US20120180432A1 - Methods and apparatus for buffering anesthetics - Google Patents
Methods and apparatus for buffering anesthetics Download PDFInfo
- Publication number
- US20120180432A1 US20120180432A1 US13/428,283 US201213428283A US2012180432A1 US 20120180432 A1 US20120180432 A1 US 20120180432A1 US 201213428283 A US201213428283 A US 201213428283A US 2012180432 A1 US2012180432 A1 US 2012180432A1
- Authority
- US
- United States
- Prior art keywords
- cartridge
- buffer
- plunger
- solution
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/24—Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
- A61J1/14—Details; Accessories therefor
- A61J1/20—Arrangements for transferring or mixing fluids, e.g. from vial to syringe
- A61J1/2096—Combination of a vial and a syringe for transferring or mixing their contents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/28—Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/32—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P23/00—Anaesthetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
- A61J1/14—Details; Accessories therefor
- A61J1/20—Arrangements for transferring or mixing fluids, e.g. from vial to syringe
- A61J1/2003—Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
- A61J1/2006—Piercing means
- A61J1/201—Piercing means having one piercing end
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
- A61J1/14—Details; Accessories therefor
- A61J1/20—Arrangements for transferring or mixing fluids, e.g. from vial to syringe
- A61J1/2003—Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
- A61J1/2006—Piercing means
- A61J1/2013—Piercing means having two piercing ends
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
- A61J1/14—Details; Accessories therefor
- A61J1/20—Arrangements for transferring or mixing fluids, e.g. from vial to syringe
- A61J1/2003—Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
- A61J1/2068—Venting means
- A61J1/2072—Venting means for internal venting
Definitions
- the present invention relates generally to methods and apparatus for buffering anesthetics. More particularly, the present invention relates to methods for preparing and storing sodium bicarbonate buffering solutions and combining such solutions with anesthetics stored in small cartridges.
- Aqueous solutions containing bicarbonate ions are used in various medical applications such as antidotes, dialysates, artificial cerebrospinal fluid, intraocular irrigating solutions, cardiac perfusates, cardioplegic solutions, peritoneal irrigating solutions, and solutions for organ preservation, etc.
- bicarbonates solutions are used to buffer dental and other anesthetics to control pH.
- One of the most commonly used medical bicarbonate solutions consists of sodium bicarbonate (NaHCO 3 ) mixed with water (H 2 O).
- NaHCO 3 sodium bicarbonate
- H 2 O water
- bicarbonate ions are in equilibrium as represented by the following expression:
- the gas tight container most commonly used to store medical bicarbonate solutions is the glass vial with a pierceable rubber cap, the cap being referred to as a septum.
- a septum Such vials allow the medical practitioner to pierce the septum with a hypodermic needle and withdraw or “draw up” a desired volume of bicarbonate solution into a syringe.
- the vials typically include a significant headspace that prevents a vacuum from forming when the practitioner attempts to draw up the fluid. Once the fluid is drawn up into a syringe, the syringe can be used to deliver the fluid into a catheter or a blood vessel.
- the partially filled syringe may be used to draw up a second solution, such as a local anesthetic, from another vial in order to mix the second solution with the sodium bicarbonate, where the syringe serves as a mixing and delivery vessel for the resulting pH buffered solution.
- a second solution such as a local anesthetic
- U.S. Pat. No. 5,603,695 One particular device for combining a buffer solution, such as sodium bicarbonate, with an anesthetic, such as a dental anesthetic in a conventional cartridge, is described in U.S. Pat. No. 5,603,695.
- the device comprises a buffer cartridge having a needle which may be penetrated through the septum of the anesthetic cartridge.
- the buffer is stored in a cartridge with significant head space and no provision for maintaining volatile CO 2 in solution in a bicarbonate anesthetic. Moreover, no provision is made for displacing anesthetic from the anesthetic cartridge as the buffer is introduced.
- buffer solutions with anesthetics or other medical solutions, particularly where the buffer solutions are held in conventional glass cartridges. It would be particularly beneficial if the methods and devices employed buffer cartridges which maintained the buffer solution, more particularly sodium bicarbonate solution, in a stable condition with minimal pH change and carbon dioxide loss prior to use. It would be still further desirable if the methods and systems provided for introducing and combining the buffer solutions with anesthetic solution, where the anesthetic solution is held in conventional cartridges, without delivering an excess volume of buffer to the anesthetic cartridge, and relieving or exhausting an equal volume of anesthetic from the cartridge. At least some of these objectives will be met by the inventions described hereinbelow.
- the present invention provides methods and apparatus for buffering anesthetics or other medical solutions held in a conventional cartridge, particularly those having a penetrable septum and a slidable plunger or plug, such as those generally described in U.S. Pat. No. 5,603,695 the full disclosure of which is incorporated herein by reference.
- a conventional cartridge particularly those having a penetrable septum and a slidable plunger or plug, such as those generally described in U.S. Pat. No. 5,603,695 the full disclosure of which is incorporated herein by reference.
- Such cartridges are commonly used in dental practice, particularly for delivering anesthetics to a patient prior to a procedure.
- Such cartridges are conventionally loaded into a syringe or other delivery device, where the syringe engages the plunger in the cartridge to dispense the anesthetic through a needle which has penetrated through the septum.
- anesthetics typically dental anesthetics such as lidocaine, articaine, prilocaine, or mepivacaine, shortly before use. It is very important, however, that the buffering solutions themselves have predictable, stable pHs and chemical compositions in order for the buffered anesthetic to achieve an optimum effect and minimum injection pain.
- Methods according to the present invention for buffering such anesthetic cartridges comprise providing a buffer cartridge, where the buffer cartridge typically also has a septum and plunger and which may often be similar or identical to the construction of the anesthetic cartridge.
- a transfer needle is penetrated through septums on both the buffer cartridge the anesthetic cartridge to provide a fluid transfer path therebetween.
- An exhaust needle is also penetrated through the septum on the buffer cartridge but not through the septum on the anesthetic cartridge.
- Simultaneously expelling the anesthetic allows a predetermined volume of buffer to be introduced into the anesthetic cartridge without overfilling the anesthetic cartridge or causing the plunger in the anesthetic cartridge to be pushed out by the excess volume.
- the stability of the buffer solution may be maintained prior to its use at or near a specified pH by filling the cartridge with buffering solution of the desired pH and then applying sufficient pressure to the buffer solution to inhibit vaporization of a volatile species, such as vaporization and loss of carbon dioxide from bicarbonate buffers where the level of pressure depends on the pH as well as the maximum temperature to be encountered in shipping and storage.
- a volatile species such as vaporization and loss of carbon dioxide from bicarbonate buffers
- the buffer comprises 8.4% sodium bicarbonate
- the pH is to be maintained at 7.62
- the maximum expected temperature is 25° C.
- a force must be applied which is sufficient to maintain an absolute pressure within the buffer cartridge at least as high as the equilibrium partial pressure of carbon dioxide gas in an 8.4% sodium bicarbonate solution at pH 7.62 at a temperature of 25° C.
- the force is applied by engaging a spring held under compression against the plunger or by using a plunger which is formed from a compressible resilient material or otherwise made compressible so that when compressed a specified distance by a pusher, the solution in the cartridge will be placed under a pre-determined amount of pressure.
- a spring would need to apply a minimum force against the plunger of 9.4 lbs/in 2 .
- the force will depend both on the spring constant and the depth of spring compression.
- penetrating the transfer needle may comprise turning a knob which holds the transfer and exhaust needles to advance the transfer needle through the buffer cartridge septum.
- penetrating the transfer needle and the exhaust needle through the anesthetic cartridge septum usually occurs as the anesthetic cartridge is inserted into a receptacle on the knob.
- the exhaust needle directs the expelled anesthetic into a reservoir.
- the expelled anesthetic could flow into a space in a housing that surrounds the buffer cartridge.
- the space may include an absorbent material.
- Advancing the plunger on the buffer cartridge usually comprises engaging a pusher against the plunger and advancing the pusher to cause the plunger to proceed along the interior of the cartridge, driving the plunger against the buffer therein, and forcing the buffer into the transfer needle.
- the pusher will be reciprocatably mounted on the housing in which the buffer cartridge is held.
- the volume of buffer dispensed may be controlled by advancing the pusher until it engages a first stop, usually on the housing, which defines a first delivered volume of buffer.
- Second and subsequent delivered volumes may be dispensed by advancing the pusher beyond the first stop until the pusher engages a second stop to define a second delivered volume, and optionally further stops to define further delivered volumes.
- Such multiple delivered volumes of buffer may be used with a single anesthetic cartridge or with successive anesthetic cartridges which are connected to the buffer delivery apparatus sequentially.
- Devices according to the present invention are intended for transferring a volume of buffer solution from a buffer cartridge into an anesthetic cartridge.
- the buffer cartridge typically comprises a hollow tube sealed on one end and having a slidable plug on the other with the buffering solution being held in a space therebetween.
- the devices also comprise a needle assembly having a transfer needle and an exhaust needle, where the transfer needle can be advanced to penetrate the septum on the buffer cartridge.
- the needle assembly also detachably receives an anesthetic cartridge so that the transfer and exhaust needles penetrate a septum thereon.
- the devices also comprise a pusher that advances the plunger on the buffer cartridge to transfer buffer through the transfer needle into the anesthetic cartridge while excess anesthetic is exhausted from the anesthetic cartridge as the anesthetic is displaced by buffer.
- a slightly modified buffer cartridge is used.
- the cartridge is a hollow tube open on only one end and the slidable plunger acts as both plunger and septum, meaning that the transfer needle pierces the plunger itself to create a fluid path for the buffer solution to flow out of the buffer cartridge and into the anesthetic cartridge.
- the pusher advances the plunger down the glass tube, the solution is forced out the transfer needle into the anesthetic cartridge.
- the devices of the present invention will typically further include a housing having an attachment end, an open end, and an open interior.
- the interior of the housing receives the buffer cartridge with the septum of the buffer cartridge adjacent the attachment end and the plunger of the buffer cartridge adjacent the open end.
- the devices usually further include a knob which threadably connects to the attachment end of the housing, where the needle assembly is carried by the knob so that turning the knob advances the transfer needle into the buffer cartridge.
- the transfer and exhaust needles will extend into an anesthetic cartridge receptacle on the knob so that insertion of the anesthetic cartridge into the receptacle causes the transfer and exhaust needles to penetrate through a septum on the anesthetic cartridge.
- the devices will typically further comprise a compression member which is disposed between the pusher and the plunger of the buffer cartridge.
- the compression member is compressed or otherwise adapted to apply a predetermined force on the plunger when the pusher is advanced or positioned at a predetermined distance relative to the buffer cartridge.
- the compression member will be a coil spring, and the device will further comprise a lock which holds the pusher at the predetermined advance distance relative to the buffer cartridge.
- At least one stop will be provided on the device, typically on the housing, to control a first advancement stroke of the pusher to deliver a first predetermined volume of the buffer into the anesthetic cartridge.
- a second stop may be provided, again typically on the housing, to control or limit advancement of the pusher beyond the pusher beyond the first stop to deliver a second predetermined volume of buffer as the pusher is further advanced. Additional stops can be incorporated to allow for more than two predetermined volumes. Other embodiments incorporate mechanisms that allow the practitioner to adjust the volume to be delivered.
- a method for storing the bicarbonate buffer solution comprises providing a cartridge having an open interior, a needle penetrable septum, and a plunger which can be advanced into the open interior to pressurize the contents thereof.
- the cartridge is filled with a solution of bicarbonate buffer that will evolve carbon dioxide at room temperature and pressure. Evolution of the carbon dioxide is inhibited by storing the cartridge while applying a force to the plunger, where the force is sufficient to pressurize the bicarbonate buffer solution at a pressure which inhibits the evolution of carbon dioxide, thus stabilizing the pH and composition of the buffer.
- the buffer comprises sodium bicarbonate having a pH in the range from 7.5 to 7.8 and the applied pressure is above 1.2 atmospheres with preferred pH and pressure ranges set forth above.
- the force is applied by compressing a spring or other compression member against the plunger and maintaining the pressure until the cartridge is used.
- the cartridge is filled with all gases evacuated (the headspace eliminated) to further stabilize the pH and carbonate content of the solution.
- a bicarbonate buffer storage assembly comprises a buffer cartridge, as described above, and a mechanism for placing the buffer solution therein under pressure.
- the storage assembly houses the buffer cartridge and includes a compression member that exerts a force on the plunger, the force pressurizing the bicarbonate buffer solution sufficiently to inhibit evolution of carbon dioxide expected storage temperatures, usually above 1.2 atm.
- the pressure would be sufficient to inhibit evolution of carbon dioxide at autoclave temperatures, usually above 5 atm.
- the open interior of the cartridge is completely filled with sodium bicarbonate with significantly no head space remaining.
- the compression member may comprise a compressible spring which is maintained in compression and engages the plunger.
- the compressible spring is a coil spring
- the cartridge assembly further comprises a housing where the cartridge is disposed within the housing and the coil spring is held in compression between the housing and the plunger.
- FIG. 1 is a perspective view illustrating the buffer transfer device of the present invention and a conventional anesthetic cartridge.
- FIG. 2 is an exploded view of the buffer transfer device illustrating the knob, housing, buffer cartridge, spring, and pusher components thereof.
- FIG. 3 is a cross-sectional view of the buffer transfer device of FIGS. 1 and 2 shown prior to penetrating a transfer needle through a septum of the buffer cartridge where the spring remains under compression applying pressure to the buffer within the buffer cartridge.
- FIG. 3A is a detailed view of a stop member taken along line 3 A- 3 A of FIG. 3 .
- FIG. 4 is a cross-sectional view of the buffer transfer device similar to FIG. 3 , except that the transfer needle has been penetrated through the septum of the buffer cartridge and the release of pressure has allowed the spring to advance a plunger of the buffer cartridge to expel a small volume of the buffer and prime the transfer needle.
- FIG. 5 is an enlarged, detailed cross-sectional view of the knob and needle components of the buffer transfer device of the present invention.
- FIG. 5A is a further enlarged, detailed cross-sectional view illustrating the septum on the buffer cartridge.
- FIG. 6 is a cross-sectional view of a buffer transfer device similar to that shown in FIGS. 3 and 4 except that an anesthetic cartridge has been inserted into a receptacle formed in the knob to cause the transfer needle and an exhaust needle to penetrate a septum of the anesthetic cartridge.
- FIG. 7 is a cross-sectional view similar to those of FIGS. 3 , 4 , and 6 , except that the pusher has been advanced through a first length of travel in order to deliver a first volume of buffer from the buffer cartridge into the attached anesthetic cartridge.
- FIGS. 8A-8D are schematic illustrations of stop members on the housing which limit and control travel of the pusher to allow first and second sequential volume deliveries from the buffer transfer device.
- a buffer transfer device 10 comprises a knob 12 , and housing 14 , a buffer cartridge 16 , a spring 18 or other compression member, and a pusher 20 .
- the knob 12 is rotatably mounted on threads 22 at the distal end of the housing 14 and the buffer cartridge 16 may be inserted into an open proximal end 24 of the housing.
- the pusher 20 is introduced through the open end 24 and compresses the spring 18 engaged against a proximal end 26 of the buffer cartridge 16 , as will be described in greater detail below.
- the buffer transfer device 10 detachably receives a conventional anesthetic cartridge 28 within a receptacle 44 (best seen in FIG. 5 ) at the distal end 30 of the knob 12 , which also will be described in greater detail below.
- buffer transfer device 10 will be fully assembled at a central, sterile location and distributed for use. While the temperature and other conditions of distribution can be somewhat controlled, it will be appreciated that a variety of temperatures and other potentially destabilizing conditions might be encountered during distribution and storage prior to use of the device for buffering the anesthetic cartridge.
- a mechanism for maintaining pressure on the buffer solution within the buffer cartridge 16 will be provided in order to limit the loss of carbon dioxide or other volatile components from bicarbonate or other buffering solutions. The details of the pressurization mechanism are described below.
- the knob 12 includes a transfer needle 36 and an exhaust needle 38 , both of which can be more clearly seen in the detailed view of FIG. 5 .
- the transfer and exhaust needles 36 and 38 are illustrated as separate hypotubes or other tubular structures. It will be appreciated, however, they could also be formed as a single, bi-lumen structure, although in all cases, a distal tip 40 of the transfer needle should extend distally beyond a distal tip 42 of the exhaust needle 38 .
- the distal portions of both needles 36 and 38 extend into a receptacle region 44 which receives the septum end 32 of the anesthetic cartridge 28 , as will be described in more detail below with respect to FIGS. 5 and 6 .
- the transfer needle 36 has a proximal end 50 which extends into a threaded region 13 of the knob 12 , as best seen in FIG. 5 .
- Proximal end 50 extends sufficiently far so that it will penetrate a septum 15 (best seen in FIG. 5A ) formed over the neck 17 of the buffer cartridge 16 when the knob 12 is fully tightened on the threads 17 of the housing 14 , as shown in FIG. 4 .
- proximal end 52 of the exhaust needle 38 terminates distally of the septum 15 even when the knob is fully tightened.
- the knob 12 will be tightened over the housing 14 before the anesthetic cartridge 28 is introduced to the receptacle 44 .
- the septum 15 Prior to tightening the knob, the septum 15 remains intact and pressure of buffer within the interior 54 of the cartridge 16 remains above atmospheric as provided by the pressure of spring 18 .
- Spring 18 in turn, remains compressed between extension member 56 of the pusher 20 and a plunger 58 which is slidably received within the open proximal end of the buffer cartridge 16 .
- the pressure on the buffer in interior 54 is released, causing a small flow of buffer through the transfer needle and out through the distal tip 40 in order to prime the transfer needle.
- the plunger 58 advances under the force of spring 18 , and the buffer transfer device 10 is in the condition illustrated in FIG. 4 .
- the proximal movement of the pusher 20 is prevented by a stop member 62 fixed in a wall of the housing 14 , as illustrated in FIG. 3A .
- Stop member 62 engages an edge of window 64 formed in the wall of the pusher 20 , as will be described in greater detail below in connection with FIGS. 8A-8D .
- Preventing the pusher 20 from moving proximally is necessary to maintain the pressure applied by spring 18 on the anesthetic within the interior 54 of the anesthetic cartridge 16 .
- the neck 32 of anesthetic cartridge 28 may be inserted into the receptacle 44 of knob 12 , as illustrated in FIG. 6 .
- a first volume of the buffer may then be advanced from the interior 54 of buffer cartridge 16 through transfer needle 36 by distally advancing the pusher 20 , as shown in FIG. 7 .
- the length of travel of pusher 20 and thus volume of buffer delivered into the anesthetic cartridge 28 , is controlled by travel of the stop member 62 in the window 64 .
- the stop member 62 Prior to transferring any buffer, the stop member 62 is positioned at a left hand edge of the window 64 , as seen in FIG. 6 .
- the pusher 20 may then be advanced until the stop member 62 engages a right hand edge of the window 64 , as shown in FIG. 7 .
- an exhaust passage 70 may be formed in the neck 17 to allow the excess anesthetic to flow into a waste receptacle 72 which is formed in the interior of the housing 14 surrounding the exterior of the buffer cartridge 16 .
- FIGS. 8A-8D advancement of the pusher 20 relative to the housing 14 as controlled by the stop members 62 will be described in more detail.
- the pusher is shown in the configuration of FIGS. 3 , 4 , and 6 before the plunger has been advanced or otherwise moved.
- the stop members 62 (only one of which is visible in FIGS. 3 , 4 , and 6 ) are engaged against the left hand wall (as shown in FIGS. 8A-8D ) of window 64 .
- the stop members 62 translate to engage the right hand edge of window 64 , stopping advancement of the pusher.
- a second delivery volume may be provided.
- a passage 80 is provided between windows 64 and 62 to allow rotation of the pusher 20 so that the stop members 62 move from window 64 into the second window 82 .
- the second window 82 is offset to the right relative to the first window 64 , further leftward travel out of the pusher is now allowed, until the stop members 62 engage the right hand edge of window 82 , as shown in FIG. 8B .
- a second measured volume of the buffer may be delivered. It will be appreciated that still further window mechanisms could be provided for allowing third, fourth, and perhaps even more volumes of buffer to be delivered from a single buffer transfer device.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Dermatology (AREA)
- Medical Informatics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- This application is a divisional of U.S. patent application Ser. No. 12/406,670 (Attorney Docket No. 36312-705.201), filed Mar. 18, 2009, which claims the benefit of prior provisional application 61/054,930 (Attorney Docket No. 36312-705.101), filed on May 21, 2008, and of provisional application 61/094,669 (Attorney Docket No. 36312-705.102), filed on Sep. 5, 2008, the full disclosures of which are incorporated herein by reference in their entirety.
- 1. Field of the Invention
- The present invention relates generally to methods and apparatus for buffering anesthetics. More particularly, the present invention relates to methods for preparing and storing sodium bicarbonate buffering solutions and combining such solutions with anesthetics stored in small cartridges.
- Aqueous solutions containing bicarbonate ions are used in various medical applications such as antidotes, dialysates, artificial cerebrospinal fluid, intraocular irrigating solutions, cardiac perfusates, cardioplegic solutions, peritoneal irrigating solutions, and solutions for organ preservation, etc. Of particular interest to the present application bicarbonates solutions are used to buffer dental and other anesthetics to control pH. One of the most commonly used medical bicarbonate solutions consists of sodium bicarbonate (NaHCO3) mixed with water (H2O). In medical bicarbonate solutions, bicarbonate ions are in equilibrium as represented by the following expression:
-
2HCO3 −⇄CO2↑+CO3 2−H2O - If the reaction occurs in a closed system, equilibrium is reached with the amounts of reactants remaining constant. In open systems, however, the carbon dioxide gas escapes and the reaction proceeds from the left to the right with bicarbonate (2HCO3) evolving into carbon dioxide gas (CO2), carbonate (CO3) and water (H2O), progressively decreasing the concentration of bicarbonate ions and increasing the concentration of carbonate ions. Since carbonate ions are more alkaline than bicarbonate ions, the pH of the solution will progressively increase.
- Clinical effectiveness of bicarbonate medical solutions often depends on maintenance of a particular pH range, generally from 7 to 9. For some applications, maintaining the pH in a more narrow range is beneficial. To stabilize pH and CO2 content, sodium bicarbonate solutions are conventionally packed in gas tight containers that limit leakage of evolved carbon dioxide into the atmosphere. By limiting the loss of evolved CO2 pH change may be reduced. As CO2 leaves solution and enters the container's “headspace” (the gas-filled region above the solution) the partial pressure of the evolved CO2 will increase and eventually establish equilibrium between CO2 leaving solution and CO2 returning to solution.
- The gas tight container most commonly used to store medical bicarbonate solutions is the glass vial with a pierceable rubber cap, the cap being referred to as a septum. Such vials allow the medical practitioner to pierce the septum with a hypodermic needle and withdraw or “draw up” a desired volume of bicarbonate solution into a syringe. To facilitate withdrawing the bicarbonate, the vials typically include a significant headspace that prevents a vacuum from forming when the practitioner attempts to draw up the fluid. Once the fluid is drawn up into a syringe, the syringe can be used to deliver the fluid into a catheter or a blood vessel. Of particular interest to the present invention, the partially filled syringe may be used to draw up a second solution, such as a local anesthetic, from another vial in order to mix the second solution with the sodium bicarbonate, where the syringe serves as a mixing and delivery vessel for the resulting pH buffered solution.
- One drawback to using such vial-and-syringe systems for storing, mixing, and/or delivering bicarbonate solutions is that drawing up the solution into the syringe reduces pressure over the bicarbonate solution which allows CO2 to leave solution and create CO2 bubbles in the solution during the transfer. Also, there can be significant agitation of the solution as the bubbles enter the syringe, further causing CO2 to dissolve out of solution. For these reasons, even if the pH of a sodium bicarbonate buffering solution in a vial-type storage container were estimated or ascertained before delivery, drawing up, mixing and/or delivery of the bicarbonate system may alter the pH of the solution to an undesirable extent.
- One particular device for combining a buffer solution, such as sodium bicarbonate, with an anesthetic, such as a dental anesthetic in a conventional cartridge, is described in U.S. Pat. No. 5,603,695. The device comprises a buffer cartridge having a needle which may be penetrated through the septum of the anesthetic cartridge. The buffer is stored in a cartridge with significant head space and no provision for maintaining volatile CO2 in solution in a bicarbonate anesthetic. Moreover, no provision is made for displacing anesthetic from the anesthetic cartridge as the buffer is introduced.
- For these reasons, it would be desirable to provide improved methods and apparatus for combining buffer solutions with anesthetics or other medical solutions, particularly where the buffer solutions are held in conventional glass cartridges. It would be particularly beneficial if the methods and devices employed buffer cartridges which maintained the buffer solution, more particularly sodium bicarbonate solution, in a stable condition with minimal pH change and carbon dioxide loss prior to use. It would be still further desirable if the methods and systems provided for introducing and combining the buffer solutions with anesthetic solution, where the anesthetic solution is held in conventional cartridges, without delivering an excess volume of buffer to the anesthetic cartridge, and relieving or exhausting an equal volume of anesthetic from the cartridge. At least some of these objectives will be met by the inventions described hereinbelow.
- 2. Description of the Background Art
- Glass vials and cartridges for storing medical solutions are described in U.S. Pat. Nos. 1,757,809; 2,484,657; 4,259,956; 5,062,832; 5,137,528; 5,149,320; 5,226,901; 5,330,426; and 6,022,337. Injection pens which employ drug cartridges are described in U.S. Pat. No. 5,984,906. A particular disposable drug cartridge that can find use in the present invention is described in U.S. Pat. No. 5,603,695. A device for delivering a buffering agent into an anesthetic cartridge using a transfer needle is described in U.S. Pat. No. 5,603,695. Devices for maintaining a dissolved gas in solution in a pouch are described in U.S. Pat. Nos. 5,690,215; 5,610,170; and 4,513,015, and U.S. Patent Publ. No. 2007/0265593. Other patents and applications of interest include U.S. Pat. Nos. 2,604,095; 3,993,791; 4,154,820; 4,630,727; 4,654,204; 4,756,838; 4,959,175; 5,296,242; 5,383,324; 5,603,695; 5,609,838; 5,779,357; and U.S. Patent Publ. No. 2004/0175437.
- The present invention provides methods and apparatus for buffering anesthetics or other medical solutions held in a conventional cartridge, particularly those having a penetrable septum and a slidable plunger or plug, such as those generally described in U.S. Pat. No. 5,603,695 the full disclosure of which is incorporated herein by reference. Such cartridges are commonly used in dental practice, particularly for delivering anesthetics to a patient prior to a procedure. Such cartridges are conventionally loaded into a syringe or other delivery device, where the syringe engages the plunger in the cartridge to dispense the anesthetic through a needle which has penetrated through the septum. To optimize effectiveness of the anesthetics and to reduce injection pain, it is desirable to buffer conventional anesthetics, typically dental anesthetics such as lidocaine, articaine, prilocaine, or mepivacaine, shortly before use. It is very important, however, that the buffering solutions themselves have predictable, stable pHs and chemical compositions in order for the buffered anesthetic to achieve an optimum effect and minimum injection pain.
- Methods according to the present invention for buffering such anesthetic cartridges comprise providing a buffer cartridge, where the buffer cartridge typically also has a septum and plunger and which may often be similar or identical to the construction of the anesthetic cartridge. A transfer needle is penetrated through septums on both the buffer cartridge the anesthetic cartridge to provide a fluid transfer path therebetween. An exhaust needle is also penetrated through the septum on the buffer cartridge but not through the septum on the anesthetic cartridge. By advancing the plunger on the buffer cartridge, a volume of buffer may be transferred from the buffer cartridge into the anesthetic cartridge while an equal volume of anesthetic is expelled from the anesthetic cartridge through the exhaust needle, usually into a waste receptacle as described hereinbelow. Simultaneously expelling the anesthetic allows a predetermined volume of buffer to be introduced into the anesthetic cartridge without overfilling the anesthetic cartridge or causing the plunger in the anesthetic cartridge to be pushed out by the excess volume.
- In a preferred aspect of the present invention, the stability of the buffer solution may be maintained prior to its use at or near a specified pH by filling the cartridge with buffering solution of the desired pH and then applying sufficient pressure to the buffer solution to inhibit vaporization of a volatile species, such as vaporization and loss of carbon dioxide from bicarbonate buffers where the level of pressure depends on the pH as well as the maximum temperature to be encountered in shipping and storage. Where, for example, the buffer comprises 8.4% sodium bicarbonate, the pH is to be maintained at 7.62, and the maximum expected temperature is 25° C., a force must be applied which is sufficient to maintain an absolute pressure within the buffer cartridge at least as high as the equilibrium partial pressure of carbon dioxide gas in an 8.4% sodium bicarbonate solution at pH 7.62 at a temperature of 25° C. maximum, which according to the Henderson-Hasselbach equation and Henry's Law, is 1.64 atmospheres. A greater force will usually be applied to create a margin of safety in case of higher than expected storage or transport temperatures. Where the cartridge is expected to undergo heat sterilization, the force applied should be sufficient to create a pressure of at least 6 atmospheres, typically higher for a margin of safety.
- In exemplary embodiments, the force is applied by engaging a spring held under compression against the plunger or by using a plunger which is formed from a compressible resilient material or otherwise made compressible so that when compressed a specified distance by a pusher, the solution in the cartridge will be placed under a pre-determined amount of pressure. By way of example, if the target pH is 7.62, the needed pressure is at least 1.64 atmospheres (as described above), and the plunger has an area exposed to the anesthetic of approximately 37 mm2, a spring would need to apply a minimum force against the plunger of 9.4 lbs/in2. The force will depend both on the spring constant and the depth of spring compression.
- While the application of a constant positive pressure against the buffer held in a buffer cartridge would generally be sufficient to maintain stability, it will be preferred to completely remove the air and other gases from the buffer cartridge prior to sealing. By removing all “head space,” the volatile species, such as carbon dioxide in bicarbonate buffers, will be held in solution by the elevated pressure with little or no loss. The presence of even a small gas head space will allow the loss of some carbon dioxide or other volatile species resulting in a small but measurable change in the pH and composition of the buffer as the volatile species reaches an equilibrium partial pressure. Moreover, the lack of a headspace prevents gases in the headspace from being driven into solution by the positive pressure, which might alter the chemical properties of the buffer.
- In specific aspects of the method of the present invention, penetrating the transfer needle may comprise turning a knob which holds the transfer and exhaust needles to advance the transfer needle through the buffer cartridge septum. Thus, penetrating the transfer needle and the exhaust needle through the anesthetic cartridge septum usually occurs as the anesthetic cartridge is inserted into a receptacle on the knob. Preferably, the exhaust needle directs the expelled anesthetic into a reservoir. For instance in an exemplary embodiment, the expelled anesthetic could flow into a space in a housing that surrounds the buffer cartridge. The space may include an absorbent material. Advancing the plunger on the buffer cartridge usually comprises engaging a pusher against the plunger and advancing the pusher to cause the plunger to proceed along the interior of the cartridge, driving the plunger against the buffer therein, and forcing the buffer into the transfer needle. Typically, the pusher will be reciprocatably mounted on the housing in which the buffer cartridge is held.
- In a further specific aspect of the method of the present invention, the volume of buffer dispensed may be controlled by advancing the pusher until it engages a first stop, usually on the housing, which defines a first delivered volume of buffer. Second and subsequent delivered volumes may be dispensed by advancing the pusher beyond the first stop until the pusher engages a second stop to define a second delivered volume, and optionally further stops to define further delivered volumes. Such multiple delivered volumes of buffer may be used with a single anesthetic cartridge or with successive anesthetic cartridges which are connected to the buffer delivery apparatus sequentially.
- Devices according to the present invention are intended for transferring a volume of buffer solution from a buffer cartridge into an anesthetic cartridge. The buffer cartridge typically comprises a hollow tube sealed on one end and having a slidable plug on the other with the buffering solution being held in a space therebetween. The devices also comprise a needle assembly having a transfer needle and an exhaust needle, where the transfer needle can be advanced to penetrate the septum on the buffer cartridge. The needle assembly also detachably receives an anesthetic cartridge so that the transfer and exhaust needles penetrate a septum thereon. The devices also comprise a pusher that advances the plunger on the buffer cartridge to transfer buffer through the transfer needle into the anesthetic cartridge while excess anesthetic is exhausted from the anesthetic cartridge as the anesthetic is displaced by buffer. In alternative embodiments, a slightly modified buffer cartridge is used. In such embodiments the cartridge is a hollow tube open on only one end and the slidable plunger acts as both plunger and septum, meaning that the transfer needle pierces the plunger itself to create a fluid path for the buffer solution to flow out of the buffer cartridge and into the anesthetic cartridge. As the pusher advances the plunger down the glass tube, the solution is forced out the transfer needle into the anesthetic cartridge.
- The devices of the present invention will typically further include a housing having an attachment end, an open end, and an open interior. The interior of the housing receives the buffer cartridge with the septum of the buffer cartridge adjacent the attachment end and the plunger of the buffer cartridge adjacent the open end. The devices usually further include a knob which threadably connects to the attachment end of the housing, where the needle assembly is carried by the knob so that turning the knob advances the transfer needle into the buffer cartridge. The transfer and exhaust needles will extend into an anesthetic cartridge receptacle on the knob so that insertion of the anesthetic cartridge into the receptacle causes the transfer and exhaust needles to penetrate through a septum on the anesthetic cartridge.
- In order to pressurize and stabilize the buffer within the buffer cartridge, the devices will typically further comprise a compression member which is disposed between the pusher and the plunger of the buffer cartridge. The compression member is compressed or otherwise adapted to apply a predetermined force on the plunger when the pusher is advanced or positioned at a predetermined distance relative to the buffer cartridge. Usually, the compression member will be a coil spring, and the device will further comprise a lock which holds the pusher at the predetermined advance distance relative to the buffer cartridge. Advantageously, once the transfer needle penetrates the septum on the buffer cartridge, the pressure will be released and the spring or other compression member will advance and cause a small volume of the buffer to pass through and prime the transfer needle, removing residual gases.
- At least one stop will be provided on the device, typically on the housing, to control a first advancement stroke of the pusher to deliver a first predetermined volume of the buffer into the anesthetic cartridge. Optionally, a second stop may be provided, again typically on the housing, to control or limit advancement of the pusher beyond the pusher beyond the first stop to deliver a second predetermined volume of buffer as the pusher is further advanced. Additional stops can be incorporated to allow for more than two predetermined volumes. Other embodiments incorporate mechanisms that allow the practitioner to adjust the volume to be delivered.
- In a further aspect of the present invention, a method for storing the bicarbonate buffer solution comprises providing a cartridge having an open interior, a needle penetrable septum, and a plunger which can be advanced into the open interior to pressurize the contents thereof. The cartridge is filled with a solution of bicarbonate buffer that will evolve carbon dioxide at room temperature and pressure. Evolution of the carbon dioxide is inhibited by storing the cartridge while applying a force to the plunger, where the force is sufficient to pressurize the bicarbonate buffer solution at a pressure which inhibits the evolution of carbon dioxide, thus stabilizing the pH and composition of the buffer. In exemplary embodiments, the buffer comprises sodium bicarbonate having a pH in the range from 7.5 to 7.8 and the applied pressure is above 1.2 atmospheres with preferred pH and pressure ranges set forth above. In further exemplary embodiments, the force is applied by compressing a spring or other compression member against the plunger and maintaining the pressure until the cartridge is used. Preferably, the cartridge is filled with all gases evacuated (the headspace eliminated) to further stabilize the pH and carbonate content of the solution.
- In a still further aspect of the present invention, a bicarbonate buffer storage assembly comprises a buffer cartridge, as described above, and a mechanism for placing the buffer solution therein under pressure. In one embodiment, the storage assembly houses the buffer cartridge and includes a compression member that exerts a force on the plunger, the force pressurizing the bicarbonate buffer solution sufficiently to inhibit evolution of carbon dioxide expected storage temperatures, usually above 1.2 atm. In still other embodiments, the pressure would be sufficient to inhibit evolution of carbon dioxide at autoclave temperatures, usually above 5 atm.
- In preferred embodiments, the open interior of the cartridge is completely filled with sodium bicarbonate with significantly no head space remaining. The compression member may comprise a compressible spring which is maintained in compression and engages the plunger. Usually, the compressible spring is a coil spring, and the cartridge assembly further comprises a housing where the cartridge is disposed within the housing and the coil spring is held in compression between the housing and the plunger.
-
FIG. 1 is a perspective view illustrating the buffer transfer device of the present invention and a conventional anesthetic cartridge. -
FIG. 2 is an exploded view of the buffer transfer device illustrating the knob, housing, buffer cartridge, spring, and pusher components thereof. -
FIG. 3 is a cross-sectional view of the buffer transfer device ofFIGS. 1 and 2 shown prior to penetrating a transfer needle through a septum of the buffer cartridge where the spring remains under compression applying pressure to the buffer within the buffer cartridge. -
FIG. 3A is a detailed view of a stop member taken alongline 3A-3A ofFIG. 3 . -
FIG. 4 is a cross-sectional view of the buffer transfer device similar toFIG. 3 , except that the transfer needle has been penetrated through the septum of the buffer cartridge and the release of pressure has allowed the spring to advance a plunger of the buffer cartridge to expel a small volume of the buffer and prime the transfer needle. -
FIG. 5 is an enlarged, detailed cross-sectional view of the knob and needle components of the buffer transfer device of the present invention. -
FIG. 5A is a further enlarged, detailed cross-sectional view illustrating the septum on the buffer cartridge. -
FIG. 6 is a cross-sectional view of a buffer transfer device similar to that shown inFIGS. 3 and 4 except that an anesthetic cartridge has been inserted into a receptacle formed in the knob to cause the transfer needle and an exhaust needle to penetrate a septum of the anesthetic cartridge. -
FIG. 7 is a cross-sectional view similar to those ofFIGS. 3 , 4, and 6, except that the pusher has been advanced through a first length of travel in order to deliver a first volume of buffer from the buffer cartridge into the attached anesthetic cartridge. -
FIGS. 8A-8D are schematic illustrations of stop members on the housing which limit and control travel of the pusher to allow first and second sequential volume deliveries from the buffer transfer device. - Referring to
FIGS. 1 and 2 , abuffer transfer device 10 comprises aknob 12, andhousing 14, abuffer cartridge 16, aspring 18 or other compression member, and apusher 20. Theknob 12 is rotatably mounted onthreads 22 at the distal end of thehousing 14 and thebuffer cartridge 16 may be inserted into an openproximal end 24 of the housing. Thepusher 20 is introduced through theopen end 24 and compresses thespring 18 engaged against aproximal end 26 of thebuffer cartridge 16, as will be described in greater detail below. Thebuffer transfer device 10 detachably receives a conventionalanesthetic cartridge 28 within a receptacle 44 (best seen inFIG. 5 ) at thedistal end 30 of theknob 12, which also will be described in greater detail below. - Typically,
buffer transfer device 10 will be fully assembled at a central, sterile location and distributed for use. While the temperature and other conditions of distribution can be somewhat controlled, it will be appreciated that a variety of temperatures and other potentially destabilizing conditions might be encountered during distribution and storage prior to use of the device for buffering the anesthetic cartridge. A mechanism for maintaining pressure on the buffer solution within thebuffer cartridge 16 will be provided in order to limit the loss of carbon dioxide or other volatile components from bicarbonate or other buffering solutions. The details of the pressurization mechanism are described below. - Referring now to
FIG. 3 , thebuffer transfer device 10 in its pre-use or storage configuration is illustrated. Theknob 12 includes atransfer needle 36 and anexhaust needle 38, both of which can be more clearly seen in the detailed view ofFIG. 5 . The transfer and exhaust needles 36 and 38 are illustrated as separate hypotubes or other tubular structures. It will be appreciated, however, they could also be formed as a single, bi-lumen structure, although in all cases, adistal tip 40 of the transfer needle should extend distally beyond adistal tip 42 of theexhaust needle 38. The distal portions of both 36 and 38 extend into aneedles receptacle region 44 which receives theseptum end 32 of theanesthetic cartridge 28, as will be described in more detail below with respect toFIGS. 5 and 6 . By axially spacing apart thedistal tips 40 an 42 of the transfer and exhaust needles 36 and 38, mixing between the buffer which is being introduced through the transfer needle and the anesthetic which is being expelled through the exhaust needle will be minimized. - The
transfer needle 36 has aproximal end 50 which extends into a threadedregion 13 of theknob 12, as best seen inFIG. 5 .Proximal end 50 extends sufficiently far so that it will penetrate a septum 15 (best seen inFIG. 5A ) formed over theneck 17 of thebuffer cartridge 16 when theknob 12 is fully tightened on thethreads 17 of thehousing 14, as shown inFIG. 4 . In contrast,proximal end 52 of theexhaust needle 38 terminates distally of theseptum 15 even when the knob is fully tightened. - The
knob 12 will be tightened over thehousing 14 before theanesthetic cartridge 28 is introduced to thereceptacle 44. Prior to tightening the knob, theseptum 15 remains intact and pressure of buffer within theinterior 54 of thecartridge 16 remains above atmospheric as provided by the pressure ofspring 18.Spring 18, in turn, remains compressed betweenextension member 56 of thepusher 20 and aplunger 58 which is slidably received within the open proximal end of thebuffer cartridge 16. As soon as theproximal end 50 oftransfer needle 36 penetrates theseptum 15, as shown inFIG. 4 , the pressure on the buffer ininterior 54 is released, causing a small flow of buffer through the transfer needle and out through thedistal tip 40 in order to prime the transfer needle. Theplunger 58 advances under the force ofspring 18, and thebuffer transfer device 10 is in the condition illustrated inFIG. 4 . Note that the proximal movement of thepusher 20 is prevented by astop member 62 fixed in a wall of thehousing 14, as illustrated inFIG. 3A .Stop member 62 engages an edge ofwindow 64 formed in the wall of thepusher 20, as will be described in greater detail below in connection withFIGS. 8A-8D . Preventing thepusher 20 from moving proximally is necessary to maintain the pressure applied byspring 18 on the anesthetic within theinterior 54 of theanesthetic cartridge 16. - Referring now to
FIG. 6 , after theknob 12 has been tightened and theproximal tip 50 oftransfer needle 36 has penetrated theseptum 15 ofbuffer cartridge 16, theneck 32 ofanesthetic cartridge 28 may be inserted into thereceptacle 44 ofknob 12, as illustrated inFIG. 6 . A first volume of the buffer may then be advanced from theinterior 54 ofbuffer cartridge 16 throughtransfer needle 36 by distally advancing thepusher 20, as shown inFIG. 7 . The length of travel ofpusher 20, and thus volume of buffer delivered into theanesthetic cartridge 28, is controlled by travel of thestop member 62 in thewindow 64. Prior to transferring any buffer, thestop member 62 is positioned at a left hand edge of thewindow 64, as seen inFIG. 6 . Thepusher 20 may then be advanced until thestop member 62 engages a right hand edge of thewindow 64, as shown inFIG. 7 . - As the plunger is advanced, transferring buffer through
transfer 36 into theanesthetic cartridge 28, an equal volume of anesthetic will flow through thedistal end 42 of theexhaust needle 38 and out theproximal end 52 thereof into theneck region 17 of thehousing 14. While the exhausted anesthetic is wasted, it is desirable that it be contained within the buffer transfer device to avoid spilling and contamination. To that end, an exhaust passage 70 (FIG. 5 ) may be formed in theneck 17 to allow the excess anesthetic to flow into awaste receptacle 72 which is formed in the interior of thehousing 14 surrounding the exterior of thebuffer cartridge 16. - Referring now to
FIGS. 8A-8D , advancement of thepusher 20 relative to thehousing 14 as controlled by thestop members 62 will be described in more detail. InFIG. 8A , the pusher is shown in the configuration ofFIGS. 3 , 4, and 6 before the plunger has been advanced or otherwise moved. The stop members 62 (only one of which is visible inFIGS. 3 , 4, and 6) are engaged against the left hand wall (as shown inFIGS. 8A-8D ) ofwindow 64. When thepusher 20 is advanced to transfer buffer into the anesthetic cartridge, as shown inFIG. 8B , thestop members 62 translate to engage the right hand edge ofwindow 64, stopping advancement of the pusher. If only a single delivery is required, no further structure or manipulations would be needed. However, by providing asecond window 82 and the ability to rotate thepusher 20 about its axis, a second delivery volume may be provided. Apassage 80 is provided between 64 and 62 to allow rotation of thewindows pusher 20 so that thestop members 62 move fromwindow 64 into thesecond window 82. As thesecond window 82 is offset to the right relative to thefirst window 64, further leftward travel out of the pusher is now allowed, until thestop members 62 engage the right hand edge ofwindow 82, as shown inFIG. 8B . A second measured volume of the buffer may be delivered. It will be appreciated that still further window mechanisms could be provided for allowing third, fourth, and perhaps even more volumes of buffer to be delivered from a single buffer transfer device. - While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, additions, and substitutions are possible without departing from the scope thereof, which is defined by the claims.
Claims (15)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/428,283 US20120180432A1 (en) | 2008-05-21 | 2012-03-23 | Methods and apparatus for buffering anesthetics |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US5493008P | 2008-05-21 | 2008-05-21 | |
| US9466908P | 2008-09-05 | 2008-09-05 | |
| US12/406,670 US8162917B2 (en) | 2008-05-21 | 2009-03-18 | Methods and apparatus for buffering anesthetics |
| US13/428,283 US20120180432A1 (en) | 2008-05-21 | 2012-03-23 | Methods and apparatus for buffering anesthetics |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/406,670 Division US8162917B2 (en) | 2008-05-21 | 2009-03-18 | Methods and apparatus for buffering anesthetics |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120180432A1 true US20120180432A1 (en) | 2012-07-19 |
Family
ID=41340475
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/406,670 Active 2030-06-11 US8162917B2 (en) | 2008-05-21 | 2009-03-18 | Methods and apparatus for buffering anesthetics |
| US13/428,283 Abandoned US20120180432A1 (en) | 2008-05-21 | 2012-03-23 | Methods and apparatus for buffering anesthetics |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/406,670 Active 2030-06-11 US8162917B2 (en) | 2008-05-21 | 2009-03-18 | Methods and apparatus for buffering anesthetics |
Country Status (14)
| Country | Link |
|---|---|
| US (2) | US8162917B2 (en) |
| EP (1) | EP2288405B8 (en) |
| JP (2) | JP5504258B2 (en) |
| KR (2) | KR101731227B1 (en) |
| CN (2) | CN103356387B (en) |
| AU (1) | AU2009249363B2 (en) |
| BR (1) | BRPI0912843B8 (en) |
| CA (1) | CA2725139C (en) |
| CR (1) | CR11798A (en) |
| ES (1) | ES2621816T3 (en) |
| IL (1) | IL209487A (en) |
| MX (1) | MX2010012665A (en) |
| PL (1) | PL2288405T3 (en) |
| WO (1) | WO2009142944A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| USD750768S1 (en) | 2014-06-06 | 2016-03-01 | Anutra Medical, Inc. | Fluid administration syringe |
| US9387151B2 (en) | 2013-08-20 | 2016-07-12 | Anutra Medical, Inc. | Syringe fill system and method |
| EP2882400A4 (en) * | 2012-08-09 | 2016-08-03 | Duoject Inc | RECONSTITUTION DEVICE |
| USD763433S1 (en) | 2014-06-06 | 2016-08-09 | Anutra Medical, Inc. | Delivery system cassette |
| USD774182S1 (en) | 2014-06-06 | 2016-12-13 | Anutra Medical, Inc. | Anesthetic delivery device |
| WO2024073405A1 (en) * | 2022-09-27 | 2024-04-04 | Onpharma Company | Method and apparatus for buffering anesthetics |
Families Citing this family (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110005958A1 (en) | 2009-07-09 | 2011-01-13 | Onpharma, Inc. | METHODS AND SYSTEMS FOR ADJUSTING THE pH OF MEDICAL BUFFERING SOLUTIONS |
| JP5726070B2 (en) | 2008-06-06 | 2015-05-27 | バイエル メディカル ケア インコーポレーテッド | Apparatus and method for delivering fluid infusion boluses to patients and handling harmful fluids |
| US8303566B2 (en) | 2009-07-09 | 2012-11-06 | Onpharma, Inc. | Methods and apparatus for buffering parenteral solutions |
| EP2419161B1 (en) * | 2009-04-15 | 2016-06-01 | Becton Dickinson and Company | Fixturing member and device for permitting mixing in a pen injector |
| US8585963B2 (en) | 2009-07-09 | 2013-11-19 | Onpharma, Inc. | Methods and devices for sterilizing and holding buffering solution cartridges |
| AU2011231330A1 (en) | 2010-03-25 | 2012-09-20 | New Injection Systems Ltd | Injector |
| GB201005812D0 (en) * | 2010-04-07 | 2010-05-26 | Entpr Cradle The Ltd | Connector system for medical fluid administration |
| EP2407194A1 (en) * | 2010-07-12 | 2012-01-18 | SOFIC (Sté Française d'Instruments de Chirurgie) | Injection system for mixing two injectable compositions prior to injection |
| US20120109098A1 (en) * | 2010-10-28 | 2012-05-03 | Tyco Healthcare Group Lp. | Applicator Tips Having Mixing Ball |
| EP2640339B1 (en) * | 2010-11-15 | 2017-04-12 | Onpharma, Inc. | Apparatus and methods for sequestering fluids exhausted during fluid transfer |
| US20120279179A1 (en) * | 2011-04-26 | 2012-11-08 | Onpharma, Inc. | Methods and apparatuses for manufacturing a plurality of cartridges of medical buffering solution with a common ph |
| CA2742555A1 (en) * | 2011-06-10 | 2012-12-10 | Duoject Medical Systems Inc. | Injection device |
| US20140339112A1 (en) * | 2011-08-29 | 2014-11-20 | NPS Pharmaceuticals ,Inc. a corporation | Injectible drug cartridge container |
| CN102579261A (en) * | 2012-04-06 | 2012-07-18 | 重庆莱美药业股份有限公司 | Pushing device for propulsion prepackaged dosing instrument |
| US9393441B2 (en) | 2012-06-07 | 2016-07-19 | Bayer Healthcare Llc | Radiopharmaceutical delivery and tube management system |
| US9889288B2 (en) | 2012-06-07 | 2018-02-13 | Bayer Healthcare Llc | Tubing connectors |
| US9125976B2 (en) | 2012-06-07 | 2015-09-08 | Bayer Medical Care Inc. | Shield adapters |
| US9233776B2 (en) * | 2012-06-07 | 2016-01-12 | Bayer Healthcare Llc | Molecular imaging vial transport container and fluid injection system interface |
| US20140124514A1 (en) * | 2012-11-08 | 2014-05-08 | Onpharma, Inc. | Method and apparatus for adding buffers and other substances to medical cartridges |
| BR112015011662A2 (en) | 2012-11-23 | 2017-07-11 | New Injection Systems Ltd | auto injector assembly |
| US9101717B2 (en) | 2013-03-12 | 2015-08-11 | Carefusion 303, Inc. | Non-vented vial access syringe |
| US9757306B2 (en) | 2013-03-13 | 2017-09-12 | Bayer Healthcare Llc | Vial container with collar cap |
| EP2991704A1 (en) | 2013-04-29 | 2016-03-09 | 3M Innovative Properties Company | A syringe for dispensing a medicament |
| EP2944341A1 (en) | 2014-05-12 | 2015-11-18 | Sanofi | Activating mechanism for a medicament delivery device and medicament delivery device |
| CN104188803B (en) * | 2014-09-24 | 2016-06-08 | 冯邦玺 | Disposable multifunction is inhaled, dispenser |
| WO2017076925A1 (en) * | 2015-11-05 | 2017-05-11 | Sanofi-Aventis Deutschland Gmbh | Cartridge carrier assembly |
| ITUB20160977A1 (en) * | 2016-02-23 | 2017-08-23 | Brev Angela Srl | Opening and dispensing system for pre-filled containers, relative pre-filled containers and procedures for their realization |
| MX2018014079A (en) * | 2016-05-17 | 2019-04-04 | Polymer Technology Systems Inc | Systems and methods for a multi-chambered sampler. |
| US11305064B2 (en) | 2017-01-01 | 2022-04-19 | Balanced Pharma Incorporated | Mixing vial |
| US20200046609A1 (en) | 2017-01-01 | 2020-02-13 | John Scott Keadle | Mixing vial |
| HUE057935T2 (en) | 2017-10-17 | 2022-06-28 | Hoffmann La Roche | A filling aid and methods for self-filling a cartridge |
| CA3024462A1 (en) * | 2018-11-16 | 2020-05-16 | Duoject Medical Systems Inc. | Fluid transfer apparatus |
| US10307336B1 (en) | 2018-12-17 | 2019-06-04 | John C. Sands | System and method for mixing and delivering a solution |
| CN111407664A (en) * | 2019-10-22 | 2020-07-14 | 深圳市萨米医疗中心 | Simple medicine feeding device for infants |
| US20240207524A1 (en) * | 2020-08-12 | 2024-06-27 | Yasser Sadek | One-step anesthetic buffering carpule |
| KR102292079B1 (en) | 2020-11-30 | 2021-08-25 | 주식회사 덴탈스튜디오 | Syringe Assembly Easy to Insert and Remove Needle |
| CN113974941B (en) * | 2021-12-08 | 2023-01-17 | 郑州颐和医院 | An orthopedic orthopedic orthopedic device for reduction and fixation |
| KR102783137B1 (en) * | 2023-01-26 | 2025-03-19 | 주식회사 덴티스 | Holder for fixing the rotating ampoule of injection device and injection device including the same |
| CN119792722B (en) * | 2025-01-07 | 2025-08-12 | 江苏万海医疗器械有限公司 | Needle self-checking pen-type injector and its working method |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5383324A (en) * | 1993-04-23 | 1995-01-24 | Baxter International Inc. | Method for manufacturing and storing stable bicarbonate solutions |
| US20010056259A1 (en) * | 1998-12-29 | 2001-12-27 | Skinkle David W. | Spring-powered infusion pump |
Family Cites Families (65)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1616202A (en) | 1923-06-09 | 1927-02-01 | Aquazone Corp | Process of making aqueous solutions and the product |
| US1757809A (en) | 1929-01-05 | 1930-05-06 | Felix C Montuori | Hypodermic syringe |
| US2484657A (en) | 1948-07-14 | 1949-10-11 | Sonco Inc | Dental syringe |
| US2604095A (en) | 1948-12-18 | 1952-07-22 | Brody Nathan | Disposable syringe |
| JPS4919598B1 (en) | 1970-05-30 | 1974-05-18 | ||
| BE759374A (en) | 1970-06-08 | 1971-04-30 | Ims Ltd | MEDICINE PACKAGING |
| US3993751A (en) | 1972-11-27 | 1976-11-23 | Cybersol, Inc. | Process for stabilizing therapeutic compositions and article |
| US3993791A (en) | 1973-10-24 | 1976-11-23 | Beloit Corporation | Continuous lautering |
| US3938520A (en) * | 1974-06-10 | 1976-02-17 | Abbott Laboratories | Transfer unit having a dual channel transfer member |
| US4154820A (en) | 1976-02-23 | 1979-05-15 | Akzona Incorporated | Compositions containing alkali metal sulfate salts of conjugated estrogens and antioxidants as stabilizers |
| US4756838A (en) | 1980-02-21 | 1988-07-12 | Veltman Preston Leonard | Preparation of dry dialysate products |
| GB2104049B (en) | 1981-02-27 | 1985-06-19 | Nestle Sa | Sealing process for filled containers |
| US4654204A (en) | 1983-08-18 | 1987-03-31 | Intermountain Research & Development Corporation | Production of sodium bicarbonate by reversion of soda-type feed salt |
| IT1214872B (en) | 1984-04-06 | 1990-01-18 | Mariano Feriani | BAG CONTAINING TWO OR MORE SUBSTANCES FOR INFUSION FOR MEDICAL USE, PLACED IN SEPARATE COMPARTMENTS, INCLUDING MEANS SUITABLE TO ALLOW THE MIXING OF SUCH SUBSTANCES ONLY AT THE TIME OF USE. |
| US4704088A (en) | 1984-04-27 | 1987-11-03 | Newman Martin H | Dental materials dispenser and applicator |
| US4753345A (en) | 1984-06-14 | 1988-06-28 | American Home Products Corporation | Hypodermic syringe tray |
| US5049129A (en) * | 1986-05-29 | 1991-09-17 | Zdeb Brian D | Adapter for passive drug delivery system |
| GR870129B (en) | 1987-01-27 | 1987-02-04 | Giatzidis Ippokratis | Stable bicarbonate - glycylglycine dialysate for hemodialysis and peritoneal dialysis |
| US4795441A (en) | 1987-04-16 | 1989-01-03 | Bhatt Kunjlata M | Medication administration system |
| IL86799A (en) | 1987-07-02 | 1993-03-15 | Kabi Pharmacia Ab | Method and device for injection |
| US5149320A (en) | 1988-04-11 | 1992-09-22 | Dhaliwal Avtar S | Composite anesthetic article and method of use |
| US5261903A (en) | 1988-04-11 | 1993-11-16 | M.D. Inc. | Composite anesthetic article and method of use |
| US5226901A (en) | 1988-04-11 | 1993-07-13 | Dhaliwal Avtar S | Composite anesthetic article and method of use |
| IT1217595B (en) | 1988-05-13 | 1990-03-30 | Molteni & C | ANTI-CONTACT DEVICE FOR INJECTION OF DENTAL ANESTHETIC SOLUTIONS CONTAINED IN CARTRIDGE |
| DE3917251A1 (en) | 1989-05-26 | 1990-11-29 | Fresenius Ag | Sodium biscarboxylate-containing concentrate and method for producing a dihydrogenation liquid |
| SE505967C2 (en) | 1990-10-15 | 1997-10-27 | Gambro Ab | The respective method for preparing a medical solution, for example a dialysis solution |
| US5137528A (en) | 1990-11-26 | 1992-08-11 | Crose Virginia W | Ampoule for administering a liquid local anaesthetic |
| US5228901A (en) * | 1991-02-25 | 1993-07-20 | Idaho Research Foundation, Inc. | Partial reduction of particulate iron ores and cyclone reactor |
| DK134691D0 (en) | 1991-07-12 | 1991-07-12 | Novo Nordisk As | APPARATUS |
| DE4125819A1 (en) | 1991-08-03 | 1993-02-04 | Rolf Prof Dr Med Zander | AQUEOUS SOLUTION AND THEIR USE |
| US5281198A (en) * | 1992-05-04 | 1994-01-25 | Habley Medical Technology Corporation | Pharmaceutical component-mixing delivery assembly |
| US5330426A (en) | 1992-08-13 | 1994-07-19 | Science Incorporated | Mixing and delivery syringe assembly |
| US5318544A (en) | 1992-10-20 | 1994-06-07 | Kerr Manufacturing Company | Metering syringe |
| DE4336336A1 (en) | 1992-11-23 | 1994-05-26 | Lang Volker | Cassette infusion system |
| KR100294526B1 (en) | 1993-01-22 | 2001-09-17 | 오츠까 요시미쯔 | Method for stabilizing bicarbonate-containing powder pharmaceutical containers and pharmaceuticals |
| US5472022A (en) * | 1993-11-02 | 1995-12-05 | Genentech, Inc. | Injection pen solution transfer apparatus and method |
| US5439643A (en) | 1993-11-03 | 1995-08-08 | Liebert; Richard T. | Method and apparatus for terminal sterilization |
| JPH08164205A (en) * | 1993-12-30 | 1996-06-25 | Eisai Co Ltd | Prefilled syringe and gasket falling-off preventing jig and sterilization method using the jig |
| US5496284A (en) | 1994-09-27 | 1996-03-05 | Waldenburg; Ottfried | Dual-chamber syringe & method |
| US5605934A (en) | 1995-03-23 | 1997-02-25 | Baxter International Inc. | Method of manufacturing and storing solutions |
| US5542934A (en) | 1995-06-02 | 1996-08-06 | Silver; Richard M. | Multiple carpule hypodermic syringe |
| US5603695A (en) | 1995-06-07 | 1997-02-18 | Erickson; Kim | Device for alkalizing local anesthetic injection medication |
| US5609838A (en) | 1995-06-09 | 1997-03-11 | Tg Soda Ash, Inc. | Equilibrium production of sodium carbonate from sodium bicarbonate |
| KR100304846B1 (en) | 1996-06-17 | 2001-09-24 | 오쓰카 요시미쓰 | Package for container of liquid medicine containing bicarbonate and ph indicator |
| US5690215A (en) | 1996-07-08 | 1997-11-25 | Optical Sensors Incorporated | Device for maintaining the partial pressure of a dissolved gas in a fluid and related methods of use |
| US6048553A (en) | 1997-03-17 | 2000-04-11 | Macquarie Veterinary Supplies Pty Ltd | Aqueous metal bicarbonate solution useful in treating inflammatory, degenerative and viral diseases |
| US6022337A (en) | 1997-09-04 | 2000-02-08 | Herbst; Walter | Dental anesthetic and delivery injection unit |
| US6290679B1 (en) * | 1999-05-14 | 2001-09-18 | Disetronic Licensing Ag | Device for metered administration of an injectable product |
| US6113583A (en) * | 1998-09-15 | 2000-09-05 | Baxter International Inc. | Vial connecting device for a sliding reconstitution device for a diluent container |
| US20030015423A1 (en) | 1999-03-04 | 2003-01-23 | Lagreca Alfred J. | Method and apparatus for calibrating a pH/ISE meter |
| DE19912434B4 (en) | 1999-03-19 | 2013-10-24 | Roche Diagnostics Gmbh | Infusion device, catheter device and catheter head |
| US6818179B1 (en) | 1999-03-30 | 2004-11-16 | Gambro Lundia Ab | Method and apparatus for sterilizing a heat sensitive fluid |
| US6432089B1 (en) | 2000-06-21 | 2002-08-13 | Medrad, Inc. | Medical syringe |
| ATE448816T1 (en) * | 2002-04-24 | 2009-12-15 | Ares Trading Sa | DEVICE FOR PREPARING A MEDICAL LIQUID |
| US7507579B2 (en) | 2002-05-01 | 2009-03-24 | Massachusetts Institute Of Technology | Apparatus and methods for simultaneous operation of miniaturized reactors |
| US7445801B2 (en) | 2002-06-07 | 2008-11-04 | Baxter International Inc. | Stable bicarbonate-based solution in a single container |
| US6948522B2 (en) * | 2003-06-06 | 2005-09-27 | Baxter International Inc. | Reconstitution device and method of use |
| JP3883527B2 (en) * | 2003-07-17 | 2007-02-21 | ニプロ株式会社 | Transfer needle |
| US20070293441A1 (en) | 2003-09-22 | 2007-12-20 | Baxter International Inc. | High-pressure sterilization to terminally sterilize pharmaceutical preparations and medical products |
| US20060184103A1 (en) * | 2005-02-17 | 2006-08-17 | West Pharmaceutical Services, Inc. | Syringe safety device |
| JP4984033B2 (en) | 2006-05-12 | 2012-07-25 | 味の素株式会社 | Container container filled with bicarbonate-containing chemicals |
| US20080045925A1 (en) | 2006-06-19 | 2008-02-21 | Stepovich Matthew J | Drug delivery system |
| PL2029178T3 (en) * | 2006-06-21 | 2012-08-31 | Ge Healthcare Ltd | Radiopharmaceutical products |
| US20090221984A1 (en) | 2008-03-03 | 2009-09-03 | Akram Girgis | Method and apparatus for providing therapeutically effective dosage formulations of lidocaine with and without epinephrine |
| US20110005958A1 (en) | 2009-07-09 | 2011-01-13 | Onpharma, Inc. | METHODS AND SYSTEMS FOR ADJUSTING THE pH OF MEDICAL BUFFERING SOLUTIONS |
-
2009
- 2009-03-18 US US12/406,670 patent/US8162917B2/en active Active
- 2009-05-11 BR BRPI0912843A patent/BRPI0912843B8/en not_active IP Right Cessation
- 2009-05-11 MX MX2010012665A patent/MX2010012665A/en active IP Right Grant
- 2009-05-11 KR KR1020177002127A patent/KR101731227B1/en not_active Expired - Fee Related
- 2009-05-11 PL PL09751173T patent/PL2288405T3/en unknown
- 2009-05-11 CN CN201310215239.6A patent/CN103356387B/en not_active Expired - Fee Related
- 2009-05-11 CA CA2725139A patent/CA2725139C/en active Active
- 2009-05-11 CN CN2009801186908A patent/CN102036711B/en not_active Expired - Fee Related
- 2009-05-11 JP JP2011510573A patent/JP5504258B2/en active Active
- 2009-05-11 AU AU2009249363A patent/AU2009249363B2/en not_active Ceased
- 2009-05-11 KR KR20107028692A patent/KR20110021911A/en not_active Ceased
- 2009-05-11 WO PCT/US2009/043486 patent/WO2009142944A1/en not_active Ceased
- 2009-05-11 EP EP09751173.7A patent/EP2288405B8/en active Active
- 2009-05-11 ES ES09751173.7T patent/ES2621816T3/en active Active
-
2010
- 2010-11-19 CR CR11798A patent/CR11798A/en unknown
- 2010-11-21 IL IL209487A patent/IL209487A/en active IP Right Grant
-
2012
- 2012-03-23 US US13/428,283 patent/US20120180432A1/en not_active Abandoned
-
2013
- 2013-07-19 JP JP2013150702A patent/JP5693672B2/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5383324A (en) * | 1993-04-23 | 1995-01-24 | Baxter International Inc. | Method for manufacturing and storing stable bicarbonate solutions |
| US20010056259A1 (en) * | 1998-12-29 | 2001-12-27 | Skinkle David W. | Spring-powered infusion pump |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2882400A4 (en) * | 2012-08-09 | 2016-08-03 | Duoject Inc | RECONSTITUTION DEVICE |
| US9387151B2 (en) | 2013-08-20 | 2016-07-12 | Anutra Medical, Inc. | Syringe fill system and method |
| US9393177B2 (en) | 2013-08-20 | 2016-07-19 | Anutra Medical, Inc. | Cassette assembly for syringe fill system |
| US9579257B2 (en) | 2013-08-20 | 2017-02-28 | Anutra Medical, Inc. | Haptic feedback and audible output syringe |
| US10010483B2 (en) | 2013-08-20 | 2018-07-03 | Anutra Medical, Inc. | Cassette assembly for syringe fill system |
| US10010482B2 (en) | 2013-08-20 | 2018-07-03 | Anutra Medical, Inc. | Syringe fill system and method |
| USD750768S1 (en) | 2014-06-06 | 2016-03-01 | Anutra Medical, Inc. | Fluid administration syringe |
| USD763433S1 (en) | 2014-06-06 | 2016-08-09 | Anutra Medical, Inc. | Delivery system cassette |
| USD774182S1 (en) | 2014-06-06 | 2016-12-13 | Anutra Medical, Inc. | Anesthetic delivery device |
| WO2024073405A1 (en) * | 2022-09-27 | 2024-04-04 | Onpharma Company | Method and apparatus for buffering anesthetics |
Also Published As
| Publication number | Publication date |
|---|---|
| KR101731227B1 (en) | 2017-04-27 |
| CA2725139C (en) | 2017-05-30 |
| KR20110021911A (en) | 2011-03-04 |
| JP5504258B2 (en) | 2014-05-28 |
| EP2288405B1 (en) | 2017-01-18 |
| MX2010012665A (en) | 2011-04-05 |
| EP2288405A1 (en) | 2011-03-02 |
| IL209487A (en) | 2014-04-30 |
| CN102036711A (en) | 2011-04-27 |
| BRPI0912843A2 (en) | 2017-05-23 |
| CN103356387A (en) | 2013-10-23 |
| CN103356387B (en) | 2016-04-06 |
| ES2621816T3 (en) | 2017-07-05 |
| JP5693672B2 (en) | 2015-04-01 |
| US8162917B2 (en) | 2012-04-24 |
| JP2011520558A (en) | 2011-07-21 |
| BRPI0912843B8 (en) | 2021-06-22 |
| JP2013236954A (en) | 2013-11-28 |
| EP2288405B8 (en) | 2017-04-19 |
| EP2288405A4 (en) | 2014-08-06 |
| IL209487A0 (en) | 2011-01-31 |
| AU2009249363A1 (en) | 2009-11-26 |
| KR20170023143A (en) | 2017-03-02 |
| AU2009249363B2 (en) | 2013-10-03 |
| BRPI0912843B1 (en) | 2020-11-17 |
| CN102036711B (en) | 2013-07-10 |
| US20090292271A1 (en) | 2009-11-26 |
| PL2288405T3 (en) | 2017-08-31 |
| CR11798A (en) | 2011-02-14 |
| CA2725139A1 (en) | 2009-11-26 |
| WO2009142944A1 (en) | 2009-11-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8162917B2 (en) | Methods and apparatus for buffering anesthetics | |
| US9265697B2 (en) | Methods and apparatus for buffering parenteral solutions | |
| US20110282316A1 (en) | Methods for buffering medical solutions | |
| US20130115569A1 (en) | Method and Related Devices for Mixing Two Injectable Compositions Prior to Injection | |
| US20140124514A1 (en) | Method and apparatus for adding buffers and other substances to medical cartridges | |
| WO2011006131A1 (en) | Methods and apparatus for buffering parenteral solutions | |
| US20250367383A1 (en) | Method and apparatus for buffering anesthetics | |
| US20250222205A1 (en) | Method and apparatus for buffering anesthetics | |
| US20210260275A1 (en) | Multi-use drug delivery device for drugs with insufficinet level of preservatives | |
| US20220096328A1 (en) | Apparatus and method for buffering solutions | |
| WO2025106336A1 (en) | Clogging prevention of needle-based delivery devices | |
| US11260177B1 (en) | Dental anesthetic buffer system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ONPHARMA, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STEPOVICH, MATTHEW J.;FALKEL, MICHAEL I.;REEL/FRAME:030163/0784 Effective date: 20120404 |
|
| AS | Assignment |
Owner name: GOLDMAN SACHS LENDING PARTNERS LLC, AS COLLATERAL Free format text: SECURITY AGREEMENT;ASSIGNOR:ONPHARMA INC;REEL/FRAME:034524/0018 Effective date: 20140522 |
|
| AS | Assignment |
Owner name: BARCLAYS BANK PLC, AS SUCCESSOR AGENT, NEW YORK Free format text: NOTICE OF SUCCESSION OF AGENCY;ASSIGNOR:GOLDMAN SACHS LENDING PARTNERS, LLC;REEL/FRAME:034749/0689 Effective date: 20150108 |
|
| AS | Assignment |
Owner name: THE BANK OF NEW YORK MELLON, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:ONPHARMA INC.;REEL/FRAME:043041/0777 Effective date: 20170717 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |
|
| AS | Assignment |
Owner name: ONPHARMA COMPANY, NEVADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ONPHARMA INC.;REEL/FRAME:046063/0392 Effective date: 20180607 |
|
| AS | Assignment |
Owner name: 1530065 B.C. LTD., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: 1261229 B.C. LTD., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: VRX HOLDCO LLC, NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: V-BAC HOLDING CORP., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: SOLTA MEDICAL DUTCH HOLDINGS B.V., NETHERLANDS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: PRZEDSIEBIORSTWO FARMACEUTYCZNE JELFA SPOLKA AKCYJNA (A/K/A PRZEDSIEBIORSTWO FARMACEUTYCZNE JELFA S.A.), POLAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: ORAPHARMA, INC., NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: ICN POLFA RZESZOW SPOLKA AKCYJNA (A/K/A ICN POLFA RZESZOW S.A.), POLAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH, CANADA INC. / SANTE BAUSCH, CANADA INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH US, LLC, NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH POLAND SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA (F/K/A VALEANT PHARMA POLAND SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA), POLAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH MAGYARORSZAG KFT (A/K/A BAUSCH HEALTH HUNGARY LLC), HUNGARY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH HOLDCO LIMITED, IRELAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH COMPANIES INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH AMERICAS, INC., NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH+LOMB OPS B.V., NETHERLANDS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH & LOMB MEXICO, S.A. DE C.V., MEXICO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: SOLTA MEDICAL IRELAND LIMITED, IRELAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: HUMAX PHARMACEUTICAL S.A., COLOMBIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: MEDICIS PHARMACEUTICAL CORPORATION, NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: SANTARUS, INC., NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: SALIX PHARMACEUTICALS, LTD, NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: SALIX PHARMACEUTICALS, INC., NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH IRELAND LIMITED (F/K/A/ VALEANT PHARMACEUTICALS IRELAND LIMITED), IRELAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: PRECISION DERMATOLOGY, INC., NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: SOLTA MEDICAL, INC., NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: SOLTA MEDICAL, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: PRECISION DERMATOLOGY, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH IRELAND LIMITED (F/K/A/ VALEANT PHARMACEUTICALS IRELAND LIMITED), IRELAND Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: SALIX PHARMACEUTICALS, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: SALIX PHARMACEUTICALS, LTD, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: SANTARUS, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: MEDICIS PHARMACEUTICAL CORPORATION, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: HUMAX PHARMACEUTICAL S.A., COLOMBIA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: SOLTA MEDICAL IRELAND LIMITED, IRELAND Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH & LOMB MEXICO, S.A. DE C.V., MEXICO Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH+LOMB OPS B.V., NETHERLANDS Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH AMERICAS, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH COMPANIES INC., CANADA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH HOLDCO LIMITED, IRELAND Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH MAGYARORSZAG KFT (A/K/A BAUSCH HEALTH HUNGARY LLC), HUNGARY Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH POLAND SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA (F/K/A VALEANT PHARMA POLAND SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA), POLAND Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH US, LLC, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: BAUSCH HEALTH, CANADA INC. / SANTE BAUSCH, CANADA INC., CANADA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: ICN POLFA RZESZOW SPOLKA AKCYJNA (A/K/A ICN POLFA RZESZOW S.A.), POLAND Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: ORAPHARMA, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: PRZEDSIEBIORSTWO FARMACEUTYCZNE JELFA SPOLKA AKCYJNA (A/K/A PRZEDSIEBIORSTWO FARMACEUTYCZNE JELFA S.A.), POLAND Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: SOLTA MEDICAL DUTCH HOLDINGS B.V., NETHERLANDS Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: V-BAC HOLDING CORP., CANADA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: VRX HOLDCO LLC, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: 1261229 B.C. LTD., CANADA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 Owner name: 1530065 B.C. LTD., CANADA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:070778/0199 Effective date: 20250408 |