US20120065203A1 - Methods of Reducing Serum Glucose and Triglyceride Levels and for Inhibiting Angiogenesis Using Substituted Indolealkanoic Acids - Google Patents
Methods of Reducing Serum Glucose and Triglyceride Levels and for Inhibiting Angiogenesis Using Substituted Indolealkanoic Acids Download PDFInfo
- Publication number
- US20120065203A1 US20120065203A1 US13/302,906 US201113302906A US2012065203A1 US 20120065203 A1 US20120065203 A1 US 20120065203A1 US 201113302906 A US201113302906 A US 201113302906A US 2012065203 A1 US2012065203 A1 US 2012065203A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- optionally substituted
- fluoro
- alkoxy
- phenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims abstract description 23
- 239000008103 glucose Substances 0.000 title claims abstract description 23
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 210000002966 serum Anatomy 0.000 title claims abstract description 11
- 230000033115 angiogenesis Effects 0.000 title claims abstract description 5
- 230000002401 inhibitory effect Effects 0.000 title claims abstract description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 title abstract description 22
- 239000002253 acid Substances 0.000 title abstract description 11
- 150000007513 acids Chemical class 0.000 title abstract description 4
- 150000001875 compounds Chemical class 0.000 claims abstract description 135
- -1 nitro, amino Chemical group 0.000 claims description 86
- 229910052736 halogen Inorganic materials 0.000 claims description 82
- 125000001153 fluoro group Chemical group F* 0.000 claims description 74
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 72
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 68
- 150000002367 halogens Chemical class 0.000 claims description 67
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 66
- 229910052739 hydrogen Inorganic materials 0.000 claims description 61
- 239000001257 hydrogen Substances 0.000 claims description 60
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 57
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 57
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 50
- 125000000217 alkyl group Chemical group 0.000 claims description 44
- 125000000623 heterocyclic group Chemical group 0.000 claims description 37
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 33
- 125000004890 (C1-C6) alkylamino group Chemical group 0.000 claims description 31
- 229910052760 oxygen Inorganic materials 0.000 claims description 30
- 125000005605 benzo group Chemical group 0.000 claims description 28
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 28
- 125000004432 carbon atom Chemical group C* 0.000 claims description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 26
- 239000001301 oxygen Substances 0.000 claims description 26
- 125000001246 bromo group Chemical group Br* 0.000 claims description 25
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 25
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 24
- 229910052717 sulfur Inorganic materials 0.000 claims description 23
- 125000004076 pyridyl group Chemical group 0.000 claims description 20
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 19
- 125000003118 aryl group Chemical group 0.000 claims description 19
- 229910052757 nitrogen Inorganic materials 0.000 claims description 19
- 239000011593 sulfur Substances 0.000 claims description 19
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 18
- 125000005034 trifluormethylthio group Chemical group FC(S*)(F)F 0.000 claims description 18
- 125000002541 furyl group Chemical group 0.000 claims description 16
- 125000001072 heteroaryl group Chemical group 0.000 claims description 16
- 125000001544 thienyl group Chemical group 0.000 claims description 16
- 125000002947 alkylene group Chemical group 0.000 claims description 15
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims description 14
- 125000004738 (C1-C6) alkyl sulfinyl group Chemical group 0.000 claims description 13
- 125000004739 (C1-C6) alkylsulfonyl group Chemical group 0.000 claims description 13
- 125000006700 (C1-C6) alkylthio group Chemical group 0.000 claims description 13
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 claims description 10
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 claims description 10
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 claims description 10
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 10
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 claims description 10
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 claims description 10
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 9
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 9
- 229940002612 prodrug Drugs 0.000 claims description 9
- 239000000651 prodrug Chemical group 0.000 claims description 9
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 claims description 9
- 125000005862 (C1-C6)alkanoyl group Chemical group 0.000 claims description 8
- 241000124008 Mammalia Species 0.000 claims description 8
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 8
- 125000002346 iodo group Chemical group I* 0.000 claims description 8
- 125000005004 perfluoroethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 claims description 8
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 claims description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 6
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 claims description 6
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 claims description 5
- GAMYYCRTACQSBR-UHFFFAOYSA-N 4-azabenzimidazole Chemical compound C1=CC=C2NC=NC2=N1 GAMYYCRTACQSBR-UHFFFAOYSA-N 0.000 claims description 4
- KXNQKOAQSGJCQU-UHFFFAOYSA-N benzo[e][1,3]benzothiazole Chemical compound C1=CC=C2C(N=CS3)=C3C=CC2=C1 KXNQKOAQSGJCQU-UHFFFAOYSA-N 0.000 claims description 4
- WMUIZUWOEIQJEH-UHFFFAOYSA-N benzo[e][1,3]benzoxazole Chemical compound C1=CC=C2C(N=CO3)=C3C=CC2=C1 WMUIZUWOEIQJEH-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 claims description 4
- 125000006216 methylsulfinyl group Chemical group [H]C([H])([H])S(*)=O 0.000 claims description 4
- KDZASNPOEXNJBZ-UHFFFAOYSA-N thieno[2,3-d][1,2]thiazole Chemical compound S1N=CC2=C1C=CS2 KDZASNPOEXNJBZ-UHFFFAOYSA-N 0.000 claims description 4
- ONCNIMLKGZSAJT-UHFFFAOYSA-N thieno[3,2-b]furan Chemical compound S1C=CC2=C1C=CO2 ONCNIMLKGZSAJT-UHFFFAOYSA-N 0.000 claims description 4
- VJYJJHQEVLEOFL-UHFFFAOYSA-N thieno[3,2-b]thiophene Chemical compound S1C=CC2=C1C=CS2 VJYJJHQEVLEOFL-UHFFFAOYSA-N 0.000 claims description 4
- 229930192474 thiophene Natural products 0.000 claims description 4
- OVCXRBARSPBVMC-UHFFFAOYSA-N triazolopyridine Chemical compound C=1N2C(C(C)C)=NN=C2C=CC=1C=1OC=NC=1C1=CC=C(F)C=C1 OVCXRBARSPBVMC-UHFFFAOYSA-N 0.000 claims description 4
- 125000005843 halogen group Chemical group 0.000 claims 15
- 206010012601 diabetes mellitus Diseases 0.000 abstract description 41
- 201000001421 hyperglycemia Diseases 0.000 abstract description 7
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 7
- 230000001684 chronic effect Effects 0.000 abstract description 4
- 208000031226 Hyperlipidaemia Diseases 0.000 abstract description 2
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 101
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 92
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 66
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 60
- 238000005160 1H NMR spectroscopy Methods 0.000 description 47
- 238000002360 preparation method Methods 0.000 description 44
- 235000019439 ethyl acetate Nutrition 0.000 description 41
- 239000000203 mixture Substances 0.000 description 41
- 239000000243 solution Substances 0.000 description 40
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 36
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 30
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 27
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 26
- 239000000543 intermediate Substances 0.000 description 26
- SIKJAQJRHWYJAI-UHFFFAOYSA-N benzopyrrole Natural products C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 24
- 238000012360 testing method Methods 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 20
- MYTGFBZJLDLWQG-UHFFFAOYSA-N 5-chloro-1h-indole Chemical compound ClC1=CC=C2NC=CC2=C1 MYTGFBZJLDLWQG-UHFFFAOYSA-N 0.000 description 19
- 0 [1*]C1=C(C(C)C[Ar])C2=C([2*])C([3*])=C([4*])C([5*])=C2N1*C([6*])=O Chemical compound [1*]C1=C(C(C)C[Ar])C2=C([2*])C([3*])=C([4*])C([5*])=C2N1*C([6*])=O 0.000 description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 18
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 18
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 16
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 16
- 238000003786 synthesis reaction Methods 0.000 description 16
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 15
- 150000003839 salts Chemical class 0.000 description 15
- 239000007787 solid Substances 0.000 description 15
- 108010053754 Aldehyde reductase Proteins 0.000 description 14
- 102100027265 Aldo-keto reductase family 1 member B1 Human genes 0.000 description 14
- 241001465754 Metazoa Species 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 14
- 150000002475 indoles Chemical class 0.000 description 14
- 210000004369 blood Anatomy 0.000 description 12
- 239000008280 blood Substances 0.000 description 12
- 238000001816 cooling Methods 0.000 description 12
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 12
- 241000699670 Mus sp. Species 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 208000002249 Diabetes Complications Diseases 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 125000006239 protecting group Chemical group 0.000 description 10
- 239000011780 sodium chloride Substances 0.000 description 10
- 206010012655 Diabetic complications Diseases 0.000 description 9
- 101000836540 Homo sapiens Aldo-keto reductase family 1 member B1 Proteins 0.000 description 9
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 9
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000003818 flash chromatography Methods 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 9
- VMOWKUTXPNPTEN-UHFFFAOYSA-N CC(C)N(C)C Chemical compound CC(C)N(C)C VMOWKUTXPNPTEN-UHFFFAOYSA-N 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 8
- 239000004480 active ingredient Substances 0.000 description 8
- 239000003288 aldose reductase inhibitor Substances 0.000 description 8
- 229940090865 aldose reductase inhibitors used in diabetes Drugs 0.000 description 8
- 210000000709 aorta Anatomy 0.000 description 8
- 239000012267 brine Substances 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 235000019000 fluorine Nutrition 0.000 description 8
- 125000001041 indolyl group Chemical group 0.000 description 8
- 230000002265 prevention Effects 0.000 description 8
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 7
- OCDGBSUVYYVKQZ-UHFFFAOYSA-N beta-dimethylaminomethylindole Natural products C1=CC=C2C(CN(C)C)=CNC2=C1 OCDGBSUVYYVKQZ-UHFFFAOYSA-N 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 231100000252 nontoxic Toxicity 0.000 description 7
- 230000003000 nontoxic effect Effects 0.000 description 7
- 239000012044 organic layer Substances 0.000 description 7
- 239000013641 positive control Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- WGSTWZUKTXSKQE-UHFFFAOYSA-N 2-[5-chloro-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C12=CC(Cl)=CC=C2N(CC(=O)O)C=C1CC1=NC2=C(F)C(F)=CC(F)=C2S1 WGSTWZUKTXSKQE-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 6
- 229910052681 coesite Inorganic materials 0.000 description 6
- 229910052906 cristobalite Inorganic materials 0.000 description 6
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 239000000796 flavoring agent Substances 0.000 description 6
- 238000007429 general method Methods 0.000 description 6
- 239000000546 pharmaceutical excipient Substances 0.000 description 6
- 229910000027 potassium carbonate Inorganic materials 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 229910052682 stishovite Inorganic materials 0.000 description 6
- 239000003765 sweetening agent Substances 0.000 description 6
- 229910052905 tridymite Inorganic materials 0.000 description 6
- 239000003981 vehicle Substances 0.000 description 6
- RREODNYNAPILHF-UHFFFAOYSA-N 2-amino-3,4,6-trifluorobenzenethiol;hydrochloride Chemical compound Cl.NC1=C(F)C(F)=CC(F)=C1S RREODNYNAPILHF-UHFFFAOYSA-N 0.000 description 5
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 5
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 125000004190 benzothiazol-2-yl group Chemical group [H]C1=C([H])C([H])=C2N=C(*)SC2=C1[H] 0.000 description 5
- 239000007859 condensation product Substances 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 235000003599 food sweetener Nutrition 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 108010082117 matrigel Proteins 0.000 description 5
- 239000003755 preservative agent Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000004017 serum-free culture medium Substances 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000000600 sorbitol Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- KYHVTMFADJNSGS-UHFFFAOYSA-N {3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]-1h-indol-1-yl}acetic acid Chemical compound C12=CC=CC=C2N(CC(=O)O)C=C1CC1=NC2=C(F)C(F)=CC(F)=C2S1 KYHVTMFADJNSGS-UHFFFAOYSA-N 0.000 description 5
- XGGQPJUUZQBRKN-UHFFFAOYSA-N 2-[2-methyl-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C12=CC=CC=C2N(CC(O)=O)C(C)=C1CC1=NC2=C(F)C(F)=CC(F)=C2S1 XGGQPJUUZQBRKN-UHFFFAOYSA-N 0.000 description 4
- IYIIESNRJJTDLA-UHFFFAOYSA-N 2-[3-[(3-nitrophenyl)methyl]indol-1-yl]acetic acid Chemical compound C12=CC=CC=C2N(CC(=O)O)C=C1CC1=CC=CC([N+]([O-])=O)=C1 IYIIESNRJJTDLA-UHFFFAOYSA-N 0.000 description 4
- MZZSMPKRYXXFET-UHFFFAOYSA-N 2-[5-fluoro-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C12=CC(F)=CC=C2N(CC(=O)O)C=C1CC1=NC2=C(F)C(F)=CC(F)=C2S1 MZZSMPKRYXXFET-UHFFFAOYSA-N 0.000 description 4
- QBQAVWVRMZYUGW-UHFFFAOYSA-N 2-[5-methyl-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound FC1=CC(F)=C2SC(CC3=CN(CC(O)=O)C4=CC=C(C=C43)C)=NC2=C1F QBQAVWVRMZYUGW-UHFFFAOYSA-N 0.000 description 4
- HHQZYRNRGYRKKF-UHFFFAOYSA-N 2-[5-morpholin-4-yl-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C=1C=C2N(CC(=O)O)C=C(CC=3SC4=C(F)C=C(F)C(F)=C4N=3)C2=CC=1N1CCOCC1 HHQZYRNRGYRKKF-UHFFFAOYSA-N 0.000 description 4
- ISJXLKGPHQLSRN-UHFFFAOYSA-N 2-[5-phenoxy-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C=1C=C2N(CC(=O)O)C=C(CC=3SC4=C(F)C=C(F)C(F)=C4N=3)C2=CC=1OC1=CC=CC=C1 ISJXLKGPHQLSRN-UHFFFAOYSA-N 0.000 description 4
- VVWULALTONIGFQ-UHFFFAOYSA-N 2-[5-phenylmethoxy-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C=1C=C2N(CC(=O)O)C=C(CC=3SC4=C(F)C=C(F)C(F)=C4N=3)C2=CC=1OCC1=CC=CC=C1 VVWULALTONIGFQ-UHFFFAOYSA-N 0.000 description 4
- JHFOWEGCZWLHNW-UHFFFAOYSA-N 4-fluoro-2-methyl-1-nitrobenzene Chemical compound CC1=CC(F)=CC=C1[N+]([O-])=O JHFOWEGCZWLHNW-UHFFFAOYSA-N 0.000 description 4
- ONYNOPPOVKYGRS-UHFFFAOYSA-N 6-methylindole Natural products CC1=CC=C2C=CNC2=C1 ONYNOPPOVKYGRS-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 4
- 206010014486 Elevated triglycerides Diseases 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 4
- 229910004373 HOAc Inorganic materials 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 206010052428 Wound Diseases 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 239000007900 aqueous suspension Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 4
- 235000017168 chlorine Nutrition 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 238000002648 combination therapy Methods 0.000 description 4
- 235000005911 diet Nutrition 0.000 description 4
- 230000037213 diet Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 235000013355 food flavoring agent Nutrition 0.000 description 4
- DMCPFOBLJMLSNX-UHFFFAOYSA-N indole-3-acetonitrile Chemical compound C1=CC=C2C(CC#N)=CNC2=C1 DMCPFOBLJMLSNX-UHFFFAOYSA-N 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 4
- 229960003105 metformin Drugs 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 4
- 239000003880 polar aprotic solvent Substances 0.000 description 4
- 239000011369 resultant mixture Substances 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 4
- 239000012312 sodium hydride Substances 0.000 description 4
- 229910000104 sodium hydride Inorganic materials 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 239000000375 suspending agent Substances 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- GXPHKUHSUJUWKP-UHFFFAOYSA-N troglitazone Chemical compound C1CC=2C(C)=C(O)C(C)=C(C)C=2OC1(C)COC(C=C1)=CC=C1CC1SC(=O)NC1=O GXPHKUHSUJUWKP-UHFFFAOYSA-N 0.000 description 4
- 229960001641 troglitazone Drugs 0.000 description 4
- 239000000080 wetting agent Substances 0.000 description 4
- 230000029663 wound healing Effects 0.000 description 4
- 125000001766 1,2,4-oxadiazol-3-yl group Chemical group [H]C1=NC(*)=NO1 0.000 description 3
- UHFZUNGNGGEESB-UHFFFAOYSA-N 2-(5-chloro-1h-indol-3-yl)acetonitrile Chemical compound ClC1=CC=C2NC=C(CC#N)C2=C1 UHFZUNGNGGEESB-UHFFFAOYSA-N 0.000 description 3
- NSCSREDUSXKQTH-UHFFFAOYSA-N 2-[2-phenyl-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound N=1C2=C(F)C(F)=CC(F)=C2SC=1CC=1C2=CC=CC=C2N(CC(=O)O)C=1C1=CC=CC=C1 NSCSREDUSXKQTH-UHFFFAOYSA-N 0.000 description 3
- UXEQTQLGTPBEQZ-UHFFFAOYSA-N 2-[3-[(5-fluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C12=CC=CC=C2N(CC(=O)O)C=C1CC1=NC2=CC(F)=CC=C2S1 UXEQTQLGTPBEQZ-UHFFFAOYSA-N 0.000 description 3
- ILKTWJJFMCHYOZ-UHFFFAOYSA-N 2-[3-[[5-(trifluoromethyl)-1,3-benzothiazol-2-yl]methyl]indol-1-yl]acetic acid Chemical compound C12=CC=CC=C2N(CC(=O)O)C=C1CC1=NC2=CC(C(F)(F)F)=CC=C2S1 ILKTWJJFMCHYOZ-UHFFFAOYSA-N 0.000 description 3
- OMRPWZWTFRKTCV-UHFFFAOYSA-N 2-[5-methyl-3-[[5-(trifluoromethyl)-1,3-benzothiazol-2-yl]methyl]indol-1-yl]acetic acid Chemical compound FC(F)(F)C1=CC=C2SC(CC3=CN(CC(O)=O)C4=CC=C(C=C43)C)=NC2=C1 OMRPWZWTFRKTCV-UHFFFAOYSA-N 0.000 description 3
- ZDIUGIKYBAWLSY-UHFFFAOYSA-N 2-[6-chloro-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C12=CC=C(Cl)C=C2N(CC(=O)O)C=C1CC1=NC2=C(F)C(F)=CC(F)=C2S1 ZDIUGIKYBAWLSY-UHFFFAOYSA-N 0.000 description 3
- YAKLHRCDDYEKID-UHFFFAOYSA-N 2-[6-fluoro-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C12=CC=C(F)C=C2N(CC(=O)O)C=C1CC1=NC2=C(F)C(F)=CC(F)=C2S1 YAKLHRCDDYEKID-UHFFFAOYSA-N 0.000 description 3
- IZPJNGSNFRVSDL-UHFFFAOYSA-N 2-[6-methyl-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound FC1=CC(F)=C2SC(CC=3C4=CC=C(C=C4N(CC(O)=O)C=3)C)=NC2=C1F IZPJNGSNFRVSDL-UHFFFAOYSA-N 0.000 description 3
- ZFHMZAGFUQFFEJ-UHFFFAOYSA-N 2-[6-morpholin-4-yl-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C1=C2N(CC(=O)O)C=C(CC=3SC4=C(F)C=C(F)C(F)=C4N=3)C2=CC=C1N1CCOCC1 ZFHMZAGFUQFFEJ-UHFFFAOYSA-N 0.000 description 3
- OTPMXLDHDYTZCJ-UHFFFAOYSA-N 2-[6-phenyl-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical group C1=C2N(CC(=O)O)C=C(CC=3SC4=C(F)C=C(F)C(F)=C4N=3)C2=CC=C1C1=CC=CC=C1 OTPMXLDHDYTZCJ-UHFFFAOYSA-N 0.000 description 3
- VKCHKAQCSBEZSI-UHFFFAOYSA-N 2-[7-methyl-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound FC1=CC(F)=C2SC(CC=3C=4C=CC=C(C=4N(CC(O)=O)C=3)C)=NC2=C1F VKCHKAQCSBEZSI-UHFFFAOYSA-N 0.000 description 3
- PLAZTCDQAHEYBI-UHFFFAOYSA-N 2-nitrotoluene Chemical compound CC1=CC=CC=C1[N+]([O-])=O PLAZTCDQAHEYBI-UHFFFAOYSA-N 0.000 description 3
- MQLYXCLFKUAMQJ-UHFFFAOYSA-N 4,5,7-trifluoro-2-methyl-1,3-benzothiazole Chemical compound FC1=CC(F)=C2SC(C)=NC2=C1F MQLYXCLFKUAMQJ-UHFFFAOYSA-N 0.000 description 3
- SKWTUNAAJNDEIK-UHFFFAOYSA-N 4-fluoro-1-methyl-2-nitrobenzene Chemical compound CC1=CC=C(F)C=C1[N+]([O-])=O SKWTUNAAJNDEIK-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 206010007749 Cataract diabetic Diseases 0.000 description 3
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 3
- 206010012689 Diabetic retinopathy Diseases 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000012981 Hank's balanced salt solution Substances 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 3
- ZSXGLVDWWRXATF-UHFFFAOYSA-N N,N-dimethylformamide dimethyl acetal Chemical compound COC(OC)N(C)C ZSXGLVDWWRXATF-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 230000001772 anti-angiogenic effect Effects 0.000 description 3
- 239000003472 antidiabetic agent Substances 0.000 description 3
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 201000007025 diabetic cataract Diseases 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- CJDWBNBHHMSCHC-UHFFFAOYSA-N ethyl 2-[3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetate Chemical compound C12=CC=CC=C2N(CC(=O)OCC)C=C1CC1=NC2=C(F)C(F)=CC(F)=C2S1 CJDWBNBHHMSCHC-UHFFFAOYSA-N 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000012458 free base Substances 0.000 description 3
- 230000010030 glucose lowering effect Effects 0.000 description 3
- 229940057995 liquid paraffin Drugs 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 230000007823 neuropathy Effects 0.000 description 3
- 150000002825 nitriles Chemical class 0.000 description 3
- 239000004006 olive oil Substances 0.000 description 3
- 235000008390 olive oil Nutrition 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 3
- 238000003408 phase transfer catalysis Methods 0.000 description 3
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 229960001052 streptozocin Drugs 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 150000003626 triacylglycerols Chemical class 0.000 description 3
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical class CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 3
- GXPHKUHSUJUWKP-NTKDMRAZSA-N troglitazone Natural products C([C@@]1(OC=2C(C)=C(C(=C(C)C=2CC1)O)C)C)OC(C=C1)=CC=C1C[C@H]1SC(=O)NC1=O GXPHKUHSUJUWKP-NTKDMRAZSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- 125000004505 1,2,4-oxadiazol-5-yl group Chemical group O1N=CN=C1* 0.000 description 2
- 125000004518 1,2,5-thiadiazol-3-yl group Chemical group S1N=C(C=N1)* 0.000 description 2
- 125000004510 1,3,4-oxadiazol-5-yl group Chemical group O1C=NN=C1* 0.000 description 2
- LQQKDSXCDXHLLF-UHFFFAOYSA-N 1,3-dibromopropan-2-one Chemical compound BrCC(=O)CBr LQQKDSXCDXHLLF-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- ILGPJIAGKMKHPE-UHFFFAOYSA-N 1-(5-chloro-1h-indol-3-yl)-n,n-dimethylmethanamine Chemical compound C1=C(Cl)C=C2C(CN(C)C)=CNC2=C1 ILGPJIAGKMKHPE-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- JEEDFPVACIKHEU-UHFFFAOYSA-N 2-(2h-indazol-3-yl)acetic acid Chemical class C1=CC=CC2=C(CC(=O)O)NN=C21 JEEDFPVACIKHEU-UHFFFAOYSA-N 0.000 description 2
- QEZMOSMYZHVULB-UHFFFAOYSA-N 2-[3-[(6-chloro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C12=CC=CC=C2N(CC(=O)O)C=C1CC1=NC2=CC=C(Cl)C=C2S1 QEZMOSMYZHVULB-UHFFFAOYSA-N 0.000 description 2
- DYNHZTFLLXJYDQ-UHFFFAOYSA-N 2-[3-[(6-fluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C12=CC=CC=C2N(CC(=O)O)C=C1CC1=NC2=CC=C(F)C=C2S1 DYNHZTFLLXJYDQ-UHFFFAOYSA-N 0.000 description 2
- CDWSQWCRQNBXLX-UHFFFAOYSA-N 2-[4-chloro-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C12=C(Cl)C=CC=C2N(CC(=O)O)C=C1CC1=NC2=C(F)C(F)=CC(F)=C2S1 CDWSQWCRQNBXLX-UHFFFAOYSA-N 0.000 description 2
- JFCAIUYRRZCNPW-UHFFFAOYSA-N 2-[5-methoxy-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound FC1=CC(F)=C2SC(CC3=CN(CC(O)=O)C4=CC=C(C=C43)OC)=NC2=C1F JFCAIUYRRZCNPW-UHFFFAOYSA-N 0.000 description 2
- DYOULQGOKGJGJL-UHFFFAOYSA-N 2-[5-phenyl-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C=1C=C2N(CC(=O)O)C=C(CC=3SC4=C(F)C=C(F)C(F)=C4N=3)C2=CC=1C1=CC=CC=C1 DYOULQGOKGJGJL-UHFFFAOYSA-N 0.000 description 2
- GUQBGRCBXABIBJ-UHFFFAOYSA-N 2-[7-bromo-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C12=CC=CC(Br)=C2N(CC(=O)O)C=C1CC1=NC2=C(F)C(F)=CC(F)=C2S1 GUQBGRCBXABIBJ-UHFFFAOYSA-N 0.000 description 2
- NEFZRUQWIIKRDW-UHFFFAOYSA-N 2-[7-chloro-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C12=CC=CC(Cl)=C2N(CC(=O)O)C=C1CC1=NC2=C(F)C(F)=CC(F)=C2S1 NEFZRUQWIIKRDW-UHFFFAOYSA-N 0.000 description 2
- HMVAUYQQSPIFND-UHFFFAOYSA-N 2-[7-fluoro-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C12=CC=CC(F)=C2N(CC(=O)O)C=C1CC1=NC2=C(F)C(F)=CC(F)=C2S1 HMVAUYQQSPIFND-UHFFFAOYSA-N 0.000 description 2
- VRVRGVPWCUEOGV-UHFFFAOYSA-N 2-aminothiophenol Chemical class NC1=CC=CC=C1S VRVRGVPWCUEOGV-UHFFFAOYSA-N 0.000 description 2
- ZPRQXVPYQGBZON-UHFFFAOYSA-N 2-bromo-1h-indole Chemical class C1=CC=C2NC(Br)=CC2=C1 ZPRQXVPYQGBZON-UHFFFAOYSA-N 0.000 description 2
- IZHVBANLECCAGF-UHFFFAOYSA-N 2-hydroxy-3-(octadecanoyloxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCCCC IZHVBANLECCAGF-UHFFFAOYSA-N 0.000 description 2
- COHVZTXZLIRSTM-UHFFFAOYSA-N 2-methyl-1-nitro-4-phenoxybenzene Chemical compound C1=C([N+]([O-])=O)C(C)=CC(OC=2C=CC=CC=2)=C1 COHVZTXZLIRSTM-UHFFFAOYSA-N 0.000 description 2
- BHNHHSOHWZKFOX-UHFFFAOYSA-N 2-methyl-1H-indole Chemical compound C1=CC=C2NC(C)=CC2=C1 BHNHHSOHWZKFOX-UHFFFAOYSA-N 0.000 description 2
- RGNJKFHZEOSSBO-UHFFFAOYSA-N 4-(1h-indol-5-yl)morpholine Chemical compound C1COCCN1C1=CC=C(NC=C2)C2=C1 RGNJKFHZEOSSBO-UHFFFAOYSA-N 0.000 description 2
- CDGIWYMFRIJCIR-UHFFFAOYSA-N 4-(1h-indol-6-yl)morpholine Chemical compound C1COCCN1C1=CC=C(C=CN2)C2=C1 CDGIWYMFRIJCIR-UHFFFAOYSA-N 0.000 description 2
- IIRHTTDXNXCWHP-UHFFFAOYSA-N 4-(3-methyl-4-nitrophenyl)morpholine Chemical compound C1=C([N+]([O-])=O)C(C)=CC(N2CCOCC2)=C1 IIRHTTDXNXCWHP-UHFFFAOYSA-N 0.000 description 2
- CYMDJHMDVUTLRA-UHFFFAOYSA-N 4-(4-methyl-3-nitrophenyl)morpholine Chemical compound C1=C([N+]([O-])=O)C(C)=CC=C1N1CCOCC1 CYMDJHMDVUTLRA-UHFFFAOYSA-N 0.000 description 2
- YPKBCLZFIYBSHK-UHFFFAOYSA-N 5-methylindole Chemical compound CC1=CC=C2NC=CC2=C1 YPKBCLZFIYBSHK-UHFFFAOYSA-N 0.000 description 2
- YJBIMZVVUOJZSS-UHFFFAOYSA-N 5-phenoxy-1h-indole Chemical compound C=1C=C2NC=CC2=CC=1OC1=CC=CC=C1 YJBIMZVVUOJZSS-UHFFFAOYSA-N 0.000 description 2
- KVVBMAQSZVYTCW-UHFFFAOYSA-N 6-phenyl-1h-indole Chemical compound C1=C2NC=CC2=CC=C1C1=CC=CC=C1 KVVBMAQSZVYTCW-UHFFFAOYSA-N 0.000 description 2
- 244000215068 Acacia senegal Species 0.000 description 2
- 235000006491 Acacia senegal Nutrition 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 235000003911 Arachis Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- 238000005679 Batcho-Leimgruber synthesis reaction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 208000007342 Diabetic Nephropathies Diseases 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- JWDXCWSZNPCJKH-UHFFFAOYSA-N OBO.C1=CC=C2NC=CC2=C1 Chemical class OBO.C1=CC=C2NC=CC2=C1 JWDXCWSZNPCJKH-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- YASAKCUCGLMORW-UHFFFAOYSA-N Rosiglitazone Chemical compound C=1C=CC=NC=1N(C)CCOC(C=C1)=CC=C1CC1SC(=O)NC1=O YASAKCUCGLMORW-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 238000006069 Suzuki reaction reaction Methods 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- FIAGYDIJZOWVAB-UHFFFAOYSA-N [2-sulfanyl-5-(trifluoromethyl)phenyl]azanium;chloride Chemical compound Cl.NC1=CC(C(F)(F)F)=CC=C1S FIAGYDIJZOWVAB-UHFFFAOYSA-N 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 150000001345 alkine derivatives Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000002333 angiotensin II receptor antagonist Substances 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 239000003524 antilipemic agent Substances 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 150000001502 aryl halides Chemical class 0.000 description 2
