US20120309830A1 - Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions - Google Patents
Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions Download PDFInfo
- Publication number
- US20120309830A1 US20120309830A1 US13/306,298 US201113306298A US2012309830A1 US 20120309830 A1 US20120309830 A1 US 20120309830A1 US 201113306298 A US201113306298 A US 201113306298A US 2012309830 A1 US2012309830 A1 US 2012309830A1
- Authority
- US
- United States
- Prior art keywords
- composition
- fatty acid
- compositions
- acid
- mixtures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 369
- 235000014113 dietary fatty acids Nutrition 0.000 title claims abstract description 94
- 239000000194 fatty acid Substances 0.000 title claims abstract description 94
- 229930195729 fatty acid Natural products 0.000 title claims abstract description 94
- 150000004665 fatty acids Chemical class 0.000 title claims abstract description 93
- 230000000749 insecticidal effect Effects 0.000 title claims abstract description 18
- 239000000344 soap Substances 0.000 title abstract description 34
- 230000000845 anti-microbial effect Effects 0.000 title abstract description 11
- 238000004140 cleaning Methods 0.000 title description 9
- 238000000034 method Methods 0.000 claims abstract description 49
- 239000002689 soil Substances 0.000 claims abstract description 26
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims abstract description 13
- 235000013305 food Nutrition 0.000 claims description 41
- 239000000872 buffer Substances 0.000 claims description 34
- 239000002917 insecticide Substances 0.000 claims description 30
- 239000004615 ingredient Substances 0.000 claims description 26
- 241000238631 Hexapoda Species 0.000 claims description 24
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 21
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 21
- 239000002562 thickening agent Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 claims description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- 229920001285 xanthan gum Polymers 0.000 claims description 12
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 claims description 11
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 claims description 10
- HVGZQCSMLUDISR-UHFFFAOYSA-N 2-Phenylethyl propanoate Chemical compound CCC(=O)OCCC1=CC=CC=C1 HVGZQCSMLUDISR-UHFFFAOYSA-N 0.000 claims description 10
- 239000000230 xanthan gum Substances 0.000 claims description 10
- 235000010493 xanthan gum Nutrition 0.000 claims description 10
- 229940082509 xanthan gum Drugs 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 244000005700 microbiome Species 0.000 claims description 8
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 claims description 8
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 5
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical group [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 5
- 150000001412 amines Chemical class 0.000 claims description 5
- 239000002585 base Substances 0.000 claims description 5
- AWQSAIIDOMEEOD-UHFFFAOYSA-N 5,5-Dimethyl-4-(3-oxobutyl)dihydro-2(3H)-furanone Chemical compound CC(=O)CCC1CC(=O)OC1(C)C AWQSAIIDOMEEOD-UHFFFAOYSA-N 0.000 claims description 4
- 239000005995 Aluminium silicate Substances 0.000 claims description 4
- 229920002907 Guar gum Polymers 0.000 claims description 4
- 239000005639 Lauric acid Substances 0.000 claims description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- 108010073771 Soybean Proteins Proteins 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 claims description 4
- 235000012211 aluminium silicate Nutrition 0.000 claims description 4
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 claims description 4
- 239000006172 buffering agent Substances 0.000 claims description 4
- 239000001913 cellulose Substances 0.000 claims description 4
- 229920002678 cellulose Polymers 0.000 claims description 4
- 239000004927 clay Substances 0.000 claims description 4
- 239000000665 guar gum Substances 0.000 claims description 4
- 235000010417 guar gum Nutrition 0.000 claims description 4
- 229960002154 guar gum Drugs 0.000 claims description 4
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 4
- CXHHBNMLPJOKQD-UHFFFAOYSA-N methyl hydrogen carbonate Chemical compound COC(O)=O CXHHBNMLPJOKQD-UHFFFAOYSA-N 0.000 claims description 4
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 4
- 229940001941 soy protein Drugs 0.000 claims description 4
- 239000000341 volatile oil Substances 0.000 claims description 4
- 230000003472 neutralizing effect Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 13
- 238000012360 testing method Methods 0.000 description 81
- 230000009467 reduction Effects 0.000 description 26
- 241000196324 Embryophyta Species 0.000 description 20
- 239000000126 substance Substances 0.000 description 20
- 241000191967 Staphylococcus aureus Species 0.000 description 18
- 239000000645 desinfectant Substances 0.000 description 17
- 241000588724 Escherichia coli Species 0.000 description 15
- 235000013594 poultry meat Nutrition 0.000 description 15
- 238000012545 processing Methods 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 238000010790 dilution Methods 0.000 description 14
- 239000012895 dilution Substances 0.000 description 14
- 239000002054 inoculum Substances 0.000 description 14
- 241000257303 Hymenoptera Species 0.000 description 13
- -1 etc.) Chemical group 0.000 description 13
- 244000144977 poultry Species 0.000 description 13
- 239000007921 spray Substances 0.000 description 13
- 238000011012 sanitization Methods 0.000 description 11
- 125000000217 alkyl group Chemical group 0.000 description 10
- 239000001509 sodium citrate Substances 0.000 description 10
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 9
- 230000002070 germicidal effect Effects 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- 239000000969 carrier Substances 0.000 description 8
- 235000013601 eggs Nutrition 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 235000013372 meat Nutrition 0.000 description 8
- 230000000813 microbial effect Effects 0.000 description 8
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 8
- 239000008234 soft water Substances 0.000 description 8
- 241001674044 Blattodea Species 0.000 description 7
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 7
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000009736 wetting Methods 0.000 description 7
- 206010004194 Bed bug infestation Diseases 0.000 description 6
- 241001414835 Cimicidae Species 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 241000257226 Muscidae Species 0.000 description 6
- 241000589516 Pseudomonas Species 0.000 description 6
- 241000255588 Tephritidae Species 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 6
- 239000000575 pesticide Substances 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 241000239290 Araneae Species 0.000 description 5
- 241001103617 Pseudomonas aeruginosa ATCC 15442 Species 0.000 description 5
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 5
- 235000013361 beverage Nutrition 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 235000015165 citric acid Nutrition 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 125000000623 heterocyclic group Chemical group 0.000 description 5
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- 241000191940 Staphylococcus Species 0.000 description 4
- 239000004599 antimicrobial Substances 0.000 description 4
- 239000005667 attractant Substances 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 239000004088 foaming agent Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000003197 gene knockdown Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000008204 material by function Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 210000003491 skin Anatomy 0.000 description 4
- 239000004753 textile Substances 0.000 description 4
- 239000003643 water by type Substances 0.000 description 4
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- AILDTIZEPVHXBF-UHFFFAOYSA-N Argentine Natural products C1C(C2)C3=CC=CC(=O)N3CC1CN2C(=O)N1CC(C=2N(C(=O)C=CC=2)C2)CC2C1 AILDTIZEPVHXBF-UHFFFAOYSA-N 0.000 description 3
- 241000271566 Aves Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 244000308495 Potentilla anserina Species 0.000 description 3
- 235000016594 Potentilla anserina Nutrition 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 235000005687 corn oil Nutrition 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 235000012055 fruits and vegetables Nutrition 0.000 description 3
- 239000003906 humectant Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229940049964 oleate Drugs 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000004302 potassium sorbate Substances 0.000 description 3
- 235000010241 potassium sorbate Nutrition 0.000 description 3
- 229940069338 potassium sorbate Drugs 0.000 description 3
- 230000002335 preservative effect Effects 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 125000000547 substituted alkyl group Chemical group 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- KDSNLYIMUZNERS-UHFFFAOYSA-N 2-methylpropanamine Chemical compound CC(C)CN KDSNLYIMUZNERS-UHFFFAOYSA-N 0.000 description 2
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- XPCTZQVDEJYUGT-UHFFFAOYSA-N 3-hydroxy-2-methyl-4-pyrone Chemical compound CC=1OC=CC(=O)C=1O XPCTZQVDEJYUGT-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000238657 Blattella germanica Species 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 241000238866 Latrodectus mactans Species 0.000 description 2
- 235000006679 Mentha X verticillata Nutrition 0.000 description 2
- 235000002899 Mentha suaveolens Nutrition 0.000 description 2
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 241000286209 Phasianidae Species 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000005779 cell damage Effects 0.000 description 2
- 208000037887 cell injury Diseases 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000031902 chemoattractant activity Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 235000019688 fish Nutrition 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 235000013373 food additive Nutrition 0.000 description 2
- 239000002778 food additive Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 235000020993 ground meat Nutrition 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000004668 long chain fatty acids Chemical class 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 2
- 230000003641 microbiacidal effect Effects 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 150000002924 oxiranes Chemical class 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 235000019477 peppermint oil Nutrition 0.000 description 2
- 239000003016 pheromone Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 229940096992 potassium oleate Drugs 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 235000014102 seafood Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 210000004215 spore Anatomy 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- UPNNXUSUOSTIIM-UHFFFAOYSA-N 1,2-dithietane Chemical compound C1CSS1 UPNNXUSUOSTIIM-UHFFFAOYSA-N 0.000 description 1
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- JKTCBAGSMQIFNL-UHFFFAOYSA-N 2,3-dihydrofuran Chemical compound C1CC=CO1 JKTCBAGSMQIFNL-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- RSEBUVRVKCANEP-UHFFFAOYSA-N 2-pyrroline Chemical compound C1CC=CN1 RSEBUVRVKCANEP-UHFFFAOYSA-N 0.000 description 1
- 240000002234 Allium sativum Species 0.000 description 1
- 241000272525 Anas platyrhynchos Species 0.000 description 1
- 241000272814 Anser sp. Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 241000193755 Bacillus cereus Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000237519 Bivalvia Species 0.000 description 1
- 241000238660 Blattidae Species 0.000 description 1
- 241000434587 Burkholderia cepacia ATCC 25416 Species 0.000 description 1
- UMBYUNWPHRAFBW-UHFFFAOYSA-M C(CC)(=O)O.C(C=CC=CC)(=O)[O-].[K+] Chemical compound C(CC)(=O)O.C(C=CC=CC)(=O)[O-].[K+] UMBYUNWPHRAFBW-UHFFFAOYSA-M 0.000 description 1
- 208000003643 Callosities Diseases 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 241000131329 Carabidae Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 241000238424 Crustacea Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 235000019542 Cured Meats Nutrition 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- 244000166675 Cymbopogon nardus Species 0.000 description 1
- 235000018791 Cymbopogon nardus Nutrition 0.000 description 1
- BVTJGGGYKAMDBN-UHFFFAOYSA-N Dioxetane Chemical compound C1COO1 BVTJGGGYKAMDBN-UHFFFAOYSA-N 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 241000271571 Dromaius novaehollandiae Species 0.000 description 1
- 239000004278 EU approved seasoning Substances 0.000 description 1
- 241000588914 Enterobacter Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 241000237858 Gastropoda Species 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 206010061217 Infestation Diseases 0.000 description 1
- 229920003266 Leaf® Polymers 0.000 description 1
- HYMLWHLQFGRFIY-UHFFFAOYSA-N Maltol Natural products CC1OC=CC(=O)C1=O HYMLWHLQFGRFIY-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 241000272458 Numididae Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000238675 Periplaneta americana Species 0.000 description 1
- 244000203593 Piper nigrum Species 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- 244000178231 Rosmarinus officinalis Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000040738 Sesamum orientale Species 0.000 description 1
- 239000000877 Sex Attractant Substances 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 241000272534 Struthio camelus Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 244000223014 Syzygium aromaticum Species 0.000 description 1
- 235000016639 Syzygium aromaticum Nutrition 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 235000007303 Thymus vulgaris Nutrition 0.000 description 1
- 240000002657 Thymus vulgaris Species 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 244000250129 Trigonella foenum graecum Species 0.000 description 1
- 235000001484 Trigonella foenum graecum Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 241000726445 Viroids Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- MRGQSEDSFXMWBF-UHFFFAOYSA-N [K].[K].[K].[K] Chemical compound [K].[K].[K].[K] MRGQSEDSFXMWBF-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000005194 alkoxycarbonyloxy group Chemical group 0.000 description 1
- 125000004457 alkyl amino carbonyl group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000004947 alkyl aryl amino group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000003806 alkyl carbonyl amino group Chemical group 0.000 description 1
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 1
- 125000005196 alkyl carbonyloxy group Chemical group 0.000 description 1
- 125000004644 alkyl sulfinyl group Chemical group 0.000 description 1
- 125000004691 alkyl thio carbonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 1
- 239000010868 animal carcass Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 125000004658 aryl carbonyl amino group Chemical group 0.000 description 1
- 125000005129 aryl carbonyl group Chemical group 0.000 description 1
- 125000005199 aryl carbonyloxy group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000005200 aryloxy carbonyloxy group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 238000009455 aseptic packaging Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- HONIICLYMWZJFZ-UHFFFAOYSA-N azetidine Chemical compound C1CNC1 HONIICLYMWZJFZ-UHFFFAOYSA-N 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 210000004666 bacterial spore Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000013614 black pepper Nutrition 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 238000009924 canning Methods 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000010627 cedar oil Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 239000010630 cinnamon oil Substances 0.000 description 1
- 239000010632 citronella oil Substances 0.000 description 1
- 235000020639 clam Nutrition 0.000 description 1
- 239000010634 clove oil Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 230000009193 crawling Effects 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000006448 cycloalkyl cycloalkyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 239000001941 cymbopogon citratus dc and cymbopogon flexuosus oil Substances 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 125000004473 dialkylaminocarbonyl group Chemical group 0.000 description 1
- 125000004986 diarylamino group Chemical group 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- ASQQEOXYFGEFKQ-UHFFFAOYSA-N dioxirane Chemical compound C1OO1 ASQQEOXYFGEFKQ-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- CTGHONDBXRRMRC-UHFFFAOYSA-N dithiete Chemical compound C1=CSS1 CTGHONDBXRRMRC-UHFFFAOYSA-N 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000005003 food packaging material Substances 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 235000013611 frozen food Nutrition 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 239000010647 garlic oil Substances 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 239000010648 geranium oil Substances 0.000 description 1
- 235000019717 geranium oil Nutrition 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229940060367 inert ingredients Drugs 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 241000238565 lobster Species 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229940043353 maltol Drugs 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 235000013622 meat product Nutrition 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000001931 piper nigrum l. white Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- MLICVSDCCDDWMD-KVVVOXFISA-M potassium;(z)-octadec-9-enoate Chemical compound [K+].CCCCCCCC\C=C/CCCCCCCC([O-])=O MLICVSDCCDDWMD-KVVVOXFISA-M 0.000 description 1
- QDIGBJJRWUZARS-UHFFFAOYSA-M potassium;decanoate Chemical compound [K+].CCCCCCCCCC([O-])=O QDIGBJJRWUZARS-UHFFFAOYSA-M 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 235000020991 processed meat Nutrition 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- ZVJHJDDKYZXRJI-UHFFFAOYSA-N pyrroline Natural products C1CC=NC1 ZVJHJDDKYZXRJI-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 235000021487 ready-to-eat food Nutrition 0.000 description 1
- 235000020989 red meat Nutrition 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000003128 rodenticide Substances 0.000 description 1
- 239000010668 rosemary oil Substances 0.000 description 1
- 229940058206 rosemary oil Drugs 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 229940071207 sesquicarbonate Drugs 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009295 sperm incapacitation Effects 0.000 description 1
- 230000003330 sporicidal effect Effects 0.000 description 1
- 239000002422 sporicide Substances 0.000 description 1
- 125000005480 straight-chain fatty acid group Chemical group 0.000 description 1
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- XSROQCDVUIHRSI-UHFFFAOYSA-N thietane Chemical compound C1CSC1 XSROQCDVUIHRSI-UHFFFAOYSA-N 0.000 description 1
- VOVUARRWDCVURC-UHFFFAOYSA-N thiirane Chemical compound C1CS1 VOVUARRWDCVURC-UHFFFAOYSA-N 0.000 description 1
- 150000003553 thiiranes Chemical class 0.000 description 1
- 239000010678 thyme oil Substances 0.000 description 1
- 239000001585 thymus vulgaris Substances 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 235000001019 trigonella foenum-graecum Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 235000016804 zinc Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/02—Saturated carboxylic acids or thio analogues thereof; Derivatives thereof
Definitions
- the present disclosure relates generally to fatty acid soap/fatty acid based compositions, and methods of use thereof.
- the disclosure relates to a C4 to C12 fatty acid soap/fatty acid based composition.
- the disclosure also includes methods of using these compositions.
- insects can quickly infest enclosed structures, such as restaurants and homes.
- enclosed structures such as restaurants and homes.
- insects which can infest areas in and around enclosed structures include, for example, cockroaches, ants, fruit flies, houseflies, bed bugs, ground beetles and spiders.
- cockroaches ants
- fruit flies houseflies
- bed bugs ground beetles
- spiders ground beetles
- some of these insects can also bring pathogens into the restaurant or home, creating unsanitary eating and living conditions.
- insecticidal compositions have aided in decreasing the infestation of insects in and around residential and commercial structures.
- Various types of insecticidal compositions and methods of repelling or terminating crawling pests are currently available, including gel baits, glue pads and poisons.
- compositions and methods of use thereof may comprise, consist of, or consist essentially of the listed ingredients or steps.
- compositions and methods may comprise, consist of, or consist essentially of the listed ingredients or steps.
- consisting essentially of shall be construed to mean including the listed ingredients or steps and such additional ingredients or steps which do not materially affect the basic and novel properties of the composition or method.
- the present invention relates to an insecticidal composition
- a fatty acid comprising a neutralizer, a buffer, and a carrier.
- the pH of the composition is from about 7.5 to about 9.0.
- the fatty acid comprises a branched or straight chain C5 to C12 fatty acid.
- the fatty acid is selected from the group consisting of hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid and mixtures thereof.
- the neutralizer comprises an alkali metal hydroxide.
- the alkali metal hydroxide may be selected from the group consisting of sodium hydroxide, potassium hydroxide, and mixtures thereof.
- the neutralizer is selected from an amine, an alkanolamine, and mixtures thereof.
- the buffer is selected from a weak acid, a weak base, an amphoteric buffering agent, an ampholyte buffering agent, and mixtures thereof.
- the buffer may be selected from citrate, citric acid, a bicarbonate, and mixtures thereof.
- the carrier comprises water.
- the composition comprises about 1.0 wt % to about 10 wt % of the fatty acid; about 1.0 wt % to about 10 wt % of the neutralizer; about 0.1 to about 1.0% of the buffer; and at least about 80 wt % of the carrier.
- the compositions further comprise a thickening agent.
- the thickening agent can be a polymeric or surfactant thickening agent.
- the thickening agent comprises xanthan gum, guar gum, polyethylene oxide, polyvinyl pyrrolidone, polyvinyl alcohol, clay thickener, betonite, carboxylmethyl ether cellulose, kaolin, soy protein and mixtures thereof.
- compositions further comprise an additional ingredient selected from an essential oil, 2-phenyl ethyl propionate, a residual insecticide, and mixtures thereof.
- pH of the compositions is about 8.0 to about 8.5.
- the fatty acid comprises decanoic acid
- the neutralizing agent comprises potassium hydroxide
- the present invention relates to methods for eliminating insects.
- the methods comprise applying to the insects or an area inhabited by the insects an insecticidal composition.
- the insecticidal compositions comprise a fatty acid; a neutralizer; a buffer; and a carrier, wherein the composition has a pH of about 7.5 to about 9.0.
- the present invention relates to methods of reducing a population of microorganism on an object.
- the methods comprise applying a composition comprising a fatty acid; a neutralizer; a buffer; and a carrier, to the object, wherein the composition has a pH of about 7.5 to about 9.0.
- the present invention relates to methods of removing a food soil from a surface.
- the methods comprise applying a composition comprising a fatty acid; a neutralizer; a buffer; and a carrier, to the surface, wherein the composition has a pH of about 7.5 to about 9.0.
- FIG. 1 is a graphical depiction of the effect of pH on the insecticidal efficacy of mixed fatty acid soap/fatty acid compositions.
- FIG. 2 is a graphical depiction of the effect of pH on the insecticidal efficacy of mixed fatty acid soap/fatty acid compositions.
- FIG. 3 is a graphical depiction of the effect of pH on the contact angle of mixed fatty acid soap/fatty acid compositions.
- FIG. 4 is a graphical depiction of the soil removal capabilities of mixed fatty acid soap/fatty acid compositions, and comparative compositions.
- FIG. 4 a is a graphical depiction of the soil removal capabilities of mixed fatty acid soap/fatty acid compositions, and comparative compositions on soil aged 24 hours.
- FIG. 5 is a graphical depiction of the effect of pH on the insecticidal efficacy of a long chain fatty acid soap/fatty acid mixed composition.
- FIG. 6 is a graphical depiction of the efficacy of various compositions against bed bugs.
- FIG. 7 is a graphical depiction of the average kill time of 90% (KT-90) of houseflies contacted with various compositions.
- FIG. 8 is a graphical depiction of the average kill time of 90% (KT-90) of fruit flies contacted with various compositions.
- FIG. 9A is a graphical depiction of the average percent (%) mortality of house ants thirty minutes post exposure to various compositions via direct spray.
- FIG. 9B is a graphical depiction of the average percent (%) mortality of pharaoh ants thirty minutes post exposure to various compositions via direct spray.
- FIG. 9C is a graphical depiction of the average percent (%) mortality of argentine ants thirty minutes post exposure to various compositions via direct spray.
- FIG. 10 is a graphical depiction of the average percent knock down of black widow spiders post exposure to various compositions via direct spray.
- the present disclosure relates to fatty acid soap/fatty acid compositions and methods of use thereof.
- the compositions have a variety of uses, for example, as insecticides, soil removers, and as disinfectants/sanitizers. When used at a pH of about 7.5 to about 9.0 the compositions are phase stable and provide improved insecticidal properties than compared to when used at higher pH levels.
- the compositions also show soil removal properties, e.g., food soil removal, and food contact sanitizing efficacies at this pH level.
- insecticidal/soil removal/antimicrobial effects of these compositions is due in part to a very surface active mixture of fatty acid soap/fatty acid, wherein the fatty acid is a minor component that results in improved packing, and improved surface activity.
- weight percent As used herein, “weight percent,” “wt-%,” “percent by weight,” “% by weight,” and variations thereof refer to the concentration of a substance as the weight of that substance divided by the total weight of the composition and multiplied by 100. It is understood that, as used here, “percent,” “%,” and the like are intended to be synonymous with “weight percent,” “wt-%,” etc.
- the term “about” refers to variation in the numerical quantity that can occur, for example, through typical measuring and liquid handling procedures used for making concentrates or use solutions in the real world; through inadvertent error in these procedures; through differences in the manufacture, source, or purity of the ingredients used to make the compositions or carry out the methods; and the like.
- the term “about” also encompasses amounts that differ due to different equilibrium conditions for a composition resulting from a particular initial mixture. Whether or not modified by the term “about”, the claims include equivalents to the quantities.
- the phrases “objectionable odor,” “offensive odor,” or “malodor,” refer to a sharp, pungent, or acrid odor or atmospheric environment from which a typical person withdraws if they are able to. Hedonic tone provides a measure of the degree to which an odor is pleasant or unpleasant. An “objectionable odor,” “offensive odor,” or “malodor” has a hedonic tone rating it as unpleasant as or more unpleasant than a solution of 5 wt-% acetic acid, propionic acid, butyric acid, or mixtures thereof.
- microorganism refers to any noncellular or unicellular (including colonial) organism. Microorganisms include all prokaryotes. Microorganisms include bacteria (including cyanobacteria), spores, lichens, fungi, protozoa, virinos, viroids, viruses, phages, and some algae. As used herein, the term “microbe” is synonymous with microorganism.
- food product includes any food substance that might require treatment with an antimicrobial agent or composition and that is edible with or without further preparation.
- Food products include meat (e.g. red meat and pork), seafood, poultry, produce (e.g., fruits and vegetables), eggs, living eggs, egg products, ready to eat food, wheat, seeds, roots, tubers, leafs, stems, corns, flowers, sprouts, seasonings, or a combination thereof.
- the term “produce” refers to food products such as fruits and vegetables and plants or plant-derived materials that are typically sold uncooked and, often, unpackaged, and that can sometimes be eaten raw.
- plant or “plant product” includes any plant substance or plant-derived substance.
- Plant products include, but are not limited to, seeds, nuts, nut meats, cut flowers, plants or crops grown or stored in a greenhouse, house plants, and the like. Plant products include many animal feeds.
- animal product refers to all forms of animal flesh, including the carcass, muscle, fat, organs, skin, bones and body fluids and like components that form the animal.
- Animal flesh includes, but is not limited to, the flesh of mammals, birds, fishes, reptiles, amphibians, snails, clams, crustaceans, other edible species such as lobster, crab, etc., or other forms of seafood.
- the forms of animal flesh include, for example, the whole or part of animal flesh, alone or in combination with other ingredients.
- Typical forms include, for example, processed meats such as cured meats, sectioned and formed products, minced products, finely chopped products, ground meat and products including ground meat, whole products, and the like.
- Poultry refers to all forms of any bird kept, harvested, or domesticated for meat or eggs, and including chicken, turkey, ostrich, game hen, squab, guinea fowl, pheasant, quail, duck, goose, emu, or the like and the eggs of these birds.
- Poultry includes whole, sectioned, processed, cooked or raw poultry, and encompasses all forms of poultry flesh, by-products, and side products.
- the flesh of poultry includes muscle, fat, organs, skin, bones and body fluids and like components that form the animal.
- Forms of animal flesh include, for example, the whole or part of animal flesh, alone or in combination with other ingredients.
- Typical forms include, for example, processed poultry meat, such as cured poultry meat, sectioned and formed products, minced products, finely chopped products and whole products.
- poultry debris refers to any debris, residue, material, dirt, offal, poultry part, poultry waste, poultry viscera, poultry organ, fragments or combinations of such materials, and the like removed from a poultry carcass or portion during processing and that enters a waste stream.
- food processing surface refers to a surface of a tool, a machine, equipment, a structure, a building, or the like that is employed as part of a food processing, preparation, or storage activity.
- food processing surfaces include surfaces of food processing or preparation equipment (e.g., slicing, canning, or transport equipment, including flumes), of food processing wares (e.g., utensils, dishware, wash ware, and bar glasses), and of floors, walls, or fixtures of structures in which food processing occurs.
- Food processing surfaces are found and employed in food anti-spoilage air circulation systems, aseptic packaging sanitizing, food refrigeration and cooler cleaners and sanitizers, ware washing sanitizing, blancher cleaning and sanitizing, food packaging materials, cutting board additives, third-sink sanitizing, beverage chillers and warmers, meat chilling or scalding waters, autodish sanitizers, sanitizing gels, cooling towers, food processing antimicrobial garment sprays, and non-to-low-aqueous food preparation lubricants, oils, and rinse additives.
- substantially free may refer to any component that the composition of the invention or a method incorporating the composition lacks or mostly lacks. When referring to “substantially free” it is intended that the component is not intentionally added to compositions of the invention. Use of the term “substantially free” of a component allows for trace amounts of that component to be included in compositions of the invention because they are present in another component. However, it is recognized that only trace or de minimus amounts of a component will be allowed when the composition is said to be “substantially free” of that component. Moreover, the term if a composition is said to be “substantially free” of a component, if the component is present in trace or de minimus amounts it is understood that it will not affect the effectiveness of the composition.
- the invention composition may be substantially free of that ingredient.
- the express inclusion of an ingredient allows for its express exclusion thereby allowing a composition to be substantially free of that expressly stated ingredient.
- successful microbial reduction is achieved when the microbial populations are reduced by at least about 50%, or by significantly more than is achieved by a wash with water. Larger reductions in microbial population provide greater levels of protection.
- sanitizer refers to an agent that reduces the number of bacterial contaminants to safe levels as judged by public health requirements.
- sanitizers for use in this invention will provide at least a 99.999% reduction (5-log order reduction). These reductions can be evaluated using a procedure set out in Germicidal and Detergent Sanitizing Action of Disinfectants , Official Methods of Analysis of the Association of Official Analytical Chemists, paragraph 960.09 and applicable sections, 15th Edition, 1990 (EPA Guideline 91-2). According to this reference a sanitizer should provide a 99.999% reduction (5-log order reduction) within 30 seconds at room temperature, 25 ⁇ 2° C., against several test organisms.
- the term “disinfectant” refers to an agent that kills all vegetative cells including most recognized pathogenic microorganisms, using the procedure described in A.O.A.C. Use Dilution Methods , Official Methods of Analysis of the Association of Official Analytical Chemists, paragraph 955.14 and applicable sections, 15th Edition, 1990 (EPA Guideline 91-2).
- the term “high level disinfection” or “high level disinfectant” refers to a compound or composition that kills substantially all organisms, except high levels of bacterial spores, and is effected with a chemical germicide cleared for marketing as a sterilant by the Food and Drug Administration.
- intermediate-level disinfection or “intermediate level disinfectant” refers to a compound or composition that kills mycobacteria, most viruses, and bacteria with a chemical germicide registered as a tuberculocide by the Environmental Protection Agency (EPA).
- low-level disinfection or “low level disinfectant” refers to a compound or composition that kills some viruses and bacteria with a chemical germicide registered as a hospital disinfectant by the EPA.
- the term “sporicide” refers to a physical or chemical agent or process having the ability to cause greater than a 90% reduction (1-log order reduction) in the population of spores of Bacillus cereus or Bacillus subtilis within 10 seconds at 60° C.
- the sporicidal compositions of the invention provide greater than a 99% reduction (2-log order reduction), greater than a 99.99% reduction (4-log order reduction), or greater than a 99.999% reduction (5-log order reduction) in such population within 10 seconds at 60° C.
- Antimicrobial compositions can affect two kinds of microbial cell damage. The first is a lethal, irreversible action resulting in complete microbial cell destruction or incapacitation. The second type of cell damage is reversible, such that if the organism is rendered free of the agent, it can again multiply.
- the former is termed microbiocidal and the later, microbistatic.
- a sanitizer and a disinfectant are, by definition, agents which provide antimicrobial or microbiocidal activity.
- a preservative is generally described as an inhibitor or microbistatic composition
- alkyl refers to saturated hydrocarbons having one or more carbon atoms, including straight-chain alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.), cyclic alkyl groups (or “cycloalkyl” or “alicyclic” or “carbocyclic” groups) (e.g., cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, etc.), branched-chain alkyl groups (e.g., isopropyl, tert-butyl, sec-butyl, isobutyl, etc.), and alkyl-substituted alkyl groups (e.g., alkyl-substituted
- alkyl includes both “unsubstituted alkyls” and “substituted alkyls.”
- substituted alkyls refers to alkyl groups having substituents replacing one or more hydrogens on one or more carbons of the hydrocarbon backbone.
- substituents may include, for example, alkenyl, alkynyl, halogeno, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate,
- substituted alkyls can include a heterocyclic group.
- heterocyclic group includes closed ring structures analogous to carbocyclic groups in which one or more of the carbon atoms in the ring is an element other than carbon, for example, nitrogen, sulfur or oxygen. Heterocyclic groups may be saturated or unsaturated.
- heterocyclic groups include, but are not limited to, aziridine, ethylene oxide (epoxides, oxiranes), thiirane (episulfides), dioxirane, azetidine, oxetane, thietane, dioxetane, dithietane, dithiete, azolidine, pyrrolidine, pyrroline, oxolane, dihydrofuran, and furan.
- aziridine ethylene oxide (epoxides, oxiranes), thiirane (episulfides), dioxirane, azetidine, oxetane, thietane, dioxetane, dithietane, dithiete, azolidine, pyrrolidine, pyrroline, oxolane, dihydrofuran, and furan.
- the compositions include a fatty acid soap/fatty acid mixture.
- the compositions include a fatty acid, a neutralizer, a buffer, and a carrier.
- the compositions can also include additional functional ingredients.
- the compositions can function as insecticides, food soil removal agents, and antimicrobial agents, among other uses.
- compositions include one or more fatty acid.
- fatty acid includes any of a group of carboxylic acids that include a long alkyl chain.
- the alkyl groups can be linear or branched, and saturated or unsaturated.
- the chain of alkyl groups contain from 4 to 12 carbon atoms, 5 to 11 carbon atoms, or 8 to 10 carbon atoms.
- a C4 to C12 branched or straight chain fatty acid is included in the compositions.
- the compositions are substantially free of, or free of, fatty acids with a chain length greater than C12.
- the compositions are free of, or substantially free of, C14 to C24 fatty acids.
- the fatty acid can be selected from hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid and mixtures thereof.
- two or more fatty acids can be used.
- a mixture of a C8 and a C10 fatty acid can be used.
- the fatty acid includes decanoic acid.
- Decanoic acid has the formula CH 3 (CH 2 ) 8 COOH, and is a saturated fatty acid.
- the fatty acid is present in the compositions at an amount of about 1.0 wt % to about 10 wt %, about 3 wt % to about 8 wt %, or about 5 to about 7 wt %. It is to be understood that all ranges and values between these ranges and values are encompassed by the present compositions.
- the compositions when used at a pH of between about 7.5 and about 9.0, or about 8.0 and about 8.5, the compositions have improved insecticidal, cleaning, and/or sanitizing properties, and are phase stable.
- phase separation occurs as there is more fatty acid present than can be coupled by the fatty acid soap present.
- higher pH levels e.g., a pH greater than about 9.0, it is thought that the level of fatty acid soap present will be too high. It is thought that this high level of fatty acid soap decreases the surface activity of the compositions, e.g., wetting ability of the compositions.
- the compositions include a neutralizer.
- the neutralizer can be included to neutralize a portion of the fatty acid, thereby forming a fatty acid soap.
- the neutralizer includes an alkali metal hydroxide, including but not limited to, sodium hydroxide, potassium hydroxide, and mixtures thereof.
- the neutralizer includes an amine or an alkanolamine.
- amines, or alkanolamines suitable for use with the present compositions include, but are not limited to, monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, monoisopropylamine, isopropylamine, n-propylamine, diethyleneamine, thriethylamine, n-butylamine, isobutylamine, cyclohexylamine, and mixtures thereof.
- the neutralizer is present in an amount effective to provide about 5 wt % to about 10 wt % of the fatty acid soap from the fatty acid.
- the neutralizer can be present in the compositions at an amount of about 1.0 wt % to about 10 wt %, about 3 wt % to about 8 wt %, or about 5 to about 7 wt %. It is to be understood that all ranges and values between these ranges and values are encompassed by the present compositions.
- the compositions include a buffer to stabilize the pH of the compositions.
- Suitable buffers include weak acids, weak bases, ampholytes and mixtures thereof.
- the buffer can include, but is not limited to, carbonates, bicarbonates, citric acid and citrate.
- carbonate includes, for example, sodium carbonate, potassium carbonate, sesquicarbonate, and mixtures thereof.
- bicarbonate includes, for example, sodium bicarbonate, potassium bicarbonate, and mixtures thereof.
- citrate includes, for example, sodium citrate, potassium citrate, and mixtures thereof.
- compositions can include about 0.1 wt % to about 10 wt %, about 0.5 wt % to about 5 wt %, or about 1 wt % of a buffer, or mixture of buffers. It is to be understood that all values and ranges between these values and ranges are encompassed by the compositions.
- the compositions also include a carrier.
- the carrier includes water.
- a water-soluble solvent such as alcohols and polyols, can be used as a carrier. These solvents may be used alone or with water.
- suitable alcohols include methanol, ethanol, propanol, butanol, and the like, as well as mixtures thereof.
- suitable polyols include glycerol, ethylene glycol, propylene glycol, diethylene glycol, and the like, as well as mixtures thereof.
- the carrier selected can depend on a variety of factors, including, but not limited to the desired functional properties of the compositions, and/or the intended use of the compositions.
- the compositions are not meant to be diluted, but are rather ready to use solutions.
- the compositions can include at least about 80 wt %, at least about 85 wt %, at least about 90 wt %, or at least about 95 wt % of a carrier. It is to be understood that all ranges and values between these ranges and values are included in the present compositions.
- compositions may also include additional components or agents, such as additional functional ingredients.
- the functional materials provide desired properties and functionalities to the compositions.
- the term “functional materials” includes a material that when dispersed or dissolved in a use and/or concentrate solution, such as an aqueous solution, provides a beneficial property in a particular use.
- compositions may also include a thickening agent.
- Thickening agents can be added to the compositions to reduce the misting of the compositions.
- Thickening agents suitable for use in the present compositions include, but are not limited to, xanthan gum, guar gum, polyethylene oxide, polyvinyl pyrrolidone, polyvinyl alcohol, clay thickener, betonite, carboxylmethyl ether cellulose, kaolin, soy protein and mixtures thereof.
- the thickening agent may constitute between about 0.01 wt % and about 1.0 wt %, about 0.05 wt % and about 0.5 wt %, or about 0.1 wt % of the compositions.
- compositions may also include an additional ingredient selected from an essential oil, 2-phenyl ethyl propionate, a residual insecticide (viz. an insecticide that is efficacious even after drying), and mixtures thereof.
- the compositions may also include an additional insecticide, for example, a reduced risk pesticide as classified by the Environmental Protective Agency. Reduced risk pesticides include pesticides with characteristics such as very low toxicity to humans and non target organisms, including fish and birds, low risk of ground water contamination or runoff, and low potential for pesticide resistance.
- Exemplary active ingredients for reduced risk pesticides include but are not limited to, castor oil, cedar oil, cinnamon and cinnamon oil, citric acid, citronella and citronella oil, cloves and clove oil, corn gluten meal, corn oil, cottonseed oil, dried blood, eugenol, garlic and garlic oil, geraniol, geranium oil, lauryl sulfate, lemon grass oil, linseed oil, malic acid, mint and mint oil, peppermint and peppermint oil, 2-phenethyl propionate (2-phenyethyl propionate), potassium sorbate, putrescent whole egg solids, rosemary and rosemary oil, sesame and sesame oil, sodium chloride, sodium lauryl sulfate, soybean oil, thyme and thyme oil, white pepper, zinc metal strips, and combinations thereof.
- compositions may also include attractants such as cockroach pheromones (e.g., sex attractants, aggregation pheromones) or food-based attractants (e.g., methylcyclopentenalone, maltol, fenugreek and other flavorings).
- attractants such as cockroach pheromones (e.g., sex attractants, aggregation pheromones) or food-based attractants (e.g., methylcyclopentenalone, maltol, fenugreek and other flavorings).
- attractant may constitute between about 0.1% and about 5% by weight of a use solution of the composition.
- compositions may also optionally include humectants such as glycerol to slow evaporation and maintain wetness of the compositions after application.
- humectants such as glycerol to slow evaporation and maintain wetness of the compositions after application.
- the humectant may constitute between about 0.5% and about 10% by weight of the compositions.
- compositions may also optionally include a foaming agent.
- a foaming agent may constitute between about 1% and about 10% by weight of the pesticide composition.
- the compositions do not include a foaming agent.
- compositions have numerous uses.
- the compositions can be used as insecticides, soil removal compositions, and/or antimicrobial compositions.
- the compositions can be used as floor strippers, antibacterial lubricants etc.
- the present compositions can be used as insecticides. Surprisingly, it has been found that when used in a controlled pH range of about 7.5 to about 9.0, the compositions show highly efficacious insecticidal properties.
- the compositions are effective against a broad range of insects, including, but not limited to: cockroaches, e.g., German cockroaches, American cockroaches; bed bugs; flies, e.g., house flies, fruit flies; ants, e.g., odorous house ants, pharaoh ants, argentine ants; and spiders.
- compositions are highly effective insecticides due in part to their wetting abilities. That is, it is thought that the compositions enter the spiracles of the insects contacted, and rapidly suffocate the insects. It is also thought, that due to the wetting abilities of the compositions, the compositions enter the insects through the spiracles, and kills the insects by upsetting their internal chemical balance.
- the compositions include a fatty acid soap/fatty acid mixture including potassium decanoate/decanoic acid. In some embodiments, the compositions include about 1.0 to about 10 wt % of the fatty acid soap, or about 5 wt % to about 8 wt % of the fatty acid soap. This particular fatty acid soap/fatty acid mixture has been found to provide rapid kill against most insects when used at a pH of about 7.5 to about 9.0, or about 8.0 to about 8.5. For example, it has been found that this composition kills about 90% of German cockroaches contacted in less than about 100 seconds.
- the compositions when formulated as an insecticide, include only ingredients listed on the EPA 25(B) exempt list. Additionally, the compositions may include only “food additive” ingredients.
- food additive means that a composition or chemical may be suitable for human consumption. In the food and beverage industry, it may be desirable that any composition or chemical that comes into contact with foods and beverages for human consumption, be suitable for human consumption. Thus, every chemical that makes up a composition would have to be suitable for human consumption.
- the compositions When used as an insecticide, the compositions may be applied onto a surface as a spray or foam. The compositions are applied onto the surface for an amount of time sufficient to terminate the insects.
- the insecticide compositions can be applied in and around areas such as apartment buildings, bakeries, beverage plants, bottling facilities, breweries, cafeterias, candy plants, canneries, cereal processing and manufacturing plants, cruise ships, dairy barns, poultry facilities, flour mills, food processing plants, frozen food plants, homes hospitals, hotels, houses, industrial buildings, kennels, kitchens, laboratories, manufacturing facilities, mausoleums, meat processing and packaging plants, meat and vegetable canneries, motels, nursing homes, office buildings, organic facilities, restaurants, schools, stores, supermarkets, warehouses and other public buildings and similar structures.
- the compositions can be applied to surfaces, such as floors, where pests may harbor, including cracks, crevices, niches, dark areas, drains, and other harborage sites.
- compositions may also be directly applied to the insects.
- the compositions may be applied to insects by any suitable application method, including but not limited to, by spraying, or foaming the compositions on to the insects.
- the compositions can be used to remove soil from a surface.
- the compositions can be used to remove a food soil from a surface.
- the methods include contacting the surface with the compositions such that the soil is removed. Contacting can include any of numerous methods for applying a composition, such as spraying the composition on to the object, immersing the object in the composition, or a combination thereof.
- the compositions can be applied in a variety of areas including kitchens, bathrooms, factories, hospitals, dental offices and food plants, and can be applied to a variety of hard surfaces having smooth, irregular or porous topography.
- the compositions can be applied to or brought into contact with an object by any conventional method or apparatus for applying a cleaning composition to an object.
- the object can be wiped with, sprayed with, and/or immersed in the composition, or a use solution made from the composition.
- the compositions can be sprayed, or wiped onto a surface; the compositions can be caused to flow over the surface, or the surface can be dipped into the composition. Contacting can be manual or by machine.
- Exemplary articles that can be treated, i.e., cleaned, with the compositions include, but are not limited to motor vehicle exteriors, textiles, food contacting articles, clean-in-place (CIP) equipment, health care surfaces and hard surfaces.
- Exemplary motor vehicle exteriors include cars, trucks, trailers, buses, etc. that are commonly washed in commercial vehicle washing facilities.
- Exemplary textiles include, but are not limited to, those textiles that generally are considered within the term “laundry” and include clothes, towels, sheets, etc.
- textiles include curtains.
- Exemplary food contacting articles include, but are not limited to, dishes, glasses, eating utensils, bowls, cooking articles, food storage articles, etc.
- Exemplary CIP equipment includes, but is not limited to, pipes, tanks, heat exchangers, valves, distribution circuits, pumps, etc.
- Exemplary health care surfaces include, but are not limited to, surfaces of medical or dental devices or instruments.
- Exemplary hard surfaces include, but are not limited to, floors, counters, glass, walls, etc. Hard surfaces can also include the inside of dish machines, and laundry machines. In general, hard surfaces can include those surfaces commonly referred to in the cleaning industry as environmental surfaces. Such hard surfaces can be made from a variety of materials including, for example, ceramic, metal, glass, wood or hard plastic.
- the compositions may used to reduce a population of microorganisms from an object.
- the method includes applying the compositions to the object, such that the population of microorganism is reduced.
- compositions can be used for a variety of domestic or industrial applications, e.g., to reduce microbial or viral populations on a surface or object or in a body or stream of water.
- the compositions can be applied in a variety of areas including kitchens, bathrooms, factories, hospitals, dental offices and food plants, and can be applied to a variety of hard or soft surfaces having smooth, irregular or porous topography.
- Suitable hard surfaces include, for example, architectural surfaces (e.g., floors, walls, windows, sinks, tables, counters and signs); eating utensils; hard-surface medical or surgical instruments and devices; and hard-surface packaging.
- Such hard surfaces can be made from a variety of materials including, for example, ceramic, metal, glass, wood or hard plastic.
- Suitable soft surfaces include, for example paper; filter media; hospital and surgical linens and garments; soft-surface medical or surgical instruments and devices; and soft-surface packaging.
- Such soft surfaces can be made from a variety of materials including, for example, paper, fiber, woven or nonwoven fabric, soft plastics and elastomers.
- the compositions can also be applied to soft surfaces such as food and skin (e.g., a hand).
- the present compositions can be employed as a foaming or nonfoaming environmental sanitizer or disinfectant.
- compositions can also be used on foods and plant species to reduce surface microbial populations; used at manufacturing or processing sites handling such foods and plant species; or used to treat process waters around such sites.
- the compositions can be used on food transport lines (e.g., as belt sprays); boot and hand-wash dip-pans; food storage facilities; anti-spoilage air circulation systems; refrigeration and cooler equipment; beverage chillers and warmers, blanchers, cutting boards, third sink areas, and meat chillers or scalding devices.
- the compositions can be used to treat produce transport waters such as those found in flumes, pipe transports, cutters, slicers, blanchers, retort systems, washers, and the like.
- Particular foodstuffs that can be treated with compounds of the invention include eggs, meats, seeds, leaves, fruits and vegetables.
- Particular plant surfaces include both harvested and growing leaves, roots, seeds, skins or shells, stems, stalks, tubers, corms, fruit, and the like.
- the compositions may also be used to treat animal carcasses to reduce both pathogenic and non-pathogenic microbial levels.
- compositions can be applied to microbes or to soiled or cleaned surfaces using a variety of methods. These methods can operate on an object, surface, in a body or stream of water or a gas, or the like, by contacting the object, surface, body, or stream with a compound of the invention. Contacting can include any of numerous methods for applying a composition, such as spraying the composition, immersing the object in the composition, foam or gel treating the object with the composition, or any combination thereof.
- a composition can be applied to or brought into contact with an object by any conventional method or apparatus for applying an antimicrobial or cleaning composition to an object.
- the object can be wiped with, sprayed with, foamed on, and/or immersed in the composition, or a use solution made from the composition.
- the composition can be sprayed, foamed, or wiped onto a surface; the composition can be caused to flow over the surface, or the surface can be dipped into the composition.
- Contacting can be manual or by machine.
- Food processing surfaces, food products, food processing or transport waters, and the like can be treated with liquid, foam, gel, aerosol, gas, wax, solid, or powdered stabilized compositions.
- compositions A, B and C were tested for their ability to kill cockroaches.
- Compositions A and B were also tested at various pH levels.
- the kill time was measured as time in seconds for 90% of cockroaches to die after exposure to the test compositions (KT-90) in a jar.
- the KT-90 results are shown in the table below for each of the test compositions at various pH levels.
- compositions tested with a pH between 8.0 and 8.5 had a much lower KT-90 compared to those compositions with a pH higher than 9.0. That is, the compositions with a pH between 8.0 and 8.5 had a greater ability to kill cockroaches in a shorter amount of time.
- compositions tested with a pH below 8.5 had a much faster KT-90.
- compositions tested with an acidic pH (Compositions D and E)
- the compositions tested were both phase stable, and had low KT-90 scores.
- test compositions A study was performed to evaluate the effect of pH on the wetting abilities of test compositions. For this study, the contact angle of test compositions at various pH levels and at various times, was measured on American cockroach wings. The compositions tested each had 7.25% of a fatty acid soap, 1% phenylethyl proprionate, 1% sodium citrate, and 0.10% xanthan gum. The pH of each of the test solutions was adjusted to either 8.3, 11.5, or 6.7. Water was also used as a control. The results are shown in the table below:
- both the test compositions at pH 6.7 and 8.3 completely wet the wings by 30 seconds.
- completely wet it is meant that a contact angle of zero degrees (0°) was measured.
- the same composition at a higher pH did not wet the wings completely even after sixty seconds.
- a lower contact angle results in a higher kill. That is, it is thought that better wetting compositions wet the highly hydrophobic exoskeleton of insects, covering the spiracles of the insects, thereby suffocating them.
- a high wetting composition leads to a higher kill rate, as the better wetting a composition is, the more chemicals that will enter into the insects through the spiracles.
- the % soil removal is calculated from the difference between the initial (before cleaning) lightness (L) value and the final L value (after cleaning):
- compositions were tested for soil removal.
- the compositions are show in the table below:
- test composition Q removed slightly more of the red soil than the other products tested.
- test composition Q removes considerably more soil than the other products tested.
- exemplary compositions can also be used for soil removal.
- Test compositions were evaluated for their food contact sanitizing ability.
- the test compositions were evaluated against Escherichia coli ATCC 11229 and Staphyloccoccus aureus ATCC 6538.
- Four test compositions were used for this test. The compositions are shown in the table below.
- compositions were tested against Escherichia coli ATCC 11229 and Staphyloccoccus aureus ATCC 6538, at ambient temperature for 30 and 60 second exposure times. The results are shown below.
- test compositions achieved over a 5 log reduction at 30 and 60 seconds against Escherichia coli ATCC 11229.
- Compositions L and M achieved over a 5 log reduction at 30 and 60 seconds against Staphylococcus aureus ATCC 6538 while Composition Q achieved over a 5 log reduction at 60 seconds.
- the test compositions showed both a germicidal and detergent sanitizing action.
- the test composition including the long chain fatty acid (oleic acid) had a 90% kill time (KT-90) of no shorter than six minutes. Although, these compositions did show a faster kill at a higher pH (pH ⁇ 10.6), the kill was still much slower (4 times as slow) as those compositions including a medium chain (C5-C12) fatty acid at a lower pH.
- Test compositions were studied for their ability to kill a variety of insects.
- the test compositions were directly applied to bed bugs, houseflies, fruit flies, ants and spiders.
- the test composition tested for these experiments included 7.25%-7.33% Fatty Acid Soap, 1% 2-phenethyl proprionate, 1% Sodium Citrate, 0.10% Xanthan Gum, 0.31% Citric Acid, and the balance as Soft Water.
- Houseflies The KT-90 of a test composition was tested against houseflies. Two other commercially available insecticides, Terminix Safeshield, and Tyratech Naturals were also tested. The results of this test are shown in FIG. 7 . As can be seen from these results, the test compositions had an average KT-90 of less than 100 seconds, where as the Tyratech Naturals insecticide had a KT-90 of over 500 seconds.
- Ants The average mortality of house ants, pharaoh ants, and argentine ants 30 minutes post exposure to a test composition was measured. A commercially available insecticide, Terminix Safeshield, was also tested. Water was used as a control. The results from these tests are shown in FIGS. 9A , 9 B, and 9 C. As can be seen from these Figures, the test composition had a much higher average mortality rate thirty minutes post exposure compared to the commercially available insecticide tested.
- Spiders The average percent knock down of Black Widow spiders was measured thirty minutes post direct application of a test composition. A commercially available insecticide, Terminix Safeshield, was also tested. The results from this study are shown in FIG. 10 . As can be seen from this Figure, after 30 minutes the test composition had a 100% knock down of the spiders. The commercially available insecticide had only about a 40% knock down over the same time period.
- test compositions A study was run to evaluate the preservative properties of test compositions. For this study, one 99 mL sample of the test composition was inoculated with 1 mL of a 1:1:1:1:1 mixture of bacteria and one 99 mL sample was inoculated with 1 mL of a 1:1:1 mixture of yeasts and mold. Plate counts of the samples were taken at 7, 14, 21, and 28 days.
- test compositions were studied, one with potassium sorbate, and two without and one with a thickener. Potassium sorbate is a known preservative.
- the test compositions studied are shown in the table below:
- the bacterial inoculum mixture was made up of equal parts of the following five organisms: Staphylococcus aureus ATCC 6538; Escherichia coli ATCC 11229; Enterobacter aerogenese ATCC 13048; Pseudomonas aeruginosa ATCC 15442; and Burkholderia cepacia ATCC 25416.
- the yeast and mold mixture was made up of equal parts of the following three organisms: Candida albicans ATCC 10231; Saccharomyces cerevisiae ATCC 834; and Aspergillus niger ATCC 16404. The tests were run at ambient temperatures, and the exposure times were 7, 14, 21, and 28 days. The results are shown in the tables below.
- test compositions passed the preservation criteria following the United States Pharmacopeia guidelines with regard to bacteria and yeast and mold.
- Test Compositions M and P from Example 4 were diluted and evaluated for their food contact sanitizing ability.
- the diluted test compositions were evaluated against Escherichia coli ATCC 11229 and Staphylococcus aureus ATCC 6538.
- Compositions M and P are shown again in the table below for convenience.
- Composition M was diluted to prepare four different test dilutions as follows:
- compositions were tested against Escherichia coli ATCC 11229 and Staphylococcus aureus ATCC 6538, at ambient temperature for 30 and 60 second exposure times. The results are shown below.
- composition M achieved over a 5 log reduction at 30 and 60 seconds against Escherichia coli ATCC 11229.
- Composition P was able to achieve over a 5 log reduction at 30 and 60 seconds against Escherichia coli ATCC 11229 at 50% and 25% dilutions.
- Composition M was able to achieve over a 5 log reduction at 60 seconds against and Staphylococcus aureus ATCC 6538 at the 1:2 and 1:8 dilutions.
- Composition P was unable to achieve over a 5 log reduction at 60 seconds against Staphylococcus aureus ATCC 6538 at any dilution tested.
- Test compositions were evaluated for Use Dilution Disinfectant efficacy and Germicidal Spray Disinfectant efficacy.
- the test compositions were evaluated against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 15442.
- Composition P was used for these tests.
- Composition P is shown again for convenience.
- composition was tested against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 15442, at ambient temperature for five minutes for both tests.
- the spray distance was 6-8 inches with three trigger pulls with an average weight per spray of 2.3 grams for the Germicidal Spray disinfectant efficacy test.
- Test Results # Negative Tubes/# Test Substance Test System carriers Tested Pass/Fail* Composition P Staphylococcus 2/60 Fail aureus ATCC 6538 Pseudomonas 44/60 Fail aeruginosa ATCC 15442 *The EPA standard for disinfectants is 59/60 negative carriers.
- Composition P did not pass Use Dilution test for Staphylococcus aureus ATCC 6538 or Pseudomonas aeruginosa ATCC 15442 at 5 minutes.
- the results of the Germicidal Spray Disinfectant efficacy are shown below:
- Test Results # Negative Tubes/# Test Substance Test System carriers Tested Pass/Fail* Composition P Staphylococcus 20/60 Fail aureus ATCC 6538 Pseudomonas 60/60 Pass aeruginosa ATCC 15442 *The EPA standard for disinfectants is 59/60 negative carriers.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Dentistry (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Plant Pathology (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Toxicology (AREA)
Abstract
The present disclosure relates to compositions including a fatty acid soap/fatty acid mixture, and methods of use thereof. The compositions include a C5 to C12 fatty acid or mixtures thereof. The compositions show increased activity, e.g., insecticidal, soil removal, antimicrobial activity, at a controlled pH range of about 7.5 to about 9.0.
Description
- This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application entitled “Mixed Fatty Acid Soap/Fatty Acid Insecticidal, Cleaning and Antimicrobial Compositions”, Ser. No. 61/418,215, filed on Nov. 30, 2010, which is incorporated herein by reference in its entirety for all purposes.
- The present disclosure relates generally to fatty acid soap/fatty acid based compositions, and methods of use thereof. In particular, the disclosure relates to a C4 to C12 fatty acid soap/fatty acid based composition. The disclosure also includes methods of using these compositions.
- Left unattended, insects can quickly infest enclosed structures, such as restaurants and homes. Examples of insects which can infest areas in and around enclosed structures include, for example, cockroaches, ants, fruit flies, houseflies, bed bugs, ground beetles and spiders. In addition to being a nuisance, some of these insects can also bring pathogens into the restaurant or home, creating unsanitary eating and living conditions.
- The use of insecticidal compositions has aided in decreasing the infestation of insects in and around residential and commercial structures. Various types of insecticidal compositions and methods of repelling or terminating crawling pests are currently available, including gel baits, glue pads and poisons.
- In more recent years, attention has been directed to producing insecticides that are effective and ecologically friendly. In line with this trend, the Environmental Protection Agency (EPA) has issued a list of minimum risk insecticides §25(b) of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) that are not subject to federal registration requirements because their active and inert ingredients are demonstrated as safe for their intended use. There is an ongoing need to provide effective insecticides which have reduced environmental impact.
- In some aspects, the present invention relates to compositions and methods of use thereof. The compositions and methods may comprise, consist of, or consist essentially of the listed ingredients or steps. As used herein the term “consisting essentially of” shall be construed to mean including the listed ingredients or steps and such additional ingredients or steps which do not materially affect the basic and novel properties of the composition or method.
- In some aspects, the present invention relates to an insecticidal composition comprising a fatty acid, a neutralizer, a buffer, and a carrier. The pH of the composition is from about 7.5 to about 9.0. In some embodiments, the fatty acid comprises a branched or straight chain C5 to C12 fatty acid. In other embodiments, the fatty acid is selected from the group consisting of hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid and mixtures thereof.
- In some embodiments, the neutralizer comprises an alkali metal hydroxide. The alkali metal hydroxide may be selected from the group consisting of sodium hydroxide, potassium hydroxide, and mixtures thereof. In other embodiments, the neutralizer is selected from an amine, an alkanolamine, and mixtures thereof.
- In other embodiments, the buffer is selected from a weak acid, a weak base, an amphoteric buffering agent, an ampholyte buffering agent, and mixtures thereof. The buffer may be selected from citrate, citric acid, a bicarbonate, and mixtures thereof. In other embodiments, the carrier comprises water.
- In some embodiments, the composition comprises about 1.0 wt % to about 10 wt % of the fatty acid; about 1.0 wt % to about 10 wt % of the neutralizer; about 0.1 to about 1.0% of the buffer; and at least about 80 wt % of the carrier. In still yet other embodiments, the compositions further comprise a thickening agent. The thickening agent can be a polymeric or surfactant thickening agent. The thickening agent comprises xanthan gum, guar gum, polyethylene oxide, polyvinyl pyrrolidone, polyvinyl alcohol, clay thickener, betonite, carboxylmethyl ether cellulose, kaolin, soy protein and mixtures thereof.
- In still yet other embodiments, the compositions further comprise an additional ingredient selected from an essential oil, 2-phenyl ethyl propionate, a residual insecticide, and mixtures thereof. In still yet other embodiments, the pH of the compositions is about 8.0 to about 8.5.
- In some embodiments, the fatty acid comprises decanoic acid, and the neutralizing agent comprises potassium hydroxide.
- In some aspects, the present invention relates to methods for eliminating insects. The methods comprise applying to the insects or an area inhabited by the insects an insecticidal composition. The insecticidal compositions comprise a fatty acid; a neutralizer; a buffer; and a carrier, wherein the composition has a pH of about 7.5 to about 9.0.
- In other aspects, the present invention relates to methods of reducing a population of microorganism on an object. The methods comprise applying a composition comprising a fatty acid; a neutralizer; a buffer; and a carrier, to the object, wherein the composition has a pH of about 7.5 to about 9.0.
- In still yet other aspects, the present invention relates to methods of removing a food soil from a surface. The methods comprise applying a composition comprising a fatty acid; a neutralizer; a buffer; and a carrier, to the surface, wherein the composition has a pH of about 7.5 to about 9.0.
-
FIG. 1 is a graphical depiction of the effect of pH on the insecticidal efficacy of mixed fatty acid soap/fatty acid compositions. -
FIG. 2 is a graphical depiction of the effect of pH on the insecticidal efficacy of mixed fatty acid soap/fatty acid compositions. -
FIG. 3 is a graphical depiction of the effect of pH on the contact angle of mixed fatty acid soap/fatty acid compositions. -
FIG. 4 is a graphical depiction of the soil removal capabilities of mixed fatty acid soap/fatty acid compositions, and comparative compositions. -
FIG. 4 a is a graphical depiction of the soil removal capabilities of mixed fatty acid soap/fatty acid compositions, and comparative compositions on soil aged 24 hours. -
FIG. 5 is a graphical depiction of the effect of pH on the insecticidal efficacy of a long chain fatty acid soap/fatty acid mixed composition. -
FIG. 6 is a graphical depiction of the efficacy of various compositions against bed bugs. -
FIG. 7 is a graphical depiction of the average kill time of 90% (KT-90) of houseflies contacted with various compositions. -
FIG. 8 is a graphical depiction of the average kill time of 90% (KT-90) of fruit flies contacted with various compositions. -
FIG. 9A is a graphical depiction of the average percent (%) mortality of house ants thirty minutes post exposure to various compositions via direct spray. -
FIG. 9B is a graphical depiction of the average percent (%) mortality of pharaoh ants thirty minutes post exposure to various compositions via direct spray. -
FIG. 9C is a graphical depiction of the average percent (%) mortality of argentine ants thirty minutes post exposure to various compositions via direct spray. -
FIG. 10 is a graphical depiction of the average percent knock down of black widow spiders post exposure to various compositions via direct spray. - In some aspects, the present disclosure relates to fatty acid soap/fatty acid compositions and methods of use thereof. The compositions have a variety of uses, for example, as insecticides, soil removers, and as disinfectants/sanitizers. When used at a pH of about 7.5 to about 9.0 the compositions are phase stable and provide improved insecticidal properties than compared to when used at higher pH levels. The compositions also show soil removal properties, e.g., food soil removal, and food contact sanitizing efficacies at this pH level. Without wishing to be bound by any particular theory, it is thought that the insecticidal/soil removal/antimicrobial effects of these compositions is due in part to a very surface active mixture of fatty acid soap/fatty acid, wherein the fatty acid is a minor component that results in improved packing, and improved surface activity.
- So that the present disclosure may be better understood, certain terms are first defined.
- As used herein, “weight percent,” “wt-%,” “percent by weight,” “% by weight,” and variations thereof refer to the concentration of a substance as the weight of that substance divided by the total weight of the composition and multiplied by 100. It is understood that, as used here, “percent,” “%,” and the like are intended to be synonymous with “weight percent,” “wt-%,” etc.
- As used herein, the term “about” refers to variation in the numerical quantity that can occur, for example, through typical measuring and liquid handling procedures used for making concentrates or use solutions in the real world; through inadvertent error in these procedures; through differences in the manufacture, source, or purity of the ingredients used to make the compositions or carry out the methods; and the like. The term “about” also encompasses amounts that differ due to different equilibrium conditions for a composition resulting from a particular initial mixture. Whether or not modified by the term “about”, the claims include equivalents to the quantities.
- It should be noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to a composition containing “a compound” includes a composition having two or more compounds. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
- As used herein, the phrases “objectionable odor,” “offensive odor,” or “malodor,” refer to a sharp, pungent, or acrid odor or atmospheric environment from which a typical person withdraws if they are able to. Hedonic tone provides a measure of the degree to which an odor is pleasant or unpleasant. An “objectionable odor,” “offensive odor,” or “malodor” has a hedonic tone rating it as unpleasant as or more unpleasant than a solution of 5 wt-% acetic acid, propionic acid, butyric acid, or mixtures thereof.
- As used herein, the term “microorganism” refers to any noncellular or unicellular (including colonial) organism. Microorganisms include all prokaryotes. Microorganisms include bacteria (including cyanobacteria), spores, lichens, fungi, protozoa, virinos, viroids, viruses, phages, and some algae. As used herein, the term “microbe” is synonymous with microorganism.
- As used herein, the phrase “food product” includes any food substance that might require treatment with an antimicrobial agent or composition and that is edible with or without further preparation. Food products include meat (e.g. red meat and pork), seafood, poultry, produce (e.g., fruits and vegetables), eggs, living eggs, egg products, ready to eat food, wheat, seeds, roots, tubers, leafs, stems, corns, flowers, sprouts, seasonings, or a combination thereof. The term “produce” refers to food products such as fruits and vegetables and plants or plant-derived materials that are typically sold uncooked and, often, unpackaged, and that can sometimes be eaten raw.
- As used herein, the phrase “plant” or “plant product” includes any plant substance or plant-derived substance. Plant products include, but are not limited to, seeds, nuts, nut meats, cut flowers, plants or crops grown or stored in a greenhouse, house plants, and the like. Plant products include many animal feeds.
- As used herein, the phrase “meat product” refers to all forms of animal flesh, including the carcass, muscle, fat, organs, skin, bones and body fluids and like components that form the animal. Animal flesh includes, but is not limited to, the flesh of mammals, birds, fishes, reptiles, amphibians, snails, clams, crustaceans, other edible species such as lobster, crab, etc., or other forms of seafood. The forms of animal flesh include, for example, the whole or part of animal flesh, alone or in combination with other ingredients. Typical forms include, for example, processed meats such as cured meats, sectioned and formed products, minced products, finely chopped products, ground meat and products including ground meat, whole products, and the like.
- As used herein the term “poultry” refers to all forms of any bird kept, harvested, or domesticated for meat or eggs, and including chicken, turkey, ostrich, game hen, squab, guinea fowl, pheasant, quail, duck, goose, emu, or the like and the eggs of these birds. Poultry includes whole, sectioned, processed, cooked or raw poultry, and encompasses all forms of poultry flesh, by-products, and side products. The flesh of poultry includes muscle, fat, organs, skin, bones and body fluids and like components that form the animal. Forms of animal flesh include, for example, the whole or part of animal flesh, alone or in combination with other ingredients. Typical forms include, for example, processed poultry meat, such as cured poultry meat, sectioned and formed products, minced products, finely chopped products and whole products.
- As used herein, the phrase “poultry debris” refers to any debris, residue, material, dirt, offal, poultry part, poultry waste, poultry viscera, poultry organ, fragments or combinations of such materials, and the like removed from a poultry carcass or portion during processing and that enters a waste stream.
- As used herein, the phrase “food processing surface” refers to a surface of a tool, a machine, equipment, a structure, a building, or the like that is employed as part of a food processing, preparation, or storage activity. Examples of food processing surfaces include surfaces of food processing or preparation equipment (e.g., slicing, canning, or transport equipment, including flumes), of food processing wares (e.g., utensils, dishware, wash ware, and bar glasses), and of floors, walls, or fixtures of structures in which food processing occurs. Food processing surfaces are found and employed in food anti-spoilage air circulation systems, aseptic packaging sanitizing, food refrigeration and cooler cleaners and sanitizers, ware washing sanitizing, blancher cleaning and sanitizing, food packaging materials, cutting board additives, third-sink sanitizing, beverage chillers and warmers, meat chilling or scalding waters, autodish sanitizers, sanitizing gels, cooling towers, food processing antimicrobial garment sprays, and non-to-low-aqueous food preparation lubricants, oils, and rinse additives.
- The term “substantially free” may refer to any component that the composition of the invention or a method incorporating the composition lacks or mostly lacks. When referring to “substantially free” it is intended that the component is not intentionally added to compositions of the invention. Use of the term “substantially free” of a component allows for trace amounts of that component to be included in compositions of the invention because they are present in another component. However, it is recognized that only trace or de minimus amounts of a component will be allowed when the composition is said to be “substantially free” of that component. Moreover, the term if a composition is said to be “substantially free” of a component, if the component is present in trace or de minimus amounts it is understood that it will not affect the effectiveness of the composition. It is understood that if an ingredient is not expressly included herein or its possible inclusion is not stated herein, the invention composition may be substantially free of that ingredient. Likewise, the express inclusion of an ingredient allows for its express exclusion thereby allowing a composition to be substantially free of that expressly stated ingredient.
- For the purpose of this patent application, successful microbial reduction is achieved when the microbial populations are reduced by at least about 50%, or by significantly more than is achieved by a wash with water. Larger reductions in microbial population provide greater levels of protection.
- As used herein, the term “sanitizer” refers to an agent that reduces the number of bacterial contaminants to safe levels as judged by public health requirements. In an embodiment, sanitizers for use in this invention will provide at least a 99.999% reduction (5-log order reduction). These reductions can be evaluated using a procedure set out in Germicidal and Detergent Sanitizing Action of Disinfectants, Official Methods of Analysis of the Association of Official Analytical Chemists, paragraph 960.09 and applicable sections, 15th Edition, 1990 (EPA Guideline 91-2). According to this reference a sanitizer should provide a 99.999% reduction (5-log order reduction) within 30 seconds at room temperature, 25±2° C., against several test organisms.
- As used herein, the term “disinfectant” refers to an agent that kills all vegetative cells including most recognized pathogenic microorganisms, using the procedure described in A.O.A.C. Use Dilution Methods, Official Methods of Analysis of the Association of Official Analytical Chemists, paragraph 955.14 and applicable sections, 15th Edition, 1990 (EPA Guideline 91-2). As used herein, the term “high level disinfection” or “high level disinfectant” refers to a compound or composition that kills substantially all organisms, except high levels of bacterial spores, and is effected with a chemical germicide cleared for marketing as a sterilant by the Food and Drug Administration. As used herein, the term “intermediate-level disinfection” or “intermediate level disinfectant” refers to a compound or composition that kills mycobacteria, most viruses, and bacteria with a chemical germicide registered as a tuberculocide by the Environmental Protection Agency (EPA). As used herein, the term “low-level disinfection” or “low level disinfectant” refers to a compound or composition that kills some viruses and bacteria with a chemical germicide registered as a hospital disinfectant by the EPA.
- As used in this invention, the term “sporicide” refers to a physical or chemical agent or process having the ability to cause greater than a 90% reduction (1-log order reduction) in the population of spores of Bacillus cereus or Bacillus subtilis within 10 seconds at 60° C. In certain embodiments, the sporicidal compositions of the invention provide greater than a 99% reduction (2-log order reduction), greater than a 99.99% reduction (4-log order reduction), or greater than a 99.999% reduction (5-log order reduction) in such population within 10 seconds at 60° C.
- Differentiation of antimicrobial “-cidal” or “-static” activity, the definitions which describe the degree of efficacy, and the official laboratory protocols for measuring this efficacy are considerations for understanding the relevance of antimicrobial agents and compositions. Antimicrobial compositions can affect two kinds of microbial cell damage. The first is a lethal, irreversible action resulting in complete microbial cell destruction or incapacitation. The second type of cell damage is reversible, such that if the organism is rendered free of the agent, it can again multiply. The former is termed microbiocidal and the later, microbistatic. A sanitizer and a disinfectant are, by definition, agents which provide antimicrobial or microbiocidal activity. In contrast, a preservative is generally described as an inhibitor or microbistatic composition
- As used herein, the term “alkyl” or “alkyl groups” refers to saturated hydrocarbons having one or more carbon atoms, including straight-chain alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.), cyclic alkyl groups (or “cycloalkyl” or “alicyclic” or “carbocyclic” groups) (e.g., cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, etc.), branched-chain alkyl groups (e.g., isopropyl, tert-butyl, sec-butyl, isobutyl, etc.), and alkyl-substituted alkyl groups (e.g., alkyl-substituted cycloalkyl groups and cycloalkyl-substituted alkyl groups).
- Unless otherwise specified, the term “alkyl” includes both “unsubstituted alkyls” and “substituted alkyls.” As used herein, the term “substituted alkyls” refers to alkyl groups having substituents replacing one or more hydrogens on one or more carbons of the hydrocarbon backbone. Such substituents may include, for example, alkenyl, alkynyl, halogeno, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonates, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclic, alkylaryl, or aromatic (including hetero aromatic) groups.
- In some embodiments, substituted alkyls can include a heterocyclic group. As used herein, the term “heterocyclic group” includes closed ring structures analogous to carbocyclic groups in which one or more of the carbon atoms in the ring is an element other than carbon, for example, nitrogen, sulfur or oxygen. Heterocyclic groups may be saturated or unsaturated. Exemplary heterocyclic groups include, but are not limited to, aziridine, ethylene oxide (epoxides, oxiranes), thiirane (episulfides), dioxirane, azetidine, oxetane, thietane, dioxetane, dithietane, dithiete, azolidine, pyrrolidine, pyrroline, oxolane, dihydrofuran, and furan.
- In some aspects, the compositions include a fatty acid soap/fatty acid mixture. The compositions include a fatty acid, a neutralizer, a buffer, and a carrier. Optionally, the compositions can also include additional functional ingredients. The compositions can function as insecticides, food soil removal agents, and antimicrobial agents, among other uses.
- Fatty Acids
- In some aspects, the compositions include one or more fatty acid. As used herein, the term “fatty acid” includes any of a group of carboxylic acids that include a long alkyl chain. In some embodiments, the alkyl groups can be linear or branched, and saturated or unsaturated. The chain of alkyl groups contain from 4 to 12 carbon atoms, 5 to 11 carbon atoms, or 8 to 10 carbon atoms.
- In some embodiments, a C4 to C12 branched or straight chain fatty acid is included in the compositions. In some embodiments, the compositions are substantially free of, or free of, fatty acids with a chain length greater than C12. For example, in some embodiments, the compositions are free of, or substantially free of, C14 to C24 fatty acids.
- The fatty acid can be selected from hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid and mixtures thereof. In some embodiments, two or more fatty acids can be used. For example, a mixture of a C8 and a C10 fatty acid can be used. In other embodiments, the fatty acid includes decanoic acid. Decanoic acid has the formula CH3(CH2)8COOH, and is a saturated fatty acid.
- In some embodiments, the fatty acid is present in the compositions at an amount of about 1.0 wt % to about 10 wt %, about 3 wt % to about 8 wt %, or about 5 to about 7 wt %. It is to be understood that all ranges and values between these ranges and values are encompassed by the present compositions.
- Surprisingly, it has been found that when used at a pH of between about 7.5 and about 9.0, or about 8.0 and about 8.5, the compositions have improved insecticidal, cleaning, and/or sanitizing properties, and are phase stable. Without wishing to be bound by any particular theory, it is thought that at lower pH levels, phase separation occurs as there is more fatty acid present than can be coupled by the fatty acid soap present. At higher pH levels, e.g., a pH greater than about 9.0, it is thought that the level of fatty acid soap present will be too high. It is thought that this high level of fatty acid soap decreases the surface activity of the compositions, e.g., wetting ability of the compositions.
- Neutralizers
- In some aspects, the compositions include a neutralizer. The neutralizer can be included to neutralize a portion of the fatty acid, thereby forming a fatty acid soap. In some embodiments, the neutralizer includes an alkali metal hydroxide, including but not limited to, sodium hydroxide, potassium hydroxide, and mixtures thereof. In other embodiments, the neutralizer includes an amine or an alkanolamine. Examples of amines, or alkanolamines suitable for use with the present compositions include, but are not limited to, monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, monoisopropylamine, isopropylamine, n-propylamine, diethyleneamine, thriethylamine, n-butylamine, isobutylamine, cyclohexylamine, and mixtures thereof.
- In some embodiments, the neutralizer is present in an amount effective to provide about 5 wt % to about 10 wt % of the fatty acid soap from the fatty acid. The neutralizer can be present in the compositions at an amount of about 1.0 wt % to about 10 wt %, about 3 wt % to about 8 wt %, or about 5 to about 7 wt %. It is to be understood that all ranges and values between these ranges and values are encompassed by the present compositions.
- Buffer
- In some aspects, the compositions include a buffer to stabilize the pH of the compositions. Suitable buffers include weak acids, weak bases, ampholytes and mixtures thereof. In some embodiments, the buffer can include, but is not limited to, carbonates, bicarbonates, citric acid and citrate. The term “carbonate” includes, for example, sodium carbonate, potassium carbonate, sesquicarbonate, and mixtures thereof. The term “bicarbonate” includes, for example, sodium bicarbonate, potassium bicarbonate, and mixtures thereof. The term “citrate” includes, for example, sodium citrate, potassium citrate, and mixtures thereof.
- The compositions can include about 0.1 wt % to about 10 wt %, about 0.5 wt % to about 5 wt %, or about 1 wt % of a buffer, or mixture of buffers. It is to be understood that all values and ranges between these values and ranges are encompassed by the compositions.
- Carrier
- In some aspects, the compositions also include a carrier. In some embodiments, the carrier includes water. In other embodiments, a water-soluble solvent, such as alcohols and polyols, can be used as a carrier. These solvents may be used alone or with water. Some examples of suitable alcohols include methanol, ethanol, propanol, butanol, and the like, as well as mixtures thereof. Some examples of polyols include glycerol, ethylene glycol, propylene glycol, diethylene glycol, and the like, as well as mixtures thereof. The carrier selected can depend on a variety of factors, including, but not limited to the desired functional properties of the compositions, and/or the intended use of the compositions.
- In some embodiments, the compositions are not meant to be diluted, but are rather ready to use solutions. In some embodiments, the compositions can include at least about 80 wt %, at least about 85 wt %, at least about 90 wt %, or at least about 95 wt % of a carrier. It is to be understood that all ranges and values between these ranges and values are included in the present compositions.
- Additional Functional Ingredients
- The compositions may also include additional components or agents, such as additional functional ingredients. The functional materials provide desired properties and functionalities to the compositions. For the purpose of this application, the term “functional materials” includes a material that when dispersed or dissolved in a use and/or concentrate solution, such as an aqueous solution, provides a beneficial property in a particular use. Some particular examples of functional materials are discussed in more detail below, although the particular materials discussed are given by way of example only, and a broad variety of other functional materials may be used.
- The compositions may also include a thickening agent. Thickening agents can be added to the compositions to reduce the misting of the compositions. Thickening agents suitable for use in the present compositions include, but are not limited to, xanthan gum, guar gum, polyethylene oxide, polyvinyl pyrrolidone, polyvinyl alcohol, clay thickener, betonite, carboxylmethyl ether cellulose, kaolin, soy protein and mixtures thereof. When a thickening agent is included in the compositions, the thickening agent may constitute between about 0.01 wt % and about 1.0 wt %, about 0.05 wt % and about 0.5 wt %, or about 0.1 wt % of the compositions.
- The compositions may also include an additional ingredient selected from an essential oil, 2-phenyl ethyl propionate, a residual insecticide (viz. an insecticide that is efficacious even after drying), and mixtures thereof. The compositions may also include an additional insecticide, for example, a reduced risk pesticide as classified by the Environmental Protective Agency. Reduced risk pesticides include pesticides with characteristics such as very low toxicity to humans and non target organisms, including fish and birds, low risk of ground water contamination or runoff, and low potential for pesticide resistance. Exemplary active ingredients for reduced risk pesticides include but are not limited to, castor oil, cedar oil, cinnamon and cinnamon oil, citric acid, citronella and citronella oil, cloves and clove oil, corn gluten meal, corn oil, cottonseed oil, dried blood, eugenol, garlic and garlic oil, geraniol, geranium oil, lauryl sulfate, lemon grass oil, linseed oil, malic acid, mint and mint oil, peppermint and peppermint oil, 2-phenethyl propionate (2-phenyethyl propionate), potassium sorbate, putrescent whole egg solids, rosemary and rosemary oil, sesame and sesame oil, sodium chloride, sodium lauryl sulfate, soybean oil, thyme and thyme oil, white pepper, zinc metal strips, and combinations thereof.
- The compositions may also include attractants such as cockroach pheromones (e.g., sex attractants, aggregation pheromones) or food-based attractants (e.g., methylcyclopentenalone, maltol, fenugreek and other flavorings). When an attractant is included in the compositions, the attractant may constitute between about 0.1% and about 5% by weight of a use solution of the composition.
- The compositions may also optionally include humectants such as glycerol to slow evaporation and maintain wetness of the compositions after application. When a humectant is included in the compositions, the humectant may constitute between about 0.5% and about 10% by weight of the compositions.
- The compositions may also optionally include a foaming agent. When a foaming agent is included in the compositions, the foaming agent may constitute between about 1% and about 10% by weight of the pesticide composition. In other embodiments, the compositions do not include a foaming agent.
- The compositions have numerous uses. For example, the compositions can be used as insecticides, soil removal compositions, and/or antimicrobial compositions. Additionally, the compositions can be used as floor strippers, antibacterial lubricants etc.
- Insecticides
- In some aspects, the present compositions can be used as insecticides. Surprisingly, it has been found that when used in a controlled pH range of about 7.5 to about 9.0, the compositions show highly efficacious insecticidal properties. The compositions are effective against a broad range of insects, including, but not limited to: cockroaches, e.g., German cockroaches, American cockroaches; bed bugs; flies, e.g., house flies, fruit flies; ants, e.g., odorous house ants, pharaoh ants, argentine ants; and spiders. Without wishing to be bound by any particular theory, it is thought that the compositions are highly effective insecticides due in part to their wetting abilities. That is, it is thought that the compositions enter the spiracles of the insects contacted, and rapidly suffocate the insects. It is also thought, that due to the wetting abilities of the compositions, the compositions enter the insects through the spiracles, and kills the insects by upsetting their internal chemical balance.
- In some embodiments, the compositions include a fatty acid soap/fatty acid mixture including potassium decanoate/decanoic acid. In some embodiments, the compositions include about 1.0 to about 10 wt % of the fatty acid soap, or about 5 wt % to about 8 wt % of the fatty acid soap. This particular fatty acid soap/fatty acid mixture has been found to provide rapid kill against most insects when used at a pH of about 7.5 to about 9.0, or about 8.0 to about 8.5. For example, it has been found that this composition kills about 90% of German cockroaches contacted in less than about 100 seconds.
- In some embodiments, when formulated as an insecticide, the compositions include only ingredients listed on the EPA 25(B) exempt list. Additionally, the compositions may include only “food additive” ingredients. The term “food additive” means that a composition or chemical may be suitable for human consumption. In the food and beverage industry, it may be desirable that any composition or chemical that comes into contact with foods and beverages for human consumption, be suitable for human consumption. Thus, every chemical that makes up a composition would have to be suitable for human consumption.
- When used as an insecticide, the compositions may be applied onto a surface as a spray or foam. The compositions are applied onto the surface for an amount of time sufficient to terminate the insects. The insecticide compositions can be applied in and around areas such as apartment buildings, bakeries, beverage plants, bottling facilities, breweries, cafeterias, candy plants, canneries, cereal processing and manufacturing plants, cruise ships, dairy barns, poultry facilities, flour mills, food processing plants, frozen food plants, homes hospitals, hotels, houses, industrial buildings, kennels, kitchens, laboratories, manufacturing facilities, mausoleums, meat processing and packaging plants, meat and vegetable canneries, motels, nursing homes, office buildings, organic facilities, restaurants, schools, stores, supermarkets, warehouses and other public buildings and similar structures. In particular, the compositions can be applied to surfaces, such as floors, where pests may harbor, including cracks, crevices, niches, dark areas, drains, and other harborage sites.
- The compositions may also be directly applied to the insects. The compositions may be applied to insects by any suitable application method, including but not limited to, by spraying, or foaming the compositions on to the insects.
- Soil Removal
- In some aspects, the compositions can be used to remove soil from a surface. For example, the compositions can be used to remove a food soil from a surface. The methods include contacting the surface with the compositions such that the soil is removed. Contacting can include any of numerous methods for applying a composition, such as spraying the composition on to the object, immersing the object in the composition, or a combination thereof. The compositions can be applied in a variety of areas including kitchens, bathrooms, factories, hospitals, dental offices and food plants, and can be applied to a variety of hard surfaces having smooth, irregular or porous topography. The compositions can be applied to or brought into contact with an object by any conventional method or apparatus for applying a cleaning composition to an object. For example, the object can be wiped with, sprayed with, and/or immersed in the composition, or a use solution made from the composition. The compositions can be sprayed, or wiped onto a surface; the compositions can be caused to flow over the surface, or the surface can be dipped into the composition. Contacting can be manual or by machine.
- Exemplary articles that can be treated, i.e., cleaned, with the compositions include, but are not limited to motor vehicle exteriors, textiles, food contacting articles, clean-in-place (CIP) equipment, health care surfaces and hard surfaces. Exemplary motor vehicle exteriors include cars, trucks, trailers, buses, etc. that are commonly washed in commercial vehicle washing facilities. Exemplary textiles include, but are not limited to, those textiles that generally are considered within the term “laundry” and include clothes, towels, sheets, etc. In addition, textiles include curtains. Exemplary food contacting articles include, but are not limited to, dishes, glasses, eating utensils, bowls, cooking articles, food storage articles, etc. Exemplary CIP equipment includes, but is not limited to, pipes, tanks, heat exchangers, valves, distribution circuits, pumps, etc. Exemplary health care surfaces include, but are not limited to, surfaces of medical or dental devices or instruments. Exemplary hard surfaces include, but are not limited to, floors, counters, glass, walls, etc. Hard surfaces can also include the inside of dish machines, and laundry machines. In general, hard surfaces can include those surfaces commonly referred to in the cleaning industry as environmental surfaces. Such hard surfaces can be made from a variety of materials including, for example, ceramic, metal, glass, wood or hard plastic.
- Antimicrobial Uses
- In some aspects, the compositions may used to reduce a population of microorganisms from an object. The method includes applying the compositions to the object, such that the population of microorganism is reduced.
- The compositions can be used for a variety of domestic or industrial applications, e.g., to reduce microbial or viral populations on a surface or object or in a body or stream of water. The compositions can be applied in a variety of areas including kitchens, bathrooms, factories, hospitals, dental offices and food plants, and can be applied to a variety of hard or soft surfaces having smooth, irregular or porous topography. Suitable hard surfaces include, for example, architectural surfaces (e.g., floors, walls, windows, sinks, tables, counters and signs); eating utensils; hard-surface medical or surgical instruments and devices; and hard-surface packaging. Such hard surfaces can be made from a variety of materials including, for example, ceramic, metal, glass, wood or hard plastic. Suitable soft surfaces include, for example paper; filter media; hospital and surgical linens and garments; soft-surface medical or surgical instruments and devices; and soft-surface packaging. Such soft surfaces can be made from a variety of materials including, for example, paper, fiber, woven or nonwoven fabric, soft plastics and elastomers. The compositions can also be applied to soft surfaces such as food and skin (e.g., a hand). The present compositions can be employed as a foaming or nonfoaming environmental sanitizer or disinfectant.
- The compositions can also be used on foods and plant species to reduce surface microbial populations; used at manufacturing or processing sites handling such foods and plant species; or used to treat process waters around such sites. For example, the compositions can be used on food transport lines (e.g., as belt sprays); boot and hand-wash dip-pans; food storage facilities; anti-spoilage air circulation systems; refrigeration and cooler equipment; beverage chillers and warmers, blanchers, cutting boards, third sink areas, and meat chillers or scalding devices. The compositions can be used to treat produce transport waters such as those found in flumes, pipe transports, cutters, slicers, blanchers, retort systems, washers, and the like. Particular foodstuffs that can be treated with compounds of the invention include eggs, meats, seeds, leaves, fruits and vegetables. Particular plant surfaces include both harvested and growing leaves, roots, seeds, skins or shells, stems, stalks, tubers, corms, fruit, and the like. The compositions may also be used to treat animal carcasses to reduce both pathogenic and non-pathogenic microbial levels.
- The compositions can be applied to microbes or to soiled or cleaned surfaces using a variety of methods. These methods can operate on an object, surface, in a body or stream of water or a gas, or the like, by contacting the object, surface, body, or stream with a compound of the invention. Contacting can include any of numerous methods for applying a composition, such as spraying the composition, immersing the object in the composition, foam or gel treating the object with the composition, or any combination thereof.
- A composition can be applied to or brought into contact with an object by any conventional method or apparatus for applying an antimicrobial or cleaning composition to an object. For example, the object can be wiped with, sprayed with, foamed on, and/or immersed in the composition, or a use solution made from the composition. The composition can be sprayed, foamed, or wiped onto a surface; the composition can be caused to flow over the surface, or the surface can be dipped into the composition. Contacting can be manual or by machine. Food processing surfaces, food products, food processing or transport waters, and the like can be treated with liquid, foam, gel, aerosol, gas, wax, solid, or powdered stabilized compositions.
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures, embodiments, claims, and examples described herein. Such equivalents are considered to be within the scope of this invention and covered by the claims appended hereto. The contents of all references, patents, and patent applications cited throughout this application are hereby incorporated by reference. The invention is further illustrated by the following examples, which should not be construed as further limiting.
- A study was run to determine the effect of pH on the insecticidal effectiveness of exemplary compositions. The following compositions were tested.
-
TABLE 1 Composition A Composition B Composition C Ingredient (wt %) (wt %) (wt %) Soft water 86.65 87.65 88.65 Buffer 1.00 1.00 1.00 Fatty acid 6.00 6.00 6.00 Neutralizer 4.35 4.35 4.35 2-phenylethyl 1.00 1.00 0 propionate Peppermint Oil 1.00 0 0 Total 100 100 100 Percent Fatty Acid 7.32 7.32 7.32 Soap Formed - Each of compositions A, B and C were tested for their ability to kill cockroaches. Compositions A and B were also tested at various pH levels. For this study, the kill time was measured as time in seconds for 90% of cockroaches to die after exposure to the test compositions (KT-90) in a jar. The KT-90 results are shown in the table below for each of the test compositions at various pH levels.
-
TABLE 2 KT-90 (seconds) Compo- Compo- Compo- Compo- Compo- Compo- sition sition sition sition sition sition A at A at B at B at B at C at pH 8.18 pH 10.24 pH 8.3 pH 9.5 pH 10pH 8.43 90 >900 63 >900 >900 76 90 85 - These results are also graphically depicted in
FIG. 1 . As can be seen from this table andFIG. 1 , the compositions tested with a pH between 8.0 and 8.5 had a much lower KT-90 compared to those compositions with a pH higher than 9.0. That is, the compositions with a pH between 8.0 and 8.5 had a greater ability to kill cockroaches in a shorter amount of time. - Without wishing to be bound by any particular theory, it is thought that it is the fatty acid/fatty acid soap at the optimum pH which was responsible for killing the cockroaches.
- Another study was run to evaluate the effect of pH versus kill time (KT-90). For this experiment the same base formula was used, and the pH was adjusted using either citric acid (to make the compositions more acidic) or neutralizer (to make the compositions more basic). The table below shows the compositions used for this study.
-
TABLE 3 Comp. D Comp. E Comp. F Comp. G Comp. H Comp. I Comp. J Comp. K Ingredient (wt %) (wt %) (wt %) (wt %) (wt %) (wt %) (wt %) (wt %) Soft water 87.65 87.65 87.65 87.65 87.65 87.65 87.65 87.65 Buffer 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Fatty acid 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 Neutralizer 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35 2- 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 phenylethyl propionate Total 100 100 100 100 100 100 100 100 Percent 7.32 7.32 7.32 7.32 7.32 7.32 7.32 7.32 Fatty Acid Soap Formed pH 5.20 7.42 8.20 8.53 9.01 9.61 9.90 11.25
The phase stability of this composition at the various pH levels tested was recorded, as was the KT-90. The results of this study are shown in the table below. -
TABLE 4 Comp. D Comp. E Comp. F Comp. G Comp. H Comp. I Comp. J Comp. K Phase Phase White Clear Clear Clear Clear Clear Clear Stability separation opaque mini- emulsion KT-90 107 58 61 74 300 600 >900 >900 Seconds - The results from this study are also shown in
FIG. 2 . As can be seen from these results, the compositions tested with a pH below 8.5 had a much faster KT-90. However, at an acidic pH (Compositions D and E), the compositions were not stable. Thus, at about pH 7.5 to about 8.5 the compositions tested were both phase stable, and had low KT-90 scores. - A study was performed to evaluate the effect of pH on the wetting abilities of test compositions. For this study, the contact angle of test compositions at various pH levels and at various times, was measured on American cockroach wings. The compositions tested each had 7.25% of a fatty acid soap, 1% phenylethyl proprionate, 1% sodium citrate, and 0.10% xanthan gum. The pH of each of the test solutions was adjusted to either 8.3, 11.5, or 6.7. Water was also used as a control. The results are shown in the table below:
-
TABLE 5 Contact Contact Contact Angle Angle Angle at 1 at 30 at 60 pH Composition Tested second seconds seconds 8.3 7.25% fatty acid soap, 1% 18.48 1.16 1.93 phenylethyl proprionate, 1% sodium citrate, 0.10% xanthan gum 8.3 7.25% fatty acid soap, 1% 15.61 1.22 phenylethyl proprionate, 1% sodium citrate, 0.10% xanthan gum Average 17.045 1.16 1.575 11.5 7.25% fatty acid soap, 1% 26.81 19.44 20.93 phenylethyl proprionate, 1% sodium citrate, 0.10% xanthan gum 11.5 7.25% fatty acid soap, 1% 31.91 22.48 21.49 phenylethyl proprionate, 1% sodium citrate, 0.10% xanthan gum Average 29.36 20.96 21.21 6.7 7.25% fatty acid soap, 1% Drop soaked phenylethyl proprionate, 1% into wings sodium citrate, 0.10% xanthan immediately gum 6.7 7.25% fatty acid soap, 1% Drop soaked phenylethyl proprionate, 1% into wings sodium citrate, 0.10% xanthan immediately gum Average N/A N/A N/A Water 58.33 51.07 51.62 Water 73.03 65.25 61.22 Water 58.81 44.99 47.64 Average 63.39 53.77 53.49
These results are also shown inFIG. 3 . As can be seen from these results, both the test compositions at pH 6.7 and 8.3 completely wet the wings by 30 seconds. By “completely wet” it is meant that a contact angle of zero degrees (0°) was measured. As is also seen, the same composition at a higher pH did not wet the wings completely even after sixty seconds. Without wishing to be bound by any particular theory, it is thought that a lower contact angle results in a higher kill. That is, it is thought that better wetting compositions wet the highly hydrophobic exoskeleton of insects, covering the spiracles of the insects, thereby suffocating them. It is also thought that a high wetting composition leads to a higher kill rate, as the better wetting a composition is, the more chemicals that will enter into the insects through the spiracles. - A study was performed to measure the food soil removal abilities of test compositions. For this study, white vinyl tiles from Flexco were soiled with red soil. The red soil used for this study was a mixture of lard, corn oil, whole powdered egg, and iron oxide. The tiles were “painted” with the red soil using a 3 inch foam brush to form a uniform coating or layer. Then the tiles were left to dry for 24 hours before testing.
- To determine the percent (%) soil removal (SR), the reflectance of the tile sample was measured on a spectrophotometer. The “L value” is a direct reading supplied by the spectrophotometer. L generally is indicative of broad visible spectrum reflectance, where a value of 100% would be absolute white. The % soil removal is calculated from the difference between the initial (before cleaning) lightness (L) value and the final L value (after cleaning):
-
SR=(L final −L initial)/(L unsoiled tile −L initial))×100% - Two compositions were tested for soil removal. The compositions are show in the table below:
-
TABLE 5a Comp. L Comp. Q Ingredient (wt %) (wt %) Soft water 88.18 87.74 Buffer 1 1.5 Fatty acid 6 5.9 Neutralizer 3.72 4.76 2- phenylethyl propionate 1 Thickener 0.1 0.1
The test compositions were compared to a commercially available cleaner, Orange Force®, commercially available from Ecolab Inc. located in St. Paul, Minn. andFormula 409 commercially available from Clorox Company located in Pleasanton, Calif. - The results of this study are shown in
FIGS. 4 and 4 a. As can be seen from this Figure, test composition Q removed slightly more of the red soil than the other products tested. - Results provided in
FIG. 4 a shows that on 24 hour aged tiles, test composition Q removes considerably more soil than the other products tested. Thus, it was shown that exemplary compositions can also be used for soil removal. - Test compositions were evaluated for their food contact sanitizing ability. In particular, the test compositions were evaluated against Escherichia coli ATCC 11229 and Staphyloccoccus aureus ATCC 6538. Four test compositions were used for this test. The compositions are shown in the table below.
-
TABLE 6 Comp. L Comp. M Comp. P Comp. Q Ingredient (wt %) (wt %) (wt %) (wt %) Soft water 88.18 87.24 88.06 87.74 Buffer 1.00 1.357 1.51 1.50 Fatty acid 6.00 6.00 5.99 5.90 Neutralizer 3.72 4.3 4.34 4.76 2-phenylethyl propionate 1.00 1.00 Thickener 0.1 0.10 0.10 - The compositions were tested against Escherichia coli ATCC 11229 and Staphyloccoccus aureus ATCC 6538, at ambient temperature for 30 and 60 second exposure times. The results are shown below.
-
TABLE 7 Inoculum Numbers (CFU/mL) for Compositions L & M Test System A B Average Escherichia coli 144 × 106 162 × 106 1.5 × 108 ATCC 11229 Staphyloccoccus 57 × 106 74 × 106 6.6 × 107 aureus ATCC 6538 -
TABLE 7a Inoculum Numbers (CFU/mL) for Compositions P Test System A B Average Escherichia coli 198 × 106 190 × 106 1.9 × 108 ATCC 11229 Staphylococcus 63 × 106 77 × 106 7.0 × 107 aureus ATCC 6538 -
TABLE 8 Inoculum Numbers (CFU/mL) for Composition Q Test System A B Average Staphylococcus 98 × 106 79 × 106 8.9 × 107 aureus ATCC 6538 Escherichia coli 70 × 106 80 × 106 7.5 × 107 ATCC 11229 -
TABLE 9 Escherichia coli ATCC 11229 Exposure Average Log Percent Test Time Survivors Survivors Re- Re- Composition (seconds) (CFU/mL) (CFU/mL) duction duction Composition 30 <10, <10 <10 >7.18 >99.999 L 60 <10, <10 <10 >7.18 >99.999 Composition 30 <10, <10 <10 >7.18 >99.999 M 60 <10, <10 <10 >7.18 >99.999 Composition 30 <10, <10 <10 >7.29 >99.999 P 60 1.0 × 101, <10 >7.29 >99.999 <10 Composition 30 12, <10 × 101 <6.5 × 101 >6.06 99.999 Q 60 10, <10 <10 >6.88 >99.999 -
TABLE 10 Staphylococcus aureus ATCC 6538 Exposure Average Log Percent Test Time Survivors Survivors Re- Re- Composition (seconds) (CFU/mL) (CFU/mL) duction duction Composition 30 67, 55 × 101 6.1 × 102 5.40 >99.999 L 60 6, 5 × 101 5.5 × 101 6.44 >99.999 Composition 30 20, 18 × 101 1.9 × 102 5.91 >99.999 M 60 <10, 2 × 101 <1.5 × 101 >7.01 >99.999 Composition 30 186, 200 × 1.9 × 105 2.56 99.724 P 103 60 29, 19 × 103 2.4 × 104 3.46 99.966 Composition 30 79, 192 × 101 1.4 × 103 4.80 99.998 Q 60 <10, 6 × 101 <3.5 × 101 >6.40 >99.999 - As can be seen from these results, all of the test compositions achieved over a 5 log reduction at 30 and 60 seconds against Escherichia coli ATCC 11229. Compositions L and M achieved over a 5 log reduction at 30 and 60 seconds against Staphylococcus aureus ATCC 6538 while Composition Q achieved over a 5 log reduction at 60 seconds. Thus, the test compositions showed both a germicidal and detergent sanitizing action.
- A study was run to determine the effect of the chain length of the fatty acid incorporated into the test compositions. For this study, a C18 fatty acid, oleic acid, was used in a test composition. The composition tested had 4.99% potassium oleate, 1% phenylethyl proprionate, and 1% sodium citrate. The pH of each of the test solutions was adjusted to either 5.07, 8.25, 9.27, or 10.57. Water was also used as a control. The KT-90 of these test compositions at the different pH levels was measured. The results are shown in the table below:
-
TABLE 11 KT-90 (seconds) Potassium Potassium Potassium Potassium Oleate at pH Oleate at Oleate at pH Oleate at pH 5.07 pH 8.25 9.27 10.57 >900 >900 560 355 - The results from this study are shown in
FIG. 5 . As can be seen from this figure, the test composition including the long chain fatty acid (oleic acid) had a 90% kill time (KT-90) of no shorter than six minutes. Although, these compositions did show a faster kill at a higher pH (pH˜10.6), the kill was still much slower (4 times as slow) as those compositions including a medium chain (C5-C12) fatty acid at a lower pH. - Test compositions were studied for their ability to kill a variety of insects. The test compositions were directly applied to bed bugs, houseflies, fruit flies, ants and spiders. The test composition tested for these experiments included 7.25%-7.33% Fatty Acid Soap, 1% 2-phenethyl proprionate, 1% Sodium Citrate, 0.10% Xanthan Gum, 0.31% Citric Acid, and the balance as Soft Water.
- (a) Bedbugs: The average percent mortality of bed bugs over 168 hours was measured. The test compositions were also compared to a commercially available insecticide, Terminix Safeshield, commercially available from Terminix.
- The results are shown in
FIG. 6 . As can be seen from this Figure, after about 5 minutes the test compositions had about a 60% mortality rate. This was much higher than the average mortality rate of the commercially available Terminix composition. - (b) Houseflies: The KT-90 of a test composition was tested against houseflies. Two other commercially available insecticides, Terminix Safeshield, and Tyratech Naturals were also tested. The results of this test are shown in
FIG. 7 . As can be seen from these results, the test compositions had an average KT-90 of less than 100 seconds, where as the Tyratech Naturals insecticide had a KT-90 of over 500 seconds. - (c) Fruit Flies: The KT-90 of a test composition was tested against Fruit Flies. Two other commercially available insecticides, Terminix Safeshield, and Tyratech Naturals were also tested. The results of this test are shown in
FIG. 8 . As can be seen from this figure, the test composition had a KT-90 of less than 20 seconds, which was faster than the KT-90 of both of the commercially available insecticides tested. - (d) Ants: The average mortality of house ants, pharaoh ants, and
argentine ants 30 minutes post exposure to a test composition was measured. A commercially available insecticide, Terminix Safeshield, was also tested. Water was used as a control. The results from these tests are shown inFIGS. 9A , 9B, and 9C. As can be seen from these Figures, the test composition had a much higher average mortality rate thirty minutes post exposure compared to the commercially available insecticide tested. - (e) Spiders: The average percent knock down of Black Widow spiders was measured thirty minutes post direct application of a test composition. A commercially available insecticide, Terminix Safeshield, was also tested. The results from this study are shown in
FIG. 10 . As can be seen from this Figure, after 30 minutes the test composition had a 100% knock down of the spiders. The commercially available insecticide had only about a 40% knock down over the same time period. - A study was run to evaluate the preservative properties of test compositions. For this study, one 99 mL sample of the test composition was inoculated with 1 mL of a 1:1:1:1:1 mixture of bacteria and one 99 mL sample was inoculated with 1 mL of a 1:1:1 mixture of yeasts and mold. Plate counts of the samples were taken at 7, 14, 21, and 28 days.
- Three test compositions were studied, one with potassium sorbate, and two without and one with a thickener. Potassium sorbate is a known preservative. The test compositions studied are shown in the table below:
-
TABLE 12 Comp. N Comp. O Comp. Q Ingredient (wt %) (wt %) (wt %) Soft water 74.00 73.80 87.74 Buffer 1.00 1.00 1.5 Fatty acid 6.00 6.00 5.90 Neutralizer 18.00 18.00 4.76 2-phenylethyl 1.00 1.00 propionate Potassium Sorbate 0.20 Thickener 0.10 - The bacterial inoculum mixture was made up of equal parts of the following five organisms: Staphylococcus aureus ATCC 6538; Escherichia coli ATCC 11229; Enterobacter aerogenese ATCC 13048; Pseudomonas aeruginosa ATCC 15442; and Burkholderia cepacia ATCC 25416. The yeast and mold mixture was made up of equal parts of the following three organisms: Candida albicans ATCC 10231; Saccharomyces cerevisiae ATCC 834; and Aspergillus niger ATCC 16404. The tests were run at ambient temperatures, and the exposure times were 7, 14, 21, and 28 days. The results are shown in the tables below.
-
TABLE 13 Inoculum Numbers (CFU/mL) for Compositions N & O Test System A B Average Bacteria Inoculum 56 × 105 51 × 105 5.4 × 106 Yeast and Mold 33 × 104 37 × 104 3.4 × 105 Inoculum -
TABLE 13a Inoculum Numbers (CFU/mL) for Composition Q Test System A B C Average Bacterial Inoculum 50 × 105 49 × 105 23 × 105 4.1 × 106 Yeast and Mold 9 × 104 14 × 104 16 × 104 1.3 × 105 Inoculum -
TABLE 14 Bacteria Pre- Inoculum Sterility Day 7 Day 14Day 21 Day 28 Test Check Survivors Survivors Survivors Survivors Composition (CFU/mL) (CFU/mL) (CFU/mL) (CFU/mL) (CFU/mL) N <1 <10 <10 <10 <10 O <1 <10 <10 <10 <10 Q <1 <10 <10 <10 <10 -
TABLE 15 Yeast and Mold Pre- Inoculum Sterility Day 7 Day 14Day 21 Day 28 Test Check Survivors Survivors Survivors Survivors Composition (CFU/mL) (CFU/mL) (CFU/mL) (CFU/mL) (CFU/mL) N <1 <100 <100 <100 <100 O <1 <100 <100 <100 <100 Q <1 <100 <100 <100 <100 - As can be seen from these results, all of the test compositions passed the preservation criteria following the United States Pharmacopeia guidelines with regard to bacteria and yeast and mold.
- Test Compositions M and P from Example 4 were diluted and evaluated for their food contact sanitizing ability. In particular, the diluted test compositions were evaluated against Escherichia coli ATCC 11229 and Staphylococcus aureus ATCC 6538. Compositions M and P are shown again in the table below for convenience.
-
TABLE 16 Comp. M Comp. P Ingredient (wt %) (wt %) Soft water 87.24 88.06 Buffer 1.36 1.51 Fatty acid 6.00 5.99 Neutralizer 4.30 4.34 2-phenylethyl propionate 1.00 Thickener 0.10 - Composition M was diluted to prepare four different test dilutions as follows:
-
TABLE 17 mL of Test mL of Test Substance Concentration Diluent Substance Diluent Composition M 1:2 Sterile Milli- Q 100 100 1:4 Water 50 150 1:8 25 175 1:16 12.5 187.5
Composition P was diluted to four different test dilutions with di-ionized water as follows: -
TABLE 17a Test Substance Concentration Composition P 1:2 1:4 1:8 1:16 - The compositions were tested against Escherichia coli ATCC 11229 and Staphylococcus aureus ATCC 6538, at ambient temperature for 30 and 60 second exposure times. The results are shown below.
-
TABLE 18 Inoculum Numbers (CFU/mL) for Composition M Test System A B Average Escherichia coli ATCC 11229 143 × 106 168 × 106 1.6 × 108 Staphylococcus aureus ATCC 42 × 106 45 × 106 4.4 × 107 6538 -
TABLE 18a Inoculum Numbers (CFU/ml) for Composition P Test System A B Average Escherichia coli ATCC 11229 198 × 106 190 × 106 1.9 × 108 Staphylococcus aureus ATCC 63 × 106 77 × 106 7.0 × 107 6538 -
TABLE 19 Escherichia coli ATCC 11229 Average Exposure Survivors Survivors Log Percent Time (CFU/mL) (CFU/mL) Reduction Reduction Composition M Dilution 1:2 30 seconds <10, <10 <10 >7.19 >99.999 60 seconds <10, <10 <10 >7.19 >99.999 1:4 30 seconds <10, <10 <10 >7.19 >99.999 60 seconds <10, <10 <10 >7.19 >99.999 1:8 30 seconds <10, <10 <10 >7.19 >99.999 60 seconds <10, <10 <10 >7.19 >99.999 1:16 30 seconds <10, 95 × 101 4.8 × 102 5.51 >99.999 60 seconds <10, <10 <10 >7.19 >99.999 Composition P Dilution 1:2 30 seconds <10, <10 <10 >7.29 >99.999 60 seconds <10, <10 <10 >7.29 >99.999 1:4 30 seconds <10, <10 <10 >7.29 >99.999 60 seconds <10, <10 <10 >7.29 >99.999 1:8 30 seconds 280*, 348* × 105 3.1 × 107 0.79 83.814 60 seconds 50, 83 × 105 6.6 × 106 1.46 96.572 1:16 30 seconds 969*, 1425* × 105 1.2 × 108 0.21 38.299 60 seconds 1425*, 1529*, ×105 1.5 × 108 0.12 23.608 *Estimated count -
TABLE 20 Staphylococcus aureus ATCC 6538 Average Exposure Survivors Survivors Log Percent Time (CFU/mL) (CFU/mL) Reduction Reduction Composition M Dilution 1:2 30 seconds 496*, 632* × 101 5.6 × 103 3.89 99.987 60 seconds 16, 26 × 101 2.1 × 102 5.32 >99.999 1:4 30 seconds 51, 23 × 103 3.7 × 104 3.07 99.915 60 seconds 708*, 524* × 101 6.2 × 103 3.85 99.986 1:8 30 seconds 248, 172 × 101 2.1 × 103 4.32 99.995 60 seconds 4, 6 × 101 5.0 × 101 5.94 >99.999 1:16 30 seconds 1596*, 1197* × 101 1.4 × 104 3.49 99.968 60 seconds 149, 40 × 101 9.4 × 102 4.66 99.998 Composition P Dilution 1:2 30 seconds 348*, 404*, × 103 3.8 × 105 2.27 99.463 60 seconds 50, 53 × 103 5.2 × 104 3.13 99.926 1:4 30 seconds 57, 72 × 105 6.5 × 106 1.04 90.786 60 seconds 24, 18 × 105 2.1 × 106 1.52 97.000 1:8 30 seconds 560*, 524* × 105 5.4 × 107 0.11 22.571 60 seconds 472*, 484* × 105 4.8 × 107 0.17 31.714 1:16 30 seconds 532*, 444* × 105 4.9 × 107 0.16 30.286 60 seconds 444*, 396* × 105 4.2 × 107 0.22 40.000 *Estimated count - As can be seen from these results, all of the dilutions of Composition M achieved over a 5 log reduction at 30 and 60 seconds against Escherichia coli ATCC 11229. Composition P was able to achieve over a 5 log reduction at 30 and 60 seconds against Escherichia coli ATCC 11229 at 50% and 25% dilutions.
- Composition M was able to achieve over a 5 log reduction at 60 seconds against and Staphylococcus aureus ATCC 6538 at the 1:2 and 1:8 dilutions. Composition P was unable to achieve over a 5 log reduction at 60 seconds against Staphylococcus aureus ATCC 6538 at any dilution tested.
- Test compositions were evaluated for Use Dilution Disinfectant efficacy and Germicidal Spray Disinfectant efficacy. In particular the test compositions were evaluated against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 15442. Composition P was used for these tests. Composition P is shown again for convenience.
-
Comp. P Ingredient (wt %) Soft water 88.06 Buffer 1.51 Fatty acid 5.99 Neutralizer 4.34 2-phenylethyl propionate Thickener 0.10 - The composition was tested against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 15442, at ambient temperature for five minutes for both tests. The spray distance was 6-8 inches with three trigger pulls with an average weight per spray of 2.3 grams for the Germicidal Spray disinfectant efficacy test.
- The results of the Use Dilution Disinfectant efficacy are shown below.
-
TABLE 21 Test Results: # Negative Tubes/# Test Substance Test System carriers Tested Pass/Fail* Composition P Staphylococcus 2/60 Fail aureus ATCC 6538 Pseudomonas 44/60 Fail aeruginosa ATCC 15442 *The EPA standard for disinfectants is 59/60 negative carriers. -
TABLE 22 Test Controls # Negative Tubes/# carriers Test Substance Test System Tested Positive Carriers Staphylococcus aureus 1 positive of 1 tested ATCC 6538 Pseudomonas 1 positive of 1 tested aeruginosa ATCC 15442 Negative Carrier Not Applicable 1 negative of 1 tested Carrier Enumeration Staphylococcus aureus 4.2 × 106 CFU/Carrier ATCC 6538 Pseudomonas 1.9 × 107 CFU/Carrier aeruginosa ATCC 15442
For a composition to pass the Use Dilution test, at least 59 of the 60 tubes tested were required to be negative for each organism tested. Composition P did not pass Use Dilution test for Staphylococcus aureus ATCC 6538 or Pseudomonas aeruginosa ATCC 15442 at 5 minutes.
The results of the Germicidal Spray Disinfectant efficacy are shown below: -
TABLE 23 Test Results: # Negative Tubes/# Test Substance Test System carriers Tested Pass/Fail* Composition P Staphylococcus 20/60 Fail aureus ATCC 6538 Pseudomonas 60/60 Pass aeruginosa ATCC 15442 *The EPA standard for disinfectants is 59/60 negative carriers. -
TABLE 24 Test Controls # Negative Tubes/# carriers Test Substance Test System Tested Positive Carriers Staphylococcus aureus 2 positive of 2 tested ATCC 6538 Pseudomonas 2 positive of 2 tested aeruginosa ATCC 15442 Negative Carrier Not Applicable 1 negative of 1 tested Carrier Enumeration Staphylococcus aureus 8.0 × 104 CFU/Carrier ATCC 6538 Pseudomonas 1.8 × 105 CFU/Carrier aeruginosa ATCC 15442 Composition P failed the Germicidal Spray Disinfectants test for Pseudomonas aeruginosa ATCC 15442 at 5 minutes, and failed Staphylococcus aureus ATCC 6538 at 5 minutes.
Claims (30)
1. An insecticidal composition comprising:
(a) a fatty acid;
(b) a neutralizer;
(c) a buffer; and
(d) a carrier, wherein the composition has a pH of about 7.5 to about 9.0.
2. The composition of claim 1 , wherein the fatty acid comprises a branched or straight chain C5 to C12 fatty acid
3. The composition of claim 2 , wherein the fatty acid is selected from the group consisting of hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid and mixtures thereof.
4. The composition of claim 1 , wherein the neutralizer comprises an alkali metal hydroxide.
5. The composition of claim 4 , wherein the alkali metal hydroxide is selected from the group consisting of sodium hydroxide, potassium hydroxide, and mixtures thereof.
6. The composition of claim 1 , wherein the neutralizer is selected from an amine, an alkanolamine, and mixtures thereof.
7. The composition of claim 1 , wherein the buffer is selected from a weak acid, a weak base, an ampholyte buffering agent, and mixtures thereof.
8. The composition of claim 1 , wherein the buffer is selected from citrate, citric acid, a bicarbonate, and mixtures thereof.
9. The composition of claim 1 , wherein the carrier comprises water.
10. The composition of claim 1 , wherein the composition comprises:
(a) about 1.0 wt % to about 10 wt % of the fatty acid;
(b) about 1.0 wt % to about 10 wt % of the neutralizer;
(c) about 0.1 to about 1.0% of the buffer; and
(d) at least about 80 wt % of the carrier.
11. The composition of claim 1 , further comprising a thickening agent selected from xanthan gum, guar gum, polyethylene oxide, polyvinyl pyrrolidone, polyvinyl alcohol, clay thickener, betonite, carboxylmethyl ether cellulose, kaolin, soy protein and mixtures thereof.
12. The composition of claim 1 , further comprising an additional ingredient selected from an insecticide, an essential oil, 2-phenyl ethyl propionate, a residual insecticide, and mixtures thereof.
13. The composition of claim 1 , wherein the pH is about 8.0 to about 8.5.
14. The composition of claim 1 , wherein the fatty acid comprises decanoic acid, and the neutralizing agent comprises potassium hydroxide.
15. A method for eliminating insects comprising applying to the insects or an area inhabited by the insects an insecticidal composition comprising:
(a) a fatty acid;
(b) a neutralizer;
(c) a buffer; and
(d) a carrier, wherein the composition has a pH of about 7.5 to about 9.0.
16. The method of claim 15 , wherein the fatty acid comprises a branched or straight chain C5 to C12 fatty acid
17. The method of claim 16 , wherein the fatty acid is selected from the group consisting of hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid and mixtures thereof.
18. The method of claim 15 , wherein the neutralizer comprises an alkali metal hydroxide.
19. The method of claim 19 , wherein the alkali metal hydroxide is selected from the group consisting of sodium hydroxide, potassium hydroxide, and mixtures thereof.
20. The method of claim 15 , wherein the neutralizer is selected from an amine, an alkanolamine, and mixtures thereof.
21. The method of claim 15 , wherein the buffer is selected from a weak acid, a weak base, an amphoteric buffering agent, and mixtures thereof.
22. The method of claim 15 , wherein the buffer is selected from citrate, citric acid, a bicarbonate, and mixtures thereof.
23. The method of claim 15 , wherein the carrier comprises water.
24. The method of claim 15 , wherein the composition comprises:
(a) about 1.0 wt % to about 10 wt % of the fatty acid;
(b) about 1.0 wt % to about 10 wt % of the neutralizer;
(c) about 0.1 to about 1.0% of the buffer; and
(d) at least about 80 wt % of the carrier.
25. The method of claim 15 , further comprising a thickening agent selected from xanthan gum, guar gum, polyethylene oxide, polyvinyl pyrrolidone, polyvinyl alcohol, clay thickener, betonite, carboxylmethyl ether cellulose, kaolin, soy protein and mixtures thereof.
26. The method of claim 15 , further comprising an additional ingredient selected from an insecticide, an essential oil, 2-phenyl ethyl propionate, a residual insecticide, and mixtures thereof.
27. The method of claim 15 , wherein the pH is about 8.0 to about 8.5.
28. The method of claim 15 , wherein the fatty acid comprises decanoic acid, and the neutralizing agent comprises potassium hydroxide
29. A method of reducing a population of microorganism on an object, said method comprising applying a composition comprising (a) a fatty acid; (b) a neutralizer; (c) a buffer; and (d) a carrier, to the object, wherein the composition has a pH of about 7.5 to about 9.0.
30. A method of removing a food soil from a surface, said method comprising applying a composition comprising (a) a fatty acid; (b) a neutralizer; (c) a buffer; and (d) a carrier, to the surface, wherein the composition has a pH of about 7.5 to about 9.0.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/306,298 US20120309830A1 (en) | 2010-11-30 | 2011-11-29 | Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions |
| US13/898,035 US10098098B2 (en) | 2010-11-30 | 2013-05-20 | Mixed fatty acid soap/fatty acid insecticidal, cleaning, and antimicrobial compositions |
| US15/926,853 US11533911B2 (en) | 2010-11-30 | 2018-03-20 | Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions |
| US18/058,429 US20230157279A1 (en) | 2010-11-30 | 2022-11-23 | Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US41821510P | 2010-11-30 | 2010-11-30 | |
| US13/306,298 US20120309830A1 (en) | 2010-11-30 | 2011-11-29 | Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/898,035 Continuation US10098098B2 (en) | 2010-11-30 | 2013-05-20 | Mixed fatty acid soap/fatty acid insecticidal, cleaning, and antimicrobial compositions |
| US15/926,853 Continuation US11533911B2 (en) | 2010-11-30 | 2018-03-20 | Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120309830A1 true US20120309830A1 (en) | 2012-12-06 |
Family
ID=46172323
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/306,298 Abandoned US20120309830A1 (en) | 2010-11-30 | 2011-11-29 | Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions |
| US13/898,035 Active 2032-04-14 US10098098B2 (en) | 2010-11-30 | 2013-05-20 | Mixed fatty acid soap/fatty acid insecticidal, cleaning, and antimicrobial compositions |
| US15/926,853 Active 2032-05-07 US11533911B2 (en) | 2010-11-30 | 2018-03-20 | Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions |
| US18/058,429 Pending US20230157279A1 (en) | 2010-11-30 | 2022-11-23 | Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions |
Family Applications After (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/898,035 Active 2032-04-14 US10098098B2 (en) | 2010-11-30 | 2013-05-20 | Mixed fatty acid soap/fatty acid insecticidal, cleaning, and antimicrobial compositions |
| US15/926,853 Active 2032-05-07 US11533911B2 (en) | 2010-11-30 | 2018-03-20 | Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions |
| US18/058,429 Pending US20230157279A1 (en) | 2010-11-30 | 2022-11-23 | Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions |
Country Status (2)
| Country | Link |
|---|---|
| US (4) | US20120309830A1 (en) |
| WO (1) | WO2012073192A2 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150218495A1 (en) * | 2014-02-05 | 2015-08-06 | Ecolab Usa Inc | Removal of tea and coffee stains by fatty acid soaps |
| US10448633B2 (en) | 2016-11-08 | 2019-10-22 | Valent Biosciences Llc | Octanoic, nonanoic and decanoic fatty acids with pyrethroid adulticides |
| US10772343B2 (en) | 2014-11-19 | 2020-09-15 | Kansas State University Research Foundation | Chemical mitigants in animal feed and feed ingredients |
| WO2023044357A1 (en) * | 2021-09-15 | 2023-03-23 | University Of Florida Research Foundation, Inc. | Novel compounds for management of bacterial spot disease in tomato |
| US11766042B1 (en) | 2021-03-04 | 2023-09-26 | MonarchChem, LLC | Organic contact herbicide and method of use thereof |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120309830A1 (en) * | 2010-11-30 | 2012-12-06 | Ecolab Usa Inc. | Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions |
| MX378656B (en) | 2013-09-16 | 2025-03-10 | Taylor Commercial Foodservice Llc | AUTOMATED SYSTEM FOR FOOD PROCESSOR AND METHOD. |
| US11028348B2 (en) | 2014-10-09 | 2021-06-08 | ProNatural Brands, LLC | Naturally-derived antimicrobial cleaning solutions |
| US10076115B2 (en) | 2014-10-09 | 2018-09-18 | ProNatural Brands, LLC | Naturally-derived surface sanitizer and disinfectant |
| WO2017027431A1 (en) | 2015-08-09 | 2017-02-16 | Homs, Llc | Herbicidal compositions |
| WO2017100681A1 (en) * | 2015-12-11 | 2017-06-15 | Idea Boxx, Llc | Flow balancing in food processor cleaning system |
| JP7083606B2 (en) * | 2016-12-09 | 2022-06-13 | アース製薬株式会社 | Pest control agent |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5093124A (en) * | 1989-11-20 | 1992-03-03 | Safer, Inc. | Fatty acid-based pesticide with reduced phytotoxicity |
| US5366995A (en) * | 1991-05-01 | 1994-11-22 | Mycogen Corporation | Fatty acid based compositions for the control of established plant infections |
| US5424270A (en) * | 1992-12-02 | 1995-06-13 | Church & Dwight Co., Inc. | Bicarbonate fungicide compositions containing spreader-sticker ingredients |
| US5739172A (en) * | 1992-07-01 | 1998-04-14 | Church & Dwight Co., Inc. | Environmentally safe pesticide compositions |
| US20030060379A1 (en) * | 2000-05-26 | 2003-03-27 | The Procter & Gamble Company | Pesticides |
| US6582734B1 (en) * | 2000-07-20 | 2003-06-24 | Ecolab Inc. | Antimicrobial composition useful for the treatment of bovine mastitis |
Family Cites Families (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB381290A (en) | 1931-08-24 | 1932-10-06 | Constantin De Gendre | Improvements in the manufacture of insecticides |
| GB613835A (en) | 1945-09-13 | 1948-12-03 | John Wesley Orelup | Fatty acid esters having amphoteric properties |
| US3186912A (en) | 1959-08-03 | 1965-06-01 | Robert L Beamer | Cosmetic emulsion |
| GB1014243A (en) | 1962-02-02 | 1965-12-22 | Pfizer & Co C | Insect-repellant composition and process |
| GB2160216B (en) | 1984-07-19 | 1986-10-22 | Simmons Nominees Pty Ltd | Insect-repellent and insecticidal soap compsition |
| US4822613A (en) | 1986-12-15 | 1989-04-18 | S. C. Johnson & Son, Inc. | Water-soluble foamable insecticidally-active compositions |
| IL81350A (en) | 1987-01-22 | 1991-01-31 | Yissum Res Dev Co | Licidal compositions containing carboxylic acids |
| US5580567A (en) * | 1990-07-19 | 1996-12-03 | Helena Chemical Company | Homogeneous, essentially nonaqueous adjuvant compositions with buffering capability |
| MA22456A1 (en) | 1991-03-05 | 1992-10-01 | Procter & Gamble | PERSONAL CLEANING PRODUCT OF THE SOFT, STABLE LIQUID SOAP TYPE AND METHOD FOR THE PREPARATION THEREOF |
| US5296157A (en) | 1991-03-05 | 1994-03-22 | The Proctor & Gamble Company | Liquid soap personal cleanser with critical heat cycle stabilizing system |
| AU3927593A (en) | 1992-05-12 | 1993-12-13 | Church & Dwight Company, Inc. | Blended insecticide compositions |
| WO1993022915A1 (en) | 1992-05-12 | 1993-11-25 | Church & Dwight Company, Inc. | Insecticide compositions |
| AU3917393A (en) | 1992-05-12 | 1993-12-13 | Church & Dwight Company, Inc. | Fungicide compositions |
| AU3815793A (en) | 1992-05-12 | 1993-12-13 | Church & Dwight Company, Inc. | Blended fungicide compositions |
| WO1993022919A1 (en) | 1992-05-12 | 1993-11-25 | Church & Dwight Company, Inc. | Herbicide compositions |
| US6294577B1 (en) | 1992-08-07 | 2001-09-25 | The United States Of America As Represented By The Secretary Of Agriculture | Repellent for ants |
| US5610130A (en) | 1993-08-04 | 1997-03-11 | Colgate-Palmolive Company | Microemulsion all-purpose liquid cleaning compositions with insect repellent |
| US5496857A (en) | 1994-03-17 | 1996-03-05 | Targosz; Eugene F. | Whitefly insecticide |
| AU681488B2 (en) | 1994-04-15 | 1997-08-28 | Colgate-Palmolive Company, The | Microemulsion liquid cleaning compositions with insect repellent |
| AU681487B2 (en) | 1994-04-15 | 1997-08-28 | Colgate-Palmolive Company, The | Microemulsion all purpose liquid cleaning compositions with insect repellent |
| US5464457A (en) | 1994-06-29 | 1995-11-07 | Church & Dwight Co., Inc. | Soil fumigation with gasiform pesticide |
| DE4444878A1 (en) * | 1994-12-16 | 1996-06-20 | Henkel Kgaa | Nitrogen-free corrosion inhibitors with a good buffer effect |
| EP1018873B1 (en) | 1997-06-30 | 2003-08-27 | William G. Reifenrath | Natural insect and arthropod repellent |
| US7767216B2 (en) | 1999-04-28 | 2010-08-03 | The Regents Of The University Of Michigan | Antimicrobial compositions and methods of use |
| US7198801B2 (en) | 2000-08-03 | 2007-04-03 | Antares Pharma Ipl Ag | Formulations for transdermal or transmucosal application |
| US7504123B2 (en) | 2004-01-09 | 2009-03-17 | Ecolab Inc. | Methods for washing poultry during processing with medium chain peroxycarboxylic acid compositions |
| US7994138B2 (en) | 2004-06-01 | 2011-08-09 | Agscitech Inc. | Microbial biosurfactants as agents for controlling pests |
| US20080051455A1 (en) | 2004-07-06 | 2008-02-28 | Hans Achtmann | Method of Treating an Animal's Exterior for Cleaning and/or Insect Repellency |
| CN101232823B (en) | 2005-07-25 | 2012-12-12 | 埃科莱布有限公司 | Antimicrobial composition for food |
| WO2007014575A1 (en) * | 2005-08-02 | 2007-02-08 | Thomas Besendorfer | Composition having bactericidal, fungicidal, virucidal and insecticidal action |
| FR2899061B1 (en) | 2006-03-31 | 2009-07-31 | Cid Lines Nv | HYGIENE AND / OR COMESTIC AND / OR DISINFECTANT COMPOSITION CONTAINING AT LEAST ONE REPELLENT AND / OR INSECTIVE ANTI-PARASITE AGENT. |
| FR2899434B1 (en) | 2006-04-07 | 2010-09-10 | Cid Lines Nv | ANTI-PARASITE AND / OR DISINFECTANT AND / OR INSECTICIDAL AND / OR INSECTIVE AND / OR DETERGENT COMPOSITION |
| US20070281002A1 (en) | 2006-05-31 | 2007-12-06 | Sara Morales | Low irritation antimicrobial cleaning substrate |
| US8143309B2 (en) | 2006-07-14 | 2012-03-27 | Urthtech, Llc | Methods and composition for treating a material |
| US8293286B2 (en) * | 2006-10-16 | 2012-10-23 | Sergeant's Pet Care Products, Inc. | Natural compositions for killing parasites on a companion animal |
| EP2083632A2 (en) * | 2006-11-21 | 2009-08-05 | Mitam Ltd. | Formulations of entomopathogenic fungi for insect control |
| WO2009002465A2 (en) * | 2007-06-25 | 2008-12-31 | The Dial Corporation | Non-hazardous foaming ant spray based on natural oils, carboxylate salts and optional synergists |
| US20120309830A1 (en) * | 2010-11-30 | 2012-12-06 | Ecolab Usa Inc. | Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions |
-
2011
- 2011-11-29 US US13/306,298 patent/US20120309830A1/en not_active Abandoned
- 2011-11-29 WO PCT/IB2011/055366 patent/WO2012073192A2/en not_active Ceased
-
2013
- 2013-05-20 US US13/898,035 patent/US10098098B2/en active Active
-
2018
- 2018-03-20 US US15/926,853 patent/US11533911B2/en active Active
-
2022
- 2022-11-23 US US18/058,429 patent/US20230157279A1/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5093124A (en) * | 1989-11-20 | 1992-03-03 | Safer, Inc. | Fatty acid-based pesticide with reduced phytotoxicity |
| US5366995A (en) * | 1991-05-01 | 1994-11-22 | Mycogen Corporation | Fatty acid based compositions for the control of established plant infections |
| US5739172A (en) * | 1992-07-01 | 1998-04-14 | Church & Dwight Co., Inc. | Environmentally safe pesticide compositions |
| US5424270A (en) * | 1992-12-02 | 1995-06-13 | Church & Dwight Co., Inc. | Bicarbonate fungicide compositions containing spreader-sticker ingredients |
| US20030060379A1 (en) * | 2000-05-26 | 2003-03-27 | The Procter & Gamble Company | Pesticides |
| US6582734B1 (en) * | 2000-07-20 | 2003-06-24 | Ecolab Inc. | Antimicrobial composition useful for the treatment of bovine mastitis |
Non-Patent Citations (1)
| Title |
|---|
| National Pesticide Information Center's General Fact Sheet Potassium Salts of Fatty Acids (created 2001, available at the Oregon State website, web address: npic.orst.edu/factsheets/psfatech.pdf). * |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150218495A1 (en) * | 2014-02-05 | 2015-08-06 | Ecolab Usa Inc | Removal of tea and coffee stains by fatty acid soaps |
| US10772343B2 (en) | 2014-11-19 | 2020-09-15 | Kansas State University Research Foundation | Chemical mitigants in animal feed and feed ingredients |
| US10918118B2 (en) | 2014-11-19 | 2021-02-16 | Kansas State University Research Foundation | Chemical mitigants in animal feed and feed ingredients |
| US11896035B2 (en) | 2014-11-19 | 2024-02-13 | Kansas State University Research Foundation | Chemical mitigants in animal feed and feed ingredients |
| US10448633B2 (en) | 2016-11-08 | 2019-10-22 | Valent Biosciences Llc | Octanoic, nonanoic and decanoic fatty acids with pyrethroid adulticides |
| US11766042B1 (en) | 2021-03-04 | 2023-09-26 | MonarchChem, LLC | Organic contact herbicide and method of use thereof |
| WO2023044357A1 (en) * | 2021-09-15 | 2023-03-23 | University Of Florida Research Foundation, Inc. | Novel compounds for management of bacterial spot disease in tomato |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2012073192A3 (en) | 2012-10-18 |
| WO2012073192A2 (en) | 2012-06-07 |
| US10098098B2 (en) | 2018-10-09 |
| US11533911B2 (en) | 2022-12-27 |
| US20130253059A1 (en) | 2013-09-26 |
| US20230157279A1 (en) | 2023-05-25 |
| US20180249450A1 (en) | 2018-08-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20230157279A1 (en) | Mixed fatty acid soap/fatty acid based insecticidal, cleaning, and antimicrobial compositions | |
| US12252672B2 (en) | Rheology modified low foaming liquid antimicrobial compositions and methods of use thereof | |
| KR101857646B1 (en) | Antimicrobial compositions and related methods of use | |
| JP5890778B2 (en) | Antibacterial composition | |
| JP5655075B2 (en) | Preservatives for water and feed | |
| US20070042094A1 (en) | Oxidation method and compositions therefor | |
| US20130065959A1 (en) | Sanitizing meat with peracid and 2-hydroxy organic acid compositions | |
| AU2024278581B2 (en) | C3-c5 n-alkyl-gamma-butyrolactam-containing antimicrobial compositions and uses thereof | |
| KR20200044153A (en) | Antimicrobial compositions and related methods of use | |
| CN102318639A (en) | Preparation and application with compound Alevaire of sterilization and insecticidal function | |
| CN102334502A (en) | Preparation and application of multifunctional atomization agent for controlling pests in sealed container | |
| CN1025650C (en) | Use of composite bactericide-Junduqing | |
| WO2010084052A2 (en) | Use of cationic surfactants as acaricidal agents | |
| CN110366369A (en) | Ecological formulation of multiple antimicrobial actions (bactericides, fungicides and antivirals) from wood molecules | |
| WO1999046986A1 (en) | An ant repellent | |
| CN104255776A (en) | Disposable hygienic quarantine treatment preparation | |
| WO2012054391A2 (en) | Compositions and methods for reducing microbial levels on a surface | |
| EA048335B1 (en) | ANTIMICROBIAL COMPOSITIONS AND METHODS OF THEIR APPLICATION | |
| NZ750504B2 (en) | Antimicrobial Compositions and Related Methods of Use |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ECOLAB USA INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAN, VICTOR F.;KILLEEN, YVONNE M.;DENOMA, MICHAEL C.;AND OTHERS;SIGNING DATES FROM 20111129 TO 20111208;REEL/FRAME:027501/0414 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |