US20120058902A1 - Method of measuring adaptive immunity - Google Patents
Method of measuring adaptive immunity Download PDFInfo
- Publication number
- US20120058902A1 US20120058902A1 US13/217,126 US201113217126A US2012058902A1 US 20120058902 A1 US20120058902 A1 US 20120058902A1 US 201113217126 A US201113217126 A US 201113217126A US 2012058902 A1 US2012058902 A1 US 2012058902A1
- Authority
- US
- United States
- Prior art keywords
- segment
- encoding
- tcr
- sequence
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
- C12Q1/6874—Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6804—Nucleic acid analysis using immunogens
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/16—Primer sets for multiplex assays
Definitions
- What is described is a method to measure the adaptive immunity of a patient by analyzing the diversity of T cell receptor genes or antibody genes using large scale sequencing of nucleic acid extracted from adaptive immune system cells.
- the adaptive immune system protects higher organisms against infections and other clinical insults attributable to foreign substances using adaptive immune receptors, antigen-specific recognition proteins that are expressed by hematopoietic cells of the lymphoid lineage and that are capable of distinguishing self from non-self molecules in the host.
- B lymphocytes mature to express antibodies (immunoglobulins, Igs) that occur as heterodimers of a heavy (H) a light (L) chain polypeptide, while T lymphocytes express heterodimeric T cell receptors (TCR).
- Immunocompetence is the ability of the body to produce a normal immune response (i.e., antibody production and/or cell-mediated immunity) following exposure to a pathogen, which might be a live organism (such as a bacterium or fungus), a virus, or specific antigenic components isolated from a pathogen and introduced in a vaccine. Immunocompetence is the opposite of immunodeficiency or immuno-incompetent or immunocompromised.
- immunocompetence means that a B cell or T cell is mature and can recognize antigens and allow a person to mount an immune response.
- Immunocompetence depends on the ability of the adaptive immune system to mount an immune response specific for any potential foreign antigens, using the highly polymorphic receptors encoded by B cells (immunoglobulins, Igs) and T cells (T cell receptors, TCRs).
- B cells immunoglobulins, Igs
- T cells T cell receptors, TCRs
- Igs expressed by B cells are proteins consisting of four polypeptide chains, two heavy chains (H chains) and two light chains (L chains), forming an H 2 L 2 structure.
- Each pair of H and L chains contains a hypervariable domain, consisting of a light chain variable (V L ) and a heavy chain variable (V H ) region, and a constant domain.
- the H chains of Igs are of several types, ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ .
- the diversity of Igs within an individual is mainly determined by the hypervariable domain.
- the V domain of H chains is created by the combinatorial joining of three types of germline gene segments, the V H , D H , and J H segments.
- Hypervariable domain sequence diversity is further increased by independent addition and deletion of nucleotides at the V H -D H , D H -J H , and V H -J H junctions during the process of Ig gene rearrangement. In this respect, immunocompetence is reflected in the diversity of Igs.
- TCRs expressed by ⁇ T cells are proteins consisting of two transmembrane polypeptide chains ( ⁇ and ⁇ ), expressed from the TCRA and TCRB genes, respectively. Similar TCR proteins are expressed in gamma-delta T cells, from the TCRG and TCRD loci. Each TCR peptide contains variable complementarity determining regions (CDRs), as well as framework regions (FRs) and a constant region.
- CDRs variable complementarity determining regions
- FRs framework regions
- the sequence diversity of ⁇ T cells is largely determined by the amino acid sequence of the third complementarity-determining region (CDR3) loops of the ⁇ and ⁇ chain variable domains, which diversity is a result of recombination between variable (V ⁇ ), diversity (D ⁇ ), and joining (J ⁇ ) gene segments in the ⁇ chain locus, and between analogous V ⁇ , and J ⁇ gene segments in the ⁇ chain locus, respectively.
- CDR3 third complementarity-determining region
- CDR3 sequence diversity is further increased by independent addition and deletion of nucleotides at the V ⁇ -D ⁇ , D ⁇ -J ⁇ , and V ⁇ -J ⁇ junctions during the process of TCR gene rearrangement.
- immunocompetence is reflected in the diversity of TCRs.
- TCR ⁇ is distinctive from the ⁇ TCR in that it encodes a receptor that interacts closely with the innate immune system.
- TCR ⁇ is expressed early in development, has specialized anatomical distribution, has unique pathogen and small-molecule specificities, and has a broad spectrum of innate and adaptive cellular interactions.
- a biased pattern of TCR ⁇ V and J segment expression is established early in ontogeny as the restricted subsets of TCR ⁇ cells populate the mouth, skin, gut, vagina, and lungs prenatally. Consequently, the diverse TCR ⁇ repertoire in adult tissues is the result of extensive peripheral expansion following stimulation by environmental exposure to pathogens and toxic molecules. Therefore, measurement of the TCR ⁇ diversity in the adult is a proxy to the history of environmental exposure.
- the present invention provides a composition
- a composition comprising (a) a plurality of V-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding a human T cell receptor (TCR) V-region polypeptide, wherein each V-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one functional TCR V ⁇ -encoding gene segment and wherein the plurality of V-segment primers specifically hybridize to substantially all functional TCR V ⁇ -encoding gene segments that are present in a sample that comprises T cells from a human subject; and (b) a plurality of J-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding a human T cell receptor (TCR) J-region polypeptide, wherein each J-segment primer comprises a nucle
- each amplified rearranged DNA molecule in the multiplicity of amplified rearranged DNA molecules is less than 600 nucleotides in length.
- each functional TCR V ⁇ -encoding gene segment comprises a V gene recombination signal sequence (RSS) and each functional TCR J ⁇ -encoding gene segment comprises a J gene RSS, and wherein each amplified rearranged DNA molecule comprises (i) at least 40 contiguous nucleotides of a sense strand of the TCR V ⁇ -encoding gene segment, said at least 40 contiguous nucleotides being situated 5′ to the V gene RSS and (ii) at least 30 contiguous nucleotides of a sense strand of the TCR J ⁇ -encoding gene segment, said at least 30 contiguous nucleotides being situated 3′ to the J gene RSS.
- RSS V gene recombination signal sequence
- V-segment oligonucleotide primers comprise one or more of the nucleotide sequences set forth in SEQ ID NOS:601-618.
- the J-segment oligonucleotide primers comprise one or more of the nucleotide sequences set forth in SEQ ID NOS:595-600 and 493-496.
- either or both of (i) the V-segment oligonucleotide primers comprise one or a plurality of oligonucleotides that exhibit at least 90% sequence identity to one or more of the nucleotide sequences set forth in SEQ ID NOS:601-618, and (ii) the J-segment oligonucleotide primers comprise one or a plurality of oligonucleotides that exhibit at least 90% sequence identity to one or more of the nucleotide sequences set forth in SEQ ID NOS:595-600 and 493-496.
- either or both of (i) the V-segment oligonucleotide primers comprise one or a plurality of oligonucleotides that exhibit at least 95% sequence identity to one or more of the nucleotide sequences set forth in SEQ ID NOS:601-618 and (ii) the J-segment oligonucleotide primers comprise one or a plurality of oligonucleotides that exhibit at least 95% sequence identity to one or more of the nucleotide sequences set forth in SEQ ID NOS:595-600 and 493-496.
- diversity of the TCR ⁇ CDR3-encoding region is quantifiable by sequencing the multiplicity of amplified rearranged DNA molecules.
- each V-segment oligonucleotide primer has a 5′ end that is modified with a universal forward primer sequence that is compatible with a DNA sequencer
- each J-segment oligonucleotide primer has a 5′ end that is modified with a universal reverse primer sequence that is compatible with a DNA sequencer.
- the universal forward primer sequence is set forth in SEQ ID NO:497 and the universal reverse primer sequence is set forth in SEQ ID NO:498.
- either or both of (i) the V-segment oligonucleotide primers comprise one or more of the nucleotide sequences set forth in SEQ ID NOS:485-488 and 497, and (ii) the J-segment oligonucleotide primers comprise one or more of the nucleotide sequences set forth in SEQ ID NOS:489-496 and 498.
- a method for quantifying TCR ⁇ CDR3-encoding region diversity in a population of T cells comprising (a) amplifying DNA extracted from a biological sample that comprises T cells, in a multiplex polymerase chain reaction (PCR) that comprises (i) a plurality of V-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding a human T cell receptor (TCR) V-region polypeptide, wherein each V-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one functional TCR V ⁇ -encoding gene segment and wherein the plurality of V-segment primers specifically hybridize to substantially all functional TCR V ⁇ -encoding gene segments that are present in the sample, and (ii) a plurality of J-segment oligonucleotide primers that are each independently capable of specifically hybridizing to
- composition comprising (a) a plurality of V-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding a human immunoglobulin heavy chain (IGH) V-region polypeptide, wherein each V-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one functional IGH V H -encoding gene segment and wherein the plurality of V-segment primers specifically hybridize to substantially all functional IGH V H -encoding gene segments that are present in a sample that comprises B cells from a human subject; and (b) a plurality of J-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding a human immunoglobulin heavy chain (IGH) J-region polypeptide, wherein each J-segment primer comprises
- each functional IGH VH-encoding gene segment comprises a V gene and each functional IGH JH-encoding gene segment comprises a J gene
- each amplified rearranged DNA molecule comprises (i) at least 40 contiguous nucleotides derived from the IGH VH-encoding gene segment, said at least 40 contiguous nucleotides being situated 5′ to the V gene RSS and (ii) at least 30 contiguous nucleotides of the IGH JH-encoding gene segment, said at least 30 contiguous nucleotides being situated 3′ to the J gene RSS.
- V-segment oligonucleotide primers comprise one or more of the nucleotide sequences set forth in SEQ ID NOS:443-451, 505-588 and 635-925.
- the J-segment oligonucleotide primers comprise one or more of the nucleotide sequences set forth in SEQ ID NOS:421-431, 452-467, 499-504 and 619-634.
- either or both of (i) the V-segment oligonucleotide primers comprise one or a plurality of oligonucleotides that exhibit at least 90% sequence identity to one or more of the nucleotide sequences set forth in SEQ ID NOS:443-451, 505-588 and 635-925, and (ii) the J-segment oligonucleotide primers comprise one or a plurality of oligonucleotides that exhibit at least 90% sequence identity to one or more of the nucleotide sequences set forth in SEQ ID NOS:421-431, 452-467, 499-504 and 619-634 In certain embodiments either or both of (i) the V-segment oligonucleotide primers comprise one or a plurality of oligonucleotides that exhibit at least 95% sequence identity to one or more of the nucleotide sequences set forth in SEQ ID NOS:443-451, 505-588
- each V-segment oligonucleotide primer has a 5′ end that is modified with a universal forward primer sequence that is compatible with a DNA sequencer
- each J-segment oligonucleotide primer has a 5′ end that is modified with a universal reverse primer sequence that is compatible with a DNA sequencer.
- the universal forward primer sequence is set forth in SEQ ID NO:497 and the universal reverse primer sequence is set forth in SEQ ID NO:498.
- either or both of (i) the V-segment oligonucleotide primers comprise one or more of the nucleotide sequences set forth in SEQ ID NOS:497, 505-588 and 635-925 and, and (ii) the J-segment oligonucleotide primers comprise one or more of the nucleotide sequences set forth in SEQ ID NOS:498, 499-504 and 619-634.
- a method for quantifying IGH CDR3-encoding region diversity in a population of B cells comprising (a) amplifying DNA extracted from a biological sample that comprises B cells, in a multiplex polymerase chain reaction (PCR) that comprises (i) a plurality of variable (V)-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding a human immunoglobulin heavy chain (IGH) V-region polypeptide, wherein each V-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one functional IGH V-encoding gene segment and wherein the plurality of V-segment primers specifically hybridize to substantially all functional IGH V-encoding gene segments that are present in the sample, and (ii) a plurality of J-segment oligonucleotide primers that are each independently capable of specifically
- composition comprising (a) a plurality of V-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding a human T cell receptor (TCR) V-region polypeptide, wherein each V-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one functional TCR V ⁇ -encoding gene segment and wherein the plurality of V-segment primers specifically hybridize to substantially all functional TCR V ⁇ -encoding gene segments that are present in a sample that comprises T cells from a human subject; and (b) a plurality of J-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding a human T cell receptor (TCR) J-region polypeptide, wherein each J-segment primer comprises a nucleo
- each amplified rearranged DNA molecule in the multiplicity of amplified rearranged DNA molecules is less than 600 nucleotides in length.
- each functional TCR V ⁇ -encoding gene segment comprises a V gene recombination signal sequence (RSS) and each functional TCR J ⁇ -encoding gene segment comprises a J gene RSS, and wherein each amplified rearranged DNA molecule comprises (i) at least 40 contiguous nucleotides of a sense strand of the TCR V ⁇ -encoding gene segment, said at least 40 contiguous nucleotides being situated 5′ to the V gene RSS and (ii) at least 30 contiguous nucleotides of a sense strand of the TCR J ⁇ -encoding gene segment, said at least 30 contiguous nucleotides being situated 3′ to the J gene RSS.
- RSS V gene recombination signal sequence
- V-segment oligonucleotide primers comprise one or more of the nucleotide sequences set forth in SEQ ID NOS:1-45 and 58-102.
- the J-segment oligonucleotide primers comprise one or more of the nucleotide sequences set forth in SEQ ID NOS:46-57, 103-113, 468 and 483-484.
- either or both of (i) the V-segment oligonucleotide primers comprise one or a plurality of oligonucleotides that exhibit at least 90% sequence identity to one or more of the nucleotide sequences set forth in SEQ ID NOS: 1-45 and 58-102, and (ii) the J-segment oligonucleotide primers comprise one or a plurality of oligonucleotides that exhibit at least 90% sequence identity to one or more of the nucleotide sequences set forth in SEQ ID NOS: 46-57, 103-113, 468 and 483-484.
- either or both of (i) the V-segment oligonucleotide primers comprise one or a plurality of oligonucleotides that exhibit at least 95% sequence identity to one or more of the nucleotide sequences set forth in SEQ ID NOS: 1-45 and 58-102, and (ii) the J-segment oligonucleotide primers comprise one or a plurality of oligonucleotides that exhibit at least 95% sequence identity to one or more of the nucleotide sequences set forth in SEQ ID NOS: 46-57, 103-113, 468 and 483-484.
- each V-segment oligonucleotide primer has a 5′ end that is modified with a universal forward primer sequence that is compatible with a DNA sequencer
- each J-segment oligonucleotide primer has a 5′ end that is modified with a universal reverse primer sequence that is compatible with a DNA sequencer.
- the universal forward primer sequence is set forth in SEQ ID NO:497 and the universal reverse primer sequence is set forth in SEQ ID NO:498.
- either or both of (i) the V-segment oligonucleotide primer comprises the nucleotide sequence set forth in SEQ ID NOS: 497, and (ii) the J-segment oligonucleotide primers comprise one or more of the nucleotide sequences set forth in SEQ ID NOS:470-482 and 498.
- each functional TCR J ⁇ -encoding gene segment comprises a J gene RSS and each J-segment oligonucleotide primer independently contains a unique four-base tag at a position that is complementary to nucleotide positions +11 through +14 located 3′ of the RSS on a sense strand of the TCR J ⁇ -encoding gene segment.
- a method for quantifying TCR CDR3-encoding region diversity in a population of T cells comprising (a) amplifying DNA extracted from a biological sample that comprises T cells, in a multiplex polymerase chain reaction (PCR) that comprises (i) a plurality of V-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding a human T cell receptor (TCR) V-region polypeptide, wherein each V-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one functional TCR V ⁇ -encoding gene segment and wherein the plurality of V-segment primers specifically hybridize to substantially all functional TCR V ⁇ -encoding gene segments that are present in the sample, and (ii) a plurality of J-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least
- composition comprising a multiplicity of V-segment primers, wherein each primer comprises a sequence that is complementary to a single functional V segment or a small family of V segments; and a multiplicity of J-segment primers, wherein each primer comprises a sequence that is complementary to a J segment; wherein the V segment and J-segment primers permit amplification of a TCR CDR3 region by a multiplex polymerase chain reaction (PCR) to produce a multiplicity of amplified DNA molecules sufficient to quantify the diversity of the TCR genes.
- PCR multiplex polymerase chain reaction
- each V-segment primer comprises a sequence that is complementary to a single V ⁇ segment
- each J segment primer comprises a sequence that is complementary to a J ⁇ segment
- V segment and J-segment primers permit amplification of a TCR ⁇ CDR3 region.
- each V-segment primer comprises a sequence that is complementary to a single functional V ⁇ segment
- each J segment primer comprises a sequence that is complementary to a J ⁇ segment
- V segment and J-segment primers permit amplification of a TCR ⁇ CDR3 region.
- V segment primers hybridize with a conserved segment, and have similar annealing strength.
- V segment primer is anchored at position ⁇ 43 in the V ⁇ segment relative to the recombination signal sequence (RSS).
- RSS recombination signal sequence
- multiplicity of V segment primers consist of at least 45 primers specific to 45 different V ⁇ genes.
- the V segment primers have sequences that are selected from the group consisting of SEQ ID NOS:1-45.
- the V segment primers have sequences that are selected from the group consisting of SEQ ID NOS:58-102.
- Another embodiment is wherein there is a V segment primer for each V ⁇ segment.
- the composition wherein the J segment primers hybridize with a conserved framework region element of the J ⁇ segment, and have similar annealing strength.
- the multiplicity of J segment primers consist of at least thirteen primers specific to thirteen different J ⁇ genes, and in certain embodiments the J segment primers have sequences that are selected from SEQ ID NOS:46-57. In another embodiment the J segment primers have sequences that are selected from SEQ ID NOS:102-113. Another embodiment is wherein there is a J segment primer for each J ⁇ segment. Another embodiment is wherein all J segment primers anneal to the same conserved motif.
- composition wherein the amplified DNA molecule starts from said conserved motif and amplifies adequate sequence to diagnostically identify the J segment and includes the CDR3 junction and extends into the V segment.
- amplified J ⁇ gene segments each have a unique four base tag at positions +11 through +14 downstream of the RSS site.
- a composition further comprising a set of sequencing oligonucleotides, wherein the sequencing oligonucleotides hybridize to a regions within the amplified DNA molecules.
- the sequencing oligonucleotides hybridize adjacent to a four base tag within the amplified J ⁇ gene segments at positions +11 through +14 downstream of the RSS site.
- the sequencing oligonucleotides are selected from the group consisting of SEQ ID NOS:58-70.
- the V-segment or J-segment are selected to contain a sequence error-correction by merger of closely related sequences.
- Another embodiment is the composition, further comprising a universal C segment primer for generating cDNA from mRNA.
- composition comprising a multiplicity of V segment primers, wherein each V segment primer comprises a sequence that is complementary to a single functional V segment or a small family of V segments; and a multiplicity of J segment primers, wherein each J segment primer comprises a sequence that is complementary to a J segment; wherein the V segment and J segment primers permit amplification of the TCRG CDR3 region by a multiplex polymerase chain reaction (PCR) to produce a multiplicity of amplified DNA molecules sufficient to quantify the diversity of antibody heavy chain genes.
- PCR multiplex polymerase chain reaction
- composition comprising a multiplicity of V segment primers, wherein each V segment primer comprises a sequence that is complementary to a single functional V segment or a small family of V segments; and a multiplicity of J segment primers, wherein each J segment primer comprises a sequence that is complementary to a J segment; wherein the V segment and J segment primers permit amplification of antibody heavy chain (IGH, Igh or IgH) CDR3 region by a multiplex polymerase chain reaction (PCR) to produce a multiplicity of amplified DNA molecules sufficient to quantify the diversity of antibody heavy chain genes.
- V segment primers comprises a sequence that is complementary to a single functional V segment or a small family of V segments
- J segment primers comprises a sequence that is complementary to a J segment
- the V segment and J segment primers permit amplification of antibody heavy chain (IGH, Igh or IgH) CDR3 region by a multiplex polymerase chain reaction (PCR) to produce a multiplicity of amplified DNA molecules sufficient to quantify the diversity of antibody
- composition comprising a multiplicity of V segment primers, wherein each V segment primer comprises a sequence that is complementary to a single functional V segment or a small family of V segments; and a multiplicity of J segment primers, wherein each J segment primer comprises a sequence that is complementary to a J segment; wherein the V segment and J segment primers permit amplification of antibody light chain (IGL) V L region by a multiplex polymerase chain reaction (PCR) to produce a multiplicity of amplified DNA molecules sufficient to quantify the diversity of antibody light chain genes.
- V segment primers comprises a sequence that is complementary to a single functional V segment or a small family of V segments
- J segment primers comprises a sequence that is complementary to a J segment
- a method comprising selecting a multiplicity of V segment primers, wherein each V segment primer comprises a sequence that is complementary to a single functional V segment or a small family of V segments; and selecting a multiplicity of J segment primers, wherein each J segment primer comprises a sequence that is complementary to a J segment; combining the V segment and J segment primers with a sample of genomic DNA to permit amplification of a CDR3 region by a multiplex polymerase chain reaction (PCR) to produce a multiplicity of amplified DNA molecules sufficient to quantify the diversity of the TCR genes.
- PCR multiplex polymerase chain reaction
- each V segment primer comprises a sequence that is complementary to a single functional V ⁇ segment
- each J segment primer comprises a sequence that is complementary to a J ⁇ segment
- combining the V segment and J segment primers with a sample of genomic DNA permits amplification of a TCR CDR3 region by a multiplex polymerase chain reaction (PCR) and produces a multiplicity of amplified DNA molecules.
- PCR multiplex polymerase chain reaction
- each V segment primer comprises a sequence that is complementary to a single functional V ⁇ segment
- each J segment primer comprises a sequence that is complementary to a J ⁇ segment
- combining the V segment and J segment primers with a sample of genomic DNA permits amplification of a TCR CDR3 region by a multiplex polymerase chain reaction (PCR) and produces a multiplicity of amplified DNA molecules.
- PCR multiplex polymerase chain reaction
- Another embodiment is the method further comprising a step of sequencing the amplified DNA molecules. Another embodiment is wherein the sequencing step utilizes a set of sequencing oligonucleotides that hybridize to regions within the amplified DNA molecules. Another embodiment is the method, further comprising a step of calculating the total diversity of TCR ⁇ CDR3 sequences among the amplified DNA molecules. Another embodiment is wherein the method shows that the total diversity of a normal human subject is greater than 1*10 6 sequences, greater than 2*10 6 sequences, or greater than 3*10 6 sequences.
- a method of diagnosing immunodeficiency in a human patient comprising measuring the diversity of TCR CDR3 sequences of the patient, and comparing the diversity of the subject to the diversity obtained from a normal subject.
- measuring the diversity of TCR sequences comprises the steps of selecting a multiplicity of V segment primers, wherein each V segment primer comprises a sequence that is complementary to a single functional V segment or a small family of V segments; and selecting a multiplicity of J segment primers, wherein each J segment primer comprises a sequence that is complementary to a J segment; combining the V segment and J segment primers with a sample of genomic DNA to permit amplification of a TCR CDR3 region by a multiplex polymerase chain reaction (PCR) to produce a multiplicity of amplified DNA molecules; sequencing the amplified DNA molecules; calculating the total diversity of TCR CDR3 sequences among the amplified DNA molecules.
- PCR multiplex polymerase chain reaction
- An embodiment of the invention is the method, wherein comparing the diversity is determined by calculating using the following equation:
- G( ⁇ ) is the empirical distribution function of the parameters ⁇ I , . . . , ⁇ S , n x is the number of clonotypes sequenced exactly x times, and
- E ⁇ ( n x ) S ⁇ ⁇ 0 ⁇ ⁇ ( ⁇ - ⁇ ⁇ ⁇ x x ! ) ⁇ ⁇ G ⁇ ( ⁇ ) .
- Another embodiment is the method wherein the diversity of at least two samples of genomic DNA are compared. Another embodiment is wherein one sample of genomic DNA is from a patient and the other sample is from a normal subject. Another embodiment is wherein one sample of genomic DNA is from a patient before a therapeutic treatment and the other sample is from the patient after treatment. Another embodiment is wherein the two samples of genomic DNA are from the same patient at different times during treatment. Another embodiment is wherein a disease is diagnosed based on the comparison of diversity among the samples of genomic DNA. Another embodiment is wherein the immunocompetence of a human patient is assessed by the comparison.
- FIG. 1A illustrates the rearrangement and sequencing strategy of the template region of TCR ⁇ (gamma) gene in a T cell, where V and J represent the combinatorial assortment of V and J segments and N represents the addition or deletion of random DNA sequence at the splice junctions. Arrows represent the flanking TCR ⁇ (gamma) V and J primers that amplify the gene region encoding the CDR3 region.
- the TRGJseq primers are used to sequence 60 bases of the CDR3 region, sufficient to identify the V, J segments and random N nucleotides that comprise the pathogen binding domain of the T cell receptor.
- FIG. 1B illustrates the rearrangement and sequencing strategy of the immunoglobulin heavy chain (IGH) gene in a mature B cell, where V, D and J represent the combinatorial assortment of V, D and J segments and N represents the insertion or deletion of random DNA sequence at the splice junctions. Arrows represent the flanking IGH V and J primers that amplify the IGH gene region encoding the CDR3 domain. The IGHJseq primers are used to sequence 100 bases of the CDR3 region, sufficient to identify the V, D, and J segments and random N nucleotides that comprise the pathogen binding domain of the immunoglobulin.
- IGH immunoglobulin heavy chain
- FIG. 2A shows the TCR gamma V-J usage in the peripheral blood of two donors.
- FIG. 2B shows the TCR gamma V-J usage in saliva.
- FIG. 3A shows the three dimensional representation of the IGHV and IGHJ usage in 28 million sequences from B cells.
- the V segments are listed on the X axis
- the J segments are listed on the Y axis
- the number of observations of each pairing are shown on the Z axis.
- FIG. 3B illustrates the lengths of the CDR3 sequences in all IGHV/IGHJ pairings.
- the CDR3 length is shown on the X axis
- the IGHJ segment is listed on the Y axis
- the number of observations is listed on Z axis.
- the present invention provides, in certain embodiments and as described herein, compositions and methods that are useful for characterizing large and structurally diverse populations of Adaptive Immune Receptors, such as immunoglobulins (Ig) and/or T cell receptors (TCR) that may be present in a biological sample from a subject or biological source, including a human subject.
- Adaptive Immune Receptors such as immunoglobulins (Ig) and/or T cell receptors (TCR) that may be present in a biological sample from a subject or biological source, including a human subject.
- TCR T cell receptors
- Disclosed herein are unexpectedly advantageous approaches by which partial DNA coding sequences can be readily determined for substantially all Adaptive Immune Receptors (TCR and/or Ig) that may be present in a biological sample, and from which partial sequences the diversity of Adaptive Immune Receptors in the sample can be quantitatively and qualitatively determined.
- surprising adaptive immune receptor structural diversity can be characterized at the molecular and organismal levels, by determining and quantifying productively rearranged DNA sequences that encode TCR or Ig complementarity determining region-3 (CDR3), such as the CDR3 of a TCR ⁇ or a TCR ⁇ polypeptide chain or the CDR3 of an immunoglobulin heavy chain (referred to herein as IGH, IgH or Igh) polypeptide, along with V-region and/or J-region encoding sequences adjacent to the CDR3 encoding sequences.
- CDR3 TCR or Ig complementarity determining region-3
- the present embodiments relate in pertinent part to a strategy according to which coding sequences for TCR and/or Ig CDR3-containing regions may be determined for substantially all productively rearranged Adaptive Immune Receptor genes in a sample, such as genes that have been somatically rearranged to promote expression of functional T cell receptors and immunoglobulins.
- compositions comprise a plurality of V-segment and J-segment primers that are capable of promoting amplification in a multiplex polymerase chain reaction (PCR) of substantially all productively rearranged adaptive immune receptor CDR3-encoding regions in the sample for a given class of such receptors (e.g., TCR ⁇ , TCR ⁇ , IgH, etc.), to produce a multiplicity of amplified rearranged DNA molecules from a population of T cells (for TCR) or B cells (for Ig) in the sample.
- PCR polymerase chain reaction
- Primers are designed in a manner that provides for the multiplicity of amplified rearranged DNA molecules to be sufficient, upon determination of every DNA sequence that has been amplified, to quantify diversity of the TCR or Ig CDR3-encoding region in the population of T or B cells.
- primers are designed so that each amplified rearranged DNA molecule in the multiplicity of amplified rearranged DNA molecules is less than 600 nucleotides in length, thereby excluding amplification products from non-rearranged adaptive immune receptor loci.
- compositions and methods relate to substantially all (e.g., greater than 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%) of these known and readily detectable adaptive immune receptor V-, D- and J-region encoding gene segments.
- the TCR and Ig genes can generate millions of distinct proteins via somatic mutation. Because of this diversity-generating mechanism, the hypervariable complementarity determining regions of these genes can encode sequences that can interact with millions of ligands, and these regions are linked to a constant region that can transmit a signal to the cell indicating binding of the protein's cognate ligand.
- the adaptive immune system employs several strategies to generate a repertoire of T- and B-cell antigen receptors with sufficient diversity to recognize the universe of potential pathogens.
- ⁇ and ⁇ T cells which primarily recognize peptide antigens presented by MHC molecules, most of this receptor diversity is contained within the third complementarity-determining region (CDR3) of the T cell receptor (TCR) ⁇ and ⁇ chains (or ⁇ and ⁇ chains).
- CDR3 complementarity-determining region
- TCR and Ig CDR3 diversity that is based on single molecule DNA sequencing, and use this approach to sequence the CDR3 regions in millions of rearranged TCR and Ig genes of T and B cells isolated from peripheral blood and other tissues and bodily fluids such as, but not limited to, skin, colon, and saliva.
- TCRs T cell receptors
- ⁇ T cells which primarily recognize peptide antigens presented by major histocompatibility complex (MHC) class I and II molecules, are heterodimeric proteins consisting of two transmembrane polypeptide chains ( ⁇ and ⁇ ), each containing one variable and one constant domain.
- MHC major histocompatibility complex
- the peptide specificity of ⁇ T cells is in large part determined by the amino acid sequence encoded in the third complementarity-determining region (CDR3) loops of the ⁇ and ⁇ chain variable domains.
- CDR3 regions of the ⁇ and ⁇ chains are formed by rearrangement of (i.e., such that the genes are no longer in their germline configuration) and recombination between noncontiguous variable (V ⁇ ), diversity (D ⁇ ), and joining (J ⁇ ) gene segments in the ⁇ chain locus, and between analogous V ⁇ and J ⁇ gene segments in the ⁇ chain locus, respectively.
- V ⁇ noncontiguous variable
- D ⁇ diversity
- J ⁇ joining gene segments in the ⁇ chain locus
- the immunoglobulin genes are similarly assembled by rearrangement and recombination via splicing one of each of redundant V, D and J gene segments, where the pathogen-binding CDR3 domain of the antibody is encoded by the V(D)J sequence and hypervariable splice junctions.
- Functional TCR and Ig encoding genes thus include those in which the germline DNA has been rearranged so that the relative positions of V, D and J encoding segments are no longer those found in germline DNA, whereby the recombination events that produce the rearranged adaptive immune receptor-(TCR- or Ig-) encoding DNA result in rearranged loci that are capable of productive TCR or Ig expression.
- a functional TCR is expressed on a T cell surface, and is capable of TCR functions such as antigen recognition and binding and/or T cell activation signal transduction, and is encoded by rearranged functional TCR encoding genes which may comprise TCR V region-encoding and TCR J region-encoding gene segments.
- a functional Ig may be expressed on a B cell surface or secreted by cells of the B cell lineage (e.g., B cells or plasma cells), and is capable of Ig functions such as antigen recognition and binding and/or Ig effector functions, and is encoded by rearranged functional Ig encoding genes which may comprise Ig V region-encoding and Ig J region-encoding gene segments.
- PCR-based methods have been previously developed to survey the diversity of the TCR and Ig repertoires in a sample, however these methods are limited in that they only capture single TCR sequences, and therefore are not capable of measuring or estimating the breadth and depth of the TCR and Ig repertoires in the sample.
- These previously described methodologies are limited because the copy numbers for any specifically identified sequences cannot be applied to quantification of the whole population of TCR or Ig repertoires. In other words, the small subset of a population of B or T cells that is sampled by these methods is insufficient to extrapolate to the whole cell population with any confidence.
- a 30-54 bp interval in the molecules in each cluster is sequenced using reversible dye-termination chemistry.
- appropriate selection of PCR oligonucleotide primers may permit simultaneous sequencing, from amplified genomic DNA, of the independently rearranged TCR or Ig CDR3-encoding regions carried in millions of T or B cells. This approach enables direct sequencing of a significant fraction of the uniquely rearranged TCR and Ig CDR3 regions in populations of T or B cells, which thereby permits estimation of the relative frequency of each CDR3 sequence in the population.
- TCR or Ig CDR3 diversity in the entire T or B cell repertoire being examined can be estimated using direct measurements of the number of unique TCR or Ig CDR3 sequences observed in blood samples containing millions of ⁇ or ⁇ T cells or B cells.
- results described herein in the Examples identify a lower bound for TCR ⁇ CDR3 diversity in the CD4 + and CD8 + T cell compartments that is several fold higher than previous estimates.
- results herein demonstrate that there are at least 1.5 ⁇ 10 6 unique TCR ⁇ CDR3 sequences in the CD45RO + compartment of antigen-experienced T-cells, a large proportion of which are present at low relative frequency. The existence of such a diverse population of TCR ⁇ CDR3 sequences in antigen-experienced cells has not been previously demonstrated.
- the diverse pool of TCR ⁇ chains in each healthy individual is a sample from an estimated theoretical space of greater than 10 11 possible sequences.
- the realized set of rearranged of TCRs is not evenly sampled from this theoretical space.
- Different V ⁇ s and J ⁇ s are found with over a thousand-fold frequency difference.
- the insertion rates of nucleotides are strongly biased.
- This reduced space of realized TCR ⁇ sequences leads to the possibility of shared ⁇ chains between people.
- a TCR ⁇ library was amplified and sequenced from saliva. As described in the Examples, results using the methods provided herein showed that the V-J pairings in the saliva TCR ⁇ are distinct from the pattern observed in the blood, specifically a bias in pairings between V1-J1/2, V5-J1/2, and V11-JP1 suggesting the diversity of the TCR ⁇ repertoire in the peripheral tissues exposed to the environment could harbor signals that can be used to monitor a disease state such as an autoimmune disease or an environmentally induced disease.
- the present methods are also useful for determining diversity of T or B cell receptor in skin and other body tissues, such as oral, vaginal and intestinal mucosa.
- Results shown herein in the Examples indicate that the most common V-J pairing observed in skin was V9-JP, which is similar to blood and saliva.
- the V9-J1 pairing was also found at significant levels in skin, but was not observed in high levels in blood and saliva.
- the diversity of the TCR ⁇ sequences in colon was distinct from the other tissues that were examined, in that the most prevalent TCR ⁇ V segment observed in colon was the TCR ⁇ V10 segment, and more V-J combinations were observed in colon than in blood, skin, or saliva.
- the present disclosure provides in another embodiment methods for identifying a tissue-specific V-J usage bias in adaptive immune receptors in T cells (i.e., in TCR) or in B cells (e.g., in IgH).
- the present disclosure also provides methods for identifying a tissue-specific V-J usage bias associated with a disease of the tissue.
- the present disclosure provides methods for detecting disease by detecting tissue-specific V-J usage bias.
- V-J bias is meant a statistically significant difference in the usage of specific V segments, specific J segments, or specific V-J combinations between two individuals, or in different tissues within an individual.
- compositions and methods for identifying the CDR3-encoding sequences of substantially all productively rearranged TCR ⁇ , TCR ⁇ or IgH genes in a biological sample By providing compositions and methods for identifying the CDR3-encoding sequences of substantially all productively rearranged TCR ⁇ , TCR ⁇ or IgH genes in a biological sample, the frequency of usage of any particular TCR ⁇ (or TCR ⁇ or IgH) V region-encoding gene and/or of any particular TCR ⁇ (or TCR ⁇ or IgH) J region-encoding gene can be quantified.
- V-encoding and J-encoding genes are known for the human TCR ⁇ , TCR ⁇ and IgH loci, determination as described herein of the relative abundance of specific V- and J-encoding sequences in a sample permits, for the first time, accurate characterization of such quantitative biases in the rearrangement of particular V- and J-encoding genes.
- the assay technology uses two pools of primers to provide for a highly multiplexed PCR reaction.
- the first, “forward” pool e.g., by way of illustration and not limitation, V-segment oligonucleotide primers described herein may in certain preferred embodiments be used as “forward” primers when J-segment oligonucleotide primers are used as “reverse” primers according to commonly used PCR terminology, but the skilled person will appreciate that in certain other embodiments J-segment primers may be regarded as “forward” primers when used with V-segment “reverse” primers) includes an oligonucleotide primer that is specific to (e.g., having a nucleotide sequence complementary to a unique sequence region of) each V-region encoding segment (“V segment) in the respective TCR or Ig gene locus.
- primers targeting a highly conserved region are used, to simultaneously capture many V segments, thereby reducing the number of primers required in the multiplex PCR.
- the “reverse” pool primers anneal to a conserved sequence in the joining (“J”) segment.
- Each primer may be designed so that a respective amplified DNA segment is obtained that includes a sequence portion of sufficient length to identify each J segment unambiguously based on sequence differences amongst known J-region encoding gene segments in the human genome database, and also to include a sequence portion to which a J-segment-specific primer may anneal for resequencing.
- V- and J-segment-specific primers enables direct observation of a large fraction of the somatic rearrangements present in the adaptive immune receptor gene repertoire within an individual. This feature in turn enables rapid comparison of the TCR and/or Ig repertoires (i) in individuals having a particular disease, disorder, condition or other indication of interest (e.g., cancer, an autoimmune disease, an inflammatory disorder or other condition) with (ii) the TCR and/or Ig repertoires of control subjects who are free of such diseases, disorders conditions or indications.
- a particular disease, disorder, condition or other indication of interest e.g., cancer, an autoimmune disease, an inflammatory disorder or other condition
- the adaptive immune system can in theory generate an enormous diversity of T and B cell receptor CDR3 sequences—far more than are likely to be expressed in any one individual at any one time. Previous attempts to measure what fraction of this theoretical diversity is actually utilized in the adult ⁇ T cell repertoire, however, have not permitted accurate assessment of the diversity. What is described herein is the development of a novel approach to this question that is based on single molecule DNA sequencing, and in certain further embodiments, an analytic computational approach to estimation of repertoire diversity using diversity measurements in finite samples. The analysis demonstrated in the Examples herein show that the number of unique TCR ⁇ CDR3 sequences in the adult repertoire significantly exceeds previous estimates, which were based on exhaustive capillary sequencing of small segments of the repertoire.
- the TCR ⁇ chain diversity in the CD45RO ⁇ population (enriched for na ⁇ ve T cells) that was observed using the methods described herein was five-fold larger than previously reported.
- a major discovery is the number of unique TCR ⁇ CDR3 sequences expressed in antigen-experienced CD45RO + T cells—the results herein show that this number is between 10 and 20 times larger than expected based on previous results of others.
- the frequency distribution of CDR3 sequences in CD45RO + cells suggests that the T cell repertoire contains a large number of clones that have a small clone size.
- TCR sequences closer to germ line appear to be created at a relatively high frequency.
- TCR sequences close to germ line are shared between different people because the germ line sequence for the Vs, Ds, and Js are shared, modulo a small number of polymorphisms, among the human population.
- the T cell receptors expressed by mature ⁇ T cells are heterodimers whose two constituent chains are generated by independent rearrangement events of the TCR ⁇ and ⁇ chain variable loci.
- the ⁇ chain has less diversity than the ⁇ chain, so a higher fraction of ⁇ s are shared between individuals, and hundreds of exact TCR ⁇ receptors are shared between any pair of individuals.
- B cells and T cells can be obtained in a biological sample, such as from a variety of tissue and biological fluid samples including marrow, thymus, lymph glands, lymph nodes, peripheral tissues and blood, but peripheral blood is most easily accessed. Any peripheral tissue can be sampled for the presence of B and T cells and is therefore contemplated for use in the methods described herein.
- Tissues and biological fluids from which adaptive immune cells may be obtained include, but are not limited to skin, epithelial tissues, colon, spleen, a mucosal secretion, oral mucosa, intestinal mucosa, vaginal mucosa or a vaginal secretion, cervical tissue, ganglia, saliva, cerebrospinal fluid (CSF), bone marrow, cord blood, serum, serosal fluid, plasma, lymph, urine, ascites fluid, pleural fluid, pericardial fluid, peritoneal fluid, abdominal fluid, culture medium, conditioned culture medium or lavage fluid.
- adaptive immune cells may be isolated from an apheresis sample.
- Peripheral blood samples may be obtained by phlebotomy from subjects.
- Peripheral blood mononuclear cells PBMC are isolated by techniques known to those of skill in the art, e.g., by Ficoll-Hypaque® density gradient separation. In certain embodiments, whole PBMCs are used for analysis.
- kits for isolating different subpopulations of T and B cells include, but are not limited to subset selection immunomagnetic bead separation or flow immunocytometric cell sorting using antibodies specific for one or more of any of a variety of known T and B cell surface markers.
- Illustrative markers include, but are not limited to, one or a combination of CD2, CD3, CD4, CD8, CD14, CD19, CD20, CD25, CD28, CD45RO, CD45RA, CD54, CD62, CD62L, CDw137 (41BB), CD154, GITR, FoxP3, CD54, and CD28.
- cell surface markers such as CD2, CD3, CD4, CD8, CD14, CD19, CD20, CD45RA, and CD45RO may be used to determine T, B, and monocyte lineages and subpopulations in flow cytometry.
- forward light-scatter, side-scatter, and/or cell surface markers such as CD25, CD62L, CD54, CD137, CD154 may be used to determine activation state and functional properties of cells.
- Illustrative combinations useful in certain of the methods described herein may include CD8 + CD45RO + (memory cytotoxic T cells), CD4 + CD45RO + (memory T helper), CD8 + CD45RO ⁇ (CD8 + CD62L + CD45RA + (na ⁇ ve-like cytotoxic T cells); CD4 + CD25 + CD62L hi GITR + FoxP3 + (regulatory T cells).
- Illustrative antibodies for use in immunomagnetic cell separations or flow immunocytometric cell sorting include fluorescently labeled anti-human antibodies, e.g., CD4 FITC (clone M-T466, Miltenyi Biotec), CD8 PE (clone RPA-T8, BD Biosciences), CD45RO ECD (clone UCHL-1, Beckman Coulter), and CD45RO APC (clone UCHL-1, BD Biosciences). Staining of total PBMCs may be done with the appropriate combination of antibodies, followed by washing cells before analysis.
- fluorescently labeled anti-human antibodies e.g., CD4 FITC (clone M-T466, Miltenyi Biotec), CD8 PE (clone RPA-T8, BD Biosciences), CD45RO ECD (clone UCHL-1, Beckman Coulter), and CD45RO APC (clone UCHL-1, BD Biosciences).
- Lymphocyte subsets can be isolated by fluorescence activated cell sorting (FACS), e.g., by a BD FACSAriaTM cell-sorting system (BD Biosciences) and by analyzing results with FlowJoTM software (Treestar Inc.), and also by conceptually similar methods involving specific antibodies immobilized to surfaces or beads.
- FACS fluorescence activated cell sorting
- BD Biosciences BD Biosciences
- FlowJoTM software Telestar Inc.
- Total genomic DNA is extracted from cells using methods known in the art and/or commercially available kits, e.g., by using the QIAamp® DNA blood Mini Kit (QIAGEN®).
- the approximate mass of a single haploid genome is 3 pg.
- at least 100,000 to 200,000 cells are used for analysis of diversity, i.e., about 0.6 to 1.2 ⁇ g DNA from diploid T or B cells.
- the number of T cells can be estimated to be about 30% of total cells.
- the number of B cells can also be estimated to be about 30% of total cells.
- total nucleic acid can be isolated from cells, including both genomic DNA and mRNA. If diversity is to be measured from mRNA in the nucleic acid extract, the mRNA must be converted to cDNA prior to measurement. This can readily be done by methods of one of ordinary skill, for example, using reverse transcriptase according to known procedures.
- a multiplex PCR system is used to amplify rearranged adaptive immune cell loci from genomic DNA, preferably from a CDR3-encoding region.
- the CDR3-encoding region is amplified from a TCR ⁇ , TCR ⁇ , TCR ⁇ or TCR ⁇ CDR3 region or from an IgH or IgL (lambda or kappa) locus.
- a multiplex PCR system may use at least 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25, and in certain embodiments, at least 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, or 39, and in other embodiments 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 or more “first” (e.g., “forward”) primers, in which each first or forward primer is capable of specifically hybridizing to a genomic DNAsequence (or to a cDNA sequence that has been reverse-transcribed from mRNA) corresponding to one or more V region-encoding segments.
- first e.g., “forward” primers
- V region primers for amplification of the TCR ⁇ are shown in SEQ ID NOS:114-248.
- Illustrative TCR ⁇ V region primers are provided in SEQ ID NOs:485-488.
- Illustrative IgH V region primers are provided in SEQ ID NOs:505-588.
- the multiplex PCR system also uses at least 3, 4, 5, 6, or 7, and in certain embodiments, 8, 9, 10, 11, 12 or 13 “second” (e.g., “reverse”) primers, in which each second or reverse primer is capable of specifically hybridizing to a genomic DNA sequence (or a cDNA sequence) corresponding to one or more J region-encoding segments.
- second or reverse primers are provided in SEQ ID NOS:249-261.
- Illustrative TCR ⁇ J segment primers are provided in SEQ ID NOs:493-496.
- Illustrative IgH J segment primers are provided in SEQ ID NOs:499-504. In one embodiment, there is a J segment primer for every J segment.
- Oligonucleotides or polynucleotides that are capable of specifically hybridizing or annealing to a target nucleic acid sequence by nucleotide base complementarity may do so under moderate to high stringency conditions.
- suitable moderate to high stringency conditions for specific PCR amplification of a target nucleic acid sequence would be between 25 and 80 PCR cycles, with each cycle consisting of a denaturation step (e.g., about 10-30 seconds (s) at greater than about 95° C.), an annealing step (e.g., about 10-30 s at about 60-68° C.), and an extension step (e.g., about 10-60 s at about 60-72° C.), optionally according to certain embodiments with the annealing and extension steps being combined to provide a two-step PCR.
- a denaturation step e.g., about 10-30 seconds (s) at greater than about 95° C.
- an annealing step e.g., about 10-30 s at about
- PCR reagents may be added or changed in the PCR reaction to increase specificity of primer annealing and amplification, such as altering the magnesium concentration, optionally adding DMSO, and/or the use of blocked primers, modified nucleotides, peptide-nucleic acids, and the like.
- nucleic acid hybridization techniques may be used to assess hybridization specificity of the primers described herein.
- Hybridization techniques are well known in the art of molecular biology.
- suitable moderately stringent conditions for testing the hybridization of a polynucleotide as provided herein with other polynucleotides include prewashing in a solution of 5 ⁇ SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50° C.-60° C., 5 ⁇ SSC, overnight; followed by washing twice at 65° C. for 20 minutes with each of 2 ⁇ , 0.5 ⁇ and 0.2 ⁇ SSC containing 0.1% SDS.
- stringency of hybridization can be readily manipulated, such as by altering the salt content of the hybridization solution and/or the temperature at which the hybridization is performed.
- suitable highly stringent hybridization conditions include those described above, with the exception that the temperature of hybridization is increased, e.g., to 60° C.-65° C. or 65° C.-70° C.
- the primers are designed not to hybridize to genomic DNA across an intron/exon boundary.
- the first (forward) primers may comprise V-segment primers that in certain embodiments anneal (e.g., specifically hybridize) to the polynucleotide sequence encoding an adaptive immune receptor (TCR or Ig) V-region polypeptide (e.g., a V-segment) in a polynucleotide region of relatively strong sequence conservation between V-regions, so as to maximize the conservation of sequence among these primers.
- TCR or Ig adaptive immune receptor
- this oligonucleotide primer design strategy may, according to non-limiting theory, minimize the potential for each different primer to have significantly different annealing properties (e.g., for a candidate primer to exhibit a significantly increased or significantly decreased degree of detectable annealing to a complementary target sequence and amplification, relative to the degree of detectable annealing of a structurally unrelated control primer to its complementary target sequence and amplificiation, under comparable annealing and extension conditions).
- the amplified region between V and J primers may contain sufficient TCR or Ig V sequence information to permit identification of the specific V gene segment used, based on known genomic sequences for adaptive immune receptor (TCR and Ig) gene loci.
- the “second” (e.g., reverse) J segment primers hybridize to a polynucleotide sequence encoding a conserved element of the adaptive immune receptor J-region polypeptide (J segment), and have similar annealing strength. In one embodiment, all J segment primers anneal to the same conserved framework region motif.
- the forward and reverse primers are both preferably modified at their 5′ ends with a universal forward primer sequence that is compatible with a DNA sequencer (e.g., Illumina GeneAnalyzerTM2 (GA2) system, available from Illumina, Inc., San Diego, Calif.).
- a DNA sequencer e.g., Illumina GeneAnalyzerTM2 (GA2) system, available from Illumina, Inc., San Diego, Calif.
- oligonucleotide primers for use in the compositions and methods described herein may comprise or consist of a nucleic acid of at least about 15 nucleotides long that has the same sequence as, or is complementary to, a 15 nucleotide long contiguous sequence of the target V- or J-segment (i.e., portion of genomic polynucleotide encoding a V-region or J-region polypeptide).
- primers e.g., those of about 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, or 50, nucleotides long that have the same sequence as, or sequence complementary to, a contiguous sequence of the target V- or J-region encoding polynucleotide segment, will also be of use in certain embodiments. All intermediate lengths of the presently described oligonucleotide primers are contemplated for use herein.
- the primers may have additional sequence added (e.g., nucleotides that may not be the same as or complementary to the target V- or J-region encoding polynucleotide segment), such as restriction enzyme recognition sites, adaptor sequences for sequencing, bar code sequences, and the like (see e.g., primer sequences provided in the Tables and sequence listing herein).
- the length of the primers may be longer, such as about 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 80, 85, 90, 95, 100 or more nucleotides in length or more, depending on the specific use or need.
- adaptive immune receptor V-segment or J-segment oligonucleotide primer variants that may share a high degree of sequence identity to the oligonucleotide primers for which nucleotide sequences are presented herein, including those set forth in the Sequence Listing.
- adaptive immune receptor V-segment or J-segment oligonucleotide primer variants may have substantial identity to the adaptive immune receptor V-segment or J-segment oligonucleotide primer sequences disclosed herein, for example, such oligonucleotide primer variants may comprise at least 70% sequence identity, preferably at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or higher sequence identity compared to a reference polynucleotide sequence such as the oligonucleotide primer sequences disclosed herein, using the methods described herein (e.g., BLAST analysis using standard parameters).
- oligonucleotide primer variants will contain one or more substitutions, additions, deletions and/or insertions, preferably such that the annealing ability of the variant oligonucleotide is not substantially diminished relative to that of an adaptive immune receptor V-segment or J-segment oligonucleotide primer sequence that is specifically set forth herein.
- adaptive immune receptor V-segment and J-segment oligonucleotide primers are designed to be capable of amplifying a rearranged TCR or IGH sequence that includes the coding region for CDR3.
- a multiplex PCR system may use 45 forward primers, each specific to a functional TCR or Ig V-region encoding segment, e.g., a TCR V ⁇ segment, (see e.g., the TCR primers as shown in Table 1), and thirteen reverse primers, each specific to a TCR or Ig J-region encoding segment, such as TCR J ⁇ segment (see e.g., Table 2).
- a multiplex PCR reaction may use four forward primers each specific to one or more functional TCR ⁇ V-region encoding segment and four reverse primers each specific for one or more TCR ⁇ J-region encoding segments (see e.g., Table 15).
- a multiplex PCR reaction may use 84 forward primers each specific to one or more functional V-region encoding segments and six reverse primers each specific for one or more J-region encoding segments (see e.g., IgH amplification primers provided in Table 17).
- Xn and Yn correspond to polynucleotides of lengths n and m, respectively, which comprise sequences that are specific to a single-molecule sequencing technology being employed, for example the GA2 system (Illumina, Inc., San Diego, Calif.) or other suitable sequencing suite of instrumentation, reagents and software.
- TRBJ gene SEQ segment ID NO: Primer sequence* TRBJ1-1 46 Ym TTACCTACAACTGTGAGTCTGGTGCCTTGTCCA AA TRBJ1-2 47 Ym ACCTACAACGGTTAACCTGGTCCCCGAACCGAA TRBJ1-3 48 Ym ACCTACAACAGTGAGCCAACTTCCCTCTCCAAA TRBJ1-4 49 Ym CCAAGACAGAGAGCTGGGTTCCACTGCCAAA TRBJ1-5 483 Ym ACCTAGGATGGAGAGTCGAGTCCCATCACCAAA TRBJ1-6 50 Ym CTGTCACAGTGAGCCTGGTCCCGTTCCCAAA TRBJ2-1 51 Ym CGGTGAGCCGTGTCCCTGGCCCGAA TRBJ2-2 52 Ym CCAGTACGGTCAGCCTAGAGCCTTCTCCAAA TRBJ2-3 53 Ym ACTGTCAGCCGGGTGCCTGGGCCAAA TRBJ2-4 54 Ym AG
- the 45 forward PCR primers of Table 1 are each complementary to one or more of the 48 functional TCR variable region-encoding (V) gene segments (referred to as TRBV in Table 1), and the thirteen reverse PCR primers of Table 2 are each complementary to one or more of the functional TCR joining region-encoding (J) gene segments from the TCRB locus (referred to as TRBJ in Table 2).
- the TCRB V region segments are identified in the Sequence Listing at SEQ ID NOS:114-248 and the TCRB J region segments are at SEQ ID NOS:249-261. Polynucleotide sequences of the TCRG J region segments are set forth in SEQ ID NOs:595-600.
- Polynucleotide sequences of the TCRG V region segments are set forth in SEQ ID NOs:601-618.
- Polynucleotide sequences of the IgH J region segments are set forth in SEQ ID NOs:619-634.
- Polynucleotide sequences of the IgH V region segments are set forth in SEQ ID NOs:635-925.
- the V-segment and J-segment oligonucleotide primers as described herein are designed to include nucleotide sequences such that adequate information is present within the sequence of an amplification product of a rearranged adaptive immune receptor (TCR or Ig) gene to identify uniquely both the specific V and the specific J genes that give rise to the amplification product in the rearranged adaptive immune receptor locus (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 base pairs of sequence upstream of the V gene recombination signal sequence (RSS), preferably at least about 22, 24, 26, 28, 30, 32, 34, 35, 36, 37, 38, 39 or 40 base pairs of sequence upstream of the V gene recombination signal sequence (RSS), and in certain preferred embodiments greater than 40 base pairs of sequence upstream of the V gene recombination signal sequence (RSS), and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
- This feature stands in contrast to oligonucleotide primers described in the art for amplification of TCR-encoding or Ig-encoding gene sequences, which rely primarily on the amplification reaction merely for detection of presence or absence of products of appropriate sizes for V and J segments (e.g., the presence in PCR reaction products of an amplicon of a particular size indicates presence of a V or J segment but fails to provide the sequence of the amplified PCR product and hence fails to confirm its identity, such as the common practice of spectratyping).
- immunoglobulin heavy chain IgH (IGH): NC — 000014.8 (chr14: 106032614 . . . 107288051); immunoglobulin light chain-kappa, IgL ⁇ (IGK): NC — 000002.11 (chr2: 89156874 . . . 90274235); and immunoglobulin light chain-lambda, IgL ⁇ (IGL): NC — 000022.10 (chr22: 22380474 . . . 23265085).
- Reference Genbank entries for mouse adaptive immune receptor loci sequences include: TCR ⁇ : (TCRB): NC — 000072.5 (chr6: 40841295 . . . 41508370), and immunoglobulin heavy chain, IgH (IGH): NC — 000078.5 (chr12:114496979 . . . 117248165).
- Primer design analyses and target site selection considerations can be performed, for example, using the OLIGO primer analysis software and/or the BLASTN 2.0.5 algorithm software (Altschul et al., Nucleic Acids Res. 1997, 25(17):3389-402), or other similar programs available in the art.
- V region-specific and J region-specific primers that are capable of annealing to substantially all V genes and substantially all J genes in a given adaptive immune receptor-encoding locus (e.g., a human TCR or IgH locus) and that permit generation in multiplexed (e.g., using multiple forward and reverse primer pairs) PCR of PCR amplification products that have a first end that is encoded by a rearranged V region-encoding gene segment and a second end that is encoded by a J region-encoding gene segment.
- amplification products will include a CDR3-encoding sequence.
- the primers may be preferably designed to yield amplification products having sufficient portions of V and J sequences such that by sequencing the products (amplicons), it is possible to identify on the basis of sequences that are unique to each gene segment (i) the particular V gene, and (ii) the particular J gene in the proximity of which the V gene underwent productive rearrangement to yield a functional adaptive immune receptor-encoding gene.
- the PCR amplification products will not be more than 600 base pairs in size, which according to non-limiting theory will exclude amplification products from non-rearranged adaptive immune receptor genes.
- the forward primers described herein may be modified at the 5′ end with the universal forward primer sequence compatible with the DNA sequencer (Xn of Table 1).
- the reverse primers may be modified with a universal reverse primer sequence (Ym of Table 2). Examples of such universal primers are shown in Tables 3 and 4, for the Illumina GAII single-end read sequencing system.
- other modifications may be made to the primers, such as the addition of restriction enzyme sites, fluorescent tags, and the like, depending on the specific application.
- the 45 TCR V ⁇ -segment forward primers anneal to the complementary V ⁇ -region encoding gene segments in a region of relatively strong sequence conservation between V ⁇ segments, so as to permit maximization of the conservation of sequence among these primers.
- the lengths of the amplified PCR products generated using the methods described herein will vary depending on several factors, including the specific placement of the primers (e.g., the position within the V region of the V-gene segment to which the V-segment oligonucleotide primer specifically hybridizes by nucleotide base complementarity) and the particular adaptive immune receptor (TCR or Ig) locus that is being amplified.
- the length of the amplified PCR product may be at least about 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180. 190, 200, 210, 220, 230, 240 or 250 base pairs long.
- the total PCR product for a rearranged TCR ⁇ CDR3 region using the methods described herein may be approximately 200 bp long.
- Genomic templates are PCR amplified using a pool of the combined TCR or Ig V Forward primers (the “VF pool”) and a pool of the combined TCR or Ig J R primers (the “JR pool”).
- the present disclosure provides IGH primer sets designed to accommodate the potential for somatic hypermutation within the rearranged IGH genes, as is observed after initial stimulation of na ⁇ ve B cells.
- such primers may be designed to anchor the 3′ end of each primer by annealing to complementary highly conserved sequences of three or more contiguous nucleotides that, by virtue of their high degree of conservation among multiple V and J genes, are believed to be resistant to both functional and non-functional somatic mutations.
- V- and J-segment primers may desirably be of slightly greater length than those described elsewhere herein, for example, V-segment and/or J-segment oligonucleotide primers maybe 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 or more nucleotides in length (see, e.g., Table 17).
- certain illustrative IGHJ reverse primers described herein were designed to anchor the 3′ end of each PCR primer on a highly conserved GGGG sequence motif within the IGHJ-region encoding segment.
- oligonucleotide sequence design includes an identifier tag sequence sometimes referred to as a “barcode”.
- Bold sequences in Table 5 represent the reverse complement of the IGH J reverse PCR primers. Italicized sequences represent exemplary barcode for J-region identity (eight barcodes reveal six genes, and two alleles within genes). Further sequences within underlined segments may reveal additional allelic identities.
- the IgHV-segment primers described herein were designed to hybridize to coding sequences for a conserved region of the second framework domain (FR2), at a location situated between the two conserved tryptophan (W) codons of FR2.
- the primer sequences are anchored at the 3′ end on a tryptophan codon for all IGHV families that conserve this codon. This allows for the last three nucleotides (tryptophan's TGG) to anchor on sequence that is expected to be resistant to somatic hypermutation, providing a 3′ anchor of five out of six nucleotides for each primer.
- the upstream sequence is extended further than normal, and includes degenerate nucleotides to allow for mismatches induced by hypermutation (or between closely relate IGH V families) without dramatically changing the annealing characteristics of the primer, as shown in Table 7.
- the sequences of the IgHV gene segments are SEQ ID NOS:262-420.
- Thermal cycling conditions may follow methods of those skilled in the art. For example, using a PCR Express thermal cycler (Hybaid, Ashford, UK), the following cycling conditions may be used: 1 cycle at 95° C. for 15 minutes, 25 to 40 cycles at 94° C. for 30 seconds, 59° C. for 30 seconds and 72° C. for 1 minute, followed by one cycle at 72° C. for 10 minutes. As will be recognized by the skilled person, thermal cycling conditions may be optimized, for example, by modifying annealing temperatures and extension times.
- PCR reactions may be used with 1.0 ⁇ M VF pool (22 nM for each unique TCR V ⁇ F primer), 1.0 ⁇ M JR pool (77 nM for each unique TCRBJR primer), 1 ⁇ QIAGEN Multiple PCR master mix (QIAGEN part number 206145), 10% Q-solution (QIAGEN), and 16 ng/ul gDNA.
- the amount of primer and other PCR reagents used, as well as PCR parameters may be optimized to achieve desired PCR amplification efficiency.
- Sequencing may be performed using any of a variety of available high through-put single molecule sequencing machines and systems.
- Illustrative sequence systems include sequence-by-synthesis systems such as the Illumina Genome Analyzer and associated instruments (Illumina, Inc., San Diego, Calif.), Helicos Genetic Analysis System (Helicos BioSciences Corp., Cambridge, Mass.), Pacific Biosciences PacBio RS ( Pacific Biosciences, Menlo Park, Calif.), or other systems having similar capabilities.
- Sequencing is achieved using a set of sequencing oligonucleotides that hybridize to a defined region within the amplified DNA molecules.
- the sequencing oligonucleotides are designed such that the V- and J-encoding gene segments can be uniquely identified by the sequences that are generated, based on the present disclosure and in view of known adaptive immune receptor gene sequences that appear in publicly available databases.
- gene means the segment of DNA involved in producing a polypeptide chain such as all or a portion of a TCR or Ig polypeptide (e.g., a CDR3-containing polypeptide); it includes regions preceding and following the coding region “leader and trailer” as well as intervening sequences (introns) between individual coding segments (exons), and may also include regulatory elements (e.g., promoters, enhancers, repressor binding sites and the like), and may also include recombination signal sequences (RSSs) as described herein.
- RLSs recombination signal sequences
- the nucleic acids of the present embodiments may be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA.
- the DNA may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand.
- a coding sequence which encodes a TCR or an immunoglobulin or a region thereof for use according to the present embodiments may be identical to the coding sequence known in the art for any given TCR or immunoglobulin gene regions or polypeptide domains (e.g., V-region domains, CDR3 domains, etc.), or may be a different coding sequence, which, as a result of the redundancy or degeneracy of the genetic code, encodes the same TCR or immunoglobulin region or polypeptide.
- the amplified J-region encoding gene segments may each have a unique sequence-defined identifier tag of 2, 3, 4, 5, 6, 7, 8, 9, 10 or about 15, 20 or more nucleotides, situated at a defined position relative to a RSS site.
- a four-base tag may be used, in the J ⁇ -region encoding segment of amplified TCR ⁇ CDR3-encoding regions, at positions +11 through +14 downstream from the RSS site.
- these and related embodiments need not be so limited and also contemplate other relatively short nucleotide sequence-defined identifier tags that may be detected in J-region encoding gene segments and defined based on their positions relative to an RSS site. These may vary between different adaptive immune receptor encoding loci.
- the recombination signal sequence consists of two conserved sequences (heptamer, 5′-CACAGTG-3′, and nonamer, 5′-ACAAAAACC-3′), separated by a spacer of either 12+/ ⁇ 1 bp (“12-signal”) or 23+/ ⁇ 1 bp (“23-signal”).
- a number of nucleotide positions have been identified as important for recombination including the CA dinucleotide at position one and two of the heptamer, and a C at heptamer position three has also been shown to be strongly preferred as well as an A nucleotide at positions 5, 6, 7 of the nonamer.
- sequencing oligonucleotides may hybridize adjacent to a four base tag within the amplified J-encoding gene segments at positions +11 through +14 downstream of the RSS site.
- sequencing oligonucleotides for TCRB may be designed to anneal to a consensus nucleotide motif observed just downstream of this “tag”, so that the first four bases of a sequence read will uniquely identify the J-encoding gene segment (Table 8).
- the information used to assign identities to the J- and V-encoding segments of a sequence read is entirely contained within the amplified sequence, and does not rely upon the identity of the PCR primers.
- the methods described herein allow for the amplification of all possible V-J combinations at a TCR or Ig locus and sequencing of the individual amplified molecules allows for the identification and quantitation of the uniquely rearranged DNA encoding the CDR3 regions.
- the diversity of the adaptive immune cells of a given sample can be inferred from the sequences generated using the methods and algorithms described herein.
- One surprising advantage provided in certain preferred embodiments by the compositions and methods of the present disclosure was the ability to amplify successfully all possible V-J combinations of an adaptive immune cell receptor locus in a single multiplex PCR reaction.
- the sequencing oligonucleotides described herein may be selected such that promiscuous priming of a sequencing reaction for one J-encoding gene segment by an oligonucleotide specific to another distinct J-encoding gene segment generates sequence data starting at exactly the same nucleotide as sequence data from the correct sequencing oligonucleotide. In this way, promiscuous annealing of the sequencing oligonucleotides does not impact the quality of the sequence data generated.
- the average length of the CDR3-encoding region, for the TCR defined as the nucleotides encoding the TCR polypeptide between the second conserved cysteine of the V segment and the conserved phenylalanine of the J segment, is 35+/ ⁇ 3 nucleotides. Accordingly and in certain embodiments, PCR amplification using V-segment oligonucleotide primers with J-segment oligonucleotide primers that start from the J segment tag of a particular TCR or IgH J region (e.g., TCR J ⁇ , TCR J ⁇ or IgH JH as described herein) will nearly always capture the complete V-D-J junction in a 50 base pair read.
- the average length of the IgH CDR3 region is less constrained than at the TCR locus, but will typically be between about 10 and about 70 nucleotides. Accordingly and in certain embodiments, PCR amplification using V-segment oligonucleotide primers with J-segment oligonucleotide primers that start from the IgH J segment tag will capture the complete V-D-J junction in a 100 base pair read.
- the TCR and Ig J-segment reverse PCR primers may be designed to minimize overlap with the sequencing oligonucleotides, in order to minimize promiscuous priming in the context of multiplex PCR.
- the TCR and Ig J-segment reverse primers may be anchored at the 3′ end by annealing to the consensus splice site motif, with minimal overlap of the sequencing primers.
- the TCR and Ig V and J-segment primers may be selected to operate in PCR at consistent annealing temperatures using known sequence/primer design and analysis programs under default parameters.
- the exemplary IGHJ sequencing primers extend three nucleotides across the conserved CAG sequences as shown in Table 9.
- an algorithm is provided to correct for PCR bias, sequencing and PCR errors and for estimating true distribution of specific clonotypes (e.g., a TCR or Ig having a uniquely rearranged CDR3 sequence) in blood or in a sample derived from other peripheral tissue or bodily fluid.
- specific clonotypes e.g., a TCR or Ig having a uniquely rearranged CDR3 sequence
- a preferred algorithm is described in further detail herein.
- the algorithms provided herein may be modified appropriately to accommodate particular experimental or clinical situations.
- Sequenced reads are filtered for those including CDR3 sequences.
- Sequencer data processing involves a series of steps to remove errors in the primary sequence of each read, and to compress the data.
- a complexity filter removes approximately 20% of the sequences that are misreads from the sequencer.
- sequences were required to have a minimum of a six base match to both one of the TCR or Ig J-regions and one of V-regions.
- Applying the filter to the control lane containing phage sequence on average only one sequence in 7-8 million passed these steps.
- a nearest neighbor algorithm is used to collapse the data into unique sequences by merging closely related sequences, in order to remove both PCR error and sequencing error.
- the ratio of sequences in the PCR product are derived working backward from the sequence data before estimating the true distribution of clonotypes (e.g., unique clonal sequences) in the blood. For each sequence observed a given number of times in the data herein, the probability that that sequence was sampled from a particular size PCR pool is estimated. Because the CDR3 regions sequenced are sampled randomly from a massive pool of PCR products, the number of observations for each sequence are drawn from Poisson distributions. The Poisson parameters are quantized according to the number of T cell genomes that provided the template for PCR. A simple Poisson mixture model both estimates these parameters and places a pairwise probability for each sequence being drawn from each distribution. This is an expectation maximization method which reconstructs the abundances of each sequence that was drawn from the blood.
- clonotypes e.g., unique clonal sequences
- a computational approach employing the “unseen species” formula may be employed (Efron and Thisted, 1976 Biometrika 63, 435-447).
- This approach estimates the number of unique species (e.g., unique adaptive immune receptor sequences) in a large, complex population (e.g., a population of adaptive immune cells such as T cells or B cells), based on the number of unique species observed in a random, finite sample from a population (Fisher et al., 1943 J. Anim. Ecol. 12:42-58; Ionita-Laza et al., 2009 Proc. Nat. Acad. Sci. USA 106:5008).
- the method employs an expression that predicts the number of “new” species that would be observed if a second random, finite and identically sized sample from the same population were to be analyzed.
- “Unseen” species refers to the number of new adaptive immune receptor sequences that would be detected if the steps of amplifying adaptive immune receptor-encoding sequences in a sample and determining the frequency of occurrence of each unique sequence in the sample were repeated an infinite number of times.
- adaptive immune cells e.g., T cells, B cells
- unique adaptive immune receptors e.g., TCR ⁇ , TCR ⁇ , TCR ⁇ , TCR ⁇ , IgH
- clonotypes takes the place of species.
- S the total number of adaptive immune receptors having unique sequences (e.g., TCR ⁇ , TCR ⁇ , IgH “species” or clonotypes, which may in certain embodiments be unique CDR3 sequences)
- a sequencing experiment observes x s copies of sequence s.
- each TCR or Ig clonotype is “captured” in the course of obtaining a random sample (e.g., a blood draw) according to a Poisson process with parameter ⁇ s .
- the number of T or B cell genomes sequenced in the first measurement is defined as 1, and the number of T or B cell genomes sequenced in the second measurement is defined as t.
- formula (I) may be used to estimate the total diversity of species in the entire source from which the identically sized samples are taken.
- the principle is that the sampled number of clonotypes in a sample of any given size contains sufficient information to estimate the underlying distribution of clonotypes in the whole source.
- the value for ⁇ (t), the number of new clonotypes observed in a second measurement, may be determined, preferably using the following equation (II):
- this formula (II) predicted that 1.6*10 5 new unique sequences should be observed in a second measurement.
- the actual value of the second measurement was 1.8*10 5 new TCR ⁇ sequences, which suggested according to non-limiting theory that the prediction provided a valid lower bound on total TCR ⁇ sequence diversity in the subject from whom the sample was drawn.
- TCR, Ig adaptive immune receptors
- the methods for quantifying structural diversity of adaptive immune receptors (TCR, Ig) as described herein may be used to detect and/or diagnose a disease or to determine a risk for having or a predisposition to a disease, to characterize the effects of a therapeutic, palliative or other treatment on adaptive immune receptor diversity in the adaptive immune system of a subject (e.g., a patient), or to monitor the effectiveness of a therapeutic, palliative or other treatment.
- T cell and/or B adaptive immune cell receptor repertoires can be measured in cancer patients at various time points, e.g., before and/or after hematopoietic stem cell transplant (HSCT) treatment for leukemia, or before and/or after chemotherapy, radiotherapy, immunotherapy or a bone marrow transplant.
- HSCT hematopoietic stem cell transplant
- Both the change in diversity and the overall diversity of TCR and/or Ig (e.g., TCRB, TCRG, IGH) repertoire can be determined using the compositions and methods described herein to assess immunocompetence.
- changes e.g., statistically significant increases or decreases in the number of unique adaptive immune receptor sequences, or in the frequency of representation in a sample of one or more adaptive immune receptor sequences
- changes e.g., statistically significant increases or decreases in the number of unique adaptive immune receptor sequences, or in the frequency of representation in a sample of one or more adaptive immune receptor sequences
- changes over time in relative levels of any one or more unique adaptive immune receptor CDR3-encoding sequences that may be identified in a sample from a subject at discrete points in time using the compositions and methods described herein
- the overall diversity e.g., the number of unique adaptive immune receptor CDR3-encoding sequences identified
- appropriate control samples can be used to establish pre-determined normal or baseline control values for overall adaptive immune receptor diversity and corresponding immunocompetence.
- Overall diversity of test samples can then be compared to such pre-determined control values where a statistically significant decrease in overall adaptive immune receptor diversity (e.g., structural diversity such as sequence diversity) as compared to a pre-determined control value indicates immunodeficiency or a lack of immune reconstitution.
- overall adaptive immune receptor diversity can be measured over time in an individual, for example, during or following treatment, where a statistically significant increase in overall diversity from a first time point during or following treatment as compared to a second or subsequent (later) time point indicates improvement in adaptive immune receptor immune diversity and partial or, in certain embodiments, full immune reconstitution.
- a standard for the expected rate of immune reconstitution after transplant can be utilized.
- the rate of change in adaptive immune receptor diversity between any two time points may be used to actively modify treatment.
- the overall adaptive immune receptor diversity at a fixed time point is also an important measure, as this standard can be used to compare adaptive immune receptor diversity and, optionally one or more other appropriate clinical indicia including any of a number of art accepted indicia of immune status, between different patients.
- overall adaptive immune receptor diversity may in certain preferred embodiments correlate with a clinical definition of immune reconstitution. This information may be used to modify prophylactic drug regimens of antibiotics, antivirals, and antifungals, e.g., after HSCT.
- assessment of immune reconstitution in a subject after allogeneic hematopoietic cell transplantation may also be determined by measuring changes (e.g., statistically significant increases or decreases in the number of unique adaptive immune receptor sequences, or in the frequency of representation in a sample of one or more adaptive immune receptor sequences) in adaptive immune receptor diversity.
- changes e.g., statistically significant increases or decreases in the number of unique adaptive immune receptor sequences, or in the frequency of representation in a sample of one or more adaptive immune receptor sequences
- compositions and methods may also provide a means to evaluate investigational therapeutic agents (e.g., immunomodulatory or other immunotherapeutic agents such as cytokines, chemokines, interleukins, etc., for example, interleukin-2 (IL-2), IL-7, IL-12, IL-17, IL-21, interferon- ⁇ , TNF- ⁇ , etc.) that may have a direct effect on the generation, growth, and development of particular lymphocyte subpopulations such as ⁇ T cells, ⁇ T cells, B cells or other lymphocyte subsets such as those exemplified below.
- investigational therapeutic agents e.g., immunomodulatory or other immunotherapeutic agents such as cytokines, chemokines, interleukins, etc., for example, interleukin-2 (IL-2), IL-7, IL-12, IL-17, IL-21, interferon- ⁇ , TNF- ⁇ , etc.
- lymphocyte subpopulations such as ⁇ T cells, ⁇ T cells, B cells or other lymph
- compositions and methods contemplate application of the herein described compositions and methods to the study of thymic T cell populations, to characterize adaptive immune receptor (e.g., TCR) diversity in the processes of T cell receptor gene rearrangement, and positive and negative selection of thymocytes.
- adaptive immune receptor e.g., TCR
- compositions and methods for quantifying adaptive immune receptor diversity as described herein may also be used in conjunction with the compositions and methods for quantifying adaptive immune receptor diversity as described herein, to monitor, characterize and/or confirm immune reconstitution.
- cellular assays may be performed to measure T and B cell responses to one or more specific antigens or to polyclonal T and B cell stimulators.
- Such assays may include but need not be limited to lymphoproliferation assays, cytotoxic T cell assays, mixed lymphocyte reaction (MLR), cytokine (including lymphokines, chemokines or other soluble mediators) release assays, intracellular cytokine staining (ICS) by flow cytometry, ELISPOT, ELISA, and the like.
- lymphoproliferation assays cytotoxic T cell assays
- MLR mixed lymphocyte reaction
- cytokine including lymphokines, chemokines or other soluble mediators
- ICS intracellular cytokine staining
- compositions and methods may be used to measure adaptive immune receptor diversity in newborn subjects (e.g., newborn human patients).
- a newborn may typically be immunodeficient where maternally transmitted antibodies are present but the immune system is not fully functioning, and thus may besusceptible to a number of diseases until the adaptive immune system autonomously develops.
- Assessment of the adaptive immune system by quantifying adaptive immune receptor structural diversity using the present compositions and methods will likely prove useful for diagnosis and treatment of newborn patients.
- Lymphocyte diversity as detected by quantifying adaptive immune receptor diversity using the compositions and methods described herein may also be assessed in other states of congenital or acquired immunodeficiency. For instance, an AIDS patient with a failed or failing immune system may be monitored to determine the degree or stage of disease progression, and/or to measure a patient's response to therapies that are intended to reconstitute immunocompetence.
- compositions and methods may be to provide diagnostic assessment of adaptive immune receptor diversity in solid organ transplant recipients undergoing treatment to inhibit rejection of donated organs, such as immunosuppressive regimens.
- Monitoring adaptive immune receptor diversity in such subjects as an indicator of their immunocompetence may usefully be conducted before and after transplantation.
- compositions and methods provide a means for qualitatively and quantitatively assessing the bone marrow graft, or reconstitution of lymphocytes in the course of these treatments.
- One manner of determining diversity is by comparing at least two samples of genomic DNA, in one embodiment in which one sample of genomic DNA is from a patient and the other sample is from a normal subject, or alternatively, in which one sample of genomic DNA is from a patient at a first time point before or during a therapeutic treatment and the other sample is from the patient at a second, later time point, during or after treatment, or in which the two samples of genomic DNA are from the same patient at different times during treatment.
- Another manner of diagnosis may be based on the comparison of diversity among the samples of genomic DNA, e.g., in which the immunocompetence of a human patient is assessed by the comparison.
- T cells expressing such shared TCRs have been referred to as public T cells and have been described in a number of human diseases (e.g., Venturi et al., 2008 J Immunol 181, 7853-7862; Venturi et al., 2008 Nature Rev. 8, 231-238).
- T cells propagate via clonal expansion, through rapid cell division to yield a progeny population expressing the same rearranged TCR sequences as the progenitor T cell.
- TCRs may be readily detected using the herein described compositions and methods to quantify TCR diversity, even where the disease burden is small (e.g., an early stage tumor).
- specific TCRs may also find uses as biomarkers in diseases to which T cells contribute causally.
- T cell activity is associated with the pathogenesis of certain autoimmune disorders, e.g., multiple sclerosis, Type I diabetes, and rheumatoid arthritis.
- T cells may themselves comprise targets for drug therapy, including therapies that may be designed to target specific, sequence-defined TCRs.
- the singular forms “a,” “an” and “the” include plural references unless the content clearly dictates otherwise.
- the terms “about” or “approximately” when preceding a numerical value indicates the value plus or minus a range of 5%, 6%, 7%, 8% or 9%. In other embodiments, the terms “about” or “approximately” when preceding a numerical value indicates the value plus or minus a range of 10%, 11%, 12%, 13% or 14%. In yet other embodiments, the terms “about” or “approximately” when preceding a numerical value indicates the value plus or minus a range of 15%, 16%, 17%, 18%, 19% or 20%.
- Peripheral blood samples from two healthy male donors aged 35 and 37 were obtained with written informed consent using forms approved by the Institutional Review Board of the Fred Hutchinson Cancer Research Center (FHCRC).
- Peripheral blood mononuclear cells (PBMC) were isolated by Ficoll-Hypaque® density gradient separation. The T-lymphocytes were flow sorted into four compartments for each subject: CD8 + CD45RO +/ ⁇ and CD4 + CD45RO +/ ⁇ .
- lymphocytes For the characterization of lymphocytes the following conjugated anti-human antibodies were used: CD4 FITC (clone M-T466, Miltenyi Biotec), CD8 PE (clone RPA-T8, BD Biosciences), CD45RO ECD (clone UCHL-1, Beckman Coulter), and CD45RO APC (clone UCHL-1, BD Biosciences). Staining of total PBMCs was done with the appropriate combination of antibodies for 20 minutes at 4° C., and stained cells were washed once before analysis. Lymphocyte subsets were isolated by FACS sorting in the BD FACSAriaTM cell-sorting system (BD Biosciences). Data were analyzed with FlowJo software (Treestar Inc.).
- Total genomic DNA was extracted from sorted cells using the QIAamp®DNA blood Mini Kit (QIAGEN®). The approximate mass of a single haploid genome is 3 pg. In order to sample millions of rearranged TCRB in each T cell compartment, 6 to 27 micrograms of template DNA were obtained from each compartment (see Table 10).
- Virtual TCR ⁇ chain spectratyping was performed as follows. Complementary DNA was synthesized from RNA extracted from sorted T cell populations and used as template for multiplex PCR amplification of the rearranged TCR ⁇ chain CDR3 region. Each multiplex reaction contained a 6-FAM-labeled antisense primer specific for the TCR ⁇ chain constant region, and two to five TCR ⁇ chain variable (TRBV) gene-specific sense primers. All 23 functional V ⁇ families were studied. PCR reactions were carried out on a Hybaid PCR Express thermal cycler (Hybaid, Ashford, UK) under the following cycling conditions: 1 cycle at 95° C. for 6 minutes, 40 cycles at 94° C. for 30 seconds, 58° C. for 30 seconds, and 72° C.
- Each reaction contained cDNA template, 500 ⁇ M dNTPs, 2 mM MgCl 2 and 1 unit of AmpliTaq Gold DNA polymerase (Perkin Elmer) in AmpliTaq Gold buffer, in a final volume of 20 ⁇ l.
- AmpliTaq Gold DNA polymerase Perkin Elmer
- AmpliTaq Gold buffer a final volume of 20 ⁇ l.
- an aliquot of the PCR product was diluted 1:50 and analyzed using a DNA analyzer. The output of the DNA analyzer was converted to a distribution of fluorescence intensity vs. length by comparison with the fluorescence intensity trace of a reference sample containing known size standards.
- the CDR3 junction region was defined operationally, as follows. The junction begins with the second conserved cysteine of the V-region and ends with the conserved phenylalanine of the J-region. Taking the reverse complements of the observed sequences and translating the flanking regions, the amino acids defining the junction boundaries were identified. The number of nucleotides between these boundaries determined the length and therefore the frame of the CDR3 region.
- a multiplex PCR system was selected to amplify rearranged TCR ⁇ loci from genomic DNA. The multiplex PCR system used 45 forward primers (Table 3), each specific to a functional TCR V ⁇ segment, and thirteen reverse primers (Table 4), each specific to a TCR J ⁇ segment. The primers were selected to provide that adequate information was present within the amplified sequence to identify both the V and J genes uniquely (>40 base pairs of sequence upstream of the V gene recombination signal sequence (RSS), and >30 base pairs downstream of the J gene RSS).
- RSS V gene recombination signal sequence
- the forward primers were modified at the 5′ end with the universal forward primer sequence compatible with the Illumina GA2 cluster station solid-phase PCR. Similarly, all of the reverse primers were modified with the GA2 universal reverse primer sequence. The 3′ end of each forward primer was anchored at position ⁇ 43 in the V ⁇ segment, relative to the recombination signal sequence (RSS), thereby providing a unique V ⁇ tag sequence within the amplified region.
- the thirteen reverse primers specific to each J ⁇ segment were anchored in the 3′ intron, with the 3′ end of each primer crossing the intron/exon junction. Thirteen sequencing primers complementary to the J ⁇ segments were designed that were complementary to the amplified portion of the J ⁇ segment, such that the first few bases of sequence generated captured the unique J ⁇ tag sequence.
- J deletions were 4 bp+/ ⁇ 2.5 bp, which implied that J deletions greater than 10 nucleotides occurred in less than 1% of sequences.
- the thirteen different TCR J ⁇ gene segments each had a unique four base tag at positions +11 through +14 downstream of the RSS site.
- sequencing oligonucleotides were designed to anneal to a consensus nucleotide motif observed just downstream of this “tag”, so that the first four bases of a sequence read would uniquely identify the J segment (Table 5).
- the information used to assign the J and V segment of a sequence read was entirely contained within the amplified sequence, and did not rely upon the identity of the PCR primers.
- These sequencing oligonucleotides were selected such that promiscuous priming of a sequencing reaction for one J segment by an oligonucleotide specific to another J segment would generate sequence data starting at exactly the same nucleotide as sequence data from the correct sequencing oligonucleotide. In this way, promiscuous annealing of the sequencing oligonucleotides did not impact the quality of the sequence data generated.
- the average length of the CDR3 region defined following convention as the nucleotides between the second conserved cysteine of the V segment and the conserved phenylalanine of the J segment, was 35+/ ⁇ 3 nucleotides, so sequences starting from the J ⁇ segment tag would nearly always capture the complete VNDNJ junction in a 50 bp read.
- TCR ⁇ J gene segments were roughly 50 bp in length. PCR primers that anneal and extend to mismatched sequences are referred to as promiscuous primers. Because of the risk of promiscuous priming in the context of multiplex PCR, especially in the context of a gene family, the TCR J ⁇ Reverse PCR primers were designed to minimize overlap with the sequencing oligonucleotides. Thus, the 13 TCR J ⁇ reverse primers were anchored at the 3′ end on the consensus splice site motif, with minimal overlap of the sequencing primers. The TCR J ⁇ primers were designed for a consistent annealing temperature (58° C. in 50 mM salt) using the OligoCalc program under default parameters (http://www.basic.northwestern.edu/biotools/oligocalc.html).
- the 45 TCR V ⁇ forward primers were designed to anneal to the V ⁇ segments in a region of relatively strong sequence conservation between V ⁇ segments, for two express purposes. First, maximizing the conservation of sequence among these primers minimized the potential for differential annealing properties of each primer. Second, the primers were chosen such that the amplified region between V and J primers contained sufficient TCR V ⁇ sequence information to identify the specific V ⁇ gene segment used. This obviated the risk of erroneous TCR V ⁇ gene segment assignment, in the event of promiscuous priming by the TCR V ⁇ primers. TCR V ⁇ forward primers were designed for all known non-pseudogenes in the TCR ⁇ locus.
- Genomic templates were PCR amplified using an equimolar pool of the 45 TCR V ⁇ F primers (the “VF pool”) and an equimolar pool of the thirteen TCR J ⁇ R primers (the “JR pool”). 50 ⁇ l PCR reactions were set up at 1.0 ⁇ M VF pool (22 nM for each unique TCR V ⁇ F primer), 1.0 ⁇ M JR pool (77 nM for each unique TCRBJR primer), 1 ⁇ QIAGEN Multiple PCR master mix (QIAGEN part number 206145), 10% Q-solution (QIAGEN), and 16 ng/ul gDNA.
- VF pool equimolar pool of the 45 TCR V ⁇ F primers
- JR pool equimolar pool of the thirteen TCR J ⁇ R primers
- thermal cycling conditions were used in a PCR Express thermal cycler (Hybaid, Ashford, UK) under the following cycling conditions: 1 cycle at 95° C. for 15 minutes, 25 to 40 cycles at 94° C. for 30 seconds, 59° C. for 30 seconds and 72° C. for 1 minute, followed by one cycle at 72° C. for 10 minutes. 12-20 wells of PCR were performed for each library, in order to sample hundreds of thousands to millions of rearranged TCR ⁇ CDR3 loci.
- Sequencer data processing involved a series of steps to remove errors in the primary sequence of each read, and to compress the data.
- a complexity filter removed approximately 20% of the sequences which were misreads from the sequencer.
- sequences were required to have a minimum of a six base match to both one of the thirteen J-regions and one of 54 V-regions.
- Applying the filter to the control lane containing phage sequence on average only one sequence in 7-8 million passed these steps without false positives.
- a nearest neighbor algorithm was used to collapse the data into unique sequences by merging closely related sequences, in order to remove both PCR error and sequencing error (see Table 10).
- the underlying distribution of T-cell sequences in the blood reconstructing were derived from the sequence data.
- the procedure used three steps; 1) flow sorting T-cells drawn from peripheral blood, 2) PCR amplification, and 3) sequencing. Analyzing the data, the ratio of sequences in the PCR product was derived working backward from the sequence data before estimating the true distribution of clonotypes in the blood.
- the probability that that sequence was sampled from a particular size PCR pool was estimated. Because the CDR3 regions sequenced were sampled randomly from a massive pool of PCR products, the number of observations for each sequence was drawn from Poisson distributions. The Poisson parameters were quantized according to the number of T cell genomes that provided the template for PCR. A simple Poisson mixture model both estimated these parameters and placed a pairwise probability for each sequence being drawn from each distribution. This was an expectation maximization method which reconstructed the abundances of each sequence that was drawn from the blood.
- a mixture model can reconstruct the frequency of each TCR ⁇ CDR3 species drawn from the blood, but the larger question was: how many unique CDR3 species were present in the donor? This question was raised where the available sample was limited in each donor, and was pertinent where the herein described techniques were extrapolated to the smaller volumes of blood that could reasonably be drawn from patients undergoing treatment.
- the method employed an expression that predicted the number of “new” species that would be observed if a second random, finite and identically sized sample from the same population were to be analyzed.
- “Unseen” species refers to the number of new adaptive immune receptor sequences that would be detected if the steps of amplifying adaptive immune receptor-encoding sequences in a sample and determining the frequency of occurrence of each unique sequence in the sample were repeated an infinite number of times.
- adaptive immune cells e.g., T cells
- unique adaptive immune receptors e.g., TCR ⁇
- TCR ⁇ unique adaptive immune receptors
- S the total number of adaptive immune receptors having unique sequences (e.g., TCR ⁇ “species” or clonotypes), a sequencing experiment observed x s copies of sequence s.
- x s equalled 0, and each TCR or Ig clonotype was “captured” in the course of obtaining a random sample (e.g., a blood draw) according to a Poisson process with parameter ⁇ s .
- the number of T cell genomes sequenced in the first measurement was defined as 1
- t the number of T cell genomes sequenced in the second measurement
- formula (I) was used to estimate the total diversity of species in the entire source from which the identically sized samples were taken.
- the principle is that the sampled number of clonotypes in a sample of any given size contains sufficient information to estimate the underlying distribution of clonotypes in the whole source.
- Sequence error in the primary sequence data deriveD primarily from two sources: (1) nucleotide misincorporation that occurRED during the amplification by PCR of TCR ⁇ CDR3 template sequences, and (2) errors in base calls introduced during sequencing of the PCR-amplified library of CDR3 sequences.
- the large quantity of data allowed implementation of a straightforward error correcting code to correct most of the errors in the primary sequence data that were attributable to these two sources.
- the number of unique, in-frame CDR3 sequences and the number of observations of each unique sequence were tabulated for each of the four flow-sorted T cell populations from the two donors.
- TCR ⁇ CDR3 regions from a sample of approximately 30,000 unique CD4 + CD45RO + T lymphocyte genomes were amplified through 25 cycles of PCR, at which point the PCR product was split in half. Half was set aside, and the other half of the PCR product was amplified for an additional 15 cycles of PCR, for a total of 40 cycles of amplification. The PCR products amplified through 25 and 40 cycles were then sequenced and compared.
- the CDR3 region in each TCR ⁇ chain included sequence derived from one of the thirteen J ⁇ gene segments. Analysis of the CDR3 sequences in the four different T cell populations from the two donors demonstrated that the fraction of total sequences which incorporated sequences derived from the thirteen different J ⁇ gene segments varied more than 20-fold. J ⁇ utilization among four different T flow cytometrically-defined T cells from a single donor was relatively constant within a given donor. Moreover, the J ⁇ usage patterns observed in two donors, which were inferred from analysis of genomic DNA from T cells sequenced using the Illumina GA2, were qualitatively similar to those observed in T cells from umbilical cord blood and from healthy adult donors, both of which were inferred from analysis of cDNA from T cells sequenced using exhaustive capillary-based techniques.
- TdT Terminal Deoxynucloetidyl Transferase
- the N regions from the out-of-frame TCR sequences were used to measure the di-nucleotide bias.
- the di-nucleotide frequencies were divided by the mononucleotide frequencies of each of the two bases. The measure was:
- m f ⁇ ( n 1 ⁇ n 2 ) f ⁇ ( n 1 ) ⁇ f ⁇ ( n 2 ) .
- the distribution of amino acids in the CDR3 regions of TCR ⁇ chains are shaped by the germline sequences for V, D, and J regions, the insertion bias of TdT, and selection.
- the distribution of amino acids in this region for the four different T cell sub-compartments is very similar between different cell subtypes. Separating the sequences into ⁇ chains of fixed length, a position dependent distribution was determined among amino acids, which were grouped by the six chemical properties: small, special, and large hydrophobic, neutral polar, acidic and basic. The distributions were virtually identical except for the CD8+ antigen experienced T cells, which used a higher proportion of acidic bases, particularly at position 5.
- CD8 + and CD4 + TCR sequences are known to bind to peptides presented by class I and class II HLA molecules, respectively.
- the CD8 + antigen experienced T cells had a few positions with a higher proportion of acidic amino acids. This may have been due to binding with a basic residue found on HLA Class I molecules, but not on Class II.
- the TCR ⁇ chain-encoding DNA sequences determined in samples from two unrelated human subjects were translated to amino acid sequences and then compared pairwise between the two donors. Many thousands of exact sequence matches were observed. For example, comparing the CD4 + CD45RO ⁇ sub-compartments, approximately 8,000 of the 250,000 unique amino acid sequences from donor 1 were exact matches to donor 2. Many of these matching sequences at the amino acid level had multiple nucleotide differences at third codon positions. Following the example mentioned above, 1,500/8,000 identical amino acid matches had >5 nucleotide mismatches. Between any two T cell sub-types, 4-5% of the unique TCR ⁇ sequences were found to have identical amino acid matches.
- Sequences with fewer insertions and deletions have receptor sequences closer to germ line.
- One possibility for the increased number of sequences closer to germ line is that they were created multiple times during T cell development. Since germ line sequences are shared between people, shared TCR ⁇ chains are likely created by TCRs with a small number of insertions and deletions.
- TCR diversity has commonly been assessed using the technique of TCR spectratyping, an RT-PCR-based technique that does not assess TCR CDR3 diversity at the sequence level, but rather evaluates the diversity of TCR ⁇ or TCR ⁇ CDR3 lengths expressed as mRNA in subsets of ⁇ T cells that use the same V ⁇ or V ⁇ gene segment.
- the spectratypes of polyclonal T cell populations with diverse repertoires of TCR CDR3 sequences, such as are seen in umbilical cord blood or in peripheral blood of healthy young adults typically contain CDR3 sequences of 8-10 different lengths that are multiples of three nucleotides, reflecting the selection for in-frame transcripts.
- Spectratyping also provides roughly quantitative information about the relative frequency of CDR3 sequences with each specific length.
- “virtual” TCR ⁇ spectratypes were generated from the sequence data and compared with TCR ⁇ spectratypes generated using conventional PCR techniques.
- the virtual spectratypes contained all of the CDR3 length and relative frequency information present in the conventional spectratypes.
- Direct TCR ⁇ CDR3 sequencing captured all of the TCR diversity information present in a conventional spectratype.
- the number of unique CDR3 sequences observed in each lane of the sequencer flow cell routinely exceeded 1 ⁇ 10 5 .
- the PCR products sequenced in each lane were necessarily (due to sample size) derived from a small fraction of the T cell genomes present in each of the two donors, the actual total number of unique TCR ⁇ CDR3 sequences in the entire T cell repertoire of each individual was likely to be far higher.
- Estimating the number of unique sequences in the entire repertoire therefore, involved an estimate of the number of additional unique CDR3 sequences that existed in the blood but were not observed in the sample.
- the estimation of total species diversity in a large, complex population using measurements of the species diversity present in a finite sample has historically been called the “unseen species problem” (also discussed above).
- the solution started with determining the number of new species, or TCR ⁇ CDR3 sequences, that were observed if the experiment were repeated, i.e., if the sequencing were repeated on an identical sample of peripheral blood T cells, e.g., an identically prepared library of TCR ⁇ CDR3 PCR products was run in a different lane of the sequencer flow cell and the number of new CDR3 sequences was counted.
- an identically prepared library of TCR ⁇ CDR3 PCR products was run in a different lane of the sequencer flow cell and the number of new CDR3 sequences was counted.
- CD8 + CD45RO ⁇ cells from donor 2 the predicted and observed number of new CDR3 sequences in a second lane were within 5% (see above), suggesting that this analytic solution could, in fact, be used to estimate the total number of unique TCR ⁇ CDR3 sequences in the entire repertoire.
- the total TCR ⁇ diversity in these populations was between 3-4 million unique sequences in the peripheral blood.
- the CD45RO + , or antigen-experienced, compartment constituted approximately 1.5 million of these sequences. This is at least an order of magnitude larger than expected. This discrepancy was likely attributable to the large number of these sequences observed at low relative frequency, which could only be detected through deep sequencing.
- the estimated TCR ⁇ CDR3 repertoire sizes of each compartment in the two donors are within 20% of each other.
- the diversity of the TCR ⁇ repertoire was measured in the oral T cells of saliva, circulating T cells in peripheral blood, and T cells from tissue biopsies which were frozen (skin) or formalin fixed and embedded in paraffin (FFPE).
- genomic DNA was isolated from 42 ml of sample obtained by venous puncture, from which the mononuclear cells were isolated by Ficoll Hypaque density gradient separation.
- saliva the genomic DNA was isolated from 5 ml of sample.
- the tissues were lysed by overnight proteinase K digests at 70° C. followed by affinity chromatography of the lysates to purify the DNA.
- the DNA extractions were performed using Qiagen MaxiprepTM (Qiagen, Valencia, Calif.) to isolate 8.5 to 11.4 ⁇ g of high molecular weight DNA.
- the primer design for TCR ⁇ used a minimal set of primers to capture the multitude of V/J segments.
- the first primer listed in Table 15 below was universally recognized by six of the nine possible V ⁇ segments in the TCR ⁇ .
- the first J ⁇ primer in Table 15 below recognized 2 of the 5 possible J ⁇ segments.
- the multiplex PCR reaction consisted of 800 ng genomic DNA, 1.0 micromolar each of an equimolar pool of TCR ⁇ V and J primers, and Phusion TAQ polymerase in the presence of A, T, C, and G deoxynucleotides, betaine and buffer.
- the pool of TCR ⁇ primers is described in Table 15.
- TCR ⁇ libraries Eight PCR reactions from a single DNA sample were combined and concentrated by affinity chromatography to generate a TCR ⁇ library for sequencing.
- the library of TCR ⁇ molecules was quantitated by spectrophotometry using a NanoDrop1000 then assessed qualitatively by gel electrophoresis.
- TCR ⁇ libraries were amplified from genomic T cell DNA and analyzed on an Illumina GAIIx, which generated 60 bp of sequence per molecule, sufficient to capture the J and V segments and the entire CDR3 coding region.
- the TCR ⁇ V and J primers were modified to contain the Illumina adaptor sequences (indicated by L1 and L2 in Table 15, above) on the 5′ end to accommodate the Illumina sequencing chemistry.
- the TCR ⁇ V and J primers were positioned such that sufficient sequence around the CDR3-encoding region was present to allow unique V and J identification.
- the JSeq sequencing primers were designed to provide additional specificity by extending four bases into the J segment from the end of the PCR primer.
- the data preprocessing consisted of an initial step to apply an error-correcting algorithm to identify and correct the PCR errors generated during the amplification, and a second step to remove sequences that could not be recognized as TCR ⁇ .
- Error-correcting algorithms exist in the art; one such algorithm is described in Robins et al., Blood Vol. 114, No. 19, pages 4099-4107, 5 Nov. 2009, herein incorporated by reference.
- the 60 bases of TCR ⁇ sequence were then analyzed to identify the component V and J sequences and productive versus non-productive rearrangements (sequences that were out-of-frame or contained a stop codon). Tabular data were then summarized in a custom database, which provided for graphical comparison of the repertoire samples.
- TCR ⁇ libraries amplified from peripheral blood from two unrelated female donors were generated and compared. As a result of the comparison, it was noted that there existed diversity between the TCR ⁇ V and J pairings between the two donors as exemplified in FIG. 2A .
- TCR ⁇ DNA library was amplified and sequenced from saliva as exemplified in FIG. 2B .
- the V-J pairings in the saliva TCR ⁇ were distinct from the pattern observed in the blood, specifically a bias in pairings between V1-J1/2, V5-J1/2, and V11-JP1.
- the diversity of TCR ⁇ in skin was determined from DNA extracted from a frozen 1 mm diameter punch biopsy that contained approximately 3 mm of dermal tissue.
- the most common V-J pairing observed in skin was V9-JP, similar to blood ( FIG. 2A ) and saliva ( FIG. 2B ).
- the V9-J1 pairing was also found at significant levels in skin, but was not observed in high levels in blood and saliva.
- the TCR ⁇ repertoire from colon tissue was generated from a 10 mg formalin fixed, paraffin embedded (FFPE) tissue biopsy.
- FFPE paraffin embedded
- TCR sequences identified by this inventive methodology far exceeded the number of all previously known TCR ⁇ sequences in any adaptive immune receptor repertoire that had been reported prior to this disclosure.
- the TCR ⁇ repertoire was characterized by determining the total number of sequences obtained from a sample, and determining the number of unique sequences represented in that total (Table 16).
- the set of unique sequences was comprised of individual sequences and the number of times they were seen in the total sequence count.
- the difference between the set of unique sequences and the set of total sequences reflected the amount of clonal expansion present in the sample, which contributed to the underlying diversity of the sequences identified, thus demonstrating the ability of this methodology to detect and quantify varying degrees of TCR, and hence T-cell, diversity.
- TCR ⁇ biomarkers As described herein, identification and quantification of specific and significant TCR ⁇ sequences among the millions of rearranged TCR ⁇ sequences demonstrated the ability to detect candidate diagnostic TCR ⁇ sequences, for use as biomarkers, predictors of a disease state, therapeutic targets, and/or indicators for monitoring a therapeutic response.
- the present compositions and methods may be further applicable to identifying the diversity of TCR ⁇ in tissue samples from patients with a specific disease relative to a panel of non-disease state control samples to identify the biomarkers specific to the disease state. These biomarkers could then be used as therapeutic or predictive indicators to guide appropriate therapies.
- Yet another application would be use of TCR ⁇ biomarkers to predict disease susceptibility, such as in autoimmune disease or an environmentally associated disease, such as cancer. By profiling the diversity of the TCR ⁇ sequences the present disclosure provides a means to identify useful predictive and therapeutic biomarkers.
- the IGH repertoire of na ⁇ ve B cells was measured from genomic DNA which was prepared from peripheral blood using standard methods known in the art. Specifically, PBMC were FACS sorted using commercially available reagents to isolate the CD19+ CD27-mature, na ⁇ ve B cell population.
- a library of IGH-encoding DNA molecules for sequencing was prepared by designing a multiplex PCR reaction to amplify all possible combinations of productively rearranged, CDR3-containing IGHV, D and J encoding segments from the genomic DNA.
- a minimal set of primers was designed to amplify all known alleles of the 46 IGHV segments and the 6 IGHJ segments such that the 26 D segments were also captured by the amplified CDR3 regions.
- the IGHV primers were positioned in conserved codons to maximize primer binding affinity.
- the IGHJ primers were designed to anneal to the 3′ end of the shorter J segments to capture sufficient residual sequence to permit a unique identification.
- the IGH V and J primers were modified at the 5′ end to contain the Illumina adapter sequences (indicated by L1 and L2 in Table 17, below) to make the library compatible with the sequencing platform.
- a multiplex PCR reaction utilizing an equimolar pool of IGHV and IGHJ primers as well as standard additional reagents was used to generate library molecules.
- the pool of IGHV and IGHJ primers is presented in Table 17.
- the DNA sequences of the IGH molecules amplified from the na ⁇ ve B cell DNA were determined using an Illumina HiSeq2000 to capture 100 bases of IGH sequence per molecule, sufficient to capture and identify the V, D, and J segments and random N nucleotides of the splice junctions that comprised the CDR3 coding regions.
- the sequencing primers were designed to provide additional specificity by extending into the J segment from the end of the PCR primer. This specificity of the sequencing primer design prevented generating any sequence data from the amplification of unintended targets, allowing a highly quantitative measurement of the IGHV and IGHJ pairings. Sequencing of this library resulted in 29.7 million IGH sequences, amplified from 1.2 micrograms of genomic DNA (see Table 18), including 652,252 unique sequences illustrating the diversity of the IGH repertoire in na ⁇ ve B cells.
- the preprocessing and error correcting of the IGH sequences was performed essentially as described above for the preprocessing of the TCR ⁇ libraries with specific modifications for the IGH sequences.
- the IGH V and J segments were used for alignment. Due to the possibility of somatic hypermutation, the number of mismatches allowed to pass the filter was increased. The total allowed number of mismatches ranged from 0-30% of the nucleotides.
- FIG. 3A A three dimensional representation of the IGHV and IGHJ usage in 28 million sequences from B cells was plotted ( FIG. 3A ).
- the V segments are listed on the X axis
- the J segments are listed on the Y axis and the number of observations of each pairing are shown on the Z axis.
- the lengths of the CDR3 sequences were compared ( FIG. 3B ).
- the CDR3 length is shown on the X axis
- the IGHJ segment is listed on the Y axis
- the number of observations is listed on Z axis.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Cell Biology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/217,126 US20120058902A1 (en) | 2009-06-25 | 2011-08-24 | Method of measuring adaptive immunity |
| US14/640,145 US20150299785A1 (en) | 2009-06-25 | 2015-03-06 | Method of measuring adaptive immunity |
| US15/475,613 US20170335386A1 (en) | 2009-06-25 | 2017-03-31 | Method of measuring adaptive immunity |
Applications Claiming Priority (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US22034409P | 2009-06-25 | 2009-06-25 | |
| US12/794,507 US20100330571A1 (en) | 2009-06-25 | 2010-06-04 | Method of measuring adaptive immunity |
| US37665510P | 2010-08-24 | 2010-08-24 | |
| US201061425672P | 2010-12-21 | 2010-12-21 | |
| US201161481653P | 2011-05-02 | 2011-05-02 | |
| US201161492085P | 2011-06-01 | 2011-06-01 | |
| US13/217,126 US20120058902A1 (en) | 2009-06-25 | 2011-08-24 | Method of measuring adaptive immunity |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/794,507 Continuation-In-Part US20100330571A1 (en) | 2009-06-25 | 2010-06-04 | Method of measuring adaptive immunity |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/640,145 Continuation US20150299785A1 (en) | 2009-06-25 | 2015-03-06 | Method of measuring adaptive immunity |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120058902A1 true US20120058902A1 (en) | 2012-03-08 |
Family
ID=45724050
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/217,126 Abandoned US20120058902A1 (en) | 2009-06-25 | 2011-08-24 | Method of measuring adaptive immunity |
| US14/640,145 Abandoned US20150299785A1 (en) | 2009-06-25 | 2015-03-06 | Method of measuring adaptive immunity |
| US15/475,613 Abandoned US20170335386A1 (en) | 2009-06-25 | 2017-03-31 | Method of measuring adaptive immunity |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/640,145 Abandoned US20150299785A1 (en) | 2009-06-25 | 2015-03-06 | Method of measuring adaptive immunity |
| US15/475,613 Abandoned US20170335386A1 (en) | 2009-06-25 | 2017-03-31 | Method of measuring adaptive immunity |
Country Status (2)
| Country | Link |
|---|---|
| US (3) | US20120058902A1 (fr) |
| WO (1) | WO2012027503A2 (fr) |
Cited By (74)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013086450A1 (fr) | 2011-12-09 | 2013-06-13 | Adaptive Biotechnologies Corporation | Diagnostic des malignités lymphoïdes et détection de maladie résiduelle minimale |
| US20130288237A1 (en) * | 2011-10-21 | 2013-10-31 | Fred Hutchinson Cancer Research Center | Quantification of adaptive immune cell genomes in a complex mixture of cells |
| WO2013169957A1 (fr) | 2012-05-08 | 2013-11-14 | Adaptive Biotechnologies Corporation | Compositions et procédé de mesure et de calibrage d'un biais d'amplification dans des réactions de pcr multiplexe |
| WO2013188831A1 (fr) | 2012-06-15 | 2013-12-19 | Adaptive Biotechnologies Corporation | Gènes de récepteur immunitaire adaptatif réorganisés à marquage unique dans un ensemble génique complexe |
| WO2014008448A1 (fr) * | 2012-07-03 | 2014-01-09 | Sloan Kettering Institute For Cancer Research | Évaluation quantitative de la reconstitution du répertoire des cellules t chez l'homme après une greffe allogénique de cellules souches hématopoïétiques |
| US20140194295A1 (en) * | 2009-06-25 | 2014-07-10 | Fred Hutchinson Cancer Research Center | Method of Measuring Adaptive Immunity |
| WO2014145992A1 (fr) | 2013-03-15 | 2014-09-18 | Adaptive Biotechnologies Corporation | Gènes de récepteur de l'immunité acquise réarrangés à étiquette unique dans un ensemble complexe de gènes |
| WO2014121272A3 (fr) * | 2013-02-04 | 2014-09-25 | The Board Of Trustees Of The Leland Stanford Junior University | Mesure et comparaison de la diversité immunitaire par séquençage haut débit |
| WO2014189635A1 (fr) * | 2013-05-20 | 2014-11-27 | The Trustees Of Columbia University In The City Of New York | Suivi du tcr réactif du donneur en tant que biomarqueur dans une greffe |
| WO2015106161A1 (fr) * | 2014-01-10 | 2015-07-16 | Adaptive Biotechnologies Corporation | Procédés de définition et de prédiction de la réaction immunitaire à une allogreffe |
| WO2015160439A3 (fr) * | 2014-04-17 | 2015-12-10 | Adaptive Biotechnologies Corporation | Quantification de génomes de cellules de l'immunité acquise dans un mélange complexe de cellules |
| US9217176B2 (en) | 2008-11-07 | 2015-12-22 | Sequenta, Llc | Methods of monitoring conditions by sequence analysis |
| US9234240B2 (en) | 2010-05-07 | 2016-01-12 | The Board Of Trustees Of The Leland Stanford Junior University | Measurement and comparison of immune diversity by high-throughput sequencing |
| WO2016069886A1 (fr) | 2014-10-29 | 2016-05-06 | Adaptive Biotechnologies Corporation | Détection simultanée hautement multiplexée d'acides nucléiques codant pour des hétérodimères de récepteurs de l'immunité adaptative appariés à partir de nombreux échantillons |
| US9365901B2 (en) | 2008-11-07 | 2016-06-14 | Adaptive Biotechnologies Corp. | Monitoring immunoglobulin heavy chain evolution in B-cell acute lymphoblastic leukemia |
| US9416420B2 (en) | 2008-11-07 | 2016-08-16 | Adaptive Biotechnologies Corp. | Monitoring health and disease status using clonotype profiles |
| WO2016138122A1 (fr) | 2015-02-24 | 2016-09-01 | Adaptive Biotechnologies Corp. | Méthodes pour le diagnostic d'une maladie infectieuse et la détermination du statut hla à l'aide du séquençage du répertoire immunitaire |
| WO2016161273A1 (fr) | 2015-04-01 | 2016-10-06 | Adaptive Biotechnologies Corp. | Procédé d'identification des récepteurs de lymphocytes t spécifiques à compatibilité humaine pour une cible antigénique |
| US9499865B2 (en) | 2011-12-13 | 2016-11-22 | Adaptive Biotechnologies Corp. | Detection and measurement of tissue-infiltrating lymphocytes |
| US9506119B2 (en) | 2008-11-07 | 2016-11-29 | Adaptive Biotechnologies Corp. | Method of sequence determination using sequence tags |
| US9512487B2 (en) | 2008-11-07 | 2016-12-06 | Adaptive Biotechnologies Corp. | Monitoring health and disease status using clonotype profiles |
| US9528160B2 (en) | 2008-11-07 | 2016-12-27 | Adaptive Biotechnolgies Corp. | Rare clonotypes and uses thereof |
| US9708657B2 (en) | 2013-07-01 | 2017-07-18 | Adaptive Biotechnologies Corp. | Method for generating clonotype profiles using sequence tags |
| US9816088B2 (en) | 2013-03-15 | 2017-11-14 | Abvitro Llc | Single cell bar-coding for antibody discovery |
| US10066265B2 (en) | 2014-04-01 | 2018-09-04 | Adaptive Biotechnologies Corp. | Determining antigen-specific t-cells |
| US10077478B2 (en) | 2012-03-05 | 2018-09-18 | Adaptive Biotechnologies Corp. | Determining paired immune receptor chains from frequency matched subunits |
| US10168328B2 (en) | 2015-07-22 | 2019-01-01 | Roche Sequencing Solutions, Inc. | Identification of antigen epitopes and immune sequences recognizing the antigens |
| US10221461B2 (en) | 2012-10-01 | 2019-03-05 | Adaptive Biotechnologies Corp. | Immunocompetence assessment by adaptive immune receptor diversity and clonality characterization |
| US10246701B2 (en) | 2014-11-14 | 2019-04-02 | Adaptive Biotechnologies Corp. | Multiplexed digital quantitation of rearranged lymphoid receptors in a complex mixture |
| US10323276B2 (en) | 2009-01-15 | 2019-06-18 | Adaptive Biotechnologies Corporation | Adaptive immunity profiling and methods for generation of monoclonal antibodies |
| EP3498866A1 (fr) | 2014-11-25 | 2019-06-19 | Adaptive Biotechnologies Corp. | Caractérisation de la réponse immunitaire adaptative à la vaccination ou l'infection au moyen d'un séquençage de répertoire immunitaire |
| US10385475B2 (en) | 2011-09-12 | 2019-08-20 | Adaptive Biotechnologies Corp. | Random array sequencing of low-complexity libraries |
| US10428325B1 (en) | 2016-09-21 | 2019-10-01 | Adaptive Biotechnologies Corporation | Identification of antigen-specific B cell receptors |
| US10539564B2 (en) | 2015-07-22 | 2020-01-21 | Roche Sequencing Solutions, Inc. | Identification of antigen epitopes and immune sequences recognizing the antigens |
| US10590483B2 (en) | 2014-09-15 | 2020-03-17 | Abvitro Llc | High-throughput nucleotide library sequencing |
| US10941396B2 (en) | 2012-02-27 | 2021-03-09 | Becton, Dickinson And Company | Compositions and kits for molecular counting |
| US10954570B2 (en) | 2013-08-28 | 2021-03-23 | Becton, Dickinson And Company | Massively parallel single cell analysis |
| US11220685B2 (en) | 2016-05-31 | 2022-01-11 | Becton, Dickinson And Company | Molecular indexing of internal sequences |
| USRE48913E1 (en) | 2015-02-27 | 2022-02-01 | Becton, Dickinson And Company | Spatially addressable molecular barcoding |
| US11248253B2 (en) | 2014-03-05 | 2022-02-15 | Adaptive Biotechnologies Corporation | Methods using randomer-containing synthetic molecules |
| US11254980B1 (en) | 2017-11-29 | 2022-02-22 | Adaptive Biotechnologies Corporation | Methods of profiling targeted polynucleotides while mitigating sequencing depth requirements |
| US11319583B2 (en) | 2017-02-01 | 2022-05-03 | Becton, Dickinson And Company | Selective amplification using blocking oligonucleotides |
| US11332776B2 (en) | 2015-09-11 | 2022-05-17 | Becton, Dickinson And Company | Methods and compositions for library normalization |
| US11365409B2 (en) | 2018-05-03 | 2022-06-21 | Becton, Dickinson And Company | Molecular barcoding on opposite transcript ends |
| US11390921B2 (en) | 2014-04-01 | 2022-07-19 | Adaptive Biotechnologies Corporation | Determining WT-1 specific T cells and WT-1 specific T cell receptors (TCRs) |
| US11390914B2 (en) | 2015-04-23 | 2022-07-19 | Becton, Dickinson And Company | Methods and compositions for whole transcriptome amplification |
| US20220251654A1 (en) * | 2019-06-06 | 2022-08-11 | Natera, Inc. | Methods for detecting immune cell dna and monitoring immune system |
| US11460468B2 (en) | 2016-09-26 | 2022-10-04 | Becton, Dickinson And Company | Measurement of protein expression using reagents with barcoded oligonucleotide sequences |
| US11492660B2 (en) | 2018-12-13 | 2022-11-08 | Becton, Dickinson And Company | Selective extension in single cell whole transcriptome analysis |
| US11525157B2 (en) | 2016-05-31 | 2022-12-13 | Becton, Dickinson And Company | Error correction in amplification of samples |
| US11535882B2 (en) | 2015-03-30 | 2022-12-27 | Becton, Dickinson And Company | Methods and compositions for combinatorial barcoding |
| US11639517B2 (en) | 2018-10-01 | 2023-05-02 | Becton, Dickinson And Company | Determining 5′ transcript sequences |
| US11649497B2 (en) | 2020-01-13 | 2023-05-16 | Becton, Dickinson And Company | Methods and compositions for quantitation of proteins and RNA |
| US11661631B2 (en) | 2019-01-23 | 2023-05-30 | Becton, Dickinson And Company | Oligonucleotides associated with antibodies |
| US11661625B2 (en) | 2020-05-14 | 2023-05-30 | Becton, Dickinson And Company | Primers for immune repertoire profiling |
| US11739443B2 (en) | 2020-11-20 | 2023-08-29 | Becton, Dickinson And Company | Profiling of highly expressed and lowly expressed proteins |
| US11773441B2 (en) | 2018-05-03 | 2023-10-03 | Becton, Dickinson And Company | High throughput multiomics sample analysis |
| US11773436B2 (en) | 2019-11-08 | 2023-10-03 | Becton, Dickinson And Company | Using random priming to obtain full-length V(D)J information for immune repertoire sequencing |
| US11845986B2 (en) | 2016-05-25 | 2023-12-19 | Becton, Dickinson And Company | Normalization of nucleic acid libraries |
| US11932901B2 (en) | 2020-07-13 | 2024-03-19 | Becton, Dickinson And Company | Target enrichment using nucleic acid probes for scRNAseq |
| US11932849B2 (en) | 2018-11-08 | 2024-03-19 | Becton, Dickinson And Company | Whole transcriptome analysis of single cells using random priming |
| US11939622B2 (en) | 2019-07-22 | 2024-03-26 | Becton, Dickinson And Company | Single cell chromatin immunoprecipitation sequencing assay |
| US11970737B2 (en) | 2009-12-15 | 2024-04-30 | Becton, Dickinson And Company | Digital counting of individual molecules by stochastic attachment of diverse labels |
| US12060610B2 (en) | 2008-04-16 | 2024-08-13 | iRepertoire, Inc. | Method for evaluating and comparing immunorepertoires |
| US12071617B2 (en) | 2019-02-14 | 2024-08-27 | Becton, Dickinson And Company | Hybrid targeted and whole transcriptome amplification |
| US12084712B2 (en) | 2017-06-05 | 2024-09-10 | Becton, Dickinson And Company | Sample indexing for single cells |
| US12153043B2 (en) | 2020-02-25 | 2024-11-26 | Becton, Dickinson And Company | Bi-specific probes to enable the use of single-cell samples as single color compensation control |
| US12157913B2 (en) | 2020-06-02 | 2024-12-03 | Becton, Dickinson And Company | Oligonucleotides and beads for 5 prime gene expression assay |
| US12188010B2 (en) | 2020-01-29 | 2025-01-07 | Becton, Dickinson And Company | Barcoded wells for spatial mapping of single cells through sequencing |
| US12263179B1 (en) | 2019-08-01 | 2025-04-01 | Adaptive Biotechnologies Corporation | Lyme disease-associated T cell receptor-related methods |
| US12266425B1 (en) | 2020-06-10 | 2025-04-01 | Adaptive Biotechnologies Corporation | T cell receptor sequences diagnostic for COVID-19 and related compositions |
| US12391940B2 (en) | 2020-07-31 | 2025-08-19 | Becton, Dickinson And Company | Single cell assay for transposase-accessible chromatin |
| US12392771B2 (en) | 2020-12-15 | 2025-08-19 | Becton, Dickinson And Company | Single cell secretome analysis |
| AU2020239904B2 (en) * | 2019-03-19 | 2025-10-02 | Stichting Euroclonality | Means and methods for accurately assessing clonal immunoglobulin (IG)/T cell receptor (TR) gene rearrangements. |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8691510B2 (en) | 2008-11-07 | 2014-04-08 | Sequenta, Inc. | Sequence analysis of complex amplicons |
| WO2013131074A1 (fr) * | 2012-03-02 | 2013-09-06 | Diogenix, Inc. | Procédés et réactifs pour évaluer une maladie auto-immune et déterminer un répertoire d'anticorps |
| JP6647197B2 (ja) * | 2014-05-30 | 2020-02-14 | 国立大学法人富山大学 | TCR cDNAの増幅方法 |
| CN104263818B (zh) * | 2014-09-02 | 2016-06-01 | 武汉凯吉盈科技有限公司 | 基于高通量测序技术的全血免疫组库探测方法 |
| WO2017210469A2 (fr) * | 2016-06-01 | 2017-12-07 | F. Hoffman-La Roche Ag | Immuno-enrichissement de cible par extension d'amorce (immuno-pete) |
| EP4050113A1 (fr) * | 2017-01-17 | 2022-08-31 | Life Technologies Corporation | Compositions et méthodes destinées au séquençage de répertoire immunologique |
| EP4212631A1 (fr) | 2017-09-01 | 2023-07-19 | Life Technologies Corporation | Compositions et méthodes pour séquençage de répertoire immunologique |
| US12473663B2 (en) | 2018-07-18 | 2025-11-18 | Life Technologies Corporation | Compositions and methods for immune repertoiresequencing |
| EP4031679A1 (fr) | 2019-09-20 | 2022-07-27 | F. Hoffmann-La Roche AG | Profilage de répertoire immunitaire par enrichissement de cible par extension d'amorce |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060228350A1 (en) * | 2003-08-18 | 2006-10-12 | Medimmune, Inc. | Framework-shuffling of antibodies |
| WO2006110855A2 (fr) * | 2005-04-12 | 2006-10-19 | 454 Life Sciences Corporation | Procedes de determination de variantes de sequence utilisant un sequencage des amplicons |
| US20100021896A1 (en) * | 2008-04-16 | 2010-01-28 | Jian Han | Method for Evaluating and Comparing Immunorepertoires |
| US20100151471A1 (en) * | 2008-11-07 | 2010-06-17 | Malek Faham | Methods of monitoring conditions by sequence analysis |
| US7741463B2 (en) * | 2005-11-01 | 2010-06-22 | Illumina Cambridge Limited | Method of preparing libraries of template polynucleotides |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2863274B1 (fr) * | 2003-12-05 | 2012-11-16 | Commissariat Energie Atomique | Procede d'evaluation quantitative d'un rearrangement ou d'une recombinaison genetique ciblee d'un individu et ses applications. |
| EP2062982A1 (fr) * | 2007-11-26 | 2009-05-27 | ImmunID | Procédé d'étude de la diversité combinatoire V(D)J |
-
2011
- 2011-08-24 US US13/217,126 patent/US20120058902A1/en not_active Abandoned
- 2011-08-24 WO PCT/US2011/049012 patent/WO2012027503A2/fr not_active Ceased
-
2015
- 2015-03-06 US US14/640,145 patent/US20150299785A1/en not_active Abandoned
-
2017
- 2017-03-31 US US15/475,613 patent/US20170335386A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060228350A1 (en) * | 2003-08-18 | 2006-10-12 | Medimmune, Inc. | Framework-shuffling of antibodies |
| WO2006110855A2 (fr) * | 2005-04-12 | 2006-10-19 | 454 Life Sciences Corporation | Procedes de determination de variantes de sequence utilisant un sequencage des amplicons |
| US7741463B2 (en) * | 2005-11-01 | 2010-06-22 | Illumina Cambridge Limited | Method of preparing libraries of template polynucleotides |
| US20100021896A1 (en) * | 2008-04-16 | 2010-01-28 | Jian Han | Method for Evaluating and Comparing Immunorepertoires |
| US20100151471A1 (en) * | 2008-11-07 | 2010-06-17 | Malek Faham | Methods of monitoring conditions by sequence analysis |
Non-Patent Citations (5)
| Title |
|---|
| Alexandre et al. H. sapiens rearranged T-cell receptor gamma chain gene, V2-JP1. GenBank accession No: X57737 (2006). * |
| Alexandre et al. H. sapiens rearranged T-cell receptor gamma chain gene, V3RS-J1 (hybrid joint). GenBank accession No: X57740 (1997). * |
| Arstila et al., Science 286:958-961, October 1999 * |
| Droese et al., Leukemia 2004, 18:1531-1538 * |
| Miqueu et al., Molecular Immunology 2007, 44:1057-1064 * |
Cited By (140)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12060610B2 (en) | 2008-04-16 | 2024-08-13 | iRepertoire, Inc. | Method for evaluating and comparing immunorepertoires |
| US11001895B2 (en) | 2008-11-07 | 2021-05-11 | Adaptive Biotechnologies Corporation | Methods of monitoring conditions by sequence analysis |
| US10155992B2 (en) | 2008-11-07 | 2018-12-18 | Adaptive Biotechnologies Corp. | Monitoring health and disease status using clonotype profiles |
| US9512487B2 (en) | 2008-11-07 | 2016-12-06 | Adaptive Biotechnologies Corp. | Monitoring health and disease status using clonotype profiles |
| US9217176B2 (en) | 2008-11-07 | 2015-12-22 | Sequenta, Llc | Methods of monitoring conditions by sequence analysis |
| US10266901B2 (en) | 2008-11-07 | 2019-04-23 | Adaptive Biotechnologies Corp. | Methods of monitoring conditions by sequence analysis |
| US9365901B2 (en) | 2008-11-07 | 2016-06-14 | Adaptive Biotechnologies Corp. | Monitoring immunoglobulin heavy chain evolution in B-cell acute lymphoblastic leukemia |
| US10246752B2 (en) | 2008-11-07 | 2019-04-02 | Adaptive Biotechnologies Corp. | Methods of monitoring conditions by sequence analysis |
| US10865453B2 (en) | 2008-11-07 | 2020-12-15 | Adaptive Biotechnologies Corporation | Monitoring health and disease status using clonotype profiles |
| US9523129B2 (en) | 2008-11-07 | 2016-12-20 | Adaptive Biotechnologies Corp. | Sequence analysis of complex amplicons |
| US11021757B2 (en) * | 2008-11-07 | 2021-06-01 | Adaptive Biotechnologies Corporation | Monitoring health and disease status using clonotype profiles |
| US10760133B2 (en) | 2008-11-07 | 2020-09-01 | Adaptive Biotechnologies Corporation | Monitoring health and disease status using clonotype profiles |
| US9228232B2 (en) | 2008-11-07 | 2016-01-05 | Sequenta, LLC. | Methods of monitoring conditions by sequence analysis |
| US10519511B2 (en) | 2008-11-07 | 2019-12-31 | Adaptive Biotechnologies Corporation | Monitoring health and disease status using clonotype profiles |
| US9506119B2 (en) | 2008-11-07 | 2016-11-29 | Adaptive Biotechnologies Corp. | Method of sequence determination using sequence tags |
| US9416420B2 (en) | 2008-11-07 | 2016-08-16 | Adaptive Biotechnologies Corp. | Monitoring health and disease status using clonotype profiles |
| US9528160B2 (en) | 2008-11-07 | 2016-12-27 | Adaptive Biotechnolgies Corp. | Rare clonotypes and uses thereof |
| US9347099B2 (en) | 2008-11-07 | 2016-05-24 | Adaptive Biotechnologies Corp. | Single cell analysis by polymerase cycling assembly |
| US10323276B2 (en) | 2009-01-15 | 2019-06-18 | Adaptive Biotechnologies Corporation | Adaptive immunity profiling and methods for generation of monoclonal antibodies |
| US9809813B2 (en) | 2009-06-25 | 2017-11-07 | Fred Hutchinson Cancer Research Center | Method of measuring adaptive immunity |
| US11214793B2 (en) | 2009-06-25 | 2022-01-04 | Fred Hutchinson Cancer Research Center | Method of measuring adaptive immunity |
| US20140194295A1 (en) * | 2009-06-25 | 2014-07-10 | Fred Hutchinson Cancer Research Center | Method of Measuring Adaptive Immunity |
| US11905511B2 (en) | 2009-06-25 | 2024-02-20 | Fred Hutchinson Cancer Center | Method of measuring adaptive immunity |
| US12060607B2 (en) | 2009-12-15 | 2024-08-13 | Becton, Dickinson And Company | Digital counting of individual molecules by stochastic attachment of diverse labels |
| US11970737B2 (en) | 2009-12-15 | 2024-04-30 | Becton, Dickinson And Company | Digital counting of individual molecules by stochastic attachment of diverse labels |
| US11993814B2 (en) | 2009-12-15 | 2024-05-28 | Becton, Dickinson And Company | Digital counting of individual molecules by stochastic attachment of diverse labels |
| US9290811B2 (en) | 2010-05-07 | 2016-03-22 | The Board Of Trustees Of The Leland Stanford Junior University | Measurement and comparison of immune diversity by high-throughput sequencing |
| US9234240B2 (en) | 2010-05-07 | 2016-01-12 | The Board Of Trustees Of The Leland Stanford Junior University | Measurement and comparison of immune diversity by high-throughput sequencing |
| US10774382B2 (en) | 2010-05-07 | 2020-09-15 | The Board of Trustees of the Leland Stanford University Junior University | Measurement and comparison of immune diversity by high-throughput sequencing |
| US10196689B2 (en) | 2010-05-07 | 2019-02-05 | The Board Of Trustees Of The Leland Stanford Junior University | Measurement and comparison of immune diversity by high-throughput sequencing |
| US10385475B2 (en) | 2011-09-12 | 2019-08-20 | Adaptive Biotechnologies Corp. | Random array sequencing of low-complexity libraries |
| US9181591B2 (en) * | 2011-10-21 | 2015-11-10 | Adaptive Biotechnologies Corporation | Quantification of adaptive immune cell genomes in a complex mixture of cells |
| US9279159B2 (en) * | 2011-10-21 | 2016-03-08 | Adaptive Biotechnologies Corporation | Quantification of adaptive immune cell genomes in a complex mixture of cells |
| US20130288237A1 (en) * | 2011-10-21 | 2013-10-31 | Fred Hutchinson Cancer Research Center | Quantification of adaptive immune cell genomes in a complex mixture of cells |
| US20140186848A1 (en) * | 2011-10-21 | 2014-07-03 | Fred Hutchinson Cancer Research Center | Quantification of Adaptive Immune Cell Genomes in a Complex Mixture of Cells |
| US9181590B2 (en) * | 2011-10-21 | 2015-11-10 | Adaptive Biotechnologies Corporation | Quantification of adaptive immune cell genomes in a complex mixture of cells |
| US20150051089A1 (en) * | 2011-10-21 | 2015-02-19 | Adaptive Biotechnologies Corporation | Quantification of Adaptive Immune Cell Genomes in a Complex Mixture of Cells |
| US9824179B2 (en) | 2011-12-09 | 2017-11-21 | Adaptive Biotechnologies Corp. | Diagnosis of lymphoid malignancies and minimal residual disease detection |
| WO2013086450A1 (fr) | 2011-12-09 | 2013-06-13 | Adaptive Biotechnologies Corporation | Diagnostic des malignités lymphoïdes et détection de maladie résiduelle minimale |
| EP3904536A1 (fr) | 2011-12-09 | 2021-11-03 | Adaptive Biotechnologies Corporation | Diagnostic des malignités lymphoïdes et détection de maladie résiduelle minimale |
| EP3388535A1 (fr) | 2011-12-09 | 2018-10-17 | Adaptive Biotechnologies Corporation | Diagnostic de malignités lymphoïdes et détection de maladies résiduelles minimales |
| US9499865B2 (en) | 2011-12-13 | 2016-11-22 | Adaptive Biotechnologies Corp. | Detection and measurement of tissue-infiltrating lymphocytes |
| US11634708B2 (en) | 2012-02-27 | 2023-04-25 | Becton, Dickinson And Company | Compositions and kits for molecular counting |
| US10941396B2 (en) | 2012-02-27 | 2021-03-09 | Becton, Dickinson And Company | Compositions and kits for molecular counting |
| US10077478B2 (en) | 2012-03-05 | 2018-09-18 | Adaptive Biotechnologies Corp. | Determining paired immune receptor chains from frequency matched subunits |
| US10894977B2 (en) | 2012-05-08 | 2021-01-19 | Adaptive Biotechnologies Corporation | Compositions and methods for measuring and calibrating amplification bias in multiplexed PCR reactions |
| US9150905B2 (en) | 2012-05-08 | 2015-10-06 | Adaptive Biotechnologies Corporation | Compositions and method for measuring and calibrating amplification bias in multiplexed PCR reactions |
| WO2013169957A1 (fr) | 2012-05-08 | 2013-11-14 | Adaptive Biotechnologies Corporation | Compositions et procédé de mesure et de calibrage d'un biais d'amplification dans des réactions de pcr multiplexe |
| US10214770B2 (en) | 2012-05-08 | 2019-02-26 | Adaptive Biotechnologies Corp. | Compositions and method for measuring and calibrating amplification bias in multiplexed PCR reactions |
| US9371558B2 (en) | 2012-05-08 | 2016-06-21 | Adaptive Biotechnologies Corp. | Compositions and method for measuring and calibrating amplification bias in multiplexed PCR reactions |
| WO2013188831A1 (fr) | 2012-06-15 | 2013-12-19 | Adaptive Biotechnologies Corporation | Gènes de récepteur immunitaire adaptatif réorganisés à marquage unique dans un ensemble génique complexe |
| WO2014008448A1 (fr) * | 2012-07-03 | 2014-01-09 | Sloan Kettering Institute For Cancer Research | Évaluation quantitative de la reconstitution du répertoire des cellules t chez l'homme après une greffe allogénique de cellules souches hématopoïétiques |
| US12104211B2 (en) | 2012-10-01 | 2024-10-01 | Adaptive Biotechnologies Corporation | Immunocompetence assessment by adaptive immune receptor diversity and clonality characterization |
| US10221461B2 (en) | 2012-10-01 | 2019-03-05 | Adaptive Biotechnologies Corp. | Immunocompetence assessment by adaptive immune receptor diversity and clonality characterization |
| US11180813B2 (en) | 2012-10-01 | 2021-11-23 | Adaptive Biotechnologies Corporation | Immunocompetence assessment by adaptive immune receptor diversity and clonality characterization |
| US10150996B2 (en) | 2012-10-19 | 2018-12-11 | Adaptive Biotechnologies Corp. | Quantification of adaptive immune cell genomes in a complex mixture of cells |
| WO2014121272A3 (fr) * | 2013-02-04 | 2014-09-25 | The Board Of Trustees Of The Leland Stanford Junior University | Mesure et comparaison de la diversité immunitaire par séquençage haut débit |
| US10774383B2 (en) | 2013-02-04 | 2020-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Measurement and comparison of immune diversity by high-throughput sequencing |
| US9909180B2 (en) | 2013-02-04 | 2018-03-06 | The Board Of Trustees Of The Leland Stanford Junior University | Measurement and comparison of immune diversity by high-throughput sequencing |
| US10876107B2 (en) | 2013-03-15 | 2020-12-29 | Abvitro Llc | Single cell bar-coding for antibody discovery |
| US10119134B2 (en) | 2013-03-15 | 2018-11-06 | Abvitro Llc | Single cell bar-coding for antibody discovery |
| US12129462B2 (en) | 2013-03-15 | 2024-10-29 | Abvitro Llc | Single cell bar-coding for antibody discovery |
| WO2014145992A1 (fr) | 2013-03-15 | 2014-09-18 | Adaptive Biotechnologies Corporation | Gènes de récepteur de l'immunité acquise réarrangés à étiquette unique dans un ensemble complexe de gènes |
| CN105452483A (zh) * | 2013-03-15 | 2016-03-30 | 适应生物技术公司 | 复杂基因集合中的独特标记的重排适应性免疫受体基因 |
| US10392614B2 (en) | 2013-03-15 | 2019-08-27 | Abvitro Llc | Methods of single-cell barcoding and sequencing |
| US11118176B2 (en) | 2013-03-15 | 2021-09-14 | Abvitro Llc | Single cell bar-coding for antibody discovery |
| US9816088B2 (en) | 2013-03-15 | 2017-11-14 | Abvitro Llc | Single cell bar-coding for antibody discovery |
| WO2014189635A1 (fr) * | 2013-05-20 | 2014-11-27 | The Trustees Of Columbia University In The City Of New York | Suivi du tcr réactif du donneur en tant que biomarqueur dans une greffe |
| US20160169890A1 (en) * | 2013-05-20 | 2016-06-16 | The Trustees Of Columbia University In The City Of New York | Tracking donor-reactive tcr as a biomarker in transplantation |
| US10526650B2 (en) | 2013-07-01 | 2020-01-07 | Adaptive Biotechnologies Corporation | Method for genotyping clonotype profiles using sequence tags |
| US9708657B2 (en) | 2013-07-01 | 2017-07-18 | Adaptive Biotechnologies Corp. | Method for generating clonotype profiles using sequence tags |
| US10077473B2 (en) | 2013-07-01 | 2018-09-18 | Adaptive Biotechnologies Corp. | Method for genotyping clonotype profiles using sequence tags |
| US11618929B2 (en) | 2013-08-28 | 2023-04-04 | Becton, Dickinson And Company | Massively parallel single cell analysis |
| US10954570B2 (en) | 2013-08-28 | 2021-03-23 | Becton, Dickinson And Company | Massively parallel single cell analysis |
| US11702706B2 (en) | 2013-08-28 | 2023-07-18 | Becton, Dickinson And Company | Massively parallel single cell analysis |
| WO2015106161A1 (fr) * | 2014-01-10 | 2015-07-16 | Adaptive Biotechnologies Corporation | Procédés de définition et de prédiction de la réaction immunitaire à une allogreffe |
| US11248253B2 (en) | 2014-03-05 | 2022-02-15 | Adaptive Biotechnologies Corporation | Methods using randomer-containing synthetic molecules |
| US10435745B2 (en) | 2014-04-01 | 2019-10-08 | Adaptive Biotechnologies Corp. | Determining antigen-specific T-cells |
| US11390921B2 (en) | 2014-04-01 | 2022-07-19 | Adaptive Biotechnologies Corporation | Determining WT-1 specific T cells and WT-1 specific T cell receptors (TCRs) |
| US12351872B2 (en) | 2014-04-01 | 2025-07-08 | Adaptive Biotechnologies Corporation | Determining antigen-specific T-cells |
| US10066265B2 (en) | 2014-04-01 | 2018-09-04 | Adaptive Biotechnologies Corp. | Determining antigen-specific t-cells |
| US11261490B2 (en) | 2014-04-01 | 2022-03-01 | Adaptive Biotechnologies Corporation | Determining antigen-specific T-cells |
| WO2015160439A3 (fr) * | 2014-04-17 | 2015-12-10 | Adaptive Biotechnologies Corporation | Quantification de génomes de cellules de l'immunité acquise dans un mélange complexe de cellules |
| US10590483B2 (en) | 2014-09-15 | 2020-03-17 | Abvitro Llc | High-throughput nucleotide library sequencing |
| WO2016069886A1 (fr) | 2014-10-29 | 2016-05-06 | Adaptive Biotechnologies Corporation | Détection simultanée hautement multiplexée d'acides nucléiques codant pour des hétérodimères de récepteurs de l'immunité adaptative appariés à partir de nombreux échantillons |
| EP3715455A1 (fr) | 2014-10-29 | 2020-09-30 | Adaptive Biotechnologies Corp. | Détection simultanée hautement multiplexée d'acides nucléiques codant pour des hétérodimères de récepteurs de l'immunité adaptative appariés à partir de nombreux échantillons |
| US10392663B2 (en) | 2014-10-29 | 2019-08-27 | Adaptive Biotechnologies Corp. | Highly-multiplexed simultaneous detection of nucleic acids encoding paired adaptive immune receptor heterodimers from a large number of samples |
| US10246701B2 (en) | 2014-11-14 | 2019-04-02 | Adaptive Biotechnologies Corp. | Multiplexed digital quantitation of rearranged lymphoid receptors in a complex mixture |
| EP3498866A1 (fr) | 2014-11-25 | 2019-06-19 | Adaptive Biotechnologies Corp. | Caractérisation de la réponse immunitaire adaptative à la vaccination ou l'infection au moyen d'un séquençage de répertoire immunitaire |
| US11066705B2 (en) | 2014-11-25 | 2021-07-20 | Adaptive Biotechnologies Corporation | Characterization of adaptive immune response to vaccination or infection using immune repertoire sequencing |
| US11047008B2 (en) | 2015-02-24 | 2021-06-29 | Adaptive Biotechnologies Corporation | Methods for diagnosing infectious disease and determining HLA status using immune repertoire sequencing |
| US12428682B2 (en) | 2015-02-24 | 2025-09-30 | Adaptive Biotechnologies Corporation | Methods for diagnosing infectious disease and determining HLA status using immune repertoire sequencing |
| WO2016138122A1 (fr) | 2015-02-24 | 2016-09-01 | Adaptive Biotechnologies Corp. | Méthodes pour le diagnostic d'une maladie infectieuse et la détermination du statut hla à l'aide du séquençage du répertoire immunitaire |
| EP3591074A1 (fr) | 2015-02-24 | 2020-01-08 | Adaptive Biotechnologies Corp. | Procédés de diagnostic d'une maladie infectieuse et de détermination de l'état hla au moyen d'un séquençage de répertoire immunitaire |
| USRE48913E1 (en) | 2015-02-27 | 2022-02-01 | Becton, Dickinson And Company | Spatially addressable molecular barcoding |
| US11535882B2 (en) | 2015-03-30 | 2022-12-27 | Becton, Dickinson And Company | Methods and compositions for combinatorial barcoding |
| US11041202B2 (en) | 2015-04-01 | 2021-06-22 | Adaptive Biotechnologies Corporation | Method of identifying human compatible T cell receptors specific for an antigenic target |
| WO2016161273A1 (fr) | 2015-04-01 | 2016-10-06 | Adaptive Biotechnologies Corp. | Procédé d'identification des récepteurs de lymphocytes t spécifiques à compatibilité humaine pour une cible antigénique |
| US11390914B2 (en) | 2015-04-23 | 2022-07-19 | Becton, Dickinson And Company | Methods and compositions for whole transcriptome amplification |
| US10168328B2 (en) | 2015-07-22 | 2019-01-01 | Roche Sequencing Solutions, Inc. | Identification of antigen epitopes and immune sequences recognizing the antigens |
| US10539564B2 (en) | 2015-07-22 | 2020-01-21 | Roche Sequencing Solutions, Inc. | Identification of antigen epitopes and immune sequences recognizing the antigens |
| US11332776B2 (en) | 2015-09-11 | 2022-05-17 | Becton, Dickinson And Company | Methods and compositions for library normalization |
| US11845986B2 (en) | 2016-05-25 | 2023-12-19 | Becton, Dickinson And Company | Normalization of nucleic acid libraries |
| US12331351B2 (en) | 2016-05-31 | 2025-06-17 | Becton, Dickinson And Company | Error correction in amplification of samples |
| US11220685B2 (en) | 2016-05-31 | 2022-01-11 | Becton, Dickinson And Company | Molecular indexing of internal sequences |
| US11525157B2 (en) | 2016-05-31 | 2022-12-13 | Becton, Dickinson And Company | Error correction in amplification of samples |
| US10428325B1 (en) | 2016-09-21 | 2019-10-01 | Adaptive Biotechnologies Corporation | Identification of antigen-specific B cell receptors |
| US11460468B2 (en) | 2016-09-26 | 2022-10-04 | Becton, Dickinson And Company | Measurement of protein expression using reagents with barcoded oligonucleotide sequences |
| US11467157B2 (en) | 2016-09-26 | 2022-10-11 | Becton, Dickinson And Company | Measurement of protein expression using reagents with barcoded oligonucleotide sequences |
| US11782059B2 (en) | 2016-09-26 | 2023-10-10 | Becton, Dickinson And Company | Measurement of protein expression using reagents with barcoded oligonucleotide sequences |
| US11319583B2 (en) | 2017-02-01 | 2022-05-03 | Becton, Dickinson And Company | Selective amplification using blocking oligonucleotides |
| US12084712B2 (en) | 2017-06-05 | 2024-09-10 | Becton, Dickinson And Company | Sample indexing for single cells |
| US12371729B2 (en) | 2017-06-05 | 2025-07-29 | Becton, Dickinson And Company | Sample indexing for single cells |
| US11254980B1 (en) | 2017-11-29 | 2022-02-22 | Adaptive Biotechnologies Corporation | Methods of profiling targeted polynucleotides while mitigating sequencing depth requirements |
| US12421548B2 (en) | 2018-05-03 | 2025-09-23 | Becton, Dickinson And Company | High throughput multiomics sample analysis |
| US11773441B2 (en) | 2018-05-03 | 2023-10-03 | Becton, Dickinson And Company | High throughput multiomics sample analysis |
| US12421547B2 (en) | 2018-05-03 | 2025-09-23 | Becton, Dickinson And Company | High throughput multiomics sample analysis |
| US11365409B2 (en) | 2018-05-03 | 2022-06-21 | Becton, Dickinson And Company | Molecular barcoding on opposite transcript ends |
| US11639517B2 (en) | 2018-10-01 | 2023-05-02 | Becton, Dickinson And Company | Determining 5′ transcript sequences |
| US11932849B2 (en) | 2018-11-08 | 2024-03-19 | Becton, Dickinson And Company | Whole transcriptome analysis of single cells using random priming |
| US11492660B2 (en) | 2018-12-13 | 2022-11-08 | Becton, Dickinson And Company | Selective extension in single cell whole transcriptome analysis |
| US11661631B2 (en) | 2019-01-23 | 2023-05-30 | Becton, Dickinson And Company | Oligonucleotides associated with antibodies |
| US12071617B2 (en) | 2019-02-14 | 2024-08-27 | Becton, Dickinson And Company | Hybrid targeted and whole transcriptome amplification |
| AU2020239904B2 (en) * | 2019-03-19 | 2025-10-02 | Stichting Euroclonality | Means and methods for accurately assessing clonal immunoglobulin (IG)/T cell receptor (TR) gene rearrangements. |
| US20220251654A1 (en) * | 2019-06-06 | 2022-08-11 | Natera, Inc. | Methods for detecting immune cell dna and monitoring immune system |
| US12305235B2 (en) * | 2019-06-06 | 2025-05-20 | Natera, Inc. | Methods for detecting immune cell DNA and monitoring immune system |
| US11939622B2 (en) | 2019-07-22 | 2024-03-26 | Becton, Dickinson And Company | Single cell chromatin immunoprecipitation sequencing assay |
| US12263179B1 (en) | 2019-08-01 | 2025-04-01 | Adaptive Biotechnologies Corporation | Lyme disease-associated T cell receptor-related methods |
| US11773436B2 (en) | 2019-11-08 | 2023-10-03 | Becton, Dickinson And Company | Using random priming to obtain full-length V(D)J information for immune repertoire sequencing |
| US11649497B2 (en) | 2020-01-13 | 2023-05-16 | Becton, Dickinson And Company | Methods and compositions for quantitation of proteins and RNA |
| US12188010B2 (en) | 2020-01-29 | 2025-01-07 | Becton, Dickinson And Company | Barcoded wells for spatial mapping of single cells through sequencing |
| US12153043B2 (en) | 2020-02-25 | 2024-11-26 | Becton, Dickinson And Company | Bi-specific probes to enable the use of single-cell samples as single color compensation control |
| US12378594B2 (en) | 2020-05-14 | 2025-08-05 | Becton, Dickinson And Company | Primers for immune repertoire profiling |
| US11661625B2 (en) | 2020-05-14 | 2023-05-30 | Becton, Dickinson And Company | Primers for immune repertoire profiling |
| US12157913B2 (en) | 2020-06-02 | 2024-12-03 | Becton, Dickinson And Company | Oligonucleotides and beads for 5 prime gene expression assay |
| US12266425B1 (en) | 2020-06-10 | 2025-04-01 | Adaptive Biotechnologies Corporation | T cell receptor sequences diagnostic for COVID-19 and related compositions |
| US11932901B2 (en) | 2020-07-13 | 2024-03-19 | Becton, Dickinson And Company | Target enrichment using nucleic acid probes for scRNAseq |
| US12391940B2 (en) | 2020-07-31 | 2025-08-19 | Becton, Dickinson And Company | Single cell assay for transposase-accessible chromatin |
| US11739443B2 (en) | 2020-11-20 | 2023-08-29 | Becton, Dickinson And Company | Profiling of highly expressed and lowly expressed proteins |
| US12392771B2 (en) | 2020-12-15 | 2025-08-19 | Becton, Dickinson And Company | Single cell secretome analysis |
Also Published As
| Publication number | Publication date |
|---|---|
| US20170335386A1 (en) | 2017-11-23 |
| WO2012027503A3 (fr) | 2012-05-31 |
| US20150299785A1 (en) | 2015-10-22 |
| WO2012027503A2 (fr) | 2012-03-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20170335386A1 (en) | Method of measuring adaptive immunity | |
| US11905511B2 (en) | Method of measuring adaptive immunity | |
| US10246701B2 (en) | Multiplexed digital quantitation of rearranged lymphoid receptors in a complex mixture | |
| EP3212790B1 (fr) | Détection simultanée hautement multiplexée d'acides nucléiques codant pour des hétérodimères de récepteurs de l'immunité adaptative appariés à partir de nombreux échantillons | |
| CA2858070C (fr) | Diagnostic des malignites lymphoides et detection de maladie residuelle minimale | |
| EP3132059B1 (fr) | Quantification de génomes de cellules de l'immunité acquise dans un mélange complexe de cellules | |
| HK1169147B (en) | Method of measuring adaptive immunity |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ADAPTIVE TCR CORPORATION, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIVINGSTON, ROBERT J.;REEL/FRAME:027221/0553 Effective date: 20111111 Owner name: FRED HUTCHINSON CANCER RESEARCH CENTER, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADAPTIVE TCR CORPORATION;REEL/FRAME:027221/0589 Effective date: 20111111 |
|
| AS | Assignment |
Owner name: FRED HUTCHINSON CANCER RESEARCH CENTER, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARLSON, CHRISTOPHER S.;ROBINS, HARLAN S.;SIGNING DATES FROM 20111012 TO 20111202;REEL/FRAME:027786/0066 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR, MA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:FRED HUTCHINSON CANCER RESEARCH CENTER;REEL/FRAME:042537/0382 Effective date: 20170522 |
|
| AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:FRED HUTCHINSON CANCER RESEARCH CENTER;REEL/FRAME:042589/0262 Effective date: 20170522 |