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 2
- 125000004540 benzothiazol-5-yl group Chemical group S1C=NC2=C1C=CC(=C2)* 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 2
- 239000007979 citrate buffer Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- 208000033679 diabetic kidney disease Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000001033 ether group Chemical group 0.000 description 2
- PITCTBFYPGWOKF-UHFFFAOYSA-N ethyl 2-[3-[(3-nitrophenyl)methyl]indol-1-yl]acetate Chemical compound C12=CC=CC=C2N(CC(=O)OCC)C=C1CC1=CC=CC([N+]([O-])=O)=C1 PITCTBFYPGWOKF-UHFFFAOYSA-N 0.000 description 2
- DKMSTBXXTNPNPU-UHFFFAOYSA-N ethyl 2-indol-1-ylacetate Chemical compound C1=CC=C2N(CC(=O)OCC)C=CC2=C1 DKMSTBXXTNPNPU-UHFFFAOYSA-N 0.000 description 2
- PQJJJMRNHATNKG-UHFFFAOYSA-N ethyl bromoacetate Chemical compound CCOC(=O)CBr PQJJJMRNHATNKG-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 244000144993 groups of animals Species 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-UHFFFAOYSA-N hexane-1,2,3,4,5,6-hexol Chemical compound OCC(O)C(O)C(O)C(O)CO FBPFZTCFMRRESA-UHFFFAOYSA-N 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 125000004500 isothiazol-4-yl group Chemical group S1N=CC(=C1)* 0.000 description 2
- 125000004501 isothiazol-5-yl group Chemical group S1N=CC=C1* 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000006371 metabolic abnormality Effects 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 244000309715 mini pig Species 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 125000002757 morpholinyl group Chemical group 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 2
- 125000001715 oxadiazolyl group Chemical group 0.000 description 2
- 125000004287 oxazol-2-yl group Chemical group [H]C1=C([H])N=C(*)O1 0.000 description 2
- HYAFETHFCAUJAY-UHFFFAOYSA-N pioglitazone Chemical compound N1=CC(CC)=CC=C1CCOC(C=C1)=CC=C1CC1C(=O)NC(=O)S1 HYAFETHFCAUJAY-UHFFFAOYSA-N 0.000 description 2
- 125000004193 piperazinyl group Chemical group 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 125000000437 thiazol-2-yl group Chemical group [H]C1=C([H])N=C(*)S1 0.000 description 2
- 125000004495 thiazol-4-yl group Chemical group S1C=NC(=C1)* 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 125000004306 triazinyl group Chemical group 0.000 description 2
- 125000001425 triazolyl group Chemical group 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XUFXOAAUWZOOIT-SXARVLRPSA-N (2R,3R,4R,5S,6R)-5-[[(2R,3R,4R,5S,6R)-5-[[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)-1-cyclohex-2-enyl]amino]-2-oxanyl]oxy]-3,4-dihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-6-(hydroxymethyl)oxane-2,3,4-triol Chemical compound O([C@H]1O[C@H](CO)[C@H]([C@@H]([C@H]1O)O)O[C@H]1O[C@@H]([C@H]([C@H](O)[C@H]1O)N[C@@H]1[C@@H]([C@@H](O)[C@H](O)C(CO)=C1)O)C)[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O XUFXOAAUWZOOIT-SXARVLRPSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- ZGGHKIMDNBDHJB-NRFPMOEYSA-M (3R,5S)-fluvastatin sodium Chemical compound [Na+].C12=CC=CC=C2N(C(C)C)C(\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O)=C1C1=CC=C(F)C=C1 ZGGHKIMDNBDHJB-NRFPMOEYSA-M 0.000 description 1
- PRVMLZZABVMBGR-UHFFFAOYSA-N (4-fluoro-2-sulfanylphenyl)azanium;chloride Chemical compound Cl.NC1=CC=C(F)C=C1S PRVMLZZABVMBGR-UHFFFAOYSA-N 0.000 description 1
- JDSDBDMAPVLZGJ-UHFFFAOYSA-N (5-fluoro-2-sulfanylphenyl)azanium;chloride Chemical compound Cl.NC1=CC(F)=CC=C1S JDSDBDMAPVLZGJ-UHFFFAOYSA-N 0.000 description 1
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical class C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- OTDNCSDKIMJHAS-UHFFFAOYSA-N 1H-indol-2-ylstannane Chemical compound C1=CC=C2NC([SnH3])=CC2=C1 OTDNCSDKIMJHAS-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- ZXLGCODLRRPKAW-UHFFFAOYSA-N 2-[3-(cyanomethyl)indol-1-yl]acetic acid Chemical compound C1=CC=C2N(CC(=O)O)C=C(CC#N)C2=C1 ZXLGCODLRRPKAW-UHFFFAOYSA-N 0.000 description 1
- NHJYISUWMXIZTK-UHFFFAOYSA-N 2-[5-bromo-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound C12=CC(Br)=CC=C2N(CC(=O)O)C=C1CC1=NC2=C(F)C(F)=CC(F)=C2S1 NHJYISUWMXIZTK-UHFFFAOYSA-N 0.000 description 1
- ZMUDJFYABJTCOO-UHFFFAOYSA-N 2-[6-bromo-3-[[5-(trifluoromethyl)-1,3-benzothiazol-2-yl]methyl]indol-1-yl]acetic acid Chemical compound C12=CC=C(Br)C=C2N(CC(=O)O)C=C1CC1=NC2=CC(C(F)(F)F)=CC=C2S1 ZMUDJFYABJTCOO-UHFFFAOYSA-N 0.000 description 1
- XYRLFBSZSQHAJQ-UHFFFAOYSA-N 2-[6-methoxy-3-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]indol-1-yl]acetic acid Chemical compound FC1=CC(F)=C2SC(CC=3C4=CC=C(C=C4N(CC(O)=O)C=3)OC)=NC2=C1F XYRLFBSZSQHAJQ-UHFFFAOYSA-N 0.000 description 1
- PEDOSWZBWWCOAY-UHFFFAOYSA-N 2-aminobenzenethiol;hydron;chloride Chemical compound Cl.NC1=CC=CC=C1S PEDOSWZBWWCOAY-UHFFFAOYSA-N 0.000 description 1
- 125000004174 2-benzimidazolyl group Chemical group [H]N1C(*)=NC2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- UBPDKIDWEADHPP-UHFFFAOYSA-N 2-iodoaniline Chemical class NC1=CC=CC=C1I UBPDKIDWEADHPP-UHFFFAOYSA-N 0.000 description 1
- KLLLJCACIRKBDT-UHFFFAOYSA-N 2-phenyl-1H-indole Chemical compound N1C2=CC=CC=C2C=C1C1=CC=CC=C1 KLLLJCACIRKBDT-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- UJVBZCCNLAAMOV-UHFFFAOYSA-N 2h-1,2-benzothiazine Chemical class C1=CC=C2C=CNSC2=C1 UJVBZCCNLAAMOV-UHFFFAOYSA-N 0.000 description 1
- ODFFPRGJZRXNHZ-UHFFFAOYSA-N 5-fluoroindole Chemical compound FC1=CC=C2NC=CC2=C1 ODFFPRGJZRXNHZ-UHFFFAOYSA-N 0.000 description 1
- LPYXADUZSWBHCT-UHFFFAOYSA-N 5-phenyl-1h-indole Chemical compound C=1C=C2NC=CC2=CC=1C1=CC=CC=C1 LPYXADUZSWBHCT-UHFFFAOYSA-N 0.000 description 1
- JCQLPDZCNSVBMS-UHFFFAOYSA-N 5-phenylmethoxy-1h-indole Chemical compound C=1C=C2NC=CC2=CC=1OCC1=CC=CC=C1 JCQLPDZCNSVBMS-UHFFFAOYSA-N 0.000 description 1
- FDVBHUXZXNQCCM-UHFFFAOYSA-N 6,6-ditert-butyl-4-methylcyclohexa-2,4-dien-1-ol Chemical compound CC1=CC(C(C)(C)C)(C(C)(C)C)C(O)C=C1 FDVBHUXZXNQCCM-UHFFFAOYSA-N 0.000 description 1
- MAWGHOPSCKCTPA-UHFFFAOYSA-N 6-bromo-1h-indole Chemical compound BrC1=CC=C2C=CNC2=C1 MAWGHOPSCKCTPA-UHFFFAOYSA-N 0.000 description 1
- YYFFEPUCAKVRJX-UHFFFAOYSA-N 6-fluoro-1h-indole Chemical compound FC1=CC=C2C=CNC2=C1 YYFFEPUCAKVRJX-UHFFFAOYSA-N 0.000 description 1
- RDSVSEFWZUWZHW-UHFFFAOYSA-N 7-bromo-1h-indole Chemical compound BrC1=CC=CC2=C1NC=C2 RDSVSEFWZUWZHW-UHFFFAOYSA-N 0.000 description 1
- WMYQAKANKREQLM-UHFFFAOYSA-N 7-chloro-1h-indole Chemical compound ClC1=CC=CC2=C1NC=C2 WMYQAKANKREQLM-UHFFFAOYSA-N 0.000 description 1
- XONKJZDHGCMRRF-UHFFFAOYSA-N 7-fluoro-1h-indole Chemical compound FC1=CC=CC2=C1NC=C2 XONKJZDHGCMRRF-UHFFFAOYSA-N 0.000 description 1
- KGWPHCDTOLQQEP-UHFFFAOYSA-N 7-methylindole Chemical compound CC1=CC=CC2=C1NC=C2 KGWPHCDTOLQQEP-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 239000005541 ACE inhibitor Substances 0.000 description 1
- 229940077274 Alpha glucosidase inhibitor Drugs 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 206010003497 Asphyxia Diseases 0.000 description 1
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 description 1
- XUKUURHRXDUEBC-UHFFFAOYSA-N Atorvastatin Natural products C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CCC(O)CC(O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-UHFFFAOYSA-N 0.000 description 1
- ZETHHMPKDUSZQQ-UHFFFAOYSA-N Betulafolienepentol Natural products C1C=C(C)CCC(C(C)CCC=C(C)C)C2C(OC)OC(OC)C2=C1 ZETHHMPKDUSZQQ-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- PDWCANDRHNNBAA-UHFFFAOYSA-N C.CBr.CCOC(=O)CN1C=C(CC#N)C2=CC=CC=C21.CCOC(=O)CN1C=C(CC#N)C2=CC=CC=C21.CI.C[Ar] Chemical compound C.CBr.CCOC(=O)CN1C=C(CC#N)C2=CC=CC=C21.CCOC(=O)CN1C=C(CC#N)C2=CC=CC=C21.CI.C[Ar] PDWCANDRHNNBAA-UHFFFAOYSA-N 0.000 description 1
- 239000002083 C09CA01 - Losartan Substances 0.000 description 1
- 239000004072 C09CA03 - Valsartan Substances 0.000 description 1
- 239000002947 C09CA04 - Irbesartan Substances 0.000 description 1
- 239000002053 C09CA06 - Candesartan Substances 0.000 description 1
- VQIGXTICBHCZMW-UHFFFAOYSA-N CC(C(=O)O)N1C=C(CC2=NC3=C(S2)C(F)=CC(F)=C3F)C2=CC=CC=C21 Chemical compound CC(C(=O)O)N1C=C(CC2=NC3=C(S2)C(F)=CC(F)=C3F)C2=CC=CC=C21 VQIGXTICBHCZMW-UHFFFAOYSA-N 0.000 description 1
- 208000020446 Cardiac disease Diseases 0.000 description 1
- KPSRODZRAIWAKH-JTQLQIEISA-N Ciprofibrate Natural products C1=CC(OC(C)(C)C(O)=O)=CC=C1[C@H]1C(Cl)(Cl)C1 KPSRODZRAIWAKH-JTQLQIEISA-N 0.000 description 1
- 229910020323 ClF3 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 206010055665 Corneal neovascularisation Diseases 0.000 description 1
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 1
- 208000032781 Diabetic cardiomyopathy Diseases 0.000 description 1
- 206010012692 Diabetic uveitis Diseases 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- HEMJJKBWTPKOJG-UHFFFAOYSA-N Gemfibrozil Chemical compound CC1=CC=C(C)C(OCCCC(C)(C)C(O)=O)=C1 HEMJJKBWTPKOJG-UHFFFAOYSA-N 0.000 description 1
- FAEKWTJYAYMJKF-QHCPKHFHSA-N GlucoNorm Chemical compound C1=C(C(O)=O)C(OCC)=CC(CC(=O)N[C@@H](CC(C)C)C=2C(=CC=CC=2)N2CCCCC2)=C1 FAEKWTJYAYMJKF-QHCPKHFHSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 1
- 101000718007 Homo sapiens Aldo-keto reductase family 1 member A1 Proteins 0.000 description 1
- 238000012313 Kruskal-Wallis test Methods 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 108010007859 Lisinopril Proteins 0.000 description 1
- 229940124761 MMP inhibitor Drugs 0.000 description 1
- 238000003820 Medium-pressure liquid chromatography Methods 0.000 description 1
- IBAQFPQHRJAVAV-ULAWRXDQSA-N Miglitol Chemical compound OCCN1C[C@H](O)[C@@H](O)[C@H](O)[C@H]1CO IBAQFPQHRJAVAV-ULAWRXDQSA-N 0.000 description 1
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 1
- VZEFZFGCCPPMQL-UHFFFAOYSA-N O=C(O)CCN1C=C(CC2=NC3=C(S2)C(F)=CC(F)=C3F)C2=CC=CC=C21 Chemical compound O=C(O)CCN1C=C(CC2=NC3=C(S2)C(F)=CC(F)=C3F)C2=CC=CC=C21 VZEFZFGCCPPMQL-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N Pd(PPh3)4 Substances [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- TUZYXOIXSAXUGO-UHFFFAOYSA-N Pravastatin Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(O)C=C21 TUZYXOIXSAXUGO-UHFFFAOYSA-N 0.000 description 1
- 229940123924 Protein kinase C inhibitor Drugs 0.000 description 1
- 201000002154 Pterygium Diseases 0.000 description 1
- 208000017442 Retinal disease Diseases 0.000 description 1
- 206010038923 Retinopathy Diseases 0.000 description 1
- 206010038933 Retinopathy of prematurity Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 125000000066 S-methyl group Chemical group [H]C([H])([H])S* 0.000 description 1
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 238000006619 Stille reaction Methods 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- PCSMJKASWLYICJ-UHFFFAOYSA-N Succinic aldehyde Chemical compound O=CCCC=O PCSMJKASWLYICJ-UHFFFAOYSA-N 0.000 description 1
- 229940100389 Sulfonylurea Drugs 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- WERKSKAQRVDLDW-ANOHMWSOSA-N [(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO WERKSKAQRVDLDW-ANOHMWSOSA-N 0.000 description 1
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 description 1
- HKNSIVFWRXBWCK-UHFFFAOYSA-N [N].NC1=CC=CC=C1 Chemical compound [N].NC1=CC=CC=C1 HKNSIVFWRXBWCK-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229960002632 acarbose Drugs 0.000 description 1
- XUFXOAAUWZOOIT-UHFFFAOYSA-N acarviostatin I01 Natural products OC1C(O)C(NC2C(C(O)C(O)C(CO)=C2)O)C(C)OC1OC(C(C1O)O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O XUFXOAAUWZOOIT-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 150000001243 acetic acids Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 150000001266 acyl halides Chemical class 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 206010064930 age-related macular degeneration Diseases 0.000 description 1
- 150000001298 alcohols Chemical group 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 239000003888 alpha glucosidase inhibitor Substances 0.000 description 1
- NMPVEAUIHMEAQP-UHFFFAOYSA-N alpha-bromo-acetaldehyde Natural products BrCC=O NMPVEAUIHMEAQP-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 230000006427 angiogenic response Effects 0.000 description 1
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 1
- 230000002058 anti-hyperglycaemic effect Effects 0.000 description 1
- 230000001315 anti-hyperlipaemic effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 150000001543 aryl boronic acids Chemical class 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 238000011914 asymmetric synthesis Methods 0.000 description 1
- 229960005370 atorvastatin Drugs 0.000 description 1
- 210000001142 back Anatomy 0.000 description 1
- 239000003855 balanced salt solution Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000004244 benzofuran-2-yl group Chemical group [H]C1=C(*)OC2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 125000000499 benzofuranyl group Chemical class O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000004196 benzothienyl group Chemical class S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- 229960000516 bezafibrate Drugs 0.000 description 1
- IIBYAHWJQTYFKB-UHFFFAOYSA-N bezafibrate Chemical compound C1=CC(OC(C)(C)C(O)=O)=CC=C1CCNC(=O)C1=CC=C(Cl)C=C1 IIBYAHWJQTYFKB-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 125000005620 boronic acid group Chemical class 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- SGZAIDDFHDDFJU-UHFFFAOYSA-N candesartan Chemical compound CCOC1=NC2=CC=CC(C(O)=O)=C2N1CC(C=C1)=CC=C1C1=CC=CC=C1C1=NN=N[N]1 SGZAIDDFHDDFJU-UHFFFAOYSA-N 0.000 description 1
- 229960000932 candesartan Drugs 0.000 description 1
- FAKRSMQSSFJEIM-RQJHMYQMSA-N captopril Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O FAKRSMQSSFJEIM-RQJHMYQMSA-N 0.000 description 1
- 229960000830 captopril Drugs 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- WIKQEUJFZPCFNJ-UHFFFAOYSA-N carbonic acid;silver Chemical compound [Ag].[Ag].OC(O)=O WIKQEUJFZPCFNJ-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000012754 cardiac puncture Methods 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229960005110 cerivastatin Drugs 0.000 description 1
- SEERZIQQUAZTOL-ANMDKAQQSA-N cerivastatin Chemical compound COCC1=C(C(C)C)N=C(C(C)C)C(\C=C\[C@@H](O)C[C@@H](O)CC(O)=O)=C1C1=CC=C(F)C=C1 SEERZIQQUAZTOL-ANMDKAQQSA-N 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 238000004296 chiral HPLC Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229960002174 ciprofibrate Drugs 0.000 description 1
- KPSRODZRAIWAKH-UHFFFAOYSA-N ciprofibrate Chemical compound C1=CC(OC(C)(C)C(O)=O)=CC=C1C1C(Cl)(Cl)C1 KPSRODZRAIWAKH-UHFFFAOYSA-N 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 201000000159 corneal neovascularization Diseases 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 210000000695 crystalline len Anatomy 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- QQKNSPHAFATFNQ-UHFFFAOYSA-N darglitazone Chemical compound CC=1OC(C=2C=CC=CC=2)=NC=1CCC(=O)C(C=C1)=CC=C1CC1SC(=O)NC1=O QQKNSPHAFATFNQ-UHFFFAOYSA-N 0.000 description 1
- 229950006689 darglitazone Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- QBKVEAIEIVKHGR-UHFFFAOYSA-M di(ethylidene)azanium;chloride Chemical compound [Cl-].CC=[N+]=CC QBKVEAIEIVKHGR-UHFFFAOYSA-M 0.000 description 1
- HEOKFDGOFROELJ-UHFFFAOYSA-N diacetal Natural products COc1ccc(C=C/c2cc(O)cc(OC3OC(COC(=O)c4cc(O)c(O)c(O)c4)C(O)C(O)C3O)c2)cc1O HEOKFDGOFROELJ-UHFFFAOYSA-N 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002081 enamines Chemical class 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- VDDXQSUSMHZCLS-UHFFFAOYSA-N ethenyl trifluoromethanesulfonate Chemical class FC(F)(F)S(=O)(=O)OC=C VDDXQSUSMHZCLS-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- RJTYCUXOHLVMJA-UHFFFAOYSA-N ethyl 2-[5-bromo-3-(cyanomethyl)indol-1-yl]acetate Chemical compound BrC1=CC=C2N(CC(=O)OCC)C=C(CC#N)C2=C1 RJTYCUXOHLVMJA-UHFFFAOYSA-N 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229960002297 fenofibrate Drugs 0.000 description 1
- YMTINGFKWWXKFG-UHFFFAOYSA-N fenofibrate Chemical compound C1=CC(OC(C)(C)C(=O)OC(C)C)=CC=C1C(=O)C1=CC=C(Cl)C=C1 YMTINGFKWWXKFG-UHFFFAOYSA-N 0.000 description 1
- 229940125753 fibrate Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 229960003765 fluvastatin Drugs 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000003304 gavage Methods 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229960003627 gemfibrozil Drugs 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- WIGIZIANZCJQQY-RUCARUNLSA-N glimepiride Chemical compound O=C1C(CC)=C(C)CN1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)N[C@@H]2CC[C@@H](C)CC2)C=C1 WIGIZIANZCJQQY-RUCARUNLSA-N 0.000 description 1
- 229960004346 glimepiride Drugs 0.000 description 1
- ZJJXGWJIGJFDTL-UHFFFAOYSA-N glipizide Chemical compound C1=NC(C)=CN=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZJJXGWJIGJFDTL-UHFFFAOYSA-N 0.000 description 1
- 229960001381 glipizide Drugs 0.000 description 1
- 229940074045 glyceryl distearate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- GOERTRUXQHDLHC-UHFFFAOYSA-N gramine Natural products COC1=CC=C2NC=C(CN(C)C)C2=C1 GOERTRUXQHDLHC-UHFFFAOYSA-N 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000007902 hard capsule Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 238000007074 heterocyclization reaction Methods 0.000 description 1
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 1
- 230000003345 hyperglycaemic effect Effects 0.000 description 1
- 230000000910 hyperinsulinemic effect Effects 0.000 description 1
- 208000006575 hypertriglyceridemia Diseases 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 150000007975 iminium salts Chemical class 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 125000002249 indol-2-yl group Chemical group [H]C1=C([H])C([H])=C2N([H])C([*])=C([H])C2=C1[H] 0.000 description 1
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical class C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 230000003601 intercostal effect Effects 0.000 description 1
- 230000037041 intracellular level Effects 0.000 description 1
- 238000003402 intramolecular cyclocondensation reaction Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000026045 iodination Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 125000006303 iodophenyl group Chemical group 0.000 description 1
- 229960002198 irbesartan Drugs 0.000 description 1
- YCPOHTHPUREGFM-UHFFFAOYSA-N irbesartan Chemical compound O=C1N(CC=2C=CC(=CC=2)C=2C(=CC=CC=2)C=2[N]N=NN=2)C(CCCC)=NC21CCCC2 YCPOHTHPUREGFM-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 206010023365 keratopathy Diseases 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 1
- 229960002394 lisinopril Drugs 0.000 description 1
- UBJFKNSINUCEAL-UHFFFAOYSA-N lithium;2-methylpropane Chemical compound [Li+].C[C-](C)C UBJFKNSINUCEAL-UHFFFAOYSA-N 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 229960004773 losartan Drugs 0.000 description 1
- KJJZZJSZUJXYEA-UHFFFAOYSA-N losartan Chemical compound CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C=2[N]N=NN=2)C=C1 KJJZZJSZUJXYEA-UHFFFAOYSA-N 0.000 description 1
- 229960004844 lovastatin Drugs 0.000 description 1
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 1
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 208000002780 macular degeneration Diseases 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000001531 micro-dissection Methods 0.000 description 1
- 229960001110 miglitol Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- RBXVOQPAMPBADW-UHFFFAOYSA-N nitrous acid;phenol Chemical class ON=O.OC1=CC=CC=C1 RBXVOQPAMPBADW-UHFFFAOYSA-N 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- GYCKQBWUSACYIF-UHFFFAOYSA-N o-hydroxybenzoic acid ethyl ester Natural products CCOC(=O)C1=CC=CC=C1O GYCKQBWUSACYIF-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229940054534 ophthalmic solution Drugs 0.000 description 1
- 239000002997 ophthalmic solution Substances 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000010653 organometallic reaction Methods 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000002989 phenols Chemical group 0.000 description 1
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 1
- 229960005095 pioglitazone Drugs 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 229960002965 pravastatin Drugs 0.000 description 1
- TUZYXOIXSAXUGO-PZAWKZKUSA-N pravastatin Chemical compound C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC(O)=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 TUZYXOIXSAXUGO-PZAWKZKUSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 239000003881 protein kinase C inhibitor Substances 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 125000004260 quinazolin-2-yl group Chemical group [H]C1=NC(*)=NC2=C1C([H])=C([H])C([H])=C2[H] 0.000 description 1
- 125000004546 quinazolin-4-yl group Chemical group N1=CN=C(C2=CC=CC=C12)* 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 238000006476 reductive cyclization reaction Methods 0.000 description 1
- 229960002354 repaglinide Drugs 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 238000006798 ring closing metathesis reaction Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229960004586 rosiglitazone Drugs 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 210000003497 sciatic nerve Anatomy 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- LKZMBDSASOBTPN-UHFFFAOYSA-L silver carbonate Substances [Ag].[O-]C([O-])=O LKZMBDSASOBTPN-UHFFFAOYSA-L 0.000 description 1
- KQTXIZHBFFWWFW-UHFFFAOYSA-L silver(I) carbonate Inorganic materials [Ag]OC(=O)O[Ag] KQTXIZHBFFWWFW-UHFFFAOYSA-L 0.000 description 1
- 229960002855 simvastatin Drugs 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 229910001467 sodium calcium phosphate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000013222 sprague-dawley male rat Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- BNWCETAHAJSBFG-UHFFFAOYSA-N tert-butyl 2-bromoacetate Chemical compound CC(C)(C)OC(=O)CBr BNWCETAHAJSBFG-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000003556 thioamides Chemical class 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- LUBHDINQXIHVLS-UHFFFAOYSA-N tolrestat Chemical compound OC(=O)CN(C)C(=S)C1=CC=CC2=C(C(F)(F)F)C(OC)=CC=C21 LUBHDINQXIHVLS-UHFFFAOYSA-N 0.000 description 1
- 229960003069 tolrestat Drugs 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000007832 transition metal-catalyzed coupling reaction Methods 0.000 description 1
- 125000005208 trialkylammonium group Chemical group 0.000 description 1
- CWMFRHBXRUITQE-UHFFFAOYSA-N trimethylsilylacetylene Chemical group C[Si](C)(C)C#C CWMFRHBXRUITQE-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229960004699 valsartan Drugs 0.000 description 1
- SJSNUMAYCRRIOM-QFIPXVFZSA-N valsartan Chemical compound C1=CC(CN(C(=O)CCCC)[C@@H](C(C)C)C(O)=O)=CC=C1C1=CC=CC=C1C1=NN=N[N]1 SJSNUMAYCRRIOM-QFIPXVFZSA-N 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000006444 vascular growth Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/428—Thiazoles condensed with carbocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
- A61K31/405—Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/427—Thiazoles not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/14—Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
Definitions
- aldose reductase inhibitors for the treatment of diabetic complications.
- the complications arise from elevated levels of glucose in tissues such as the nerve, kidney, retina and lens that enters the polyol pathway and is converted to sorbitol via aldose reductase.
- sorbitol does not easily cross cell membranes, it accumulates inside certain cells resulting in changes in osmotic pressure, alterations in the redox state of pyridine nucleotides (i.e. increased NADH/NAD + ratio) and depleted intracellular levels of myoinositol.
- NADH/NAD + ratio alterations in the redox state of pyridine nucleotides
- depleted intracellular levels of myoinositol can be controlled by inhibitors of aldose reductase.
- aldose reductase inhibitors for the treatment of diabetic complications has been extensively reviewed, see: (a) Textbook of Diabetes, 2nd ed.; Pickup, J. C. and Williams, G. (Eds.); Blackwell Science, Boston, Mass. 1997; (b) Larson, E. R.; Lipinski, C. A. and Sarges, R., Medicinal Research Reviews, 1988, (2), 159-198; (c) Dvornik, D. Aldose Reductase Inhibition . Porte, D. (ed), Biomedical Information Corp., New York, N.Y. Mc Graw Hill 1987; (d) Petrash, J. M., Tarle, I., Wilson, D. K. Quiocho. F. A.
- aldose reductase inhibitors most closely related to the present invention include those sighted in: (a) U.S. Pat. No. 5,700,819: 2-Substituted benzothiazole derivatives useful in the treatment of diabetic complications, (b) U.S. Pat. No. 4,868,301: Processes and intermediates for the preparation of oxophthalazinyl acetic acids having benzothiazole or other heterocyclic side chains, (c) U.S. Pat. No. 5,330,997: 1H-indazole-3-acetic acids as aldose reductase inhibitors, and (d) U.S. Pat. No.
- 5,236,945 1H-indazole-3-acetic acids as aldose reductase inhibitors. Although many aldose reductase inhibitors have been extensively developed, none have demonstrated sufficient efficacy in human clinical trials without significant undesirable side effects. Thus no aldose reductase inhibitors are currently available as approved therapeutic agents in the United States; and consequently, there is still a significant need for new, efficacious and safe medications for the treatment of diabetic complications.
- Treatment to normalize the plasma glucose concentration in people afflicted with type 2 diabetes currently includes diet, exercise and oral agents such as sulfonylureas, metformin and glitazone-type compounds. Many of these agents exhibit side effects and have limited efficacy. There is a need for new agents which do not possess these drawbacks. Because of the limited efficacy of each method of treatment often the oral agents are giving in combination of with each other or with insulin.
- Elevated serum triglyceride levels are also commonly associated with diabetes; however, this condition is also widely seen in nondiabetic patients.
- the mechanism causing the presence of elevated triglyceride levels in patients, both diabetic and otherwise, is different from that underlying chronic diabetes-related complications directly treatable by inhibition of aldose reductase activity.
- This invention provides compounds that interact with and inhibit aldose reductase.
- the invention provides compounds of Formula I:
- the invention provides methods for preparing such compounds.
- the compounds of the invention inhibit aldose reductase. Since aldose reductase is critical to the production of high levels of sorbitol in individuals with diabetes, inhibitors of aldose reductase are useful in preventing and/or treating various complications associated with diabetes. The compounds of the invention are therefore effective for the treatment of diabetic complications as a result of their ability to inhibit aldose reductase.
- the invention provides methods for treating and/or preventing chronic complications associated with diabetes mellitus, including, for example, diabetic cataracts, retinopathy, keratopathy, wound healing, diabetic uveitis, diabetic cardiomyopathy, nephropathy, and neuropathy.
- the compounds of this invention also possess antihyperglycemic activity and are therefore useful for the treatment of hyperglycemia. and elevated serum triglyceride levels. Accordingly, an aspect of the invention is prevention and/or alleviation of complications associated with hyperglycemia with the inventive compounds.
- the compounds of the present invention have been discovered to lower triglycerides. While serum triglyceride levels are often elevated in diabetic patients, they are also frequently elevated in nondiabetic patients resulting in various diseases and disorders, e.g., cardiac disease. Because of their ability to reduce serum triglyceride levels, the compounds of the present invention are useful in the treatment, i.e., prevention and/or alleviation, of elevated triglyceride levels in both diabetic and nondiabetic patients.
- the compounds of the present invention may be used as antihyperlipidemic and/or antihyperglycemic agents.
- the compounds of this invention may be given in combination with other glucose or lipid lowering agents as well as other agents that are given specifically to treat the complications of diabetes.
- the compounds of the present invention exhibit anti-angiogenic activity in an established in vitro assay.
- the discovery of this biological activity for the compounds of the invention is unexpected.
- the compounds of the invention can be used to treat various diseases that exhibit aberrant vasoproliferation.
- the compound would be administered to a mammal in need of inhibition of vasoproliferation, i.e., inhibition of angiogenesis.
- diseases are diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, corneal neovascularization, pterygium, and any neoplasms (cancers) which appear to be angiogenesis dependent.
- Administration of the compound(s) of this invention is/are not limited to a particular mode, and could be administered systemically or topically to the eye in an appropriate ophthalmic solution.
- the compounds of the invention may be administered in combination therapy with other known anti-angiogenic agents.
- the compounds of the invention have also been discovered to promote the healing of wounds in mammals.
- the compounds are useful in promoting wound healing in diabetic mammals.
- the compounds of the invention may be employed in the treatment of wounds in mammals, preferably humans, more preferably in diabetic humans.
- the invention provides pharmaceutical compositions containing compounds of Formula I.
- the invention provides for the use of a compound or compounds of Formula I for the preparation of a medicament for the treatment of any of the disorders or diseases (a) listed above, (b) connected with diabetic complications, hyperglycemia, or hypertriglyceridemia, or (c) where inhibition of vasoproliferation is indicated.
- treatment includes both prevention and alleviation.
- the invention provides novel substituted indole alkanoic acids useful in treating and/or preventing complications associated with or arising from elevated levels of glucose in individuals suffering from diabetes mellitus. These compounds are represented by Formula I above.
- aryl and heteroaryl groups represented by Ar include:
- More specific compounds of the invention are those of Formula I wherein Ar is optionally substituted benzothiazolyl, benzoxazolyl, isoquinolyl, benzothiophen-yl, benzofuran-yl or benzimidazolyl, or substituted oxadiazolyl or indolyl.
- Other more specific compounds are of Formula I those wherein R a is trifluoromethyl, Z is a covalent bond or CH 2 , R 6 is hydroxy, and each of R 2 -R 5 are independently hydrogen, halogen, more preferably bromo or chloro, C 1 -C 2 alkyl, phenoxy, benzyloxy, or C 1 -C 2 alkoxy, and R 1 is hydrogen or methyl.
- Preferred compounds of the invention are those wherein Z is a covalent bond, R 6 is hydroxy, Ar is optionally substituted benzothiazol-2-yl, benzothiazol-5-yl, benzoisothiazol-3-yl, benzoxazol-2-yl, 2-quinolyl, 2-quinoxalyl, oxazolo[4,5-b]pyridine-2-yl, benzothiophen-2-yl, benzofuran-2-yl, or thazolo[4,5-pyridine-2-y, thieno[2,3-b]pyridine-2-yl, imidazo[1,5-a]pyridine-2-yl, or indol-2-yl, or substituted 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, isothiazol-5-yl, isothiazol-4-yl, 1,3,4-oxadiazol-5-yl, 1,2,5-thiadiazol-3-yl,
- R 6 is hydroxy
- R a is hydrogen
- Ar is optionally 4, 5, 6 or 7 benzo-substituted benzothiazolyl, benzoxazolyl, benzimidazolyl, benzothiophenyl, benzofuranyl, or indolyl
- Ar is 2-benzothiazolyl substituted on benzo by one trifluoroacetyl or trifluoromethylthio, or one or two of fluoro chloro, bromo, hydroxy, methyl, methoxy, trifluoromethyl, trifluoromethoxy, trifluoromethylthio, or one or, preferably, two fluoro and one trifluoromethyl, or two fluoro or two trifluoromethyl with one methoxy, or three fluoro, or by 6,7-benzo, and those wherein one of R 2 and R 3 is hydrogen, fluoro, chloro, bromo or methyl, and one of R 4
- R 1 in the specific compounds described above is hydrogen, halogen, preferably chloro or fluoro, C 1 -C 6 alkyl, or phenyl optionally substituted with up to three groups independently selected from halogen, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, amino, and mono- or di(C 1 -C 6 )alkylamino.
- Preferred R 1 groups are hydrogen and methyl.
- Preferred compounds of the invention include those where Ar in Formula I is substituted phenyl, i.e., compounds of Formula II:
- the R 2 , R 3 , R 4 and R 5 substituents in combination, represent one of bromo, cyano or nitro, one or two of fluoro, chloro, hydroxy, (C 1 -C 6 )alkyl, (C 1 -C 6 )alkoxy, or trifluoromethyl, or two fluoro or two methyl with one hydroxy or one (C 1 -C 6 ) alkoxy, or one or, preferably, two fluoro and one methyl, or three fluoro groups.
- Particularly preferred R 2 , R 3 , R 4 and R 5 substituents are, independently, fluorine, chlorine, nitro, and trifluoromethyl.
- A is preferably methylene, methylene substituted with a methyl group, or ethylene.
- Preferred compounds according to Formula II above include those wherein R 8 is fluorine, R 9 is hydrogen and R 10 is bromine or those wherein R 8 and R 10 are hydrogens and R 9 is nitro.
- Preferred compounds of Formula III above are those wherein the benzothiazole moiety is substituted with nitro, one, two, or three of fluoro, one or two of chloro, or at least one trifluoromethyl group. More preferred compounds of Formula II are those where A is methylene, R 1 is hydrogen or methyl, Z is a bond, and R 6 is hydroxy or C 1 -C 6 alkoxy.
- Still more preferred compounds of Formula II are those wherein R 11 , R 12 and R 14 are fluorines and R 13 is hydrogen.
- Other more preferred compounds of Formula II are those where R a is methyl or hydrogen, Z is methylene or, more preferably, a bond, A is CHF or C 1 or C 2 alkylene, preferably methylene, R 1 is methyl or hydrogen, and R 11 , R 12 and R 14 are halogens or C 1 -C 3 alkyl.
- Still other more preferred compounds of Formula III are those where R a is methyl or hydrogen, Z is methylene or, more preferably, a bond, A is CHF or C 1 or C 2 alkylene, R 1 is methyl or hydrogen, and R 11 , R 12 and R 14 are fluorines or chlorines.
- Particularly preferred compounds of Formula I are those where R 3 and R 4 are independently hydrogen, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, or halogen, and R a is methyl or hydrogen, Z is a bond, A is methylene, methyl substituted methylene, or ethylene, R 1 is methyl or hydrogen, and R 11 , R 12 and R 14 are fluorines or chlorines.
- prodrug group denotes a moiety that is converted in vivo into the active compound of formula I wherein R 6 is hydroxy.
- groups are generally known in the art and include ester forming groups, to form an ester prodrug, such as benzyloxy, di(C 1 -C 6 )alkylaminoethyloxy, acetoxymethyl, pivaloyloxymethyl, phthalidoyl, ethoxycarbonyloxyethyl, 5-methyl-2-oxo-1,3-dioxol-4-yl methyl, and (C 1 -C 6 )alkoxy optionally substituted by N-morpholino and amide-forming groups such as di(C 1 -C 6 )alkylamino.
- Preferred prodrug groups include hydroxy, C 1 -C 6 alkoxy, and O ⁇ M + where M + represents a cation.
- Preferred cations include sodium, potassium, and ammonium.
- Other cations include magnesium and calcium.
- Further preferred prodrug grops include O ⁇ M ++ where M ++ is a divalent cation such as magnesium or calcium.
- compounds of Formula I may contain one or more asymmetric carbon atoms, so that the compounds can exist in different stereoisomeric forms.
- These compounds can be, for example, racemates or optically active forms.
- the single enantiomers, i.e., optically active forms can be obtained by asymmetric synthesis or by resolution of the racemates. Resolution of the racemates can be accomplished, for example, by conventional methods such as crystallization in the presence of a resolving agent, or chromatography, using, for example a chiral HPLC column.
- Representative compounds of the present invention include the pharmaceutically acceptable acid addition salts of compounds where R 6 includes basic nitrogen atom, i.e, an alkylamino or morpholino group.
- R 6 includes basic nitrogen atom, i.e, an alkylamino or morpholino group.
- the free base can be obtained by basifying a solution of the acid salt.
- an addition salt, particularly a pharmaceutically acceptable addition salt may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds.
- Non-toxic pharmaceutical salts include salts of acids such as hydrochloric, phosphoric, hydrobromic, sulfuric, sulfinic, formic, toluenesulfonic, methanesulfonic, nitric, benzoic, citric, tartaric, maleic, hydroiodic, alkanoic such as acetic, HOOC—(CH 2 )n-ACOOH where n is 0-4, and the like.
- Non-toxic pharmaceutical base addition salts include salts of bases such as sodium, potassium, calcium, ammonium, and the like. Those skilled in the art will recognize a wide variety of non-toxic pharmaceutically acceptable addition salts.
- J oxygen and each r is 2 (morpholinyl), J is nitrogen and each r is 2 (piperazinyl) or one r is 2 and the other 3 (homopiperazinyl), or J is CH 2 and each r is 2 (piperidinyl) or one r is 2 and the other 3 (homopiperidinyl).
- Preferred groups of this formula are morpholinyl and piperazinyl.
- the heterocyclic 5-membered ring having one to three nitrogen atoms, one of which may be replaced by oxygen or sulfur includes imidazolyl, oxazolyl, triazolyl, pyrazolyl, oxadiazolyl, thiadiazolyl, and triazolyl.
- the heterocyclic 6-membered ring having one to three nitrogen atoms, or one or two nitrogen atoms and one oxygen or sulfur includes triazinyl, pyrimidyl, pyridazinyl, oxazinyl and triazinyl.
- the heterocyclic ring may be condensed with benzo so that said ring is attached at two neighboring carbon atoms to form a phenyl group.
- Such benzoheterocyclic ring may be attached to Z either through the heterocyclic group or through the benzo group of the benzoheterocyclic ring.
- Specific wherein said heterocyclic ring is condensed with a benzo include benzoxazolyl, quinazolin-2-yl, 2-benzimidazolyl, quinazolin-4-yl and benzothiazolyl.
- the oxazole or thiazole condensed with a 6-membered aromatic group containing one or two nitrogen atoms include positional isomers such as oxazolo[4,5-b]pyridine-2-yl, thiazolo[4,5-b]pyridine-2-yl, oxazolo[4,5-c]pyridine-2-yl, thiazolo[4,5-c]pyridine-2-yl, oxazolo[5,4-b]pyridine-2-yl, thiazolo[5,4-b]pyridine-2-yl, oxazolo[5,4-c]pyridine-2-yl, and thiazolo[5,4-c]pyridine-2-yl.
- the compounds of the invention are administered to a patient or subject in need of treatment either alone or in combination with other compounds having similar or different biological activities.
- the compounds of the invention may be administered in a combination therapy, i.e., either simultaneously in single or separate dosage forms or in separate dosage forms within hours or days of each other.
- combination therapies include administering the compounds of Formula I with other agents used to treat hyperglycemia, hyperlipidemia, and diabetic complications.
- Suitable compounds for use in combination therapy include
- Sulfonylureass such as glipizide and glimepiride
- alpha-glucosidase inhibitors such as acarbose, miglitol
- ACE inhibitors Captopril, lisinopril
- Angiotensin II receptor antagonists such as candesartan, losartan, irbesartan, and valsartan
- Statins such as Atorvastatin, simvastatin, pravastatin, fluvastatin, lovastatin, cerivastatin
- Fibrates such as Fenofibrate, bezafibrate, ciprofibrate, gemfibrozil
- the compounds of general Formula I may be administered orally, topically, parenterally, by inhalation or spray or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles.
- parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques.
- a pharmaceutical formulation comprising a compound of general Formula I and a pharmaceutically acceptable carrier.
- One or more compounds of general Formula I may be present in association with one or more non-toxic pharmaceutically acceptable carriers and/or diluents and/or adjuvants and if desired other active ingredients.
- compositions containing compounds of general Formula I may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsion, hard or soft capsules, or syrups or elixirs.
- compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations.
- Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets.
- excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc.
- the tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period.
- a time delay material such as glyceryl monostearate or glyceryl distearate may be employed.
- Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.
- an inert solid diluent for example, calcium carbonate, calcium phosphate or kaolin
- water or an oil medium for example peanut oil, liquid paraffin or olive oil.
- Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions.
- excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydropropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate
- the aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.
- preservatives for example ethyl, or n-propyl p-hydroxybenzoate
- coloring agents for example ethyl, or n-propyl p-hydroxybenzoate
- flavoring agents for example ethyl, or n-propyl p-hydroxybenzoate
- sweetening agents such as sucrose or saccharin.
- Oily suspensions may be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin.
- the oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
- Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives.
- a dispersing or wetting agent e.g., glycerol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerin, glycerin, glycerin, glycerin, glycerin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerol
- compositions of the invention may also be in the form of oil-in-water emulsions.
- the oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these.
- Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol, anhydrides, for example sorbitan monoleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monoleate.
- the emulsions may also contain sweetening and flavoring agents.
- Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.
- the pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above.
- the sterile injectable preparation may also be sterile injectable solution or suspension in a non-toxic parentally acceptable diluent or solvent, for example as a solution in 1,3-butanediol.
- Suitable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil may be employed including synthetic mono- or diglycerides.
- fatty acids such as oleic acid find use in the preparation of injectables.
- the compounds of general Formula I may also be administered in the form of suppositories for rectal administration of the drug.
- These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
- suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
- Such materials are cocoa butter and polyethylene glycols.
- Compounds of general Formula I may be administered parenterally in a sterile medium.
- the drug depending on the vehicle and concentration used, can either be suspended or dissolved in the vehicle.
- adjuvants such as local anesthetics, preservatives and buffering agents can be dissolved in the vehicle.
- Dosage levels on the order of from about 0.1 mg to about 140 mg per kilogram of body weight per day are useful in the treatment of the above-indicated conditions (about 0.5 mg to about 7 g per patient per day).
- the amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. Dosage unit forms will generally contain between from about 1 mg to about 1000 mg of an active ingredient.
- the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination and the severity of the particular disease undergoing therapy.
- the compounds of the present invention may be prepared by use of known chemical reactions and procedures. General methods for synthesizing the compounds are presented below. It is understood that the nature of the substituents required for the desired target compound often determines the preferred method of synthesis. All variable groups of these methods are as described in the generic description if they are not specifically defined below. More detailed procedures for particular examples are presented below in the experimental section.
- a nitrile indole IV with a strong base such as, for example, sodium hydride, butyl lithium or sodium tert-butoxide
- a polar aprotic solvent such as acetonitrile, tetrahydrofuran or N,N-dimethylformamide
- an alkylating agent e.g., ethyl or tert-butyl bromoacetate
- phase transfer catalysis can be used in a biphasic solvent system.
- Deprotection of the alkanoic acid moiety VII can be carried out by methods common to those skilled in the art to result in compounds of Formula III.
- the method used in the deprotection depends on the type of protecting group. A description of such protecting groups and methods for deprotecting them may be found in: Protective Groups in Organic Synthesis , Second Edition, T. W. Green and P. G. M. Wuts, John Wiley and Sons, Ney York, 1991.
- an aqueous sodium hydroxide solution in ethanol or dimethoxyethane is conveniently employed for its removal.
- nitrile IV can be prepared substantially as described below in Scheme B depicting the formation of 3-acetonitrile substituted indoles of Formula IV where Z is a bond.
- an indole moiety in a weak acid solution for example, acetic acid in ethanol
- aqueous formaldehyde and dimethyl amine in an alcohol solvent is treated with aqueous formaldehyde and dimethyl amine in an alcohol solvent.
- the 3-(dimethylamino)methyl indole product can then be treated with sodium or potassium cyanide in N,N-dimethylformamide at elevated temperatures to provide the 3-acetonitrile substituted indole intermediate.
- an iminium salt like N,N-dimethylmethyleneammonium chloride can be used to prepare the 3-(dimethylamino)methyl indole intermediate.
- the 3-(dimethylamino)methyl indole intermediate can also be converted to the 3-acetonitrile substituted indole intermediate via the trimethyl ammonium salt.
- the salt can be prepared by treating the gramine intermediate with an alkalating agent like methyl iodide.
- the trimethyl ammonium salt intermediate can then be converted to the nitrile by treatment with sodium or potassium cyanide in a solvent like N,N-dimethylformamide. In general, the conversion to the acetonitrile occurs under more mild conditions when the trimethyl ammonium salt is used.
- P represents groups such as acyloxy, alkyl, sulfonyl or A-COOR. The use of these general methods is illustrated in Protective Groups in Organic Synthesis , Second Edition, T. W. Green and P. G. M. Wuts, John Wiley and Sons, Ney York, 1991.
- the intermediate compounds wherein R 2-6 is aryl or heteroaryl can be synthesized by the chemistry illustrated in reaction Scheme D below.
- treatment of the potassium salt of an optionally substituted bromoindole with tert-butyllithium at low temperature in an ethereal solvent such as ether or tetrahydrofuran followed by the addition of an electrophile represents a general method for obtaining substituted indoles, as described by Rapoport, H. ( J. Org. Chem. 1986, 51, 5106).
- R is acyl
- R is, thiomethyl, see Heterocycles, 1992, 34, 1169
- R is cycloalkyl
- Indole boronic acids can be used in well established transition metal catalyzed coupling reactions like the Suzuki reaction to provide aryl and heteroaryl indoles. These reactions are most often carried out in a mixture of ethereal or alcohol solvents with aqueous base in the presence of palladium catalyst, such as Pd(OAc) 2 , Pd(OAc) 2 w/ PPh 3 or Pd(PPh 3 ) 4 as described in Tetrahedron Lett. 1998, 39, 4467, J. Org. Chem. 1999, 64, 1372 and Heterocycles 1992, 34, 1395.
- palladium catalyst such as Pd(OAc) 2 , Pd(OAc) 2 w/ PPh 3 or Pd(PPh 3 ) 4 as described in Tetrahedron Lett. 1998, 39, 4467, J. Org. Chem. 1999, 64, 1372 and Heterocycles 1992, 34, 1395.
- an optionally substituted bromoindole can be treated with an arylboronic acid and a palladium catalyst to provide arylindoles in large quantities ( Synlett 1994, 93).
- Suzuki cross-couplings between boronic acids and aryl halides can be found in Miyaura, N; Suzuki, A. Chem. Rev. 1995, 95, 2457.
- treatment of the advanced intermediate indole X with an aryl or heteroaryl boronic acid using Pd-mediated coupling conditions provides the desired aryl and heteroaryl indole product XI as shown in scheme (E).
- the utility of this method is determined by the ease of synthesis of advanced intermediates of type X and the commercial availability of aryl and heteroaryl boronic acids.
- the Stille reaction serves as a general method for the synthesis of regiocontrolled substitution of indole intermediates as described by Farina, V.; Krishnamurthy, V; Scott, W., Organic Reactions, 1998, 50, 1-652.
- the indole may serve as the organotin species or the aryl halide.
- the stannylindole (XII), where P is a suitable protecting group such as [2-(trimethyl)ethoxy]methyl (SEM) or an alkyl substituent, is treated with a variety of partners (i.e., vinyl/allylic halides, vinyl triflates, aryl/heteroaryl halides and acyl halides) in the presence of a Pd(0)L n catalyst to provide the desired indoles (XII) ( Synnlett 1993, 771, Helv. Chim. Acta 1993, 76, 2356 and J. Org. Chem. 1994, 59, 4250).
- partners i.e., vinyl/allylic halides, vinyl triflates, aryl/heteroaryl halides and acyl halides
- haloindole XIV
- tin reagents a variety of tin reagents under Stille conditions to provide the desired substituted indoles (XV) as described in Heterocycles 1988, 27, 1585 and Synth. Comm 1992, 22, 1627).
- nucleophilic substitution of X is a method often used to substitute aromatic rings with amine and ether functionalities.
- X is halogen, preferably fluorine
- Both 4- and 5-fluoro-2-nitrotoluene are sufficiently activated to undergo substitution with amines in the presence of K 2 CO 3 in a polar aprotic solvent such as, for example, DMSO as described in J. Med. Chem. 1993, 36, 2716.
- the Leimgruber-Batcho two-step method is a general process for the construction of the indole ring system from the appropriate o-nitrotoluene.
- This reaction involves the condensation of an o-nitrotoluene with N,N-dimethylformamide dimethyl acetal followed by a reductive cyclization under suitable conditions such as hydrogen over a palladium catalyst or Zn/HOAc as described in Sundberg, R. J. Indoles ; Chapter 2, Academic Press Inc., San Diego, Calif., 1996. A representative description of the process can also be found in Organic Synthesis, 1984, 63, 214.
- some examples of the invention where Z is a bond and Ar is a substituted heterocycle such as a thiazole; or Z is amide and Ar is a substituted phenyl can be conveniently prepared from an indole 3-acetic acid derivative as illustrated in Scheme I. Using this method, the carboxylic acid moiety is activated and coupled with an aryl amine.
- activating methods well-known to those skilled in the art include formation of acid chloride, mixed anhydrides and coupling reagents such as 1,3-dicyclohexylcarbodiinide (DCC). A review of such method can be found in Bodanszky, M. Principles of Peptide Synthesis ; Springer-Verlag: New York, 1984.
- the intermediate amide or thioamide can be cyclized into the aromatic ring.
- these types of heterocycle forming reactions are described in Mylar, B. L. et al. J. Med. Chem. 1991, 34, 108.
- the carboxylic acid can be converted to a chloro- or bromomethyl ketone and condensed with nucleophiles like thioamides or 2-aminothiophenols to produce thiazole or benzothiazine derivatives. Examples of methods to prepare the chloro- and bromomethyl ketones are illustrated in Rotella, D. P.; Tetrahedron Lett.
- a protecting group may be required. It is also understood that the specific order of steps used in the synthesis depends on the particular example being prepared.
- P may represent H, A-COOH, A-COO-lower alkyl or a simple protecting group that can be removed at a late stage of the synthesis.
- the A-CO2R6 group can be introduced near the end of the synthesis after the Z—Ar group has been assembled. Method of introducing the Z—Ar group are similar to those already described.
- Another strategy involves the synthesis of substituted indoles via an intramolecular cyclization of an aniline nitrogen onto a substituted alkyne as shown in Scheme J.
- Typical approaches utilize commercially available o-iodoaniline derivatives. When these intermediates are unavailable, the regioselective ortho iodination of aromatic amines is used to generate the required intermediate ( J. Org. Chem. 1996, 61, 5804).
- Iodophenyl intermediates are treated with trimethylsilylacetylene in the presence of a Pd catalyst and a Cu(I) source, such as cupric iodide, to produce o-alkynylanilines. See Heterocycles, 1996, 43, 2471 and J.
- 5-chloro-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 3 (parts 1-7), except 5-chloroindole-3-acetonitrile was used instead of 3-indolyl acetonitrile in part 5: mp 188-189° C.; 1 H NMR (DMSO-d 6 , 300 MHz) ⁇ .
- the solution was extracted with ethyl acetate (1,500 mL) and washed with sat'd. aq. NaCl (1,000 mL).
- the organic layer was concentrated to dryness, diluted with heptane and successively washed with water (300 mL) and sat'd. aq. NaCl (1,000 mL).
- 6-phenyl-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 2, except that 6-phenylindole was used instead of 5-chloroindole in part 1: mp 156-159° C.; R f 0.50 (10% methanol in chloroform); 1 H NMR (DMSO-d 6 , 300 MHz) ⁇ 7.65-7.75 (m, 4H), 7.57-7.62 (m, 1H), 7.41-7.50 (m, 3H), 7.26-7.38 (m, 2H), 5.12 (s, 2H), 4.68 (s, 2H); LRMS calcd for C 24 H 15 F 3 N 2 O 2 S: 452.0; found 453.0 (M+1) + .
- the intermediate enamine was dissolved in EtOAc (200 mL) and added to a pre-charged Parr bottle with 10% Pd/C (600 mg) in EtOAc (40 mL). The mixture was hydrogentated on a Parr-shaker at 55 psi for 2.5 h. The catalyst was filtered through a Celite plug with several washings with EtOAc and the remaining filtrate concentrated in vacuo.
- 5-morpholino-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 2, except that 5-morpholinoindole was used instead of 5-chloroindole.
- Examples 25-32 were prepared essentially according to the procedures set forth above in examples 1 and/or 2 with appropriate substitution of starting materials.
- Representative compounds of the invention were tested for their potency, selectivity and efficacy as inhibitors of human aldose reductase.
- the potency or aldose reductase inhibiting effects of the compounds were tested using methods similar to those described by Butera et al. in J. Med. Chem. 1989, 32, 757. Using this assay, the concentrations required to inhibit human aldose reductase (hALR2) activity by 50% (IC50) were determined.
- hALR1 aldehyde reductase
- the test methods employed were essentially those described by Ishii, et al., J. Med. Chem. 1996 39: 1924. Using this assay, the concentrations required to inhibit human aldehyde reductase activity by 50% (IC50) were determined.
- the hALR1/hALR2 ratios were determined. Since high potency of test compounds as inhibitors of aldose reductase is desirable, low hALR2 IC50 values are sought. On the other hand, high potency of test compounds as inhibitors of aldehyde reductase is undesirable, and high hALR1 IC50s values are sought. Accordingly, the hALR1/hALR2 ratio is used to determine the selectivity of the test compounds. The importance of this selectivity is described in Kotani, et al., J. Med. Chem. 40: 684, 1997.
- results show the superior potency, selectivity and efficacy of representative compounds of the invention.
- Such compounds are useful in the treatment of chronic complications arising from diabetes mellitus, such as, for example, diabetic cataracts, retinopathy and neuropathy.
- an aspect of the invention is treatment of such complications with the inventive compounds; treatment includes both prevention and alleviation.
- the compounds are useful in the treatment of, for example, diabetic cataracts, retinopathy, nephropathy and neuropathy.
- the compounds can be assayed for their ability to normalize or reduce sorbitol accumulation in the sciatic nerve of streptozotocin-induced diabetic rats.
- the test methods employed to determine the efficacy are essentially those of Mylari, et al., J. Med. Chem. 34: 108, 1991.
- test compounds of this invention The blood glucose lowering activity of the test compounds of this invention is demonstrated using the following experiments with diabetic (db/db) mice.
- the db/db (C57BL/KsJ) mouse exhibits many of the metabolic abnormalities that are associated with type 2 diabetes in humans.
- the mice are obese, extremely hyperglycemic and also hyperinsulinemic.
- Antihyperglycemic agents that are available to man and also are effective in this model include metformin and troglitazone, both of which begin to demonstrate a beneficial effect in the db/db mice at doses above 100_mg/kg/day.
- metformin and troglitazone both of which begin to demonstrate a beneficial effect in the db/db mice at doses above 100_mg/kg/day.
- compounds that are effective in this model are expected to be effective in humans.
- mice Male db/db mice (8 weeks old) were obtained from Jackson Laboratories and were allowed to acclimate for 1 week before the experiment commenced. A sample of blood was collected from the tail after which plasma glucose was isolated by centrifigation and the glucose concentration was measured in the plasma enzymatically on the COBAS automated clinical_analyzer equipped with a glucose kit that utilized hexokinas to quantitate the amount of glucose in a sample (Roche Diagnostic Systems, kit #47382).
- the compound of Example 1 was administered in the diet by admixing the compound into the_standard rodent powdered chow (Tekland LM-485 Mouse/Rat Sterilizable Diet 7012, Harlan Tekland).
- mice in the compound treated groups was compared to the blood glucose values of mice from the control untreated group by an analysis of variance followed by Dunett's Comparison Test (one-tailed).
- Table 1 show that the test compound of this invention lowers glucose in the diabetic db/db mouse over the 4 week study period.
- the mean percent change in glucose with drug treatment after four weeks of compound administration was 12% at a dose of 100 mg/kg/d and a 40% lowering of blood glucose at a dose of 300 mg/kg/d.
- the assay described in this example is meant to determine whether the compounds of the instant invention would be effective in the treatment of elevated serum triglyceride levels in diabetic, as well as nondiabetic, patients. Tests are conducted to determine the effect of the compound of Example 1 on serum triglyceride levels in streptozotocin-induced diabetic rats. These animals represent a well-established diabetic model exhibiting most of the metabolic abnormalities associated with hyperglycemia, including hpertriglyceridemia, see Schnatz, et al., Diabetologia 8: 125, 1972.
- Diabetes is induced in animals as follows: male Sprague-Dawley rats (150 g), supplied by Harlan Teklad (Madison, Wis.), are allowed to acclimate for 1 week and water is supplied ad libitum. Food (7012CM, Harlan Teklad certified LM-485 mouse/rat) is removed at 1 PM on the day prior to injection of streptozocin (STZ, Sigma cat no. 501230, lot no. 66H0468). STZ, 40 mg/kg, is prepared in 0.03 M citrate buffer, pH 4.5 and administered intraperitoneally after a 24-hr fast. Control animals receive citrate buffer.
- the daily dosages are administered at 10 AM by gavage as a single dose of the test compound in 2% Tween 90 in saline for 15 consecutive days.
- the nondiabetic and diabetic control groups are administered vehicle.
- Table 2 shows the results of the tests. As can be seen, administration of daily dosage of 10 mg/kg significantly reduced the mean plasma triglyceride levels in treated animals 68% compared to the mean level for untreated diabetic animals. The data clearly demonstrate the effectiveness of the test compound in lowering serum triglyceride levels in diabetic animals; a property not generally associated with the ARI class. On the basis of these data, it is further to be expected that a similar effect would be produced in nondiabetic hosts with elevated triglyceride levels.
- Triglyceride lowering properties of test compound Triglyceride Plasma lowering triglycerides compared to Group n (mg/dl) diabetic Control 5 62 ⁇ 5 Diabetic 7 335 ⁇ 83* Diabetic + test 7 149 ⁇ 29 68% *p ⁇ 0.01 compared to Control p ⁇ 0.01 compared to the Diabetic Data is given as mean ⁇ SEM
- Rats (less than 6 weeks old, approx 150 grams) are individually sacrificed via carbon dioxide asphyxiation.
- the abdomen and thorax are opened along the midline with scissors using known sterile techniques.
- the animals are placed recumbent on their right side, to allow displacement of the viscera.
- the abdominal and thoracic sections of the aorta are carefully separated from the dorsum by dissection along the longitudinal axis of the aorta.
- the isolated aorta is placed in a petri dish containing sterile, ice cold Hanks' balanced salt solution (Gibco BRL-Life Technologies, Rockville, Md.) for further micro-dissection under a dissecting microscope.
- the lumenal content of the aorta is dislodged by injection with Hanks, balanced salt solution via a syringe.
- Adherent adipose, loose connective tissue and segments of intercostal arteries are trimmed from the exterior of the aorta using sterile microsurgical instruments.
- the aorta is transferred to a clean petri dish containing fresh Hanks' balanced salt solution and the entire aorta is sectioned into 1 to 2 mm thick rings. The two end rings and any other rings which appear damaged are discarded.
- the aorta is maintained submerged in Hanks' balanced salt solution on ice while plating onto a 48-well plate.
- a 120 microliters of thawed Matrigel® (Becton Dickinson Labware, Bedford, Mass.) is plated onto each well using a sterile pipet tip.
- the Matrigel® is solidified by placing the culture plate for 30 minutes in a 37° C. humidified tissue culture incubator in the presence of 5% CO 2 .
- a single aortic ring is placed on edge, with one of its two cut surfaces resting on the Matrigel®, at the center of each well using a sterile curved forcep.
- the layout of the culture plate is such that the rings from multiple animals are placed in a single column on the plate.
- the aortic rings are completely embedded in Matrigel® by pipetting an additional 50 microliters of chilled Matrigel® over each ring, being careful not to disrupt proper ring orientation.
- the plate with the aortic rings is placed in an incubator at 37° C. with 97% humidity for 6 days.
- Each 48-well tissue culture plate has the following template: six negative wells, six positive wells, with the remaining wells used to evaluate various concentrations of the test compound in replicates of six.
- the six negative controls consisting of 1584 ⁇ L of human endothelial serum free media (SFM) basal growth medium (Gibco-BRL-Life Technologies) and 16 ⁇ L of 100% sterile filtered DMSO.
- the six positive controls consist of 1484 ⁇ L serum free media (SFM) and 100 ⁇ L of endothelial cell growth supplement (ECGS, at a working concentration of 200 micrograms/ml) (Becton Dickinson Labware, Bedford, Mass.), and 16 ⁇ L of 100% sterile filtered DMSO.
- test compounds consist of: 1484 ⁇ l SFM, 100 ⁇ l ECGS, 16 ⁇ l of test compounds dissolved in 100% sterile filtered DMSO. Final concentration of DMSO in all wells is 1%. All test compounds are diluted 1:100 from their stock concentrations.
- the negative control (negative), the positive control (positive) and the experimental group labeled (prevention) each receive media changes every 24 hours for six days. The content of the media changes are as previously described for each experimental group.
- the prevention group receives 50 micromolar concentration test compound for six consecutive days.
- the experimental group designated as Removal receives 50 micromolar concentration of test compound during day 1, 2 and 3 after which the compound is removed by multiple rinses with fresh media.
- the aortic rings in the Removal group are cultured for an additional three days in the absence of the compound and treated identically to the positive control group on days 4, 5 and 6.
- the experimental group, labeled Intervention receives treatment identical to the positive control group for 1, and 3 days and is then exposed to 50 microliters of test compound only on days 4, 5 and 6 in a fashion identical to the treatment received by the prevention group.
- an inverted microscope (Zeiss, Axiovert 25) set at low illumination with full closure of the iris diaphram to maximize depth-of-field is used.
- the microscope is coupled to a CCD camera (Cohu Inc.) for digital capture with a computer and each well of the 48-well plate containing an aortic ring is digitally documented for quantitative analysis (Alpha Innotek Inc.) at a magnification of 5 ⁇ .
- the average linear vascular growth (in mm) is determined from the adventitial margin of the aortic ring to the furthest detectable vascular outgrowth. This linear distance is measured along 16 equally spaced radial lines around a 360 degree field.
- Diff-Quik fixative Dade-Behring
- the antigiogenic effect of the compound of Example 1 is shown in Table 3 below.
- STZ treated diabetic minipigs having various wounds are administered the compound of Example 1. These animals are compared with control STZ diabetic minipigs also having wounds but that are not treated with the compound.
- the animals administered the compound of Example 1 demonstrate a significant increase in the degree of wound healing. Accordingly, the compounds of the invention are capable of promoting wound healing in diabetic mammals.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Diabetes (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Vascular Medicine (AREA)
- Emergency Medicine (AREA)
- Endocrinology (AREA)
- Urology & Nephrology (AREA)
- Dermatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Indole Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
Abstract
Disclosed are methods of reducing serum glucose and triglyceride levels and for inhibiting angiogenesis, the methods comprising administration of substituted indolealkanoic acids to patients in need of such treatment. Also disclosed are such compounds useful in the treatment of angiogenesis, hyperglycemia, hyperlipidemia and chronic complications arising from diabetes mellitus. Also disclosed are pharmaceutical compositions containing the compounds.
Description
- This is a continuation of application Ser. No. 12/871,304 filed Aug. 30, 2010 which is a continuation of application Ser. No. 11/274,583, filed on Nov. 15, 2005, which is a divisional of application Ser. No. 10/397,140, filed on Mar. 26, 2003, now U.S. Pat. No. 6,964,980; which is a divisional of application Ser. No. 09/452,252, filed on Dec. 1, 1999, now U.S. Pat. No. 6,555,568; which claims priority from provisional application No. 60/110,395, filed on Dec. 1, 1998.
- The use of aldose reductase inhibitors (ARIs) for the treatment of diabetic complications is well known. The complications arise from elevated levels of glucose in tissues such as the nerve, kidney, retina and lens that enters the polyol pathway and is converted to sorbitol via aldose reductase. Because sorbitol does not easily cross cell membranes, it accumulates inside certain cells resulting in changes in osmotic pressure, alterations in the redox state of pyridine nucleotides (i.e. increased NADH/NAD+ ratio) and depleted intracellular levels of myoinositol. These biochemical changes, which have been linked to diabetic complications, can be controlled by inhibitors of aldose reductase.
- The use of aldose reductase inhibitors for the treatment of diabetic complications has been extensively reviewed, see: (a) Textbook of Diabetes, 2nd ed.; Pickup, J. C. and Williams, G. (Eds.); Blackwell Science, Boston, Mass. 1997; (b) Larson, E. R.; Lipinski, C. A. and Sarges, R., Medicinal Research Reviews, 1988, (2), 159-198; (c) Dvornik, D. Aldose Reductase Inhibition. Porte, D. (ed), Biomedical Information Corp., New York, N.Y. Mc Graw Hill 1987; (d) Petrash, J. M., Tarle, I., Wilson, D. K. Quiocho. F. A. Perspectives in Diabetes, Aldose Reductase Catalysis and Crystalography: Insights From Recent Advances in Enzyme Structure and Function, Diabetes, 1994, 43, 955; (e) Aotsuka, T.; Abe, N.; Fukushima, K.; Ashizawa, N. and Yoshida, M., Bioorg. & Med. Chem. Letters, 1997, 7, 1677, (f), T., Nagaki, Y.; Ishii, A.; Konishi, Y.; Yago, H; Seishi, S.; Okukado, N.; Okamoto, K., J. Med. Chem., 1997, 40, 684; (g) Ashizawa, N.; Yoshida, M.; Sugiyama, Y.; Akaike, N.; Ohbayashi, S.; Aotsuka, T.; Abe, N.; Fukushima, K.; Matsuura, A, Jpn. J. Pharmacol. 1997, 73, 133; (h) Kador, P. F.; Sharpless, N. E., Molecular Pharmacology, 1983, 24, 521; (I) Kador, P. F.; Kinoshita, J. H.; Sharpless, N. E., J. Med. Chem. 1985, 28 (7), 841; (j) Hotta, N., Biomed. & Pharmacother. 1995, 5, 232; (k) Mylar, B.; Larson, E. R.; Beyer, T. A.; Zembrowski, W. J.; Aldinger, C. E.; Dee, F. D.; Siegel, T. W.; Singleton, D. H., J. Med. Chem. 1991, 34, 108; (1) Dvornik, D. Croatica Chemica Acta 1996, 69 (2), 613.
- Previously described aldose reductase inhibitors most closely related to the present invention include those sighted in: (a) U.S. Pat. No. 5,700,819: 2-Substituted benzothiazole derivatives useful in the treatment of diabetic complications, (b) U.S. Pat. No. 4,868,301: Processes and intermediates for the preparation of oxophthalazinyl acetic acids having benzothiazole or other heterocyclic side chains, (c) U.S. Pat. No. 5,330,997: 1H-indazole-3-acetic acids as aldose reductase inhibitors, and (d) U.S. Pat. No. 5,236,945: 1H-indazole-3-acetic acids as aldose reductase inhibitors. Although many aldose reductase inhibitors have been extensively developed, none have demonstrated sufficient efficacy in human clinical trials without significant undesirable side effects. Thus no aldose reductase inhibitors are currently available as approved therapeutic agents in the United States; and consequently, there is still a significant need for new, efficacious and safe medications for the treatment of diabetic complications.
- Treatment to normalize the plasma glucose concentration in people afflicted with type 2 diabetes currently includes diet, exercise and oral agents such as sulfonylureas, metformin and glitazone-type compounds. Many of these agents exhibit side effects and have limited efficacy. There is a need for new agents which do not possess these drawbacks. Because of the limited efficacy of each method of treatment often the oral agents are giving in combination of with each other or with insulin.
- Elevated serum triglyceride levels are also commonly associated with diabetes; however, this condition is also widely seen in nondiabetic patients. The mechanism causing the presence of elevated triglyceride levels in patients, both diabetic and otherwise, is different from that underlying chronic diabetes-related complications directly treatable by inhibition of aldose reductase activity. There is, therefore, a need for treatment of elevated triglyceride levels in diabetic and/or nondiabetic patients, e.g., cardiac patients.
- This invention provides compounds that interact with and inhibit aldose reductase. Thus, in a broad aspect, the invention provides compounds of Formula I:
- or pharmaceutically acceptable salts thereof wherein
- A is a C1-C4 alkylene group optionally substituted with C1-C2 alkyl or mono- or disubstituted with halogen, preferably fluoro or chloro;
- Z is a bond, O, S, C(O)NH, or C1-C3 alkylene optionally substituted with C1-C2 alkyl;
- R1 is hydrogen, alkyl having 1-6 carbon atoms, halogen, 2-, 3-, or 4-pyridyl, or phenyl, where the phenyl or pyridyl is optionally substituted with up to three groups selected from halogen, hydroxy, C1-C6 alkoxy, C1-C6 alkyl, nitro, amino, or mono- or di(C1-C6)alkylamino;
- R2, R3, R4 and R5 are each independently
- hydrogen, halogen, nitro, or an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens);
- OR7, SR7, S(O)R7, S(O)2(R7)2, C(O)N(R7)2, or N(R7)2, wherein each R7 is independently hydrogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens) or benzyl, where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino; phenyl or heteroaryl such as 2-, 3- or 4-imidazolyl or 2-, 3-, or 4-pyridyl, each of which phenyl or heteroaryl is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino;
- phenoxy where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino; or
- a group of the formula
-
-
- where
- J is a bond, CH2, oxygen, or nitrogen; and
- each r is independently 2 or 3;
- where
-
- R6 is hydroxy or a prodrug group;
- Ra is hydrogen, C1-C6 alkyl, fluoro, or trifluoromethyl; and
- Ar represents aryl or heteroaryl, each of which is optionally substituted with up to five groups.
- In another aspect, the invention provides methods for preparing such compounds.
- The compounds of the invention inhibit aldose reductase. Since aldose reductase is critical to the production of high levels of sorbitol in individuals with diabetes, inhibitors of aldose reductase are useful in preventing and/or treating various complications associated with diabetes. The compounds of the invention are therefore effective for the treatment of diabetic complications as a result of their ability to inhibit aldose reductase.
- In another aspect, the invention provides methods for treating and/or preventing chronic complications associated with diabetes mellitus, including, for example, diabetic cataracts, retinopathy, keratopathy, wound healing, diabetic uveitis, diabetic cardiomyopathy, nephropathy, and neuropathy.
- The compounds of this invention also possess antihyperglycemic activity and are therefore useful for the treatment of hyperglycemia. and elevated serum triglyceride levels. Accordingly, an aspect of the invention is prevention and/or alleviation of complications associated with hyperglycemia with the inventive compounds.
- The compounds of the present invention have been discovered to lower triglycerides. While serum triglyceride levels are often elevated in diabetic patients, they are also frequently elevated in nondiabetic patients resulting in various diseases and disorders, e.g., cardiac disease. Because of their ability to reduce serum triglyceride levels, the compounds of the present invention are useful in the treatment, i.e., prevention and/or alleviation, of elevated triglyceride levels in both diabetic and nondiabetic patients.
- Thus, the compounds of the present invention may be used as antihyperlipidemic and/or antihyperglycemic agents. The compounds of this invention may be given in combination with other glucose or lipid lowering agents as well as other agents that are given specifically to treat the complications of diabetes.
- It has also been discovered that the compounds of the present invention exhibit anti-angiogenic activity in an established in vitro assay. The discovery of this biological activity for the compounds of the invention is unexpected. As a result of this biological activity, the compounds of the invention can be used to treat various diseases that exhibit aberrant vasoproliferation. According to the invention, the compound would be administered to a mammal in need of inhibition of vasoproliferation, i.e., inhibition of angiogenesis. Examples of such diseases are diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, corneal neovascularization, pterygium, and any neoplasms (cancers) which appear to be angiogenesis dependent. Administration of the compound(s) of this invention is/are not limited to a particular mode, and could be administered systemically or topically to the eye in an appropriate ophthalmic solution. The compounds of the invention may be administered in combination therapy with other known anti-angiogenic agents.
- The compounds of the invention have also been discovered to promote the healing of wounds in mammals. In preferred aspects, the compounds are useful in promoting wound healing in diabetic mammals. Thus, the compounds of the invention may be employed in the treatment of wounds in mammals, preferably humans, more preferably in diabetic humans.
- In still another aspect, the invention provides pharmaceutical compositions containing compounds of Formula I.
- In still another aspect, the invention provides for the use of a compound or compounds of Formula I for the preparation of a medicament for the treatment of any of the disorders or diseases (a) listed above, (b) connected with diabetic complications, hyperglycemia, or hypertriglyceridemia, or (c) where inhibition of vasoproliferation is indicated.
- As used herein, the term “treatment” includes both prevention and alleviation.
- The numbering system for the compounds of Formula I is as follows:
- As noted above, the invention provides novel substituted indole alkanoic acids useful in treating and/or preventing complications associated with or arising from elevated levels of glucose in individuals suffering from diabetes mellitus. These compounds are represented by Formula I above.
- In compounds of Formula I, the aryl and heteroaryl groups represented by Ar include:
- a phenyl group optionally substituted with up to 5 groups independently selected from halogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens), nitro, OR7, SR7, S(O)R7, S(O)2R7 or N(R7)2 wherein R7 is hydrogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens) or benzyl, where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino, or the phenyl group may be condensed with benzo where the benzo is optionally substituted with one or two of halogen, cyano, nitro, trifluoromethyl, perfluoroethyl, trifluoroacetyl, or (C1-C6)alkanoyl, hydroxy, (C1-C6)alkyl, (C1-C6) alkoxy, (C1-C6)alkylthio, trifluoromethoxy, trifluoromethylthio, (C1-C6)alkylsulfinyl, (C1-C6)alkylsulfonyl;
- a heterocyclic 5-membered ring having one nitrogen, oxygen or sulfur, two nitrogens one of which may be replaced by oxygen or sulfur, or three nitrogens one of which may be replaced by oxygen or sulfur, said heterocyclic 5-membered ring substituted by one or two fluoro, chloro, (C1-C6)alkyl or phenyl, or condensed with benzo, or substituted by one of pyridyl, furyl or thienyl, said phenyl or benzo optionally substituted by one of iodo, cyano, nitro, perfluoroethyl, trifluoroacetyl, or (C1-C6)alkanoyl, one or two of fluoro, chloro, bromo, hydroxy, (C1-C6) alkyl, (C1-C6) alkoxy, (C1-C6)alkylthio, trifluoromethoxy, trifluoromethylthio, (C1-C6)alkylsulfinyl, (C1-C6)alkylsulfonyl or trifluoromethyl, or two fluoro or two trifluoromethyl with one hydroxy or one (C1-C6) alkoxy, or one or, preferably, two fluoro and one trifluoromethyl, or three fluoro, said pyridyl, furyl or thienyl optionally substituted in the 3-position by fluoro, chloro, bromo, (C1-C6)alkyl or (C1-C6)alkoxy;
- a heterocyclic 6-membered ring having one to three nitrogen atoms, or one or two nitrogen atoms and one oxygen or sulfur, said heterocyclic 6-membered ring substituted by one or two (C1-C6)alkyl or phenyl, or condensed with benzo, or substituted by one of pyridyl, furyl or thienyl, said phenyl or benzo optionally substituted by one of iodo or trifluoromethylthio, or one or two of fluoro, chloro, bromo, (C1-C6)alkyl, (C1-C6) alkoxy, (C1-C6)alkylthio, (C1-C6)alkylsulfinyl, (C1-C6)alkylsulfonyl, or trifluoromethyl, and said pyridyl, furyl or thienyl optionally substituted in the 3-position by fluoro, chloro, (C1-C6)alkyl or (C1-C6) alkoxy;
- said benzo-condensed heterocyclic 5-membered or 6-membered rings optionally substituted in the heterocyclic 5-membered or 6-membered ring by one of fluoro, chloro, bromo, methoxy, or trifluoromethyl;
- oxazole or thiazole condensed with a 6-membered aromatic group containing one or two nitrogen atoms, with thiophene or with furane, each optionally substituted by one of fluoro, chloro, bromo, trifluoromethyl, methylthio or methylsulfinyl;
- imidazolopyridine or triazolopyridine optionally substituted by one of trifluoromethyl, trifluoromethylthio, bromo, or (C1-C6)alkoxy, or two of fluoro or chloro;
- thienothiophene or thienofuran optionally substituted by one of fluoro, chloro or trifluoromethyl; thienotriazole optionally substituted by one of chloro or trifluoromethyl;
- naphthothiazole; naphthoxazole; or thienoisothiazole.
- More specific compounds of the invention are those of Formula I wherein Ar is optionally substituted benzothiazolyl, benzoxazolyl, isoquinolyl, benzothiophen-yl, benzofuran-yl or benzimidazolyl, or substituted oxadiazolyl or indolyl. Other more specific compounds are of Formula I those wherein Ra is trifluoromethyl, Z is a covalent bond or CH2, R6 is hydroxy, and each of R2-R5 are independently hydrogen, halogen, more preferably bromo or chloro, C1-C2 alkyl, phenoxy, benzyloxy, or C1-C2 alkoxy, and R1 is hydrogen or methyl.
- Preferred compounds of the invention are those wherein Z is a covalent bond, R6 is hydroxy, Ar is optionally substituted benzothiazol-2-yl, benzothiazol-5-yl, benzoisothiazol-3-yl, benzoxazol-2-yl, 2-quinolyl, 2-quinoxalyl, oxazolo[4,5-b]pyridine-2-yl, benzothiophen-2-yl, benzofuran-2-yl, or thazolo[4,5-pyridine-2-y, thieno[2,3-b]pyridine-2-yl, imidazo[1,5-a]pyridine-2-yl, or indol-2-yl, or substituted 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, isothiazol-5-yl, isothiazol-4-yl, 1,3,4-oxadiazol-5-yl, 1,2,5-thiadiazol-3-yl, oxazol-2-yl, thiazol-2-yl, or thiazol-4-yl, R2-R5 are independently hydrogen, halogen, more preferably bromo or chloro, C1-C2 alkyl, phenoxy, benzyloxy or phenyl where each phenyl portion is optionally substituted with C1-C6 alkyl, halogen, C1-C6 alkoxy, hydroxy, amino or mono- or di (C1-C6) alkylamino Ra is hydrogen, fluoro or C1-C2 alkyl, and R1 is hydrogen or methyl.
- Other preferred compounds are those wherein the methylene bridge connecting the indolyl group with Ar is located alpha with respect to a nitrogen atom in Ar, e.g. wherein Ar is benzoxazol-2-yl or 1,2,4-oxadiazol-3-yl mentioned above.
- Other more specific compounds of the invention are those wherein Z is a covalent bond, R6 is hydroxy, Ra is hydrogen, Ar is optionally 4, 5, 6 or 7 benzo-substituted benzothiazolyl, benzoxazolyl, benzimidazolyl, benzothiophenyl, benzofuranyl, or indolyl, or Ar is 2-benzothiazolyl substituted on benzo by one trifluoroacetyl or trifluoromethylthio, or one or two of fluoro chloro, bromo, hydroxy, methyl, methoxy, trifluoromethyl, trifluoromethoxy, trifluoromethylthio, or one or, preferably, two fluoro and one trifluoromethyl, or two fluoro or two trifluoromethyl with one methoxy, or three fluoro, or by 6,7-benzo, and those wherein one of R2 and R3 is hydrogen, fluoro, chloro, bromo or methyl, and one of R4 and R5 is hydrogen, or chloro, bromo, methyl, isopropyl, methoxy, nitro or trifluoromethyl; or R3 and R4 is 5,6-difluoro, Ra is hydrogen; and those wherein Ar is optionally substituted benzothiazol-2-yl or quinoxalyl and R3 and R4 are each chloro, and R1 is hydrogen or methyl.
- Further more specific compounds are those wherein Z is a covalent bond, R6 is hydroxy, Ar is optionally substituted benzothiazol-2-yl, R3 and R4 are hydrogen, and R5 is methyl; those wherein Z is a covalent bond, R6 is hydroxy, R3, R4 and R5 are hydrogen, chloro, fluoro, bromo or C1-C2 alkyl, Ra is hydrogen, and Ar is optionally 4, 5, 6 or 7 benzosubstituted benzothiazolyl-2-trifluoromethyl, benzoxazolyl-2-trifluoromethyl, benzimidazolyl-2-trifluoromethyl, benzofuran-2-trifluoromethyl, benzofuran-3-trifluoromethyl, benzothiophen-2-trifluoromethyl, benzothiophen-3-trifluoromethyl, indolyl-2-trifluoromethyl, or indolyl-3-trifluoromethyl; and those wherein Z is CH2, R6 is hydroxy, Ar is optionally substituted benzothiazol-2-yl, benzothiazol-5-yl, benzoisothiazol-3-yl, benzoxazol-2-yl, 2-quinolyl, 2-quinoxalyl, oxazolo[4,5-b]pyridine-2-yl, or thiazolo[4,5-b]pyridine-2-yl, or substituted 1,2,4-oxadiazol3-yl, 1,2,4-oxadiazol-5-yl, isothiazol-5-yl, isothiazol-4-yl, 1,3,4-oxadiazol-5-yl, 1,2,5-thiadiazol-3-yl, oxazol-2-yl, thiazol-2-yl, or thiazol-4-yl, and R3, R4 and R5 are independently hydrogen, chloro, fluoro, bromo, C1-C2 alkyl, or trifluoromethyl, and Ra is hydrogen.
- Generally, R1 in the specific compounds described above is hydrogen, halogen, preferably chloro or fluoro, C1-C6 alkyl, or phenyl optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino. Preferred R1 groups are hydrogen and methyl.
- Preferred compounds of the invention include those where Ar in Formula I is substituted phenyl, i.e., compounds of Formula II:
- wherein
- A is a C1-C4 alkylene group optionally substituted with C1-C2 alkyl;
- Z is a bond, or C1-C3 alkylene optionally substituted with C1-C2 alkyl;
- Ra is hydrogen, C1-C6 alkyl, chloro, bromo, fluoro, or trifluoromethyl;
- R1 is hydrogen, C1-C6 alkyl, fluoro, or phenyl optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino;
- R2, R3, R4 and R5 are each independently
- hydrogen, halogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens), nitro, OR7, SR7, S(O)R7, S(O)2N(R7)2, C(O)N(R7)2, or N(R7)2, wherein each R7 is independently hydrogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens) or benzyl, where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino;
- phenyl or heteroaryl such as 2-, 3- or 4-imidazolyl or 2-, 3-, or 4-pyridyl, each of which phenyl or heteroaryl is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino;
- phenoxy where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino; or
- a group of the formula
-
-
- where
- J is a bond, CH2, oxygen, or nitrogen; and
- each r is independently 2, or 3;
- where
-
- R6 is hydrogen, an alkoxy group of 1-6 carbon atoms, or —O−M+ where M+ is a cation forming a pharmaceutically acceptable salt; and
- R8, R9, and R10 are independently hydrogen, fluorine, chlorine, bromine, trifluoromethyl or nitro.
- Other preferred compounds of the invention are those where Ar is a substituted benzothiazole, i.e., compounds of Formula III:
- wherein
- A is a C1-C4 alkylene group optionally substituted with C1-C2 alkyl;
- Z is a bond, or C1-C3 alkylene optionally substituted with C1-C2 alkyl;
- Ra is hydrogen, C1-C6 alkyl, chloro, bromo, fluoro, or trifluoromethyl;
- R1 is hydrogen, C1-C6 alkyl, halogen, preferably chloro or fluoro, or phenyl optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino;
- R2, R3, R4 and R5 are each independently hydrogen, halogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens), nitro, OR7, SR7, S(O)R7, S(O)2N(R7)2C(O)N(R7)2 or N(R7)2, wherein each R7 is independently hydrogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens) or benzyl, where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6) alkylamino;
- phenyl or heteroaryl such as 2-, 3- or 4-imidazolyl or 2-, 3-, or 4-pyridyl, each of which phenyl or heteroaryl is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino;
- phenoxy where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino; or
- a group of the formula
-
-
- where
- J is a bond, CH2, oxygen, or nitrogen; and
- each r is independently 2 or 3;
- where
-
- R6 is hydroxy, C1-C6 alkoxy, or —O−M+ where M+ is a cation forming a pharmaceutically acceptable salt; and
- R11, R12, R13 and R14 are independently hydrogen, halogen, nitro, hydroxy, C1-C6 alkyl, C1-C6 alkoxy, C1-C6 alkylthio, trifluoromethyl, trifluoromethoxy, C1-C6 alkylsulfinyl, or C1-C6 alkylsulfonyl.
- In preferred compounds of Formula III, the R2, R3, R4 and R5 substituents, in combination, represent one of bromo, cyano or nitro, one or two of fluoro, chloro, hydroxy, (C1-C6)alkyl, (C1-C6)alkoxy, or trifluoromethyl, or two fluoro or two methyl with one hydroxy or one (C1-C6) alkoxy, or one or, preferably, two fluoro and one methyl, or three fluoro groups. Particularly preferred R2, R3, R4 and R5 substituents are, independently, fluorine, chlorine, nitro, and trifluoromethyl.
- In preferred compounds of Formulas II and III, A is preferably methylene, methylene substituted with a methyl group, or ethylene.
- Preferred compounds according to Formula II above include those wherein R8 is fluorine, R9 is hydrogen and R10 is bromine or those wherein R8 and R10 are hydrogens and R9 is nitro.
- Preferred compounds of Formula III above are those wherein the benzothiazole moiety is substituted with nitro, one, two, or three of fluoro, one or two of chloro, or at least one trifluoromethyl group. More preferred compounds of Formula II are those where A is methylene, R1 is hydrogen or methyl, Z is a bond, and R6 is hydroxy or C1-C6 alkoxy.
- Still more preferred compounds of Formula II are those wherein R11, R12 and R14 are fluorines and R13 is hydrogen. Other more preferred compounds of Formula II are those where Ra is methyl or hydrogen, Z is methylene or, more preferably, a bond, A is CHF or C1 or C2 alkylene, preferably methylene, R1 is methyl or hydrogen, and R11, R12 and R14 are halogens or C1-C3 alkyl. Still other more preferred compounds of Formula III are those where Ra is methyl or hydrogen, Z is methylene or, more preferably, a bond, A is CHF or C1 or C2 alkylene, R1 is methyl or hydrogen, and R11, R12 and R14 are fluorines or chlorines.
- Particularly preferred compounds of Formula I are those where R3 and R4 are independently hydrogen, C1-C6 alkyl, C1-C6 alkoxy, or halogen, and Ra is methyl or hydrogen, Z is a bond, A is methylene, methyl substituted methylene, or ethylene, R1 is methyl or hydrogen, and R11, R12 and R14 are fluorines or chlorines.
- The term “prodrug group” denotes a moiety that is converted in vivo into the active compound of formula I wherein R6 is hydroxy. Such groups are generally known in the art and include ester forming groups, to form an ester prodrug, such as benzyloxy, di(C1-C6)alkylaminoethyloxy, acetoxymethyl, pivaloyloxymethyl, phthalidoyl, ethoxycarbonyloxyethyl, 5-methyl-2-oxo-1,3-dioxol-4-yl methyl, and (C1-C6)alkoxy optionally substituted by N-morpholino and amide-forming groups such as di(C1-C6)alkylamino. Preferred prodrug groups include hydroxy, C1-C6 alkoxy, and O−M+ where M+ represents a cation. Preferred cations include sodium, potassium, and ammonium. Other cations include magnesium and calcium. Further preferred prodrug grops include O−M++ where M++ is a divalent cation such as magnesium or calcium.
- In certain situations, compounds of Formula I may contain one or more asymmetric carbon atoms, so that the compounds can exist in different stereoisomeric forms. These compounds can be, for example, racemates or optically active forms. In these situations, the single enantiomers, i.e., optically active forms, can be obtained by asymmetric synthesis or by resolution of the racemates. Resolution of the racemates can be accomplished, for example, by conventional methods such as crystallization in the presence of a resolving agent, or chromatography, using, for example a chiral HPLC column.
- Representative compounds of the present invention include the pharmaceutically acceptable acid addition salts of compounds where R6 includes basic nitrogen atom, i.e, an alkylamino or morpholino group. In addition, if the compound or prodrug of the invention is obtained as an acid addition salt, the free base can be obtained by basifying a solution of the acid salt. Conversely, if the product is a free base, an addition salt, particularly a pharmaceutically acceptable addition salt, may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds.
- Non-toxic pharmaceutical salts include salts of acids such as hydrochloric, phosphoric, hydrobromic, sulfuric, sulfinic, formic, toluenesulfonic, methanesulfonic, nitric, benzoic, citric, tartaric, maleic, hydroiodic, alkanoic such as acetic, HOOC—(CH2)n-ACOOH where n is 0-4, and the like. Non-toxic pharmaceutical base addition salts include salts of bases such as sodium, potassium, calcium, ammonium, and the like. Those skilled in the art will recognize a wide variety of non-toxic pharmaceutically acceptable addition salts.
- As used herein, the terms 2-benzothiazolyl and benzothiazol-2-yl are synonymous.
- Representative groups of the formula
- include those where J is oxygen and each r is 2 (morpholinyl), J is nitrogen and each r is 2 (piperazinyl) or one r is 2 and the other 3 (homopiperazinyl), or J is CH2 and each r is 2 (piperidinyl) or one r is 2 and the other 3 (homopiperidinyl). Preferred groups of this formula are morpholinyl and piperazinyl.
- The heterocyclic 5-membered ring having one to three nitrogen atoms, one of which may be replaced by oxygen or sulfur includes imidazolyl, oxazolyl, triazolyl, pyrazolyl, oxadiazolyl, thiadiazolyl, and triazolyl.
- The heterocyclic 6-membered ring having one to three nitrogen atoms, or one or two nitrogen atoms and one oxygen or sulfur includes triazinyl, pyrimidyl, pyridazinyl, oxazinyl and triazinyl.
- The heterocyclic ring may be condensed with benzo so that said ring is attached at two neighboring carbon atoms to form a phenyl group. Such benzoheterocyclic ring may be attached to Z either through the heterocyclic group or through the benzo group of the benzoheterocyclic ring. Specific wherein said heterocyclic ring is condensed with a benzo include benzoxazolyl, quinazolin-2-yl, 2-benzimidazolyl, quinazolin-4-yl and benzothiazolyl. The oxazole or thiazole condensed with a 6-membered aromatic group containing one or two nitrogen atoms include positional isomers such as oxazolo[4,5-b]pyridine-2-yl, thiazolo[4,5-b]pyridine-2-yl, oxazolo[4,5-c]pyridine-2-yl, thiazolo[4,5-c]pyridine-2-yl, oxazolo[5,4-b]pyridine-2-yl, thiazolo[5,4-b]pyridine-2-yl, oxazolo[5,4-c]pyridine-2-yl, and thiazolo[5,4-c]pyridine-2-yl.
- The following compounds of the invention are provided to give the reader an understanding of the compounds encompassed by the invention:
- 3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid
- 5-chloro-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid
- 2-methyl-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid
- 5-methyl-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid
- 7-methyl-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid
- 6-chloro-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid
- 5-benzyloxy-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid
- 6-fluoro-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid
- 5-fluoro-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid
- 6-methyl-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid
- 3-methyl(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-2 propionic acid
- 3-methyl(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-3 propionic acid
- 3-(5-trifluoromethylbenzothiazol-2-yl)methyl-indole-N-acetic acid
- 5-methyl-3-(5-trifluoromethylbenzothiazol-2-yl)methyl-indole-N-acetic acid
- 3-(3-nitrophenyl)methyl-indole-N-acetic Acid
- The above compounds, further described in the Examples and other description of the invention below, are illustrative but are not meant to limit in any way the scope of the contemplated compounds according to the present invention.
- The compounds of the invention are administered to a patient or subject in need of treatment either alone or in combination with other compounds having similar or different biological activities. For example, the compounds of the invention may be administered in a combination therapy, i.e., either simultaneously in single or separate dosage forms or in separate dosage forms within hours or days of each other. Examples of such combination therapies include administering the compounds of Formula I with other agents used to treat hyperglycemia, hyperlipidemia, and diabetic complications.
- Suitable compounds for use in combination therapy include
- Insulin
- Metformin
- Troglitazone
- Pioglitazone
- Rosiglitazone
- Darglitazone
- Sulfonylureass such as glipizide and glimepiride
- Repaglinide
- alpha-glucosidase inhibitors such as acarbose, miglitol
- ACE inhibitors: Captopril, lisinopril
- Angiotensin II receptor antagonists (AT1-receptor) such as candesartan, losartan, irbesartan, and valsartan
- MMP inhibitors
- Protein kinase C inhibitors
- Statins such as Atorvastatin, simvastatin, pravastatin, fluvastatin, lovastatin, cerivastatin
- Fibrates such as Fenofibrate, bezafibrate, ciprofibrate, gemfibrozil
- The compounds of general Formula I may be administered orally, topically, parenterally, by inhalation or spray or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques. In addition, there is provided a pharmaceutical formulation comprising a compound of general Formula I and a pharmaceutically acceptable carrier. One or more compounds of general Formula I may be present in association with one or more non-toxic pharmaceutically acceptable carriers and/or diluents and/or adjuvants and if desired other active ingredients. The pharmaceutical compositions containing compounds of general Formula I may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsion, hard or soft capsules, or syrups or elixirs.
- Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed.
- Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.
- Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydropropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.
- Oily suspensions may be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
- Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.
- Pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol, anhydrides, for example sorbitan monoleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monoleate. The emulsions may also contain sweetening and flavoring agents.
- Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents. The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be sterile injectable solution or suspension in a non-toxic parentally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.
- The compounds of general Formula I may also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials are cocoa butter and polyethylene glycols.
- Compounds of general Formula I may be administered parenterally in a sterile medium. The drug, depending on the vehicle and concentration used, can either be suspended or dissolved in the vehicle. Advantageously, adjuvants such as local anesthetics, preservatives and buffering agents can be dissolved in the vehicle.
- Dosage levels on the order of from about 0.1 mg to about 140 mg per kilogram of body weight per day are useful in the treatment of the above-indicated conditions (about 0.5 mg to about 7 g per patient per day). The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. Dosage unit forms will generally contain between from about 1 mg to about 1000 mg of an active ingredient.
- It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination and the severity of the particular disease undergoing therapy.
- The compounds of the present invention may be prepared by use of known chemical reactions and procedures. General methods for synthesizing the compounds are presented below. It is understood that the nature of the substituents required for the desired target compound often determines the preferred method of synthesis. All variable groups of these methods are as described in the generic description if they are not specifically defined below. More detailed procedures for particular examples are presented below in the experimental section.
- The compounds of the invention where Ar is benzothiazolyl can be conveniently prepared from a substituted indole moiety using general Scheme A set forth below.
- Treatment of a nitrile indole IV with a strong base such as, for example, sodium hydride, butyl lithium or sodium tert-butoxide, in a polar aprotic solvent such as acetonitrile, tetrahydrofuran or N,N-dimethylformamide followed by an treatment with an alkylating agent, e.g., ethyl or tert-butyl bromoacetate, provides the desired N-alkylated product V. Alternativly, phase transfer catalysis can be used in a biphasic solvent system. A general review of such alkylations can be found in Sundberg, R. J. Indoles; Chapter 11, Academic Press Inc., San Diego, Calif., 1996. Condensation with a suitable 2-amino thiophenol hydrochloride salt VI provides benzothiazole intermediate VII. These reactions are most often carried out in an alcohol solvents at elevated temperatures; however, other solvents like N,N-dimethylformamide and N-methylpyrrolidone can be used or the reactions can be carried out in the absence of solvents altogether. The scope of the reaction conditions useful for this transformation have been described previously (U.S. Pat. No. 5,700,819). General methods for the preparation of various substituted 2-amino thiophenols are also well known (J. Med. Chem. 1991, 34, 108 and Chem. Pharm. Bull. 1994, 42, 1264). In general, the best method of synthesis is determined by such factors as availability of starting materials and ease of synthesis. Deprotection of the alkanoic acid moiety VII can be carried out by methods common to those skilled in the art to result in compounds of Formula III. The method used in the deprotection depends on the type of protecting group. A description of such protecting groups and methods for deprotecting them may be found in: Protective Groups in Organic Synthesis, Second Edition, T. W. Green and P. G. M. Wuts, John Wiley and Sons, Ney York, 1991. When a methyl or ethyl ester is used, an aqueous sodium hydroxide solution in ethanol or dimethoxyethane is conveniently employed for its removal.
- If not commercially available, nitrile IV can be prepared substantially as described below in Scheme B depicting the formation of 3-acetonitrile substituted indoles of Formula IV where Z is a bond. Thus, an indole moiety in a weak acid solution, for example, acetic acid in ethanol, is treated with aqueous formaldehyde and dimethyl amine in an alcohol solvent. The 3-(dimethylamino)methyl indole product can then be treated with sodium or potassium cyanide in N,N-dimethylformamide at elevated temperatures to provide the 3-acetonitrile substituted indole intermediate. Alternatively, an iminium salt like N,N-dimethylmethyleneammonium chloride can be used to prepare the 3-(dimethylamino)methyl indole intermediate.
- The 3-(dimethylamino)methyl indole intermediate can also be converted to the 3-acetonitrile substituted indole intermediate via the trimethyl ammonium salt. The salt can be prepared by treating the gramine intermediate with an alkalating agent like methyl iodide. The trimethyl ammonium salt intermediate can then be converted to the nitrile by treatment with sodium or potassium cyanide in a solvent like N,N-dimethylformamide. In general, the conversion to the acetonitrile occurs under more mild conditions when the trimethyl ammonium salt is used.
- Alternatively, other compounds, such as those where Z—Ar represents a wide variety of substituted heterocycles, may be prepared using the general method outlined in Scheme C. Here, substituted indole intermediates where X is an activating group like hydroxyl, halogen, dialkyl amino, trialkyl ammonium or benzotriazole are coupled with Q-Z—Ar groups using methods well-established in indole chemistry. Examples of these methods where Q is Na or H and Z is sulfur, oxygen, nitrogen carbon or a bond are described in (A) Tidwell, J. H.; Peat, A. J.; Buchwald, S. L. J. Org. Chem. 1994, 59, 7164; (B) Bruneau, P.; Delvare, C.; Edwards, M. P.; McMillan, R. M. J. Med. Chem. 1991, 34, 1028; (C) Gan, T.; Cook, J. M. Tetrahedron Lett. 1997, 38, 1301; (D) Cerreto, F.; Villa, A.; Retico, A.; Scalzo, M. Eur. J. Med. Chem. 1992, 27 701; (E) Majchrzak, M. W.; Zobel, J. N.; Obradovich, D. J.; Synth. Commun. 1997, 27, 3201; (F) DeLeon, C. Y.; Ganem, B. J. Org. Chem. 1996, 61, 8730; (G) Katritzky, A. R.; Toader, D; Xie, L. J. Org. Chem. 1996, 61, 7571.
- It is understood that, depending on the specific chemistry used, a protecting group, P, may be required. In general, P represents groups such as acyloxy, alkyl, sulfonyl or A-COOR. The use of these general methods is illustrated in Protective Groups in Organic Synthesis, Second Edition, T. W. Green and P. G. M. Wuts, John Wiley and Sons, Ney York, 1991.
- In general, the intermediate compounds wherein R2-6 is aryl or heteroaryl can be synthesized by the chemistry illustrated in reaction Scheme D below. For example, treatment of the potassium salt of an optionally substituted bromoindole with tert-butyllithium at low temperature in an ethereal solvent such as ether or tetrahydrofuran followed by the addition of an electrophile represents a general method for obtaining substituted indoles, as described by Rapoport, H. (J. Org. Chem. 1986, 51, 5106). For a discussion of a synthesis where R is acyl, see Biorg. Med. Chem. Lett. 1999, 9, 333; where R is, thiomethyl, see Heterocycles, 1992, 34, 1169; and where R is cycloalkyl, see J. Med. Chem. 1999, 42, 526.
- More specifically the addition of a trialkyl borate followed by an acidic work-up provides the desired indole boronic acids (Heterocycles, 1992, 34, 1169). Indole boronic acids can be used in well established transition metal catalyzed coupling reactions like the Suzuki reaction to provide aryl and heteroaryl indoles. These reactions are most often carried out in a mixture of ethereal or alcohol solvents with aqueous base in the presence of palladium catalyst, such as Pd(OAc)2, Pd(OAc)2 w/ PPh3 or Pd(PPh3)4 as described in Tetrahedron Lett. 1998, 39, 4467, J. Org. Chem. 1999, 64, 1372 and Heterocycles 1992, 34, 1395.
- Alternatively, an optionally substituted bromoindole can be treated with an arylboronic acid and a palladium catalyst to provide arylindoles in large quantities (Synlett 1994, 93). A general review of Suzuki cross-couplings between boronic acids and aryl halides can be found in Miyaura, N; Suzuki, A. Chem. Rev. 1995, 95, 2457.
- For example, treatment of the advanced intermediate indole X with an aryl or heteroaryl boronic acid using Pd-mediated coupling conditions provides the desired aryl and heteroaryl indole product XI as shown in scheme (E). In general the utility of this method is determined by the ease of synthesis of advanced intermediates of type X and the commercial availability of aryl and heteroaryl boronic acids.
- In addition, certain organometallic reactions eliminate the need for de novo construction of the indole nucleus. For example, the Stille reaction serves as a general method for the synthesis of regiocontrolled substitution of indole intermediates as described by Farina, V.; Krishnamurthy, V; Scott, W., Organic Reactions, 1998, 50, 1-652. As indicated in the scheme below, the indole may serve as the organotin species or the aryl halide. The stannylindole (XII), where P is a suitable protecting group such as [2-(trimethyl)ethoxy]methyl (SEM) or an alkyl substituent, is treated with a variety of partners (i.e., vinyl/allylic halides, vinyl triflates, aryl/heteroaryl halides and acyl halides) in the presence of a Pd(0)Ln catalyst to provide the desired indoles (XII) (Synnlett 1993, 771, Helv. Chim. Acta 1993, 76, 2356 and J. Org. Chem. 1994, 59, 4250). Conversely, a haloindole (XIV) is treated with a variety of tin reagents under Stille conditions to provide the desired substituted indoles (XV) as described in Heterocycles 1988, 27, 1585 and Synth. Comm 1992, 22, 1627).
- A general procedure for the synthesis of intermediate compounds using amines of the formula NRxRx2 (NR1R2 in the scheme below) is given in scheme F below. In Scheme F, Rx and Rx2 are the same or different and represent hydrogen, C1-C6 alkyl, or Rx and Rx2 together represent a group of the formula:
- where J and each r is as defined above for formula I.
- As shown in Scheme F, nucleophilic substitution of X (X is halogen, preferably fluorine) in an aromatic system is a method often used to substitute aromatic rings with amine and ether functionalities. Both 4- and 5-fluoro-2-nitrotoluene are sufficiently activated to undergo substitution with amines in the presence of K2CO3 in a polar aprotic solvent such as, for example, DMSO as described in J. Med. Chem. 1993, 36, 2716. The Leimgruber-Batcho two-step method is a general process for the construction of the indole ring system from the appropriate o-nitrotoluene. This reaction involves the condensation of an o-nitrotoluene with N,N-dimethylformamide dimethyl acetal followed by a reductive cyclization under suitable conditions such as hydrogen over a palladium catalyst or Zn/HOAc as described in Sundberg, R. J. Indoles; Chapter 2, Academic Press Inc., San Diego, Calif., 1996. A representative description of the process can also be found in Organic Synthesis, 1984, 63, 214.
- A general procedure for the synthesis of intermediate compounds wherein R is an aromatic, heteroaromatic or alkyl group is indicated in Scheme G below. As previously described, nucleophilic substitution of halogen, preferably fluorine, in an aromatic system is a method often used to substitute aromatic rings with amine and ether functionalities. Both 4- and 5-fluoro-2-nitrotoluene are sufficiently activated enough to undergo substitution with alcohols or phenols in the presence of K2CO3 in a polar aprotic solvent such as DMSO. A similar system using KOH and phenol is described in J. Med. Chem. 1994, 37, 1955. Alternatively, solid-liquid phase transfer catalysis (PTC) methods have been used to prepare intermediate ethers of this type as described in Synth. Comm. 1990, 20, 2855. The appropriately substituted o-nitrotoluene can then be converted to the appropriate indole by the Leimgruber-Batcho method previously described.
- The preparation of intermediate alkoxy indole compounds wherein R is C1-C6 alkyl is outlined in Scheme H below. Commercially available nitrophenols can be alkylated under mild conditions with a base such as, for example, K2CO3 or Cs2CO3, in a polar aprotic solvent, e.g. CH3CN, with a variety of suitable alkyl halides. See Synth. Comm. 1995, 25, 1367. The alkoxy o-nitrotoluene can then be converted to the desired indole as described above.
- Alternatively, some examples of the invention where Z is a bond and Ar is a substituted heterocycle such as a thiazole; or Z is amide and Ar is a substituted phenyl can be conveniently prepared from an indole 3-acetic acid derivative as illustrated in Scheme I. Using this method, the carboxylic acid moiety is activated and coupled with an aryl amine. Some examples of activating methods well-known to those skilled in the art include formation of acid chloride, mixed anhydrides and coupling reagents such as 1,3-dicyclohexylcarbodiinide (DCC). A review of such method can be found in Bodanszky, M. Principles of Peptide Synthesis; Springer-Verlag: New York, 1984. For the examples where Z is a bond and Ar is a substituted benzothiazole or benzoxazole, the intermediate amide or thioamide can be cyclized into the aromatic ring. Examples of these types of heterocycle forming reactions are described in Mylar, B. L. et al. J. Med. Chem. 1991, 34, 108. In addition, the carboxylic acid can be converted to a chloro- or bromomethyl ketone and condensed with nucleophiles like thioamides or 2-aminothiophenols to produce thiazole or benzothiazine derivatives. Examples of methods to prepare the chloro- and bromomethyl ketones are illustrated in Rotella, D. P.; Tetrahedron Lett. 1995, 36, 5453 and Albeck, A.; Persky, R.; Tetrahedron 1994, 50, 6333. Depending on the reaction conditions in a given synthetic sequence a protecting group may be required. It is also understood that the specific order of steps used in the synthesis depends on the particular example being prepared. P may represent H, A-COOH, A-COO-lower alkyl or a simple protecting group that can be removed at a late stage of the synthesis. When such a protecting group is used, the A-CO2R6 group can be introduced near the end of the synthesis after the Z—Ar group has been assembled. Method of introducing the Z—Ar group are similar to those already described.
- Another strategy involves the synthesis of substituted indoles via an intramolecular cyclization of an aniline nitrogen onto a substituted alkyne as shown in Scheme J. Typical approaches utilize commercially available o-iodoaniline derivatives. When these intermediates are unavailable, the regioselective ortho iodination of aromatic amines is used to generate the required intermediate (J. Org. Chem. 1996, 61, 5804). For example, Iodophenyl intermediates are treated with trimethylsilylacetylene in the presence of a Pd catalyst and a Cu(I) source, such as cupric iodide, to produce o-alkynylanilines. See Heterocycles, 1996, 43, 2471 and J. Org. Chem. 1997, 62, 6507. Further elaboration of the o-alkynylaniline to the desired indole can be done by a copper-mediated cyclization or a base-induced amine ring closure onto the alkyne functionality (J. Med. Chem. 1996, 39, 892). Alternative modifications have been made in the acetylenic derivatives to generate more elaborate indole structures as described in J. Am. Chem. Soc. 1991, 113, 6689, Tetrahedron Lett. 1993, 24, 2823 and Tetrahedron Lett. 1993, 34, 6471.
- Those having skill in the art will recognize that the starting materials may be varied and additional steps employed to produce compounds encompassed by the present invention, as demonstrated by the following examples. In some cases, protection of certain reactive functionalities may be necessary to achieve some of the above transformations. In general, the need for such protecting groups will be apparent to those skilled in the art of organic synthesis as well as the conditions necessary to attach and remove such groups.
- The disclosures in this application of all articles and references, including patents, are incorporated herein by reference.
- The preparation of the compounds of the present invention is illustrated further by the following examples, which are not to be construed as limiting the invention in scope or spirit to the specific procedures and compounds described in them.
-
- 2-Methyl-3-(4,5,7-Trifluorobenzothiazol-2-yl)methyl-indole-N-acetic Acid was prepared in a manner analogous to that set forth in Example 2, except 2-methylindole was used instead of 5-chloroindole in part 1: 178-180° C.; 1H NMR (DMSO-d6, 300 MHz) δ 7.75-7.62 (m, 1H), 7.45 (d, J=9.0 Hz, 1H), 7.39 (d, J=9.0 Hz, 1H), 7.08 (t, J=9 Hz, 1H), 6.99 (t, J=9.0 Hz, 1H), 5.00 (s, 2H), 4.60 (s, 2H), 2.38 (s, 3H); LRMS calcd for C19H13F3N2O2S: 390.0; found 391.0 (M+1)+. Anal. Calcd for C19H13F3N2O2S: C, 58.46; H, 3.36; N, 7.18; S, 8.21. Found: C, 58.47; H, 3.29; N, 7.12; S, 8.18.
-
- A solution of aqueous formaldehyde (37%, 2.95 mL, 66.0 mmol) and dimethylamine (40%, 5.30 mL, 66.0 mmol) in 20 mL EtOH was cooled to 0° C. 5-Chloroindole (4.0 g, 26.4 mmol) was dissolved in a HOAc:EtOH mixture (1:1, 40 mL) and added dropwise to the reaction mixture. After stirring at this temperature for 2 h, the mixture was allowed to warm to room temperature and stir overnight. The mixture was added to a sat'd solution of NaHCO3. 1 N NaOH was added until the pH was between 9-10. The resulting mixture was extracted with CH2Cl2 (3×). The organics were combined and washed with a sat'd aq. NaCl, dried over MgSO4, filtered and concentrated in vacuo to give 4.65 g (85%) of 5-chloro-3-[(dimethylamino)methyl]indole as a yellow powder. Without further purification, 5-chloro-3-[(dimethylamino)methyl]indole (4.65 g, 22.4 mmol) was dissolved in dimethylformamide (80 mL) at room temperature with stirring. To this was added KCN (2.18 g, 33.5 mmol) in H2O (10 mL). The mixture was warmed to 140° C. and stirred for 14 h. H2O was added and the mixture was extracted with EtOAc (2×). The organics were combined and washed with sat'd brine, dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by SiO2 flash chromatography (3:2, Heptane:EtOAc) to give 2.65 g (63%) of 5-chloroindole-3-acetonitrile. 1H NMR (DMSO-d6, 300 MHz) δ 11.30 (br s, 1H), 7.63 (s, 1H), 7.42-7.38 (m, 2H), 7.05 (d, J=6.0 Hz, 1H), 5.70 (s, 2H),
- 5-chloro-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 3 (parts 1-7), except 5-chloroindole-3-acetonitrile was used instead of 3-indolyl acetonitrile in part 5: mp 188-189° C.; 1H NMR (DMSO-d6, 300 MHz) δ. 7.73-7.68 (m, 1H), 7.63 (d, J=1.8 Hz, 1H), 7.51 (s, 1H), 7.45 (d, J=9.0 Hz, 1H), 7.14 (dd, J1=9.0, J2=2.4 Hz, 1H), 5.04 (s, 2H), 4.65 (s, 2H); LRMS calcd for C18H10F3N2O2SCl: 410.0; found 411.0 (M+1)+. Anal. Calcd for C18H10F3N2O2SCl: C, 52.63; H, 2.45; N, 6.82; S, 7.81. Found: C, 52.56; H, 2.40; N, 6.71; S, 7.72.
-
- A solution of 2,3,5,6-tetrofluoroaniline (200 g, 1.21 mol) in anhydrous pyridine (103 mL, 1.27 mol) was treated with acetic anhydride (120 mL, 1.27 mol) and heated to 120° C. for 2 h. After cooling to room temperature, the solution was poured into ice-cold water (500 mL). The resulting precipitate was filtered, dissolved in ethyl acetate, dried over MgSO4, filtered and concentrated. The solid material was washed with heptane (200 mL) and dried to give 2,3,5,6-tetrafluoroacetanilide as a white crystalline solid (206 g, 82%): mp 136-137° C.; Rf 0.48 (50% ethyl acetate in heptane); 1H NMR (DMSO-d6, 300 MHz) δ 10.10 (s, 1H), 7.87-7.74 (m, 1H), 2.09 (s, 3H). Anal. Calcd for C8H5F4NO: C, 46.39; H, 2.43; N, 6.67. Found C, 46.35; H, 2.39; N, 6.68.
- A flame-dried, 4-necked 5,000 mL round-bottomed flask was charged with phosphorous pentasulfide (198 g, 0.45 mol) and diluted with anhydrous benzene (3,000 mL, 0.34 M). 2,3,5,6-tetrafluoroacetanilide (185 g, 0.89 mol) was added in one portion and the bright yellow suspension was heated to a gentle reflux for 3 h. The solution was cooled to 0° C. and filtered. The insoluble material was washed with ether (2×250 mL) and the combined filtrate was extracted with 10% aq. NaOH (750 mL, 500 mL). After cooling the aqueous layer to 0° C., it was carefully acidified with conc. HCl (pH 2-3). The precipitated product was collected by filtration and washed with water (500 mL). The yellow-orange material was disolved in ethyl acetate (1,000 mL), dried over MgSO4 and activated charcoal (3 g), filtered through a short pad of silica (50 g), and concentrated. The resulting solid was triturated with heptane (500 mL) and filtered to give 2,3,5,6-tetrafluorothioacetanilide (174.9 g, 88%): mp: 103-104° C.; Rf 0.67 (50% ethyl acetate in heptane); 1H NMR (DMSO-d6, 300 MHz) δ 11.20 (s, 1H), 8.00-7.88 (m, 1H), 2.66 (s, 3H). Anal. Calcd for C8H5F4NS: C, 43.05; H, 2.26; N, 6.28. Found C, 43.10; H, 2.23; N, 6.19.
- A flame-dried 5,000 mL round-bottomed flask equipped with over-head stirrer was charged with sodium hydride (15.9 g, 0.66 mol) and diluted with anhydrous toluene (3,000 mL, 0.2 M). The suspension was cooled to 0° C., and treated with 2,3,5,6-tetrafluorothioacetanilide (134 g, 0.60 mol) in one portion. The solution was warmed to room temperature over 1 h, then heated to a gentle reflux. After 30 min, dimethylformamide (400 mL) was carefully added and the mixture was stirred for an additional 2 h. The solution was cooled to 0° C. and added to ice-water (2,000 mL). The solution was extracted with ethyl acetate (1,500 mL) and washed with sat'd. aq. NaCl (1,000 mL). The organic layer was concentrated to dryness, diluted with heptane and successively washed with water (300 mL) and sat'd. aq. NaCl (1,000 mL). The organic layer was dried over MgSO4, filtered and concentrated to give 4,5,7-trifluoro-2-methylbenzothiazole (116.8 g, 96%) as a light brown solid: mp: 91-92° C.; Rf 0.56 (30% ethyl acetate in heptane); 1H NMR (DMSO-d6, 300 MHz) δ 7.76-7.67 (m, 1H), 2.87 (s, 3H); Anal. Calcd for C8H4F3NS: C, 47.29; H, 1.98; N, 6.82; S, 15.78. Found C, 47.56; H, 2.07; N, 6.82; S, 15.59.
- A solution of 4,5,7-trifluoro-2-methylbenzothiazole (25.0 g, 123 mmol) in ethylene glycol (310 mL, 0.4 M) and 30% aq. NaOH (310 mL, 0.4 M) was degassed using a nitrogen stream then heated to a gentle reflux (125° C.) for 3 h. The solution was cooled to 0° C. and acidified to pH 3-4 using conc. HCl (appox. 200 mL). The solution was extracted with ether (750 mL) and washed with water (200 mL). The organic layer was dried over Na2SO4, filtered and treated with 2,2-di-tert-butyl-4-methylphenol (0.135 g, 0.5 mol %). After concentrating to dryness, the crude product was dissolved in anhydrous methanol (200 mL) and treated with an HCl solution in 1,4-dioxane (37 mL, 4 N, 148 mmol). The resulting mixture was concentrated to dryness, triturated with isopropylether (100 mL) and filtered to give 2-amino-3,4,6-trifluorothiophenol hydrochloride (19.3 g, 73%) as a light brown solid that was used without further purification. mp. 121-124 C; Rf 0.43 (30% ethyl acetate in heptane); Anal. Calcd for C6H5ClF3NS: C, 33.42; H, 2.34; N, 6.50; S, 14.87. Found C, 33.45; H, 2.27; N, 6.48; S, 14.96.
- Under an atmosphere of nitrogen, a solution of 3-indolyl acetonitrile (25.0 g, 160 mmol) in dry acetonitrile (530 mL, 0.3 M) was treated with sodium hydride (95%, 4.2 g, 168 mmol) and stirred for 30 min. Ethyl bromoacetate (21.3 mL, 192 mmol) was added in a dropwise manner over 10 min and the solution was stirred at room temperature for 16 h. After concentrating under reduced pressure, the resulting residue was dissolved in ethyl acetate and washed with sat'd. aq. NaCl. The organic extracts were dried over MgSO4, filtered and concentrated. The crude product was recrystallized from heptane and ethyl acetate to give the target compound as a white crystalline solid (19 g, 49%): mp 98-99° C.; Rf 0.29 (30% ethyl acetate in heptane); 1H NMR (DMSO-d6, 300 MHz) δ 7.59 (dd, J1=7.8 Hz, J2=0.6 Hz, 1H), 7.40 (dd, J1=8.1 Hz, J2=0.6 Hz, 1H), 7.36 (s, 1H), 7.18 (b t, J=7.2 Hz, 1H), 7.10 (b t, J=7.2 Hz, 1H), 5.12 (s, 2H), 4.14 (q, J=7.2 Hz, 2H), 4.06, (s, 2H), 1.20 (t, J=7.2 Hz, 3H);); LRMS calcd for C14H14N2O2: 242.3; found 243.0 (M+1)+. Anal. Calcd for C14H14N2O2: C, 69.49; H, 5.82; N, 11.56. Found C, 69.39; H, 5.89; N, 11.59.
- 3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid, Ethyl Ester: Under a nitrogen atmosphere, a solution of 3-acetonitrile-indole-N-acetic acid, ethyl ester (11.0 g, 45.4 mmol) in anhydrous ethanol (90 mL, 0.5 M) was treated with 2-amino-3,4,6-trifluorothiophenol hydrochloride (12.7 g, 59.0 mmol) and heated to a gentle reflux for 16 h. After cooling to room temperature, the solution was concentrated under reduced pressure, diluted with ethyl acetate and washed with 2N HCl and sat'd. aq. NaCl. The organic layer was dried over MgSO4, filtered and concentrated. Purification by MPLC (10-50% ethyl acetate in heptane, 23 mL/min, 150 min) to give 3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid, ethyl ester (6.0 g, 36%) as a white crystalline solid: mp 110-111° C.; Rf 0.41 (30% ethyl acetate in heptane); 1H NMR (DMSO-d6, 300 MHz) δ 7.74-7.66 (m, 1H), 7.54 (d, J=7.8 Hz, 1H), 7.46 (s, 1H), 7.40 (d, J=8.1 Hz, 1H), 7.15 (br t, J=6.9 Hz, 1H), 7.04 (br t, J=7.8 Hz, 1H), 5.14, s, 2H), 4.66 (s, 2H), 4.14 (q, J=7.2 Hz, 3H); LRMS calcd for C20H15F3N2O2S: 404.4; found 405.0 (M+1)+. Anal. Calcd for C20H5F3N2O2S; C, 59.40; H, 3.74; N, 6.93; S, 7.93. Found C, 59.52; H, 3.721; N, 6.92; S, 8.04.
- A solution of give 3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid, ethyl ester (5.91 g, 14.6 mmol) in 1,2-dimethoxyethane (73 mL, 0.2 M) was cooled to 0° C. and treated with aq. NaOH (1.25 N, 58 mL, 73.1 mmol) in a dropwise manner over 15 min. After the addition was complete, the solution was stirred for an additional 30 min, acidified to pH 3 with 2N HCl, and concentrated under reduced pressure. The residue was dissolved in ethyl acetate (200 mL) and washed with sat'd. aq. NaCl (30 mL). The organic extract was dried over Na2SO4, filtered and concentrated. The resulting material was stirred as a supension in heptane, filtered and dried to give 3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid (5.38 g, 98%) as a pale yellow solid: mp 177-178° C.; Rf 0.44 (20% methanol in dichloromethane); 1H NMR (DMSO-d6, 300 MHz) δ 7.74-7.65 (m, 1H), 7.53 (d, J=7.5 Hz, 1H), 7.46 (s, 1H), 7.40 (d, J=8.1 Hz, 1H), 7.15 (b t, J=6.9 Hz, 1H), 7.03 (b t, J=7.2 Hz, 1H), 5.03 (s, 2H), 4.65 (s, 2H); LRMS calcd for C18H11F3N2O2S: 376.4; found 375.0 (M−1)−. Anal. Calcd for C18H11F3N2O2S: C, 57.44; H, 2.95; N, 7.44; S, 8.52. Found C, 57.58; H, 2.99; N, 7.38; S, 8.51.
-
- 5-Methyl-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic Acid was prepared in a manner analogous to that set forth in Example 2, except 5-methylindole was used instead of 5-chloroindole in part 1: mp 131-133° C.; 1H NMR (DMSO-d6, 300 MHz) δ 7.73-7.62 (m, 1H), 7.39 (s, 1H), 7.30 (s, 1H), 7.27 (d, J=9.0 Hz, 1H), 6.96 (dd, J1=9.0 Hz, J2=2.4 Hz, 1H), 4.98 (s, 2H), 4.60 (s, 2H), 2.32 (s, 3H); LRMS calcd for C19H13F3N2O2S: 390.0; found 391.0 (M+1)+. Anal. Calcd for C19H13F3N2O2S: C, 58.46; H, 3.36; N, 7.18; S, 8.21. Found: C, 58.36; H, 3.30; N, 7.10; S, 8.20.
- 7-Methyl-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic Acid was prepared in a manner analogous to that set forth in Example 2, except 7-methylindole was used instead of 5-chloroindole in part 1: mp 216-218° C.; 1H NMR (DMSO-d6, 300 MHz) δ 7.73-7.63 (m, 1H), 7.36-7.32 (m, 2H), 6.92-6.88 (m, 2H), 5.17 (s, 2H), 4.60 (s, 2H), 2.55 (s, 3H); LRMS calcd for C19H13F3N2O2S: 390.0; found 391.0 (M+1)+. Anal. Calcd for C19H13F3N2O2S: C, 58.46; H, 3.36; N, 7.18; S, 8.21. Found: C, 58.37; H, 3.37; N, 7.11; S, 8.13.
- 6-Chloro-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic Acid was prepared in a manner analogous to that set forth in Example 2, except 6-chlorolindole was used instead of 5-chloroindole in part 1: mp 194-195° C.; 1H NMR (DMSO-d6, 300 MHz) δ 7.73-7.63 (m, 1H), 7.50 (d, J=8.4 Hz, 1H), 7.46-7.42 (m, 2H), 7.00 (dd, J1=8.4 Hz, J2=2.1 Hz, 1H), 4.76 (s, 2H), 4.62 (s, 2H); LRMS calcd for C18H10F3N2O2SCl: 410.0; found 411.0 (M+1)+. Analysis calculated for C18H10F3N2O2SCl: C, 52.63; H, 2.45; N, 6.82; S, 7.81. Found: C, 52.50; H, 2.44; N, 6.74; S, 7.69.
-
- 5-Benzyloxy-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic Acid was prepared in a manner analogous to that set forth in Example 2, except 5-benzyloxyindole was used instead of 5-chloroindole in part 1: mp 165-168° C.; 1H NMR (DMSO-d6, 300 MHz) δ 7.73-7.65 (m, 1H) 7.40-7.30 (m, 3H), 7.28-7.10 (m, 4H), 7.10 (d, J=2.4 Hz, 1H), 6.87-6.80 (m, 1H), 5.05 (s, 2H), 4.95 (s, 2H), 4.57 (s 2H); LRMS calcd for C25H17F3N2O2S: 482.0. found 483.0 (M+1)+.
- 6-fluoro-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic Acid was prepared in a manner analogous to that set forth in Example 2, except 6-fluoroindole was used instead of 5-chloroindole in part 1: mp 200-203° C.; 1H NMR (DMSO-d6, 300 MHz) δ 7.73-7.65 (m, 1H), 7.53 (dd, J1=8.4 Hz, J2=3.3 Hz, 1H), 7.44 (s, 1H), 7.34 (dd, J1=10.5 Hz, J2=2.4 Hz, 1H), 6.93-6.68 (m, 1H), 5.11 (s, 2H), 4.64 (s, 2H); LRMS calcd for C18H10F4N2O2S: 394.0; found 395 (M+1).
-
- 5-fluoro-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic Acid was prepared in a manner analogous to that set forth in Example 2, except 5-fluoroindole was used instead of 5-chloroindole in part 1: mp 193-195° C.; 1H NMR (DMSO-d6, 300 MHz) δ 7.65 (m, 1H), 7.51 (s, 1H), 7.42 (br dd, J1=9.0 Hz, J2=4.8 Hz, 1H), 7.34 (br dd, J1=9.9 Hz, J2=2.4 Hz, 1H), 7.02-6.96 (m, 1H), 5.03 (s, 2H), 4.62 (s, 2H); LRMS calcd for C18H10F4N2O2S: 394.0; found 395 (M+1).
- 6-methyl-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic Acid was prepared in a manner analogous to that set forth in Example 2, except 6-methylindole was used instead of 5-chloroindole in part 1: mp 211-213° C., Rf0.50 (10% methanol in diehloromethane); 1H NMR (DMSO-d6, 300 MHz) δ 7.72-7.63 (m, 1H), 7.37 (d, J=7.1 Hz, 1H), 7.35 (s, 1H), 7.18 (s, 1H), 6.85 (d, J=8.4 Hz, 1H), 5.08 (s, 2H), 4.60 (s, 2H), 2.37 (s, 3H).
- 3-(5-trifluoromethylbenzothiazol-2-yl)methyl-indole-N-acetic Acid was prepared in a manner analogous to that set forth in Example 3 (parts 5-7), except 2-amino-4-(trifluoromethyl)-benzenethiol hydrochloride was used instead of 2-amino-3,4,6-trifluorothiophenol hydrochloride in part 6: mp 233-234° C.; 1H NMR (DMSO-d6, 300 MHz) δ 8.29 (s, 1H), 8.19 (br d, J=8.1 Hz, 1H), 7.68 (br d, J=9.0 Hz, 1H), 7.49 (br d, J=6.9 Hz, 1H), 7.41 (s, 1H), 7.38 (br d, J=8.4 Hz, 1H), 7.12 (br t, J=6.9 Hz, 1H), 7.00 (br t, J=6.9 Hz, 1H), 5.01 (s, 2H), 4.60 (s, 2H).
- 5-Methyl-3-(5-trifluoromethylbenzothiazol-2-yl)methyl-indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 2, except 5-methylindole was used instead of 5-chloroindole in part 1 and, 2-amino-4-(trifluoromethyl)-benzenethiol hydrochloride was used instead of 2-amino-3,4,6-trifluorothiophenol hydrochloride in part 2 (Example 3, part 6): mp 248-249° C.; 1H NMR (DMSO-d6, 300 MHz) δ 8.27 (s, 1H), 8.20 (d, J=8.4 Hz, 1H), 7.68 (d, J=8.4 Hz, 1H), 7.35 (s, 1H), 7.27 (s, 1H), 7.25 (d, J=8.1 Hz, 1H), 6.95 (d, J=8.1 Hz, 1H), 4.96 (s, 2H), 4.57 (s, 2H), 2.31, (s, 3H); LRMS calcd for C20H15F3N2O2S; found 405 (M+H).
-
- Under an atmosphere of nitrogen, a solution of indole (15.0 g, 128 mmol) in dry acetonitrile (300 mL, 0.4 M) was treated with sodium hydride (95%, 3.69 g, 153 mmol) and stirred for 30 min. Ethyl bromoacetate (17.0 mL, 153 mmol) was added in a dropwise manner over 10 min and the solution was stirred at room temperature for 16 h. After concentrating under reduced pressure, the resulting residue was dissolved in ethyl acetate and washed with sat'd. aq. NaCl. The organic extracts were dried over MgSO4, filtered and concentrated. The crude product was purified by flash column chromatography (50% ethyl acetate in heptane): Rf0.25 (40% ethyl acetate in heptane) 1H NMR (DMSO-d6, 300 MHz) δ 7.53 (d, J=6.3 Hz, 1H), 7.38-7.31 (m, 2H), 7.11 (br t, J=7.2 Hz, 1H), 7.02 (br t, J=7.2 Hz, 1H), 6.45-6.43 (m, 1H), 5.10 (s, 2H), 4.12 (q, J=7.2 Hz, 2H), 1.19 (t, J=7.2 Hz, 3H).
- Indole-N-acetic acid, ethyl ester (0.500 g, 2.50 mmol) was dissolved in 1,4-dioxane (5 mL) at room temperature with stirring. To this solution was added Ag2CO3/Celite (50% by weight, 0.500 g, 0.9 mmol). The mixture was warmed to 90° C. and maintained overnight. H2O was added to the reaction mixture followed by extracted with EtOAc (2×). The organics were combined and washed with a sat'd brine solution, dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by SiO2 flash chromatography (3:2 Heptane:EtOAc) to give 180 mg (22%) as a pale yellow oil. 1H NMR (DMSO-d6, 300 MHz) δ 8.10 (s, 1H), 8.02 (d, J=8.1 Hz, 1H), 7.75 (d, J=7.2 Hz, 1H), 7.59-7.57 (m, 1H), 7.46-7.39 (m, 1H), 7.33 (d, J=8.1 Hz, 1H), 7.20 (s, 1H), 7.13-6.89 (m, 2H), 5.06 (s, 2H), 4.19 (s, 2H), 4.13 (q, J=7.2 Hz, 2H), 1.18 (t, J=7.2 Hz, 3H).
- 3-(3-Nitrophenyl)methyl-indole-N-acetic Acid, ethyl ester (0.175 g, 0.5 mmol) was dissolved in THF:EtOH (1:4, 5 mL) at room temperature with stirring. The mixture was cooled to 0° C. and treated with 1N NaOH (1.55 mL, 1.6 mmol). The mixture was allowed to stir at this temperature for 2 h. 1 N HCl was added and the mixture extracted with EtOAc (2×). The organics were combined and washed with a sat'd brine solution, dried over MgSO4, filtered and concentrated in vacuo. The residue was triturated with heptane and vacuum-filtered with several heptane washings to give 110 mg (69%) the desired compound as an off-white powder. mp 163-165° C.; 1H NMR (DMSO-d6, 300 MHz) δ 8.11 (s, 1H), 8.03 (d, J=8.1 Hz, 1H), 7.75 (d, J=8.1 Hz, 1H), 7.53 (t, J=8.1 Hz, 1H), 7.45 (d, J=8.1 Hz, 1H), 7.33 (d, J=8.4 Hz, 1H), 7.20 (s, 1H), 7.11 (t, J=7.2 Hz, 1H), 6.97 (t, J=7.2 Hz, 1H), 4.96 (s, 2H), 4.18 (s, 2H); LRMS calcd for C17H14N2O4S: 310.0; found 311 (M+1)+.
-
- 2-phenyl-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 2, except that 2-phenylindole was used instead of 5-chloroindole in part 1: mp 238-239° C.; Rf 0.60 (10% methanol in chloroform); 1H NMR (DMSO-d6, 300 MHz) δ 7.60-7.70 (m, 1H), 7.39-7.58 (m, 7H), 7.20 (t, J=9 Hz, 1H), 7.07 (t, J=9 Hz, 1H), 4.80 (s, 2H), 4.45 (s, 2H); LRMS calcd for C24H15F3N2O2S: 452.0; found 453.0 (M+1)+. Anal. Calcd for C24H15F3N2O2S: C, 63.71; H, 3.34; N, 6.19; S, 7.09. Found: C, 63.46; H, 3.32; N, 6.11; S, 6.96.
- 5-Bromo-3-cyanomethyl-indole-N-acetic acid, ethyl ester (1.0 g, 3.1 mmol) and phenylboronic acid (0.418 g, 3.4 mmol) were dissolved in anhydrous DME at room temperature under a nitrogen atmsophere and treated with Pd(OAc)2 (2.1 mg, 0.0093 mmol) and PPh3 (7.4 mg, 0.028 mmol). This mixture was heated to reflux and 2 M Na2CO3 (3.11 mL, 6.2 mmol) was added via syringe. After 12 h, the mixture was cooled to room temperature and added to H2O (50 mL). The resultant mixture was extracted with EtOAc (2×, 100 mL) and the organics were combined and washed with a sat'd aqueous NaCl solution, dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by SiO2 flash chromatography (heptane to 1:1 heptane/EtOAc) to give the desired material as a white solid (445 mg, 45%); 1H NMR (DMSO-d6, 300 MHz) δ 7.64-7.74 (m, 4H), 7.39-7.44 (m, 4H), 7.29-7.34 (m, 1H), 5.20 (s, 2H), 4.15 (q, J=7.2 Hz, 2H), 4.08 (s, 2H), 1.20 (t, J=7.2 Hz, 3H).
- 5-phenyl-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 2, except that 5-phenylindole was used instead of 5-chloroindole in part 1: mp 156-159° C.; Rf 0.55 (10% methanol in chloroform); 1H NMR (DMSO-d6, 300 MHz) δ 7.66-7.69 (m, 4H), 7.57-7.60 (m, 1H), 7.39-7.47 (m, 3H), 7.29-7.35 (m, 2H), 5.06 (s, 2H), 4.66 (s, 2H); LRMS calcd for C24H15F3N2O2S: 452.0; found 453.0 (M+1)+. Anal. Calcd for C24H15F3N2O2S: C, 63.71; H, 3.34; N, 6.19; S, 7.09. Found: C, 63.54; H, 3.32; N, 6.13; S, 7.01.
- A solution of 6-bromoindole (2.0 g, 10.20 mmol) in anhydrous toluene (20 mL) under a nitrogen atmosphere was treated with Pd[P(Ph3)]4 (10% mol). After stirring the mixture for 30 min., phenylboronic acid (1.87 g, 15.30 mmol) in anhydrous EtOH (10 mL) was added followed by the addition of sat'd NaHCO3 (6 mL). The bi-phasic mixture was heated to reflux for 24 h. After cooling to room temperature, the mixture was added to a sat'd brine solution and extracted with EtOAc (2×). The organic layer was dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (1:1 CH2Cl2/heptane) to give the desired material as white powder (900 mg, 45%): 1H NMR (DMSO-d6, 300 MHz) δ 11.15 (br s, 1H), 7.58-7.66 (m, 4H), 7.41-7.47 (m, 2H), 7.36 (m, 1H), 7.26-7.31 (m, 2H), 6.42 (m, 1H).
- 6-phenyl-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl-indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 2, except that 6-phenylindole was used instead of 5-chloroindole in part 1: mp 156-159° C.; Rf 0.50 (10% methanol in chloroform); 1H NMR (DMSO-d6, 300 MHz) δ 7.65-7.75 (m, 4H), 7.57-7.62 (m, 1H), 7.41-7.50 (m, 3H), 7.26-7.38 (m, 2H), 5.12 (s, 2H), 4.68 (s, 2H); LRMS calcd for C24H15F3N2O2S: 452.0; found 453.0 (M+1)+. Anal. Calcd for C24H15F3N2O2S: C, 63.71; H, 3.34; N, 6.19; S, 7.09. Found: C, 63.46; H, 3.33; N, 6.10; S, 6.96.
-
- A mixture of 5-fluoro-2-nitrotoluene (5.11 g, 32.9 mmol), morpholine (4.31 mL, 49.4 mmol) and K2CO3 (6.83 g, 49.4 mmol) was diluted in anhydrous DMSO (80 mL) at room temperature with stirring. The mixture was heated to 80° C. for 24 h. After cooling to room temperature, H2O was added and the resultant mixture was extracted with EtOAc (3×, 50 mL). The organic layer was washed with sat'd aqueous NaCl (100 mL), dried over MgSO4, filtered and concentrated in vacuo. The remaining solid was triturated in heptane (200 mL) and filtered to give the desired material (7.10 g, 97%) as a yellow powder: Rf 0.40 (75% heptane/25% ethyl acetate). 1H NMR (DMSO-d6, 300 MHz) δ 7.96 (d, J=9.9 Hz, 1H), 8.85-8.88 (m, 2H), 3.70 (t, J=5.0 Hz, 4H), 3.35 (t, J=5.0 Hz, 4H), 2.53 (s, 3H).
- Under an atmosphere of nitrogen, a solution of 5-morpholinyl-2-nitrotoluene (7.0 g, 31.5 mmol) in DMF (100 mL) was treated with dimethylformamide dimethyl acetal (4.81 mL, 36.2 mmol) and pyrrolidine (2.62 mL, 31.5 mL). The mixture was heated to 100° C. and maintained for 12 h. After cooling, the mixture was concentrated in vacuo to give the desired intermediate as a brick-red solid.
- The intermediate enamine was dissolved in EtOAc (200 mL) and added to a pre-charged Parr bottle with 10% Pd/C (600 mg) in EtOAc (40 mL). The mixture was hydrogentated on a Parr-shaker at 55 psi for 2.5 h. The catalyst was filtered through a Celite plug with several washings with EtOAc and the remaining filtrate concentrated in vacuo. The residue was purified by SiO2 flash chromatography (1:1 Hept/EtOAc) to give 2.0 g (31% over 2 parts) of the desired indole as a cream powder: Rf 0.30 (10% methanol in chloroform); 1H NMR (DMSO-d6, 300 MHz) δ 10.77 (br s, 1H), 7.24 (s, 1H), 7.18-7.20 (m, 1H), 6.97 (d, J=1.8 Hz, 1H), 6.81 (dd, J1=8.7 Hz, J2=2.1 Hz, 1H), 6.25 (dd, J1=3.0 Hz, J2=1.8 Hz, 1H), 3.7 (t, J=4.50 Hz, 4H), 2.96 (t, J=4.50 Hz, 4H).
- 5-morpholino-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 2, except that 5-morpholinoindole was used instead of 5-chloroindole. 1H NMR (DMSO-d6, 300 MHz) δ 7.64-7.72 (m, 1H), 7.34 (s, 1H), 7.26 (d, J=9.0 Hz, 1H), 7.06 (d, J=2.4 Hz, 1H), 6.91 (dd, J1=9.0 Hz, J2=2.4 Hz, 1H), 4.95 (s, 2H), 4.60 (s, 2H), 3.70-3.73 (m, 4H), 2.97-3.00 (m, 4H); LRMS calcd for C22H18F3N3O3S: 461.0; found 462 (M+1)+. Anal. Calcd for C22H18F3N3O3S.1H2O: C, 55.11; H, 4.20; N, 8.76; S, 6.69. Found: C, 55.11; H, 4.05; N, 8.57; S, 6.50.
- A mixture of 4-fluoro-2-nitrotoluene (15.34 g, 98.9 mmol), morpholine (12.94 mL, 49.4 mmol) and K2CO3 (6.83 g, 148.3 mmol) were diluted in anhydrous DMSO (250 mL) at room temperature with stirring. The mixture was heated to 120° C. for 24 h. After cooling to room temperature, H2O was added and the resultant mixture was extracted with EtOAc (3×, 75 mL). The organic layer was washed with sat'd brine (100 mL), dried over MgSO4, filtered and concentrated in vacuo. The remaining solid was triturated in hepatane (200 mL) and filtered to give the desired material (8.00 g, 36.4%) as a yellow powder: Rf 0.40 (25% ethyl acetate in heptane). 1H NMR (DMSO-d6, 300 MHz) δ 7.40 (d, J=2.7 Hz, 1H), 7.30 (d, J=8.7 Hz, 1H), 7.20 (dd, J1=8.7 Hz, J2=2.7 Hz, 1H), 3.70 (t, J=4.8 Hz, 4H), 3.35 (t, J=4.8 Hz, 4H), 2.36 (s, 3H).
- Under an atmosphere of nitrogen, a solution of 4-morpholino-2-nitrotoluene (7.1 g, 31.9 mmol) in DMF (100 mL) was treated with dimethylformamide dimethyl acetal (4.92 mL, 37.1 mmol) and pyrrolidine (2.67 mL, 31.9 mL). The mixture was heated to 100° C. and maintained for 12 h. After cooling, the mixture was concentrated in vacuo to give the desired intermediate as a brick-red solid. The crude intermediate was dissolved in glacial HOAc (250 mL) and warmed to 85° C. Zn (18.17 g, 0.278 mol) was added to the solution portionwise over 30 min. The mixture was heated for 4 h. After cooling to room temperature, the mixture was neutralized with sat'd NaHCO3 and extracted with Et2O (3×, 300 mL). The combined organics were washed with sat'd brine, dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by SiO2 flash chromatography (heptane to 2:1 heptane/EtOAc) to give the desired material as a white crystalline powder (1.0 g, 11% over 2 parts): Rf 0.50 (2:1 Heptane/EtOAc); 1H NMR (DMSO)-d6, 300 MHz) δ 10.73 (br s, 1H), 7.35 (d, J=8.4 Hz, 1H), 7.11 (d, J=2.4 Hz, 1H), 6.80 (s, 1H), 6.73 (dd, J1=8.4 Hz, J2=2.4 Hz, 1H), 6.25 (d, J=2.4 Hz, 1H), 3.72 (t, J=4.8 Hz, 4H), 3.02 (t, J=4.8 Hz, 1H).
- 6-morpholino-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 2, except that 6-morpholinoindole was used instead of 5-chloroindole in part 1: mp 178-180° C.; 1H NMR (DMSO-d6, 300 MHz) δ 7.66-7.72 (m, 1H), 7.37 (d, J=8.4 Hz, 1H), 7.29 (s, 1H), 7.06 (d, J=2.4 Hz, 1H), 6.84 (d, J=8.4 Hz, 1H), 4.96 (s, 2H), 4.58 (s, 2H), 3.37-3.75 (m, 4H), 3.09-3.13 (m, 4H); LRMS calcd for C22H18F3N3O3S: 461.0; found 462 (M+1)+. Anal. Calcd for C22H18F3N3O3SCH2Cl20.50H2O: C, 49.74; H, 3.72; N, 7.57; S, 5.77. Found C, 49.73; H, 3.36; N, 7.69; S, 5.58.
-
- A solution of phenol (12.16 g, 0.129 mol) in anhydrous DMSO was treated with K2CO3 (17.88 g, 0.129 mol) and stirred at room temperature for 15 min. 5-Fluoro-2-nitrotoluene (13.38 g, 0.086 mol) was added to the solution via syringe. The resultant mixture was heated to 80° C. for 12 h. After cooling to room temperature, the mixture was poured into H2O (100 mL). After extraction with EtOAc (2×, 100 mL), the organics were combined and washed with a sat'd brine solution, drieds over MgSO4, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (heptane to 8:1 heptane/EtOAc) to give the desired material as a yellow crystalline solid (12.50 g, 63%): Rf 0.60 (85% heptane/15% EtOAc); 1H NMR (DMSO-d6, 300 MHz) δ 8.05 (d, J=9.0 Hz, 1H), 7.44-7.47 (m, 2H), 7.23-7.29 (m, 1H), 7.12-7.16 (m, 2H), 7.04 (d, J=2.7 Hz, 1H), 6.90 (dd, J1=9.0 Hz, J2=2.7 Hz, 1H), 2.51 (s, 3H).
- A solution of 5-phenoxy-2-nitrotoluene (10.03 g, 0.0428 mol) in anhydrous DMF was treated with N,N-dimethylformamide dimethyl diacetal (6.73 mL, 0.0508 mol) and pyrrolidine (3.63 mL, 0.0438 mol) and heated to 110° C. for 2.5 h. After cooling to room temperature, the mixture was diluted with EtOAc (500 mL) and washed H2O (500 mL). The organics were dried over MgSO4, filtered and concentrated in vacuo. The crude intermediate was dissolved in glacial HOAc (250 mL) and warmed to 85° C. Zn (24.62 g, 0.377 mol) was added to the solution portion wise over 30 min. The mixture was heated for 4 h. After cooling to room temperature, the mixture was neutralized with sat'd NaHCO3 and extracted with Et2O (3×, 300 mL). The combined organics were washed with sat'd brine, dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by SiO2 flash chromatography (heptane to 2:1 heptane/EtOAc) to give the desired material as a white crystalline powder (3.1 g, 34% over 2 parts): Rf 0.50 (2:1 Heptane/EtOAc); 1H NMR (DMSO-d6, 300 MHz) δ 11.12 (br s, 1H), 7.48 (s, 1H), 7.30-7.38 (m, 1H), 7.25-7.29 (m, 2H), 7.17 (d, J=2.7 Hz, 1H), 6.89-7.02 (m, 1H), 6.86-6.88 (m, 2H), 6.80 (dd, J1=8.7 Hz, J2=2.4 Hz, 1H), 6.37 (m, 1H).
- 5-phenoxy-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 2, except that 5-phenoxyindole was used instead of 5-chloroindole in part 1: mp 128-130° C.; Rf 0.45 (10% methanol in chloroform); 1H NMR (DMSO-d6, 300 MHz) δ 7.65-7.70 (m, 1H), 7.47 (s, 1H), 7.42 (d, J=8.4 Hz, 1H), 7.21-7.27 (m, 3H), 6.98 (m, 1H), 6.83-6.90 (m, 3H), 5.02 (s, 2H), 4.60 (s, 2H); LRMS calcd for C24H15F3N2O3S: 468.0; found 467.0 (M−1)−. Anal. Calcd for C24H15F3N2O3S: C, 55.11; H, 4.20; N, 8.76; S, 6.69. Found: C, 55.11; H, 4.05; N, 8.57; S, 6.50.
- 7-Fluoro-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 2, except that 7-fluoroindole was used instead of 5-chloroindole in part 1: mp 194-196° C.; Rf 0.60 (10% methanol in chloroform); 1H NMR (DMSO-d6, 300 MHz) δ 7.67-7.73 (m, 1H), 7.46 (s, 1H), 7.35 (d, J=7.2 Hz, 1H), 6.89-6.99 (m, 2H), 5.06 (s, 2H), 4.64 (s, 2H); LRMS calcd for C18H10F4N2O2S.H2O: C, 50.23; H, 3.28; N, 6.51; S, 7.45. Found C, 50.70; H, 2.52; N, 6.60; S, 7.57. 394.0; found 395.0 (M+1)+. Anal. Calcd for C18H10F4N2O2S
- 7-bromo-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 2, except that 7-bromoindole was used instead of 5-chloroindole in part 1: mp 228-230° C.; Rf 0.40 (10% methanol in chloroform); 1H NMR (DMSO-d6, 300 MHz) δ 7.65-7.74 (m, 1H), 7.57 (d, J=7.8 Hz, 1H), 7.49 (s, 1H), 7.32 (d, J=7.8 Hz, 1H), 6.94 (t, J=7.8 Hz, 1H), 5.29 (s, 2H), 4.65 (s, 2H); LRMS calcd for C18H10F3N2O2SBr: 454.0 for (79Br and 456.0 for 81Br); found 453.0 (M−1)− and 455.0 (M−1)−. Anal Calcd for C18H10F3N2O2SBr: C, 47.49; H, 2.21; N, 6.15; S, 7.04. Found: C, 47.65; H, 2.27; N, 6.15; S, 6.98.
- 7-chloro-3-(4,5,7-trifluorobenzothiazol-2-yl)methyl indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 2, except that 7-chloroindole was used instead of 5-chloroindole in part 1: mp 228-230° C.; Rf 0.38 (10% methanol in chloroform); 1H NMR (DMSO-d6, 300 MHz) δ 7.62-7.73 (m, 1H), 7.52 (d, J=7.5 Hz, 1H), 7.49 (s, 1H), 7.15 (d, J=7.5 Hz, 1H), 7.00 (t, J=7.5 Hz, 1H), 5.25 (s, 2H), 4.65 (s, 2H); LRMS calcd for C18H10F3N2O2SCl: 410.0; found 409.0 (M−1)−. Anal. Calcd for C18H10F3N2O2SCl: C, 52.63; H, 2.45; N, 6.82; S, 7.81. Found: C, 52.60; H, 2.54; N, 6.66; S, 7.59.
-
- 3-[5-fluorbenzothiazole-2-yl]methyl-indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 3, except 2-amino-4-fluorothiophenol hydrochloride was used instead of 2-amino-4,5,7-trifluorothiophenol hydrochloride in part 6: mp 208° C. (decomp); Rf0.10 (10% methanol in diehloromethane) 1H NMR (DMSO-d6, 300 MHz) δ 12.91 (s, 1H), 7.98 (dd, J=8.9, 5.6 Hz: 1H), 7.78 (dd, J=10.0, 2.6 Hz, 1H), 7.50 (d, J=7.8 Hz, 1H), 7.40 (s, 1H), 7.37 (d, J=7.8 Hz, 1H), 7.26 (dt, J=8.9, 2.4 Hz, 1H), 7.13 (t, J=7.8 Hz, 1H), 7.01 (t, J=7.8 Hz, 1H), 5.01 (s, 2H), 4.56 (s, 2H); LRMS m/z 341.0 (M+1)+, 339.0 (M−1). Anal. Calcd for C18H13FN2O2S: C, 63.52; H, 3.85; N, 8.23; S, 9.42. Found: C, 63.40; H, 3.80; N, 8.37; S, 9.43.
- 3-[6-fluorbenzothiazole-2-yl]methyl-indole-N-acetic acid was prepared in a manner analogous to that set forth in Example 3, except 2-amino-5-fluorothiophenol hydrochloride was used instead of 2-amino-4,5,7-trifluorothiophenol hydrochloride in part 6: mp 203° C. (decomp) Rf0.13 (10% methanol in diehloromethane); 1H NMR (DMSO-d6, 300 MHz) δ 12.91 (s, 1H), 7.95 (dd, J=8.9, 5.0 Hz: 1H), 7.86 (dd, J=8.8, 2.8 Hz, 1H), 7.50 (d, J=7.5 Hz, 1H), 7.40-7.35 (m, 2H), 7.32 (dt, J=8.9, 2.7 Hz, 1H), 7.13 (t, J=7.6 Hz, 1H), 7.00 (t, J=7.6 Hz, 1H), 5.01 (s, 2H), 4.54 (s, 2H); LRMS m/z 341.0 (M+1)+, 339.0 (M−1. Anal. Calcd for C18H13FN2O2S: C, 63.52; H, 3.85; N, 8.23; S, 9.42. Found: C, 63.52; H, 3.86; N, 8.35; S, 9.53.
- The compounds of Examples 25-32 were prepared essentially according to the procedures set forth above in examples 1 and/or 2 with appropriate substitution of starting materials.
-
- mp 176-177° C.; Rf 0.34 (20% methanol in dichlormethane); 1H NMR (DMSO-d6, 300 MHz) δ 7.60-7.73 (m, 1H), 7.60 (s, 1H), 7.52 (d, J=8.1 Hz, 1H), 7.44 (d, J=8.1 Hz, 1H), t, J=7.5 Hz, 1H), 7.02 (t, J=7.5 Hz, 1H), 5.35 (q, J=8.1 Hz, 1H), 4.64 (s, 2H), 1.72 (d, J=8.1 Hz, 3H); LRMS calcd for C19H13F3N2O2S: 390.0; Found 391.0 (M+1)+. Anal. Calcd for C19H13F3N2O2SH2O: C, 55.88; H, 3.70; N, 6.86; S, 7.85. Found: C, 56.09; H, 3.31; N, 6.89; S, 7.99.
-
- mp 200-201° C.; Rf 0.50 (20% methanol in dichloromethane); 1H NMR (DMSO-d6, 300 MHz) δ 7.63-7.71 (m, 1H), 7.51 (s, 1H), 7.47 (d, J=3.0 Hz, 2H), 7.14 (t, J=7.5 Hz, 1H), 7.00 (t, J=7.5 Hz, 1H), 4.61 (s, 2H), 4.39 (t, J=6.6 Hz, 2H), 2.75 (t, J=6.6 Hz, 2H); LRMS calcd for C19H13F3N2O2S: 390.0; Found 391.0 (M+1)+. Anal Calcd for C19H13F3N2O2S: C, 58.46; H, 3.36; N, 7.18; S, 8.21. Found: C, 58.63; H, 3.40; N, 7.20; S, 8.30.
- mp 265-267° C.; Rf 0.19 (20% methanol in dichloromethane); 1H NMR (DMSO-d6, 300 MHz) δ 8.28 (s, 1H), 8.22 (d, J=8.7 Hz, 1H), 7.67-7.69 (m, 2H), 7.43-7.47 (m, 2H), 7.14 (d, J=9.0 Hz, 1H), 5.04 (s, 2H), 4.61 (s, 2H); LRMS calcd for C19H12F3N2O2SBr:469.0; Found 469.0 (M+1)+ for Br=79. Anal. Calcd for C19H12F3N2O2SBr: C, 48.63; H, 2.58; N, 5.97; S, 6.83. Found: C, 48.60; H, 2.63; N, 5.88; S, 6.91.
- mp 118-120° C.; Rf 0.27 (20% methanol in dichloromethane); 1H NMR (DMSO-d6, 300 MHz) δ 7.63-7.73 (m, 1H), 7.39 (s, 1H), 7.28 (d, J=8.7 Hz, 1H), 7.07 (s, 1H), 6.78 (d, J=8.7 Hz, 1H), 4.97 (s, 2H), 4.61 (s, 2H); 3.07 (s, 3H); LRMS calcd for C19H13F3N2O3S: 406.0; Found 407.0 (M+)+. Anal. Calcd for C19H13F3N2O3SH2O: C, 53.77; H, 3.56; N, 6.60; S, 7.56. Found: C, 53.87; H, 3.56; N, 6.67; S, 7.67.
-
- mp 203-206° C.; Rf 0.24 (20% methanol in dichloromethane); 1H NMR (DMSO-d6, 300 MHz) δ 7.63-7.71 (m, 1H), 7.57 (s, 1H), 7.33 (d, J=9.0 Hz, 1H), 7.12 (dd, J(1)=9.0, J(2)=7.8 Hz, 1H), 7.03 (d, J=7.8 Hz, 1H), 5.08 (s, 2H), 4.78 (s, 2H); LRMS calcd for C18H10F3N2O2SCl: 410.0; Found 411.0 (M+1)+ and 409.0 (M−1)−.
-
- mp 165-167° C.; Rf 0.37 (20% methanol in dichloromethane); 1H NMR (DMSO-d6, 300 MHz) δ 7.61-7.70 (m, 1H), 7.35 (d, J=9.0 Hz, 1H), 7.26 (s, 1H), 6.90 (s, 1H), 6.64 (d, J=9.0 Hz, 1H), 4.79 (s, 2H); 4.56 (s, 2H), 3.72 (s, 3H); LRMS calcd for C10H13F3N2O2S: 406.0; Found 407.0 (M+1)+ and 405.0 (M−1)−.
- mp 209-294° C.; Rf 0.18 (20% methanol in dichloromethane); 1H NMR (DMSO-d6, 300 MHz) δ 7.78 (d, J=1.8 Hz, 1H), 7.65-7.73 (m, 1H), 7.49 (s, 1H), 7.61 (d, J=9.0 Hz, 1H), 7.25 (dd, J(1)=9.0 Hz, J(2)=1.8 Hz, 1H), 5.04 (s, 2H); 4.64 (s, 2H); LRMS calcd for C18H10F3N2O2SBr: 455.0; Found 455.0 (M+1)+ for Br 79 and 457 (M+1)+ for Br 81.
-
- Representative compounds of the invention were tested for their potency, selectivity and efficacy as inhibitors of human aldose reductase. The potency or aldose reductase inhibiting effects of the compounds were tested using methods similar to those described by Butera et al. in J. Med. Chem. 1989, 32, 757. Using this assay, the concentrations required to inhibit human aldose reductase (hALR2) activity by 50% (IC50) were determined.
- In a second assay, a number of the same compounds were tested for their ability to inhibit aldehyde reductase (hALR1), a structurally related enzyme. The test methods employed were essentially those described by Ishii, et al., J. Med. Chem. 1996 39: 1924. Using this assay, the concentrations required to inhibit human aldehyde reductase activity by 50% (IC50) were determined.
- From these data, the hALR1/hALR2 ratios were determined. Since high potency of test compounds as inhibitors of aldose reductase is desirable, low hALR2 IC50 values are sought. On the other hand, high potency of test compounds as inhibitors of aldehyde reductase is undesirable, and high hALR1 IC50s values are sought. Accordingly, the hALR1/hALR2 ratio is used to determine the selectivity of the test compounds. The importance of this selectivity is described in Kotani, et al., J. Med. Chem. 40: 684, 1997.
- The results of all these tests are combined and illustrated in Table 1.
-
hALR2 HALR1 HALR1/ Example # (IC50) (IC50) hALR2 1 8 nM 13,000 nM 1,200 2 10 nM 11,000 nM 1,100 3 5 nM 27,000 nM 5,400 4 8 nM 34,000 nM 4,250 5 6 nM 21,000 nM 3,500 6 8 nM 2,700 nM 340 7 12 nM 4,800 nM 400 8 7 nM 7,500 nM 1,100 9 11 nM 21,000 nM 1,900 10 5 nM 13,000 nM 2,600 11 99 nM 5,600 nM 57 12 102 nM 10,000 nM 98 13 73 nM 13,000 nM 178 14 101 nM 16,000 160 15 53 nM 10,000 190 16 25 nM 6,200 nM 248 17 8 nM 41,000 nM 5,100 18 15 nM >100 μM >6,700 19 30 nM 11,000 nM 370 20 7 nM 7,000 nM 1,000 21 14 nM 18,000 nM 1,300 22 9.1 nM 19,000 nM 2,100 23 9 nM 6,500 nM 720 24 1,040 nM 4,500 nM 4 25 160 nM 6,500 nM 41 26 17 nM 88,000 nM 5,200 27 52 nM <5,000 nM <96 28 5 nM 12,000 nM 2,400 29 11 nM 14,000 1,270 30 7.7 nM 21,000 nM 2,700 31 13 nM 9,700 746 32 660 nM Not Tested Not Tested Tolrestat 13 nM 1,940 nM 149 - The results show the superior potency, selectivity and efficacy of representative compounds of the invention. Such compounds are useful in the treatment of chronic complications arising from diabetes mellitus, such as, for example, diabetic cataracts, retinopathy and neuropathy. Accordingly, an aspect of the invention is treatment of such complications with the inventive compounds; treatment includes both prevention and alleviation. The compounds are useful in the treatment of, for example, diabetic cataracts, retinopathy, nephropathy and neuropathy.
- In a third, optional, set of experiments, the compounds can be assayed for their ability to normalize or reduce sorbitol accumulation in the sciatic nerve of streptozotocin-induced diabetic rats. The test methods employed to determine the efficacy are essentially those of Mylari, et al., J. Med. Chem. 34: 108, 1991.
- The blood glucose lowering activity of the test compounds of this invention is demonstrated using the following experiments with diabetic (db/db) mice.
- The db/db (C57BL/KsJ) mouse exhibits many of the metabolic abnormalities that are associated with type 2 diabetes in humans. The mice are obese, extremely hyperglycemic and also hyperinsulinemic. Antihyperglycemic agents that are available to man and also are effective in this model include metformin and troglitazone, both of which begin to demonstrate a beneficial effect in the db/db mice at doses above 100_mg/kg/day. Thus, compounds that are effective in this model are expected to be effective in humans.
- Male db/db mice (8 weeks old) were obtained from Jackson Laboratories and were allowed to acclimate for 1 week before the experiment commenced. A sample of blood was collected from the tail after which plasma glucose was isolated by centrifigation and the glucose concentration was measured in the plasma enzymatically on the COBAS automated clinical_analyzer equipped with a glucose kit that utilized hexokinas to quantitate the amount of glucose in a sample (Roche Diagnostic Systems, kit #47382). Mice with the lowest plasma glucose values were removed from the study and the remaining mice were randomized according to their individual plasma glucose values into 3 treatment groups (n=12 per group), control untreated db/db mice, 100 mg/kg/d compound treated db/db mice and 300_mg/kg/d compound treated db/db mice. The compound of Example 1 was administered in the diet by admixing the compound into the_standard rodent powdered chow (Tekland LM-485 Mouse/Rat Sterilizable Diet 7012, Harlan Tekland).
- Treatment with the compound was carried out for 4 weeks during which time blood glucose levels were measured weekly from the tail using the One Touch II blood glucose meter (Lifescan, Inc). The blood glucose values of mice in the compound treated groups was compared to the blood glucose values of mice from the control untreated group by an analysis of variance followed by Dunett's Comparison Test (one-tailed).
- The results in Table 1 show that the test compound of this invention lowers glucose in the diabetic db/db mouse over the 4 week study period. The mean percent change in glucose with drug treatment after four weeks of compound administration was 12% at a dose of 100 mg/kg/d and a 40% lowering of blood glucose at a dose of 300 mg/kg/d. This degree of glucose lowering is similar to what has been reported for troglitazone [+−5[[4-[(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)methoxy]phenyl]methyl]-2,4-thiazolidinedione] also known as CS-045 (Endocrinology, 1996, 137, 4189) and much better than that reported for metformin in this model. Thus the test compounds of this invention are well suited as antihyperglycemic agents.
-
TABLE 1 Blood glucose lowering Blood glucose (mg/dl) Group Week 0 Week 2 Week 3 Week 4 Diabetic 299 ± 80 313 ± 90 305 ± 57 345 ± 46 Diabetic + test 323 ± 79 284 ± 75 258 ± 60 303 ± 79 compound (100 mg/kg/d) Diabetic + test 313 ± 52 240 ± 85 197 ± 77 207 ± 77 compound (300 mg/kg/d) n = 12 per group p < 0.05 compared to Diabetic Data is given as mean ± SD - The assay described in this example is meant to determine whether the compounds of the instant invention would be effective in the treatment of elevated serum triglyceride levels in diabetic, as well as nondiabetic, patients. Tests are conducted to determine the effect of the compound of Example 1 on serum triglyceride levels in streptozotocin-induced diabetic rats. These animals represent a well-established diabetic model exhibiting most of the metabolic abnormalities associated with hyperglycemia, including hpertriglyceridemia, see Schnatz, et al., Diabetologia 8: 125, 1972.
- Diabetes is induced in animals as follows: male Sprague-Dawley rats (150 g), supplied by Harlan Teklad (Madison, Wis.), are allowed to acclimate for 1 week and water is supplied ad libitum. Food (7012CM, Harlan Teklad certified LM-485 mouse/rat) is removed at 1 PM on the day prior to injection of streptozocin (STZ, Sigma cat no. 501230, lot no. 66H0468). STZ, 40 mg/kg, is prepared in 0.03 M citrate buffer, pH 4.5 and administered intraperitoneally after a 24-hr fast. Control animals receive citrate buffer.
- Two hours after STZ injection, food is returned. Two days following STZ injection, blood glucose is measured and animals with <300 mg/dL are eliminated. Animals with blood glucose levels ≧300 mg/dL are randomized into diabetic control and treated groups.
- In all, three groups of animals are monitored and compared. The groups comprise a (nondiabetic) control group (n=5); an untreated diabetic (control) group (n=7); and treated diabetic group (n=7). The daily dosages are administered at 10 AM by gavage as a single dose of the test compound in 2% Tween 90 in saline for 15 consecutive days. The nondiabetic and diabetic control groups are administered vehicle.
- After the final dose (Day 8), all groups of animals are fasted for 4 hours and anesthetized with CO2, and blood is collected by cardiac puncture into EDTA tubes. The plasma is separated from the red blood cells by centrifugation. Plasma triglyceride levels are quantitated on an automated COBAS chemistry system utilizing the Roche reagent for Triglycerides (Cat #44119). This assay is a standard spectrophotometric enzyme assay that uses a Trinder reaction to measure the final product (Trinder, P., Ann Clin Biochem 6: 24-17, 1969). Statistical comparisons between groups employed a one-tailed t-test.
- Table 2 shows the results of the tests. As can be seen, administration of daily dosage of 10 mg/kg significantly reduced the mean plasma triglyceride levels in treated animals 68% compared to the mean level for untreated diabetic animals. The data clearly demonstrate the effectiveness of the test compound in lowering serum triglyceride levels in diabetic animals; a property not generally associated with the ARI class. On the basis of these data, it is further to be expected that a similar effect would be produced in nondiabetic hosts with elevated triglyceride levels.
- The anti-angiogenic properties of the compounds of the invention are demonstrated in the following experiments using the rat aortic ring assay.
- Rats (less than 6 weeks old, approx 150 grams) are individually sacrificed via carbon dioxide asphyxiation. The abdomen and thorax are opened along the midline with scissors using known sterile techniques. The animals are placed recumbent on their right side, to allow displacement of the viscera. The abdominal and thoracic sections of the aorta are carefully separated from the dorsum by dissection along the longitudinal axis of the aorta. The isolated aorta is placed in a petri dish containing sterile, ice cold Hanks' balanced salt solution (Gibco BRL-Life Technologies, Rockville, Md.) for further micro-dissection under a dissecting microscope. The lumenal content of the aorta is dislodged by injection with Hanks, balanced salt solution via a syringe. Adherent adipose, loose connective tissue and segments of intercostal arteries are trimmed from the exterior of the aorta using sterile microsurgical instruments. The aorta is transferred to a clean petri dish containing fresh Hanks' balanced salt solution and the entire aorta is sectioned into 1 to 2 mm thick rings. The two end rings and any other rings which appear damaged are discarded. The aorta is maintained submerged in Hanks' balanced salt solution on ice while plating onto a 48-well plate.
- Using a 48-well tissue culture plate, which is chilled on ice, in a tissue culture hood a 120 microliters of thawed Matrigel® (Becton Dickinson Labware, Bedford, Mass.) is plated onto each well using a sterile pipet tip. The Matrigel® is solidified by placing the culture plate for 30 minutes in a 37° C. humidified tissue culture incubator in the presence of 5% CO2. A single aortic ring is placed on edge, with one of its two cut surfaces resting on the Matrigel®, at the center of each well using a sterile curved forcep. The layout of the culture plate is such that the rings from multiple animals are placed in a single column on the plate. In this fashion, the experimental results represent observations based on six animals (n=6). The aortic rings are completely embedded in Matrigel® by pipetting an additional 50 microliters of chilled Matrigel® over each ring, being careful not to disrupt proper ring orientation. The plate with the aortic rings is placed in an incubator at 37° C. with 97% humidity for 6 days.
- Each 48-well tissue culture plate has the following template: six negative wells, six positive wells, with the remaining wells used to evaluate various concentrations of the test compound in replicates of six. The six negative controls consisting of 1584 μL of human endothelial serum free media (SFM) basal growth medium (Gibco-BRL-Life Technologies) and 16 μL of 100% sterile filtered DMSO. The six positive controls consist of 1484 μL serum free media (SFM) and 100 μL of endothelial cell growth supplement (ECGS, at a working concentration of 200 micrograms/ml) (Becton Dickinson Labware, Bedford, Mass.), and 16 μL of 100% sterile filtered DMSO. Six wells, for each concentration of the test compound, consist of: 1484 μl SFM, 100 μl ECGS, 16 μl of test compounds dissolved in 100% sterile filtered DMSO. Final concentration of DMSO in all wells is 1%. All test compounds are diluted 1:100 from their stock concentrations.
- Anti-angiogenic activity is verified using a double-cross over experimental design. The negative control (negative), the positive control (positive) and the experimental group labeled (prevention) each receive media changes every 24 hours for six days. The content of the media changes are as previously described for each experimental group. The prevention group receives 50 micromolar concentration test compound for six consecutive days. The experimental group designated as Removal receives 50 micromolar concentration of test compound during day 1, 2 and 3 after which the compound is removed by multiple rinses with fresh media. The aortic rings in the Removal group are cultured for an additional three days in the absence of the compound and treated identically to the positive control group on days 4, 5 and 6. The experimental group, labeled Intervention, receives treatment identical to the positive control group for 1, and 3 days and is then exposed to 50 microliters of test compound only on days 4, 5 and 6 in a fashion identical to the treatment received by the prevention group.
- For quantitation of the angiogenic response, an inverted microscope (Zeiss, Axiovert 25) set at low illumination with full closure of the iris diaphram to maximize depth-of-field is used. The microscope is coupled to a CCD camera (Cohu Inc.) for digital capture with a computer and each well of the 48-well plate containing an aortic ring is digitally documented for quantitative analysis (Alpha Innotek Inc.) at a magnification of 5×. The average linear vascular growth (in mm) is determined from the adventitial margin of the aortic ring to the furthest detectable vascular outgrowth. This linear distance is measured along 16 equally spaced radial lines around a 360 degree field.
- At the completion of the study, the media is aspirated and Diff-Quik fixative (Dade-Behring) is added to each well as per manufacturer's instructions to preserve the specimens which are stored sealed and refrigerated at 4° C.
- The antigiogenic effect of the compound of Example 1 is shown in Table 3 below.
-
TABLE 3 Experimental Groups Linear Microvascular Growth (mm) # Negative Control 0.72 ± 0.39, n = 6 ** Positive Control 2.95 ± 0.52, n = 6 Prevention (Days 1-6) 1.46 ± 0.48, n = 6 * Removal (Days 4-6) 2.31 ± 0.71, n = 5 Intervention (Days 4-6) 1.97 ± 0.66, n = 5 # Represented as mean ± SD, n = individual animals ** p < 0.001 compared to positive control * p < 0.05 compared to positive control Statistical analysis conducted with Kruskal-Wallis Test and Dunns multiple comparisons - STZ treated diabetic minipigs having various wounds are administered the compound of Example 1. These animals are compared with control STZ diabetic minipigs also having wounds but that are not treated with the compound. The animals administered the compound of Example 1 demonstrate a significant increase in the degree of wound healing. Accordingly, the compounds of the invention are capable of promoting wound healing in diabetic mammals.
- The invention and the manner and process of making and using it, are now described in such full, clear, concise and exact terms as to enable any person skilled in the art to which it pertains, to make and use the same. It is to be understood that the foregoing describes preferred embodiments of the present invention and that modifications may be made therein without departing from the spirit or scope of the present invention as set forth in the claims. To particularly point out and distinctly claim the subject matter regarded as invention, the following claims conclude this specification.
Claims (4)
1-17. (canceled)
18. A method for reducing elevated serum triglyceride levels, which method comprises administering to a mammal in need of such treatment an effective amount of a compound of the formula:
wherein
A is a C1-C4 alkylene group optionally substituted with C1-C2 alkyl or mono- or disubstituted with halogen;
Z is a bond, O, S, C(O)NH, or C1-C3 alkylene optionally substituted with C1-C2 alkyl;
R1 is hydrogen, alkyl having 1-6 carbon atoms, halogen, 2-, 3-, or 4-pyridyl, or phenyl, where the phenyl or pyridyl is optionally substituted with up to three groups selected from halogen, hydroxy, C1-C6 alkoxy, C1-C6 alkyl, nitro, amino, or mono- or di(C1-C6)alkylamino;
R2, R3, R4 and R5 are each independently
hydrogen, halogen, nitro, or an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens);
OR7, SR7, S(O)R7, S(O)2N(R7)2, C(O)N(R7)2, or N(R7)2, wherein each R7 is independently hydrogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens) or benzyl, where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino;
phenyl or heteroaryl such as 2-, 3- or 4-imidazolyl or 2-, 3-, or 4-pyridyl, each of which phenyl or heteroaryl is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino;
phenoxy where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino; or
a group of the formula
where
J is a bond, CH2, oxygen, or nitrogen; and
each r is independently 2 or 3;
R6 is hydroxy or a prodrug group;
Ra is hydrogen, C1-C6 alkyl, fluoro, or trifluoromethyl;
and Ar represents
a phenyl group optionally substituted with up to 5 groups independently selected from halogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens), nitro, OR7, SR7, S(O)R7, S(O)2R7 or N(R7)2 wherein R7 is hydrogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens) or benzyl, where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino, or the phenyl group may be condensed with benzo where the benzo is optionally substituted with one or two of halogen, cyano, nitro, trifluoromethyl, perfluoroethyl, trifluoroacetyl, or (C1-C6)alkanoyl, hydroxy, (C1-C6)alkyl, (C1-C6)alkoxy, (C1-C6)alkylthio, trifluoromethoxy, trifluoromethylthio, (C1-C6)alkylsulfinyl, (C1-C6)alkylsulfonyl;
a heterocyclic 5-membered ring having one nitrogen, oxygen or sulfur, two nitrogens one of which may be replaced by oxygen or sulfur, or three nitrogens one of which may be replaced by oxygen or sulfur, said heterocyclic 5-membered ring substituted by one or two fluoro, chloro, (C1-C6)alkyl or phenyl, or condensed with benzo, or substituted by one of pyridyl, furyl or thienyl, said phenyl or benzo optionally substituted by one of iodo, cyano, nitro, perfluoroethyl, trifluoroacetyl, or (C1-C6)alkanoyl, one or two of fluoro, chloro, bromo, hydroxy, (C1-C6)alkyl, (C1-C6)alkoxy, (C1-C6)alkylthio, trifluoromethoxy, trifluoromethylthio, (C1-C6)alkylsulfinyl, (C1-C6)alkylsulfonyl or trifluoromethyl, or two fluoro or two trifluoromethyl with one hydroxy or one (C1-C6)alkoxy, or one or, preferably, two fluoro and one trifluoromethyl, or three fluoro, said pyridyl, furyl or thienyl optionally substituted in the 3-position by fluoro, chloro, bromo, (C1-C6)alkyl or (C1-C6)alkoxy;
a heterocyclic 6-membered ring having one to three nitrogen atoms, or one or two nitrogen atoms and one oxygen or sulfur, said heterocyclic 6-membered ring substituted by one or two (C1-C6)alkyl or phenyl, or condensed with benzo, or substituted by one of pyridyl, furyl or thienyl, said phenyl or benzo optionally substituted by one of iodo or trifluoromethylthio, or one or two of fluoro, chloro, bromo, (C1-C6)alkyl, (C1-C6)alkoxy, (C1-C6)alkylthio, (C1-C6)alkylsulfinyl, (C1-C6)alkylsulfonyl, or trifluoromethyl, and said pyridyl, furyl or thienyl optionally substituted in the 3-position by fluoro, chloro, (C1-C6)alkyl or (C1-C6)alkoxy;
said benzo-condensed heterocyclic 5-membered or 6-membered rings optionally substituted in the heterocyclic 5-membered or 6-membered ring by one of fluoro, chloro, bromo, methoxy, or trifluoromethyl;
oxazole or thiazole condensed with a 6-membered aromatic group containing one or two nitrogen atoms, with thiophene or with furane, each optionally substituted by one of fluoro, chloro, bromo, trifluoromethyl, methylthio or methylsulfinyl;
imidazolopyridine or triazolopyridine optionally substituted by one of trifluoromethyl, trifluoromethylthio, bromo, or (C1-C6)alkoxy, or two of fluoro or chloro;
thienothiophene or thienofuran optionally substituted by one of fluoro, chloro or trifluoromethyl;
thienotriazole optionally substituted by one of chloro or trifluoromethyl;
naphthothiazole; naphthoxazole; or thienoisothiazole.
19. A method for reducing elevated serum glucose levels, which method comprises administering to a mammal in need of such treatment an effective amount of a compound of the formula:
wherein
A is a C1-C4 alkylene group optionally substituted with C1-C2 alkyl or mono- or disubstituted with halogen;
Z is a bond, O, S, C(O)NH, or C1-C3 alkylene optionally substituted with C1-C2 alkyl;
R1 is hydrogen, alkyl having 1-6 carbon atoms, halogen, 2-, 3-, or 4-pyridyl, or phenyl, where the phenyl or pyridyl is optionally substituted with up to three groups selected from halogen, hydroxy, C1-C6 alkoxy, C1-C6 alkyl, nitro, amino, or mono- or di(C1-C6)alkylamino;
R2, R3, R4 and R5 are each independently
hydrogen, halogen, nitro, or an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens);
OR7, SR7, S(O)R7, S(O)2N(R7)2, C(O)N(R7)2, or N(R7)2, wherein each R7 is independently hydrogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens) or benzyl, where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino;
phenyl or heteroaryl such as 2-, 3- or 4-imidazolyl or 2-, 3-, or 4-pyridyl, each of which phenyl or heteroaryl is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino;
phenoxy where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino; or
a group of the formula
where
J is a bond, CH2, oxygen, or nitrogen; and
each r is independently 2 or 3;
R6 is hydroxy or a prodrug group;
Ra is hydrogen, C1-C6 alkyl, fluoro, or trifluoromethyl;
and Ar represents
a phenyl group optionally substituted with up to 5 groups independently selected from halogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens), nitro, OR7, SR7, S(O)R7, S(O)2R7 or N(R7)2 wherein R7 is hydrogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens) or benzyl, where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino, or the phenyl group may be condensed with benzo where the benzo is optionally substituted with one or two of halogen, cyano, nitro, trifluoromethyl, perfluoroethyl, trifluoroacetyl, or (C1-C6)alkanoyl, hydroxy, (C1-C6)alkyl, (C1-C6)alkoxy, (C1-C6)alkylthio, trifluoromethoxy, trifluoromethylthio, (C1-C6)alkylsulfinyl, (C1-C6)alkylsulfonyl;
a heterocyclic 5-membered ring having one nitrogen, oxygen or sulfur, two nitrogens one of which may be replaced by oxygen or sulfur, or three nitrogens one of which may be replaced by oxygen or sulfur, said heterocyclic 5-membered ring substituted by one or two fluoro, chloro, (C1-C6)alkyl or phenyl, or condensed with benzo, or substituted by one of pyridyl, furyl or thienyl, said phenyl or benzo optionally substituted by one of iodo, cyano, nitro, perfluoroethyl, trifluoroacetyl, or (C1-C6)alkanoyl, one or two of fluoro, chloro, bromo, hydroxy, (C1-C6)alkyl, (C1-C6)alkoxy, (C1-C6)alkylthio, trifluoromethoxy, trifluoromethylthio, (C1-C6)alkylsulfinyl, (C1-C6)alkylsulfonyl or trifluoromethyl, or two fluoro or two trifluoromethyl with one hydroxy or one (C1-C6)alkoxy, or one or, preferably, two fluoro and one trifluoromethyl, or three fluoro, said pyridyl, furyl or thienyl optionally substituted in the 3-position by fluoro, chloro, bromo, (C1-C6)alkyl or (C1-C6)alkoxy;
a heterocyclic 6-membered ring having one to three nitrogen atoms, or one or two nitrogen atoms and one oxygen or sulfur, said heterocyclic 6-membered ring substituted by one or two (C1-C6)alkyl or phenyl, or condensed with benzo, or substituted by one of pyridyl, furyl or thienyl, said phenyl or benzo optionally substituted by one of iodo or trifluoromethylthio, or one or two of fluoro, chloro, bromo, (C1-C6)alkyl, (C1-C6)alkoxy, (C1-C6)alkylthio, (C1-C6)alkylsulfinyl, (C1-C6)alkylsulfonyl, or trifluoromethyl, and said pyridyl, furyl or thienyl optionally substituted in the 3-position by fluoro, chloro, (C1-C6)alkyl or (C1-C6)alkoxy;
said benzo-condensed heterocyclic 5-membered or 6-membered rings optionally substituted in the heterocyclic 5-membered or 6-membered ring by one of fluoro, chloro, bromo, methoxy, or trifluoromethyl;
oxazole or thiazole condensed with a 6-membered aromatic group containing one or two nitrogen atoms, with thiophene or with furane, each optionally substituted by one of fluoro, chloro, bromo, trifluoromethyl, methylthio or methylsulfinyl;
imidazolopyridine or triazolopyridine optionally substituted by one of trifluoromethyl, trifluoromethylthio, bromo, or (C1-C6)alkoxy, or two of fluoro or chloro;
thienothiophene or thienofuran optionally substituted by one of fluoro, chloro or trifluoromethyl;
thienotriazole optionally substituted by one of chloro or trifluoromethyl; naphthothiazole; naphthoxazole; or thienoisothiazole.
20. A method for inhibiting angiogenesis, which method comprises administering to a mammal in need of such treatment an effective amount of a compound of the formula:
wherein
A is a C1-C4 alkylene group optionally substituted with C1-C2 alkyl or mono- or disubstituted with halogen;
Z is a bond, O, S, C(O)NH, or C1-C3 alkylene optionally substituted with C1-C2 alkyl;
R1 is hydrogen, alkyl having 1-6 carbon atoms, halogen, 2-, 3-, or 4-pyridyl, or phenyl, where the phenyl or pyridyl is optionally substituted with up to three groups selected from halogen, hydroxy, C1-C6 alkoxy, C1-C6 alkyl, nitro, amino, or mono- or di(C1-C6)alkylamino;
R2, R3, R4 and R5 are each independently
hydrogen, halogen, nitro, or an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens);
OR7, SR7, S(O)R7, S(O)2N(R7)2, C(O)N(R7)2, or N(R7)2, wherein each R7 is independently hydrogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens) or benzyl, where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino;
phenyl or heteroaryl such as 2-, 3- or 4-imidazolyl or 2-, 3-, or 4-pyridyl, each of which phenyl or heteroaryl is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino;
phenoxy where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino; or
a group of the formula
where
J is a bond, CH2, oxygen, or nitrogen; and
each r is independently 2 or 3;
R6 is hydroxy or a prodrug group;
Ra is hydrogen, C1-C6 alkyl, fluoro, or trifluoromethyl;
and Ar represents
a phenyl group optionally substituted with up to 5 groups independently selected from halogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens), nitro, OR7, SR7, S(O)R7, S(O)2R7 or N(R7)2 wherein R7 is hydrogen, an alkyl group of 1-6 carbon atoms (which may be substituted with one or more halogens) or benzyl, where the phenyl portion is optionally substituted with up to three groups independently selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, amino, and mono- or di(C1-C6)alkylamino, or the phenyl group may be condensed with benzo where the benzo is optionally substituted with one or two of halogen, cyano, nitro, trifluoromethyl, perfluoroethyl, trifluoroacetyl, or (C1-C6)alkanoyl, hydroxy, (C1-C6)alkyl, (C1-C6)alkoxy, (C1-C6)alkylthio, trifluoromethoxy, trifluoromethylthio, (C1-C6)alkylsulfinyl, (C1-C6)alkylsulfonyl;
a heterocyclic 5-membered ring having one nitrogen, oxygen or sulfur, two nitrogens one of which may be replaced by oxygen or sulfur, or three nitrogens one of which may be replaced by oxygen or sulfur, said heterocyclic 5-membered ring substituted by one or two fluoro, chloro, (C1-C6)alkyl or phenyl, or condensed with benzo, or substituted by one of pyridyl, furyl or thienyl, said phenyl or benzo optionally substituted by one of iodo, cyano, nitro, perfluoroethyl, trifluoroacetyl, or (C1-C6)alkanoyl, one or two of fluoro, chloro, bromo, hydroxy, (C1-C6)alkyl, (C1-C6)alkoxy, (C1-C6)alkylthio, trifluoromethoxy, trifluoromethylthio, (C1-C6)alkylsulfinyl, (C1-C6)alkylsulfonyl or trifluoromethyl, or two fluoro or two trifluoromethyl with one hydroxy or one (C1-C6)alkoxy, or one or, preferably, two fluoro and one trifluoromethyl, or three fluoro, said pyridyl, furyl or thienyl optionally substituted in the 3-position by fluoro, chloro, bromo, (C1-C6)alkyl or (C1-C6)alkoxy;
a heterocyclic 6-membered ring having one to three nitrogen atoms, or one or two nitrogen atoms and one oxygen or sulfur, said heterocyclic 6-membered ring substituted by one or two (C1-C6)alkyl or phenyl, or condensed with benzo, or substituted by one of pyridyl, furyl or thienyl, said phenyl or benzo optionally substituted by one of iodo or trifluoromethylthio, or one or two of fluoro, chloro, bromo, (C1-C6)alkyl, (C1-C6)alkoxy, (C1-C6)alkylthio, (C1-C6)alkylsulfinyl, (C1-C6)alkylsulfonyl, or trifluoromethyl, and said pyridyl, furyl or thienyl optionally substituted in the 3-position by fluoro, chloro, (C1-C6)alkyl or (C1-C6)alkoxy;
said benzo-condensed heterocyclic 5-membered or 6-membered rings optionally substituted in the heterocyclic 5-membered or 6-membered ring by one of fluoro, chloro, bromo, methoxy, or trifluoromethyl;
oxazole or thiazole condensed with a 6-membered aromatic group containing one or two nitrogen atoms, with thiophene or with furane, each optionally substituted by one of fluoro, chloro, bromo, trifluoromethyl, methylthio or methylsulfinyl;
imidazolopyridine or triazolopyridine optionally substituted by one of trifluoromethyl, trifluoromethylthio, bromo, or (C1-C6)alkoxy, or two of fluoro or chloro;
thienothiophene or thienofuran optionally substituted by one of fluoro, chloro or trifluoromethyl;
thienotriazole optionally substituted by one of chloro or trifluoromethyl; naphthothiazole; naphthoxazole; or thienoisothiazole.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/302,906 US20120065203A1 (en) | 1998-12-01 | 2011-11-22 | Methods of Reducing Serum Glucose and Triglyceride Levels and for Inhibiting Angiogenesis Using Substituted Indolealkanoic Acids |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11039598P | 1998-12-01 | 1998-12-01 | |
| US09/452,252 US6555568B1 (en) | 1998-12-01 | 1999-12-01 | Methods of reducing serum glucose and triglyceride levels and for inhibiting angiogenesis using substituted indolealkanoic acids |
| US10/397,140 US6964980B2 (en) | 1998-12-01 | 2003-03-26 | Method of reducing serum glucose and triglyceride levels and for inhibiting angiogenesis using substitute indolealkanoic acids |
| US11/274,583 US20060074114A1 (en) | 1998-12-01 | 2005-11-15 | Methods of reducing serum glucose and triglyceride levels and for inhibiting angiogenesis using substituted indolealkanoic acids |
| US12/871,304 US20100324105A1 (en) | 1998-12-01 | 2010-08-30 | Methods of Reducing Serum Glucose and Triglyceride Levels and for Inhibiting Angiogenesis Using Substituted Indolealkanoic Acids |
| US13/302,906 US20120065203A1 (en) | 1998-12-01 | 2011-11-22 | Methods of Reducing Serum Glucose and Triglyceride Levels and for Inhibiting Angiogenesis Using Substituted Indolealkanoic Acids |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/871,304 Continuation US20100324105A1 (en) | 1998-12-01 | 2010-08-30 | Methods of Reducing Serum Glucose and Triglyceride Levels and for Inhibiting Angiogenesis Using Substituted Indolealkanoic Acids |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120065203A1 true US20120065203A1 (en) | 2012-03-15 |
Family
ID=22332786
Family Applications (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/452,252 Expired - Fee Related US6555568B1 (en) | 1998-12-01 | 1999-12-01 | Methods of reducing serum glucose and triglyceride levels and for inhibiting angiogenesis using substituted indolealkanoic acids |
| US10/397,140 Expired - Fee Related US6964980B2 (en) | 1998-12-01 | 2003-03-26 | Method of reducing serum glucose and triglyceride levels and for inhibiting angiogenesis using substitute indolealkanoic acids |
| US11/274,583 Abandoned US20060074114A1 (en) | 1998-12-01 | 2005-11-15 | Methods of reducing serum glucose and triglyceride levels and for inhibiting angiogenesis using substituted indolealkanoic acids |
| US12/871,304 Abandoned US20100324105A1 (en) | 1998-12-01 | 2010-08-30 | Methods of Reducing Serum Glucose and Triglyceride Levels and for Inhibiting Angiogenesis Using Substituted Indolealkanoic Acids |
| US13/302,906 Abandoned US20120065203A1 (en) | 1998-12-01 | 2011-11-22 | Methods of Reducing Serum Glucose and Triglyceride Levels and for Inhibiting Angiogenesis Using Substituted Indolealkanoic Acids |
Family Applications Before (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/452,252 Expired - Fee Related US6555568B1 (en) | 1998-12-01 | 1999-12-01 | Methods of reducing serum glucose and triglyceride levels and for inhibiting angiogenesis using substituted indolealkanoic acids |
| US10/397,140 Expired - Fee Related US6964980B2 (en) | 1998-12-01 | 2003-03-26 | Method of reducing serum glucose and triglyceride levels and for inhibiting angiogenesis using substitute indolealkanoic acids |
| US11/274,583 Abandoned US20060074114A1 (en) | 1998-12-01 | 2005-11-15 | Methods of reducing serum glucose and triglyceride levels and for inhibiting angiogenesis using substituted indolealkanoic acids |
| US12/871,304 Abandoned US20100324105A1 (en) | 1998-12-01 | 2010-08-30 | Methods of Reducing Serum Glucose and Triglyceride Levels and for Inhibiting Angiogenesis Using Substituted Indolealkanoic Acids |
Country Status (30)
| Country | Link |
|---|---|
| US (5) | US6555568B1 (en) |
| EP (1) | EP1135124B1 (en) |
| JP (1) | JP2002531398A (en) |
| KR (1) | KR20010086075A (en) |
| CN (1) | CN1368883A (en) |
| AP (1) | AP2001002146A0 (en) |
| AT (1) | ATE265210T1 (en) |
| AU (1) | AU770925B2 (en) |
| BG (1) | BG105531A (en) |
| BR (1) | BR9915882A (en) |
| CA (1) | CA2385845A1 (en) |
| CZ (1) | CZ20011864A3 (en) |
| DE (1) | DE69916881T2 (en) |
| DZ (1) | DZ2953A1 (en) |
| EE (1) | EE200100296A (en) |
| HK (1) | HK1046372A1 (en) |
| HU (1) | HUP0104953A3 (en) |
| ID (1) | ID30037A (en) |
| IL (1) | IL143247A0 (en) |
| MX (1) | MXPA02003118A (en) |
| NO (1) | NO20012690L (en) |
| OA (1) | OA12035A (en) |
| PL (1) | PL349016A1 (en) |
| SK (1) | SK7352001A3 (en) |
| TN (1) | TNSN99224A1 (en) |
| TR (1) | TR200101539T2 (en) |
| TW (1) | TW584560B (en) |
| WO (1) | WO2000032180A2 (en) |
| YU (1) | YU40101A (en) |
| ZA (1) | ZA200104126B (en) |
Families Citing this family (46)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SK7522001A3 (en) * | 1998-03-31 | 2002-02-05 | Inst For Pharm Discovery Inc | Substituted indolealkanoic acids |
| TNSN99224A1 (en) * | 1998-12-01 | 2005-11-10 | Inst For Pharm Discovery Inc | METHODS OF REDUCING GLUCOSE AND TRIGLYCERIDE LEVELS IN SERUM AND FOR ANTIGENESIS SUPPRESSION USING INDOLEALKANOIC ACIDS |
| US6521659B2 (en) | 2000-03-02 | 2003-02-18 | Institute For Pharmaceutical Discovery, Llc | Compositions containing a substituted indolealkanoic acid and an angiotensin converting enzyme inhibitor |
| AU2001259668A1 (en) * | 2000-05-09 | 2001-11-20 | The Institute For Pharmaceutical Discovery Llc | Methods for testing compounds useful for treating diabetic complications |
| TWI224101B (en) | 2001-06-20 | 2004-11-21 | Wyeth Corp | Substituted naphthyl indole derivatives as inhibitors of plasminogen activator inhibitor type-1 (PAI-1) |
| WO2003000253A1 (en) | 2001-06-20 | 2003-01-03 | Wyeth | Substituted indole acid derivatives as inhibitors of plasminogen activator inhibitor-1 (pai-1) |
| AU2003297787A1 (en) | 2002-12-10 | 2004-06-30 | Wyeth | Substituted 3-carbonyl-1h-indol-1-yl acetic acid derivatives as inhibitors of plasminogen activator inhibitor-1 (pai-1) |
| MXPA05006282A (en) | 2002-12-10 | 2005-08-19 | Wyeth Corp | Substituted 3-alkyl and 3-arylalkyl 1h. |
| UA80453C2 (en) | 2002-12-10 | 2007-09-25 | Derivatives of substituted dyhydropyranoindol-3,4-dion as inhibitors of plasminogen activator inhibitor-1 (pai-1) | |
| ATE411288T1 (en) | 2002-12-10 | 2008-10-15 | Wyeth Corp | ARYL-, ARYLOXY- AND ALKYLOXY-SUBSTITUTED 1H-INDOLE-3-YL-GLYOXYLIC ACID DERIVATIVES INHIBITORS OF PLASMINOGEN ACTIVATOR INHIBITOR-1 (PAI-1) |
| MXPA05006287A (en) | 2002-12-10 | 2005-09-08 | Wyeth Corp | Substituted indole oxo-acetyl amino acetic acid derivatives as inhibitors of plasminogen activator inhibitor-1 (pai-1). |
| US7592361B2 (en) | 2003-04-28 | 2009-09-22 | Bayer Pharmaceuticals Corporation | Indole acetic acid derivatives and their use as pharmaceutical agents |
| US7420083B2 (en) | 2003-09-25 | 2008-09-02 | Wyeth | Substituted aryloximes |
| US7141592B2 (en) | 2003-09-25 | 2006-11-28 | Wyeth | Substituted oxadiazolidinediones |
| US7332521B2 (en) | 2003-09-25 | 2008-02-19 | Wyeth | Substituted indoles |
| US7442805B2 (en) | 2003-09-25 | 2008-10-28 | Wyeth | Substituted sulfonamide-indoles |
| US7411083B2 (en) | 2003-09-25 | 2008-08-12 | Wyeth | Substituted acetic acid derivatives |
| US7534894B2 (en) | 2003-09-25 | 2009-05-19 | Wyeth | Biphenyloxy-acids |
| US7163954B2 (en) | 2003-09-25 | 2007-01-16 | Wyeth | Substituted naphthyl benzothiophene acids |
| US7342039B2 (en) | 2003-09-25 | 2008-03-11 | Wyeth | Substituted indole oximes |
| US7268159B2 (en) | 2003-09-25 | 2007-09-11 | Wyeth | Substituted indoles |
| US7265148B2 (en) | 2003-09-25 | 2007-09-04 | Wyeth | Substituted pyrrole-indoles |
| US7351726B2 (en) | 2003-09-25 | 2008-04-01 | Wyeth | Substituted oxadiazolidinediones |
| US7446201B2 (en) | 2003-09-25 | 2008-11-04 | Wyeth | Substituted heteroaryl benzofuran acids |
| US7582773B2 (en) | 2003-09-25 | 2009-09-01 | Wyeth | Substituted phenyl indoles |
| GB0324763D0 (en) | 2003-10-23 | 2003-11-26 | Oxagen Ltd | Use of compounds in therapy |
| PL1750862T3 (en) | 2004-06-04 | 2011-06-30 | Teva Pharma | Pharmaceutical composition containing irbesartan |
| RU2007106868A (en) | 2004-08-23 | 2008-09-27 | Вайет (Us) | Oxazole-naphthyl acids and their use as modulators of an inhibitor of plasminogen-1 (PAI) activator for the treatment of thrombosis and cardiovascular diseases |
| BRPI0514549A (en) | 2004-08-23 | 2008-06-17 | Wyeth Corp | pyrrol-naphthyl acids as inhibitors of pai-1 |
| WO2006023866A2 (en) | 2004-08-23 | 2006-03-02 | Wyeth | Thiazolo-naphthyl acids as inhibitors of plasminogen activator inhibitor-1 |
| US20060135540A1 (en) * | 2004-11-30 | 2006-06-22 | Jack Lin | PPAR active compounds |
| AU2005311925A1 (en) * | 2004-11-30 | 2006-06-08 | Plexxikon, Inc. | Indole derivatives for use as PPAR PPAR active compounds |
| CA2617372A1 (en) | 2005-08-17 | 2007-02-22 | Wyeth | Substituted indoles and use thereof |
| RU2419618C2 (en) * | 2005-09-07 | 2011-05-27 | Плекссикон, Инк. | Compounds, active towards ppar (peroxisome proliferator-activated receptor) |
| EP2046740B1 (en) | 2006-07-22 | 2012-05-23 | Oxagen Limited | Compounds having crth2 antagonist activity |
| PE20090159A1 (en) * | 2007-03-08 | 2009-02-21 | Plexxikon Inc | INDOL-PROPIONIC ACID DERIVED COMPOUNDS AS PPARs MODULATORS |
| HRP20140045T1 (en) | 2008-01-18 | 2014-02-14 | Atopix Therapeutics Limited | Compounds having crth2 antagonist activity |
| US7750027B2 (en) * | 2008-01-18 | 2010-07-06 | Oxagen Limited | Compounds having CRTH2 antagonist activity |
| WO2009093026A1 (en) | 2008-01-22 | 2009-07-30 | Oxagen Limited | Compounds having crth2 antagonist activity |
| WO2009093029A1 (en) | 2008-01-22 | 2009-07-30 | Oxagen Limited | Compounds having crth2 antagonist activity |
| EP3563842A1 (en) | 2009-04-29 | 2019-11-06 | Amarin Pharmaceuticals Ireland Limited | Pharmaceutical compositions comprising epa and a cardiovascular agent and methods of using the same |
| EP2970119B1 (en) | 2013-03-14 | 2021-11-03 | Merck Sharp & Dohme Corp. | Novel indole derivatives useful as anti-diabetic agents |
| GB201322273D0 (en) | 2013-12-17 | 2014-01-29 | Atopix Therapeutics Ltd | Process |
| GB201407820D0 (en) | 2014-05-02 | 2014-06-18 | Atopix Therapeutics Ltd | Polymorphic form |
| GB201407807D0 (en) | 2014-05-02 | 2014-06-18 | Atopix Therapeutics Ltd | Polymorphic form |
| WO2018002673A1 (en) | 2016-07-01 | 2018-01-04 | N4 Pharma Uk Limited | Novel formulations of angiotensin ii receptor antagonists |
Family Cites Families (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3557142A (en) | 1968-02-20 | 1971-01-19 | Sterling Drug Inc | 4,5,6,7-tetrahydro-indole-lower-alkanoic acids and esters |
| IE47592B1 (en) | 1977-12-29 | 1984-05-02 | Ici Ltd | Enzyme inhibitory phthalazin-4-ylacetic acid derivatives, pharmaceutical compositions thereof,and process for their manufacture |
| JPS55167282A (en) | 1979-06-12 | 1980-12-26 | Fujisawa Pharmaceut Co Ltd | Piperazine derivative or its salt and its preparation |
| US4283539A (en) | 1979-12-18 | 1981-08-11 | Pfizer Inc. | Isoquinoline acetic acids |
| US4363912A (en) | 1980-12-15 | 1982-12-14 | Pfizer Inc. | Indole thromboxane synthetase inhibitors |
| US4442118A (en) * | 1981-07-23 | 1984-04-10 | Ayerst, Mckenna & Harrison, Inc. | Aldose reductase inhibition by 1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-acetic acid |
| GB8607294D0 (en) | 1985-04-17 | 1986-04-30 | Ici America Inc | Heterocyclic amide derivatives |
| US4939140A (en) | 1985-11-07 | 1990-07-03 | Pfizer Inc. | Heterocyclic oxophthalazinyl acetic acids |
| DE3684410D1 (en) | 1985-11-07 | 1992-04-23 | Pfizer | HETEROCYCLIC OXOPHTHALAZINYL ACETIC ACID. |
| US4960785A (en) * | 1988-12-16 | 1990-10-02 | Pfizer Inc. | Indolinone derivatives |
| WO1993012786A1 (en) | 1986-07-10 | 1993-07-08 | Howard Harry R Jr | Indolinone derivatives |
| US4868301A (en) | 1987-06-09 | 1989-09-19 | Pfizer Inc. | Processes and intermediates for the preparation of oxophthalazinyl acetic acids having benzothiazole or other heterocyclic side chains |
| US5064852A (en) * | 1988-12-16 | 1991-11-12 | Pfizer Inc. | Indolinone derivatives |
| US4996204A (en) | 1989-05-11 | 1991-02-26 | Pfizer Inc. | Pyrido[2,3-d]pyridazinones as aldose reductase inhibitors |
| FR2647676A1 (en) | 1989-06-05 | 1990-12-07 | Union Pharma Scient Appl | New pyridazinone derivatives, processes for preparing them and medicaments containing them which are useful, in particular, as aldose reductase inhibitors |
| GB8916774D0 (en) * | 1989-07-21 | 1989-09-06 | Bayer Ag | New indole derivatives,a process for their preparation and their use in medicaments |
| WO1991009019A1 (en) | 1989-12-15 | 1991-06-27 | Pfizer Inc. | Substituted oxophthalazinyl acetic acids and analogs thereof |
| US5312829A (en) * | 1990-05-21 | 1994-05-17 | Fujisawa Pharmaceutical Co., Ltd. | Indole derivatives |
| US5236945A (en) | 1990-06-11 | 1993-08-17 | Pfizer Inc. | 1H-indazole-3-acetic acids as aldose reductase inhibitors |
| US5116753A (en) * | 1991-07-30 | 1992-05-26 | The Salk Institute For Biological Studies | Maintenance of pancreatic islets |
| GB9122590D0 (en) | 1991-10-24 | 1991-12-04 | Lilly Industries Ltd | Pharmaceutical compounds |
| JP3195455B2 (en) | 1993-01-06 | 2001-08-06 | ウェルファイド株式会社 | Quinoline-3-acetic acid derivatives, their production and use |
| US5391551A (en) * | 1993-05-10 | 1995-02-21 | Pfizer Inc. | Method of lowering blood lipid levels |
| AU7634694A (en) | 1993-08-20 | 1995-03-21 | University Of Medicine And Dentistry Of New Jersey | Bridged polycationic polymer-oligonucleotide conjugates and methods for preparing same |
| GB9317764D0 (en) * | 1993-08-26 | 1993-10-13 | Pfizer Ltd | Therapeutic compound |
| US5641800A (en) | 1994-07-21 | 1997-06-24 | Eli Lilly And Company | 1H-indole-1-functional sPLA2 inhibitors |
| TW401301B (en) * | 1994-10-07 | 2000-08-11 | Takeda Chemical Industries Ltd | Antihypertriglyceridemic composition |
| US5700819A (en) | 1994-11-29 | 1997-12-23 | Grelan Pharmaceutical Co., Ltd. | 2-substituted benzothiazole derivatives and prophylactic and therapeutic agents for the treatment of diabetic complications |
| IL117208A0 (en) | 1995-02-23 | 1996-06-18 | Nissan Chemical Ind Ltd | Indole type thiazolidines |
| JPH09165371A (en) * | 1995-10-09 | 1997-06-24 | Sankyo Co Ltd | Medicine containing heterocyclic compound |
| SK7522001A3 (en) | 1998-03-31 | 2002-02-05 | Inst For Pharm Discovery Inc | Substituted indolealkanoic acids |
| TNSN99224A1 (en) * | 1998-12-01 | 2005-11-10 | Inst For Pharm Discovery Inc | METHODS OF REDUCING GLUCOSE AND TRIGLYCERIDE LEVELS IN SERUM AND FOR ANTIGENESIS SUPPRESSION USING INDOLEALKANOIC ACIDS |
| US6521659B2 (en) * | 2000-03-02 | 2003-02-18 | Institute For Pharmaceutical Discovery, Llc | Compositions containing a substituted indolealkanoic acid and an angiotensin converting enzyme inhibitor |
-
1999
- 1999-11-29 TN TNTNSN99224A patent/TNSN99224A1/en unknown
- 1999-12-01 CZ CZ20011864A patent/CZ20011864A3/en unknown
- 1999-12-01 AU AU21616/00A patent/AU770925B2/en not_active Ceased
- 1999-12-01 TR TR2001/01539T patent/TR200101539T2/en unknown
- 1999-12-01 SK SK735-2001A patent/SK7352001A3/en unknown
- 1999-12-01 MX MXPA02003118A patent/MXPA02003118A/en not_active IP Right Cessation
- 1999-12-01 JP JP2000584876A patent/JP2002531398A/en active Pending
- 1999-12-01 OA OA00100134A patent/OA12035A/en unknown
- 1999-12-01 AT AT99965955T patent/ATE265210T1/en not_active IP Right Cessation
- 1999-12-01 DZ DZ990253A patent/DZ2953A1/en active
- 1999-12-01 CA CA002385845A patent/CA2385845A1/en not_active Abandoned
- 1999-12-01 DE DE69916881T patent/DE69916881T2/en not_active Expired - Lifetime
- 1999-12-01 PL PL99349016A patent/PL349016A1/en not_active Application Discontinuation
- 1999-12-01 BR BR9915882-5A patent/BR9915882A/en not_active IP Right Cessation
- 1999-12-01 WO PCT/US1999/028483 patent/WO2000032180A2/en not_active Ceased
- 1999-12-01 CN CN99814023A patent/CN1368883A/en active Pending
- 1999-12-01 ID IDW00200101404A patent/ID30037A/en unknown
- 1999-12-01 HK HK02107989.6A patent/HK1046372A1/en unknown
- 1999-12-01 EE EEP200100296A patent/EE200100296A/en unknown
- 1999-12-01 HU HU0104953A patent/HUP0104953A3/en unknown
- 1999-12-01 AP APAP/P/2001/002146A patent/AP2001002146A0/en unknown
- 1999-12-01 EP EP99965955A patent/EP1135124B1/en not_active Expired - Lifetime
- 1999-12-01 US US09/452,252 patent/US6555568B1/en not_active Expired - Fee Related
- 1999-12-01 KR KR1020017006865A patent/KR20010086075A/en not_active Withdrawn
- 1999-12-01 YU YU40101A patent/YU40101A/en unknown
- 1999-12-01 IL IL14324799A patent/IL143247A0/en unknown
-
2000
- 2000-02-01 TW TW088120912A patent/TW584560B/en active
-
2001
- 2001-05-21 ZA ZA200104126A patent/ZA200104126B/en unknown
- 2001-05-22 BG BG105531A patent/BG105531A/en unknown
- 2001-05-31 NO NO20012690A patent/NO20012690L/en not_active Application Discontinuation
-
2003
- 2003-03-26 US US10/397,140 patent/US6964980B2/en not_active Expired - Fee Related
-
2005
- 2005-11-15 US US11/274,583 patent/US20060074114A1/en not_active Abandoned
-
2010
- 2010-08-30 US US12/871,304 patent/US20100324105A1/en not_active Abandoned
-
2011
- 2011-11-22 US US13/302,906 patent/US20120065203A1/en not_active Abandoned
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6964980B2 (en) | Method of reducing serum glucose and triglyceride levels and for inhibiting angiogenesis using substitute indolealkanoic acids | |
| US7659269B2 (en) | Substituted indolealkanoic acids | |
| US6521659B2 (en) | Compositions containing a substituted indolealkanoic acid and an angiotensin converting enzyme inhibitor | |
| US20010044437A1 (en) | Methods for reducing uric acid levels |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |