US20120316164A1 - Method for inhibiting the growth of cancer stem cells - Google Patents
Method for inhibiting the growth of cancer stem cells Download PDFInfo
- Publication number
- US20120316164A1 US20120316164A1 US13/158,783 US201113158783A US2012316164A1 US 20120316164 A1 US20120316164 A1 US 20120316164A1 US 201113158783 A US201113158783 A US 201113158783A US 2012316164 A1 US2012316164 A1 US 2012316164A1
- Authority
- US
- United States
- Prior art keywords
- cells
- antimycin
- cancer
- cancer stem
- stem cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000000130 stem cell Anatomy 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000002401 inhibitory effect Effects 0.000 title claims abstract description 10
- 230000005907 cancer growth Effects 0.000 title claims abstract description 9
- UIFFUZWRFRDZJC-UHFFFAOYSA-N Antimycin A1 Natural products CC1OC(=O)C(CCCCCC)C(OC(=O)CC(C)C)C(C)OC(=O)C1NC(=O)C1=CC=CC(NC=O)=C1O UIFFUZWRFRDZJC-UHFFFAOYSA-N 0.000 claims abstract description 83
- NQWZLRAORXLWDN-UHFFFAOYSA-N Antimycin-A Natural products CCCCCCC(=O)OC1C(C)OC(=O)C(NC(=O)c2ccc(NC=O)cc2O)C(C)OC(=O)C1CCCC NQWZLRAORXLWDN-UHFFFAOYSA-N 0.000 claims abstract description 83
- UIFFUZWRFRDZJC-SBOOETFBSA-N antimycin A Chemical compound C[C@H]1OC(=O)[C@H](CCCCCC)[C@@H](OC(=O)CC(C)C)[C@H](C)OC(=O)[C@H]1NC(=O)C1=CC=CC(NC=O)=C1O UIFFUZWRFRDZJC-SBOOETFBSA-N 0.000 claims abstract description 83
- PVEVXUMVNWSNIG-UHFFFAOYSA-N antimycin A3 Natural products CC1OC(=O)C(CCCC)C(OC(=O)CC(C)C)C(C)OC(=O)C1NC(=O)C1=CC=CC(NC=O)=C1O PVEVXUMVNWSNIG-UHFFFAOYSA-N 0.000 claims abstract description 83
- 208000020816 lung neoplasm Diseases 0.000 claims abstract description 25
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims abstract description 22
- 201000005202 lung cancer Diseases 0.000 claims abstract description 22
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- 150000003839 salts Chemical class 0.000 claims abstract description 16
- 201000007270 liver cancer Diseases 0.000 claims abstract description 8
- 208000014018 liver neoplasm Diseases 0.000 claims abstract description 8
- 206010006187 Breast cancer Diseases 0.000 claims abstract description 4
- 208000026310 Breast neoplasm Diseases 0.000 claims abstract description 4
- 206010009944 Colon cancer Diseases 0.000 claims abstract description 4
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims abstract description 4
- 210000004027 cell Anatomy 0.000 claims description 111
- 206010028980 Neoplasm Diseases 0.000 claims description 65
- 201000011510 cancer Diseases 0.000 claims description 46
- 239000005411 L01XE02 - Gefitinib Substances 0.000 claims description 18
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical group C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 claims description 18
- 229960002584 gefitinib Drugs 0.000 claims description 18
- 239000002246 antineoplastic agent Substances 0.000 claims description 15
- 230000037361 pathway Effects 0.000 claims description 8
- 230000002829 reductive effect Effects 0.000 claims description 8
- 239000005551 L01XE03 - Erlotinib Substances 0.000 claims description 5
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 claims description 5
- 229960001433 erlotinib Drugs 0.000 claims description 5
- 230000002222 downregulating effect Effects 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 abstract description 4
- 238000011282 treatment Methods 0.000 description 21
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- 235000002639 sodium chloride Nutrition 0.000 description 12
- 102000013814 Wnt Human genes 0.000 description 9
- 108050003627 Wnt Proteins 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000029918 bioluminescence Effects 0.000 description 7
- 238000005415 bioluminescence Methods 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 7
- 108060000903 Beta-catenin Proteins 0.000 description 6
- 102000015735 Beta-catenin Human genes 0.000 description 6
- 208000005623 Carcinogenesis Diseases 0.000 description 6
- 101000610551 Homo sapiens Prominin-1 Proteins 0.000 description 6
- 102100040120 Prominin-1 Human genes 0.000 description 6
- 230000036952 cancer formation Effects 0.000 description 6
- 231100000504 carcinogenesis Toxicity 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 5
- 206010059866 Drug resistance Diseases 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 4
- 229930182536 Antimycin Natural products 0.000 description 4
- 238000011579 SCID mouse model Methods 0.000 description 4
- XBRTVFPCVYOOGG-NIBHENIISA-N [H]C(=O)CC1=CC=CC(C(=O)N[C@@H]2C(=O)O[C@@H](C)[C@H](OC(=O)CC(C)C)[C@@H](CCCC)C(=O)O[C@@H]2C)=C1O Chemical compound [H]C(=O)CC1=CC=CC(C(=O)N[C@@H]2C(=O)O[C@@H](C)[C@H](OC(=O)CC(C)C)[C@@H](CCCC)C(=O)O[C@@H]2C)=C1O XBRTVFPCVYOOGG-NIBHENIISA-N 0.000 description 4
- CQIUKKVOEOPUDV-IYSWYEEDSA-N antimycin Chemical compound OC1=C(C(O)=O)C(=O)C(C)=C2[C@H](C)[C@@H](C)OC=C21 CQIUKKVOEOPUDV-IYSWYEEDSA-N 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 4
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 201000005249 lung adenocarcinoma Diseases 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 4
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 4
- 210000001646 side-population cell Anatomy 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 108010090306 Member 2 Subfamily G ATP Binding Cassette Transporter Proteins 0.000 description 3
- 102000013013 Member 2 Subfamily G ATP Binding Cassette Transporter Human genes 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 208000037841 lung tumor Diseases 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 3
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 3
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108010078791 Carrier Proteins Proteins 0.000 description 2
- 108010058546 Cyclin D1 Proteins 0.000 description 2
- 102100024165 G1/S-specific cyclin-D1 Human genes 0.000 description 2
- 101000600434 Homo sapiens Putative uncharacterized protein encoded by MIR7-3HG Proteins 0.000 description 2
- 231100000002 MTT assay Toxicity 0.000 description 2
- 238000000134 MTT assay Methods 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 108010057466 NF-kappa B Proteins 0.000 description 2
- 102000003945 NF-kappa B Human genes 0.000 description 2
- 102100037401 Putative uncharacterized protein encoded by MIR7-3HG Human genes 0.000 description 2
- 241000187747 Streptomyces Species 0.000 description 2
- 102100035101 Transcription factor 7-like 2 Human genes 0.000 description 2
- 108010016200 Zinc Finger Protein GLI1 Proteins 0.000 description 2
- 230000001028 anti-proliverative effect Effects 0.000 description 2
- 230000000417 anti-transforming effect Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 229940121647 egfr inhibitor Drugs 0.000 description 2
- 230000027721 electron transport chain Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- -1 free radical superoxide Chemical class 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 108010082117 matrigel Proteins 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 210000000276 neural tube Anatomy 0.000 description 2
- 231100001221 nontumorigenic Toxicity 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000012679 serum free medium Substances 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 229960001722 verapamil Drugs 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 230000002407 ATP formation Effects 0.000 description 1
- 102000010565 Apoptosis Regulatory Proteins Human genes 0.000 description 1
- 108010063104 Apoptosis Regulatory Proteins Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102100030497 Cytochrome c Human genes 0.000 description 1
- 108010075031 Cytochromes c Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102000015782 Electron Transport Complex III Human genes 0.000 description 1
- 108010024882 Electron Transport Complex III Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 101000976959 Homo sapiens Transcription factor 4 Proteins 0.000 description 1
- 101000596771 Homo sapiens Transcription factor 7-like 2 Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108020005196 Mitochondrial DNA Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 241000187180 Streptomyces sp. Species 0.000 description 1
- 108010048992 Transcription Factor 4 Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091009419 Transcription factor GLI3 Proteins 0.000 description 1
- 102000027677 Transcription factor GLI3 Human genes 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001772 anti-angiogenic effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 210000000069 breast epithelial cell Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 231100000096 clonogenic assay Toxicity 0.000 description 1
- 238000009643 clonogenic assay Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 210000003953 foreskin Anatomy 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Substances [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 210000001700 mitochondrial membrane Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004264 monolayer culture Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 210000004882 non-tumor cell Anatomy 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000010627 oxidative phosphorylation Effects 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000037050 permeability transition Effects 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 1
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 1
- NPCOQXAVBJJZBQ-UHFFFAOYSA-N reduced coenzyme Q9 Natural products COC1=C(O)C(C)=C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)C(O)=C1OC NPCOQXAVBJJZBQ-UHFFFAOYSA-N 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000011519 second-line treatment Methods 0.000 description 1
- 239000008299 semisolid dosage form Substances 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 231100000164 trypan blue assay Toxicity 0.000 description 1
- 230000005748 tumor development Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 210000005102 tumor initiating cell Anatomy 0.000 description 1
- 231100000588 tumorigenic Toxicity 0.000 description 1
- 230000000381 tumorigenic effect Effects 0.000 description 1
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 description 1
- 229940040064 ubiquinol Drugs 0.000 description 1
- QNTNKSLOFHEFPK-UPTCCGCDSA-N ubiquinol-10 Chemical compound COC1=C(O)C(C)=C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)C(O)=C1OC QNTNKSLOFHEFPK-UPTCCGCDSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000012447 xenograft mouse model Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/517—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- the present invention relates to a method for inhibiting the growth of cancer stem cells.
- Cancer stem cells (CSCs)/tumor-initiating cells have been defined as a subset of tumor cells responsible for initiating and sustaining tumor development. It was evidenced that the existence of lung CSCs and their stem cell properties contributed to the tumorigenesis and drug resistance. (Hanahan D and Weinberg R A.; Hallmarks of cancer: the next generation. Cell, 144:646-74, 2011.) It was also well known that to regulate carcinogenesis of lung cancer facilitated the search of novel therapeutics which specifically targeted lung cancer stem cells (LCSCs) and/or CSCs of other cancer types. Particularly, this lead to improved efficacy in treatment and even prevention of carcinogenesis of all types of cancers (Chang A; Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer 71:3-10, 2011.)
- the invention provides a new treatment of a cancer with a compound of formula I (antimycin A).
- this subject invention provides a method for inhibiting the growth of cancer stem cells, comprising administering to a subject in need thereof an effective amount of a compound of formula I (antimycin A) or a pharmaceutically acceptable salt thereof.
- the present invention relates to a method for inhibiting the growth of cancer stem-like side population (SP) cells comprising a therapeutically effective amount of antimycin A or a pharmaceutically acceptable salt thereof.
- SP cancer stem-like side population
- the present invention provides a method for treating a cancer with a reduced resistance acquired by the administration of an anti-cancer agent, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula I (antimycin A) or a pharmaceutically acceptable salt thereof in combination of an administration of an anti-cancer agent.
- the present invention provides a method for treating a cancer comprising administering to a subject in need thereof an anti-cancer agent in combination of a therapeutically effective amount of a compound of formula I (antimycin A) or a pharmaceutically acceptable salt thereof.
- the method for treating a cancer comprise administration of an anti-cancer agent (e.g. gefitinib), in combination of administration a therapeutically effective amount of a compound of formula I (antimycin A) or a pharmaceutically acceptable salt thereof.
- an anti-cancer agent e.g. gefitinib
- the present invention provides a method for downregulating Wnt/ ⁇ -caterin pathway, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula I (antimycin A) or a pharmaceutically acceptable salt thereof.
- FIG. 1 shows the cytotoxicity of antimycin A in liver (A) and lung cancer cells (B); wherein the cells were incubated with 0, 0.1, 1, 10 ⁇ M of antimycin A for 72 hours; and the cell viability was then evaluated by MTT assay; the side populations isolated from Huh7 (liver cancer cell line) (C) and A549 (lung cancer cell line) (D) were significantly decreased after treating with antimycin A.
- FIG. 2 shows that A549 side population cells possessed higher clonogenicity and expressed stem cell markers; wherein A549 CSCs were sorted using Hoechst 33342 and ABCG2 inhibitor, verapamil, and the R1 gate represents the side population (SP) cells (1.79% of total cells) and the R2 gate represents the NSP (non-SP) cells.
- A549 CSCs were sorted using Hoechst 33342 and ABCG2 inhibitor, verapamil, and the R1 gate represents the side population (SP) cells (1.79% of total cells) and the R2 gate represents the NSP (non-SP) cells.
- FIG. 3 shows the anti-transforming effect of antimycin A on tumor spheroids; wherein the A549 SP cells were seeded in suspension and treated with antimycin A (0 ⁇ 10 ⁇ M) for different incubation time; the micrographs of spheroids formed in suspension were shown in the right panels; at the end of incubation period, all the spheroids were collected and measured by trypan blue assay.
- FIG. 4 shows that antimycin A downregulated the Wnt/ ⁇ -catenin self-renewal pathway and decreased expression of CD133 in A549 SP cells; Antimycin A decreased the protein levels of ⁇ -catenin, TCF4, NF-kB/p65 and cyclin D1 in A549 SP cells (A); after antimycin A treatment, FACS analysis revealed that CD133 expression was decreased in A549 SP cells (65.7% to 21.7%) (B) and the RNA level of CD133 was also reduced (C).
- FIG. 5 shows that the addition of antimycin A overcame the acquired resistance to gefitinib in PC9 lung adenocarcinoma cell lines (PC9/GR); wherein PC9/GR cells were grown in Matrigel without or with gefitinib (G) (1 antimycin A (A) (10 ⁇ M) or combinations of these drugs (G+A) for 72 hours, and then incubated in drug-free medium. Photographs of the colonies were taken after 2 weeks; the lower graph shows cell numbers from Matrigel experiments; and the cells were harvested by trypsinization and then counted.
- PC9/GR PC9 lung adenocarcinoma cell lines
- FIG. 6 shows that antimycin A reduced the cell number in the cancer stem-like SP cells.
- PC9/GR cells were stained with Hoechst 33342 in the presence of the indicated concentrations antimycin A, and then analyzed (A); and the relative ratios of SP cells number of PC9/GR, PC9, and A549 in antimycin A-treated samples were shown by comparing with them with SP cell number in antimycin A-untreated samples (B).
- FIG. 7 depicts that the treatment of antimycin A in NOD/SCID mice significantly suppressed A549 tumorigenesis; immune compromised NOD/SCID mice were initially inoculated with A549 Luc cells via tail vein injection; bioluminescence emitted from A549 Luc cells were then quantitatively measured using IVIS spectrum system one week post tumor inoculation; mice exhibiting approximately equal bioluminescence intensity were grouped for experimentation; this procedure was performed to ensure approximately equal tumor burden prior to antimycin A treatment; the entire treatment/monitoring process lasted 3 weeks post tumor inoculation; Antimycin A-treated mice exhibited significantly lower tumor burdens in the lungs when compared with the control animals, as evaluated by the fold change in the bioluminescence intensity of A549 Luc lung tumor cells. By the end of experimental period, tumor burden in the control mice was approximately 6-fold higher than antimycin A-treated counterparts; this in vivo data clearly demonstrated antimycin-A's ability in suppressing lung cancer stem cells.
- the present invention provides a method for treating or preventing a cancer by inhibiting the growth of cancer stem cells or cancer stem-like side population (SP) cells, such as colorectal cancer, liver cancer, lung cancer or breast cancer.
- SP cancer stem-like side population
- cancer stem cells refers to the cells found within tumors or hematological cancers that possess characteristics associated with normal stem cells, specifically the ability to give rise to all cell types found in a particular cancer; and the cancer stem cells are therefore tumorigenic (tumor-forming), perhaps in contrast to other non-tumorigenic cancer cells.
- cancer stem-like side population cells or “side population cells” or “SP cells” as used herein refers to a subset of stem cells, which are a sub-population of cancer cells that are distinct from the main population of cancer cells on the basis of the markers employed, and have distinguishing biological characteristics (for example, they may exhibit stem cell-like characteristics) from cancer cells, but the exact nature of this distinction depends on the markers used in identifying the side population.
- Antimycin A is a chemical compound produced by Streptomyces bacteria with a solvent under reflux and purified by silica gel column chromatography afterwards. It can also be prepared by chemical synthesis methods.
- antimycin A The compound of Formula I (antimycin A) was first isolated during the 1940's, and its molecular structure determined a few years later. Antimycin (used to refer to all of the antimycin variants collectively) is an antibiotic that was found to be a potent inhibitor of fungal growth (hence the name), while most bacteria are unaffected. However, due to low content of antimycin A in Streptomyces and difficulty in extraction, there has been no further report on antimycin A during the past 15 years.
- antimycin A binds to the Qi site of cytochrome c reductase, thereby inhibits the oxidation of ubiquinol in the electron transport chain of oxidative phosphorylation.
- the inhibition of this reaction disrupts the formation of the proton gradient across the inner membrane.
- the production of ATP is subsequently inhibited, as protons are unable to flow through the ATP synthase complex in the absence of a proton gradient. This inhibition also results in the formation of quantities of the toxic free radical superoxide.
- a “pharmaceutically acceptable salt” refers to a salt that is suitable for administration to a subject to achieve the inhibition of cancer stem cells described herein, without unduly deleterious side effects in light of the severity of cancer and necessity of the treatment.
- antimycin A or a pharmaceutically acceptable salt thereof may be used for inhibiting the growth of cancer stem cells or cancer stem-like side population (SP) cells.
- the term “pharmaceutically acceptable carrier” refers to any of the standard pharmaceutical carriers such as sterile solutions, tablets, coated tablets, and capsules. Typically such carriers contain excipients such as starch, milk, sugar, certain types of clay, gelatin, stearic acids or salts thereof, magnesium or calcium stearate, talc, vegetable fats or oils, gums, glycols, or other known excipients. Such carriers may also include flavor and color additives or other ingredients. Examples of pharmaceutically acceptable carriers include, but are not limited to, the following: water, saline, buffers, inert, nontoxic solids (e.g., mannitol, talc). Compositions comprising such carriers are formulated by well known conventional methods.
- compositions may be in the form of solid, semi-solid, or liquid dosage forms, such, for example, as powders, granules, crystals, liquids, suspensions, liposomes, pastes, creams, salves, etc., and may be in unit-dosage forms suitable for administration of relatively precise dosages.
- a therapeutically effective amount refers to an amount necessary to inhibit the growth of cancer stem cells or side population cancer cells. A therapeutically effective amount differs according to the administration route, excipient usage and co-usage of other active agents. In one example of the invention, the therapeutically effective amount of antimycin A is at the concentration of 0.01 to 1000 ⁇ M, particularly 0.5 to 50 ⁇ M.
- antimycin A was evidenced to have an activity in inhibition of cancer stem cells, including lung cancer cell line—A549 and liver cancer cell line—Huh7.
- lung cancer cell line—A549 and liver cancer cell line—Huh7 the relatively lower cytotoxicity of antimycin A in two non-tumor cells as compared with cancer cell lines. It was found in the present invention that antimycin A had an unexpectedly high activity in inhibiting the formation of primary tumor spheroids through downregulates Wnt/ ⁇ -catenin pathway and depletes CD133-positive population in lung cancer stem cells.
- antimycin A was evidenced to have a high activity in inhibition of the growth of different cancer stem cells, including lung cancer cell line—A549 and liver cancer cell line—Huh7.
- antimycin A had almost no cell toxicity to normal cells including foreskins fibroblast cells and non-tumorigenic breast epithelial cells.
- the present invention provides a method for treating a cancer with a reduced resistance acquired by the administration of an anti-cancer agent, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula I (antimycin A) or a pharmaceutically acceptable salt thereof in combination of an administration of an anti-cancer agent.
- a compound of formula I antimycin A
- the compound of formula I may be administered simultaneously or before the anti-cancer agent is administered.
- the term “anti-cancer agent” refers to any agent that can treat or prevent a cancer or a tumor.
- the anti-cancer agent is gefitinib or erlotinib.
- Gefitinib or erlotinib is a small-molecule tyrosine kinase inhibitor (TKI) which inhibits EGFR phosphorylation and thus the activation of receptor tyrosine kinase (in the case of lung cancer, EGFR).
- TKI small-molecule tyrosine kinase inhibitor
- Wnt/ ⁇ -caterin pathway also known as Wnt/ ⁇ -caterin signalling pathway, which a network of ⁇ -caterin known for their roles in cancer.
- Wnt signaling in the dorsal region of the neural tube also controls the expression of a transcription factor Gli3, one of the main inhibitors of the Shh/Gli pathway, and it is by signaling through the Wnt/ ⁇ -catenin pathway that Wnt is able to activate and control the expression of the Gli3 transcription factor to repress transcriptional activity of Shh/Gli in the dorsal region of the neural tube and elicit dorsal cell fates.
- Antimycin A derived from Streptomyces sp., is an inhibitor of electron transport chain at mitochondrial complex III. This inhibition results in an elevation in the production of ROS, thereby causing damage to mitochondrial DNA, lipids and proteins, collapse of the mitochondrial membrane potential, which opens up the mitochondrial permeability transition pores, leading to release of pro-apoptotic proteins into the cytoplasm, thereby inducing apoptosis. Therefore, antimycin A is broadly employed to simulate cellular degenerative conditions in vitro.
- the anti-proliferative effects of antimycin A were assessed on human cancer cell lines, using the MTT assay, with normal HUVEC and MLF cells as controls. As shown in FIGS. 1 A & B, growth of all of the cancer cells tested was inhibited in a concentration-dependent manner by antimycin A. The estimated IC 50 determined for antimycin A in these cancer cell lines ranged from 0.6 ⁇ 4.5 ⁇ M, particularly in conditions where an antimycin A concentration of 0.6 ⁇ M significantly inhibited the A549 cell growth. Interestingly, antimycin A had little anti-proliferative effect on normal HUVEC and MLF cells (see FIGS. 1C & D). Therefore, we tested the effects of antimycin A on liver and lung cancer stem-like SP cells.
- Freezing and thawing cultured cells Remove vial of frozen cells from the nitrogen freezer and transfer to a 37° C. heat block (or the incubator) to thaw (thawing generally takes only 1-2 minutes). Clean outside of tube with alcohol before opening. Although you can spin down the thawed cells, resuspend them, and add thawed cells to ⁇ 20 ml of chilled fresh medium.
- A549 and PC9 cells were grown in monolayer cell culture and maintained in DMEM medium (supplemented with 10% fetal bovine serum and 1 mM sodium pyruvate) in a humidified atmosphere with 5% CO2 at 37° C.
- Cells were grown in polystyrene-coated T75 (75 cm 2 ) cell culture flasks, and were harvested in logarithmic phase of growth. The cells were maintained at the above-mentioned culture conditions for all experiments.
- SP cells stem-like side population (SP) cells will be isolated by flow cytometry and cell sorting techniques. SP cells that express ATP-binding cassette (ABC) transporters (ABCG2) and Hoechst 33342 efflux activity will be sorted by FACS Aria III system.
- ABSC ATP-binding cassette
- ABCG2 ATP-binding cassette 2 transporters
- Hoechst 33342 efflux activity will be sorted by FACS Aria III system.
- SP side population
- FIG. 2A The isolated SP cells were cultured for further characterization. It was found that mRNA transcripts used for demonstrating the “sternness” of cancer stem cells namely ABCG2, CD133 and ⁇ -catenin were significantly higher in SP cells than that in non-SP counterparts ( FIG. 2B ). When cultured and assayed for clonogenicity, SP cells exhibited a significantly heightened ability in forming colonies when comparing to non-SP counterparts ( FIG. 2C ).
- SP cells when cultured in stem cell medium, appeared to form tumor spheroids while non-SP lacked this ability ( FIG. 2D ).
- SP cells isolated from A549 lung cancer cell line demonstrated a spectrum of stem cell characteristics described above.
- Antimycin A was dissolved in DMSO at a concentration of 10 mM and was stored in a dark-colored bottle at ⁇ 20° C. as a stock solution. The stock was diluted to the required concentration with serum-free medium immediately before use. Before treatment with antimycin A, the medium was removed when cells were about 70% confluent, the cells were starved overnight in serum-free medium and then exposed to antimycin A at different concentrations (0-10 ⁇ M) and for different periods of time (0-48 h).
- MTT dye was used to test the effects of antimycin A on cell growth and viability of lung cancer sphere cells.
- Antimycin A was dissolved in DMSO at 10 mM as a stock solution before diluting with growth medium to a final DMSO concentration of ⁇ 0.05%.
- the cancer cells were seeded into 96 well plates in growth medium at 2000 cells/well. After 16-20 hours cells were treated with antimycin A which was previously diluted to required concentrations with growth medium. The cells were incubated for another 72 hours. Fifty ⁇ l of MTT (2 mg/ml) was gently added to each well with subsequent incubation for 2 hour at 37° C. For each well, 180 ⁇ l of media was carefully removed to not to disturb cells. And 180 ⁇ l DMSO was then added into the well followed by pipetting to completely dissolve the MTT formazan crystals. Plate was read within 30 minutes at absorbance at 570 nm with a reference filter of 660 nm by spectrophotometer.
- Antimycin A was found to exhibit anti-transforming ability against A549 tumor spheroids.
- the antimycin A mediated its effects on SP cells by disrupting different signalling pathways including ⁇ -catenin/TCF-4, NF- ⁇ B and cyclin D1 ( FIG. 4A ).
- the antimycin A treatment significantly decreased CD133 expression (from 65.7% down to 21.7%, FIGS. 4B and 4C ) in A549 SP cells both on the cell surface and at the transcriptional level.
- PC-9/GR cells were grown in the presence of gefitinib (G), antimycin (A) and both (G+A) drugs.
- the addition of antimycin A sensitized gefitinib-resistant PC-9 cells towards treatment ( FIG. 5 ).
- group with both drugs (A+G) appeared to contain the least number of colonies as compared to the control (C), gefitinib only (G) and antimycin A only (A).
- the quantitative data were represented in bar graph (lower panel, FIG. 5 ). The data indicated that antimycin A could overcome gefitinib resistance effectively.
- Antimycin A reduced the cell number in the cancer stem-like SP cells
- PC-9/GR gefitinib-resistant PC-9 cells
- PC-9/GR cells contained approximately 4.3% SP cells.
- the percentage of SP cells significantly decreased, indicating antimycin A could overcome gefitinib resistance ( FIG. 6 ).
- SP cells from other cell lines including PC9 and A549 were also examined and similar results were obtained.
- Tumor initiating ability is one of the most important hallmarks of cancer stem cells. Therefore, it was further explored the anti-cancer stem cell ability of antimycin A using immune compromised mouse xenograft model.
- A549-Luc cells were intravenously injected into NOD/SCDI mice and allowed for tumor to develop.
- lung tumor burden was quantitatively measured and sorted based on the bioluminescence intensity. Mice exhibited approximately equal bioluminescence intensity were grouped. The animals were divided into two groups, one receiving i.p. injection of antimycin A and the other with vehicle control. The bioluminescence intensity of the lung tumor burden was monitored on weekly basis.
- Antimycin A treatment appeared to suppress tumor growth as compared to the vehicle control group ( FIG. 7 bottom panels). Tumor burden changes were represented by the fold change in bioluminescence intensity ( FIG. 7 upper panel). This data indicated that antimycin A reduced tumor initiating ability of A549 cells in vivo.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention provides a method for inhibiting the growth of cancer stem cells, particularly colorectal cancer stem cells, liver cancer stem cells, lung cancer stem cells or breast cancer stem cells, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of antimycin A or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier.
Description
- The present invention relates to a method for inhibiting the growth of cancer stem cells.
- Cancer stem cells (CSCs)/tumor-initiating cells have been defined as a subset of tumor cells responsible for initiating and sustaining tumor development. It was evidenced that the existence of lung CSCs and their stem cell properties contributed to the tumorigenesis and drug resistance. (Hanahan D and Weinberg R A.; Hallmarks of cancer: the next generation. Cell, 144:646-74, 2011.) It was also well known that to regulate carcinogenesis of lung cancer facilitated the search of novel therapeutics which specifically targeted lung cancer stem cells (LCSCs) and/or CSCs of other cancer types. Particularly, this lead to improved efficacy in treatment and even prevention of carcinogenesis of all types of cancers (Chang A; Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer 71:3-10, 2011.)
- It was reported by Nguewa P A et al. that in advanced NSCLC (lung adenocarcinoma) patients with specific EGFR mutations, the treatment outcome of EGFR-TKIs was significantly better than traditional chemotherapy drugs (Nguewa P A et al.; Tyrosine kinase inhibitors with antiangiogenic properties for the treatment of non-small cell lung cancer. Expert Opin Investig Drugs 20:61-74, 2011; and Pao W and Chmielecki J; Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer 10:760-74, 2010.) However, almost all patients who received EGFR-TKI treatment would eventually develop drug resistance. For instance, the median progression free survival after first-line treatment of gefitinib in sensitive EGFR mutated patients is about 10 months, and only 2.2 months in patients with erlotinib as second line treatment after chemotherapy. The exact mechanism(s) responsible for the development of drug resistance remains unclear, but the existence of CSCs presents a strong argument. There is currently no effective treatment to overcome drug resistance once it has emerged.
- Accordingly, the invention provides a new treatment of a cancer with a compound of formula I (antimycin A).
- In one aspect, this subject invention provides a method for inhibiting the growth of cancer stem cells, comprising administering to a subject in need thereof an effective amount of a compound of formula I (antimycin A) or a pharmaceutically acceptable salt thereof.
- In another aspect, the present invention relates to a method for inhibiting the growth of cancer stem-like side population (SP) cells comprising a therapeutically effective amount of antimycin A or a pharmaceutically acceptable salt thereof.
- In a yet aspect, the present invention provides a method for treating a cancer with a reduced resistance acquired by the administration of an anti-cancer agent, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula I (antimycin A) or a pharmaceutically acceptable salt thereof in combination of an administration of an anti-cancer agent.
- In a further aspect, the present invention provides a method for treating a cancer comprising administering to a subject in need thereof an anti-cancer agent in combination of a therapeutically effective amount of a compound of formula I (antimycin A) or a pharmaceutically acceptable salt thereof. In one example of the present invention, the method for treating a cancer comprise administration of an anti-cancer agent (e.g. gefitinib), in combination of administration a therapeutically effective amount of a compound of formula I (antimycin A) or a pharmaceutically acceptable salt thereof.
- In a further and yet aspect, the present invention provides a method for downregulating Wnt/β-caterin pathway, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula I (antimycin A) or a pharmaceutically acceptable salt thereof.
- The foregoing and other aspects of the present invention will now be described in more detail with respect to other embodiments described herein. It should be appreciated that the invention can be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
- The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments, which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
- In the drawings:
-
FIG. 1 shows the cytotoxicity of antimycin A in liver (A) and lung cancer cells (B); wherein the cells were incubated with 0, 0.1, 1, 10 μM of antimycin A for 72 hours; and the cell viability was then evaluated by MTT assay; the side populations isolated from Huh7 (liver cancer cell line) (C) and A549 (lung cancer cell line) (D) were significantly decreased after treating with antimycin A. -
FIG. 2 shows that A549 side population cells possessed higher clonogenicity and expressed stem cell markers; wherein A549 CSCs were sorted using Hoechst 33342 and ABCG2 inhibitor, verapamil, and the R1 gate represents the side population (SP) cells (1.79% of total cells) and the R2 gate represents the NSP (non-SP) cells. Both of them were collected for the subsequent research (A); the RT-PCR assay showed that SP cells contained elevated transcripts of stem cell markers (B); the clonogenic assay showing the clonogenicity of SP cells was markedly higher than that of non-SP cells (C); and the cell morphology of freshly sorted SP and non-SP cells after seeding for 0, 5 and 10 days (D); indicating the morphological differences in both SP (small and round in shape) and non-SP cells (fibroblast-like) were very distinct (scale bar=50 μm). -
FIG. 3 shows the anti-transforming effect of antimycin A on tumor spheroids; wherein the A549 SP cells were seeded in suspension and treated with antimycin A (0˜10 μM) for different incubation time; the micrographs of spheroids formed in suspension were shown in the right panels; at the end of incubation period, all the spheroids were collected and measured by trypan blue assay. -
FIG. 4 shows that antimycin A downregulated the Wnt/β-catenin self-renewal pathway and decreased expression of CD133 in A549 SP cells; Antimycin A decreased the protein levels of β-catenin, TCF4, NF-kB/p65 and cyclin D1 in A549 SP cells (A); after antimycin A treatment, FACS analysis revealed that CD133 expression was decreased in A549 SP cells (65.7% to 21.7%) (B) and the RNA level of CD133 was also reduced (C). -
FIG. 5 shows that the addition of antimycin A overcame the acquired resistance to gefitinib in PC9 lung adenocarcinoma cell lines (PC9/GR); wherein PC9/GR cells were grown in Matrigel without or with gefitinib (G) (1 antimycin A (A) (10 μM) or combinations of these drugs (G+A) for 72 hours, and then incubated in drug-free medium. Photographs of the colonies were taken after 2 weeks; the lower graph shows cell numbers from Matrigel experiments; and the cells were harvested by trypsinization and then counted. -
FIG. 6 shows that antimycin A reduced the cell number in the cancer stem-like SP cells. PC9/GR cells were stained with Hoechst 33342 in the presence of the indicated concentrations antimycin A, and then analyzed (A); and the relative ratios of SP cells number of PC9/GR, PC9, and A549 in antimycin A-treated samples were shown by comparing with them with SP cell number in antimycin A-untreated samples (B). -
FIG. 7 depicts that the treatment of antimycin A in NOD/SCID mice significantly suppressed A549 tumorigenesis; immune compromised NOD/SCID mice were initially inoculated with A549 Luc cells via tail vein injection; bioluminescence emitted from A549 Luc cells were then quantitatively measured using IVIS spectrum system one week post tumor inoculation; mice exhibiting approximately equal bioluminescence intensity were grouped for experimentation; this procedure was performed to ensure approximately equal tumor burden prior to antimycin A treatment; the entire treatment/monitoring process lasted 3 weeks post tumor inoculation; Antimycin A-treated mice exhibited significantly lower tumor burdens in the lungs when compared with the control animals, as evaluated by the fold change in the bioluminescence intensity of A549 Luc lung tumor cells. By the end of experimental period, tumor burden in the control mice was approximately 6-fold higher than antimycin A-treated counterparts; this in vivo data clearly demonstrated antimycin-A's ability in suppressing lung cancer stem cells. - The present invention provides a method for treating or preventing a cancer by inhibiting the growth of cancer stem cells or cancer stem-like side population (SP) cells, such as colorectal cancer, liver cancer, lung cancer or breast cancer.
- As used herein, the term “cancer stem cells” refers to the cells found within tumors or hematological cancers that possess characteristics associated with normal stem cells, specifically the ability to give rise to all cell types found in a particular cancer; and the cancer stem cells are therefore tumorigenic (tumor-forming), perhaps in contrast to other non-tumorigenic cancer cells.
- The term “cancer stem-like side population cells” or “side population cells” or “SP cells” as used herein refers to a subset of stem cells, which are a sub-population of cancer cells that are distinct from the main population of cancer cells on the basis of the markers employed, and have distinguishing biological characteristics (for example, they may exhibit stem cell-like characteristics) from cancer cells, but the exact nature of this distinction depends on the markers used in identifying the side population.
- The compound of formula I, known as
- antimycin A:
- Antimycin A is a chemical compound produced by Streptomyces bacteria with a solvent under reflux and purified by silica gel column chromatography afterwards. It can also be prepared by chemical synthesis methods.
- The compound of Formula I (antimycin A) was first isolated during the 1940's, and its molecular structure determined a few years later. Antimycin (used to refer to all of the antimycin variants collectively) is an antibiotic that was found to be a potent inhibitor of fungal growth (hence the name), while most bacteria are unaffected. However, due to low content of antimycin A in Streptomyces and difficulty in extraction, there has been no further report on antimycin A during the past 15 years.
- It is known that antimycin A binds to the Qi site of cytochrome c reductase, thereby inhibits the oxidation of ubiquinol in the electron transport chain of oxidative phosphorylation. The inhibition of this reaction disrupts the formation of the proton gradient across the inner membrane. The production of ATP is subsequently inhibited, as protons are unable to flow through the ATP synthase complex in the absence of a proton gradient. This inhibition also results in the formation of quantities of the toxic free radical superoxide.
- As used herein, a “pharmaceutically acceptable salt” refers to a salt that is suitable for administration to a subject to achieve the inhibition of cancer stem cells described herein, without unduly deleterious side effects in light of the severity of cancer and necessity of the treatment. In the example of the invention, antimycin A or a pharmaceutically acceptable salt thereof may be used for inhibiting the growth of cancer stem cells or cancer stem-like side population (SP) cells.
- As used herein, the term “pharmaceutically acceptable carrier” refers to any of the standard pharmaceutical carriers such as sterile solutions, tablets, coated tablets, and capsules. Typically such carriers contain excipients such as starch, milk, sugar, certain types of clay, gelatin, stearic acids or salts thereof, magnesium or calcium stearate, talc, vegetable fats or oils, gums, glycols, or other known excipients. Such carriers may also include flavor and color additives or other ingredients. Examples of pharmaceutically acceptable carriers include, but are not limited to, the following: water, saline, buffers, inert, nontoxic solids (e.g., mannitol, talc). Compositions comprising such carriers are formulated by well known conventional methods. Depending on the intended mode of administration and the intended use, the compositions may be in the form of solid, semi-solid, or liquid dosage forms, such, for example, as powders, granules, crystals, liquids, suspensions, liposomes, pastes, creams, salves, etc., and may be in unit-dosage forms suitable for administration of relatively precise dosages.
- “A therapeutically effective amount” as used herein refers to an amount necessary to inhibit the growth of cancer stem cells or side population cancer cells. A therapeutically effective amount differs according to the administration route, excipient usage and co-usage of other active agents. In one example of the invention, the therapeutically effective amount of antimycin A is at the concentration of 0.01 to 1000 μM, particularly 0.5 to 50 μM.
- By using UV-equipped flow cytometer, it was successfully detected and isolated a small percentage of cancer stem-like side population (SP) cells from several types of lung cancer cell lines, which appear to have characteristics of self renewal, clonogenicity and sternness genes expression. According to the invention, antimycin A was evidenced to have an activity in inhibition of cancer stem cells, including lung cancer cell line—A549 and liver cancer cell line—Huh7. However, the relatively lower cytotoxicity of antimycin A in two non-tumor cells as compared with cancer cell lines. It was found in the present invention that antimycin A had an unexpectedly high activity in inhibiting the formation of primary tumor spheroids through downregulates Wnt/β-catenin pathway and depletes CD133-positive population in lung cancer stem cells. Furthermore, it was found in the present invention that the addition of antimycin A to gefitinib (GR) overcame acquired resistance to gefitinib in PC9 lung adenocarcinoma cell lines. It was also evidenced that the pretreatment of antimycin A in NOD/SCID mice provided a significant efficacy in suppressing A549 tumorigenesis.
- In the invention, antimycin A was evidenced to have a high activity in inhibition of the growth of different cancer stem cells, including lung cancer cell line—A549 and liver cancer cell line—Huh7. However, antimycin A had almost no cell toxicity to normal cells including foreskins fibroblast cells and non-tumorigenic breast epithelial cells.
- In addition, the present invention provides a method for treating a cancer with a reduced resistance acquired by the administration of an anti-cancer agent, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula I (antimycin A) or a pharmaceutically acceptable salt thereof in combination of an administration of an anti-cancer agent. According to the present invention, the compound of formula I may be administered simultaneously or before the anti-cancer agent is administered.
- As used herein, the term “anti-cancer agent” refers to any agent that can treat or prevent a cancer or a tumor. In one example of the invention, the anti-cancer agent is gefitinib or erlotinib. Gefitinib or erlotinib is a small-molecule tyrosine kinase inhibitor (TKI) which inhibits EGFR phosphorylation and thus the activation of receptor tyrosine kinase (in the case of lung cancer, EGFR).
- It was also evidenced in the present invention that antimycin A provided an efficacy in downregulating Wnt/β-caterin pathway. Wnt/β-caterin pathway also known as Wnt/β-caterin signalling pathway, which a network of β-caterin known for their roles in cancer. Wnt signaling in the dorsal region of the neural tube also controls the expression of a transcription factor Gli3, one of the main inhibitors of the Shh/Gli pathway, and it is by signaling through the Wnt/β-catenin pathway that Wnt is able to activate and control the expression of the Gli3 transcription factor to repress transcriptional activity of Shh/Gli in the dorsal region of the neural tube and elicit dorsal cell fates.
- The present invention is further illustrated by the following example, which is provided for the purpose of demonstration rather than limitation.
- Antimycin A, derived from Streptomyces sp., is an inhibitor of electron transport chain at mitochondrial complex III. This inhibition results in an elevation in the production of ROS, thereby causing damage to mitochondrial DNA, lipids and proteins, collapse of the mitochondrial membrane potential, which opens up the mitochondrial permeability transition pores, leading to release of pro-apoptotic proteins into the cytoplasm, thereby inducing apoptosis. Therefore, antimycin A is broadly employed to simulate cellular degenerative conditions in vitro.
- In the present invention, the anti-proliferative effects of antimycin A were assessed on human cancer cell lines, using the MTT assay, with normal HUVEC and MLF cells as controls. As shown in
FIGS. 1 A & B, growth of all of the cancer cells tested was inhibited in a concentration-dependent manner by antimycin A. The estimated IC50 determined for antimycin A in these cancer cell lines ranged from 0.6˜4.5 μM, particularly in conditions where an antimycin A concentration of 0.6 μM significantly inhibited the A549 cell growth. Interestingly, antimycin A had little anti-proliferative effect on normal HUVEC and MLF cells (seeFIGS. 1C & D). Therefore, we tested the effects of antimycin A on liver and lung cancer stem-like SP cells. As shown inFIG. 1E , antimycin A treatment reduced the Huh7 cells numbers in the SP fraction dose-dependently, the percentage of SP cells was significantly decreased from 1.69% to 0.08% by 1 μM. Similar results were obtained using lung cancer stem-like SP cells (FIG. 1F ). The results indicate the antimycin A suppressed Hoechst 33342 export by inhibiting transporters highly expressed on SP cells. - Preparation, Isolation, Culturing and Sorting the Target Cancer Stem Cells
- Freezing and thawing cultured cells Remove vial of frozen cells from the nitrogen freezer and transfer to a 37° C. heat block (or the incubator) to thaw (thawing generally takes only 1-2 minutes). Clean outside of tube with alcohol before opening. Although you can spin down the thawed cells, resuspend them, and add thawed cells to ˜20 ml of chilled fresh medium.
- A549 and PC9 cells were grown in monolayer cell culture and maintained in DMEM medium (supplemented with 10% fetal bovine serum and 1 mM sodium pyruvate) in a humidified atmosphere with 5% CO2 at 37° C. Cells were grown in polystyrene-coated T75 (75 cm2) cell culture flasks, and were harvested in logarithmic phase of growth. The cells were maintained at the above-mentioned culture conditions for all experiments.
- To examine the existence of cancer stem cells in hepatocellular carcinoma cancer cell lines, the stem-like side population (SP) cells will be isolated by flow cytometry and cell sorting techniques. SP cells that express ATP-binding cassette (ABC) transporters (ABCG2) and Hoechst 33342 efflux activity will be sorted by FACS Aria III system.
- A549 side population cells possess higher clonogenicity and express stem cell markers. We first identified and isolated side population (SP) cells from A549 lung cancer cell line using Hoechst 33342 DNA binding dye and verapamil (
FIG. 2A ). The isolated SP cells were cultured for further characterization. It was found that mRNA transcripts used for demonstrating the “sternness” of cancer stem cells namely ABCG2, CD133 and β-catenin were significantly higher in SP cells than that in non-SP counterparts (FIG. 2B ). When cultured and assayed for clonogenicity, SP cells exhibited a significantly heightened ability in forming colonies when comparing to non-SP counterparts (FIG. 2C ). Importantly, SP cells, when cultured in stem cell medium, appeared to form tumor spheroids while non-SP lacked this ability (FIG. 2D ). Collectively, SP cells isolated from A549 lung cancer cell line demonstrated a spectrum of stem cell characteristics described above. - Antimycin A was dissolved in DMSO at a concentration of 10 mM and was stored in a dark-colored bottle at −20° C. as a stock solution. The stock was diluted to the required concentration with serum-free medium immediately before use. Before treatment with antimycin A, the medium was removed when cells were about 70% confluent, the cells were starved overnight in serum-free medium and then exposed to antimycin A at different concentrations (0-10 μM) and for different periods of time (0-48 h).
- Assessment of the Growth of Lung Cancer Stem Cells Following Antimycin A Treatment
- MTT dye was used to test the effects of antimycin A on cell growth and viability of lung cancer sphere cells. Antimycin A was dissolved in DMSO at 10 mM as a stock solution before diluting with growth medium to a final DMSO concentration of <0.05%. The cancer cells were seeded into 96 well plates in growth medium at 2000 cells/well. After 16-20 hours cells were treated with antimycin A which was previously diluted to required concentrations with growth medium. The cells were incubated for another 72 hours. Fifty μl of MTT (2 mg/ml) was gently added to each well with subsequent incubation for 2 hour at 37° C. For each well, 180 μl of media was carefully removed to not to disturb cells. And 180 μl DMSO was then added into the well followed by pipetting to completely dissolve the MTT formazan crystals. Plate was read within 30 minutes at absorbance at 570 nm with a reference filter of 660 nm by spectrophotometer.
- Antimycin A was found to exhibit anti-transforming ability against A549 tumor spheroids. A549 SP cells, seeded in suspension and treated with different concentrations of antimycin A ranging from 0 to 10 μM, exhibited suppressed ability in forming tumor spheroids in a dose-dependent manner (
FIG. 3 ). - The antimycin A mediated its effects on SP cells by disrupting different signalling pathways including β-catenin/TCF-4, NF-κB and cyclin D1 (
FIG. 4A ). In addition, the antimycin A treatment significantly decreased CD133 expression (from 65.7% down to 21.7%,FIGS. 4B and 4C ) in A549 SP cells both on the cell surface and at the transcriptional level. - Addition of antimycin A to gefitinib (GR) overcomes acquired resistance to gefitinib in PC9 lung adenocarcinoma cell lines.
- PC-9/GR cells were grown in the presence of gefitinib (G), antimycin (A) and both (G+A) drugs. The addition of antimycin A sensitized gefitinib-resistant PC-9 cells towards treatment (
FIG. 5 ). As demonstrated by the micrographs taken from different treatment groups, group with both drugs (A+G) appeared to contain the least number of colonies as compared to the control (C), gefitinib only (G) and antimycin A only (A). The quantitative data were represented in bar graph (lower panel,FIG. 5 ). The data indicated that antimycin A could overcome gefitinib resistance effectively. - Antimycin A reduced the cell number in the cancer stem-like SP cells
- To further demonstrate antimycin A's ability in overcoming drug resistance, PC-9/GR (gefitinib-resistant PC-9 cells) were subjected to SP analysis. PC-9/GR cells contained approximately 4.3% SP cells. When treated with antimycin A (5 and 10 μM), the percentage of SP cells significantly decreased, indicating antimycin A could overcome gefitinib resistance (
FIG. 6 ). SP cells from other cell lines including PC9 and A549 were also examined and similar results were obtained. - Pretreatment of antimycin A in NOD/SCID mice significantly suppresses A549 tumorigenesis
- Tumor initiating ability is one of the most important hallmarks of cancer stem cells. Therefore, it was further explored the anti-cancer stem cell ability of antimycin A using immune compromised mouse xenograft model. A549-Luc cells were intravenously injected into NOD/SCDI mice and allowed for tumor to develop. One week post injection, lung tumor burden was quantitatively measured and sorted based on the bioluminescence intensity. Mice exhibited approximately equal bioluminescence intensity were grouped. The animals were divided into two groups, one receiving i.p. injection of antimycin A and the other with vehicle control. The bioluminescence intensity of the lung tumor burden was monitored on weekly basis. Antimycin A treatment appeared to suppress tumor growth as compared to the vehicle control group (
FIG. 7 bottom panels). Tumor burden changes were represented by the fold change in bioluminescence intensity (FIG. 7 upper panel). This data indicated that antimycin A reduced tumor initiating ability of A549 cells in vivo. - It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.
Claims (10)
2. The method of claim 1 , wherein the cancer stem cells are colorectal cancer stem cells, liver cancer stem cells, lung cancer stem cells or breast cancer stem cells.
3. The method of claim 1 , wherein the cancer stem-like side population (SP) cells are colorectal cancer stem-like side population (SP) cells, liver cancer stem-like side population (SP) cells, lung cancer stem-like side population (SP) cells or breast cancer stem-like side population (SP) cells.
4. The method of claim 1 , wherein the cancer is lung cancer.
5. A method for treating a cancer with a reduced resistance acquired by the administration of an anti-cancer agent, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula I (antimycin A) or a pharmaceutically acceptable salt thereof,
in combination of an administration of an anti-cancer agent.
6. The method of claim 5 , the anti-cancer agent is gefitinib or erlotinib.
7. The method of claim 5 , wherein the compound of formula I is administered simultaneously or before the anti-cancer agent is administered.
9. The method of claim 8 , the compound of formula I (antimycin A) or a pharmaceutically acceptable salt thereof is administered in combination with an anti-cancer agent.
10. The method of claim 9 , the anti-cancer agent is gefitinib or erlotinib.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/158,783 US20120316164A1 (en) | 2011-06-13 | 2011-06-13 | Method for inhibiting the growth of cancer stem cells |
| US14/058,066 US9138422B2 (en) | 2011-06-13 | 2013-10-18 | Method of using antimycin A to downregulate Wnt/b-catenin pathway to treat gefitinib resistant cancer |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/158,783 US20120316164A1 (en) | 2011-06-13 | 2011-06-13 | Method for inhibiting the growth of cancer stem cells |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/058,066 Division US9138422B2 (en) | 2011-06-13 | 2013-10-18 | Method of using antimycin A to downregulate Wnt/b-catenin pathway to treat gefitinib resistant cancer |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120316164A1 true US20120316164A1 (en) | 2012-12-13 |
Family
ID=47293672
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/158,783 Abandoned US20120316164A1 (en) | 2011-06-13 | 2011-06-13 | Method for inhibiting the growth of cancer stem cells |
| US14/058,066 Expired - Fee Related US9138422B2 (en) | 2011-06-13 | 2013-10-18 | Method of using antimycin A to downregulate Wnt/b-catenin pathway to treat gefitinib resistant cancer |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/058,066 Expired - Fee Related US9138422B2 (en) | 2011-06-13 | 2013-10-18 | Method of using antimycin A to downregulate Wnt/b-catenin pathway to treat gefitinib resistant cancer |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US20120316164A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020242376A1 (en) * | 2019-05-28 | 2020-12-03 | Agency For Science, Technology And Research | Method of treating a sall4-expressing cancer |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9937226B2 (en) * | 2014-12-29 | 2018-04-10 | Mycomagic Biotechnology Co., Ltd. | Use of immunomodulatory protein from ganoderma in inhibiting cancer stem cells |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070072828A1 (en) * | 1998-07-24 | 2007-03-29 | Yoo Seo H | Bile preparations for colorectal disorders |
| US20050239873A1 (en) * | 1999-08-20 | 2005-10-27 | Fred Hutchinson Cancer Research Center | 2 Methoxy antimycin a derivatives and methods of use |
-
2011
- 2011-06-13 US US13/158,783 patent/US20120316164A1/en not_active Abandoned
-
2013
- 2013-10-18 US US14/058,066 patent/US9138422B2/en not_active Expired - Fee Related
Non-Patent Citations (2)
| Title |
|---|
| Frank et al. The therapeutic promise of the cancer stem cell concept. The Journal of Clinical Investigation, Vol. 120, No. 1, January 2010. * |
| Gupta et al. Cancer stem cells: mirage or reality? Nature Medicine, Vol. 15, No. 9, September 2009. * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020242376A1 (en) * | 2019-05-28 | 2020-12-03 | Agency For Science, Technology And Research | Method of treating a sall4-expressing cancer |
Also Published As
| Publication number | Publication date |
|---|---|
| US9138422B2 (en) | 2015-09-22 |
| US20140045841A1 (en) | 2014-02-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Toh et al. | Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/β-catenin-driven hepatocellular carcinoma | |
| Jang et al. | Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression | |
| KR101937279B1 (en) | Treatment of solid tumours | |
| Wen et al. | Cuproptosis enhances docetaxel chemosensitivity by inhibiting autophagy via the DLAT/mTOR pathway in prostate cancer | |
| US11234968B2 (en) | Use of VCP inhibitor and oncolytic virus in the preparation of an anti-tumor drug | |
| KR20120088665A (en) | Treatment of brain metastases with inhibitors of endothelin receptors in combination with a cytotoxic chemotherapy agent | |
| Xu et al. | Mitochondrial superoxide contributes to oxidative stress exacerbated by DNA damage response in RAD51-depleted ovarian cancer cells | |
| Yang et al. | 6-Phosphofructo-2-kinase/fructose-2, 6-biphosphatase-2 regulates TP53-dependent paclitaxel sensitivity in ovarian and breast cancers | |
| Song et al. | Magnolin targeting of ERK1/2 inhibits cell proliferation and colony growth by induction of cellular senescence in ovarian cancer cells | |
| CN112494467A (en) | Application of vanillin in preparation of nicotinamide-N-methyltransferase inhibitor | |
| Hu et al. | Huaier aqueous extract sensitizes cells to rapamycin and cisplatin through activating mTOR signaling | |
| Liu et al. | Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer | |
| Lu et al. | Anti-colon cancer effects of Spirulina polysaccharide and its mechanism based on 3D models | |
| Tang et al. | Chemical profiling and investigation of molecular mechanisms underlying anti-hepatocellular carcinoma activity of extracts from Polygonum perfoliatum L. | |
| Ali et al. | Microvesicles mediate sorafenib resistance in liver cancer cells through attenuating p53 and enhancing FOXM1 expression | |
| US9138422B2 (en) | Method of using antimycin A to downregulate Wnt/b-catenin pathway to treat gefitinib resistant cancer | |
| US20220211728A1 (en) | Alkyl-tpp compounds for mitochondria targeting and anti-cancer treatments | |
| US9745578B2 (en) | Targeting microRNA miR-409-3P to treat prostate cancer | |
| Ye et al. | Synergistic action of Hedyotis diffusa Willd and Andrographis paniculata in Nasopharyngeal Carcinoma: Downregulating AKT1 and upregulating VEGFA to curb tumorigenesis | |
| Xiang et al. | Gene and protein expression in the oxaliplatin-resistant HT29/L-OHP human colon cancer cell line | |
| EP3223840A1 (en) | Titled extracts of cynara scolymus and uses thereof | |
| Yang et al. | Limonin suppresses the progression of oral tongue squamous cell carcinoma via inhibiting YAP transcriptional regulatory activity | |
| Choi et al. | Niclosamide extends health span and reduces frailty by ameliorating mTORC1 hyperactivation in aging models | |
| Liu et al. | 4′-Demethylpodophyllotoxin functions as a mechanism-driven therapy by targeting the PI3K-AKT pathway in Colorectal cancer | |
| Zhu et al. | Erianin inhibits the proliferation and stemness of pancreatic cancer cells by interacting with MEK1/2 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |