid identification of useful compounds and monitor the effectiveness of treatment with a drug candidate (see, for example, Zlokarnik, et al., Science 279, 84-8 (1998)).
- Drug candidates may be chemical compounds, nucleic acids, proteins, antibodies, or derivatives therefrom, whether naturally occurring or synthetically derived. Drug candidates thus identified may be utilized, among other uses, as pharmaceutical compositions for administration to patients or for use in further screening assays.
- compositions of the present invention may be accomplished using any of a variety of techniques known to those of skill in the art.
- the composition(s) may be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals (i.e., a “pharmaceutical composition”).
- the pharmaceutical composition is preferably made in the form of a dosage unit containing a given, amount of DNA, viral vector particles, polypeptide or peptide, for example.
- a suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.
- compositions of the present invention may be administered orally, parentally, by inhalation spray, rectally, intranodally, or topically in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles.
- pharmaceutically acceptable carrier or “physiologically acceptable carrier” as used herein refers to one or more formulation materials suitable for accomplishing or enhancing the delivery of a nucleic acid, polypeptide, or peptide as a pharmaceutical composition.
- a “pharmaceutical composition” is a composition comprising a therapeutically effective amount of a nucleic acid or polypeptide.
- effective amount and “therapeutically effective amount” each refer to the amount of a nucleic acid or polypeptide used to induce or enhance an effective immune response. It is preferred that compositions of the present invention provide for the induction or enhancement of an anti-tumor immune response in a host which protects the host from the development of a tumor and/or allows the host to eliminate an existing tumor from the body.
- the pharmaceutical composition may be of any of several forms including, for example, a capsule, a tablet, a suspension, or liquid, among others.
- Liquids may be administered by injection as a composition with suitable carriers including saline, dextrose, or water.
- suitable carriers including saline, dextrose, or water.
- parenteral as used herein includes subcutaneous, intravenous, intramuscular, intrasternal, infusion, or intraperitoneal administration.
- Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature.
- the dosage regimen for immunizing a host or otherwise treating a disorder or a disease with a composition of this invention is based on a variety of factors, including the type of disease, the age, weight, sex, medical condition of the patient, the severity of the condition, the route of administration, and the particular compound employed.
- a poxviral vector may be administered as a composition comprising 1 ⁇ 10 6 infectious particles per dose.
- the dosage regimen may vary widely, but can be determined routinely using standard methods.
- a prime-boost regimen may also be utilized (see, for example, WO 01/30382 A1) in which the targeted immunogen is initially administered in a priming step in one form followed by a boosting step in which the targeted immunogen is administered in another form.
- the form of the targeted immunogen in the priming and boosting steps are different.
- the priming step utilized a nucleic acid
- the boost may be administered as a peptide.
- the boost step may utilize another type of virus (i.e., NYVAC).
- This prime-boost method of administration has been shown to induce strong immunological responses.
- compositions of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more other compositions or agents (i.e., other immunogenic targets, co-stimulatory molecules, adjuvants).
- other compositions or agents i.e., other immunogenic targets, co-stimulatory molecules, adjuvants.
- the individual components can be formulated as separate compositions administered at the same time or different times, or the components can be combined as a single composition.
- Injectable preparations such as sterile injectable aqueous or oleaginous suspensions, may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents.
- the injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent.
- Suitable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution, among others.
- a viral vector such as a poxvirus may be prepared in 0.4% NaCl.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil may be employed, including synthetic mono- or diglycerides.
- fatty acids such as oleic acid find use in the preparation of injectables.
- a suitable topical dose of a composition may be administered one to four, and preferably two or three times daily. The dose may also be administered with intervening days during which no does is applied.
- Suitable compositions may comprise from 0.001% to 10% w/w, for example, from 1% to 2% by weight of the formulation, although it may comprise as much as 10% w/w, but preferably not more than 5% w/w, and more preferably from 0.1% to 1% of the formulation.
- Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin (e.g., liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose.
- the pharmaceutical compositions may also be prepared in a solid form (including granules, powders or suppositories).
- the pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc.
- Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules.
- the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch.
- Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate.
- additional substances other than inert diluents e.g., lubricating agents such as magnesium stearate.
- the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
- Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water.
- Such compositions may also comprise adjuvants, such as wetting sweetening, flavoring, and perfuming agents.
- compositions comprising a nucleic acid or polypeptide of the present invention may take any of several forms and may be administered by any of several routes.
- the compositions are administered via a parenteral route (intradermal, intramuscular or subcutaneous) to induce an immune response in the host.
- the composition may be administered directly into a lymph node (intranodal) or tumor mass (i.e., intratumoral administration).
- the dose could be administered subcutaneously at days 0, 7, and 14.
- Suitable methods for immunization using compositions comprising TAs are known in the art, as shown for p53 (Hollstein et al., 1991), p21-ras (Almoguera et al., 1988), HER-2 (Fendly et al., 1990), the melanoma-associated antigens (MAGE-1; MAGE-2) (van der Bruggen et al, 1991), p97 (Hu et al., 1988), melanoma-associated antigen E (WO 99/30737) and carcinoembryonic antigen (CEA) (Kantor et al., 1993; Fishbein et al, 1992; Kaufman et al., 1991), among others.
- Preferred embodiments of administratable compositions include, for example, nucleic acids or polypeptides in liquid preparations such as suspensions, syrups, or elixirs.
- Preferred injectable preparations include, for example, nucleic acids or polypeptides suitable for parental, subcutaneous, intradermal, intramuscular or intravenous administration such as sterile suspensions or emulsions.
- a recombinant poxvirus may be in admixture with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, glucose or the like.
- the composition may also be provided in lyophilized form for reconstituting, for instance, in isotonic aqueous, saline buffer.
- compositions can be co-administered or sequentially administered with other antineoplastic, anti-tumor or anti-cancer agents and/or with agents which reduce or alleviate ill effects of antineoplastic, anti-tumor or anti-cancer agents.
- kits comprising a composition of the present invention.
- the kit can include a separate container containing a suitable carrier, diluent or excipient.
- the kit can also include an additional anti-cancer, anti-tumor or antineoplastic agent and/or an agent that reduces or alleviates ill effects of antineoplastic, anti-tumor or anti-cancer agents for co- or sequential-administration.
- the kit can include instructions for mixing or combining ingredients and/or administration.
- AAC2-1 A version of the AAC2 coding sequence (AAC2-1) was provided by a collaborator and found to have high sequence similarity to a murine bcl-6-associated zinc finger protein (“BAZF”). Based on this sequence information, PCR primers were designed as shown below:
- the cDNA pEF6-hAAC2-2 was sequenced using four primers and aligned to the sequence of AAC2-1 and murine BAZF ( FIG. 1 ). As shown therein, AAC2-2 is missing the serine residue (S) found at position 245 in AAC2-1. Secondly, a stretch of 17 amino acids at positions 298 to 316 (SEFFSCQNCEAVAGCSS) of AAC2-2 showed only 11.8% sequence identity with amino acids 298-316 of AAC2-1 ( FIG. 1 ). Interestingly, the stretch of 17 amino acids between positions 298 and 316 is 100% identical with murine BAZF suggesting that this may be critical for transcription factor function along with the long stretch of serines (zinc finger). AAC2-2 was then cloned into the pcDNA3.1-zeo eukaryotic expression plasmid (“pcDNA3.1-hAAC2-2”).
- DC dendritic cells
- Peptide group 6 includes the following peptides: ILTDVTLLV (aa 36-44), TLLVGGQPL (aa 41-49), and FMYTSRLRL (aa 95-103).
- Flow cytometric analysis showed that the lymphocytes from this peptide-specific line consisted of >50% CD8 T cells with a memory (CD45RO + ) phenotype. Very few cells ( ⁇ :2%) were stained with anti-CD56 antibodies, indicating that the observed IFN- ⁇ production was not due to NK cell activity.
- the AAC2 gene product administered as a DNA-based vaccine is immunogenic in vivo and elicits a strong cell-mediated immune response characterized by the activation of CTL activity.
- mice were subcutaneously challenged with 10 4 B16F10 melanoma cells, a vigorous and relatively non-immunogenic tumor cell line. The mice were then immunized at weekly intervals starting at 6 days after tumor challenge. Control mice (eight per group) treated either with a plasmid encoding the flu-NP protein or saline alone all developed large tumors. In contrast, all the mice (8/8) immunized with pIF6-hA-AC2-2 had no detectable tumor over a 50-day period ( FIG. 4 ).
- FIG. 5 plots the survival of mice treated with the different DNA vectors shown after melanoma implantation showing again the complete effectiveness of AAC2-2 vaccination in protecting mice against melanoma growth. No adverse health effects have been observed as a result of immunization with the human AAC2-2 gene-encoding vector (immunized mice were as active as control mice and showed no weight loss).
- the BFA4 sequence was found to be the “trichorhinophalangeal syndrome 1” (TRPS-1) gene (Genebank ID #6684533; Momeniet et al, Nature Genetics, 24(1), 71-74, 2000), a known transcription factor with no function attributed previously in any form of cancer.
- TRPS-1 trichorhinophalangeal syndrome 1
- the BFA4 cDNA sequence is shown in FIG. 7 (SEQ ID NO.: 28) and the deduced amino acid sequence is shown in FIG. 8 (SEQ ID NO.: 29)
- the pcDNA3.2BFA4 (3.6 mg) was also used for DNA immunization to generate polyclonal sera in chickens.
- Primer 7717 BFA4-BamH1/F1 (5′ end forward) with Kozak: (SEQ ID NO.: 84) 5′ CGGGATCCACCATGGTCCGGAAAAAGAACCCC 3′ (BamHI for DNA3.1, MP76)
- Primer 7723 BFA4-BamHI/R1 (3′ end reverse 4 kb): (SEQ ID NO.: 85) 5′ CGGGATCCCTCTTTAGGTTTTCCATTTTTTTCCAC 3′ (BamHI for DNA3.1, MP76)
- RNA/polyA mRNA (BT 474 cells). Optimization resulted in a 4.0 kb fragment as a single band.
- mRNA was treated with DNase per manufacturers' instructions (Gibco BRL).
- the 4 kb DNA was reamplified using PCR using primers 7717 and 7723 primers (10 pmole/microlitre) and Taq Platinum High Fidelity polymerase (GIBCO BRL) enzyme.
- Thermocycler conditions for both sets of reactions were as under: 94° C. (2 min), followed by 30 cycles of 94° C. (30 sec), 52° C. (30 sec), 67° C. (4 min) and 67° C. (5 min) and finally 40° C. for 10 min.
- Three BFA4 clones were identified after pCR2.1/TOPO-TA cloning.
- Nucleotide 344 of the isolated BFA4 clone was different from the reported sequence (C in BFA4, T in TRPS-1). The change resulted in a phe to ser amino acid change.
- the EcoRI/BglII fragment (5′) of the BFA4 gene from clone JIB-3552-1-2 was subcloned into pUC8:2 to generate clone JB-3631-2.
- This clone was used as a template for Quickchange (Stratagene) mutagenesis to change amino acid 115 of the BFA4 protein from a serine to a phenylalanine as in the TRPS1 protein.
- the selected clone was JB-3648-2-3. Mutagenesis was also repeated with pMCS5 BFA4 (BT474) as a template for Quickchange (Stratagene) mutagenesis to change amino acid 115 of the BFA4 protein from a serine to a phenylalanine as in the TRPS1 protein. Several clones were found to be correct by DNA sequencing and one of the clones (JB-3685-1-18) was used for further subcloning.
- JB-3685-1-18 was then used to subclone the BFA4 coding sequence into the BamHI sites of four different expression vectors: 1) the poxviral (NYVAC) vector pSD554VC (COPAK/H6; JB-3707-1-7); 2) pcDNA3.1/Zeo (+) (JB-3707-3-2); 3) pCAMycHis (JB-3707-5-1); and, 4) Semiliki Forest virus alphaviral replicon vector pMP176 (JB-3735-1-23).
- the BFA4 coding sequence within JB-3707-1-7, JB-3707-5-1, and JB-3735-1-23 was confirmed by DNA sequencing.
- a stop codon was introduced near the end of the cloned sequence in the pcDNA3.1/Zeo/BFA4 construct (JB-3707-3-2).
- a unique EcoRI site was opened and filled in to introduce a stop codon in-frame with BFA4 coding sequence.
- Several putative clones were identified by the loss of EcoRI site, however three clones (JB-3756-1-2; JB-3756-3-1; and JB-3756-4-1) were sequenced. All three were found to be correct in the area of the fill-in. Clone JB-3756-3-1 identified as having the correct sequence and orientation.
- Myc and myc/his tags were introduced using oligonucleotides, which were annealed and ligated into the pcDNA3.1/Zeo/BFA4 construct (JB-3707-3-2) at the EcoRI/EcoRV sites.
- oligonucleotides which were annealed and ligated into the pcDNA3.1/Zeo/BFA4 construct (JB-3707-3-2) at the EcoRI/EcoRV sites.
- Several clones were obtained for these constructs. Three clones having the correct sequences and orientations were obtained: 1) PcDNA3.1/Zeo/BFA4/myc-tag (JB-3773-1-2); 2) PcDNA3.1/Zeo/BFA4/mychis-tag (JB-3773-2-1); and, 3) PcDNA3.1 Zeo/BFA4/mychis-tag (JB-3773-2-2).
- the pSD554VC (COPAK/H6; JB-3707-1-7) vector was used to generate NYVAC-BFA4 virus.
- In vitro recombination was performed with plasmid COPAK/H6/BFA4 and NYVAC in RK13/CEF cells.
- NYVAC-BFA4 (vP2033-NYVAC-RK13) was generated and amplified to P3 level after completion of three enrichments with final stock concentrations of 1.12 ⁇ 10 9 /ml (10 ml), Vero cells were infected with NYVAC-BFA4 at an M.O.I. of 0.5 pfu/cell. Lysates and media were harvested 24 h post-infection to confirm expression of BFA4 protein.
- BFA4 expression plasmids (5 ⁇ g and 10 ⁇ g) were co-transfected with pGL3 Luciferase (1 ⁇ g) (Promega) with the Gene porter reagent (Gene Therapy Systems) as the transfection reagent.
- This vector contains the tac promoter followed by the N-terminal glutathione S-transferase (GST ⁇ 26 kDa) and a hexahistidine tag to C terminus of the GST fusion protein.
- the BFA4-N54 expression plasmid was transformed into BL21 cells and grown at 25° C. in antibiotic selection medium (2 L culture) to an OD (600 nm) and thereafter induced with 1 mM IPTG.
- the recombinant protein was purified by gluathione-Sepharose was absorbed on a NiNTA column for further purification. The bound protein was eluted with 0.25M imidazole. The protein was dialyzed versus TBS containing 40% Glycerol, resulting in 4.5 mg GST-BFA4-N54-6 His (N terminus BFA4 protein) protein. Expression of BFA4 was confirmed using the rabbit anti-BFA4 polyclonal antibody by western blot.
- the BFA4 peptides were grouped into different pools of 7-10 peptides for immunological testing. Dissolved peptide pools were pulsed onto autologous HLA-A*0201 dendritic cells and used to activate autologous T-cell-enriched PBMC preparations. Activated T cells from each peptide-pool-stimulated culture were re-stimulated another 3 to 5 times using CD40L-activated autoloous B-cells. IFN- ⁇ ELISPOT analysis and assays for CTL killing of peptide-pulsed target cells was performed to demonstrate the immunogenicity of these epitopes from BFA4.
- the pcDNA3.1/Zeo-BFA4 plasmid was used to immunize transgenic mice expressing a hybrid HLA-A*0201 ⁇ 1 ⁇ 2 domain fused to a murine Kb ⁇ 3 domain in C57BL/6 mice (A2-Kb mice).
- IFN- ⁇ ELISPOT analysis using the groups of pooled peptides after DNA immunization and removal of activated spleen cells revealed a number of reactive BFA4 peptide groups. Some of these groups (especially group 7 and 8) also reacted strongly in human T-cell cultures suggesting that overlapping groups of peptides are recognized by human T cells and are naturally processed and presented on HLA-A2 after vaccination.
- Vaccination experiments were also performed with the NYVAC-BFA4 and the MP76-18-BFA4 vectors in A2-Kb mice.
- Mice were immunized subcutaneously with 10-20 ⁇ g of MP-76-18-BFA4 and 1-2 ⁇ 10 7 pfu vP2033 (NYVAC-BFA4) and boosted 28 days later with the same amounts of each vector.
- Re-stimulation of spleen cells from the immunized mice with the pools of BFA4 peptides revealed induction of IFN- ⁇ production in response to BFA4 peptide groups 2, 3, 4, 5, 7, 9, and 10 in ELISPOT assays.
- the BFA4 gene encoded in a CMV promoter driven eukaryotic plasmid, NYVAC, or a Semliki replicase-based DNA plasmid were all capable of inducing T-cell responses against the BFA4 protein in vivo.
- the BCY1 gene was detected as a partial open reading frame (ORF) homologous to a nematode gene called “posterior-expressed maternal gene-3” (PEM-3) playing a role in posterior to anterior patterning in Caenorhabtidis elegans embryos. No previous involvement of this gene in cancer has been documented.
- ORF open reading frame
- PEM-3 posterior-expressed maternal gene-3
- a partial DNA sequence was originally determined for BCY1.
- Primers, 9616SXC and 9617SXC are derived from the BCY 1 partial DNA sequence and are designed to clone BCY 1 by RT-PCR from Calu 6 total RNA.
- the primers were designed such that the PCR product has BamHI sites at both ends and an ATG start codon and a Kozak sequence at the 5′ end, as shown below:
- 9616SXC (SEQ ID NO.: 183) 5′ CAGTACGGATCCACCATGGCCGAGCTGCGCCTGAAGGGC 3′ 9617SXC: (SEQ ID NO.: 184) 5′ CCACGAGGATCCTTAGGAGAATATTCGGATGGCTTGCG 3′
- the 1.2 Kb expected amplicon was obtained using ThermoScript RT-PCR System (Invitrogen) under optimized conditions.
- the PCR products from three separate RT-PCR's were digested with BamHI and respectively inserted in pcDNA3.1/Zeo(+).
- the resulting clones were MC50A6, MC50A8 and MC50A19 from the first RT-PCR; MC54.21 from the second RT-PCR and MC55.29; and, MC55.32 from the third RT-PCR.
- the following primers were utilized in sequencing the clones:
- 9620MC (SEQ ID NO.: 185) 5′ TAATACGACTCACTATAGGG 3′ 9621MC: (SEQ ID NO.: 186) 5′ TAGAAGGCACAGTCGAGG 3′ 9618MC: (SEQ ID NO.: 187) 5′ GAAAACGACTTCCTGGCGGGGAG 3′ 9619MC: (SEQ ID NO.: 188) 5′ GCTCACCCAGGCGTGGGGCCTC 3′
- DNA sequencing of all six clones indicated a consensus sequence (SEQ ID NO.: 30), as shown in FIGS. 9A and 9B , having the following differences from the original partial BCY1 sequence: a C to G substitution at position 1031 resulting in an amino acid change of Ala to Gly; a GC deletion at position 1032-1034 resulting in a Thr deletion; and, an A to G substitution at position 1177 resulting in an amino acid change of Thr to Ala.
- Clones MC50A8 and MC55.29 are identical to the consensus sequence.
- the amino acid sequence of BCY1 is shown in FIG. 98B and (SEQ ID NO.: 31).
- the library of 100 peptides from BCY1 was separated into 10 groups of 7-10 peptides for immunological testing. Dissolved peptide pools were pulsed onto autologous HLA-A*0201 dendritic cells and used to activate autologous T-cell-enriched PBMC preparations. Activated T cells from each peptide-pool-stimulated culture were re-stimulated another 3 to 5 times using CD40L-activated autologous B-cells. IFN- ⁇ ELISPOT analysis and assays for CTL killing of peptide-pulsed target cells was performed to demonstrate the immunogenicity of these epitopes from BCY1.
- Human T cells demonstrated effector cell activity against a number of pools of peptides from the BCY 1 protein, as shown by their ability to secrete IFN- ⁇ in ELISPOT assays. These experiments were repeated after different rounds of APC stimulation resulting in the same reactive peptide groups. Peptide groups 1, 2, 3, 4, 5, 6, and 7 were found to be immunoreactive in these assays. Subsequently, these reactive peptide groups were de-convoluted in additional IFN- ⁇ ELISPOT assays in which single peptides from each group were tested separately. This analysis revealed a number of individual strongly reactive peptides from the BCY1 protein recognized by human T cells ( FIG. 10 ). Many of these single peptides also induced CTL activity killing peptide-loaded human T2 lymphoma cell targets. Table IX lists these peptides.
- Microarray profiling analysis indicated that BFA5 was expressed at low to high levels in 41 out of 54 breast tumor biopsy samples (76%) and at high levels in 31 out of 54 breast tumors (57%), as compared to a panel of 52 normal, non-tumor tissues.
- In situ hybridization (ISH) was performed using a series of BFA5 DNA probes and confirmed the microarray with at least 61% of the tumors showing fairly strong signals. Further bioinformatics assessment confirmed the results of these gene expression analysis results.
- BFA5 is specifically expressed in mammary gland, being expressed in 12/19 breast tumors analyzed.
- the structure of the BFA5/NYBR-1 gene has revealed that it encodes a 150-160 kD nuclear transcription factor with a bZIP site (DNA-binding domain followed by a leucine zipper motif).
- the gene also contains 5 tandem ankyrin repeats implying a role in protein-protein interactions. These ankyrin repeats may play a role in homo-dimerization of the protein.
- the BFA5 cDNA sequence is shown in FIG. 11 and SEQ ID NO.: 32.
- the BFA5 amino acid sequence is shown in FIG. 12 and SEQ ID NO.: 33.
- a library of 100 peptides from the BFA5/NYBR-11 coding sequence that are predicted to be medium to high binders to HLA-A*0201 were designed using Rammensee and Parker algorithms.
- the library was sub-divided into 10 pools of ten peptides (see Table XI), and each pool was used to activate 10 different T cell cultures after pulsing peptides on to mature autologous dendritic cells.
- Two experiments were performed with the library of BFA5/NYBR-1 peptides demonstrating immunoreactivity in HLA-A*0201 human T cells, as described below.
- ELISPOT analysis was performed on human T-cell cultures activated through four rounds of stimulation with each pool of BFA5 peptides.
- the numbers under the X-axis indicate the number of each peptide pool (1-10).
- Reactivity against a CMV pp65 peptide and a Flu matrix peptide were used as positive controls for T-cell activation in the experiments.
- Each experiment was performed with PBMC and dendritic cells from a single HLA-A*0201 + donor designated as “AP10”. The results show that, although BFA4 is markedly reactive with high ELISPOT counts per 100,000 cells in the assay, BFA5 is even more reactive with 9/10 pools demonstrating ELISPOT reactivity.
- BFA5 is highly immunogenic with several reactive single peptides than that of BFA4. Similar results were obtained in two independent PBMC culture experiments.
- human T cells activated by BFA5 peptides were assayed to determine their ability to function as CTL.
- the cells were activated using peptide-pulsed dendritic cells followed by CD40 ligand-activated B cells (5 rounds of stimulation).
- the experiment shown was performed with isolated PBMC from HLA-A*0201 + donor AP31.
- Isolated T cells were tested in 51 Cr-release assays using peptide-loaded T2 cells. The % specific lysis at a 10:1, 5:1, and 1:1 T-cell to target ratio is shown for T2 cells pulsed with either pools of BFA5/NYBR-1 peptides or with individual peptides.
- the graph shows CTL activity induced against targets loaded with a c non-specific HLA-A*0201-binding HIV peptide (control) followed by the CTL activity against the peptide pool (Pool 1 etc.) and then the activity induced by individual peptides from the respective pool to the right.
- a high level of cytotoxicity was observed for some peptides at a 1:1 E:T ratio.
- CTL activity (percent specific lysis) induced by the control HIV peptide was generally ⁇ 10%. Similar results were obtained with another PBMC donor expressing HLA-A*0201 (AP10).
- FIG. 13C shows that a large number of BFA5 peptides trigger T cell-mediated cytotoxicity of BFA5 peptide-loaded target cells.
- Table XI lists those peptides having immunogenic properties. Five peptides (LMDMQTFKA, ILIDSGADI, ILSVVAKLL, SQYSGQLKV, and ELCSVRLTL) were found to induce both IFN- ⁇ secretion and CTL activity in T cells from both donors.
- Prebleed samples from rabbits were processed and stored at ⁇ 20° C. Rabbits were immunized as follows: 1) the peptides were administered as an emulsion with Freund's Complete Adjuvant (FCA); and, 2) two weeks later, the peptides were coupled with Keyhole-Limpet Hemocyanin (KLH)-coupled and administered as an emulsion with Freund's Incomplete Adjuvant FIA. The following results were observed:
- IgG titer ⁇ 10 5 (after IgG titer ⁇ 10 5 (after second first Immunization Immunization Peptide/protein Rb1/Rb2) Rb1/Rb2) CLP 2977 25/6 256/64 CLP 2978 25/25 64/256 CLP 2979 12/25 256/512 CLP 2980 25/12 1024/128 CLP 2981 8/4 256/64 CLP 2982 2/2 64/32
- the BCZ4 sequence was detected as an over-expressed sequence in breast cancer samples.
- the nucleotide sequence and deduced amino acid sequence of BCZ4 are shown in FIG. 14 , SEQ ID NO. 34 (BCZ4 cDNA), and SEQ ID NO. 35 (BCZ4 amino acid sequence).
- Human PBMC from an HLA-A2.1 positive donor designated AP10 were activated with autologous dendritic cells pulsed with different pools of 9-mer peptides from the BCZ4 antigen (see Table XIII for list).
- the activated T cells were re-stimulated after 12 days with activated autologous CD40-ligand-activated B cells pulsed with the same respective peptide pools for another 8 to 10 days. This secondary activation was repeated more time for a total of 3 stimulations.
- the activated T cells were isolated after the 3 rd stimulation and subjected to ELISPOT analysis for human IFN- ⁇ production against their respective BCZ4 peptide pools as shown ( FIG. 15A ). In FIG.
- the blue bars show reactivity against the BCZ4 peptide pools and the red bars are for an HLA-A2.1-binding HIV peptide as a negative control.
- Positive control HLA-A2.1-binding recall antigen peptides for CMV and flu were as used as positive control in the experiment. Standard deviations are indicated.
- the peptide pools were deconvoluted using IFN- ⁇ ELISPOT assays ( FIG. 15B ), Human T cells from donor AP10 were stimulated with the different pools of BCZ4 peptides shown in Table XIII. Stimulation was performed as described earlier for the other antigens described. After 4 and 5 rounds of stimulation, T cells were harvested and subjected to ELISPOT analysis for IFN- ⁇ production with each individual peptide in each pool. The bars shown represent individual peptide reactivity for each specific pool. Table XIII identifies each of the reactive peptides. This experiment was repeated with similar results following another round of stimulation of AP10 donor T cells.
- human T cells activated by BCZ4 peptides were assayed to determine their ability to function as CTL.
- the cells were activated using peptide-pulsed dendritic cells followed by CD40 ligand-activated B cells (5 rounds of stimulation).
- the experiment shown was performed with isolated PBMC from HLA-A*0201 + donor AP31. Isolated T cells were tested in 51 Cr-release assays using peptide-loaded T2 cells. The % specific lysis at a 10:1 T-cell to target ratio is shown for T2 cells pulsed with individual BCZ4 peptides. A high level of cytotoxicity was observed for some peptides ( FIG. 15C ).
- CTL activity (percent specific lysis) induced by the control HIV peptide was generally ⁇ 10%. Similar results were obtained with another PBMC donor expressing HLA-A*0201 (AP10).
- Table XIV lists the reactivity of the individual peptides:
- BCZ4 was PCR amplified using plasmid called pSporty/BCZ4 as the template using Platinum Taq (Invitrogen). Amplification conditions were as follows: 1) 94° C. 2 minutes; 2) 35 cycles of 94° C., 30 seconds, 53° C. 30 seconds, 67° C. 2.5 minutes; and, 3) 67° C. 7 minutes. PCR primers were designed to include EcoRI restriction sites and directly flank the ORF (i.e., no extraneous sequence).
- Primer sequences were as follows: AS032F (forward primer) 5′ GGAATTCAAC ATG GACATTGAAGCATATCTTAAGAATTG 3′ (SEQ II NO.:591), AS034R (reverse primer) 5′ GGAATTCCTGG TGAG CTGGATGACAAATAGACAAAGATTG 3′ (SEQ ID NO.: 592).
- a Kozak sequence was also included in the forward primer.
- pcDNA3.1/Zeo(+) was cut with EcoRI and treated with CIP to prevent self-ligation.
- the BCZ4 amplicon was then ligated into EcoRI digested pcDNA3Zeo(+). Sequencing produced one clone (AS-579-5) which matched the expected BCZ4 sequence. BCZ4 protein was then expressed from this expression vector using standard techniques.
- BFY3 sequence was detected as an over-expressed sequence in breast cancer samples.
- RT-PCR amplification of BFY3 w/EcoRI ends from HTB131 total RNA with AS007F (forward primer) 5′ GGAATTCACC ATG CTTTGGAAATTGACGGAT 3′ (SEQ ID NO—: 593) and AS010R (reverse primer) 5′ GGAATTCC TCA CTTTCTGTGCT TCTC CTCTTTGTCA 3′ (SEQ ID NO.: 594) was performed.
- PCR product was digested with EcoRI and cloned into EcoRI digested and CIP treated pcDNA3.1/Zeo(+) vector by ligation.
- Human PBMC from an HLA-A2.1 positive donor designated AP31 were activated with autologous dendritic cells pulsed with different pools of 9-mer peptides from the BFY3 antigen (see Table 1 for list).
- the activated T cells were re-stimulated after 12 days with activated autologous CD40-ligand-activated B cells pulsed with the same respective peptide pools for another 8 to 10 days. This secondary activation was repeated 2 more time for a total of 4 stimulations.
- the activated T cells were isolated after the 4 th stimulation and subjected to ELISPOT analysis for human IFN- ⁇ production against their respective BFY3 peptide pools as shown.
- the blue bars show reactivity against the BFY3 peptide pools and the red bars are for an HLA-A2.1-binding HIV peptide as a negative control. Standard deviations are indicated.
- the experiment was repeated 2 times on activated T cells from different rounds of peptide stimulation with the similar results ( FIG. 17A ).
- the BFY3 peptide pools were deconvoluted and studied in IFN- ⁇ ELISPOT assays, Human T cells from donor AP10 were stimulated with the different pools of BFY3 peptides shown in Table XV. Stimulation was performed as described earlier for the other antigens described. After 4 rounds of stimulation, the T cells from each culture were harvested and subjected to ELISPOT analysis for IFN- ⁇ production with each individual peptide in each pool.
- FIG. 17B illustrates individual peptide reactivity for each specific pool.
- CosA2 cells transfected with BFY3 were killed by CTL generated from pools 1 and 3 indicating that processed and presented epitopes from these pools are immunologically relevant ( FIG. 17E ).
- the peptides responsible for this cytotoxicity are 3320 and 3344.
- Table XVI summarizes the properties of the BFY3 peptides.
- RT-PCT amplification of BFY3 w/EcoRI ends from HTB131 total RNA with AS007F (forward primer) 5′ GGAATTCACCATGCTTTGGAAATTGACGGAT 3′ (SEQ ID NO.: 595) and AS010R (reverse primer) 5′ GGAATTCCTCACTTTCTGTGCTTCTCCTCTTTGTCA 3′ (SEQ ID NO.: 596) was performed.
- PCR was performed using standard techniques.
- the amplified product was digested with EcoRI and cloned into CIP treated pcDNA3.1/Zeo(+) vector by ligation using standard techniques. Several positive clones were identified by restriction digestion and sequenced. Sequencing indicated that the sequence of clone AS-391-2 matched the expected BFY3 sequence, BFY3 protein was then expressed from the BFY3 expression vector using standard techniques.
- expression vectors encoding multiple tumor antigens. It has been determined that certain combinations of antigens, when combined into a single expression vector, encompasses the expression profiles of many patients in a single vector. For instance, one study of breast cancer samples from different patients indicated that the combination of BFA4 and BFA5 covered expression profiles of 74% of the samples; the combination of BCY1 and BFA5 covered 65% of the samples; the combination of BCZ4 and BFA5 covered 69% of the samples; the combination of BFY3 and BFA5 covered 67% of the samples; the combination of BCY1, BFA4 and BFA5 covered 78% of the samples; the combination of BCZ4, BFA4 and BFA5 covered 81% of the samples; and, the combination of BFY3, BFA4, and BFA5 covered 74% of the samples.
- a multi-antigen expression construct may be built such that the most common expression profiles among breast cancer patients may be addressed using a single vector.
- a multiantigen expression vector is constructed using standard cloning techniques positioning nucleic acids encoding each of the tumor antigen sequences in proximity to a promoter or other transcriptional regulatory sequence.
- the expression vector may be engineered such that each nucleotide sequence encoding a tumor antigen is operably linked to a specific promoter, or the tumor antigens may collectively be operably linked to a single promoter and expressed as a single expression unit. Where a single expression unit is constructed, nucleotide sequences useful in separating the tumor antigen sequences following expression may be inserted between the tumor antigen sequences.
- Sequences useful for include IRES sequences, nucleotide sequences encoding amino acid sequences corresponding to protease cleavage sites, and the like.
- Suitable vectors for constructing such multiantigen expression vectors include, for example, poxviruses such as vaccinia, avipox, ALVAC and NYVAC.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The present invention relates to a nucleic acid encoding a polypeptide and the use of the nucleic acid or polypeptide in preventing and/or treating cancer. In particular, the invention relates to improved vectors for the insertion and expression of foreign genes encoding tumor antigens for use in immunotherapeutic treatment of cancer.
Description
- This application is a continuation of U.S. Ser. No. 10/557,066 filed Jul. 30, 2007, which was filed under 35 U.S.C. §371, and claims priority to International Application No. PCT/US2004/015202 filed May 15, 2004, which claims priority to Ser. Nos. 60/471,119 filed May 16, 2003 and 60/471,193 filed May 16, 2003.
- The present invention relates to a nucleic acid encoding a polypeptide and the use of the nucleic acid or polypeptide in preventing and/or treating cancer. In particular, the invention relates to improved vectors for the insertion and expression of foreign genes encoding tumor antigens for use in immunotherapeutic treatment of cancer.
- There has been tremendous increase in last few years in the development of cancer vaccines with Tumour-associated antigens (TAAs) due to the great advances in identification of molecules based on the expression profiling on primary tumours and normal cells with the help of several techniques such as high density microarray, SEREX, immunohistochemistry (IHC), RT-PCR, in-situ hybridization (ISH) and laser capture microscopy (Rosenberg, Immunity, 1999; Sgroi et al, 1999, Schena et al, 1995, Offringa et al, 2000). The TAAs are antigens expressed or over-expressed by tumour cells and could be specific to one or several tumours for example CEA antigen is expressed in colorectal, breast and lung cancers. Sgroi et al (1.999) identified several genes differentially expressed in invasive and metastatic carcinoma cells with combined use of laser capture microdissection and cDNA microarrays. Several delivery systems like DNA or viruses could be used for therapeutic vaccination against human cancers (Bonnet et al, 2000) and can elicit immune responses and also break immune tolerance against TAAs. Tumour cells can be rendered more immunogenic by inserting transgenes encoding T cell co-stimulatory molecules such as B7.1 or cytokines such as IFN-γ, IL2, or GM-CSF, among others. Co-expression of a TAA and a cytokine or a co-stimulatory molecule has also been shown to be useful in developing effective therapeutic vaccines (Hodge et al, 95, Bronte et al, 1995, Chamberlain et al, 1996).
- There is a need in the art for reagents and methodologies useful in stimulating an immune response to prevent or treat cancers. The present invention provides such reagents and methodologies which overcome many of the difficulties encountered by others in attempting to treat cancer.
- The present invention provides an immunogenic target for administration to a patient to prevent and/or treat cancer. In particular, the immunogenic target is a tumor antigen (“TA”) and or an angiogenesis-associated antigen (“AA”). In one embodiment, the immunogenic target is encoded by SEQ ID NO.: 34 or SEQ ID NO.: 36 or has the amino acid sequence of SEQ ID NO.: or SEQ ID NO.: 37. In certain embodiments, the TA and/or AA are administered to a patient as a nucleic acid contained within a plasmid or other delivery vector, such as a recombinant virus. The TA and/or AA may also be administered in combination with an immune stimulator, such as a co-stimulatory molecule or adjuvant.
-
FIG. 1 . A, B. Nucleotide sequences of AAC2-1 and AAC2-2. C. Alignment of predicted amino acid sequence of AAC2-1 and AAC2-2. Missing nucleotides or amino acids are indicated by a “*”. Differences between sequences are underlined. -
FIG. 2 . Human lymphocytes differentiate into effector cells secreting IFN-γ in response to peptides derived from the AAC2-2 protein. T cells were stimulated with the groups of peptides shown n in Table III (groups 1-9). After three rounds of stimulation, the lymphocytes were analyzed for peptide-specific IFN-γ production by ELISPOT. The graph in the inset shows that activated cells stimulated bypeptide Group # 6 are capable of antigen-specific CTL activity killing peptide loaded T2 target cells. Peptide EC5 elicits dominant activity in inducing both CTL activity and IFN-γ secretion. -
FIG. 3 . Murine T cells from HLA-A2-Kb transgenic mice recognize and secrete IFN-γ in response to DNA immunization with a human AAC2-2-encoding DNA plasmid. Spleen cells from pEF6-hAAC2-2-immunized mice were re-stimulated with the different groups of peptides. After six days, the cells were harvested and tested for IFN-γ secretion in response to each respective peptide group or a control HLA-A2-binding 9-mer HIV peptide. ELISPOT plates were incubated over-night and developed. Each group responded with high levels of IFN-γ production (over 250 spots) in response to PMA and ionomycin used as a positive control. One of the highly reactive peptides groups (group 6) is also recognized by human lymphocytes from the HLA-A-0201+ donors tested so far. -
FIG. 4 . DNA vaccination with a gene encoding human AAC2-2 completely abrogates the growth of implanted B16F10 melanoma cells. This effect is not due to a non-specific immune response as shown by the inability of plasmid encoding flu-NP protein and the human flk1 (VEGFR-2) to prevent tumor growth. -
FIG. 5 . Survival of mice after implantation of B16F10 melanoma cells into C57BL/6 mice showing the ability of DNA vaccination with a human AAC2-2 vector to completely protect against the effects of rumor growth. This protective effect is antigen-specific and can not be elicited through vaccination with other genes. -
FIG. 6 . T lymphocytes from C57BL/6 mice exhibit effector cell activity and secrete IFN-γ in response to peptides of human AAC2-2 following DNA vaccination with the pEF6-hAAC2-2 expression plasmid. These peptides can exhibit cross-reactivity on B6 MHC class I. The peptides ingroup 1 andgroup 5 induce strong reactivity by C57BL/6 T cells. -
FIG. 7 . BFA4 cDNA sequence. -
FIG. 8 . BFA4 amino acid sequence. -
FIG. 9 . BCY1 nucleotide (A) and amino acid (B) sequences. -
FIG. 10 . Immune response against specific BCY1 peptides. -
FIG. 11 . BFA5 cDNA sequence. -
FIG. 12 . BFA5 amino acid sequence. -
FIGS. 13A , B and C. Immune response against BFA5-derived peptides. -
FIG. 14 . BCZ4 cDNA (A) and amino acid (B) sequences. -
FIG. 15 . Immune response against BCZ4-derived peptides (A: BCZ4 ELISPOT; B: BCZ4 Peptide Deconvolution; C: CTL response). -
FIG. 16 . BFY3 cDNA (A) and amino acid (B) sequences. -
FIG. 17A-E . Immune response against BFY3-derived peptides. - The present invention provides reagents and methodologies useful for treating and/or preventing cancer. All references cited within this application are incorporated by reference.
- In one embodiment, the present invention relates to the induction or enhancement of an immune response against one or more tumor antigens (“TA”) to prevent and/or treat cancer. In certain embodiments, one or more TAs may be combined. In preferred embodiments, the immune response results from expression of a TA in a host cell following administration of a nucleic acid vector encoding the tumor antigen or the tumor antigen itself in the form of a peptide or polypeptide, for example.
- As used herein, an “antigen” is a molecule such as a polypeptide or a portion thereof that produces an immune response in a host to whom the antigen has been administered. The immune response may include the production of antibodies that bind to at least one epitope of the antigen and/or the generation of a cellular immune response against cells expressing an epitope of the antigen. The response may be an enhancement of a current immune response by, for example, causing increased antibody production, production of antibodies with increased affinity for the antigen, or an increased or more effective cellular response (i.e., increased T cells or T cells with higher anti-tumor activity). An antigen that produces an immune response may alternatively be referred to as being immunogenic or as an immunogen. In describing the present invention, a TA may be referred to as an “immunogenic target”.
- TA includes both tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs), where a cancerous cell is the source of the antigen. A TAA is an antigen that is expressed on the surface of a tumor cell in higher amounts than is observed on normal cells or an antigen that is expressed on normal cells during fetal development. A TSA is an antigen that is unique to tumor cells and is not expressed on normal cells. TA further includes TAAs or TSAs, antigenic fragments thereof, and modified versions that retain their antigenicity.
- TAs are typically classified into five categories according to their expression pattern, function, or genetic origin: cancer-testis (CT) antigens (i.e., MAGE, NY-ESO-1); melanocyte differentiation antigens (i.e., Melan A/MART-1, tyrosinase, gp100); mutational antigens (i.e., MUM-1, p53, CDK-4); overexpressed ‘self’ antigens (i.e., HER-2/neu, p53); and, viral antigens (i.e., HPV, EBV). For the purposes of practicing the present invention, a suitable TA is any TA that induces or enhances an anti-tumor immune response in a host in whom the TA is expressed. Suitable TAs include, for example, gp100 (Cox et al., Science, 264:716-719 (1994)), MART-1/Melan A (Kawakami et al., J. Exp. Med., 180:347-352 (1994)), gp75 (TRP-1) (Wang et al., J. Exp. Med., 186:1131-1140 (1996)), tyrosinase (Wolfel et al., Eur. J. Immunol., 24:759-764 (1994); WO 200175117; WO 200175016; WO 200175007), NY-ESO-1 (WO 98/14464; WO 99/18206), melanoma proteoglycan (Hellstrom et al., J. Immunol. 130:1467-1472 (1983)), MAGE family antigens (i.e., MAGE-1, 2, 3, 4, 6, 12, 51; Van der Bruggen et al., Science, 254:1643-1647 (1991); U.S. Pat. Nos. 6,235,525; CN 1319611), BAGE family antigens (Boel et al., Immunity, 2:167-175 (1995)), GAGE family antigens (i.e., GAGE-1,2; Van den Eynde et al., J. Exp. Med., 182:689-698 (1995); U.S. Pat. No. 6,013,765), RAGE family antigens (i.e., RAGE-1; Gaugler et al., Immunogenetics, 44:323-330 (1996); U.S. Pat. No. 5,939,526), N-acetylglucosaminyltransferase-V (Guilloux et al., J. Exp. Med., 183:1173-1183 (1996)), p15 (Robbins et al., J. Immunol. 154:5944-5950 (1995)), β-catenin (Robbins et al., J. Exp. Med., 183:1185-1192 (1996)), MUM-1 (Coulie et al. Proc. Natl. Acad. Sci. USA, 92:7976-7980 (1995)), cyclin dependent kinase-4 (CDK4) (Wolfel et al., Science, 269:1281-1284 (1995)), p21-ras (Fossum et al., Int. J. Cancer, 56:40-45 (1994)), BCR-abl (Bocchia et al., Blood, 85:2680-2684 (1995)), p53 (Theobald et al., Proc. Natl. Acad. Sci. USA, 92:11993-11997 (1995)), p185 HER2/neu (erb-B1; Fisk et al., J. Exp. Med., 181:2109-2117 (1995)), epidermal growth factor receptor (EGFR) (Harris et al., Breast Cancer Res. Treat, 29:1-2 (1994)), carcinoembryonic antigens (CEA) (Kwong et al., J. Natl. Cancer Inst., 85:982-990 (1995) U.S. Pat. Nos. 5,756,103; 5,274,087; 5,571,710; 6,071,716; 5,698,530; 6,045,802; EP 263933; EP 346710; and, EP 784483); carcinoma-associated mutated mucins (i.e., MUC-1 gene products; Jerome et al., J. Immunol. 151:1654-1662 (1993)); EBNA gene products of EBV (i.e., EBNA-1; Rickinson et al., Cancer Surveys, 13:53-80 (1992)); E7, E6 proteins of human papillomavirus (Ressing et al., J. Immunol, 154:5934-5943 (1995)); prostate specific antigen (PSA; Xue et al., The Prostate, 30:73-78 (1997)); prostate specific membrane antigen (PSMA; Israeli, et al., Cancer Res., 54:1807-1811 (1994)); idiotypic epitopes or antigens, for example, immunoglobulin idiotypes or T cell receptor idiotypes (Chen et al., J. Immunol., 153:4775-4787 (1994)); KSA (U.S. Pat. No. 5,348,887), kinesin 2 (Dietz, et al. Biochem Biophys Res Commun 2000 Sep. 7; 275(3):731-8), HIP-55, TGFβ-1 anti-apoptotic factor (Toomey, et al. Br J Biomed Sci 2001; 58(3): 177-83), tumor protein D52 (Bryne J. A., et al., Genomics, 35:523-532 (1996)), H1FT, NY-BR-1 (WO 01/47959), NY-BR-62, NY-BR-75, NY-B R-85, NY-BR-87, NY-BR-96 (Scanlan, M. Serologic and Bioinformatic Approaches to the Identification of Human Tumor Antigens, in Cancer Vaccines 2000, Cancer Research Institute, New York, N.Y.), BFA4 (SEQ ID NOS.: 23 and 24), BCY1 (SEQ ID NOS.: 25 and 26), BFA5 (SEQ ID NOS.: 27 and 28), BCZ4 (SEQ ID NOS.: 29 and 30), and BFY3 (SEQ ID NOS. 31 and 32), including “wild-type” (i.e., normally encoded by the genome, naturally-occurring), modified, and mutated versions as well, as other fragments and derivatives thereof. Any of these TAs may be utilized alone or in combination with one another in a co-immunization protocol.
- In certain cases, it may be beneficial to co-immunize patients with both TA and other antigens, such as angiogenesis-associated antigens (“AA”). An AA is an immunogenic molecule (i.e., peptide, polypeptide) associated with cells involved in the induction and/or continued development of blood vessels. For example, an AA may be expressed on an endothelial cell (“EC”), which is a primary structural component of blood vessels. For treatment of cancer, it is preferred that that the AA be found within or near blood vessels that supply a tumor. Immunization of a patient against an AA preferably results in an anti-AA immune response whereby angiogenic processes that occur near or within tumors are prevented and/or inhibited.
- Exemplary AAs include, for example, vascular endothelial growth factor (i.e., VEGF; Bernardini, et al. J. Urol., 2001, 166(4): 1275-9; Starnes, et al. J. Thorac. Cardiovasc. Surg., 2001, 122(3): 518-23; Dias, et al. Blood, 2002, 99: 2179-2184), the VEGF receptor (i.e., VEGF-R, flk-1/KDR; Starnes, et al. J. Thorac. Cardiovasc. Surg., 2001, 122(3): 518-23), EPH receptors (i.e., EPHA2; Gerety, et al. 1999, Cell, 4: 403-414), epidermal growth factor receptor (i.e., EGFR; Ciardeillo, et al. Clin. Cancer Res., 2001, 7(10): 2958-70), basic fibroblast growth factor (i.e., bFGF; Davidson, et al. Clin. Exp. Metastasis 2000, 18(6): 501-7; Poon, et al. Am J. Surg., 2001, 182(3):298-304), platelet-derived cell growth factor (i.e., PDGF-B), platelet-derived endothelial cell growth factor (PD-ECGF; Hong, et al. J. Mol. Med., 2001, 8(2):141-8), transforming growth factors (i.e., TGF-α; Hong, et al. J. Mol. Med., 2001, 8(2):141-8), endoglin (Balza, et al., Int. J. Cancer, 2001, 94: 579-585), Id proteins (Benezra, R. Trends Cardiovasc. Med., 2001, 11(6):237-41), proteases such as uPA, uPAR, and matrix metalloproteinases (MMP-2, MMP-9; Djonov, et al. J. Pathol., 2001, 195(2):147-55), nitric oxide synthase (Am. J. Ophthalmol., 2001, 132(4):551-6), aminopeptidase (Rouslhati, E. Nature Cancer, 2: 84-90, 2002), thrombospondins (i.e., TSP-1, TSP-2; Alvarez, et al. Gynecol. Oncol., 2001, 82(2):273-8; Seki, et al. Int. J. Oncot., 2001, 19(2):305-10), k-ras (Zhang, et al. Cancer Res., 2001, 61(16):6050-4), Wnt (Zhang, et al. Cancer Res., 2001, 61(16):6050-4), cyclin-dependent kinases (CDKs; Drug Resist. Updat. 2000, 3(2):83-88), microtubules (Timar, et al. 2001. Path. Oncol. Res., 7(2): 85-94), heat shock proteins (i.e., HSP90 (Timar, supra)), heparin-binding factors (i.e., heparinase; Gohji, et al. Int. J. Cancer, 2001, 95(5):295-301), synthases (i.e., ATP synthase, thymidilate synthase), collagen receptors, integrins (i.e., αυβ3, αυβ5, α1β1, α2β1, α5β1), the surface proteolglycan NG2, AAC2-1 (SEQ ID NO.:1), or AAC2-2 (SEQ ID NO.:2), among others, including “wild-type” (i.e., normally encoded by the genome, naturally-occurring), modified, mutated versions as well as other fragments and derivatives thereof. Any of these targets may be suitable in practicing the present invention, either alone or in combination with one another or with other agents.
- In certain embodiments, a nucleic acid molecule encoding an immunogenic target is utilized. The nucleic acid molecule may comprise or consist of a nucleotide sequence encoding one or more immunogenic targets, or fragments or derivatives thereof, such as that contained in a DNA insert in an ATCC Deposit. The term “nucleic acid sequence” or “nucleic acid molecule” refers to a DNA or RNA sequence. The term encompasses molecules formed from any of the known base analogs of DNA and RNA such as, but not limited to 4-acetylcytosine, 8-hydroxy-N-6-methyladenosine, aziridinyl-cytosine, pseudoisocytosine, 5-(carboxyhydroxylmethyl)uracil, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxy-methylaminomethyluracil, dihydrouracil, inosine, N6-iso-pentenyladenine, 1-methyladenine, 1-methylpseudouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethyl-guanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyamino-methyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarbonyl-methyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, oxybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, N-uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, pseudouracil, queosine, 2-thiocytosine, and 2,6-diaminopurine, among others.
- An isolated nucleic acid molecule is one that: (1) is separated from at least about 50 percent of proteins, lipids, carbohydrates, or other materials with which it is naturally found when total nucleic acid is isolated from the source cells; (2) is not linked to all or a portion of a polynucleotide to which the nucleic acid molecule is linked in nature; (3) is operably linked to a polynucleotide which it is not linked to in nature; and/or, (4) does not occur in nature as part of a larger polynucleotide sequence. Preferably, the isolated nucleic acid molecule of the present invention is to substantially free from any other contaminating nucleic acid molecule(s) or other contaminants that are found in its natural environment that would interfere with its use in polypeptide production or its therapeutic, diagnostic, prophylactic or research use. As used herein, the term “naturally occurring” or “native” or “naturally found” when used in connection with biological materials such as nucleic acid molecules, polypeptides, host cells, and the like, refers to materials which are found in nature without manipulation by man. Similarly, “non-naturally occurring” or “non-native” as used herein refers to a material that is not found in nature or that has been structurally modified or synthesized by man.
- The identity of two or more nucleic acid or polypeptide molecules is determined by comparing the sequences. As known in the art, “identity” means the degree of sequence relatedness between nucleic acid molecules or polypeptides as determined by the match between the units making up the molecules (i.e., nucleotides or amino acid residues). Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., an algorithm). Identity between nucleic acid sequences may also be determined by the ability of the related sequence to hybridize to the nucleic acid sequence or isolated nucleic acid molecule. In defining such sequences, the term “highly stringent conditions” and “moderately stringent conditions” refer to procedures that permit hybridization of nucleic acid strands whose sequences are complementary, and to exclude hybridization of significantly mismatched nucleic acids. Examples of “highly stringent conditions” for hybridization and washing are 0.015 M sodium chloride, 0.0015 M sodium citrate at 65-68° C. or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 50% formamide at 42° C. (see, for example, Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory, 1989); Anderson et al., Nucleic Acid Hybridisation: A Practical Approach Ch. 4 (IRL Press Limited)). The term “moderately stringent conditions” refers to conditions under which a DNA duplex with a greater degree of base pair mismatching than could occur under “highly stringent conditions” is able to form. Exemplary moderately stringent conditions are 0.015 M sodium chloride, 0.0015 M sodium citrate at 50-65° C. or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 20% formamide at 37-50° C. By way of example, moderately stringent conditions of 50° C. in 0.015 M sodium ion will allow about a 21% mismatch. During hybridization, other agents may be included in the hybridization and washing buffers for the purpose of reducing non-specific and/or background hybridization. Examples are 0.1% bovine serum albumin, 0.1% polyvinyl-pyrrolidone, 0.1% sodium pyrophosphate, 0.1% sodium dodecylsulfate, NaDodSO4, (SDS), ficoll, Denhardt's solution, sonicated salmon sperm DNA (or another non-complementary DNA), and dextran sulfate, although other suitable agents can also be used. The concentration and types of these additives can be changed without substantially affecting the stringency of the hybridization conditions. Hybridization experiments are usually carried out at pH 6.8-7.4; however, at typical ionic strength conditions, the rate of hybridization is nearly independent of pH.
- In certain embodiments of the present invention, vectors are used to transfer a nucleic acid sequence encoding a polypeptide to a cell. A vector is any molecule used to transfer a nucleic acid sequence to a host cell. In certain cases, an expression vector is utilized. An expression vector is a nucleic acid molecule that is suitable for transformation of a host cell and contains nucleic acid sequences that direct and/or control the expression of the transferred nucleic acid sequences. Expression includes, but is not limited to, processes such as transcription, translation, and splicing, if introns are present. Expression vectors typically comprise one or more flanking sequences operably linked to a heterologous nucleic acid sequence encoding a polypeptide. Flanking sequences may be homologous (i.e., from the same species and/or strain as the host cell), heterologous (i.e., from a species other than the host cell species or strain), hybrid (i.e., a combination of flanking sequences from more than one source), or synthetic, for example.
- A flanking sequence is preferably capable of effecting the replication, transcription and/or translation of the coding sequence and is operably linked to a coding sequence. As used herein, the term operably linked refers to a linkage of polynucleotide elements in a functional relationship. For instance, a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the coding sequence. However, a flanking sequence need not necessarily be contiguous with the coding sequence, so long as it functions correctly. Thus, for example, intervening untranslated yet transcribed sequences can be present between a promoter sequence and the coding sequence and the promoter sequence may still be considered operably linked to the coding sequence. Similarly, an enhancer sequence may be located upstream or downstream from the coding sequence and affect transcription of the sequence.
- In certain embodiments, it is preferred that the flanking sequence is a transcriptional regulatory region that drives high-level gene expression in the target cell. The transcriptional regulatory region may comprise, for example, a promoter, enhancer, silencer, repressor element or combinations thereof. The transcriptional regulatory region may be either constitutive, tissue-specific, cell-type specific (i.e., the region is drives higher levels of transcription in a one type of tissue or cell as compared to another), or regulatable (i.e., responsive to interaction with a compound). The source of a transcriptional regulatory region may be any prokaryotic or eukaryotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence functions in a cell by causing transcription of a nucleic acid within that cell. A wide variety of transcriptional regulatory regions may be utilized in practicing the present invention.
- Suitable transcriptional regulatory regions include, for example, the CMV promoter (i.e., the CMV-immediate early promoter); promoters from eukaryotic genes (i.e., the estrogen-inducible chicken ovalbumin gene, the interferon genes, the gluco-corticoid-inducible tyrosine aminotransferase gene, and the thymidine kinase gene); and the major early and late adenovirus gene promoters; the SV40 early promoter region (Bernoist and Chambon, 1981, Nature 290:304-10); the promoter contained in the 3′ long terminal repeat (LTR) of Rous sarcoma virus (RSV) (Yamamoto, et al., 1980, Cell 22:787-97); the herpes simplex virus thymidine kinase (HSV-TK) promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:1444-45); the regulatory sequences of the metallothionine gene (Brinster et al., 1982, Nature 296:39-42); prokaryotic expression vectors such as the beta-lactamase promoter (Villa-Kamaroff et al., 1978, Proc. Natl. Acad. Sci. USA., 75:3727-31); or the tac promoter (DeBoer et al., 1983, Proc. Natl. Acad. Sci. U.S.A., 80:21-25). Tissue- and/or cell-type specific transcriptional control regions include, for example, the elastase I gene control region which is active in pancreatic acinar cells (Swift et al., 1984, Cell 38:639-46; Ornitz et al., 1986, Cold Spring Harbor Symp. Quant. Biol. 50:399-409 (1986); MacDonald, 1987, Hepatology 7:425-51.5); the insulin gene control region which is active in pancreatic beta cells (Hanahan, 1985, Nature 315:115-22); the immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al., 1984, Cell 38:647-58; Adames et al., 1985, Nature 318:533-38; Alexander et al., 1987, Mol. Cell. Biol., 7:1436-44); the mouse mammary tumor virus control region in testicular, breast, lymphoid and mast cells (Leder et al., 1986, Cell 45:485-95); the albumin gene control region in liver (Pinkert et al., 1987, Genes and Devel. 1:268-76); the alpha-feto-protein gene control region in liver (Krumlauf et al., 1985, Mol. Cell. Biol., 5:1639-48; Hammer et al., 1987, Science 235:53-58); the alpha 1-antitrypsin gene control region in liver (Kelsey et al., 1987, Genes and Devel. 1:161-71); the beta-globin gene control region in myeloid cells (Mogram et al., 1985, Nature 315:338-40; Kollias et al., 1986, Cell 46:89-94); the myelin basic protein gene control region in oligodendrocyte cells in the brain (Readhead et al., 1987, Cell 48:703-12); the myosin light chain-2 gene control region in skeletal muscle (Sani, 1985, Nature 314:283-86); the gonadotropic releasing hormone gene control region in the hypothalamus (Mason et al, 1986, Science 234:1372-78), and the tyrosinase promoter in melanoma cells (Hart, I. Semin Oncol 1996 February; 23(1):154-8; Siders, et al. Cancer Gene Ther 1998 September-October; 5(5):281-91), among others. Inducible promoters that are activated in the presence of a certain compound or condition such as light, heat, radiation, tetracycline, or heat shock proteins, for example, may also be utilized (see, for example, WO 00/10612). Other suitable promoters are known in the art.
- As described above, enhancers may also be suitable flanking sequences. Enhancers are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription. Enhancers are typically orientation- and position-independent, having been identified both 5′ and 3′ to controlled coding sequences. Several enhancer sequences available from mammalian genes are known (i.e., globin, elastase, albumin, alpha-feto-protein and insulin).
- Similarly, the SV40 enhancer, the cytomegalovirus early promoter enhancer, the polyoma enhancer, and adenovirus enhancers are useful with eukaryotic promoter sequences. While an enhancer may be spliced into the vector at a
position 5′ or 3′ to nucleic acid coding sequence, it is typically located at asite 5′ from the promoter. Other suitable enhancers are known in the art, and would be applicable to the present invention. - While preparing reagents of the present invention, cells may need to be transfected or transformed. Transfection refers to the uptake of foreign or exogenous DNA by a cell, and a cell has been transfected when the exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are well known in the art (i.e., Graham et al., 1973, Virology, 52:456; Sambrook et al., Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratories, 1989); Davis et al., Basic Methods in Molecular Biology (Elsevier, 1986); and Chu et al., 1981, Gene 13:197). Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells.
- In certain embodiments, it is preferred that transfection of a cell results in transformation of that cell. A cell is transformed when there is a change in a characteristic of the cell, being transformed when it has been modified to contain a new nucleic acid. Following transfection, the transfected nucleic acid may recombine with that of the cell by physically integrating into a chromosome of the cell, may be maintained transiently as an episomal element without being replicated, or may replicate independently as a plasmid. A cell is stably transformed when the nucleic acid is replicated with the division of the cell.
- The present invention further provides isolated immunogenic targets in polypeptide form. A polypeptide is considered isolated where it: (1) has been separated from at least about 50 percent of polynucleotides, lipids, carbohydrates, or other materials with which it is naturally found when isolated from the source cell: (2) is not linked (by covalent or noncovalent interaction) to all or a portion of a polypeptide to which the “isolated poly peptide” is linked in nature; (3) is operably linked (by covalent or noncovalent interaction) to a polypeptide with which it is not linked in nature; or, (4) does not occur in nature. Preferably, the isolated polypeptide is substantially free from any other contaminating polypeptides or other contaminants that are found in its natural environment that would interfere with its therapeutic, diagnostic, prophylactic or research use.
- Immunogenic target polypeptides may be mature polypeptides, as defined herein, and may or may not have an amino terminal methionine residue, depending on the method by which they are prepared. Further contemplated are related polypeptides such as, for example, fragments, variants (i.e., allelic, splice), orthologs, homologues, and derivatives, for example, that possess at least one characteristic or activity (i.e., activity, antigenicity) of the immunogenic target. Also related are peptides, which refers to a series of contiguous amino acid residues having a sequence corresponding to at least a portion of the polypeptide from which its sequence is derived. In preferred embodiments, the peptide comprises about 5-10 amino acids, 10-15 amino acids, 15-20 amino acids, 20-30 amino acids, or 30-50 amino acids. In a more preferred embodiment, a peptide comprises 9-12 amino acids, suitable for presentation upon Class I MHC molecules, for example.
- A fragment of a nucleic acid or polypeptide comprises a truncation, of the sequence (i.e., nucleic acid or polypeptide) at the amino terminus (with or without a leader sequence) and/or the carboxy terminus. Fragments may also include variants (i.e., allelic, splice), orthologs, homologues, and other variants having one or more amino acid additions or substitutions or internal deletions as compared to the parental sequence. In preferred embodiments, truncations and/or deletions comprise about 10 amino acids, 20 amino acids, 30 amino acids, 40 amino acids, 50 amino acids, or more. The polypeptide fragments so produced will comprise about 10 amino acids, 25 amino acids, 30 amino acids, 40 amino acids, 50 amino acids, 60 amino acids, 70 amino acids, or more. Such polypeptide fragments may optionally comprise an amino terminal methionine residue, it will be appreciated that such fragments can be used, for example, to generate antibodies or cellular immune responses to immunogenic target polypeptides.
- A variant is a sequence having one or more sequence substitutions, deletions, and/or additions as compared to the subject sequence. Variants may be naturally occurring or artificially constructed. Such variants may be prepared from the corresponding nucleic acid molecules. In preferred embodiments, the variants have from 1 to 3, or from 1 to 5, or from 1 to 10, or from 1 to 15, or from 1 to 20, or from 1 to 25, or from 1 to 30, or from 1 to 40, or from 1 to 50, or more than 50 amino acid substitutions, insertions, additions and/or deletions.
- An allelic variant is one of several possible naturally-occurring alternate forms of a gene occupying a given locus on a chromosome of an organism or a population of organisms. A splice variant is a polypeptide generated from one of several RNA transcript resulting from splicing of a primary transcript. An ortholog is a similar nucleic acid or polypeptide sequence from another species. For example, the mouse and human versions of an immunogenic target polypeptide may be considered orthologs of each other. A derivative of a sequence is one that is derived from a parental sequence those sequences having substitutions, additions, deletions, or chemically modified variants.
- Variants may also include fusion proteins, which refers to the fusion of one or more first sequences (such as a peptide) at the amino or carboxy terminus of at least one other sequence (such as a heterologous peptide).
- “Similarity” is a concept related to identity, except that similarity refers to a measure of relatedness which includes both identical matches and conservative substitution matches. If two polypeptide sequences have, for example, 10/20 identical amino acids, and the remainder are all non-conservative substitutions, then the percent identity and similarity would both be 50%. If in the same example, there are five more positions where there are conservative substitutions, then the percent identity remains 50%, but the percent similarity would be 75% ( 15/20). Therefore, in cases where there are conservative substitutions, the percent similarity between two polypeptides will be higher than the percent identity between those two polypeptides.
- Substitutions may be conservative, or non-conservative, or any combination thereof. Conservative amino acid modifications to the sequence of a polypeptide (and the corresponding modifications to the encoding nucleotides) may produce polypeptides having functional and chemical characteristics similar to those of a parental polypeptide. For example, a “conservative amino acid substitution” may involve a substitution of a native amino acid residue with a non-native residue such that there is little or no effect on the size, polarity, charge, hydrophobicity, or hydrophilicity of the amino acid residue at that position and, in particular, does not result in decreased immunogenicity. Suitable conservative amino acid substitutions are shown in Table I.
-
TABLE I Original Preferred Residues Exemplary Substitutions Substitutions Ala Val, Leu, Ile Val Arg Lys, Gln, Asn Lys Asn Gln Gln Asp Glu Glu Cys Ser, Ala Ser Gln Asn Asn Glu Asp Asp Gly Pro, Ala Ala His Asn, Gln, Lys, Arg Arg Ile Leu, Val, Met, Ala, Phe, Norleucine Leu Leu Norleucine, Ile, Val, Met, Ala, Phe Ile Lys Arg, 1,4 Diamino-butyric Acid, Gln, Asn Arg Met Leu, Phe, Ile Leu Phe Leu, Val, Ile, Ala, Tyr Leu Pro Ala Gly Ser Thr, Ala, Cys Thr Thr Ser Ser Trp Tyr, Phe Tyr Tyr Trp, Phe, Thr, Ser Phe Val Ile, Met, Leu, Phe, Ala, Norleucine Leu - A skilled artisan will be able to determine suitable variants of polypeptide using well-known techniques. For identifying suitable areas of the molecule that may be changed without destroying biological activity (i.e., MHC binding, immunogenicity), one skilled in the art may target areas not believed to be important for that activity. For example, when similar polypeptides with similar activities from the same species or from other species are known, one skilled in the art may compare the amino acid sequence of a polypeptide to such similar polypeptides. By performing such analyses, one can identify residues and portions of the molecules that are conserved among similar polypeptides. It will be appreciated that changes in areas of the molecule that are not conserved relative to such similar polypeptides would be less likely to adversely affect the biological activity and/or structure of a polypeptide. Similarly, the residues required for binding to MHC are known, and may be modified to improve binding. However, modifications resulting in decreased binding to MHC will not be appropriate in most situations. One skilled in the art would also know that, even in relatively conserved regions, one may substitute chemically similar amino acids for the naturally occurring residues while retaining activity. Therefore, even areas that may be important for biological activity or for structure may be subject to conservative amino acid substitutions without destroying the biological activity or without adversely affecting the polypeptide structure.
- Other preferred polypeptide variants include glycosylation variants wherein the number and/or type of glycosylation sites have been altered compared to the subject amino acid sequence. In one embodiment, polypeptide variants comprise a greater or a lesser number of N-linked glycosylation sites than the subject amino acid sequence. An N-linked glycosylation site is characterized by the sequence Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X may be any amino acid residue except proline. The substitution of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitutions that eliminate this sequence will remove an existing N-linked carbohydrate chain. Also provided is a rearrangement of N-linked carbohydrate chains wherein one or more N-linked glycosylation sites (typically those that are naturally occurring) are eliminated and one or more new N-linked sites are created. To affect O-linked glycosylation of a polypeptide, one would modify serine and/or threonine residues.
- Additional preferred variants include cysteine variants, wherein one or more cysteine residues are deleted or substituted with another amino acid (e.g., serine) as compared to the subject amino acid sequence set. Cysteine variants are useful when polypeptides must be refolded into a biologically active conformation such as after the isolation of insoluble inclusion bodies, Cysteine variants generally have fewer cysteine residues than the native protein, and typically have an even number to minimize interactions resulting from unpaired cysteines.
- In other embodiments, the isolated polypeptides of the current invention include fusion polypeptide segments that assist in purification of the polypeptides. Fusions can be made either at the amino terminus or at the carboxy terminus of the subject polypeptide variant thereof. Fusions may be direct with no linker or adapter molecule or may be through a linker or adapter molecule. A linker or adapter molecule may be one or more amino acid residues, typically from about 20 to about 50 amino acid residues. A linker or adapter molecule may also be designed with a cleavage site for a DNA restriction endonuclease or for a protease to allow for the separation of the fused moieties. It will be appreciated that once constructed, the fusion polypeptides can be derivatized according to the methods described herein. Suitable fusion segments include, among others, metal binding domains (e.g., a poly-histidine segment), immunoglobulin binding domains (i.e., Protein A, Protein G, T cell, B cell, Fc receptor, or complement protein antibody-binding domains), sugar binding domains (e.g., a maltose binding domain), and/or a “tag” domain (i.e., at least a portion of α-galactosidase, a strep tag peptide, a T7 tag peptide, a FLAG peptide, or other domains that can be purified using compounds that bind to the domain, such as monoclonal antibodies). This tag is typically fused to the polypeptide upon expression of the polypeptide, and can serve as a means for affinity purification of the sequence of interest polypeptide from the host cell. Affinity purification can be accomplished, for example, by column chromatography using antibodies against the tag as an affinity matrix. Optionally, the tag can subsequently be removed from the purified sequence of interest polypeptide by various means such as using certain peptidases for cleavage. As described below, fusions may also be made between a TA and a co-stimulatory components such as the chemokines CXC10 (IP-10), CCL7 (MCP-3), or CCL5 (RANTES), for example.
- A fusion motif may enhance transport of an immunogenic target to an MHC processing compartment, such as the endoplasmic reticulum. These sequences, referred to as transduction or transcytosis sequences, include sequences derived from HIV tat (see Kim et al. 1997 J. Immunol. 159:1666), Drosophila antennapedia (see Schutze-Redelmeier et al. 1996 J. Immunol. 157:650), or human period-1 protein (hPER1; in particular, SRRHHCRSKAKRSHH (SEQ ID NO: 42)).
- In addition, the polypeptide or variant thereof may be fused to a homologous polypeptide to form a homodimer or to a heterologous polypeptide to form a heterodimer. Heterologous peptides and polypeptides include, but are not limited to: an epitope to allow for the detection and/or isolation of a fusion polypeptide; a transmembrane receptor protein or a portion thereof, such as an extracellular domain or a transmembrane and intracellular domain; a ligand or a portion thereof which binds to a transmembrane receptor protein; an enzyme or portion thereof which is catalytically active; a polypeptide or peptide which promotes oligomerization, such as a leucine zipper domain; a polypeptide or peptide which increases stability, such as an immunoglobulin constant region; and a polypeptide which has a therapeutic activity different from the polypeptide or variant thereof.
- In certain embodiments, it may be advantageous to combine a nucleic acid sequence encoding an immunogenic target, polypeptide, or derivative thereof with one or more co-stimulator component(s) such as cell surface proteins, cytokines or chemokines in a composition of the present invention. The co-stimulatory component may be included in the composition as a polypeptide or as a nucleic acid encoding the polypeptide, for example. Suitable co-stimulatory molecules include, for instance, polypeptides that bind members of the CD28 family (i.e., CD28, ICOS; Hutloff et al. Nature 1999, 397: 263-265: Peach, et al. J. Exp Med 1994, 180: 2049-2058) such as the CD28 binding polypeptides B7.1 (CD80; Schwartz, 1992; Chen et al. 1992; Ellis, et al., J. Immunol., 156(8): 2700-9) and B7.2 (CD86; Ellis, et al., J. Immunol., 156(8): 2700-9); polypeptides which bind members of the integrin family (i.e., LFA-1 (CD11a/CD8); Sedwick, et al. J Immunol 1999, 162: 1367-1375; Wülfing, et al. Science 1998, 282: 2266-2269; Lub, et al. Immunol Today 1995, 16: 479-483) including members of the ICAM family (i.e., ICAM-1, -2 or -3); polypeptides which bind CD2 family members (i.e., CD2, signalling lymphocyte activation molecule (CDw150 or “SLAM”; Aversa, et al. J Immunol 1997, 158: 4036-4044)) such as CD58 (LFA-3; CD2 ligand; Davis, et al. Immunol Today 1996, 17: 177-187) or SLAM ligands (Sayos, et al. Nature 1998, 395: 462-469); polypeptides which bind heat stable antigen (HSA or CD24; Zhou, et al. Eur J. Immunol 1997, 27: 2524-2528); polypeptides which bind to members of the TNF receptor (TNFR) family (i.e., 4-IBB (CD137; Vinay, et al. Semin Immunol 1998, 10: 481-489), OX40 (CD-134; Weinberg, et al. Semin Immunol 1998, 10: 471-480; Higgins, et al. J Immunol 1999, 162: 486-493), and CD27 (Lens, et al. Semin Immunol 1998, 10: 491-499)) such as 4-IBBL (4-IBB ligand; Vinay, et al. Semin Immunol 1998, 10: 481-48; DeBenedette et al. J Immunol 1997, 158: 551-559), TNFR associated factor-1 (TRAF-1; 4-IBB ligand; Saoulli, et al. J Exp Med 1998, 187: 1849-1862, Arch, et al. Mol Cell Biol 1998, 18: 558-565), TRAF-2 (4-IBB and OX40 ligand; Saoulli, et al. J Exp Med 1998, 187: 1849-1862: Oshima, et al. Int Immunol 1.998, 10: 517-526, Kawamata, et al. J Biol Chem 1.998, 273: 5808-5814), TRAF-3 (4-IBB and OX40 ligand; Arch, et al. Mol Cell Biol 1998, 18: 558-565; Jang, et al. Biochem Biophys Res Commun 1998, 242: 613-620; Kawamata S, et al. J Biol Chem 1998, 273: 5808-5814), OX40L (OX40 ligand; Gramaglia, et al. J Immunol 1998, 161: 6510-6517), TRAF-5 (OX40 ligand; Arch, et al. Mol Cell Biol 1998, 18: 558-565; Kawamata, et al. J Biol Chem 1998, 273: 5808-5814), and CD70 (CD27 ligand; Couderc, et al. Cancer Gene Ther., 5(3): 163-75). CD154 (CD40 ligand or “CD40L”; Gurunathan, et al. J. Immunol. 1998, 161: 4563-4571; Sine, et al. Hum. Gene Ther., 2001, 12: 1091-1102) may also be suitable.
- One or more cytokines may also be suitable co-stimulatory components or “adjuvants”, either as polypeptides or being encoded by nucleic acids contained within the compositions of the present invention (Parmiani, et al. Immunol Lett 2000 Sep. 15; 74(1): 41-4; Berzofsky, et al. Nature Immunol. 1: 209-219). Suitable cytokines include, for example, interleukin-2 (IL-2) (Rosenberg, et al. Nature Med. 4: 321-327 (1998)), IL-4, IL-7, IL-12 (reviewed by Pardoll, 1992; Harries, et al. T. Gene Med. 2000 July-August; 2(4):243-9; Rao, et al. J. Immunol. 156: 3357-3365 (1996)), IL-15 (Xin, et al. Vaccine, 17:858-866, 1999), IL-16 (Cruikshank, et al. J. Leuk Biol. 67(6): 757-66, 2000), IL-18 (J. Cancer Res. Clin. Oncol. 2001. 127(12): 718-726), GM-CSF (CSF (Disis, et al. Blood, 88: 202-210 (1996)), tumor necrosis factor-alpha (TNF-α), or interferons such as IFN-α or INF-γ. Other cytokines may also be suitable for practicing the present invention, as is known in the art.
- Chemokines may also be utilized. For example, fusion proteins comprising CXCL10 (IP-10) and CCL7 (MCP-3) fused to a tumor self-antigen have been shown to induce anti-tumor immunity (Biragyn, et al. Nature Biotech. 1999, 17: 253-258). The chemokines CCL3 (MIP-1α) and CCL5 (RANTES) (Boyer, et al. Vaccine, 1999, 17 (Supp. 2): S53-S64) may also be of use in practicing the present invention. Other suitable chemokines are known in the art.
- It is also known in the art that suppressive or negative regulatory immune mechanisms may be blocked, resulting in enhanced immune responses. For instance, treatment with anti-CTLA-4 (Shrikant, et al. Immunity, 1996, 14: 145-155; Sutmuller, et al., J Exp. Med., 2001, 194: 823-832), anti-CD25 (Sutmuller, supra), anti-CD4 (Matsui, et al. J. Immunol., 1999, 163: 184-193), the fusion protein IL13Ra2-Fc (Terabe, et al. Nature Immunol., 2000, 1: 515-520), and combinations thereof (i.e., anti-CTLA-4 and anti-CD25, Sutmuller, supra) have been shown to upregulate anti-tumor immune responses and would be suitable in practicing the present invention.
- Any of these components may be used alone or in combination with other agents. For instance, it has been shown that a combination of CD80, ICAM-1 and LFA-3 (“TRICOM”) may potentiate anti-cancer immune responses (Hodge, et al. Cancer Res. 59: 5800-5807 (1999). Other effective combinations include, for example, IL-12+GM-CSF (Alers, et al. J. Immunol., 158: 3947-3958 (1997); Iwasaki, et al. J. Immunol. 158: 4591-4601 (1997)), IL-12-GM-CSF+TNF-α (Ahlers, et al. Int. Immunol. 13: 897-908 (2001)), CD80+IL-12 (Fruend, et al. Int. J. Cancer, 85: 508-517 (2000); Rao, et al. supra), and CD86+GM-CSF+IL-12 (Iwasaki, supra). One of skill in the art would be aware of additional combinations useful in carrying out the present invention. In addition, the skilled artisan would be aware of additional reagents or methods that may be used to modulate such mechanisms. These reagents and methods, as well as others known by those of skill in the art, may be utilized in practicing the present invention.
- Additional strategies for improving the efficiency of nucleic acid-based immunization may also be used including, for example, the use of self-replicating viral replicons (Caley, et alt 1999, Vaccine, 17: 3124-2135; Dubensky, et al. 2000. Mol. Med. 6: 723-732; Leitner, et al. 2000. Cancer Res. 60: 51-55), codon optimization (Liu et al 2000. Mol Ther., 1: 497-500; Dubensky, supra; Huang, et al 2001. J. Virol. 75: 4947-4951), in vivo electroporation (Widera, et al. 2000. J. Immunol. 164: 4635-3640), incorporation of CpG stimulatory motifs (Gurunathan, et al. Ann. Rev. Immunol., 2000, 18: 927-974; Leitner, stpra; Cho, et al J. Immunol. 168(10):4907-13), sequences for targeting of the endocytic or tubiquitin-processing pathways (Thomson, et al. 1998, J. Virol. 72: 2246-2252; Velders, et al. 2001. J. Immunol. 166: 5366-5373), Marek's
disease virus type 1 VP22 sequences (J. Virol. 76(61):2676-82, 2002), prime-boost regimens (Gurunathan, supra; Sullivan, et al. 2000. Nature, 408: 605-609; Hanke, et al. 1998. Vaccine, 16: 439-445; Amara, et al. 2001. Science, 292: 69-74), and the use of mucosal delivery vectors such as Salmonella (Darji, et al. 1997. Cell, 91: 765-775; Woo, et al. 2001. Vaccine, 19: 2945-2954). Other methods are known in the art, some of which are described below. - Chemotherapeutic agents, radiation, anti-angiogenic compounds, or other agents may also be utilized in treating and/or preventing cancer using immunogenic targets (Sebti, et alt Oncogene 2000 Dec. 27; 19(56):6566-73). For example, in treating metastatic breast cancer, useful chemotherapeutic agents include cyclophosphamide, doxorubicin, paclitaxel, docetaxel, navelbine, capecitabine, and mitomycin C, among others. Combination chemotherapeutic regimens have also proven effective including cyclophosphamide+methotrexate+5-fluorouracil; cyclophosphamide+doxorubicin-5-fluorouracil; or, cyclophosphamide+doxorubicin, for example. Other compounds such as prednisone, a taxane, navelbine, mitomycin C, or vinblastine have been utilized for various reasons. A majority of breast cancer patients have estrogen-receptor positive (ER+) tumors and in these patients, endocrine therapy (i.e., tamoxifen) is preferred over chemotherapy. For such patients, tamoxifen or, as a second line therapy, progestins (medroxyprogesterone acetate or megestrol acetate) are preferred. Aromatase inhibitors (i.e., aminoglutethimide and analogs thereof such as letrozole) decrease the availability of estrogen needed to maintain tumor growth and may be used as second or third line endocrine therapy in certain patients.
- Other cancers may require different chemotherapeutic regimens. For example, metastatic colorectal cancer is typically treated with Camptosar (irinotecan or CPT-11), 5-fluorouracil or leucovorin, alone or in combination with one another. Proteinase and integrin inhibitors such as the MMP inhibitors marimastate (British Biotech), COL-3 (Collagenex), Neovastat (Aeterna), AG3340 (Agouron), BMS-275291 (Bristol Myers Squibb), CGS 27023A (Novartis) or the integrin inhibitors Vitaxin (Medimmune), or MED1522 (Merck KgaA) may also be suitable for use. As such, immunological targeting of immunogenic targets associated with colorectal cancer could be performed in combination with a treatment using those chemotherapeutic agents. Similarly, chemotherapeutic agents used to treat other types of cancers are well-known in the art and may be combined with the immunogenic targets described herein.
- Many anti-angiogenic agents are known in the art and would be suitable for co-administration with the immunogenic target vaccines (see, for example, Timar, et al. 2001. Pathology Oncol. Res., 7(2): 85-94). Such agents include, for example, physiological agents such as growth factors (i.e., ANG-2, NK1,2,4 (HGF) transforming growth factor beta (TGF-β)), cytokines (i.e., interferons such as IFN-α, -β, -γ, platelet factor 4 (PF-4), PR-39), proteases (i.e., cleaved AT-III, collagen XVIII fragment (Endostatin)), HmwKallikrein-d5 plasmin fragment (Angiostatin), prothrombin-F1-2, TSP-1), protease inhibitors (i.e., tissue inhibitor of metalloproteases such as TIMP-1, -2, or -3; maspin; plasminogen activator-inhibitors such as PAI-1; pigment epithelium derived factor (PEDF)), Tumstatin (available through ILEX, Inc.), antibody products (i.e., the collagen-binding antibodies HUIV26, HU177, XL313; anti-VEGF; anti-integrin (i.e., Vitaxin, (Lxsys))), and glycosidases (i.e., heparinase-I, -III). “Chemical” or modified physiological agents known or believed to have anti-angiogenic potential include, for example, viablastine, taxol, ketoconazole, thalidomide, dolestatin, combrestatin A, rapamycin (Guba, et al. 2002, Nature Med., 8: 128-135), CEP-7055 (available from Cephalon, Inc.), flavone acetic acid, Bay 12-9566 (Bayer Corp.), AG3340 (Agouron, Inc.), CGS 27023A (Novartis), tetracylcine derivatives (i.e., COL-3 (Collagenix, Inc.)), Neovastat (Aeterna). BMS-275291 (Bristol-Myers Squibb), low dose 5-FU, low dose methotrexate (MTX), irsofladine, radicicol, cyclosporine, captopril, celecoxib, D45152-sulphated polysaccharide, cationic protein (Protamine), cationic peptide-VEGF, Suramin (polysulphonated napthyl urea), compounds that interfere with the function or production of VEGF (i.e., SU5416 or SU6668 (Sugen) PTK787/ZK22584 (Novartis)), Distamycin A, Angiozyme (ribozyme), isoflavinoids, staurosporine derivatives, genistein, EMD121974 (Merck KcgaA), tyrphostins, isoquinolones, retinoic acid, carboxyamidotriazole, TNP-470, octreotide, 2-methoxyestradiol, aminosterols (i.e., squalamine), glutathione analogues (i.e., N-acteyl-L-cysteine), combretastatin A-4 (Oxigene), Eph receptor blocking agents (Nature 414:933-938, 2001), Rh-Angiostatin. Rh-Endostatin (WO 01/93897), cyclic-RGD peptide, accutin-disintegrin, benzodiazepenes, humanized anti-avb3 Ab, Rh-PAI-2, amiloride, p-amidobenzamidine, anti-uPA ab, anti-uPAR Ab L-phanylalanin-N-methyl amides (i.e., Batimistat, Marimastat), AG3340, and minocycline. Many other suitable agents are known in the art and would suffice in practicing the present invention.
- The present invention may also be utilized in combination with “non-traditional” methods of treating cancer. For example, it has recently been demonstrated that administration of certain anaerobic bacteria may assist in slowing tumor growth. In one study, Clostridium novyi was modified to eliminate a toxin gene carried on a phage episome and administered to mice with colorectal tumors (Dang, et al. P.N.A.S. USA, 98(26): 15155-15160, 2001). In combination with chemotherapy, the treatment was shown to cause tumor necrosis in the animals. The reagents and methodologies described in this application may be combined with such treatment methodologies.
- Nucleic acids encoding immunogenic targets may be administered to patients by any of several available techniques. Various viral vectors that have been successfully utilized for introducing a nucleic acid to a host include retrovirus, adenovirus, adeno-associated virus (AAV), herpes virus, and poxvirus, among others. It is understood in the art that many such viral vectors are available in the art. The vectors of the present invention may be constructed using standard recombinant techniques widely available to one skilled in the art. Such techniques may be found in common molecular biology references such as Molecular Cloning: A Laboratory Manual (Sambrook, et al., 1989, Cold Spring Harbor Laboratory Press), Gene Expression Technology (Methods in Enzymology, Vol. 185, edited by D. Goeddel, 1991. Academic Press, San Diego, Calif.), and PCR Protocols: A Guide to Methods and Applications (Innis, et al. 1990. Academic Press, San Diego, Calif.).
- Preferred retroviral vectors are derivatives of lentivirus as well as derivatives of murine or avian retroviruses. Examples of suitable retroviral vectors include, for example, Moloney murine leukemia virus (MoMuLV), Harvey murine sarcoma virus (HaMuSV), murine mammary tumor virus (MuMTV), SIV, BIV, HIV and Rous Sarcoma Virus (RSV). A number of retroviral vectors can incorporate multiple exogenous nucleic acid sequences. As recombinant retroviruses are defective, they require assistance in order to produce infectious vector particles. This assistance can be provided by, for example, helper cell lines encoding retrovirus structural genes. Suitable helper cell lines include Ψ2, PA317 and PA12, among others. The vector virions produced using such cell lines may then be used to infect a tissue cell line, such as NIH 3T3 cells, to produce large quantities of chimeric retroviral virions. Retroviral vectors may be administered by traditional methods (i.e., infection) or by implantation of a “producer cell line” in proximity to the target cell population (Culver, K., et al., 1994, Hum. Gene Ther., 5 (3): 343-79; Culver, K., et al, Cold Spring Harb. Symp. Quant. Biol., 59: 685-90); Oldfield, E., 1993, Hum. Gene Ther., 4 (1): 39-69). The producer cell line is engineered to produce a viral vector and releases viral particles in the vicinity of the target cell. A portion of the released viral particles contact the target cells and infect those cells, thus delivering a nucleic acid of the present invention to the target cell. Following infection of the target cell, expression of the nucleic acid of the vector occurs.
- Adenoviral vectors have proven especially useful for gene transfer into eukaryotic cells (Rosenfeld, M., et al, 1991, Science, 252 (5004): 431-4; Crystal, R., et al., 1994, Nat. Genet., 8 (1): 42-51), the study eukaryotic gene expression (Levrero, M., et al., 1991, Gene, 101 (2): 195-202), vaccine development (Graham, F. and Prevec, L., 1992, Biotechnology, 20: 363-90), and in animal models (Stratford-Perricaudet, L., et al., 1992, Bone Marrow Transplant., 9 (Suppl. 1): 151-2; Rich, D., et al., 1993, Hum. Gene Ther., 4 (4): 461-76). Experimental routes for administrating recombinant Ad to different tissues in viro have included intratracheal instillation (Rosenfeld, M., et al., 1992, Cell, 68 (1): 143-55) injection into muscle (Quantin, B., et al., 1992, Proc. Natl. Acad Sci. U.S.A., 89 (7): 2581-4), peripheral intravenous injection (Herz, J., and Gerard, R., 1993, Proc. Natl. Acad. Sci. U.S.A., 90 (7): 2812-6) and stereotactic inoculation to brain (Le Gal La Salle, G., et al., 1993, Science, 259 (5097): 988-90), among others.
- Adeno-associated virus (AAV) demonstrates high-level infectivity, broad host range and specificity in integrating into the host cell genome (Hermonat, P., et al., 1984, Proc. Natl. Acad. Sci. U.S.A., 81 (20): 6466-70). And Herpes Simplex Virus type-1 (HSV-1) is vet another attractive vector system, especially for use in the nervous system because of its neurotropic property (Geller, A., et al., 1991, Trends Neurosci., 14 (10): 428-32; Glorioso, et al., 1995, Mol. Biotechnol., 4 (1): 87-99; Glorioso, et al., 1995, Annu. Rev. Microbiol., 49: 675-710).
- Poxvirus is another useful expression vector (Smith, et al. 1983, Gene, 25 (1): 21-8: Moss, et al, 1992, Biotechnology, 20: 345-62; Moss, et al, 1992, Curr. Top. Microbiol. Immunol., 158: 25-38: Moss, et al. 1991. Science, 252: 1662-1667). Poxviruses shown to be useful include vaccinia, NYVAC, avipox, fowlpox, canarypox, ALVAC, and ALVAC(2), among others.
- NYVAC (vP866) was derived from the Copenhagen vaccine strain of vaccinia virus by deleting six nonessential regions of the genome encoding known or potential virulence factors (see, for example, U.S. Pat. Nos. 5,364,773 and 5,494,807). The deletion loci were also engineered as recipient loci for the insertion of foreign genes. The deleted regions are: thymidine kinase gene (TK; J2R); hemorrhagic region (u; B13R+B14R); A type inclusion body region (ATI; A26L); hemagglutinin gene (HA; A56R); host range gene region (C7L-K1L); and, large subunit, ribonucleotide reductase (I4L). NYVAC is a genetically engineered vaccinia virus strain that was generated by the specific deletion of eighteen open reading frames encoding gene products associated with virulence and host range. NYVAC has been show to be useful for expressing TAs (see, for example, U.S. Pat. No. 6,265,189). NYVAC (vP866), vP994, vCP205, vCP1433, placZH6H4Lreverse, pMPC6H6K3E3 and pC3H6FHVB were also deposited with the ATCC under the terms of the Budapest Treaty, accession numbers VR-2559, VR-2558, VR-2557, VR-2556, ATCC-97913, ATCC-97912, and ATCC-97914, respectively.
- ALVAC-based recombinant viruses (i.e., ALVAC-1 and ALVAC-2) are also suitable for use in practicing the present invention (see, for example, U.S. Pat. No. 5,756,103). ALVAC(2) is identical to ALVAC(1) except that ALVAC(2) genome comprises the vaccinia E3L and K3L genes under the control of vaccinia promoters (U.S. Pat. No. 6,130,066; Beattie et al., 1995a, 1995b, 1991; Chang et al., 1992; Davies et al., 1993). Both ALVAC(1) and ALVAC(2) have been demonstrated to be useful in expressing foreign DNA sequences, such as TAs (Tartaglia et al., 1993 a,b; U.S. Pat. No. 5,833,975). ALVAC was deposited under the terms of the Budapest Treaty with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209, USA, ATCC accession number VR-2547.
- Another useful poxvirus vector is TROVAC. TROVAC refers to an attenuated fowlpox that was a plaque-cloned isolate derived from the FP-1 vaccine strain of fowlpoxvirus which is licensed for vaccination of 1 day old chicks. TROVAC was likewise deposited under the terms of the Budapest Treaty with the ATCC, accession number 2553.
- “Non-viral” plasmid vectors may also be suitable in practicing the present invention. Preferred plasmid vectors are compatible with bacterial, insect, and/or mammalian host cells. Such vectors include, for example, PCR-II, pCR3, and pcDNA3.1 (Invitrogen, San Diego, Calif.), pBSII (Stratagene, La Jolla, Calif.), pET15 (Novagen, Madison, Wis.), pGEX (Pharmacia Biotech, Piscataway, N.J.), pEGFP-N2 (Clontech. Palo Alto, Calif.), pETL (BlueBacII, Invitrogen), pDSR-alpha (PCT pub. No. WO 90/14363) and pFastBacDual (Gibco-BRL, Grand Island, N.Y.) as well as Bluescript® plasmid derivatives (a high copy, number COLE1-based phagemid, Stratagene Cloning Systems, La Jolla, Calif.), PCR cloning plasmids designed for cloning Taq-amplified PCR products (e.g., TOPO™ TA Cloning® kit, PCR2.1® plasmid derivatives, invitrogen, Carlsbad, Calif.). Bacterial vectors may also be used with the current invention. These vectors include, for example, Shigella, Salmonella, Vibrio cholerae, Lactobacillus, Bacille calmette guérin (BCG) and Streptococcus (see for example, WO 88/6626; WO 90/0594; WO 91/13157; WO 92/1796; and WO 92/21376). Many other non-viral plasmid expression vectors and systems are known in the art and could be used with the current invention.
- Suitable nucleic acid delivery techniques include DNA-ligand complexes, adenovirus-ligand-DNA complexes, direct injection of DNA, CaPO4 precipitation, gene gun techniques, electroporation, and colloidal dispersion systems, among others. Colloidal dispersion systems include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. The preferred colloidal system of this invention is a liposome, which are artificial membrane vesicles useful as delivery vehicles in vitro and in vivo, RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, R., et al., 1981, Trends Biochem. Sci., 6: 77). The composition of the liposome is usually a combination of phospholipids, particularly high-phase-transition-temperature phospholipids, usually in combination with steroids, especially cholesterol. Other phospholipids or other lipids may also be used. The physical characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations. Examples of lipids useful in liposome production include phosphatidyl compounds, such as phosphatidylglycerol, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingolipids, cerebrosides, and gangliosides. Particularly useful are diacylphosphatidylglycerols, where the lipid moiety contains from 14-18 carbon atoms, particularly from 16-18 carbon atoms, and is saturated. Illustrative phospholipids include egg phosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine.
- An immunogenic target may also be administered in combination with one or more adjuvants to boost the immune response. Exemplary adjuvants are shown in Table II below:
-
TABLE II Types of Immunologic Adjuvants Type of Adjuvant General Examples Specific Examples/References Gel-type Aluminum hydroxide/phosphate (“alum (Aggerbeck and Heron, 1995) adjuvants”) Calcium phosphate (Relyveld, 1986) Microbial Muramyl dipeptide (MDP) (Chedid et al., 1986) Bacterial exotoxins Cholera toxin (CT), E. coli labile toxin (LT)(Freytag and Clements, 1999) Endotoxin-based adjuvants Monophosphoryl lipid A (MPL) (Ulrich and Myers, 1995) Other bacterial CpG oligomicleotides (Corral and Petray, 2000), BCG sequences (Krieg, et al, Nature, 374: 576), tetanus toxoid (Rice, et al, J. Immunol., 2001, 167: 1558-1565) Particulate Biodegradable (Gupta et al., 1998) Polymer microspheres Immunostimulatory complexes (Morein and Bengtsson, 1999) (ISCOMs) Liposomes (Wassef et al., 1994) Oil-emulsion Freund's incomplete adjuvant (Jensen et al., 1998) and Microfluidized emulsions MF59 (Otl et al., 1995) surfactant- SAF (Allison and Byars, 1992) based (Allison, 1999) adjuvants Saponins QS-21 (Kensil, 1996) Synthetic Muramyl peptide derivatives Murabutide (Lederer, 1986) Threony-MDP (Allison, 1997) Nonionic block copolymers L121 (Allison, 1999) Polyphosphazene (PCPP) (Payne et al., 1995) Synthetic polynucleotides Poly A:U Poly I:C (Johnson, 1994) Thalidomide derivatives CC-4047/ACTIMID (J. Immunol., 168(10): 4914-9) - The immunogenic targets of the present invention may also be used to generate antibodies for use in screening assays or for immunotherapy. Other uses would be apparent to one of skill in the art. The term “antibody” includes antibody fragments, as are known in the art, including Fab, Fab2, single chain antibodies (Fv for example), humanized antibodies, chimeric antibodies, human antibodies, produced by several methods as are known in the art. Methods of preparing and utilizing various types of antibodies are well-known to those of skill in the art and would be suitable in practicing the present invention (see, for example, Harlow, et al. Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; Harlow, et al. Using Antibodies: A Laboratory, Manual, Portable Protocol No. 1, 1998; Kohler and Milstein, Nature, 256:495 (1975)); Jones et al. Nature, 321:522-525 (1986); Riechmann et al. Nature, 332:323-329 (1988); Presta (Curr. Op. Struct. Biol., 2:593-596 (1992); Verhoeyen et al. (Science, 239:1534-1536 (1988); Hoogenboom et al, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991); Cole et al, Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985); Boerner et al., J. Immunol., 147(1):86-95 (1991); Marks et al., Bio/
Technology 10, 779-783 (1992); Lornberg et al., Nature 368 856-859 (1994); Morrison, Nature 368 812-13 (1994); Fishwild et al., Nature Biotechnology 14, 845-51 (1996); Neuberger, Nature Biotechnology 14, 826 (1996); Lonberg and Huszar, Intern. Rev. Immunol. 13 65-93 (1995); as well as U.S. Pat. Nos. 4,816,567; 5,545.807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; and, 5,661,016). The antibodies or derivatives therefrom may also be conjugated to therapeutic moieties such as cytotoxic drugs or toxins, or active fragments thereof such as diptheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin, among others. Cytotoxic agents may also include radiochemicals. Antibodies and their derivatives may be incorporated into compositions of the invention for use in vitro or in vivo. - Nucleic acids, proteins, or derivatives thereof representing an immunogenic target may be used in assays to determine the presence of a disease state in a patient, to predict prognosis, or to determine the effectiveness of a chemotherapeutic or other treatment regimen. Expression profiles, performed as is known in the art, may be used to determine the relative level of expression of the immunogenic target. The level of expression may then be correlated with base levels to determine whether a particular disease is present within the patient, the patient's prognosis, or whether a particular treatment regimen is effective. For example, if the patient is being treated with a particular chemotherapeutic regimen, a decreased level of expression of an immunogenic target in the patient's tissues (i.e., in peripheral blood) may indicate the regimen is decreasing the cancer load in that host. Similarly, if the level of expression is increasing, another therapeutic modality may need to be utilized. In one embodiment, nucleic acid probes corresponding to a nucleic acid encoding an immunogenic target may be attached to a biochip, as is known in the art, for the detection and quantification of expression in the host.
- It is also possible to use nucleic acids, proteins, derivatives therefrom, or antibodies thereto as reagents in drug screening assays. The reagents may be used to ascertain the effect of a drug candidate on the expression of the immunogenic target in a cell line, or a cell or tissue of a patient. The expression profiling technique may be combined with high throughput screening techniques to allow rapid identification of useful compounds and monitor the effectiveness of treatment with a drug candidate (see, for example, Zlokarnik, et al., Science 279, 84-8 (1998)). Drug candidates may be chemical compounds, nucleic acids, proteins, antibodies, or derivatives therefrom, whether naturally occurring or synthetically derived. Drug candidates thus identified may be utilized, among other uses, as pharmaceutical compositions for administration to patients or for use in further screening assays.
- Administration of a composition of the present invention to a host may be accomplished using any of a variety of techniques known to those of skill in the art. The composition(s) may be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals (i.e., a “pharmaceutical composition”). The pharmaceutical composition is preferably made in the form of a dosage unit containing a given, amount of DNA, viral vector particles, polypeptide or peptide, for example. A suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.
- The pharmaceutical composition may be administered orally, parentally, by inhalation spray, rectally, intranodally, or topically in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles. The term “pharmaceutically acceptable carrier” or “physiologically acceptable carrier” as used herein refers to one or more formulation materials suitable for accomplishing or enhancing the delivery of a nucleic acid, polypeptide, or peptide as a pharmaceutical composition. A “pharmaceutical composition” is a composition comprising a therapeutically effective amount of a nucleic acid or polypeptide. The terms “effective amount” and “therapeutically effective amount” each refer to the amount of a nucleic acid or polypeptide used to induce or enhance an effective immune response. It is preferred that compositions of the present invention provide for the induction or enhancement of an anti-tumor immune response in a host which protects the host from the development of a tumor and/or allows the host to eliminate an existing tumor from the body.
- For oral administration, the pharmaceutical composition may be of any of several forms including, for example, a capsule, a tablet, a suspension, or liquid, among others. Liquids may be administered by injection as a composition with suitable carriers including saline, dextrose, or water. The term parenteral as used herein includes subcutaneous, intravenous, intramuscular, intrasternal, infusion, or intraperitoneal administration. Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature.
- The dosage regimen for immunizing a host or otherwise treating a disorder or a disease with a composition of this invention is based on a variety of factors, including the type of disease, the age, weight, sex, medical condition of the patient, the severity of the condition, the route of administration, and the particular compound employed. For example, a poxviral vector may be administered as a composition comprising 1×106 infectious particles per dose. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods.
- A prime-boost regimen may also be utilized (see, for example, WO 01/30382 A1) in which the targeted immunogen is initially administered in a priming step in one form followed by a boosting step in which the targeted immunogen is administered in another form. The form of the targeted immunogen in the priming and boosting steps are different. For instance, if the priming step utilized a nucleic acid, the boost may be administered as a peptide. Similarly, where a priming step utilized one type of recombinant virus (i.e., ALVAC), the boost step may utilize another type of virus (i.e., NYVAC). This prime-boost method of administration has been shown to induce strong immunological responses.
- While the compositions of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more other compositions or agents (i.e., other immunogenic targets, co-stimulatory molecules, adjuvants). When administered as a combination, the individual components can be formulated as separate compositions administered at the same time or different times, or the components can be combined as a single composition.
- Injectable preparations, such as sterile injectable aqueous or oleaginous suspensions, may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents. The injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent. Suitable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution, among others. For instance, a viral vector such as a poxvirus may be prepared in 0.4% NaCl. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed, including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.
- For topical administration, a suitable topical dose of a composition may be administered one to four, and preferably two or three times daily. The dose may also be administered with intervening days during which no does is applied. Suitable compositions may comprise from 0.001% to 10% w/w, for example, from 1% to 2% by weight of the formulation, although it may comprise as much as 10% w/w, but preferably not more than 5% w/w, and more preferably from 0.1% to 1% of the formulation. Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin (e.g., liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose.
- The pharmaceutical compositions may also be prepared in a solid form (including granules, powders or suppositories). The pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc. Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets, and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings. Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting sweetening, flavoring, and perfuming agents.
- Pharmaceutical compositions comprising a nucleic acid or polypeptide of the present invention may take any of several forms and may be administered by any of several routes. In preferred embodiments, the compositions are administered via a parenteral route (intradermal, intramuscular or subcutaneous) to induce an immune response in the host. Alternatively, the composition may be administered directly into a lymph node (intranodal) or tumor mass (i.e., intratumoral administration). For example, the dose could be administered subcutaneously at
0, 7, and 14. Suitable methods for immunization using compositions comprising TAs are known in the art, as shown for p53 (Hollstein et al., 1991), p21-ras (Almoguera et al., 1988), HER-2 (Fendly et al., 1990), the melanoma-associated antigens (MAGE-1; MAGE-2) (van der Bruggen et al, 1991), p97 (Hu et al., 1988), melanoma-associated antigen E (WO 99/30737) and carcinoembryonic antigen (CEA) (Kantor et al., 1993; Fishbein et al, 1992; Kaufman et al., 1991), among others.days - Preferred embodiments of administratable compositions include, for example, nucleic acids or polypeptides in liquid preparations such as suspensions, syrups, or elixirs. Preferred injectable preparations include, for example, nucleic acids or polypeptides suitable for parental, subcutaneous, intradermal, intramuscular or intravenous administration such as sterile suspensions or emulsions. For example, a recombinant poxvirus may be in admixture with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, glucose or the like. The composition may also be provided in lyophilized form for reconstituting, for instance, in isotonic aqueous, saline buffer. In addition, the compositions can be co-administered or sequentially administered with other antineoplastic, anti-tumor or anti-cancer agents and/or with agents which reduce or alleviate ill effects of antineoplastic, anti-tumor or anti-cancer agents.
- A kit comprising a composition of the present invention is also provided. The kit can include a separate container containing a suitable carrier, diluent or excipient. The kit can also include an additional anti-cancer, anti-tumor or antineoplastic agent and/or an agent that reduces or alleviates ill effects of antineoplastic, anti-tumor or anti-cancer agents for co- or sequential-administration. Additionally, the kit can include instructions for mixing or combining ingredients and/or administration.
- A better understanding of the present invention and of its many advantages will be had from the following examples, given by way of illustration.
- A version of the AAC2 coding sequence (AAC2-1) was provided by a collaborator and found to have high sequence similarity to a murine bcl-6-associated zinc finger protein (“BAZF”). Based on this sequence information, PCR primers were designed as shown below:
-
(forward primer; SEQ ID NO.: 6) CACCATGGGT TCCCCCGCCG CCCCGGA (reverse primer; SEQ ID NO.: 7) CTAGGGCCCC CCGAGAATGT GGTAGTGCAC TTT - RNA was isolated from confluent HUVEC (BioWhittacker; Cat. No. CC2517, Lot No. IF0141) cultures using Trizol™ as indicated by the manufacturer (Life Technologies, Inc., Cat. No. 15596). High fidelity RT-PCR was then performed using the forward and reverse primers (24 cycles at 94 degrees, 2 min.; 94 degrees, 30 see; 56.8 degrees, 30 sec; 68 degrees, 1
min 40 sec;cycle 25 is 68 degrees, 7 min) resulting in the isolation of a 1,447 base pair cDNA. The cDNA was cloned into the pEF6-TOPO eukaryotic expression plasmid and termed “pEF6-hAAC2-2”. The cDNA pEF6-hAAC2-2 was sequenced using four primers and aligned to the sequence of AAC2-1 and murine BAZF (FIG. 1 ). As shown therein, AAC2-2 is missing the serine residue (S) found at position 245 in AAC2-1. Secondly, a stretch of 17 amino acids at positions 298 to 316 (SEFFSCQNCEAVAGCSS) of AAC2-2 showed only 11.8% sequence identity with amino acids 298-316 of AAC2-1 (FIG. 1 ). Interestingly, the stretch of 17 amino acids between positions 298 and 316 is 100% identical with murine BAZF suggesting that this may be critical for transcription factor function along with the long stretch of serines (zinc finger). AAC2-2 was then cloned into the pcDNA3.1-zeo eukaryotic expression plasmid (“pcDNA3.1-hAAC2-2”). - Using the AAC2-2 amino acid sequence, a library of 9-mer peptides predicted to bind to HLA-A-0201 was constructed (Table III; “N” indicates the sequence is not found within the mouse homolog, while “Y” indicates the sequence is found within the mouse homolog). Twenty-three of the peptides were dissolved in DMSO at 10 mg/ml (Table IV) and used in human PBMC cultures to test for their ability to elicit CD8 and CD4 αβ T-cell responses in vitro.
-
TABLE III Predicted HLA-A-0201-binding nonamer peptides of human AAC2-2 Position in SEQ ID Designation Sequence Protein NO. CLP-2954 RLSPTAATV AAC2(256-264) 44 CLP-2955 SIFRGRAGV AAC2(65-73) 45 CLP-2956 DVLGNLNEL AAC2(23-31) 46 CLP-2957 GVGVDVLSL AAC2(72-80) 47 CLP-2958 LLTSQAQDT AAC2(277-285) 48 CLP-2959 VLNSQASQA AAC2(201-209) 49 CLP-2960 VQFKCGAPA AAC2(264-272) 50 CLP-2961 GQPCPQARL AAC2(219-227) 51 CLP-2962 GAHRGLDSL AAC2(312-320) 52 CLP-2963 GAPASTPYL AAC2(269-277) 53 CLP-2964 VVQACHRFI AAC2(123-131) 54 CLP-2965 PLGISLRPL AAC2(137-145) 55 CLP-2966 PLRAHKAVL AAC2(48-56) 56 CLP-2967 FVQVAHLRA AAC2(394-402) 57 CLP-2968 APLLDFMYT AAC2(90-98) 58 CLP-2969 RAGVGVDVL AAC2(70-78) 59 CLP-2970 CETCGSRFV AAC2(387-395) 60 CLP-2971 ATAPAVLAA AAC2(106-114) 61 CLP-2972 SRFVQVAHL AAC2(392-400) 62 CLP-2973 CNWKKYKYI AAC2(192-200) 63 CLP-2974 SPAAPEGAL AAC2(3-11) 64 — EC-1 ALGYVREFT AAC2(10-18) 65 EC-3 RLRGILTDV AAC2(32-40) 66 EC-4 GILTDVTLL AAC2(35-43) 67 EC-5 ILTDVTLLV AAC2(36-44) 68 EC-6 TLLVGGQPL AAC2(41-49) 69 EC-9 FMYTSRLRL AAC2(95-103) 70 EC-10 RLSPATAPA AAC2(102-110) 71 EC-11 AVLAAATYL AAC2(110-118) 72 EC-12 ATYLQMEHV AAC2(115-123) 73 EC-13 LQMEHVVQA AAC2(118-126) 74 EC-21 QVAHLRAHV AAC2(390-398) 75 EC-22 HLQTLKSHV AAC2(418-426) 76 EC-24 VVQACHRFI AAC2(123-131) 77 - Using GM-CSF and IL-4, dendritic cells (DC) were generated from peripheral blood monocytes of blood donors expressing HLA-A-0201. DC were pulsed with the different pools of 9-mer AAC2-2 peptides shown in Table IV.
-
TABLE IV AAC2-2 Peptide Groups 1 CLP 2954 RLSPTAATV (SEQ ID NO.: 44) AAC2(256-264) CLP 2956 DVLGNLNEL (SEQ ID NO.: 45) AAC2(23-31) CLP 2957 GVGVDVLSL (SEQ ID NO.: 46) AAC2(72-80) 2 CLP 2959 VLNSQASQA (SEQ ID NO.: 49) AAC2(201-209) CLP 2960 VQFKCGAPA (SEQ ID NO.: 50) AAC2(264-272) CLP 2963 GAPASTPYL (SEQ ID NO.: 53) AAC2(269-277) 3 CLP 2964 VVQACHRFI (SEQ ID NO.: 54) AAC2(123-131) CLP 2968 APLLDFMYT (SEQ ID NO.: 58) AAC2(90-98) 4 CLP 2971 ATAPAVLAA (SEQ ID NO.: 61) AAC2(106-114) CLP 2973 CNWKKYKYI (SEQ ID NO.: 63) AAC2(192-200) 5 EC 1 ALGYVREFT (SEQ ID NO.: 65) AAC2(10-18) EC 3 RLRGILTDV (SEQ ID NO.: 66) AAC2(32-40) EC 3 GILTDVTLL (SEQ ID NO.: 67) AAC2(35-43) 6 EC 5 ILTDVTLLV (SEQ ID NO.: 68) AAC2(36-44) EC 6 ILLVGGQPL (SEQ ID NO.: 69) AAC2(41-49) EC 9 FMYTSRLRL (SEQ ID NO.: 70) AAC2(95-103) 7 EC 10 RLSPATAPA (SEQ ID NO.: 71) AAC2(102-110) EC 11 AVLAAATYL (SEQ ID NO.: 72) AAC2(110-118) EC 12 ATYLQMEHV (SEQ ID NO.: 73) AAC2(115-123) 8 EC 13 LQMEHVVQA (SEQ ID NO.: 74) AAC2(118-126) EC 21 QVAHLRAHV (SEQ ID NO.: 75) AAC2(390-398) 9 EC 22 HLQTLKSHV (SEQ ID NO.: 76) AAC2(418-426) EC 24 VVQACHRFI (SEQ ID NO.: 77) AAC2(123-131) - These DC were used to stimulate autologous T-cell-enriched PBMC preparations. The T cells were re-stimulated with autologous PBMC and then re-stimulated with CD40-ligand-activated autologous B cells. After the third and fourth round of stimulation with each peptide pool. ELISPOT analysis for IFN-γ production indicated that the T cells responded most strongly to one of the pools of AAC2-2 peptides (
peptide group 6;FIG. 2A ).Peptide group 6 includes the following peptides: ILTDVTLLV (aa 36-44), TLLVGGQPL (aa 41-49), and FMYTSRLRL (aa 95-103). Flow cytometric analysis (FACS) showed that the lymphocytes from this peptide-specific line consisted of >50% CD8 T cells with a memory (CD45RO+) phenotype. Very few cells (<:2%) were stained with anti-CD56 antibodies, indicating that the observed IFN-γ production was not due to NK cell activity. - Analysis of CTL activity from this peptide pool-specific T-cell line also demonstrated that the activated T cells were capable of killing peptide-loaded TAP-deficient T2 cells in an HLA-A-0201-restricted fashion (
FIG. 2B ). This analysis also revealed that ILTDVTLLV was a dominant peptide that stimulated the majority of the peptide-specific CTL activity. Thus, it was determined that AAC2-2 peptides are immunogenic in the human immune system. - Using DNA immunization into HLA-A2-Kb transgenic mice, it was found that the AAC2-2 protein is processed into immunogenic peptides and can elicit an HLA-A-0201-restricted T-cell response in vivo. Mice were immunized on
day 1 by injection with pEF6-hAAC2-2 and boosted with the same plasmid at day 21 Lymphocytes were harvested from immunized mice 21 days after boosting and re-stimulated in vitro with the different groups of AAC2-2 peptides shown in Table IV. Peptide-specific effector T-cell function towards these peptides was found using IFN-γ ELISPOT analysis (FIG. 3 ). It was found that the same pool of peptides (group 6) previously shown to be strongly immunogenic in human PBMC cultures also elicited significant reactivity by cells after DNA vaccination (FIG. 3 ). Thus, the AAC2 gene product administered as a DNA-based vaccine is immunogenic in vivo and elicits a strong cell-mediated immune response characterized by the activation of CTL activity. - Therapeutic vaccination against the AAC2-2 gene product using the pEF6-hAAC2-2 DNA vaccine was found to completely block the growth of a solid tumor. Groups of eight C57BJ6 mice were subcutaneously challenged with 104 B16F10 melanoma cells, a vigorous and relatively non-immunogenic tumor cell line. The mice were then immunized at weekly intervals starting at 6 days after tumor challenge. Control mice (eight per group) treated either with a plasmid encoding the flu-NP protein or saline alone all developed large tumors. In contrast, all the mice (8/8) immunized with pIF6-hA-AC2-2 had no detectable tumor over a 50-day period (
FIG. 4 ). All mice remained tumor-free through 80 days (data not shown).FIG. 5 plots the survival of mice treated with the different DNA vectors shown after melanoma implantation showing again the complete effectiveness of AAC2-2 vaccination in protecting mice against melanoma growth. No adverse health effects have been observed as a result of immunization with the human AAC2-2 gene-encoding vector (immunized mice were as active as control mice and showed no weight loss). - As shown in
FIGS. 4 and 5 , vaccination with a plasmid encoding the human VEGFR-2 (pBLAST-hflk1) did not protect tumor-challenged mice. In fact, the tumors grew even more rapidly in these mice. Analysis of sera from mice vaccinated with the pBLAST-hflk1 plasmid by ELISA found that IgG against the VEGFR-2 protein is induced in significant titres (data not shown). These results suggest that an antibody-based immune response directed against VEGFR-2 may not be not effective in preventing angiogenesis and solid tumor growth. - Inhibition of melanoma solid tumor growth in C57BL/6 mice immunized with pEF6-hAAC2-2 correlates with an immune response against the protein (
FIG. 6 ). Immunization of CS7BL/6 mice was performed as described above. Spleen cells from immunized mice were re-stimulated with the same peptide pools used in experiments with HLA-A2-Kb transgenic mice (Table III). A significant number of peptides cross-react on C57BL/6 class I MHC (Kb and Db molecules). Two pools of peptides in particular (group 1 and group 5) were found to elicit strong effector cell activity in the IFN-□ ELISPOT assays (FIG. 6 ). All of the peptides in these groups are also identical to the corresponding sequence in the murine BAZF protein. These results strongly suggest that immunization with the human AAC2-2 activates an immune response against its murine orthologue BAZF in mice and can inhibit tumor angiogenesis as a result. - The BFA4 sequence was found to be the “
trichorhinophalangeal syndrome 1” (TRPS-1) gene (Genebank ID #6684533; Momeniet et al, Nature Genetics, 24(1), 71-74, 2000), a known transcription factor with no function attributed previously in any form of cancer. The BFA4 cDNA sequence is shown inFIG. 7 (SEQ ID NO.: 28) and the deduced amino acid sequence is shown inFIG. 8 (SEQ ID NO.: 29) - For monitoring purposes, rabbit anti-BFA4 polyclonal antibodies were generated. Six peptides (22-mers) were designed and synthesized to elicit antibody response to BFA4, as shown below:
-
(SEQ ID NO.: 78) CLP 2589 MVRKKNPPLRNVASEGEGQILE BFA4 (1-22) (SEQ ID NO.: 79) CLP 2590 SPKATEETGQAQSGQANCQGLS BFA4 (157-178) (SEQ ID NO.: 80) CLP 2591 VAKPSEKNSNKSIPALQSSDSG BFA4 (371-392) (SEQ ID NO.: 81) CLP 2592 NHLQGSDGQQSVKESKEHSCTK BFA4 (649-670) (SEQ ID NO.: 82) CLP 2593 NGEQIIRRRTRKRLNPEALQAE BFA4 (940-961) (SEQ ID NO.: 83) CLP 2594 ANGASKEKTKAPPNVKNEGPLNV BFA4 (1178-1199) - Rabbits were immunized with the peptides, serum was isolated, and the following antibody titers were observed:
-
Rabbit # Peptide Titer (Bleed 2) Titer (Final Bleed) 1, 2 CLP2589 800000, 1600000 2560000, 2560000 3, 4 CLP2590 12800, 6400 40000, 40000 5, 6 CLP2591 400000, 400000 320000, 320000 7, 8 CLP2592 25600, 12800 80000, 40000 9, 10 CLP2593 3200000, 51200 2560000, 160000 11, 12 CLP2594 409600, 409600 320000, 320000 - These peptides were also modified by coupling with KLH peptides to enhance immune responses as shown below:
-
(CLP-2589; SEQ ID NO.: 78) BFA4(1-22) KLH-MVRKKNPPLRNVASEGEGQILE (CLP-2590; SEQ ID NO.: 79) BFA4(157-178) KLH-SPKATEETGQAQSGQANCQGLS (CLP-2591; SEQ ID NO.: 80) BFA4(371-392) KLH-VAKPSEKNSNKSIPALQSSDSG (CLP-2592; SEQ ID NO.: 81) BFA4(649-670) KLH-NHLQGSDGQQSVKESKEHSCTK (CLP-2593; SEQ ID NO.: 82) BFA4(940-961) KLH-NGEQIIRRRTRKRLNPEALQAE (CLP-2594; SEQ ID NO.: 83) BFA4(1178-1200) KLH-ANGADKEKTKAPPNVKNEGPLNV - The pcDNA3.2BFA4 (3.6 mg) was also used for DNA immunization to generate polyclonal sera in chickens.
- Complete cDNA sequence for BFA4 is ˜10 kb and gene is expressed in BT474 ductal carcinoma cells. Primers 7717 (forward primer) and 7723 (reverse primer) were designed to amplify full-length BFA4 gene by amplification of 4 kb, 7 kb or 10 kb products by RT-PCR.
-
Primer 7717: BFA4-BamH1/F1 (5′ end forward) with Kozak: (SEQ ID NO.: 84) 5′ CGGGATCCACCATGGTCCGGAAAAAGAACCCC 3′(BamHI for DNA3.1, MP76) Primer 7723: BFA4-BamHI/R1 (3′ end reverse 4 kb): (SEQ ID NO.: 85) 5′ CGGGATCCCTCTTTAGGTTTTCCATTTTTTTCCAC 3′(BamHI for DNA3.1, MP76) - Ten mg of total RNA isolated and frozen in different batches from BT-474 cells using Trizol as indicated by the manufacturer (Gibco BRL) was used in RT-PCR to amplify the BF-A4 gene. RT-PCR conditions were optimized using Taq Platinum High Fidelity enzyme, OPC (Oligo Purification Cartridge; Applied Biosystems) purified primers and purified total. RNA/polyA mRNA (BT 474 cells). Optimization resulted in a 4.0 kb fragment as a single band.
- To re-amplify the BFA4 sequence, mRNA was treated with DNase per manufacturers' instructions (Gibco BRL). The 4 kb DNA was reamplified using PCR using primers 7717 and 7723 primers (10 pmole/microlitre) and Taq Platinum High Fidelity polymerase (GIBCO BRL) enzyme. Thermocycler conditions for both sets of reactions were as under: 94° C. (2 min), followed by 30 cycles of 94° C. (30 sec), 52° C. (30 sec), 67° C. (4 min) and 67° C. (5 min) and finally 40° C. for 10 min. Three BFA4 clones were identified after pCR2.1/TOPO-TA cloning.
- Several mutations were identified during analysis of the BFA4 sequence. To correct these sequences, the BamHI/XhoI fragment (5′) of the BFA4 gene from clone JB-3552-1-2 (pCR2.1/TOPO/BFA4) was exchanged with the XhoI/BamHI fragment (3′) of the BFA4 gene from clone JB-3552-1-4 (pCR2.1/TOPO/BFA4). This recombined fragment was then ligated into pMCS5 BamHI/CAP. Clone JB-3624-1-5 was generated and found to contain the correct sequence.
- Nucleotide 344 of the isolated BFA4 clone was different from the reported sequence (C in BFA4, T in TRPS-1). The change resulted in a phe to ser amino acid change. To change this sequence to the reported sequence, the EcoRI/BglII fragment (5′) of the BFA4 gene from clone JIB-3552-1-2 (pCR2.1/TOPO/BFA4) was subcloned into pUC8:2 to generate clone JB-3631-2. This clone was used as a template for Quickchange (Stratagene) mutagenesis to change amino acid 115 of the BFA4 protein from a serine to a phenylalanine as in the TRPS1 protein. The selected clone was JB-3648-2-3. Mutagenesis was also repeated with pMCS5 BFA4 (BT474) as a template for Quickchange (Stratagene) mutagenesis to change amino acid 115 of the BFA4 protein from a serine to a phenylalanine as in the TRPS1 protein. Several clones were found to be correct by DNA sequencing and one of the clones (JB-3685-1-18) was used for further subcloning.
- JB-3685-1-18 was then used to subclone the BFA4 coding sequence into the BamHI sites of four different expression vectors: 1) the poxviral (NYVAC) vector pSD554VC (COPAK/H6; JB-3707-1-7); 2) pcDNA3.1/Zeo (+) (JB-3707-3-2); 3) pCAMycHis (JB-3707-5-1); and, 4) Semiliki Forest virus alphaviral replicon vector pMP176 (JB-3735-1-23). The BFA4 coding sequence within JB-3707-1-7, JB-3707-5-1, and JB-3735-1-23 was confirmed by DNA sequencing.
- A stop codon was introduced near the end of the cloned sequence in the pcDNA3.1/Zeo/BFA4 construct (JB-3707-3-2). A unique EcoRI site was opened and filled in to introduce a stop codon in-frame with BFA4 coding sequence. Several putative clones were identified by the loss of EcoRI site, however three clones (JB-3756-1-2; JB-3756-3-1; and JB-3756-4-1) were sequenced. All three were found to be correct in the area of the fill-in. Clone JB-3756-3-1 identified as having the correct sequence and orientation.
- Myc and myc/his tags (Evans et al, 1985) were introduced using oligonucleotides, which were annealed and ligated into the pcDNA3.1/Zeo/BFA4 construct (JB-3707-3-2) at the EcoRI/EcoRV sites. Several clones were obtained for these constructs. Three clones having the correct sequences and orientations were obtained: 1) PcDNA3.1/Zeo/BFA4/myc-tag (JB-3773-1-2); 2) PcDNA3.1/Zeo/BFA4/mychis-tag (JB-3773-2-1); and, 3) PcDNA3.1 Zeo/BFA4/mychis-tag (JB-3773-2-2).
- 1. Expression from Poxviral Vectors
- The pSD554VC (COPAK/H6; JB-3707-1-7) vector was used to generate NYVAC-BFA4 virus. In vitro recombination was performed with plasmid COPAK/H6/BFA4 and NYVAC in RK13/CEF cells. NYVAC-BFA4 (vP2033-NYVAC-RK13) was generated and amplified to P3 level after completion of three enrichments with final stock concentrations of 1.12×109/ml (10 ml), Vero cells were infected with NYVAC-BFA4 at an M.O.I. of 0.5 pfu/cell. Lysates and media were harvested 24 h post-infection to confirm expression of BFA4 protein. One-twentieth of the concentrated media and 1/40 of the lysate were loaded onto a western blot and incubated with rabbit antisera against the BFA4 peptides CLP 2589, 2591, 2598 and 2594 (see above for peptide sequences and preparation of anti-BFA4 antisera). An approximate 120 kD band was detected in both the lysate and the concentrated media of NYVAC-BFA4-infected Vero cells which was not evident in either Vero control cells (“mock-infected”), Vero cells infected with the parental NYVAC virus, or concentrated media.
- 2. Expression from pcDNA3.1-Based Vectors
- Transient transfection studies were performed to verify expression of BFA4 from the pcDNA-based vectors and to analyze quality of polyconal sera raised against BFA4 peptides. The following constructs were used to study expression of BFA4 gene: pcDNA 3.1 zeoR/BFA4, pMP76/BFA4, pcDNA 3.1 zeoR/BFA4/Myc tag and pcDNA 3.1 zeoR/BFA4/MycHis tag. BFA4 expression plasmids (5 μg and 10 μg) were co-transfected with pGL3 Luciferase (1 μg) (Promega) with the Gene porter reagent (Gene Therapy Systems) as the transfection reagent. At 48 h post-transfection, whole cell extract was prepared by scraping cells in cell lysis reagent (200 μl) and 1 cycle of freeze-thaw (−20° C. freeze, 37° C. thaw). Transfection efficiency was quantitated by analyzing expression of the luciferase reporter gene by measuring Relative Luciferase Units (RLU) in duplicate. Similar RLU values were obtained in the samples co-transfected with luciferase construct in the presence and absence of BFA4 expression vectors. There was no significant difference observed in toxicity or RLU values with differential amount (5 μg and 10 μg) of BFA4 expression vectors. Preliminary western blot analysis using alkaline phosphatase system with the CHOK1 cell extracts (pcDNA3/zeo/BFA4/MycHisTag) and an anti-BFA4 polyclonal antisera, revealed a band at approximately 120 kDa band in extracts of BFA4 vector-transfected cells.
- A stable transfection study was initiated to obtain stable clones of BFA4 expressing COS A2 cells. These cells are useful for in vitro stimulation assays. pcDNA 3.1 zeoR/BFA4 (2.5 μg and 20 μg), and pcDNA 3.1 zeoR/BFA4/MycHis tag (2.5 μg) were used to study expression of BFA4). pGL3 Luciferase (2.5 μg) was used as a control vector to monitor transfection efficiency. The Gene porter reagent was used to facilitate transfection of DNA vectors. After 48 h post-transfection, whole cell extract were prepared by scraping cells in the cell lysis reagent (200 μl) and 1 cycle of freeze-thaw at −20° C./37° C. for first experiment. Transfected cells obtained from the second experiment were trypsinized, frozen stock established and cells were plated in increasing concentrations of Zeocin (0, 250, 500, 750 and 1000 μg/ml). Non-transfected CosA2cells survived at 60-80% confluency for three weeks at 100 μg/ml (Zeocin) and 10% confluency at 250 μg/ml (Zeocin). However, after three weeks, at higher drug concentration (500-1000 μg/ml), live cells were not observed in the plates containing non-transfected cells and high Zeocin concentration (500-1000 μg/ml).
- Several Zeocin-resistant clones growing in differential drug concentrations (Zeocin-250, 500, 750 and 1000 μg/ml) were picked from 10 cm plates after three weeks. These clones were further expanded in a 3.5 cm plate(s) in the presence of Zeocin at 500, 750 and 1000 μg/ml. Frozen lots of these clones were prepared and several clones from each pool (pcDNA 3.1 zeoR/BFA4, and pcDNA 3.1 zeoR/BFA4/MycHis tag) were expanded to T75 cm2 flasks in the presence of Zeocin at 1 mg/ml. Five clones from each pool (pcDNA 3.1 zeoR/BFA4, and pcDNA 3.1 zeoR/BFA4/MycHis tag) were expanded to T75 cm2 flasks in the presence of Zeocin at 1 mg/ml. Cells are maintained under Zeocin drug (1 mg/ml) selection, Six clones were used in BFA4 peptide-pulsed target experiment, and two clones were found to express BFA4 at a moderate level by immunological assays. The non-adherent cell lines K562A2 and EL4A2 were also transfected with these vectors to generate stable cell lines.
- The BamH1-Xho-1 fragment (1.5 Kbp) fragment encoding N-terminal 54 kDa BFDA4 from pcDNA3.1/BFA4 was cloned into pGEX4T1-6H is (Veritas) plasmid. This vector contains the tac promoter followed by the N-terminal glutathione S-transferase (GST ˜26 kDa) and a hexahistidine tag to C terminus of the GST fusion protein.
- The BFA4-N54 expression plasmid was transformed into BL21 cells and grown at 25° C. in antibiotic selection medium (2 L culture) to an OD (600 nm) and thereafter induced with 1 mM IPTG. GST-BFA4-N54 was found to be soluble protein. Clarified extract of the soluble fraction was adsorbed batchwise to glutathione-Sepharose 4B and eluted with 10 mM reduced glutathione, Fractions were analyzed after estimation of protein concentration and TCA precipitation. Specific polypeptide of Mr=85 kDa in the eluate was confirmed by SDS-PAGE. The recombinant protein was purified by gluathione-Sepharose was absorbed on a NiNTA column for further purification. The bound protein was eluted with 0.25M imidazole. The protein was dialyzed versus TBS containing 40% Glycerol, resulting in 4.5 mg GST-BFA4-N54-6 His (N terminus BFA4 protein) protein. Expression of BFA4 was confirmed using the rabbit anti-BFA4 polyclonal antibody by western blot.
- In addition to genetic immunization vectors for BFA4, immunological reagents for BFA4 have been generated. A library of 100 nonamer peptides spanning the BFA4 gene product was synthesized. The peptides were chosen based on their potential ability to bind to HLA-A*0201. Table V lists 100 nonamer peptide epitopes for HLA-A*0201 from the BFA4 protein tested (see below):
-
PEPTIDE POSITION IN DESIGNATION SEQUENCE PROTEIN SEQ ID. CLP-2421 MVRKKNPPL BFA4 (1-9) 131 CLP-2422 KKNPPLRNV BFA4 (4-12) 132 CLP-2423 VASEGEGQI BFA4 (12-20) 133 CLP-2424 QILEPIGTE BFA4 (19-27) 134 CLP-2425 RNMLAFSFP BFA4 (108-116) 135 CLP-2426 NMLAFSFPA BFA4 (109-117) 136 CLP-2427 MLAFSFPAA BFA4 (110-118) 137 CLP-2428 FSFPAAGGV BFA4 (113-121) 138 CLP-2429 AAGGVCEPL BFA4 (117-125) 139 CLP-2430 SGQANCQGL BFA4 (170-178) 140 CLP-2431 ANCQGLSPV BFA4 (172-180) 588 CLP-2432 GLSPVSVAS BFA4 (176-184) 141 CLP-2433 SVASKNPQV BFA4 (181-189) 142 CLP-2434 RLNKSKTDL BFA4 (196-204) 143 CLP-2435 NDNPDPAPL BFA4 (207-215) 144 CLP-2436 DPAPLSPEL BFA4 (211-219) 145 CLP-2437 ELQDFKONI BFA4 (218-216) 146 CLP-2438 GLHNRTRQD BFA4 (249-257) 147 CLP-2439 ELDSKILAL BFA4 (259-267) 148 CLP-2440 KILALHNMV BFA4 (263-271) 149 CLP-2441 ALHNMVQFS BFA4 (266-284) 150 CLP-2442 VNRSVFSGV BFA4 (282-290) 151 CLP-2443 FSGVLQDIN BFA4 (287-295) 152 CLP-2444 DINSSRPVL BFA4 (293-301) 153 CLP-2445 VLLNGTYDV BFA4 (300-308) 154 CLP-2446 FCNFTYMGN BFA4 (337-345) 155 CLP-2447 YMGNSSTEL BFA4 (342-350) 156 CLP-2448 FLQTHPNKI BFA4 (354-362) 157 CLP-2449 KASLPSSEV BFA4 (363-371) 158 CLP-2450 DLGKWQDKI BFA4 (393-401) 159 CLP-2451 VKAGDDTPV BFA4 (403-411) 160 CLP-2452 FSCESSSSL BFA4 (441-449) 161 CLP-2453 KLLEHYGKQ BFA4 (450-458) 162 CLP-2454 GLNPELNDK BFA4 (466-474) 163 CLP-2455 GSVINQNDL BFA4 (478-486) 164 CLP-2456 SVINQNDLA BFA4 (479-487) 165 CLP-2457 FCDFRYSKS BFA4 (527-535) 166 CLP-2458 SHGPDVIVV BFA4 (535-543) 167 CLP-2459 PLLRHYQQL BFA4 (545-553) 168 CLP-2460 GLCSPEKHL BFA4 (570-578) 169 CLP-2461 HLGEITYPF BFA4 (577-585) 170 CLP-2462 LGEITYPFA BFA4 (578-586) 171 CLP-2463 HCALLLLHL BFA4 (594-602) 172 CLP-2464 ALLLLHLSP BFA4 (596-604) 173 CLP-2465 LLLLHLSPG 9FA4 (597-605) 174 CLP-2466 LLLHLSPGA BFA4 (598-606) 175 CLP-2467 LLHLSPGAA BFA4 (599-607) 176 CLP-2468 FTTPDVDVL BFA4 (621-629) 177 CLP-2469 TTPDVDVLL BFA4 (622-830) 178 CLP-2470 VLLFHYESV BFA4 (628-636) 179 CLP-2471 FITQVEEEI BFA4 (673-681) 180 CLP-2472 FTAADTQSL BFA4 (699-707) 181 CLP-2473 SLLEHFNTV BFA4 (706-714) 182 CLP-2474 STIKEEPKI BFA4 (734-742) 86 CLP-2475 KIDFRVYNL BFA4 (741-749) 87 CLP-2476 NLLTPDSKM BFA4 (748-756) 88 CLP-2479 V1WRGADIL BFA4 (792-800) 89 CLP-2480 ILRGSPSYT BFA4 (799-807) 90 CLP-2481 YTQASLGLL BFA4 (806-814) 91 CLP-2482 ASLGLLTPV BFA4 (809-817) 92 CLP-2483 GLLTPVSGT BFA4 (812-820) 93 CLP-2484 GTQEQTKTL BFA4 (819-827) 94 CLP-2485 KTLRDSPNV BFA4 (825-833) 95 CLP-2486 HLARPIYGL BFA4 (837-845) 96 CLP-2487 PIYGLAVET BFA4 (841-849) 97 CLP-2488 LAVETKGFL BFA4 (845-853) 98 CLP-2489 FLQGAPAGG BFA4 (852-860) 99 CLP-2490 AGGEKSGAL BFA4 (858-866) 100 CLP-2491 GALPQQYPA BFA4 (864-872) 101 CLP-2492 ALPQQYPAS BFA4 (865-873) 102 CLP-2493 FCANCLTTK BFA4 (895-903) 103 CLP-2494 ANGGYVCNA BFA4 (911-919) 104 CLP-2495 NACGLYQKL BFA4 (918-926) 105 CLP-2496 GLYQKLHST BFA4 (921-929) 106 CLP-2497 KLHSTPRPL BFA4 (925-933) 107 CLP-2498 STPRPLNII BFA4 (928-936) 108 CLP-2499 RLNPEALQA BFA4 (962-960) 109 CLP-2500 VLVSQTLDI BFA4 (1020-1028) 110 CLP-2501 DIHKRIMPL BFA4 (1027-1035) 111 CLP-2502 RMQPLHIQI BFA4 (1031-1039) 112 CLP-2503 YPLFGLPFV BFA4 (1092-1100) 113 CLP-2504 GLPFVHNDF BFA4 (1096-1104) 114 CLP-2505 FVHNDFQSE BFA4 (1099-1107) 115 CLP-2506 SVPGNPHYL BFA4 (1120-1128) 116 CLP-2507 GNPHYLSHV BFA4 (1123-1131) 117 CLP-2508 HYLSHVPGL BFA4 (1126-1134) 118 CLP-2509 YVPYPTENL BFA4 (1141-1149) 119 CLP-2510 FNLPPHFSA BFA4 (1147-1155) 120 CLP-2511 NLPPHFSAV BFA4 (1148-1156) 121 CLP-2512 SAVGSDNDI BFA4 (1154-1162) 122 CLP-2513 KNEGPLNVV BFA4 (1192-1200) 123 CLP-2514 TKCVHCGIV BFA4 (1215-1223) 124 CLP-2515 CVHCGIVFL BFA4 (1217-1225) 125 CLP-2516 CGtVFLDEV BFA4 (1220-1228) 126 CLP-2517 FLDEVMYAL BFA4 (1224-1232) 127 CLP-2518 VMYALHMSC BFA4 (1228-1236) 128 CLP-2519 FQCSICOHL BFA4 (1243-1251) 129 CLP-2520 GLHRNNAQV BFA4 (1265-1273) 130
The peptide library was pooled into separate groups containing 7-10 different peptides for immunological testing as shown in Table VI (see below). In addition to a peptide library spanning BFA4, a recombinant protein spanning the N-terminal 300 amino acids (positions 1-300) has been synthesized and purified from E. coli. -
PEPTIDE PEPTIDE GROUP NUMBER SEQUENCE SEQ ID 1 CLP-2421 MVRKKNPPL 331 CLP-2422 KKNPPLRNV 132 CLP-2423 VASEGEGQI 133 CLP-2424 QILEPIGTE 134 CLP-2425 RNMLAFSFP 135 CLP-2426 NMLAFSFPA 136 CLP-2427 MLAFSFPAA 137 CLP-2428 FSFPAAGGV 138 CLP-2429 AAGGVCEPL 139 CLP-2430 SGQANCQGL 140 2 CLP-2431 ANCQGLSPV 588 CLP-2432 GLSPVSVAS 141 CLP-2433 SVASKNPQV 142 CLP-2434 RLNKSKTDL 143 CLP-2435 NDNPDPAPL 144 CLP-2436 DPAPLSPEL 145 CLP-2437 ELQDFKCNI 146 CLP-2438 GLHNRTRQD 147 CLP-2439 ELDSKILAL 148 CLP-2440 KtLALHNMV 149 3 CLP-2441 ALHNMVQFS 150 CLP-2442 VNRSVFSGV 151 CLP-2443 FSGVLODIN 152 CLP-2444 DINSSRPVL 153 CLP-2445 VLLNGTYDV 154 CLP-2446 FCNFTYMGN 155 CLP-2447 KASLPSSEV 156 CLP-2448 FLOTHPNKI 157 CLP-2449 KASLPSSEV 158 CLP-2450 DLGKWQDKI 159 4 CLP-2451 VKAGDDTPV 160 CLP-2452 FSCESSSSL 161 CLP-2453 KLLEHYGKQ 162 CLP-2454 GLNPELNDK 183 CLP-2455 GSVINQNDL 164 CLP-2456 SVINQNDLA 165 CLP-2457 FCDFRYSKS 166 CLP-2458 SHGPDVIVV 167 CLP-2459 PLLRHYQQL 168 CLP-2460 GLCSPEKHL 169 5 CLP-2461 HLGEITYPF 170 CLP-2462 LGEITYPFA 171 CLP-2463 HCALLLLHL 172 CLP-2464 ALLLLHLSP 173 CLP-2465 LLLLHLSPG 174 CLP-2466 LLLHLSPGA 175 CLP-2467 LLHLSPGAA 176 CLP-2468 FTTPDVDVL 177 CLP-2469 TTPOVDVLL 178 CLP-2470 VLLFHYESV 179 6 CLP-2471 FITQVEEEI 180 CLP-2472 FTAADTQSL 181 CLP-2473 SLLEHFNTV 182 CLP-2474 STIKEEPKI 86 CLP-2475 KIDFRVYNL 87 CLP-2476 NLLTPDSKM 88 CLP-2477 KMGEPVSES 589 CLP-2478 FLKEKVWTE 590 CLP-2479 VTWRGADIL 89 CLP-2460 ILRGSPSYT 90 7 CLP-2481 YTQASLGLL 91 CLP-2482 ASLGLLTPV 92 CLP-2483 GLLTPVSGT 93 CLP-2484 GTQEQTKTL 94 CLP-2485 KTLRDSPNV 95 CLP-2486 HLARPIYGL 96 CLP-2487 PIYGLAVET 97 CLP-2488 LAVETKGFL 98 CLP-2489 FLQGAPAGG 99 CLP-2490 AGGEKSGAL 100 8 CLP-2491 GALPQQYPA 101 CLP-2492 ALPQQYPAS 102 CLP-2493 FCANCLTTK 103 CLP-2494 ANGGYVCNA 104 CLP-2495 NACGLYQKL 105 CLP-2496 GLYQKLHST 106 CLP-2497 KLHSTPRPL 107 CLP-2498 STPRPLNII 108 CLP-2499 RLNPEALQA 109 CLP-2500 VLVSQTLDI 110 9 CLP-2501 DIHKRMQPL 111 CLP-2502 RMQPLHIQI 112 CLP-2503 YPLFGLPFV 113 CLP-2504 GLPFVHNDF 114 CLP-2505 FVHNDFQSE 115 CLP-2506 SVPGNPHYL 116 CLP-2507 GNPHYLSHV 117 CLP-2508 HYLSHVPGL 118 CLP-2509 YVPYPTFNL 119 CLP-2510 FNLPPHFSA 120 10 CLP-2511 NLPPHFSAV 121 CLP-2512 SAVGSDNDI 122 CLP-2513 KNEGPLNVV 123 CLP-2514 TKCVHCGIV 124 CLP-2515 CVHCGIVFL 125 CLP-2516 CGIVFLDEV 126 CLP-2517 FLDEVMYAL 127 CLP-2518 VMYALHMSC 128 CLP-2519 FQCSICQHL 129 CLP-2520 GLHRNNAQV 130 - The BFA4 peptides were grouped into different pools of 7-10 peptides for immunological testing. Dissolved peptide pools were pulsed onto autologous HLA-A*0201 dendritic cells and used to activate autologous T-cell-enriched PBMC preparations. Activated T cells from each peptide-pool-stimulated culture were re-stimulated another 3 to 5 times using CD40L-activated autoloous B-cells. IFN-γ ELISPOT analysis and assays for CTL killing of peptide-pulsed target cells was performed to demonstrate the immunogenicity of these epitopes from BFA4.
- Human T cells demonstrated effector cell activity against a number of pools of peptides from the BFA4 protein, as shown by their ability to secrete IFN-γ in ELISPOT assays. These experiments were repeated after different rounds of APC stimulation resulting in the same reactive peptide groups.
1, 2, 4, 5, 6, 7, 8, 9, and 10 were found to be immunoreactive in these assays. Subsequently, these reactive peptide groups were dc-convoluted in additional IFN-γ ELISPOT assays in which single peptides from each group were tested separately. The individual peptides fromPeptide groups 1, 5 6, 7, 8, 9, and 10 in ELISPOT assays. This analysis revealed a number of individual strongly reactive peptides from the BFA4 protein recognized by human T cells. It was also observed that many of these single peptides also induced C TL activity killing peptide-loaded human T2 lymphoma cell targets. These peptides are listed in Table VII:BFA4 peptide groups -
TABLE VII List of highly immunoreactive peptides from BFA4 Strong IFN-γ Killing Strong CTL Killing SEQ ID CLP 2425 RNMLAFSFP CLP 2425 RNMLAFSFP 135 CLP 2426 NMLAFSFPA CLP 2426 NMLAFSFPA 136 CLP 2427 MLAFSFPAA CLP 2427 MLAFSFPAA 137 CLP 2461 HLGEITYPF 170 CLP 2468 FTTPDVDVL CLP 2468 FTTPDVDVL 177 CLP 2470 VLLFHYESV CLP 2470 VLLFHYYESV 179 CLP 2474 KIDFRVYNL 86 CLP 2482 ASLGLLTPV CLP 2482 ASLGLLTPV 92 CLP 2486 HLARPIYGL CLP 2486 HLARPIYGL 96 CLP 2495 NACGLYQKL CLP 2495 NACGLYQKL 105 CLP 2497 KLHSTPRPL 107 CLP 2499 RLNPEALQA CLP 2499 RLNPEALQA 109 CLP 2503 YPLFGLPEV 113 CLP 2509 YVPYPTFNL CLP 2509 YVPYPTFNL 119 CLP 2511 NLPPHFSAV 121 CLP 2518 VMYALHMSC 128 CLP 2520 GLHRNNAQV CLP 2520 GLHRNNAQV 130
D. Immune Responses Against BFA4 after Immunization In Vivo: - The pcDNA3.1/Zeo-BFA4 plasmid was used to immunize transgenic mice expressing a hybrid HLA-A*0201 α1α2 domain fused to a murine Kb α3 domain in C57BL/6 mice (A2-Kb mice). IFN-γ ELISPOT analysis using the groups of pooled peptides after DNA immunization and removal of activated spleen cells revealed a number of reactive BFA4 peptide groups. Some of these groups (especially
group 7 and 8) also reacted strongly in human T-cell cultures suggesting that overlapping groups of peptides are recognized by human T cells and are naturally processed and presented on HLA-A2 after vaccination. - Vaccination experiments were also performed with the NYVAC-BFA4 and the MP76-18-BFA4 vectors in A2-Kb mice. Mice were immunized subcutaneously with 10-20 μg of MP-76-18-BFA4 and 1-2×107 pfu vP2033 (NYVAC-BFA4) and boosted 28 days later with the same amounts of each vector. Re-stimulation of spleen cells from the immunized mice with the pools of BFA4 peptides revealed induction of IFN-γ production in response to
2, 3, 4, 5, 7, 9, and 10 in ELISPOT assays. Thus, the BFA4 gene encoded in a CMV promoter driven eukaryotic plasmid, NYVAC, or a Semliki replicase-based DNA plasmid, were all capable of inducing T-cell responses against the BFA4 protein in vivo.BFA4 peptide groups - BCY1 Tumor Antigen
- The BCY1 gene was detected as a partial open reading frame (ORF) homologous to a nematode gene called “posterior-expressed maternal gene-3” (PEM-3) playing a role in posterior to anterior patterning in Caenorhabtidis elegans embryos. No previous involvement of this gene in cancer has been documented.
- A partial DNA sequence was originally determined for BCY1. Primers, 9616SXC and 9617SXC, are derived from the
BCY 1 partial DNA sequence and are designed to cloneBCY 1 by RT-PCR fromCalu 6 total RNA. The primers were designed such that the PCR product has BamHI sites at both ends and an ATG start codon and a Kozak sequence at the 5′ end, as shown below: -
9616SXC: (SEQ ID NO.: 183) 5′ CAGTACGGATCCACCATGGCCGAGCTGCGCCTGAAGGGC 3′9617SXC: (SEQ ID NO.: 184) 5′ CCACGAGGATCCTTAGGAGAATATTCGGATGGCTTGCG 3′ - The 1.2 Kb expected amplicon was obtained using ThermoScript RT-PCR System (Invitrogen) under optimized conditions. The PCR products from three separate RT-PCR's were digested with BamHI and respectively inserted in pcDNA3.1/Zeo(+). The resulting clones were MC50A6, MC50A8 and MC50A19 from the first RT-PCR; MC54.21 from the second RT-PCR and MC55.29; and, MC55.32 from the third RT-PCR. The following primers were utilized in sequencing the clones:
-
9620MC: (SEQ ID NO.: 185) 5′ TAATACGACTCACTATAGGG 3′9621MC: (SEQ ID NO.: 186) 5′ TAGAAGGCACAGTCGAGG 3′9618MC: (SEQ ID NO.: 187) 5′ GAAAACGACTTCCTGGCGGGGAG 3′9619MC: (SEQ ID NO.: 188) 5′ GCTCACCCAGGCGTGGGGCCTC 3′ - DNA sequencing of all six clones indicated a consensus sequence (SEQ ID NO.: 30), as shown in
FIGS. 9A and 9B , having the following differences from the original partial BCY1 sequence: a C to G substitution at position 1031 resulting in an amino acid change of Ala to Gly; a GC deletion at position 1032-1034 resulting in a Thr deletion; and, an A to G substitution at position 1177 resulting in an amino acid change of Thr to Ala. Clones MC50A8 and MC55.29 are identical to the consensus sequence. The amino acid sequence of BCY1 is shown inFIG. 98B and (SEQ ID NO.: 31). - A library of 100 nonamer peptides spanning the BCY1 gene product was synthesized. The peptides were chosen based on their potential ability to bind to HLA-A*0201. Table VIII lists 100 nonamer peptide epitopes for HLA-A*0201 from the BCY1 protein tested (see below):
-
TABLE VIII Peptide Position in Designation Sequence Protein SEQ ID *CLP-2599 VPVPTSEHV 2 189 *CLP-2602 PTSEHVAEI 5 190 *CLP-2609 EIVGRQCKI 12 191 *CLP-2616 KIKALRAKT 19 192 *CLP-2618 KALRAKTNT 21 193 *CLP-2619 ALRAKTNTY 22 194 *CLP-2620 LRAKTNTYI 23 195 *CLP-2624 INTYIKTPV 27 196 *CLP-2627 YIKTPVRGE 30 197 *CLP-2630 TPVRGEEPV 33 198 *CLP-2633 RGEEPVFMV 36 199 *CLP-2640 MVTGRREDV 43 200 CLP-2641 VTGRREDVA 44 201 *CLP-2643 GRREDVATA 46 202 CLP-2647 DVATARREI 50 203 CLP-2648 VATARREII 51 204 *CLP-2650 TARREIISA 53 205 *CLP-2651 ARREIISAA 54 206 *CLP-2655 IISAAEHFS 58 207 *CLP-2656 ISAAEHFSM 59 208 CLP-2657 SAAEHFSMI 60 209 *CLP-2659 AEHFSMIRA 62 210 *CLP-2663 SMIRASRNK 66 211 CLP-2666 RASRNKSGA 69 212 *CLP-2670 NKSGAAFGV 73 213 *CLP-2673 GAAFGVAPA 76 214 *CLP-2674 AAFGVAPAL 77 215 *CEP- 2677 GVAPALPGQ 80 216 *CLP-2678 VAPALPGQV 81 217 *CLP-2680 PALPGOVTI 83 218 *CLP-2681 ALPGOVTIR 84 219 *CLP-2682 LPGQVTIRV 85 220 CLP-2684 GQVTIRVRV 87 221 *CLP-2689 RVRVPYRVV 92 222 *CLP-2691 RVPYRVVGL 94 223 *CLP-2692 VPYRVVGLV 95 224 *CLP-2695 RVVGLVVGP 98 225 *CLP-2698 GLVVGPKGA 101 226 *CLP-2699 LVVGPKGAT 102 227 *CLP-2700 VVGPKGATI 103 228 *CLP-2710 RIQQQTNTY 113 229 *CLP-2711 IQQQTNTYI 114 230 *CLP-2712 QQQTNTYII 115 231 *CLP-2713 QQTNTYIIT 116 232 *CLP-2718 YIITPSRDR 121 233 CLP-2721 TPSRDRDPV 124 234 CLP-2724 RDRDPVFEI 127 235 CLP-2731 EITGAPGNV 134 236 CLP-2734 GAPGNVERA 137 237 CLP-2738 NVERAREEI 141 238 CLP-2744 EEIETHIAV 147 239 CLP-2746 IETHIAVRT 149 240 CLP-2749 HEAVRTGKI 152 241 CLP-2750 IAVRTGKIL 153 242 CLP-2756 KILEYNNEN 159 243 CLP-2760 YNNENDFLA 163 244 CLP-2762 NENDFLAGS 165 245 CLP-2766 FLAGSPDAA 169 246 CLP-2767 LAGSPDAAI 170 247 CLP-2774 AIDSRYSDA 177 248 CLP-2777 SRYSDAWRV 180 249 CLP-2785 VHQPGCKPL 188 250 CLP-2793 LSTFRQNSL 196 251 CLP-2801 LGCIGECGV 204 252 CLP-2807 CGVDSGFEA 210 253 CLP-2812 GFEAPRLDV 215 254 CLP-2817 RLDVYYGVA 220 255 CLP-2819 DVYYGVAET 222 256 CLP-2823 GVAETSPPL 226 257 CLP-2825 AETSPPLWA 228 258 CLP-2830 PLWAGQENA 233 259 CLP-2833 AGQENATPT 236 260 CLP-2835 QENATPTSV 238 261 CLP-2843 VLFSSASSS 246 262 CLP-2857 KARAGPPGA 260 263 CLP-2869 PATSAGPEL 272 264 CLP-2870 ATSAGPELA 273 265 CLP-2872 SAGPELAGL 275 266 CLP-2879 GLPRRPPGE 282 267 CLP-2887 EPLQGFSKL 290 268 CLP-2892 FSKLGGGGL 295 269 CLP-2894 KLGGGGLRS 297 270 CLP-2899 GLRSPGGGR 302 271 CLP-2909 CMVCFESEV 312 272 CLP-2910 MVCFESEVT 313 273 CLP-2911 VCFESEVTA 314 274 CLP-2913 FESEVTAAL 316 275 CLP-2916 EVTAALVPC 319 276 CLP-2917 VTAALVPCG 320 277 CLP-2920 ALVPCGHNL 323 278 CLP-2921 LVPCGHNLF 324 279 CLP-2922 VPCGHNLFC 325 280 CLP-2927 NLFCMECAV 330 281 CLP-2929 FCMECAVRI 332 282 CLP-2933 CAVRICERT 336 283 CLP-2936 RICERTDPE 339 284 CLP-2940 RTDPECPVC 343 285 CLP-2945 CPVCHITAT 348 286 CLP-2947 VCHITATQA 350 287 CLP-2950 ITATQAIRI 353 288
Table IX shows the groups of peptides used for immunological testing: -
Peptide Peptide Group Sequence SEQ ID 1 EPLQFGSKL 268 EVTAALVPC 276 CPVSHITAT 286 KIKALRAKT 192 IISAAEHFS 207 RASRNKSGA 192 GAAFGVAPA 207 LVVGPKGAT 227 EITGAPGNV 236 GAPGNVERA 237 2 ALRAKTNTY 192 VATARREII 204 PALPGQVTI 218 ALPGQVTIR 219 RVTVPYRVV 222 RDRDPVFEI 127 RVRVPYRVV 222 HIAVRTGKI 241 NENDFLAGS 245 CAVRICERT 283 VCHITATQA 287 3 GRREDVATA 202 DVATARREI 203 TARREIISA 205 GVAPALPGQ 216 RVVGLVVGP 225 VHQPGCKPL 250 PATSAGPEL 264 VTAALVPCG 277 4 VPVPTSEHV 189 ARREIISAA 206 RIQQQTNTY 229 NVERAREEI 238 GFEAPRLDV 254 ATSAGPELA 265 FSKLGGGGL 269 GLRSPGGGR 271 5 PTSEHVAEI 190 EIVGRQCKI 191 LRAKTNTYI 195 VTGRREDVA 201 SMIRASRNK 211 CMVCFESEV 272 LVPCGHNLF 279 NLFCMECAV 281 RICERTDPE 284 RTDPECPVC 285 6 MVTGRREDV 200 GLVVGPKGA 226 IQQQTNTYI 230 FLAGSPDAA 246 GVAETSPPL 257 FESEVTAAL 275 FCMECAVRI 282 7 KALRAKTNT 193 RGEEPVFMV 199 SAAEHFSMI 209 AAFGVAPAL 215 VVGPKGATI 228 YNNENDFLA 244 LGCIGECGV 252 QENATPTSV 261 VCFESEVTA 274 8 TNTYIKTPV 196 NKSGAAFGV 213 QQTNTYIIT 232 KILEYNNEN 243 CGVDSGFEA 253 AETSPPLWA 258 PLWAGQENA 259 VLFSSASSS 262 SAFPELAGL 266 9 ISAAEHFSM 208 QQQTNTYII 231 EEIETHIAV 239 IETHIAVRT 240 LAGSPDAAI 247 AIDSRYSDA 248 DVYYGVAET 256 VPCGHNLFC 280 ITATQAIRI 288 10 TPVRGEEPV 198 AEHFSMIRA 210 VAPALPGQV 217 TPSRDRDPV 234 IAVRTGKIL 242 SRYSDAWRV 249 LSTFRQNSL 251 RLDVYYGVA 255 AGQENATPT 260 MVCFESEVT 273 - The library of 100 peptides from BCY1 was separated into 10 groups of 7-10 peptides for immunological testing. Dissolved peptide pools were pulsed onto autologous HLA-A*0201 dendritic cells and used to activate autologous T-cell-enriched PBMC preparations. Activated T cells from each peptide-pool-stimulated culture were re-stimulated another 3 to 5 times using CD40L-activated autologous B-cells. IFN-γ ELISPOT analysis and assays for CTL killing of peptide-pulsed target cells was performed to demonstrate the immunogenicity of these epitopes from BCY1.
- Human T cells demonstrated effector cell activity against a number of pools of peptides from the
BCY 1 protein, as shown by their ability to secrete IFN-γ in ELISPOT assays. These experiments were repeated after different rounds of APC stimulation resulting in the same reactive peptide groups. 1, 2, 3, 4, 5, 6, and 7 were found to be immunoreactive in these assays. Subsequently, these reactive peptide groups were de-convoluted in additional IFN-γ ELISPOT assays in which single peptides from each group were tested separately. This analysis revealed a number of individual strongly reactive peptides from the BCY1 protein recognized by human T cells (Peptide groups FIG. 10 ). Many of these single peptides also induced CTL activity killing peptide-loaded human T2 lymphoma cell targets. Table IX lists these peptides. - Microarray profiling analysis indicated that BFA5 was expressed at low to high levels in 41 out of 54 breast tumor biopsy samples (76%) and at high levels in 31 out of 54 breast tumors (57%), as compared to a panel of 52 normal, non-tumor tissues. In situ hybridization (ISH) was performed using a series of BFA5 DNA probes and confirmed the microarray with at least 61% of the tumors showing fairly strong signals. Further bioinformatics assessment confirmed the results of these gene expression analysis results.
- Sequence analysis of the BFA5 nucleotide sequence revealed a high degree of similarity to two unidentified human genes: KIAA1074 (GenBank Accession No. XM—159732); and, KIAA0565 (GenBank Accession No. AB011137) isolated from a number of fetal and adult brain cDNA clones (Kikuno, et al. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 6: 1.97-205). These genes were found to contain putative Zn finger regions and a nuclear localization sequence. BFA5 was suggested by others to be a potential breast cancer antigen (Jager, et al. 2001. Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res. 61: 2055-2061 and WO 01/47959). In each of these publications, the nucleotide sequence BFA5 was designated NYBR-1 (“New York Breast Cancer-1”; GenBank Accession Nos. AF269087 (nucleotide) and AAK27325 (amino acid). For the purposes of this application, the sequence is referred to as BFA-5, the terms BFA-5 and NYBR-1 are interchangeable.
- As shown previously by Jager, et al. and described in WO 01/47959, supra, BFA5 is specifically expressed in mammary gland, being expressed in 12/19 breast tumors analyzed. The structure of the BFA5/NYBR-1 gene has revealed that it encodes a 150-160 kD nuclear transcription factor with a bZIP site (DNA-binding domain followed by a leucine zipper motif). The gene also contains 5 tandem ankyrin repeats implying a role in protein-protein interactions. These ankyrin repeats may play a role in homo-dimerization of the protein. The BFA5 cDNA sequence is shown in
FIG. 11 and SEQ ID NO.: 32. The BFA5 amino acid sequence is shown inFIG. 12 and SEQ ID NO.: 33. - A library of 100 peptides from the BFA5/NYBR-11 coding sequence that are predicted to be medium to high binders to HLA-A*0201 were designed using Rammensee and Parker algorithms. The library was sub-divided into 10 pools of ten peptides (see Table XI), and each pool was used to activate 10 different T cell cultures after pulsing peptides on to mature autologous dendritic cells. Two experiments were performed with the library of BFA5/NYBR-1 peptides demonstrating immunoreactivity in HLA-A*0201 human T cells, as described below.
-
TABLE X Peptide CLP Group Number Sequence SEQ ID BFA5 2983 LMDMQTFKA 289 Group 1 2984 KVISPTKAL 290 2985 SIPTKALEL 291 2986 LELKNEQTL 292 2987 TVSQKDVCL 293 2988 SVPNKALEL 294 2989 CETVSQKDV 295 2990 KINGKLEES 296 2991 SLVEKTPDE 297 2991 SLCETVSQK 298 BFA5 2993 EIDKINGKL 299 Group 2 2994 MLLQQNVDV 300 2995 NMWLQQQLV 301 2996 FLVDRKCQL 302 2997 YLLHENCML 303 2998 SLFESSAKI 304 2999 KITIDIHFL 305 3000 QLQSKNMWL 306 3001 SLDQKLFQL 307 3002 FLLIKNANA 308 BFA5 3003 KILDTVHSC 309 Group 3 3004 SLSKILDTV 310 3005 ILIDSGADI 311 3006 KVMEINREV 312 3007 KLLSHGAVI 313 3009 AVYSETLSV 314 3010 KMNVDVSST 315 3011 ILSVVAKLL 316 3012 VLIAENTML 317 BFA5 3013 KLSKNHQNT 318 Group 4 3014 SLTPLLLSI 319 3015 SQYSGQLKV 320 3016 KELEVKQQL 321 3017 QTMEYIRKL 322 3018 AMLKLEIAT 323 3019 VLHQPLSEA 324 3020 GLLKATCGM 325 3021 GLLKANCGM 326 3022 QQLEQALRI 327 BFA5 3023 CMLKKEIAM 328 Group 5 3024 EQMKKKFCV 329 3025 IQDIELKSV 330 3026 SVPNKAFEL 331 3027 SIYQKVMEI 332 3028 NLNYAGDAL 333 3029 AVQDHDQIV 334 3030 LIAENTMLT 335 3031 FELKNEQTL 336 BFA5 3033 FESSQKIQV 337 Group 6 3034 GVTAEHYAV 338 3035 RVTSNKTKV 339 3036 TVSQKDVCV 340 3037 KSQEPAFHI 341 3038 KVLIAENTM 342 3039 MLKLEIATL 343 3040 EILSVVAKL 344 3041 MLKKETAML 345 3042 LLEKENEEI 346 BFA5 3043 ALRIQDIEL 347 Group 7 3044 KIREELGRI 348 3045 TLKLKEESL 349 3046 ILNEKIREE 350 3047 VLKKKLSEA 351 3048 GTSDKIQCL 352 3049 GADINLVDV 353 3050 ELCSVRLTL 354 3051 SVESNLNQV 355 3052 SLKINLNYA 356 BFA5 3053 KTPDEAASL 357 Group 8 3054 ATCGMKVSI 358 3055 LSHGAVIEV 359 3056 ETAMLKLEI 360 3057 AELQMTLKL 361 3058 VFAADICGV 362 3060 PAIEMQNSV 363 3061 EIFNYNNHL 364 3062 ILKEKNAEL 365 BFA5 3063 QLVHAHKKA 366 Group 9 3065 NIQDAQKRT 367 3066 NLVDVYGNM 368 3067 KCTALMLAV 369 3068 KTQCLEKAT 370 3069 KIAWEKKET 371 3070 IAWEKKEDT 372 3071 VGMLLQQNV 373 3072 VKTGCVARV 374 BFA5 3074 ALHYAVYSE 375 Group 10 3075 QMKKKFCVL 376 3076 ALQCHQEAC 377 3077 SEQIVEFLL 378 3078 AVIEVHNKA 379 3079 AVTCGFHHI 380 3080 ACLQRKMNV 381 3081 ALVEGTSDK 382 - ELISPOT analysis was performed on human T-cell cultures activated through four rounds of stimulation with each pool of BFA5 peptides. In
FIG. 13A , the numbers under the X-axis indicate the number of each peptide pool (1-10). Reactivity against a CMV pp65 peptide and a Flu matrix peptide were used as positive controls for T-cell activation in the experiments. Each experiment was performed with PBMC and dendritic cells from a single HLA-A*0201+ donor designated as “AP10”. The results show that, although BFA4 is markedly reactive with high ELISPOT counts per 100,000 cells in the assay, BFA5 is even more reactive with 9/10 pools demonstrating ELISPOT reactivity. Similar results were obtained for both BFA4 and BFA5/NYBR-1 with a different HLA-A*0201. The bars reach a maximum at 600 spots because beyond that the ELISPOT reader does not give accurate counts. Cultures having a reading of 600 spots have more than this number of spots. - A large number of the BFA5 peptide pools of are reactive as shown by the high levels of lFN-γ production (
FIG. 13A ). Each reactive peptide pool was then separated into individual peptides and analyzed for immunogenicity using ELISPOT analysis to isolate single reactive BFA5 peptides. As shown inFIG. 13B , BFA5 is highly immunogenic with several reactive single peptides than that of BFA4. Similar results were obtained in two independent PBMC culture experiments. - In addition to ELISPOT analysis, human T cells activated by BFA5 peptides were assayed to determine their ability to function as CTL. The cells were activated using peptide-pulsed dendritic cells followed by CD40 ligand-activated B cells (5 rounds of stimulation). The experiment shown was performed with isolated PBMC from HLA-A*0201+ donor AP31. Isolated T cells were tested in 51Cr-release assays using peptide-loaded T2 cells. The % specific lysis at a 10:1, 5:1, and 1:1 T-cell to target ratio is shown for T2 cells pulsed with either pools of BFA5/NYBR-1 peptides or with individual peptides. The graph shows CTL activity induced against targets loaded with a c non-specific HLA-A*0201-binding HIV peptide (control) followed by the CTL activity against the peptide pool (
Pool 1 etc.) and then the activity induced by individual peptides from the respective pool to the right. A high level of cytotoxicity was observed for some peptides at a 1:1 E:T ratio. CTL activity (percent specific lysis) induced by the control HIV peptide was generally <10%. Similar results were obtained with another PBMC donor expressing HLA-A*0201 (AP10).FIG. 13C shows that a large number of BFA5 peptides trigger T cell-mediated cytotoxicity of BFA5 peptide-loaded target cells. Table XI lists those peptides having immunogenic properties. Five peptides (LMDMQTFKA, ILIDSGADI, ILSVVAKLL, SQYSGQLKV, and ELCSVRLTL) were found to induce both IFN-γ secretion and CTL activity in T cells from both donors. -
TABLE XI Immunoreactive peptides from BFA5 BFA5 peptides eliciting high IFN-γ release BFA5 peptides inducing (>200 spots/100,000 cells) CTL lysis of pulsed cells Donor AP10 Donor AP31 Donor AP10 Donor AP31 LMDMQTFKA LMDMQTFKA LMDMQTFKA LMDMQTFKA KVSIPTKAL KVSIPTKAL SIPTKALEL SIPTKALEL TVSQKDVCL SVPNKALEL YLLHENCML YLLHENCML YLLHENCML QLQSKNMWL QLQSKNMWL QLQSKNMWL SLSKILDTV SLSKILDTV SLSKILDTV ILIDSGADI ILIDSGADI ILIDSGADI ILIDSGADI KVMEINREV AVYSEILSV ILSVVAKLL ILSVVAKLL ILSVVAKLL ILSVVAKLL SLTPLLLSI SLTPLLLSI SLTPLLLSI SQYSGQLKV SQYSGQLKV SQYSGQLKV SQYSGQLKV QIMEYIRKL QIMEYIRKL QIMEYIRKL SVPNKAFEL NLNYAGDAL NLNYAGDAL GVTAEHYAV KSQEPAFHI MLKLEIATL MLKLEIATL MLKLEIATL MLKKEIAML ALRIQDIEL VLKKKLSEA ELCSVRLTL ELCSVRLTL ELCSVRLTL ELCSVRLTL SLKINLNYA SLKINLNYA SLKINLNYA ATCGMKVSI ATCGMKVSI AELQMTLKL AELQMTLKL AELQMTLKL VFAADICGV ILKEKNAEL ILKEKNAEL NLVDVYGNM NLVDVYGNM KCTALMLAV - Polyclonal antisera were generated against the following series of 22- to 23-mer peptides of BFA5:
-
(CLP-2988; SEQ ID NO.: 383) BFA5(1-23) KLH-MTKRKKTINLNIQDAQKRTALHW (CLP-2978; SEQ ID NO.: 384) BFA5(312-334) KLH-TSEKFTWPAKGRPRKIAWEKKED (CLP-2979; SEQ ID NO.: 385) BFA5(612-634) KLH-DEILPSESKQKDYEENSWDTESL (CLP-2980; SEQ ID NO.: 386) BFA5(972-994) KLH-RLTLNQEEEKRRNADILNEKIRE (CLP-2981; SEQ ID NO.: 387) BFA5(1117-1139) KLH-AENTMLTSKLKEKQDKEILEAEI (CLP-2982; SEQ ID NO.: 388) BFA5(1319-1341) KLH-NYNNHLKNRIYQYEKEKAETENS - Prebleed samples from rabbits were processed and stored at −20° C. Rabbits were immunized as follows: 1) the peptides were administered as an emulsion with Freund's Complete Adjuvant (FCA); and, 2) two weeks later, the peptides were coupled with Keyhole-Limpet Hemocyanin (KLH)-coupled and administered as an emulsion with Freund's Incomplete Adjuvant FIA. The following results were observed:
-
TABLE XII IgG titer × 105 (after IgG titer × 105 (after second first Immunization Immunization Peptide/protein Rb1/Rb2) Rb1/Rb2) CLP 2977 25/6 256/64 CLP 2978 25/25 64/256 CLP 2979 12/25 256/512 CLP 2980 25/12 1024/128 CLP 2981 8/4 256/64 CLP 2982 2/2 64/32 - To assess the quality of the polyclonal antisera, western blots were performed using sera against BFA5. Sera were separately screened against cell extracts obtained from the BT474, MDMB453, MCF-7, Calu-6, and CosA2 cells. The approximate expected MWr of BFA5 protein is 153 kDa. A 220 kD band was observed in the BT474 extract with CLP2980 antibody but not in the MDMB453 cell extracts however a ˜130 kD band was present in the MDMB453 extract. Both bands were found to be consistent with the polyclonal antibosera tested in this analysis, Neither of these bands is present in the negative control. Thus, it can be concluded that the polyclonal antisera are specific for BFA5.
- The BCZ4 sequence was detected as an over-expressed sequence in breast cancer samples. The nucleotide sequence and deduced amino acid sequence of BCZ4 are shown in
FIG. 14 , SEQ ID NO. 34 (BCZ4 cDNA), and SEQ ID NO. 35 (BCZ4 amino acid sequence). - A library of 100 nonamer peptides spanning the BCZ4 gene product was synthesized. The peptides were chosen based on their potential ability to bind to HLA-A*0201. Table XIII lists 100 nonamer peptide epitopes for HLA-A*0201 from the BCZ4 protein tested (see below):
-
TABLE XIII Peptide CLP Group Number Sequence SEQ ID BCZ4 3220 LDLETLTDI 389 Group 1 3221 DILQHQIRA 390 3222 ILQHQIRAV 391 3223 AVPFENLNI 392 3224 NLNIHCGDA 393 3225 AMDLGLEAI 394 3226 GLEAIFDQV 395 3227 LEAIFDQVV 396 3228 WCLQVNHLL 397 3229 QVNHLLYWA 398 BCZ4 3230 VNHLLYWAL 399 Group 2 3231 HLLYWALTT 400 3232 LLYWALTTI 401 3233 ALTTIGFET 402 3234 LTTIGFETT 403 3235 TTIGGETTM 404 3236 TIGFETTML 405 3237 TMLGGYVYS 406 3238 MLGGYVYST 407 3239 YSTGMIHLL 408 BCZ4 3240 STGMIHLLL 409 Group 3 3241 GMIHLLLQV 410 3242 MIHLLLQVT 411 3243 LLLQVTIDG 412 3244 GTIDGRNYI 413 3245 TIDGRNYIV 414 3246 YIVDAGFGR 415 3247 RSYQMWQPL 416 3248 YQMWQPLEL 417 3249 QMWQPLELI 418 BCZ4 3250 ISGKDQPQV 419 Group 4 3251 KDQPQVPCV 420 3252 PQVPCVFRL 421 3253 QVPCVFRLT 422 3254 RLTEENGFW 423 3255 TEENGFWYL 424 3256 NFGWYLDQI 425 3257 DQIRREQYI 426 3258 YIPNEEFLH 427 3259 YSFTLKPRT 428 BCZ4 3260 RTIEDFESM 429 Group 5 3261 YLQTSPSSV 430 3262 QTSPSSVFT 431 3263 SVFTSKSFC 432 3264 FTSKSFCSL 433 3265 CSLQTPDGV 434 3266 LQTPDGVHC 435 3267 QTPDGVHCL 436 3268 TPDGVHCLV 437 3269 GVHCLVGFT 438 BCZ4 3270 CLVGFTLTH 439 Group 6 3271 TLTHRRFNY 440 3272 FNYKDNTDL 441 3273 NTDLIEFKT 442 3274 TDLIEFKTL 443 3275 LSEEEIEKV 444 3276 KVLKNIFNI 445 3277 LKNIFNISL 446 3278 NISLQRKLV 447 3279 KHGDRFFTI 448 BCZ4 3280 DIEAYLERI 449 Group 7 3281 YLERIGYKK 450 3282 RNKLDLETL 451 3283 NKLDLETLT 452 3284 KLDLETLTD 453 3285 DLETLTDIL 454 3286 TLTDILQHQ 455 3287 LTDILQHQI 456 3288 QIRAVPFEN 457 3289 IRAVPFENL 458 BCZ4 3290 IHCGDAMDL 459 Group 8 3291 HCGDAMDLG 460 3292 DLGLEAIFD 461 3293 AIFDQVVRR 462 3294 GWCLQVNHL 463 3295 LQVNHLLYW 464 3296 GGYVYSTPA 465 3297 YCYSTPAKK 466 3298 STPAKKYST 467 3299 IHLLLQVTI 468 BCZ4 3300 HLLLQVTID 469 Group 9 3301 LLQVTIDGR 470 3302 YLDQIRREQ 471 3303 QYIPNEEFL 472 3304 FLHSDLLED 473 3305 DLLEDSKYR 474 3306 YRKIYSFTL 475 3307 KIYSFTLKP 476 3308 TLKPRTIED 477 3309 VHCLVGFTL 478 BCZ4 3310 LTHRRFNYK 479 Group 10 3311 DLIEFKTLS 480 3312 LIEFKTLSE 481 3313 FKTLSEEEI 482 3314 TLSEEEIEK 483 3315 EIEKVLKNI 484 3316 FNISLQRKL 485 3317 SLQRKLVPK 486 3318 KLVPKHGDR 487 3319 PKHGDRFFT 488
C. Immune reactivity of BCZ4 Peptides and Generation of Human Effector T Cells - Human PBMC from an HLA-A2.1 positive donor designated AP10 were activated with autologous dendritic cells pulsed with different pools of 9-mer peptides from the BCZ4 antigen (see Table XIII for list). The activated T cells were re-stimulated after 12 days with activated autologous CD40-ligand-activated B cells pulsed with the same respective peptide pools for another 8 to 10 days. This secondary activation was repeated more time for a total of 3 stimulations. The activated T cells were isolated after the 3rd stimulation and subjected to ELISPOT analysis for human IFN-γ production against their respective BCZ4 peptide pools as shown (
FIG. 15A ). InFIG. 15A , the blue bars show reactivity against the BCZ4 peptide pools and the red bars are for an HLA-A2.1-binding HIV peptide as a negative control. Positive control HLA-A2.1-binding recall antigen peptides for CMV and flu were as used as positive control in the experiment. Standard deviations are indicated. - The experiment was repeated on activated T cells after an additional round of peptide stimulation with the similar results.
- The peptide pools were deconvoluted using IFN-γ ELISPOT assays (
FIG. 15B ), Human T cells from donor AP10 were stimulated with the different pools of BCZ4 peptides shown in Table XIII. Stimulation was performed as described earlier for the other antigens described. After 4 and 5 rounds of stimulation, T cells were harvested and subjected to ELISPOT analysis for IFN-γ production with each individual peptide in each pool. The bars shown represent individual peptide reactivity for each specific pool. Table XIII identifies each of the reactive peptides. This experiment was repeated with similar results following another round of stimulation of AP10 donor T cells. - In addition to ELISPOT analysis, human T cells activated by BCZ4 peptides were assayed to determine their ability to function as CTL. The cells were activated using peptide-pulsed dendritic cells followed by CD40 ligand-activated B cells (5 rounds of stimulation). The experiment shown was performed with isolated PBMC from HLA-A*0201+ donor AP31. Isolated T cells were tested in 51Cr-release assays using peptide-loaded T2 cells. The % specific lysis at a 10:1 T-cell to target ratio is shown for T2 cells pulsed with individual BCZ4 peptides. A high level of cytotoxicity was observed for some peptides (
FIG. 15C ). CTL activity (percent specific lysis) induced by the control HIV peptide was generally <10%. Similar results were obtained with another PBMC donor expressing HLA-A*0201 (AP10). - Table XIV lists the reactivity of the individual peptides:
-
TABLE XIV Peptides Peptides eliciting eliciting CTL activity strong IFN-γ (peptide SEQ ELISPOT activity pulsed targets) ID CLP 3222 ILQHQIRAV ILQHQIRAV 391 CLP 3225 AMDLGLEAI 394 CLP 3226 GLEAIFDQV GLEAIFDQV 395 CLP 3227 LEAIFDQVV 396 CLP 3229 QVNHLLYWA 398 CLP 3231 HLLYWALTT 400 CLP 3232 LLYWALTTI LLYWALTTI 401 CLP 3235 TTIGFETTM 404 CLP 3237 TMLGGYVYS 406 CLP 3239 YSTGMIHLL 408 CLP 3240 STGMIHLLL 409 CLP 3248 YQMWQPLEL YQMEQPLEL 417 CLP 3260 RTIEDFESM 429 CLP 3261 YLQTSPSSV YLQTSPSSV 430 CLP 3266 LQTPDGVHC 435 CLP 3267 QTPDGVHCL 436 CLP 3268 TPDGVHCLV 437 CLP 3269 GVHCLVGFT 438 CLP 3271 TLTHRRFNY 440 CLP 3277 LKNIFNISL 446 CLP 3288 QIRAVPFEN 457 CLP 3289 IRAVPFENL 458 CLP 3294 GWCLQVNHL 463 CLP 3298 STPAKKYST 467 CLP 3299 IHLLLQVTI IHLLLQVTI 468 CLP 3301 LLQVTIDGR 470 CLP 3306 YRKIYSFTL 475 CLP 3307 KIYSFTLKP 476 CLP 3308 TLKPRTIED 477 CLP 3309 VHCLVGFTL 478 CLP 3317 SLQRKLVPK 486 CLP CC19 PKRGDRFFT 488 - BCZ4 was PCR amplified using plasmid called pSporty/BCZ4 as the template using Platinum Taq (Invitrogen). Amplification conditions were as follows: 1) 94° C. 2 minutes; 2) 35 cycles of 94° C., 30 seconds, 53° C. 30 seconds, 67° C. 2.5 minutes; and, 3) 67° C. 7 minutes. PCR primers were designed to include EcoRI restriction sites and directly flank the ORF (i.e., no extraneous sequence). Primer sequences were as follows: AS032F (forward primer) 5′
GGAATTCAACATGGACATTGAAGCATATCTTAAGAATTG 3′ (SEQ II NO.:591), AS034R (reverse primer) 5′GGAATTCCTGGTGAGCTGGATGACAAATAGACAAAGATTG 3′ (SEQ ID NO.: 592). A Kozak sequence was also included in the forward primer. pcDNA3.1/Zeo(+) was cut with EcoRI and treated with CIP to prevent self-ligation. The BCZ4 amplicon was then ligated into EcoRI digested pcDNA3Zeo(+). Sequencing produced one clone (AS-579-5) which matched the expected BCZ4 sequence. BCZ4 protein was then expressed from this expression vector using standard techniques. - The BFY3 sequence was detected as an over-expressed sequence in breast cancer samples. RT-PCR amplification of BFY3 w/EcoRI ends from HTB131 total RNA with AS007F (forward primer) 5′
GGAATTCACCATGCTTTGGAAATTGACGGAT 3′ (SEQ ID NO—: 593) and AS010R (reverse primer) 5′GGAATTCCTCACTTTCTGTGCT TCTC CTCTTTGTCA 3′ (SEQ ID NO.: 594) was performed. PCR product was digested with EcoRI and cloned into EcoRI digested and CIP treated pcDNA3.1/Zeo(+) vector by ligation. Several positive clones were identified by restriction digestion and sequence results of AS-391-2 match expected BFY3 sequence. The nucleotide sequence and deduced amino acid sequence of BFY3 are shown inFIG. 16 , SEQ ID NO. 36 (BFY3 cDNA), and SEQ ID NO. 37 (BFY3 amino acid sequence). - A library of 0.100 nonamer peptides spanning the BFY3 gene product was synthesized. The peptides were chosen based on their potential ability to bind to HLA-A*0201. Table XV lists 100 nonamer peptide epitopes for HLA-A*0201 from the BFY3 protein tested (see below):
-
TABLE XV Peptide CLP Group Number Sequence SEQ ID BFY3 3320 MLWKLTDNI 489 Group 1 3321 KLTDNIKYE 490 3322 GTSNGTARL 491 3323 NGTARLPQL 492 3324 ARLPQLGTV 493 3325 GTVGQSPYT 494 3326 SPYTSAPPL 495 3327 FQPPYFPPP 496 3328 YFPPPTQPI 497 3329 QSQDPYSHV 498 BFY3 3330 SHVNDPYSL 499 Group 2 3331 SLNPLHAQP 500 3332 RQSQESGLL 501 3333 GLLHTHRGL 502 3334 GLPHQLSGL 503 3335 GLDPRRDYR 504 3336 DLLHGPHAL 505 3337 LLHGPHALS 506 3338 ALSSGLGDL 507 3339 SSGLGDLSI 508 BFY3 3340 GLGDLSIHS 509 Group 3 3341 LGDLSIHSL 510 3342 SIHSLPHAI 511 3343 SLPHAIEEV 512 3344 HAIEEVPHV 513 3345 GINIPDQTV 514 3346 QTVIKKGPV 515 3347 VIKKGPVSL 516 3348 SLSKSNSNA 517 3349 SNSNAVSAI 518 BFY3 3350 AIPINKDNL 519 Group 4 3351 NLFGGVVNP 520 3352 FGGVVNPNE 521 3353 GGVVNPNEV 522 3355 NPNEVFCSV 523 3356 CSVPGRLSL 524 3357 SVPGRLSLL 525 3358 SLLSSTSKY 526 3359 LLSSTSKYK 527 BFY3 3360 LSSTSKYKV 528 Group 5 3361 STSKYKVTV 529 3362 KYKVTVAEV 530 3363 YKVTVAEVQ 531 3364 TVAEVQRRL 532 3365 RLSPPECLN 533 3366 LNASLLGGV 534 3367 NASLLGGVL 535 3368 SLLGGVLRR 536 3369 LLGGVLRRA 537 BFY3 3370 VLRRAKSKN 538 Group 6 3371 SLREKLDKI 539 3372 KLDKIGLNL 540 3373 KIGLNLPAG 541 3374 GLNLPAGRR 542 3375 NLPAGRRKA 543 3376 AGRRKAANV 544 3377 RKAANVTLL 545 3378 KAANVTLLT 546 3379 ANVTLLTSL 547 BFY3 3380 NVTLLTSLV 548 Group 7 3381 TLLTSLVEG 549 3382 LLTSLVEGE 550 3383 TSLVEGEAV 551 3384 SLVEGEAVH 552 3385 LVEGEAVHL 553 3386 VEGEAVHLA 554 3387 HLARDFGYV 555 3388 YVCETEFPA 556 3389 CETEFPAKA 557 BFY3 3390 AKAVAEFLN 558 Group 8 3391 AVAEFLNRQ 559 3392 FLNRQHSDP 560 3393 QVTRKNMLL 561 3394 NMLLATKQI 562 3395 MLLATKQIC 563 3396 LLATKQICK 564 3397 QICKEFTDL 565 3398 ICKEFTDLL 566 3399 LLAQDRSPL 567 BFY3 3400 ILEPGIQSC 568 Group 9 3401 LEPGIQSCL 569 3402 QSCLTHFNL 570 3403 SCLTHFNLI 571 3404 NLISHGFGS 572 3405 LISHGFGSP 573 3406 ISHGFGSPA 574 3407 SHGFGSPAV 575 3408 FGSPAVCAA 576 3409 GSPAVCAAV 577 BFY3 3410 AVCAAVTAL 578 Group 10 3411 AVTALQNYL 579 3412 VTALQNYLT 580 3413 ALQNYLTEA 581 3414 LQNYLTEAL 582 3415 YLTEALKAM 583 3416 LKAMDKMYL 584 3417 AMDKMYLSN 585 3418 KMYLSNNPN 586 3419 YLSNNPNSH 587 - Human PBMC from an HLA-A2.1 positive donor designated AP31 were activated with autologous dendritic cells pulsed with different pools of 9-mer peptides from the BFY3 antigen (see Table 1 for list). The activated T cells were re-stimulated after 12 days with activated autologous CD40-ligand-activated B cells pulsed with the same respective peptide pools for another 8 to 10 days. This secondary activation was repeated 2 more time for a total of 4 stimulations. The activated T cells were isolated after the 4th stimulation and subjected to ELISPOT analysis for human IFN-γ production against their respective BFY3 peptide pools as shown. The blue bars show reactivity against the BFY3 peptide pools and the red bars are for an HLA-A2.1-binding HIV peptide as a negative control. Standard deviations are indicated. The experiment was repeated 2 times on activated T cells from different rounds of peptide stimulation with the similar results (
FIG. 17A ). - The BFY3 peptide pools were deconvoluted and studied in IFN-γ ELISPOT assays, Human T cells from donor AP10 were stimulated with the different pools of BFY3 peptides shown in Table XV. Stimulation was performed as described earlier for the other antigens described. After 4 rounds of stimulation, the T cells from each culture were harvested and subjected to ELISPOT analysis for IFN-γ production with each individual peptide in each pool.
FIG. 17B illustrates individual peptide reactivity for each specific pool. - In addition to ELISPOT analysis, human T cells activated by BFY3 peptides were assayed for reactivity. Ten pools of peptides consisting of ten peptides per pool used to generate CTL. These 10 groups of effectors used to kill targets pulsed with corresponding peptide pools. Peptides from
1, 3, 5, 6, and 7 found to be recognized, indicating that peptides in those pools are capable of generating CTL (pools FIG. 17C ). From these ten pools, peptides 3344, 3320, 3378, 2272, and 3387 were strongly recognized by CTL (FIG. 17D ). “Moderately recognized” peptides include 3369, 3355, and 336218D (FIG. 17D ). CosA2 cells transfected with BFY3 were killed by CTL generated from 1 and 3 indicating that processed and presented epitopes from these pools are immunologically relevant (pools FIG. 17E ). The peptides responsible for this cytotoxicity are 3320 and 3344. Table XVI summarizes the properties of the BFY3 peptides. -
TABLE XVI Summary of Immunoreactive BFY3 Nonamer Peptides Peptides Peptides eliciting eliciting CTL activity strong IFN-γ (peptide SEQ ELISPOT activity pulsed targets) ID CLP 3320 MLWKLTDNI MLWKLTDNI 489 CLP 3343 SLPHAIEEV 512 CLP 3344 HAIEEVPHV HAIEEVPHV 513 CLP 3351 NLFGGVVNP 520 CLP 3362 KYKVTVAEV KYKVTVAEV 530 CLP 3366 LNASLLGGV 534 CLP 3369 LLGGVLRRA LLGGVLRRA 537 CLP 3372 KLDKIGLNL KLDKIGLNL 540 CLP 3378 KAANVTLLT KAANVTLLT 546 CLP 3380 NVTLLTSLV 548 CLP 3387 HLARDFGYV HLARDFGYV 555 CLP 3403 SCLTHFNLI 571 CLP 3407 SHGFGSPAV 575 CLP 3415 YLTEALKAM 583 - To construct a BFY3 expression vector, RT-PCT amplification of BFY3 w/EcoRI ends from HTB131 total RNA with AS007F (forward primer) 5′
GGAATTCACCATGCTTTGGAAATTGACGGAT 3′ (SEQ ID NO.: 595) and AS010R (reverse primer) 5′GGAATTCCTCACTTTCTGTGCTTCTCCTCTTTGTCA 3′ (SEQ ID NO.: 596) was performed. PCR was performed using standard techniques. The amplified product was digested with EcoRI and cloned into CIP treated pcDNA3.1/Zeo(+) vector by ligation using standard techniques. Several positive clones were identified by restriction digestion and sequenced. Sequencing indicated that the sequence of clone AS-391-2 matched the expected BFY3 sequence, BFY3 protein was then expressed from the BFY3 expression vector using standard techniques. - In certain instances, it may be desirable to construct expression vectors encoding multiple tumor antigens. It has been determined that certain combinations of antigens, when combined into a single expression vector, encompasses the expression profiles of many patients in a single vector. For instance, one study of breast cancer samples from different patients indicated that the combination of BFA4 and BFA5 covered expression profiles of 74% of the samples; the combination of BCY1 and BFA5 covered 65% of the samples; the combination of BCZ4 and BFA5 covered 69% of the samples; the combination of BFY3 and BFA5 covered 67% of the samples; the combination of BCY1, BFA4 and BFA5 covered 78% of the samples; the combination of BCZ4, BFA4 and BFA5 covered 81% of the samples; and, the combination of BFY3, BFA4, and BFA5 covered 74% of the samples. Accordingly, a multi-antigen expression construct may be built such that the most common expression profiles among breast cancer patients may be addressed using a single vector. Such a multiantigen expression vector is constructed using standard cloning techniques positioning nucleic acids encoding each of the tumor antigen sequences in proximity to a promoter or other transcriptional regulatory sequence. The expression vector may be engineered such that each nucleotide sequence encoding a tumor antigen is operably linked to a specific promoter, or the tumor antigens may collectively be operably linked to a single promoter and expressed as a single expression unit. Where a single expression unit is constructed, nucleotide sequences useful in separating the tumor antigen sequences following expression may be inserted between the tumor antigen sequences. Sequences useful for include IRES sequences, nucleotide sequences encoding amino acid sequences corresponding to protease cleavage sites, and the like. Suitable vectors for constructing such multiantigen expression vectors include, for example, poxviruses such as vaccinia, avipox, ALVAC and NYVAC.
- While the present invention has been described in terms of the preferred embodiments, it is understood that variations and modifications will occur to those skilled in the art. Therefore, it is intended that the appended claims cover all such equivalent variations that come within the scope of the invention as claimed.
Claims (50)
1. An expression vector comprising the nucleic acid sequence as illustrated in SEQ ID NO.: 29 or SEQ ID NO.: 31; a nucleic acid sequence encoding the amino acid sequence illustrated in SEQ ID NO.: 30 or SEQ ID NO.: 32; or a fragment thereof.
2. The expression vector of claim 1 wherein the vector is a plasmid or a viral vector.
3. The expression vector of claim 2 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
4. The expression vector of claim 3 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
5. The expression vector of claim 4 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
6. The expression vector of claim 1 further comprising at least one additional tumor-associated anti gen.
7. The expression vector of claim 6 wherein the vector is a plasmid or a viral vector.
8. The expression vector of claim 7 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
9. The expression vector of claim 8 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
10. The expression vector of claim 9 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
11. The expression vector of claim 1 further comprising at least one nucleic sequence encoding an angiogenesis-associated antigen.
12. The expression vector of claim 11 wherein the vector is a plasmid or a viral vector.
13. The expression vector of claim 12 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
14. The expression vector of claim 13 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
15. The expression vector of claim 14 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
16. The expression vector of claim 6 further comprising at least one nucleic sequence encoding an angiogenesis-associated antigen.
17. The expression vector of claim 16 wherein the vector is a plasmid or a viral vector.
18. The expression vector of claim 17 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
19. The expression vector of claim 17 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
20. The poxvirus of claim 18 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
21. The expression vector of claim 1 , 6 , 11 or 16 further comprising at least one nucleic acid sequence encoding a co-stimulatory component.
22. The expression vector of claim 22 wherein the vector is a plasmid or a viral vector.
23. The expression vector of claim 23 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
24. The expression vector of claim 24 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
25. The poxvirus of claim 18 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
26. A composition comprising an expression vector in a pharmaceutically acceptable carrier, said vector comprising the nucleic acid sequence shown in SEQ ID NO.: 29 or SEQ ID NO.: 31; a nucleic acid sequence encoding the amino acid sequence illustrated in SEQ ID NO.: 30 or SEQ ID NO.: 32; or a fragment thereof.
27. The expression vector of claim 26 wherein the vector is a plasmid or a viral vector.
28. The expression vector of claim 27 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
29. The expression vector of claim 28 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
30. The poxvirus of claim 29 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
31. A method for preventing or treating cancer comprising administering to a host an expression vector comprising the nucleic acid sequence illustrated in SEQ ID NO.: 29 or SEQ ID NO.: 31; a nucleic acid sequence encoding the amino acid sequence illustrated in SEQ ID NO.: 30 or SEQ ID NO.: 32; or a fragment thereof.
32. The expression vector of claim 31 wherein the vector is a plasmid or a viral vector.
33. The expression vector of claim 32 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
34. The expression vector of claim 33 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
35. The poxvirus of claim 34 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
36. An isolated peptide derived from BFY3 as shown in Table XV or XVI.
37. A method for immunizing a host against the tumor antigen BFY3 comprising administering to the patient a peptide shown in Table XV or XVI, either alone or in combination with another agent, where the individual components of the combination are administered simultaneously or separately from one another.
38. An isolated peptide derived from BFY3 as shown in Table XV or XVI.
39. A method for immunizing a host against the tumor antigen BFY3 comprising administering to the patient a peptide shown in Table XV or XVI, either alone or in combination with another agent, where the individual components of the combination are administered simultaneously or separately from one another.
40. An isolated peptide derived from BCZ4 as shown in Table XIII or XVI.
41. A method for immunizing a host against the tumor antigen BCZ4 comprising administering to the patient a peptide shown in Table XIII or XIV, either alone or in combination with another agent; where the individual components of the combination are administered simultaneously or separately from one another.
42. An isolated peptide derived from BCZ4 as shown in Table XIII or XVI.
43. A method for immunizing a host against the tumor antigen BCZ4 comprising administering to the patient a peptide shown in Table XIII or XVI, either alone or in combination with another agent, where the individual components of the combination are administered simultaneously or separately from one another.
44. A expression vector for expression of multiple tumor antigens or fragments thereof, the expression vector comprising at least two nucleic acid sequences encoding at least two different tumor antigens or fragments thereof, the tumor antigens being selected from the group consisting of BFA4, BCY1, BFA5, BCZ4, and BFY3.
45. A expression vector for expression of multiple tumor antigens or fragments thereof, the expression vector comprising at least two nucleic acid sequences encoding at least two different tumor antigens or fragments thereof, the nucleic acid sequences being selected from the group consisting of SEQ ID NO.: 23, SEQ ID NO.: 25, SEQ ID NO.: 27, SEQ ID NO.: 29, and SEQ ID NO.: 31.
46. The expression vector of claim 44 or 45 wherein the vector is a plasmid or a viral vector.
47. The expression vector of claim 46 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
48. The expression vector of claim 47 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
49. The expression vector of claim 48 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
50. The expression vector of any one of claims 44 to 49 further comprising at least one nucleic acid sequence encoding a co-stimulatory component.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/485,668 US20130011422A1 (en) | 2003-05-16 | 2012-05-31 | Tumor Antigens for the Prevention and/or Treatment of Cancer |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US47111903P | 2003-05-16 | 2003-05-16 | |
| US47119303P | 2003-05-16 | 2003-05-16 | |
| PCT/US2004/015202 WO2004104039A2 (en) | 2003-05-16 | 2004-05-15 | Tumor antigens for prevention and/or treatment of cancer |
| US55706607A | 2007-07-30 | 2007-07-30 | |
| US13/485,668 US20130011422A1 (en) | 2003-05-16 | 2012-05-31 | Tumor Antigens for the Prevention and/or Treatment of Cancer |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2004/015202 Continuation WO2004104039A2 (en) | 2003-05-16 | 2004-05-15 | Tumor antigens for prevention and/or treatment of cancer |
| US55706607A Continuation | 2003-05-16 | 2007-07-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130011422A1 true US20130011422A1 (en) | 2013-01-10 |
Family
ID=33479275
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/557,066 Expired - Fee Related US8207314B2 (en) | 2003-05-16 | 2004-04-15 | Tumor antigens for prevention and/or treatment of cancer |
| US13/485,668 Abandoned US20130011422A1 (en) | 2003-05-16 | 2012-05-31 | Tumor Antigens for the Prevention and/or Treatment of Cancer |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/557,066 Expired - Fee Related US8207314B2 (en) | 2003-05-16 | 2004-04-15 | Tumor antigens for prevention and/or treatment of cancer |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US8207314B2 (en) |
| EP (1) | EP1631585A1 (en) |
| JP (3) | JP2008518583A (en) |
| CN (2) | CN1910198B (en) |
| CA (1) | CA2527640C (en) |
| WO (1) | WO2004104039A2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10962219B2 (en) | 2018-08-03 | 2021-03-30 | Lamplight Farms Incorporated | Repellant string light |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2003263767A1 (en) * | 2002-07-03 | 2004-01-23 | Aventis Pasteur Inc. | Tumor antigens bfa4 and bcy1 for prevention and/or treatment of cancer |
| WO2004092212A2 (en) * | 2003-04-15 | 2004-10-28 | Sanofi Pasteur Limited | Tumor antigens bfa5 for prevention and/or treatment of cancer |
| US8207314B2 (en) * | 2003-05-16 | 2012-06-26 | Sanofi Pasteur Limited | Tumor antigens for prevention and/or treatment of cancer |
| AU2006239141A1 (en) * | 2005-04-26 | 2006-11-02 | Karyon-Ctt Ltd | Diagnostic and therapeutic agents |
| EP3539567A1 (en) | 2007-07-02 | 2019-09-18 | Etubics Corporation | Methods and compositions for producing an adenovirus vector for use with multiple vaccinations |
| JP5665213B2 (en) * | 2009-12-04 | 2015-02-04 | 国立大学法人愛媛大学 | Novel ubiquitin ligase and method for using the same |
| KR102274211B1 (en) * | 2011-11-23 | 2021-07-09 | 인3바이오 리미티드 | Recombinant proteins and their therapeutic uses |
| US9605276B2 (en) | 2012-08-24 | 2017-03-28 | Etubics Corporation | Replication defective adenovirus vector in vaccination |
| WO2016112188A1 (en) | 2015-01-09 | 2016-07-14 | Etubics Corporation | Methods and compositions for ebola virus vaccination |
| KR102193635B1 (en) | 2015-01-09 | 2020-12-21 | 이투빅스 코포레이션 | Methods and compositions for complex immunotherapy |
| US11149087B2 (en) | 2015-04-20 | 2021-10-19 | Etubics Corporation | Methods and compositions for combination immunotherapy |
| US11045534B2 (en) | 2016-03-28 | 2021-06-29 | Toray Industries, Inc. | Immunity-inducing agent |
| EP4247402A4 (en) * | 2020-11-19 | 2025-03-26 | Board of Regents, The University of Texas System | Methods and compositions comprising mhc class i peptides |
| CN113564116B (en) * | 2021-07-21 | 2023-08-01 | 北京赛傲生物技术有限公司 | Preparation method of specific antiviral adoptive immune cell CE |
| CN116694568A (en) * | 2022-03-02 | 2023-09-05 | 北京市希波生物医学技术有限责任公司 | Medium formulation for activating whole anti-tumor immune system and method for preparing agonist activated whole immune effector cells |
| CN119841945B (en) * | 2025-01-22 | 2025-11-28 | 河南赛诺特生物技术有限公司 | Anti-human TRPS1 monoclonal antibody, and preparation method and application thereof |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2003038441A2 (en) * | 2001-11-02 | 2003-05-08 | Isis Innovation Ltd | Screening methods based on cited family proteins |
| WO2004005463A2 (en) * | 2002-07-03 | 2004-01-15 | Aventis Pasteur Inc. | Tumor antigens bfa4 and bcy1 for prevention and/or treatment of cancer |
| WO2004092212A2 (en) * | 2003-04-15 | 2004-10-28 | Sanofi Pasteur Limited | Tumor antigens bfa5 for prevention and/or treatment of cancer |
| US8207314B2 (en) * | 2003-05-16 | 2012-06-26 | Sanofi Pasteur Limited | Tumor antigens for prevention and/or treatment of cancer |
Family Cites Families (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4603112A (en) | 1981-12-24 | 1986-07-29 | Health Research, Incorporated | Modified vaccinia virus |
| US5505941A (en) | 1981-12-24 | 1996-04-09 | Health Research, Inc. | Recombinant avipox virus and method to induce an immune response |
| US5833975A (en) | 1989-03-08 | 1998-11-10 | Virogenetics Corporation | Canarypox virus expressing cytokine and/or tumor-associated antigen DNA sequence |
| NZ219192A (en) * | 1986-02-07 | 1991-10-25 | Oncogen | Peptides related to p97 melanoma-associated peptide, recombinant virus and vaccines |
| US5141742A (en) | 1986-02-07 | 1992-08-25 | Oncogen | Vaccines against melanoma |
| US5262177A (en) | 1986-02-07 | 1993-11-16 | Oncogen | Recombinant viruses encoding the human melanoma-associated antigen |
| US5093258A (en) | 1988-08-26 | 1992-03-03 | Therion Biologics Corporation | Recombinant fowlpox virus and recombination vector |
| DE69519521T2 (en) * | 1994-10-03 | 2001-06-28 | The Government Of The United States Of America, As Represented By The Secretary National Institute Of Health | COMPOSITION CONTAINING AN ANTIQUE-EXPRESSING RECOMBINANT VIRUS AND AN IMMUNE-STIMULATING MOLECULE-EXPRESSING RECOMBINANT VIRUS |
| US20050202499A1 (en) | 1996-10-31 | 2005-09-15 | Billing-Medel Patricia A. | Reagents and methods useful for detecting diseases of the breast |
| US6969609B1 (en) | 1998-12-09 | 2005-11-29 | The United States Of America As Represented By The Department Of Health And Human Serivces | Recombinant vector expressing multiple costimulatory molecules and uses thereof |
| US20020034749A1 (en) | 1997-11-18 | 2002-03-21 | Billing-Medel Patricia A. | Reagents and methods useful for detecting diseases of the breast |
| US20010018058A1 (en) | 1997-12-24 | 2001-08-30 | Reed Steven G. | Compounds for immunotherapy and diagnosis of breast cancer and methods for their use |
| US6730477B1 (en) | 1998-08-04 | 2004-05-04 | Diadexus, Inc. | Method of diagnosing, monitoring and staging breast cancer |
| US7217421B1 (en) | 1998-11-03 | 2007-05-15 | Cell Genesys, Inc. | Cancer-associated antigens and methods of their identification and use |
| GB2347932B (en) * | 1998-11-18 | 2003-05-07 | Oxford Biomedica Ltd | Vectors for the delivery of 5T4 antigen |
| US6969518B2 (en) | 1998-12-28 | 2005-11-29 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of breast cancer |
| US6958361B2 (en) * | 1998-12-28 | 2005-10-25 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of breast cancer |
| ES2343103T3 (en) | 1999-01-21 | 2010-07-23 | Abbott Laboratories | REAGENTS AND USEFUL METHODS TO DETECT BREAST DISEASES. |
| US7166573B1 (en) | 1999-05-28 | 2007-01-23 | Ludwig Institute For Cancer Research | Breast, gastric and prostate cancer associated antigens and uses therefor |
| AU5446700A (en) * | 1999-05-28 | 2000-12-18 | Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The | A combined growth factor-deleted and thymidine kinase-deleted vaccinia virus vector |
| WO2001030382A1 (en) | 1999-10-22 | 2001-05-03 | Aventis Pasteur Limited | Method of inducing and/or enhancing an immune response to tumor antigens |
| WO2001037779A2 (en) * | 1999-11-23 | 2001-05-31 | Diadexus, Inc. | A novel method of diagnosing, monitoring, staging, imaging and treating breast cancer |
| US6780586B1 (en) | 1999-11-29 | 2004-08-24 | Protein Design Labs, Inc. | Methods of diagnosing breast cancer |
| US6774226B1 (en) | 1999-11-30 | 2004-08-10 | Ludwig Institute For Cancer Research | Isolated nucleic acid molecules encoding cancer associated antigens, the antigens per se, and uses thereof |
| WO2001047959A2 (en) * | 1999-11-30 | 2001-07-05 | Ludwig Institute For Cancer Research | Isolated nucleic acid molecules encoding cancer associated antigens, the antigens per se, and uses thereof |
| AU2001268633A1 (en) * | 2000-06-21 | 2002-01-02 | Diadexus, Inc. | Method of diagnosing, monitoring, staging, imaging and treating breast cancer |
| CA2440703A1 (en) * | 2001-01-24 | 2002-08-01 | Protein Design Labs, Inc. | Methods of diagnosis of breast cancer, compositions and methods of screening for modulators of breast cancer |
| WO2003004989A2 (en) * | 2001-06-21 | 2003-01-16 | Millennium Pharmaceuticals, Inc. | Compositions, kits, and methods for identification, assessment, prevention, and therapy of breast cancer |
| AU2003278036B2 (en) | 2002-10-22 | 2009-12-10 | Aventis Pasteur Limited | Anti-cancer vaccines and high-dose cytokines as adjuvants |
| RU2318472C2 (en) | 2002-10-31 | 2008-03-10 | Колгейт-Палмолив Компани | Toothbrush with arbitrary circular motion of head |
| WO2005041193A1 (en) | 2003-09-24 | 2005-05-06 | Seagate Technology Llc | Breather filter cartridge for data storage devices |
-
2004
- 2004-04-15 US US10/557,066 patent/US8207314B2/en not_active Expired - Fee Related
- 2004-05-15 CN CN2004800202563A patent/CN1910198B/en not_active Expired - Fee Related
- 2004-05-15 CN CN201210156207.9A patent/CN102964426B/en not_active Expired - Fee Related
- 2004-05-15 WO PCT/US2004/015202 patent/WO2004104039A2/en not_active Ceased
- 2004-05-15 EP EP04752262A patent/EP1631585A1/en not_active Ceased
- 2004-05-15 CA CA2527640A patent/CA2527640C/en not_active Expired - Fee Related
- 2004-05-15 JP JP2006529369A patent/JP2008518583A/en active Pending
-
2010
- 2010-10-20 JP JP2010235422A patent/JP5363446B2/en not_active Expired - Fee Related
-
2011
- 2011-12-19 JP JP2011277026A patent/JP5503630B2/en not_active Expired - Fee Related
-
2012
- 2012-05-31 US US13/485,668 patent/US20130011422A1/en not_active Abandoned
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2003038441A2 (en) * | 2001-11-02 | 2003-05-08 | Isis Innovation Ltd | Screening methods based on cited family proteins |
| WO2004005463A2 (en) * | 2002-07-03 | 2004-01-15 | Aventis Pasteur Inc. | Tumor antigens bfa4 and bcy1 for prevention and/or treatment of cancer |
| US20040197912A1 (en) * | 2002-07-03 | 2004-10-07 | Aventis Pasteur, Ltd. | Tumor antigens BFA4 and BCY1 for prevention and / or treatment of cancer |
| US7851213B2 (en) * | 2002-07-03 | 2010-12-14 | Sanofi Pasteur Limited | Tumor antigens BFA4 and BCY1 for prevention and / or treatment of cancer |
| US20110117640A1 (en) * | 2002-07-03 | 2011-05-19 | Aventis Pasteur, Ltd. | Tumor antigens bfa4 and bcy1 for prevention and / or treatment of cancer |
| WO2004092212A2 (en) * | 2003-04-15 | 2004-10-28 | Sanofi Pasteur Limited | Tumor antigens bfa5 for prevention and/or treatment of cancer |
| US20050112099A1 (en) * | 2003-04-15 | 2005-05-26 | Aventis Pasteur, Ltd. | Tumor antigen BFA5 for prevention and / or treatment of cancer |
| US20080138365A1 (en) * | 2003-04-15 | 2008-06-12 | Neil Berinstein | Tumor Antigens Bfa5 For Prevention And/Or Treatment Of Cancer |
| US8021664B2 (en) * | 2003-04-15 | 2011-09-20 | Sanofi Pasteur Limited | Tumor antigens Bfa5 for prevention and/or treatment of cancer |
| US20110311543A1 (en) * | 2003-04-15 | 2011-12-22 | Neil Berinstein | Tumor Antigens BFA5 for Prevention and/or Treatment of Cancer |
| US8207314B2 (en) * | 2003-05-16 | 2012-06-26 | Sanofi Pasteur Limited | Tumor antigens for prevention and/or treatment of cancer |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10962219B2 (en) | 2018-08-03 | 2021-03-30 | Lamplight Farms Incorporated | Repellant string light |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102964426B (en) | 2014-11-26 |
| WO2004104039A2 (en) | 2004-12-02 |
| EP1631585A1 (en) | 2006-03-08 |
| US20100278848A1 (en) | 2010-11-04 |
| US8207314B2 (en) | 2012-06-26 |
| JP5503630B2 (en) | 2014-05-28 |
| CN1910198B (en) | 2013-07-31 |
| JP2011067207A (en) | 2011-04-07 |
| CN1910198A (en) | 2007-02-07 |
| CA2527640A1 (en) | 2004-12-02 |
| JP5363446B2 (en) | 2013-12-11 |
| CA2527640C (en) | 2012-11-27 |
| JP2008518583A (en) | 2008-06-05 |
| CN102964426A (en) | 2013-03-13 |
| WO2004104039A8 (en) | 2005-04-14 |
| JP2012110328A (en) | 2012-06-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20130011422A1 (en) | Tumor Antigens for the Prevention and/or Treatment of Cancer | |
| US20110311543A1 (en) | Tumor Antigens BFA5 for Prevention and/or Treatment of Cancer | |
| JP2011067207A5 (en) | ||
| US8530442B2 (en) | Modified CEA nucleic acid and expression vectors | |
| US7786278B2 (en) | Modified CEA nucleic acid and expression vectors | |
| US20030113919A1 (en) | Immunogenic targets for melanoma | |
| US20030148973A1 (en) | MAGE-A1 peptides for treating or preventing cancer | |
| US8946174B2 (en) | Tumor antigens BFA4 and BCY1 for prevention and / or treatment of cancer | |
| AU2004280608B2 (en) | Modified CEA/B7 vector | |
| CA2481719C (en) | Modified cea nucleic acid and expression vectors | |
| US20090156519A1 (en) | Modified KSA and Uses Thereof | |
| AU2014201009A1 (en) | Tumor antigens BFA5 for prevention and/or treatment of cancer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |