US20120132565A1 - Asphalt oxidation process using liquid jet ejection - Google Patents
Asphalt oxidation process using liquid jet ejection Download PDFInfo
- Publication number
- US20120132565A1 US20120132565A1 US13/304,964 US201113304964A US2012132565A1 US 20120132565 A1 US20120132565 A1 US 20120132565A1 US 201113304964 A US201113304964 A US 201113304964A US 2012132565 A1 US2012132565 A1 US 2012132565A1
- Authority
- US
- United States
- Prior art keywords
- asphalt
- air
- liquid jet
- oxidizer vessel
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000010426 asphalt Substances 0.000 title claims abstract description 113
- 239000007788 liquid Substances 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 48
- 230000008569 process Effects 0.000 title claims abstract description 47
- 238000007254 oxidation reaction Methods 0.000 title description 12
- 230000003647 oxidation Effects 0.000 title description 11
- 239000007800 oxidant agent Substances 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 11
- 238000004064 recycling Methods 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 3
- 239000012530 fluid Substances 0.000 abstract description 3
- 238000007664 blowing Methods 0.000 description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 17
- 239000001301 oxygen Substances 0.000 description 17
- 229910052760 oxygen Inorganic materials 0.000 description 17
- 230000035515 penetration Effects 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- 239000007789 gas Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 9
- 239000003208 petroleum Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000001186 cumulative effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000004078 waterproofing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 240000005428 Pistacia lentiscus Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- -1 naphtha Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10C—WORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
- C10C3/00—Working-up pitch, asphalt, bitumen
- C10C3/02—Working-up pitch, asphalt, bitumen by chemical means reaction
- C10C3/04—Working-up pitch, asphalt, bitumen by chemical means reaction by blowing or oxidising, e.g. air, ozone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/312—Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L95/00—Compositions of bituminous materials, e.g. asphalt, tar, pitch
Definitions
- the present disclosure provides a process for increasing the softening temperature of asphalts by use of liquid jet ejector technology, which is used as both air compressor and air/oil mixer.
- the liquid jet ejector motive fluid is hot asphalt and the entrained vapor is air.
- Asphalt is one of the world's oldest engineering materials, having been used since the beginning of civilization. Asphalt is a strong, versatile and chemical-resistant binding material that adapts itself to a variety of uses. For example, asphalt is used to bind crushed stone and gravel into firm tough surfaces for roads, streets, and airport runways. Asphalt, also known as pitch, can be obtained from either natural deposits, or as a by-product of the petroleum industry. Natural asphalts were extensively used until the early 1900s. The discovery of refining asphalt from crude petroleum and the increasing popularity of the automobile served to greatly expand the asphalt industry. Modern petroleum asphalt has the same durable qualities as naturally occurring asphalt, with the added advantage of being refined to a uniform condition substantially free of organic and mineral impurities.
- Asphalt is also used for expansion joints and patches on concrete roads, as well as for airport runways, tennis courts, playgrounds, and floors in buildings.
- Another major use of asphalt is in asphalt shingles and roll-roofing which is typically comprised of felt saturated with asphalt. The asphalt helps to preserve and waterproof the roofing material.
- Other applications for asphalt include waterproofing tunnels, bridges, dams and reservoirs, rust-proofing and sound proofing metal pipes and automotive under-bodies; and sound-proofing walls and ceilings.
- Asphalt is a natural constituent of petroleum, and there are crude oils that are almost entirely asphalt.
- the crude petroleum is separated into its various fractions through a distillation process. After separation, these fractions are further refined into other products such as asphalt, paraffin, gasoline, naphtha, lubricating oil, kerosene and diesel oil. Since asphalt is the base or heavy constituent of crude petroleum, it does not evaporate or boil off during the distillation process. Asphalt is essentially the heavy residue of the oil refining process.
- asphalt is to be used for a purpose other than paving, such as roofing, pipe coating, or as an under sealant or water-proofing material
- the asphalt is usually oxidized, typically by air blowing. Oxidation produces an asphalt material that softens at a higher temperature than non-oxidized asphalts. Oxidation is conventionally done by air blowing at the refinery, at an asphalt processing plant, or at a roofing material plant. Air blowing modifies the asphalt by an oxidation process that involves the blowing of air through the asphalt, either on a batch or continuous basis, with a short residue time at a temperature from 175° C. to 300° C.
- a process for increasing the softening point of asphalt including the following steps: providing a liquid jet ejector comprising a motive inlet, a motive nozzle, a suction port, a main ejector body, a venturi throat and diffuser, and a discharge connection; conducting a preheated asphalt feed including fresh asphalt and recycled oxidized asphalt, at a temperature from 125° C.
- FIG. 1 hereof is a process flow scheme of a conventional asphalt oxidation process (Prior art process).
- FIG. 2 hereof is a process flow scheme of the inventive asphalt oxidation process of the present disclosure.
- FIG. 3 hereof is a graph of oxidized asphalt penetration versus softening point for asphalt produced via the prior art process and the inventive process disclosed herein.
- the instant disclosure is suitable for increasing the softening temperature of any type of asphalt, both naturally occurring and asphalts that result is from the distillation of crude oil.
- it is typically desired to increase the softening temperature of asphalt for uses other than paving, it may be desirable to also increase the softening temperature for asphalts for some paving applications.
- the asphalt is to be used for applications such as roofing, pipe coating, or as an under sealant or water-proofing material, it is highly desirable to increase its softening temperature.
- Such uses typically require the asphalt to have a softening temperature higher than asphalt used for paving roads.
- the softening temperature is typically increased by oxidizing the asphalt.
- the softening temperature of asphalts is increased conventionally by an oxidation process that involves the blowing of air through the asphalt, either on a batch or a continuous basis, with the asphalt at a temperature from 175° C. to 300° C.
- Conventional air blowing usually involves preheating the asphalt, after which it is introduced into a blowing, or oxidizer column just below the normal liquid level. Air is blown through the asphalt by means of an air distributor located at the bottom of the column. The air serves not only as the reactant, but also serves to agitate and mix the asphalt, thereby increasing the surface area and rate of reaction. Oxygen is consumed by the asphalt as the air ascends through the material. Steam and water are typically sprayed into the vapor space above the asphalt level, the former to suppress foaming and dilute the oxygen content of waste gases and the later cools the vapors to prevent after-burning.
- the “blown” product flows from the bottom of the blowing column via an external draw-off line and is pumped through heat exchangers to achieve the desired product temperature and to provide an economical means of preheating the incoming asphalt feed.
- the penetration and softening point of the blown asphalt are affected by such things as: the viscosity of the feedstock, the temperature in the blowing column, the origin of the crude oil used to manufacture the feedstock, the liquid residence time within the oxidizer, and the air-to-feed ratio.
- the blowing process dehydrogenates the asphalt, resulting in oxidation and polycondensation, increasing the overall molecular size of the asphaltenes already present in the feed and forming additional asphaltenes from the maltene phase. Because the reaction is exothermic, close temperature control of the process is required, which is typically achieved by regulating the air-to-asphalt ratio in the blowing column.
- asphalt manufactured from select crudes requires only a limited amount of air blowing. This process is termed semi-blowing, or air rectification. Used judiciously, semi-blowing can be applied to asphalt to reduce the temperature susceptibility of the asphalt, for example, increasing its penetration index.
- the penetration index is a measure of the way the binder's (asphalt) consistency (penetration value) changes with temperature. It can be calculated from the penetration at two different temperatures, or from the penetration at one temperature and the softening point.
- Fully blown or oxidized asphalts are conventionally produced by vigorous air-blowing of short residue or short residue blended with a heavy distillate.
- Short residue is the residue left after vacuum distillation.
- the position of the blowing curve is primarily dependent on the viscosity of the feed; i.e., the softer the feed the higher the curve.
- the severity of blowing depends on the temperature in the column, the air to feed ratio, and the liquid residence time. Thus, by controlling the viscosity of the feed and the conditions in the column, all the blown grades of asphalts can be manufactured.
- Oxidized asphalts are used almost entirely for industrial applications, e.g. roofing, flooring mastics, pipe coatings, paints, etc., and are specified and designated by both softening point and penetration tests, e.g. 85/40 is an oxidized grade asphalt with a softening point of 85° C. plus or minus 5° C. and a penetration of 40 dmm plus or minus 5 dmm.
- FIG. 1 hereof is a process flow scheme of a conventional asphalt oxidation process (prior art process).
- An asphalt feed is passed via line 10 through heat exchanger 1 where it is preheated to a temperature from 125° C. to 300° C., then to oxidizer vessel 2 .
- Air, via line 12 is also introduced to oxidizer vessel 2 by first compressing it by use compressor 3 then passing it through knockout drum 4 to remove any condensed water or other liquids via line 13 .
- the air flows upward through a distributor 15 and countercurrent to down-flowing asphalt.
- the air is not only the reactant, but also serves to agitate and mix the asphalt, thereby increasing the surface area and rate of reaction.
- Oxygen is consumed by the asphalt as the air ascends through the down flowing asphalt. Steam or water can be sprayed (not shown) into the vapor space above the asphalt to suppress foaming and to dilute the oxygen content of waste gases that are removed via line 14 and conducted to knockout drum 5 to remove any condensed or entrained liquids via line 17 .
- the oxidizer vessel 2 is typically operated at low pressures of 0 to 2 barg.
- the low pressure off-gas which is primarily comprised of nitrogen and water vapor, is often conducted via line 16 to an incinerator 8 where it is burned before being discharged to the atmosphere.
- the oxidized asphalt product stream is then conducted via line 18 and pumped via pump 6 through heat exchanger 1 wherein it is used to preheat the asphalt feed being conducted to oxidizer vessel 2 .
- the hot asphalt product stream is then conducted via line 20 to steam generator 7 where it is cooled prior to going to storage. While such a conventional process has been commercially successful, there is still much room for improvement.
- liquid jet ejector technology of the present disclosure eliminates the need for an air compressor; improves the air/oil mixing compared to that of a conventional oxidizer vessel, thus reducing excess air requirements and reducing the size of the off-gas piping; reduces the excess oxygen in the off-gas allowing it to go to the fuel gas system, thus eliminating the need for an incinerator; and reduces the reaction time, thus reducing the size requirement of the oxidizer vessel.
- Liquid jet ejectors have not been used to oxidize asphalts to increase their softening temperatures.
- Liquid jet ejectors are comprised of the following components: a body having an inlet for introducing the motive liquid, a converging nozzle that converts the motive liquid into a high velocity jet stream, a port (suction inlet) on the body for the entraining in of a second liquid or gas, a diffuser (or venturi), and an outlet wherein the mixed liquid stream is discharged.
- a motive liquid under high pressure flows through converging nozzles into the mixing chamber and at some distance behind the nozzles forms high-velocity and high-dispersed liquid jets, which mix with entrained gas, speeding up the gas and producing a supersonic liquid-gas flow inside the mixing chamber.
- Kinetic energy of the liquid jet is transferred to the entrained gas in the mixing chamber producing vacuum at the suction inlet.
- Hypersonic liquid-gas flow enters the throat, where it is decelerated by the compression shocks.
- the low pressure zone in the mixing chamber is isolated from the high pressure zones located downstream.
- FIG. 2 hereof is a process flow scheme of the process of the present disclosure for oxidizing asphalts.
- An asphalt feed via line 100 is preheated in heat exchanger 60 and combined with a portion of the oxidized asphalt product from oxidizer vessel 20 via line 110 and pumped via pump 50 via line 120 to the liquid jet ejector 30 motive inlet and mixed with an effective amount of air via line 130 to liquid jet ejector 30 suction inlet via knockout drum 70 .
- Any liquid collected from knockout drum 70 is drained via line 170 .
- the amount of oxidized asphalt product recycled from the oxidizer will be at least 5 times, preferably at least 10 times, and more preferably at least 20 times that of the volume of incoming asphalt feed.
- effective amount of air we mean at least a stoichiometric amount, but not so much that it will cause undesirable results from either a reaction or a process point of view.
- the stoichiometric amount of air will be determined by the amount of oxidizable components in the particular asphalt feed. It is preferred that a stoichiometric amount of air be used.
- Liquid jet ejectors are typically comprised of a motive inlet, a motive nozzle, a suction port, a main body, a venturi throat and diffuser, and a discharge connection, wherein the hot asphalt, at a temperature from 125° C. to 300° C., is conducted as the motive liquid into said motive inlet and wherein air is drawn into the suction port and mixed with the asphalt within the ejector body.
- the air drawn into the suction port of the liquid jet ejector may be either atmospheric air or compressed air.
- the pressurized air/asphalt mixture is then conducted via line 140 to oxidizer/separation vessel 20 .
- the pressure of the mixture exiting the liquid jet ejector will be in excess of the pressure at which the oxidizer is operated and will be further adjusted to allow for the resulting off gas from the oxidizer to be introduced into the fuel gas system of the refinery.
- the oxidizer vessel 20 is operated at pressures from 0 to 10+ barg, preferably from 0 to 5 barg and more preferably from 0 to 2 barg.
- the temperature of the oxidizer vessel will be from 150° C. to 300° C., preferably from 200° C. to 270° C., and more preferably from 250° C. to 270° C. It is preferred that the temperature within the oxidizer will be at least 10° C. higher, preferably 20° C., and more preferably 30° C.
- Off-gas is collected overhead via line 150 and passed through a knockout drum 70 where liquids are drained off via line 170 for further processing and the vapor because of its pressure and low oxygen content can be routed into the refinery fuel gas system via line 180 .
- the oxidized product is conducted via line 190 through pump 80 , heat exchanger 60 and steam generator 40 .
- An effective amount of steam can be conducted (not shown) to the vapor space 22 above or below the asphalt level 24 in the oxidizer 20 to dilute the oxygen content of the off gas, primarily for safety purposes.
- effective amount of steam is meant at least that amount needed to dilute the oxygen content of the resulting off gas to a predetermined value.
- the oxidized product stream is then routed to product storage via line 190 while a portion of it is recycled via line 110 to line 120 where it is mixed with fresh feed, which functions to provide the necessary motive fluid for the liquid jet ejector.
- the liquid jet ejector pilot process performed as well as or better than the conventional counterpart. It should be noted that the conventional pilot unit could not achieve the low offgas oxygen content at similar conditions as the liquid jet ejector pilot process signifying the improved efficiency of the liquid jet ejector air blower versus the conventional air blower.
- Oxidized asphalt product penetration versus softening point for product produced from the inventive and prior art processes are compared graphically in FIG. 3 . The results indicate no differences between the prior art process and the inventive process with regard to these properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Working-Up Tar And Pitch (AREA)
Abstract
Provided is a process for increasing the softening temperature of asphalts by use of liquid jet ejector technology, which is used as both an air compressor and an air/oil mixer. The liquid jet ejector motive fluid is hot asphalt and the entrained vapor is air.
Description
- This is a non-provisional application that claims priority to U.S. Provisional Application No. 61/417,747 filed on Nov. 29, 2010, herein incorporated by reference in its entirety.
- The present disclosure provides a process for increasing the softening temperature of asphalts by use of liquid jet ejector technology, which is used as both air compressor and air/oil mixer. The liquid jet ejector motive fluid is hot asphalt and the entrained vapor is air.
- Asphalt is one of the world's oldest engineering materials, having been used since the beginning of civilization. Asphalt is a strong, versatile and chemical-resistant binding material that adapts itself to a variety of uses. For example, asphalt is used to bind crushed stone and gravel into firm tough surfaces for roads, streets, and airport runways. Asphalt, also known as pitch, can be obtained from either natural deposits, or as a by-product of the petroleum industry. Natural asphalts were extensively used until the early 1900s. The discovery of refining asphalt from crude petroleum and the increasing popularity of the automobile served to greatly expand the asphalt industry. Modern petroleum asphalt has the same durable qualities as naturally occurring asphalt, with the added advantage of being refined to a uniform condition substantially free of organic and mineral impurities.
- Most of the petroleum asphalt produced today is used for road surfacing. Asphalt is also used for expansion joints and patches on concrete roads, as well as for airport runways, tennis courts, playgrounds, and floors in buildings. Another major use of asphalt is in asphalt shingles and roll-roofing which is typically comprised of felt saturated with asphalt. The asphalt helps to preserve and waterproof the roofing material. Other applications for asphalt include waterproofing tunnels, bridges, dams and reservoirs, rust-proofing and sound proofing metal pipes and automotive under-bodies; and sound-proofing walls and ceilings.
- The raw material used in modern asphalt manufacturing is petroleum, which is naturally occurring liquid bitumen. Asphalt is a natural constituent of petroleum, and there are crude oils that are almost entirely asphalt. The crude petroleum is separated into its various fractions through a distillation process. After separation, these fractions are further refined into other products such as asphalt, paraffin, gasoline, naphtha, lubricating oil, kerosene and diesel oil. Since asphalt is the base or heavy constituent of crude petroleum, it does not evaporate or boil off during the distillation process. Asphalt is essentially the heavy residue of the oil refining process.
- If asphalt is to be used for a purpose other than paving, such as roofing, pipe coating, or as an under sealant or water-proofing material, the asphalt is usually oxidized, typically by air blowing. Oxidation produces an asphalt material that softens at a higher temperature than non-oxidized asphalts. Oxidation is conventionally done by air blowing at the refinery, at an asphalt processing plant, or at a roofing material plant. Air blowing modifies the asphalt by an oxidation process that involves the blowing of air through the asphalt, either on a batch or continuous basis, with a short residue time at a temperature from 175° C. to 300° C.
- While processes for oxidizing asphalt have been commercial for many years, there still remains a need in the art for ever more cost effective processes for modifying the physical properties of asphalt by oxidation.
- In accordance with the present disclosure there is provided a process for increasing the softening point of asphalt including the following steps: providing a liquid jet ejector comprising a motive inlet, a motive nozzle, a suction port, a main ejector body, a venturi throat and diffuser, and a discharge connection; conducting a preheated asphalt feed including fresh asphalt and recycled oxidized asphalt, at a temperature from 125° C. to 300° C., as the motive liquid into the motive inlet of the liquid jet ejector, drawing air into the suction port of the liquid jet ejector; mixing the preheated asphalt within the main ejector body with the air from the suction port of the liquid jet ejector to form a mixture, conducting the mixture to a heated and pressurized oxidizer vessel; collecting an off-gas from the overhead of said oxidizer vessel and an oxidized asphalt product stream from the bottoms of said oxidizer vessel, wherein said oxidized asphalt product stream has softening temperature greater than the preheated asphalt feed; and recycling a portion of the oxidized asphalt product stream plus fresh asphalt back to the liquid jet ejector to form the preheated asphalt feed.
- To assist those of ordinary skill in the relevant art in making and using the subject matter hereof, reference is made to the appended drawings, wherein:
-
FIG. 1 hereof is a process flow scheme of a conventional asphalt oxidation process (Prior art process). -
FIG. 2 hereof is a process flow scheme of the inventive asphalt oxidation process of the present disclosure. -
FIG. 3 hereof is a graph of oxidized asphalt penetration versus softening point for asphalt produced via the prior art process and the inventive process disclosed herein. - All numerical values within the detailed description and the claims herein are modified by “about” or “approximately” the indicated value, and take into account experimental error and variations that would be expected by a person having ordinary skill in the art.
- The instant disclosure is suitable for increasing the softening temperature of any type of asphalt, both naturally occurring and asphalts that result is from the distillation of crude oil. Although it is typically desired to increase the softening temperature of asphalt for uses other than paving, it may be desirable to also increase the softening temperature for asphalts for some paving applications. When the asphalt is to be used for applications such as roofing, pipe coating, or as an under sealant or water-proofing material, it is highly desirable to increase its softening temperature. Such uses typically require the asphalt to have a softening temperature higher than asphalt used for paving roads. The softening temperature is typically increased by oxidizing the asphalt. The softening temperature of asphalts is increased conventionally by an oxidation process that involves the blowing of air through the asphalt, either on a batch or a continuous basis, with the asphalt at a temperature from 175° C. to 300° C.
- Conventional air blowing usually involves preheating the asphalt, after which it is introduced into a blowing, or oxidizer column just below the normal liquid level. Air is blown through the asphalt by means of an air distributor located at the bottom of the column. The air serves not only as the reactant, but also serves to agitate and mix the asphalt, thereby increasing the surface area and rate of reaction. Oxygen is consumed by the asphalt as the air ascends through the material. Steam and water are typically sprayed into the vapor space above the asphalt level, the former to suppress foaming and dilute the oxygen content of waste gases and the later cools the vapors to prevent after-burning. The “blown” product flows from the bottom of the blowing column via an external draw-off line and is pumped through heat exchangers to achieve the desired product temperature and to provide an economical means of preheating the incoming asphalt feed. The penetration and softening point of the blown asphalt are affected by such things as: the viscosity of the feedstock, the temperature in the blowing column, the origin of the crude oil used to manufacture the feedstock, the liquid residence time within the oxidizer, and the air-to-feed ratio.
- The blowing process dehydrogenates the asphalt, resulting in oxidation and polycondensation, increasing the overall molecular size of the asphaltenes already present in the feed and forming additional asphaltenes from the maltene phase. Because the reaction is exothermic, close temperature control of the process is required, which is typically achieved by regulating the air-to-asphalt ratio in the blowing column.
- To produce penetration grade asphalt suitable for certain road construction applications, asphalt manufactured from select crudes requires only a limited amount of air blowing. This process is termed semi-blowing, or air rectification. Used judiciously, semi-blowing can be applied to asphalt to reduce the temperature susceptibility of the asphalt, for example, increasing its penetration index. The penetration index is a measure of the way the binder's (asphalt) consistency (penetration value) changes with temperature. It can be calculated from the penetration at two different temperatures, or from the penetration at one temperature and the softening point.
- Fully blown or oxidized asphalts are conventionally produced by vigorous air-blowing of short residue or short residue blended with a heavy distillate. Short residue is the residue left after vacuum distillation. The position of the blowing curve is primarily dependent on the viscosity of the feed; i.e., the softer the feed the higher the curve. The severity of blowing depends on the temperature in the column, the air to feed ratio, and the liquid residence time. Thus, by controlling the viscosity of the feed and the conditions in the column, all the blown grades of asphalts can be manufactured.
- Oxidized asphalts are used almost entirely for industrial applications, e.g. roofing, flooring mastics, pipe coatings, paints, etc., and are specified and designated by both softening point and penetration tests, e.g. 85/40 is an oxidized grade asphalt with a softening point of 85° C. plus or minus 5° C. and a penetration of 40 dmm plus or minus 5 dmm.
- The aim of the oxidation process is the formation of asphaltenes in which the following three phenomena can be identified:
-
- Reactions during which the size of the molecules increases. The formation of esters is particularly important and not only account for at least 60% of the oxygen in oxidized asphalt, but also link two different molecules and thus contribute to the formation of a material having a higher molecular weight. This mechanism results in an increase in the asphaltene content and a change in the colloid-chemical constitution and rheological properties of the asphalt,
- Reactions during which the size of the molecule is unchanged. For example, the formation of cyclic hydrocarbons by means of dehydrogenation with H2O as a side product.
- Reactions during which the size of the molecule decreases. For example, separation of side branches from molecules with blown distillate produced as a side product.
- This disclosure can be better understood with reference to the Figures hereof.
FIG. 1 hereof is a process flow scheme of a conventional asphalt oxidation process (prior art process). An asphalt feed is passed vialine 10 throughheat exchanger 1 where it is preheated to a temperature from 125° C. to 300° C., then tooxidizer vessel 2. Air, vialine 12, is also introduced tooxidizer vessel 2 by first compressing it byuse compressor 3 then passing it through knockout drum 4 to remove any condensed water or other liquids vialine 13. The air flows upward through adistributor 15 and countercurrent to down-flowing asphalt. The air is not only the reactant, but also serves to agitate and mix the asphalt, thereby increasing the surface area and rate of reaction. Oxygen is consumed by the asphalt as the air ascends through the down flowing asphalt. Steam or water can be sprayed (not shown) into the vapor space above the asphalt to suppress foaming and to dilute the oxygen content of waste gases that are removed vialine 14 and conducted to knockout drum 5 to remove any condensed or entrained liquids vialine 17. Theoxidizer vessel 2 is typically operated at low pressures of 0 to 2 barg. The low pressure off-gas, which is primarily comprised of nitrogen and water vapor, is often conducted vialine 16 to anincinerator 8 where it is burned before being discharged to the atmosphere. The oxidized asphalt product stream is then conducted vialine 18 and pumped viapump 6 throughheat exchanger 1 wherein it is used to preheat the asphalt feed being conducted tooxidizer vessel 2. The hot asphalt product stream is then conducted vialine 20 to steamgenerator 7 where it is cooled prior to going to storage. While such a conventional process has been commercially successful, there is still much room for improvement. - The practice of the instant disclosure for oxidizing asphalts presents a substantial improvement over conventional air blowing techniques. For example, the use of liquid jet ejector technology of the present disclosure eliminates the need for an air compressor; improves the air/oil mixing compared to that of a conventional oxidizer vessel, thus reducing excess air requirements and reducing the size of the off-gas piping; reduces the excess oxygen in the off-gas allowing it to go to the fuel gas system, thus eliminating the need for an incinerator; and reduces the reaction time, thus reducing the size requirement of the oxidizer vessel.
- Liquid jet ejectors have not been used to oxidize asphalts to increase their softening temperatures. Liquid jet ejectors are comprised of the following components: a body having an inlet for introducing the motive liquid, a converging nozzle that converts the motive liquid into a high velocity jet stream, a port (suction inlet) on the body for the entraining in of a second liquid or gas, a diffuser (or venturi), and an outlet wherein the mixed liquid stream is discharged.
- In a liquid jet ejector, a motive liquid under high pressure flows through converging nozzles into the mixing chamber and at some distance behind the nozzles forms high-velocity and high-dispersed liquid jets, which mix with entrained gas, speeding up the gas and producing a supersonic liquid-gas flow inside the mixing chamber. Kinetic energy of the liquid jet is transferred to the entrained gas in the mixing chamber producing vacuum at the suction inlet. Hypersonic liquid-gas flow enters the throat, where it is decelerated by the compression shocks. Thus, the low pressure zone in the mixing chamber is isolated from the high pressure zones located downstream.
-
FIG. 2 hereof is a process flow scheme of the process of the present disclosure for oxidizing asphalts. An asphalt feed vialine 100 is preheated inheat exchanger 60 and combined with a portion of the oxidized asphalt product fromoxidizer vessel 20 vialine 110 and pumped viapump 50 vialine 120 to theliquid jet ejector 30 motive inlet and mixed with an effective amount of air vialine 130 toliquid jet ejector 30 suction inlet viaknockout drum 70. Any liquid collected fromknockout drum 70 is drained vialine 170. The amount of oxidized asphalt product recycled from the oxidizer will be at least 5 times, preferably at least 10 times, and more preferably at least 20 times that of the volume of incoming asphalt feed. By effective amount of air we mean at least a stoichiometric amount, but not so much that it will cause undesirable results from either a reaction or a process point of view. The stoichiometric amount of air will be determined by the amount of oxidizable components in the particular asphalt feed. It is preferred that a stoichiometric amount of air be used. - Any suitable liquid jet ejector can be used in the practice of the present disclosure. Liquid jet ejectors are typically comprised of a motive inlet, a motive nozzle, a suction port, a main body, a venturi throat and diffuser, and a discharge connection, wherein the hot asphalt, at a temperature from 125° C. to 300° C., is conducted as the motive liquid into said motive inlet and wherein air is drawn into the suction port and mixed with the asphalt within the ejector body. The air drawn into the suction port of the liquid jet ejector may be either atmospheric air or compressed air. The pressurized air/asphalt mixture is then conducted via
line 140 to oxidizer/separation vessel 20. The pressure of the mixture exiting the liquid jet ejector will be in excess of the pressure at which the oxidizer is operated and will be further adjusted to allow for the resulting off gas from the oxidizer to be introduced into the fuel gas system of the refinery. Theoxidizer vessel 20 is operated at pressures from 0 to 10+ barg, preferably from 0 to 5 barg and more preferably from 0 to 2 barg. The temperature of the oxidizer vessel will be from 150° C. to 300° C., preferably from 200° C. to 270° C., and more preferably from 250° C. to 270° C. It is preferred that the temperature within the oxidizer will be at least 10° C. higher, preferably 20° C., and more preferably 30° C. higher than the incoming asphalt feed temperature. Off-gas is collected overhead vialine 150 and passed through aknockout drum 70 where liquids are drained off vialine 170 for further processing and the vapor because of its pressure and low oxygen content can be routed into the refinery fuel gas system vialine 180. The oxidized product is conducted vialine 190 throughpump 80,heat exchanger 60 andsteam generator 40. An effective amount of steam can be conducted (not shown) to thevapor space 22 above or below theasphalt level 24 in theoxidizer 20 to dilute the oxygen content of the off gas, primarily for safety purposes. By effective amount of steam is meant at least that amount needed to dilute the oxygen content of the resulting off gas to a predetermined value. The oxidized product stream is then routed to product storage vialine 190 while a portion of it is recycled vialine 110 toline 120 where it is mixed with fresh feed, which functions to provide the necessary motive fluid for the liquid jet ejector. - The following are examples of the present disclosure and are not to be construed as limiting.
- A batch pilot process was constructed to test the feasibility of the use of a liquid jet ejector to entrain the necessary air and mix the air/oil sufficiently for the asphalt oxidation reaction to occur. The results for two experimental runs for the inventive process are shown in Table 1 below.
-
TABLE 1 Liquid Jet Ejector Batch Pilot Air Blower Pilot Run # 1temperature deg C. 251 257 252 252 249 pressure kpag 28 28 21 103 103 cumulative air liters/ kg 0 24 62 93 100 mixer rpm none none none none none offgas oxygen vol. % 1.5% 1.4% penetration at 25 C. dmm 194 129 43 38 softening point deg C. 38.0 42.2 55.2 57.6 Pilot Run # 2temperature deg C. 189 199 202 202 231 244 249 pressure kpag 28 28 34 28 28 28 28 cumulative air liters/ kg 0 9 18 36 55 64 73 mixer rpm none none none none none none none offgas oxygen vol % 17.5% 18.0% 18.2% 15.0% 11.7% 10.4% penetration at 25 C. dmm 173 151 130 107 91 softening point deg C. 38.8 39.8 41.3 43.3 44.8 - it should be noted that the liquid distributor within the oxidizer vessel was removed for
Pilot Run # 2 resulting in significantly higher offgas oxygen content. However, at the end ofPilot Run # 1, there was very low offgas oxygen content, which signifies an approach to stoichiometric air. In addition, it was discovered that the asphalt product softening points are greater than the feed softening points. - By comparison, the same feed was run three times on a conventional prior art batch pilot unit and the comparative results achieved are shown in Table 2 below.
-
TABLE 2 Conventional Stirred Batch Pilot Air Blower Pilot Run # 1temperature deg C. 250 250 250 pressure kpag 0 0 0 cumulative air liters/ kg 0 50 100 mixer rpm 1750 1750 1750 offgas oxygen vol % 5.7% 8.1% 9.5% penetration at 25 C. dmm 167 67 34 softening point deg C. 39.1 48.7 59.3 Pilot Run # 2temperature deg C. 200 200 200 200 200 200 pressure kpag 0 0 0 0 0 0 cumulative air liters/ kg 0 50 100 150 200 250 mixer rpm 1750 1750 1750 1750 1750 1750 offgas oxygen vol % 10.8% 15.1% 15.5% 16.1% 16.3% 16.3% penetration at 25 C. dmm 167 91 57 41 30 24 softening point deg C. 39.1 44.4 49.6 55.0 60.2 66.0 Pilot Run # 3temperature deg C. 250 250 250 250 250 250 pressure kpag 0 0 0 0 0 0 cumulative air liters/ kg 0 50 150 250 350 650 mixer rpm 0 0 0 0 0 0 offgas oxygen vol % 10.5% 19.4% 19.4% 19.4% 19.5% 19.5% penetration at 25 C. dmm 167 98 62 softening point deg C. 39.1 44.7 49.1 - As can be seen, the liquid jet ejector pilot process performed as well as or better than the conventional counterpart. It should be noted that the conventional pilot unit could not achieve the low offgas oxygen content at similar conditions as the liquid jet ejector pilot process signifying the improved efficiency of the liquid jet ejector air blower versus the conventional air blower.
- Oxidized asphalt product penetration versus softening point for product produced from the inventive and prior art processes are compared graphically in
FIG. 3 . The results indicate no differences between the prior art process and the inventive process with regard to these properties. - Applicants have attempted to disclose all embodiments and applications of the disclosed subject matter that could be reasonably foreseen. However, there may be unforeseeable, insubstantial modifications that remain as equivalents. While the present disclosure has been described in conjunction with specific, exemplary embodiments thereof, it is evident that many alterations, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description without departing from the spirit or scope of the present disclosure. Accordingly, the present disclosure is intended to embrace all such alterations, modifications, and variations of the above detailed description.
- All patents, test procedures, and other documents cited herein, including priority documents, are fully incorporated by reference to the extent such disclosure is not inconsistent with this disclosure and for all jurisdictions in which such incorporation is permitted.
- When numerical lower limits and numerical upper limits are listed herein, ranges from any lower limit to any upper limit are contemplated.
Claims (13)
1. A process for increasing the softening point of asphalt comprising the following steps:
providing a liquid jet ejector comprising a motive inlet, a motive nozzle, a suction port, a main ejector body, a venturi throat and diffuser, and a discharge connection;
conducting a preheated asphalt feed including fresh asphalt and recycled oxidized asphalt, at a temperature from 125° C. to 300° C., as the motive liquid into the motive inlet of the liquid jet ejector;
drawing atmospheric air or compressed air into the suction port of the liquid jet ejector;
mixing the preheated asphalt within the main ejector body with the air from the suction port of the liquid jet ejector to form a mixture;
conducting the mixture to a heated and pressurized oxidizer vessel;
collecting an off-gas from the overhead of said oxidizer vessel and an oxidized asphalt product stream from the bottoms of said oxidizer vessel, wherein said oxidized asphalt product stream has softening temperature greater than the preheated asphalt feed; and
recycling a portion of the oxidized asphalt product stream back to the liquid jet ejector to form the recycled oxidized asphalt.
2. The process of claim 1 wherein the oxidizer vessel is operated at a temperature from 150° C. to 300° C. with the proviso that it be at least 10° C. greater than the temperature of the preheated asphalt feed being conducted to said motive inlet of the liquid jet ejector.
3. The process of claim 2 wherein the oxidizer vessel is operated at a temperature from 200° C. to 270° C.
4. The process of claim 1 wherein the recycled oxidized asphalt feed rate is at least 5 times greater than that of the fresh asphalt feed rate.
5. The process of claim 4 wherein the recycled oxidized asphalt feed rate is at least 20 times greater than that of the fresh asphalt feed rate.
6. The process of claim 1 wherein the oxidizer vessel is operated at a pressure of from 0 to 10 barg.
7. The process of claim 6 wherein the oxidizer vessel is operated at a to pressure of from 0 to 5 barg.
8. The process of claim 1 wherein the air feed rate is at least a stoichiometric amount based on the preheated asphalt feed rate.
9. The process of claim 1 further including the step of injecting steam from a steam generator to the oxidizer vessel.
10. The process of claim 9 wherein the injecting steam to the oxidizer vessel is above or below the liquid mixture in the oxidizer vessel.
11. The process of claim 1 wherein the air is compressed.
12. The process of claim 1 wherein the air is atmospheric.
13. Oxidized asphalt produced by the process of claim 1 .
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/304,964 US20120132565A1 (en) | 2010-11-29 | 2011-11-28 | Asphalt oxidation process using liquid jet ejection |
| PCT/US2011/062309 WO2012074961A1 (en) | 2010-11-29 | 2011-11-29 | Improved asphalt oxidation process using liquid jet ejection |
| EP11797076.4A EP2646526A1 (en) | 2010-11-29 | 2011-11-29 | Improved asphalt oxidation process using liquid jet ejection |
| CA2819151A CA2819151A1 (en) | 2010-11-29 | 2011-11-29 | Improved asphalt oxidation process using liquid jet ejection |
| SG2013039318A SG190367A1 (en) | 2010-11-29 | 2011-11-29 | Improved asphalt oxidation process using liquid jet ejection |
| US14/484,484 US9447327B2 (en) | 2010-11-29 | 2014-09-12 | Asphalt oxidation process using liquid jet ejection |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US41774710P | 2010-11-29 | 2010-11-29 | |
| US13/304,964 US20120132565A1 (en) | 2010-11-29 | 2011-11-28 | Asphalt oxidation process using liquid jet ejection |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/484,484 Continuation-In-Part US9447327B2 (en) | 2010-11-29 | 2014-09-12 | Asphalt oxidation process using liquid jet ejection |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120132565A1 true US20120132565A1 (en) | 2012-05-31 |
Family
ID=46125904
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/304,964 Abandoned US20120132565A1 (en) | 2010-11-29 | 2011-11-28 | Asphalt oxidation process using liquid jet ejection |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20120132565A1 (en) |
| EP (1) | EP2646526A1 (en) |
| CA (1) | CA2819151A1 (en) |
| SG (1) | SG190367A1 (en) |
| WO (1) | WO2012074961A1 (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013181363A1 (en) * | 2012-06-01 | 2013-12-05 | Exxonmobil Research And Engineering Company | Upgrading of asphaltene-depleted crudes |
| CN103805220A (en) * | 2012-11-07 | 2014-05-21 | 中国石油化工股份有限公司 | Preparation method for high-softening point asphalt |
| CN103805221A (en) * | 2012-11-07 | 2014-05-21 | 中国石油化工股份有限公司 | Production method for high-softening point asphalt |
| US20140262935A1 (en) * | 2013-03-15 | 2014-09-18 | Building Materials Investment Corporation | Asphalt oxidation technique |
| US20160017148A1 (en) * | 2014-07-16 | 2016-01-21 | Honeywell International Inc. | Asphalt compositions for roofing applications, methods for making the same, and filled asphalt material comprising the same |
| CN109749793A (en) * | 2019-01-23 | 2019-05-14 | 上海众炅新能源科技有限公司 | A method of preparing pitch base fuel oil |
| US10703980B2 (en) | 2016-09-27 | 2020-07-07 | Building Materials Investment Corporation | Asphalt blow still with sectionalized columns |
| US11326107B2 (en) * | 2019-02-26 | 2022-05-10 | Building Materials Investment Corporation | Utilizing packed columns for asphalt air blowing |
| US20230374391A1 (en) * | 2022-05-19 | 2023-11-23 | ExxonMobil Technology and Engineering Company | Asphalt air blowing with liquid jet ejector and coil |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA3048343C (en) | 2016-03-07 | 2021-01-05 | Canadian National Railway Company | Method and systems for transporting bitumen in solidified form |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1953345A (en) * | 1927-12-07 | 1934-04-03 | Earle W Gard | Process for the manufacture of asphaltic products |
| US2762756A (en) * | 1952-09-30 | 1956-09-11 | Socony Mobil Oil Co Inc | Asphalt manufacture |
| RU1792342C (en) * | 1991-01-08 | 1993-01-30 | Сергей Вячеславович Волейник | Equipment for oxidizing oil products |
-
2011
- 2011-11-28 US US13/304,964 patent/US20120132565A1/en not_active Abandoned
- 2011-11-29 EP EP11797076.4A patent/EP2646526A1/en not_active Withdrawn
- 2011-11-29 CA CA2819151A patent/CA2819151A1/en not_active Abandoned
- 2011-11-29 WO PCT/US2011/062309 patent/WO2012074961A1/en not_active Ceased
- 2011-11-29 SG SG2013039318A patent/SG190367A1/en unknown
Non-Patent Citations (1)
| Title |
|---|
| Genereaux, R.P. et al. (1984). Perry's Chemical Engineers' Handbook, 6th ed, edited by D.W. Green and J.O. Maloney, McGraw-Hill (Office action references section 6, pages 6-32 to 6-34). * |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8951405B2 (en) | 2012-06-01 | 2015-02-10 | Exxonmobil Research And Engineering Company | Upgrading of asphaltene-depleted crudes |
| WO2013181363A1 (en) * | 2012-06-01 | 2013-12-05 | Exxonmobil Research And Engineering Company | Upgrading of asphaltene-depleted crudes |
| CN103805220A (en) * | 2012-11-07 | 2014-05-21 | 中国石油化工股份有限公司 | Preparation method for high-softening point asphalt |
| CN103805221A (en) * | 2012-11-07 | 2014-05-21 | 中国石油化工股份有限公司 | Production method for high-softening point asphalt |
| US9556383B2 (en) * | 2013-03-15 | 2017-01-31 | Building Materials Investment Corporation | Asphalt oxidation technique |
| US20140262935A1 (en) * | 2013-03-15 | 2014-09-18 | Building Materials Investment Corporation | Asphalt oxidation technique |
| US20160017148A1 (en) * | 2014-07-16 | 2016-01-21 | Honeywell International Inc. | Asphalt compositions for roofing applications, methods for making the same, and filled asphalt material comprising the same |
| US9605152B2 (en) * | 2014-07-16 | 2017-03-28 | Honeywell International Inc. | Asphalt compositions for roofing applications, methods for making the same, and filled asphalt material comprising the same |
| US10703980B2 (en) | 2016-09-27 | 2020-07-07 | Building Materials Investment Corporation | Asphalt blow still with sectionalized columns |
| CN109749793A (en) * | 2019-01-23 | 2019-05-14 | 上海众炅新能源科技有限公司 | A method of preparing pitch base fuel oil |
| US11326107B2 (en) * | 2019-02-26 | 2022-05-10 | Building Materials Investment Corporation | Utilizing packed columns for asphalt air blowing |
| US20230374391A1 (en) * | 2022-05-19 | 2023-11-23 | ExxonMobil Technology and Engineering Company | Asphalt air blowing with liquid jet ejector and coil |
| WO2023225140A1 (en) * | 2022-05-19 | 2023-11-23 | ExxonMobil Technology and Engineering Company | Asphalt air blowing with liquid jet ejector and coil |
| US11999909B2 (en) * | 2022-05-19 | 2024-06-04 | ExxonMobil Technology and Engineering Company | Asphalt air blowing with liquid jet ejector and coil |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2012074961A1 (en) | 2012-06-07 |
| SG190367A1 (en) | 2013-06-28 |
| EP2646526A1 (en) | 2013-10-09 |
| CA2819151A1 (en) | 2012-06-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20120132565A1 (en) | Asphalt oxidation process using liquid jet ejection | |
| AU2009241812B2 (en) | System and method for pre-treatment of rubber-modified asphalt cement, and emulsions thereof | |
| EP2855637B1 (en) | Upgrading of asphaltene-depleted crudes | |
| JP2923255B2 (en) | Bitumen composition and method for producing the same | |
| KR20140045363A (en) | Enhanced temperature control of bitumen froth treatment process | |
| US9447327B2 (en) | Asphalt oxidation process using liquid jet ejection | |
| CA2845902C (en) | Continuous processing of asphalt formulations | |
| US5549744A (en) | Pavement Binder | |
| US11999909B2 (en) | Asphalt air blowing with liquid jet ejector and coil | |
| RU2167183C1 (en) | Method of bitumen production | |
| Zhambolova et al. | Oxidation of vacuum residue with the addition of crumb rubber | |
| WO1997009390A1 (en) | Pavement binder and method of making same | |
| RU2752591C1 (en) | Method for producing road bitumen | |
| RU2834297C1 (en) | Method of producing bitumen | |
| Kastens | Paving asphalt from California crude oil | |
| RU2783102C1 (en) | Method for deasphalting and desulfurization of heavy oil with obtaining bitumen binder | |
| RU2265033C2 (en) | Method of producing bitumen-polymer materials | |
| US2090766A (en) | Process for treating mineral oils | |
| RU2190579C2 (en) | Method of preparing liquid bitumen-rubber binding agents for manufacture of cold asphalt-concrete mixes | |
| RU2030438C1 (en) | Process for preparation of liquid bitumens to produce cold asphalt-concrete mixes | |
| Egloff et al. | Asphalt from the Cracking Process | |
| WO2014193271A1 (en) | Production of oligomeric nano-structured bitumen |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY, NEW J Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALDOUS, KEITH K.;REEL/FRAME:030445/0625 Effective date: 20111122 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |