US20120053260A1 - Aqueous emulsion polymers, their preparation and use - Google Patents
Aqueous emulsion polymers, their preparation and use Download PDFInfo
- Publication number
- US20120053260A1 US20120053260A1 US13/221,021 US201113221021A US2012053260A1 US 20120053260 A1 US20120053260 A1 US 20120053260A1 US 201113221021 A US201113221021 A US 201113221021A US 2012053260 A1 US2012053260 A1 US 2012053260A1
- Authority
- US
- United States
- Prior art keywords
- monomers
- meth
- aqueous emulsion
- emulsion polymer
- polymer according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004908 Emulsion polymer Substances 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title description 4
- 239000000178 monomer Substances 0.000 claims abstract description 90
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 62
- 238000000576 coating method Methods 0.000 claims abstract description 38
- 239000011248 coating agent Substances 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 19
- 239000003973 paint Substances 0.000 claims abstract description 6
- -1 vinyl halides Chemical class 0.000 claims description 66
- 239000000203 mixture Substances 0.000 claims description 32
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 24
- 150000002148 esters Chemical class 0.000 claims description 24
- 150000002763 monocarboxylic acids Chemical class 0.000 claims description 22
- 230000009477 glass transition Effects 0.000 claims description 18
- 239000011230 binding agent Substances 0.000 claims description 15
- 150000001991 dicarboxylic acids Chemical class 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 8
- 239000011630 iodine Substances 0.000 claims description 8
- 229910052740 iodine Inorganic materials 0.000 claims description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 7
- 150000001408 amides Chemical class 0.000 claims description 5
- 150000001414 amino alcohols Chemical class 0.000 claims description 5
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 5
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 claims description 4
- 239000008199 coating composition Substances 0.000 claims description 4
- 150000004985 diamines Chemical class 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- 150000003460 sulfonic acids Chemical class 0.000 claims description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 4
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 150000001735 carboxylic acids Chemical class 0.000 claims description 3
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical class NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 claims description 3
- 150000005673 monoalkenes Chemical class 0.000 claims description 3
- 150000002825 nitriles Chemical class 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 150000003140 primary amides Chemical class 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 claims description 2
- XCIBDJPRIPCFLR-YPKPFQOOSA-N [(z)-3-carbamoylnonadec-10-en-3-yl] 2-methylprop-2-enoate Chemical compound CCCCCCCC\C=C/CCCCCCC(CC)(C(N)=O)OC(=O)C(C)=C XCIBDJPRIPCFLR-YPKPFQOOSA-N 0.000 claims description 2
- 229920000570 polyether Polymers 0.000 claims description 2
- 238000006116 polymerization reaction Methods 0.000 description 39
- 229920000642 polymer Polymers 0.000 description 38
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 33
- 239000006185 dispersion Substances 0.000 description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 27
- 239000004815 dispersion polymer Substances 0.000 description 21
- 239000002245 particle Substances 0.000 description 20
- 239000003995 emulsifying agent Substances 0.000 description 19
- 238000007720 emulsion polymerization reaction Methods 0.000 description 16
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 15
- 239000008367 deionised water Substances 0.000 description 15
- 229910021641 deionized water Inorganic materials 0.000 description 15
- 239000000047 product Substances 0.000 description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 125000004432 carbon atom Chemical group C* 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 11
- 239000003999 initiator Substances 0.000 description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- 229910052783 alkali metal Inorganic materials 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000049 pigment Substances 0.000 description 10
- 239000002270 dispersing agent Substances 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- 238000004132 cross linking Methods 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000002562 thickening agent Substances 0.000 description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 7
- 125000000129 anionic group Chemical group 0.000 description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 7
- 239000011591 potassium Substances 0.000 description 7
- 229910052700 potassium Inorganic materials 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000002689 soil Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 6
- 239000012965 benzophenone Substances 0.000 description 6
- 239000000084 colloidal system Substances 0.000 description 6
- 239000008240 homogeneous mixture Substances 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 6
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 5
- 238000004821 distillation Methods 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 235000010323 ascorbic acid Nutrition 0.000 description 4
- 229960005070 ascorbic acid Drugs 0.000 description 4
- 239000011668 ascorbic acid Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- ZQPPMHVWECSIRJ-MDZDMXLPSA-N elaidic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(O)=O ZQPPMHVWECSIRJ-MDZDMXLPSA-N 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 150000002978 peroxides Chemical class 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- IBDVWXAVKPRHCU-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OCCOC(=O)C(C)=C IBDVWXAVKPRHCU-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- 239000004435 Oxo alcohol Substances 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 150000008366 benzophenones Chemical class 0.000 description 3
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 150000002191 fatty alcohols Chemical class 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 3
- 239000012456 homogeneous solution Substances 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical group CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical compound OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 3
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 3
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 3
- WXPWZZHELZEVPO-UHFFFAOYSA-N (4-methylphenyl)-phenylmethanone Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=CC=C1 WXPWZZHELZEVPO-UHFFFAOYSA-N 0.000 description 2
- 125000006702 (C1-C18) alkyl group Chemical group 0.000 description 2
- PMBXCGGQNSVESQ-UHFFFAOYSA-N 1-Hexanethiol Chemical compound CCCCCCS PMBXCGGQNSVESQ-UHFFFAOYSA-N 0.000 description 2
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical group C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 2
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical group C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 2
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 2
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 2
- PFPUZMSQZJFLBK-UHFFFAOYSA-N 2-(2-oxoimidazolidin-1-yl)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCN1CCNC1=O PFPUZMSQZJFLBK-UHFFFAOYSA-N 0.000 description 2
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 2
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical class OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 2
- BFLXFRNPNMTTAA-UHFFFAOYSA-N 3-Methyl-2-butanethiol Chemical compound CC(C)C(C)S BFLXFRNPNMTTAA-UHFFFAOYSA-N 0.000 description 2
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 2
- AJWVDGABWLKIGT-UHFFFAOYSA-N 3-methylpentane-3-thiol Chemical compound CCC(C)(S)CC AJWVDGABWLKIGT-UHFFFAOYSA-N 0.000 description 2
- MAGFQRLKWCCTQJ-UHFFFAOYSA-N 4-ethenylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(C=C)C=C1 MAGFQRLKWCCTQJ-UHFFFAOYSA-N 0.000 description 2
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical group C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical group C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- IBVAQQYNSHJXBV-UHFFFAOYSA-N adipic acid dihydrazide Chemical compound NNC(=O)CCCCC(=O)NN IBVAQQYNSHJXBV-UHFFFAOYSA-N 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000013530 defoamer Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 2
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- YAMHXTCMCPHKLN-UHFFFAOYSA-N imidazolidin-2-one Chemical class O=C1NCCN1 YAMHXTCMCPHKLN-UHFFFAOYSA-N 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 2
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229950000688 phenothiazine Drugs 0.000 description 2
- HPAFOABSQZMTHE-UHFFFAOYSA-N phenyl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)C1=CC=CC=C1 HPAFOABSQZMTHE-UHFFFAOYSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- KJRCEJOSASVSRA-UHFFFAOYSA-N propane-2-thiol Chemical compound CC(C)S KJRCEJOSASVSRA-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- 239000012966 redox initiator Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- BITHHVVYSMSWAG-KTKRTIGZSA-N (11Z)-icos-11-enoic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCC(O)=O BITHHVVYSMSWAG-KTKRTIGZSA-N 0.000 description 1
- GWHCXVQVJPWHRF-KTKRTIGZSA-N (15Z)-tetracosenoic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCCCC(O)=O GWHCXVQVJPWHRF-KTKRTIGZSA-N 0.000 description 1
- MQLPUOPZIBQSJG-UHFFFAOYSA-N (2-ethyl-3-hydroxyhexyl) 2-methylprop-2-enoate Chemical compound CCCC(O)C(CC)COC(=O)C(C)=C MQLPUOPZIBQSJG-UHFFFAOYSA-N 0.000 description 1
- VGPBTNMZOCCNAK-UHFFFAOYSA-N (2-ethyl-3-hydroxyhexyl) prop-2-enoate Chemical compound CCCC(O)C(CC)COC(=O)C=C VGPBTNMZOCCNAK-UHFFFAOYSA-N 0.000 description 1
- HFVMEOPYDLEHBR-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanol Chemical compound C=1C=CC=C(F)C=1C(O)C1=CC=CC=C1 HFVMEOPYDLEHBR-UHFFFAOYSA-N 0.000 description 1
- 239000001930 (2R)-3-methylbutane-2-thiol Substances 0.000 description 1
- DAFHKNAQFPVRKR-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)C DAFHKNAQFPVRKR-UHFFFAOYSA-N 0.000 description 1
- BUCYOCHOLDPJFS-UHFFFAOYSA-N (4-ethenoxyphenyl)-phenylmethanone Chemical compound C1=CC(OC=C)=CC=C1C(=O)C1=CC=CC=C1 BUCYOCHOLDPJFS-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- 125000006686 (C1-C24) alkyl group Chemical group 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- XVOUMQNXTGKGMA-OWOJBTEDSA-N (E)-glutaconic acid Chemical compound OC(=O)C\C=C\C(O)=O XVOUMQNXTGKGMA-OWOJBTEDSA-N 0.000 description 1
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- BZCOSCNPHJNQBP-UPHRSURJSA-N (z)-2,3-dihydroxybut-2-enedioic acid Chemical compound OC(=O)C(\O)=C(\O)C(O)=O BZCOSCNPHJNQBP-UPHRSURJSA-N 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical class CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- XIVYNCQMVDVSMR-UHFFFAOYSA-N 1-(2-ethenoxyethyl)imidazolidin-2-one Chemical compound C=COCCN1CCNC1=O XIVYNCQMVDVSMR-UHFFFAOYSA-N 0.000 description 1
- ZRKMQKLGEQPLNS-UHFFFAOYSA-N 1-Pentanethiol Chemical compound CCCCCS ZRKMQKLGEQPLNS-UHFFFAOYSA-N 0.000 description 1
- MPPPKRYCTPRNTB-UHFFFAOYSA-N 1-bromobutane Chemical compound CCCCBr MPPPKRYCTPRNTB-UHFFFAOYSA-N 0.000 description 1
- HUOBWFKCWUVATL-UHFFFAOYSA-N 1-butyl-2-ethenylbenzene Chemical compound CCCCC1=CC=CC=C1C=C HUOBWFKCWUVATL-UHFFFAOYSA-N 0.000 description 1
- QOVCUELHTLHMEN-UHFFFAOYSA-N 1-butyl-4-ethenylbenzene Chemical compound CCCCC1=CC=C(C=C)C=C1 QOVCUELHTLHMEN-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- DMADTXMQLFQQII-UHFFFAOYSA-N 1-decyl-4-ethenylbenzene Chemical compound CCCCCCCCCCC1=CC=C(C=C)C=C1 DMADTXMQLFQQII-UHFFFAOYSA-N 0.000 description 1
- LFYSWCFSJAZQJJ-UHFFFAOYSA-L 1-dodecylpyridin-1-ium;sulfate Chemical compound [O-]S([O-])(=O)=O.CCCCCCCCCCCC[N+]1=CC=CC=C1.CCCCCCCCCCCC[N+]1=CC=CC=C1 LFYSWCFSJAZQJJ-UHFFFAOYSA-L 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- BDHGFCVQWMDIQX-UHFFFAOYSA-N 1-ethenyl-2-methylimidazole Chemical compound CC1=NC=CN1C=C BDHGFCVQWMDIQX-UHFFFAOYSA-N 0.000 description 1
- DJABNVJZYFGAJE-UHFFFAOYSA-N 1-ethenyl-5-ethylpyrrolidin-2-one Chemical compound CCC1CCC(=O)N1C=C DJABNVJZYFGAJE-UHFFFAOYSA-N 0.000 description 1
- HQGPZXPTJWUDQR-UHFFFAOYSA-N 1-ethenyl-5-methylpyrrolidin-2-one Chemical compound CC1CCC(=O)N1C=C HQGPZXPTJWUDQR-UHFFFAOYSA-N 0.000 description 1
- GIQLJJKZKUIRIU-UHFFFAOYSA-N 1-ethenyl-6-ethylpiperidin-2-one Chemical compound CCC1CCCC(=O)N1C=C GIQLJJKZKUIRIU-UHFFFAOYSA-N 0.000 description 1
- FFDNCQYZAAVSSF-UHFFFAOYSA-N 1-ethenyl-6-methylpiperidin-2-one Chemical compound CC1CCCC(=O)N1C=C FFDNCQYZAAVSSF-UHFFFAOYSA-N 0.000 description 1
- PBGPBHYPCGDFEZ-UHFFFAOYSA-N 1-ethenylpiperidin-2-one Chemical compound C=CN1CCCCC1=O PBGPBHYPCGDFEZ-UHFFFAOYSA-N 0.000 description 1
- UENCOZAJOJQVED-UHFFFAOYSA-L 1-hexadecylpyridin-1-ium;sulfate Chemical compound [O-]S([O-])(=O)=O.CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1.CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 UENCOZAJOJQVED-UHFFFAOYSA-L 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- VOBUAPTXJKMNCT-UHFFFAOYSA-N 1-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound CCCCCC(OC(=O)C=C)OC(=O)C=C VOBUAPTXJKMNCT-UHFFFAOYSA-N 0.000 description 1
- YIKSHDNOAYSSPX-UHFFFAOYSA-N 1-propan-2-ylthioxanthen-9-one Chemical compound S1C2=CC=CC=C2C(=O)C2=C1C=CC=C2C(C)C YIKSHDNOAYSSPX-UHFFFAOYSA-N 0.000 description 1
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 1
- UWNADWZGEHDQAB-UHFFFAOYSA-N 2,5-dimethylhexane Chemical group CC(C)CCC(C)C UWNADWZGEHDQAB-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- PRAMZQXXPOLCIY-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethanesulfonic acid Chemical compound CC(=C)C(=O)OCCS(O)(=O)=O PRAMZQXXPOLCIY-UHFFFAOYSA-N 0.000 description 1
- WFYBYTMONXCPBQ-UHFFFAOYSA-N 2-(2-oxoimidazolidin-1-yl)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCN1CCNC1=O WFYBYTMONXCPBQ-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical class C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- QUSTYFNPKBDELJ-UHFFFAOYSA-N 2-Pentanethiol Chemical compound CCCC(C)S QUSTYFNPKBDELJ-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- KWVPFECTOKLOBL-KTKRTIGZSA-N 2-[(z)-octadec-9-enoxy]ethanol Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCO KWVPFECTOKLOBL-KTKRTIGZSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- SZTBMYHIYNGYIA-UHFFFAOYSA-N 2-chloroacrylic acid Chemical compound OC(=O)C(Cl)=C SZTBMYHIYNGYIA-UHFFFAOYSA-N 0.000 description 1
- MLMGJTAJUDSUKA-UHFFFAOYSA-N 2-ethenyl-1h-imidazole Chemical group C=CC1=NC=CN1 MLMGJTAJUDSUKA-UHFFFAOYSA-N 0.000 description 1
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 1
- ZEOYAIVOCJZXIC-UHFFFAOYSA-N 2-ethylbutane-1-thiol Chemical compound CCC(CC)CS ZEOYAIVOCJZXIC-UHFFFAOYSA-N 0.000 description 1
- SQVSEQUIWOQWAH-UHFFFAOYSA-N 2-hydroxy-3-(2-methylprop-2-enoyloxy)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)OCC(O)CS(O)(=O)=O SQVSEQUIWOQWAH-UHFFFAOYSA-N 0.000 description 1
- MAQHZPIRSNDMAT-UHFFFAOYSA-N 2-hydroxy-3-prop-2-enoyloxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CC(O)COC(=O)C=C MAQHZPIRSNDMAT-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 1
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 description 1
- IQIBYAHJXQVQGB-UHFFFAOYSA-N 2-methylbutane-2-thiol Chemical compound CCC(C)(C)S IQIBYAHJXQVQGB-UHFFFAOYSA-N 0.000 description 1
- IXPWKHNDQICVPZ-UHFFFAOYSA-N 2-methylhex-1-en-3-yne Chemical compound CCC#CC(C)=C IXPWKHNDQICVPZ-UHFFFAOYSA-N 0.000 description 1
- ISUXQQTXICTKOV-UHFFFAOYSA-N 2-methylpentane-2-thiol Chemical compound CCCC(C)(C)S ISUXQQTXICTKOV-UHFFFAOYSA-N 0.000 description 1
- NTRKGRUMBHBCAM-UHFFFAOYSA-N 2-methylpentane-3-thiol Chemical compound CCC(S)C(C)C NTRKGRUMBHBCAM-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- GQTFHSAAODFMHB-UHFFFAOYSA-N 2-prop-2-enoyloxyethanesulfonic acid Chemical compound OS(=O)(=O)CCOC(=O)C=C GQTFHSAAODFMHB-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical group C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- KFNGWPXYNSJXOP-UHFFFAOYSA-N 3-(2-methylprop-2-enoyloxy)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)OCCCS(O)(=O)=O KFNGWPXYNSJXOP-UHFFFAOYSA-N 0.000 description 1
- ATBDZSAENDYQDW-UHFFFAOYSA-N 3-ethenylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC(C=C)=C1 ATBDZSAENDYQDW-UHFFFAOYSA-N 0.000 description 1
- VHNJXLWRTQNIPD-UHFFFAOYSA-N 3-hydroxybutyl 2-methylprop-2-enoate Chemical compound CC(O)CCOC(=O)C(C)=C VHNJXLWRTQNIPD-UHFFFAOYSA-N 0.000 description 1
- JRCGLALFKDKSAN-UHFFFAOYSA-N 3-hydroxybutyl prop-2-enoate Chemical compound CC(O)CCOC(=O)C=C JRCGLALFKDKSAN-UHFFFAOYSA-N 0.000 description 1
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- KKRNXWOGSCUFIT-UHFFFAOYSA-N 3-methylpentane-2-thiol Chemical compound CCC(C)C(C)S KKRNXWOGSCUFIT-UHFFFAOYSA-N 0.000 description 1
- NYUTUWAFOUJLKI-UHFFFAOYSA-N 3-prop-2-enoyloxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCOC(=O)C=C NYUTUWAFOUJLKI-UHFFFAOYSA-N 0.000 description 1
- PIFPCDRPHCQLSJ-WYIJOVFWSA-N 4,8,12,15,19-Docosapentaenoic acid Chemical compound CC\C=C\CC\C=C\C\C=C\CC\C=C\CC\C=C\CCC(O)=O PIFPCDRPHCQLSJ-WYIJOVFWSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- CFKMVGJGLGKFKI-UHFFFAOYSA-N 4-chloro-m-cresol Chemical compound CC1=CC(O)=CC=C1Cl CFKMVGJGLGKFKI-UHFFFAOYSA-N 0.000 description 1
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 1
- YKXAYLPDMSGWEV-UHFFFAOYSA-N 4-hydroxybutyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCO YKXAYLPDMSGWEV-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- JBCIMWBQDMBMMP-UHFFFAOYSA-N 4-methylpentane-2-thiol Chemical compound CC(C)CC(C)S JBCIMWBQDMBMMP-UHFFFAOYSA-N 0.000 description 1
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 1
- FPAQLJHSZVFKES-UHFFFAOYSA-N 5-Eicosenoic acid Natural products CCCCCCCCCCCCCCC=CCCCC(O)=O FPAQLJHSZVFKES-UHFFFAOYSA-N 0.000 description 1
- UDIQNVMCHWHTBT-UHFFFAOYSA-N 5-phenylcyclohexa-2,4-dien-1-one Chemical compound C1(=CC=CC=C1)C1=CC=CC(C1)=O UDIQNVMCHWHTBT-UHFFFAOYSA-N 0.000 description 1
- XFOFBPRPOAWWPA-UHFFFAOYSA-N 6-hydroxyhexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCO XFOFBPRPOAWWPA-UHFFFAOYSA-N 0.000 description 1
- OCIFJWVZZUDMRL-UHFFFAOYSA-N 6-hydroxyhexyl prop-2-enoate Chemical compound OCCCCCCOC(=O)C=C OCIFJWVZZUDMRL-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- 0 COS(C)(=O)=O.COS(C)(=O)=O.[1*]C.[2*]C.c1ccc(Oc2ccccc2)cc1 Chemical compound COS(C)(=O)=O.COS(C)(=O)=O.[1*]C.[2*]C.c1ccc(Oc2ccccc2)cc1 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- PIFPCDRPHCQLSJ-UHFFFAOYSA-N Clupanodonic acid Natural products CCC=CCCC=CCC=CCCC=CCCC=CCCC(O)=O PIFPCDRPHCQLSJ-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- GDFCSMCGLZFNFY-UHFFFAOYSA-N Dimethylaminopropyl Methacrylamide Chemical compound CN(C)CCCNC(=O)C(C)=C GDFCSMCGLZFNFY-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- VPIAKHNXCOTPAY-UHFFFAOYSA-N Heptane-1-thiol Chemical compound CCCCCCCS VPIAKHNXCOTPAY-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 206010061217 Infestation Diseases 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- 241000283986 Lepus Species 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-M Methanesulfonate Chemical compound CS([O-])(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical class C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical class CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical class CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- XJXROGWVRIJYMO-SJDLZYGOSA-N Nervonic acid Natural products O=C(O)[C@@H](/C=C/CCCCCCCC)CCCCCCCCCCCC XJXROGWVRIJYMO-SJDLZYGOSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 235000021319 Palmitoleic acid Nutrition 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical class N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- HXWJFEZDFPRLBG-UHFFFAOYSA-N Timnodonic acid Natural products CCCC=CC=CCC=CCC=CCC=CCCCC(O)=O HXWJFEZDFPRLBG-UHFFFAOYSA-N 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- 235000021322 Vaccenic acid Nutrition 0.000 description 1
- UWHZIFQPPBDJPM-FPLPWBNLSA-M Vaccenic acid Natural products CCCCCC\C=C/CCCCCCCCCC([O-])=O UWHZIFQPPBDJPM-FPLPWBNLSA-M 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- ZLLOIPFRPUXURF-XVTLYKPTSA-N [(10z,13z)-3-carbamoylnonadeca-10,13-dien-3-yl] 2-methylprop-2-enoate Chemical compound CCCCC\C=C/C\C=C/CCCCCCC(CC)(C(N)=O)OC(=O)C(C)=C ZLLOIPFRPUXURF-XVTLYKPTSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000007798 antifreeze agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012431 aqueous reaction media Substances 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000003934 aromatic aldehydes Chemical class 0.000 description 1
- 238000005311 autocorrelation function Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 229940073608 benzyl chloride Drugs 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- XNNQFQFUQLJSQT-UHFFFAOYSA-N bromo(trichloro)methane Chemical compound ClC(Cl)(Cl)Br XNNQFQFUQLJSQT-UHFFFAOYSA-N 0.000 description 1
- 229950005228 bromoform Drugs 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- LOCHFZBWPCLPAN-UHFFFAOYSA-N butane-2-thiol Chemical compound CCC(C)S LOCHFZBWPCLPAN-UHFFFAOYSA-N 0.000 description 1
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 1
- KMGBZBJJOKUPIA-UHFFFAOYSA-N butyl iodide Chemical compound CCCCI KMGBZBJJOKUPIA-UHFFFAOYSA-N 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- KHAVLLBUVKBTBG-UHFFFAOYSA-N caproleic acid Natural products OC(=O)CCCCCCCC=C KHAVLLBUVKBTBG-UHFFFAOYSA-N 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- OKBVVJOGVLARMR-QSWIMTSFSA-N cefixime Chemical compound S1C(N)=NC(C(=N\OCC(O)=O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 OKBVVJOGVLARMR-QSWIMTSFSA-N 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- KJDZDTDNIULJBE-QXMHVHEDSA-N cetoleic acid Chemical compound CCCCCCCCCC\C=C/CCCCCCCCCC(O)=O KJDZDTDNIULJBE-QXMHVHEDSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-M chlorite Chemical compound [O-]Cl=O QBWCMBCROVPCKQ-UHFFFAOYSA-M 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- GWHCXVQVJPWHRF-UHFFFAOYSA-N cis-tetracosenoic acid Natural products CCCCCCCCC=CCCCCCCCCCCCCCC(O)=O GWHCXVQVJPWHRF-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- YQHLDYVWEZKEOX-UHFFFAOYSA-N cumene hydroperoxide Chemical compound OOC(C)(C)C1=CC=CC=C1 YQHLDYVWEZKEOX-UHFFFAOYSA-N 0.000 description 1
- OJOSABWCUVCSTQ-UHFFFAOYSA-N cyclohepta-2,4,6-trienylium Chemical class C1=CC=C[CH+]=C[CH]1 OJOSABWCUVCSTQ-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- VTXVGVNLYGSIAR-UHFFFAOYSA-N decane-1-thiol Chemical compound CCCCCCCCCCS VTXVGVNLYGSIAR-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 229940120503 dihydroxyacetone Drugs 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- HWEPKCDYOXFXKM-UHFFFAOYSA-L dimethyl(dioctadecyl)azanium;sulfate Chemical compound [O-]S([O-])(=O)=O.CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC HWEPKCDYOXFXKM-UHFFFAOYSA-L 0.000 description 1
- XJUNRGGMKUAPAP-UHFFFAOYSA-N dioxido(dioxo)molybdenum;lead(2+) Chemical compound [Pb+2].[O-][Mo]([O-])(=O)=O XJUNRGGMKUAPAP-UHFFFAOYSA-N 0.000 description 1
- VFNGKCDDZUSWLR-UHFFFAOYSA-L disulfate(2-) Chemical compound [O-]S(=O)(=O)OS([O-])(=O)=O VFNGKCDDZUSWLR-UHFFFAOYSA-L 0.000 description 1
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 1
- 229940090949 docosahexaenoic acid Drugs 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- XCCCPSSXVCKQLA-UHFFFAOYSA-L dodecyl(trimethyl)azanium;sulfate Chemical compound [O-]S([O-])(=O)=O.CCCCCCCCCCCC[N+](C)(C)C.CCCCCCCCCCCC[N+](C)(C)C XCCCPSSXVCKQLA-UHFFFAOYSA-L 0.000 description 1
- HBRNMIYLJIXXEE-UHFFFAOYSA-N dodecylazanium;acetate Chemical compound CC(O)=O.CCCCCCCCCCCCN HBRNMIYLJIXXEE-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 1
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- GLVVKKSPKXTQRB-UHFFFAOYSA-N ethenyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC=C GLVVKKSPKXTQRB-UHFFFAOYSA-N 0.000 description 1
- GFJVXXWOPWLRNU-UHFFFAOYSA-N ethenyl formate Chemical compound C=COC=O GFJVXXWOPWLRNU-UHFFFAOYSA-N 0.000 description 1
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 1
- LDLDYFCCDKENPD-UHFFFAOYSA-N ethenylcyclohexane Chemical compound C=CC1CCCCC1 LDLDYFCCDKENPD-UHFFFAOYSA-N 0.000 description 1
- FAFWKDXOUWXCDP-UHFFFAOYSA-N ethenylurea Chemical compound NC(=O)NC=C FAFWKDXOUWXCDP-UHFFFAOYSA-N 0.000 description 1
- OUGJKAQEYOUGKG-UHFFFAOYSA-N ethyl 2-methylidenebutanoate Chemical compound CCOC(=O)C(=C)CC OUGJKAQEYOUGKG-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- MQLVWQSVRZVNIP-UHFFFAOYSA-L ferrous ammonium sulfate hexahydrate Chemical compound [NH4+].[NH4+].O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O MQLVWQSVRZVNIP-UHFFFAOYSA-L 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- QJQZEJFUIOWFMS-UHFFFAOYSA-N formaldehyde;sulfanediol Chemical class O=C.OSO QJQZEJFUIOWFMS-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- NKHAVTQWNUWKEO-UHFFFAOYSA-N fumaric acid monomethyl ester Natural products COC(=O)C=CC(O)=O NKHAVTQWNUWKEO-UHFFFAOYSA-N 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002390 heteroarenes Chemical class 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- OHYHWAITIOIHFP-UHFFFAOYSA-L hexadecyl(trimethyl)azanium;sulfate Chemical compound [O-]S([O-])(=O)=O.CCCCCCCCCCCCCCCC[N+](C)(C)C.CCCCCCCCCCCCCCCC[N+](C)(C)C OHYHWAITIOIHFP-UHFFFAOYSA-L 0.000 description 1
- ABNPJVOPTXYSQW-UHFFFAOYSA-N hexane-2-thiol Chemical compound CCCCC(C)S ABNPJVOPTXYSQW-UHFFFAOYSA-N 0.000 description 1
- VOIGMFQJDZTEKW-UHFFFAOYSA-N hexane-3-thiol Chemical compound CCCC(S)CC VOIGMFQJDZTEKW-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical class C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000155 iron(II) phosphate Inorganic materials 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- SDEKDNPYZOERBP-UHFFFAOYSA-H iron(ii) phosphate Chemical compound [Fe+2].[Fe+2].[Fe+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O SDEKDNPYZOERBP-UHFFFAOYSA-H 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical class C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 125000002463 lignoceryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- DCUFMVPCXCSVNP-UHFFFAOYSA-N methacrylic anhydride Chemical compound CC(=C)C(=O)OC(=O)C(C)=C DCUFMVPCXCSVNP-UHFFFAOYSA-N 0.000 description 1
- TWXDDNPPQUTEOV-FVGYRXGTSA-N methamphetamine hydrochloride Chemical compound Cl.CN[C@@H](C)CC1=CC=CC=C1 TWXDDNPPQUTEOV-FVGYRXGTSA-N 0.000 description 1
- NKHAVTQWNUWKEO-IHWYPQMZSA-N methyl hydrogen fumarate Chemical compound COC(=O)\C=C/C(O)=O NKHAVTQWNUWKEO-IHWYPQMZSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000021290 n-3 DPA Nutrition 0.000 description 1
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 1
- CXSANWNPQKKNJO-UHFFFAOYSA-N n-[2-(diethylamino)ethyl]prop-2-enamide Chemical compound CCN(CC)CCNC(=O)C=C CXSANWNPQKKNJO-UHFFFAOYSA-N 0.000 description 1
- DCBBWYIVFRLKCD-UHFFFAOYSA-N n-[2-(dimethylamino)ethyl]-2-methylprop-2-enamide Chemical compound CN(C)CCNC(=O)C(C)=C DCBBWYIVFRLKCD-UHFFFAOYSA-N 0.000 description 1
- WDQKICIMIPUDBL-UHFFFAOYSA-N n-[2-(dimethylamino)ethyl]prop-2-enamide Chemical compound CN(C)CCNC(=O)C=C WDQKICIMIPUDBL-UHFFFAOYSA-N 0.000 description 1
- ADTJPOBHAXXXFS-UHFFFAOYSA-N n-[3-(dimethylamino)propyl]prop-2-enamide Chemical compound CN(C)CCCNC(=O)C=C ADTJPOBHAXXXFS-UHFFFAOYSA-N 0.000 description 1
- LKZTYRFSAJOGIT-UHFFFAOYSA-N n-[4-(dimethylamino)butyl]-2-methylprop-2-enamide Chemical compound CN(C)CCCCNC(=O)C(C)=C LKZTYRFSAJOGIT-UHFFFAOYSA-N 0.000 description 1
- QYMUDOWMRHNHHP-UHFFFAOYSA-N n-[4-(dimethylamino)butyl]prop-2-enamide Chemical compound CN(C)CCCCNC(=O)C=C QYMUDOWMRHNHHP-UHFFFAOYSA-N 0.000 description 1
- QJUUSZDOMRLEKH-UHFFFAOYSA-N n-[4-(dimethylamino)cyclohexyl]-2-methylprop-2-enamide Chemical compound CN(C)C1CCC(NC(=O)C(C)=C)CC1 QJUUSZDOMRLEKH-UHFFFAOYSA-N 0.000 description 1
- OPAXUYFLCNSBLZ-UHFFFAOYSA-N n-[4-(dimethylamino)cyclohexyl]prop-2-enamide Chemical compound CN(C)C1CCC(NC(=O)C=C)CC1 OPAXUYFLCNSBLZ-UHFFFAOYSA-N 0.000 description 1
- GORGQKRVQGXVEB-UHFFFAOYSA-N n-ethenyl-n-ethylacetamide Chemical compound CCN(C=C)C(C)=O GORGQKRVQGXVEB-UHFFFAOYSA-N 0.000 description 1
- PNLUGRYDUHRLOF-UHFFFAOYSA-N n-ethenyl-n-methylacetamide Chemical compound C=CN(C)C(C)=O PNLUGRYDUHRLOF-UHFFFAOYSA-N 0.000 description 1
- OFESGEKAXKKFQT-UHFFFAOYSA-N n-ethenyl-n-methylformamide Chemical compound C=CN(C)C=O OFESGEKAXKKFQT-UHFFFAOYSA-N 0.000 description 1
- DSENQNLOVPYEKP-UHFFFAOYSA-N n-ethenyl-n-methylpropanamide Chemical compound CCC(=O)N(C)C=C DSENQNLOVPYEKP-UHFFFAOYSA-N 0.000 description 1
- RQAKESSLMFZVMC-UHFFFAOYSA-N n-ethenylacetamide Chemical compound CC(=O)NC=C RQAKESSLMFZVMC-UHFFFAOYSA-N 0.000 description 1
- HAZULKRCTMKQAS-UHFFFAOYSA-N n-ethenylbutanamide Chemical compound CCCC(=O)NC=C HAZULKRCTMKQAS-UHFFFAOYSA-N 0.000 description 1
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 1
- IUWVWLRMZQHYHL-UHFFFAOYSA-N n-ethenylpropanamide Chemical compound CCC(=O)NC=C IUWVWLRMZQHYHL-UHFFFAOYSA-N 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical group C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001196 nonadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ZVEZMVFBMOOHAT-UHFFFAOYSA-N nonane-1-thiol Chemical compound CCCCCCCCCS ZVEZMVFBMOOHAT-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005064 octadecenyl group Chemical group C(=CCCCCCCCCCCCCCCCC)* 0.000 description 1
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920002842 oligophosphate Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002924 oxiranes Chemical group 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- QYZLKGVUSQXAMU-UHFFFAOYSA-N penta-1,4-diene Chemical compound C=CCC=C QYZLKGVUSQXAMU-UHFFFAOYSA-N 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- WICKAMSPKJXSGN-UHFFFAOYSA-N pentane-3-thiol Chemical compound CCC(S)CC WICKAMSPKJXSGN-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 125000005385 peroxodisulfate group Chemical group 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-N peroxydisulfuric acid Chemical class OS(=O)(=O)OOS(O)(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-N 0.000 description 1
- 150000002979 perylenes Chemical class 0.000 description 1
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 125000002743 phosphorus functional group Chemical group 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 235000010259 potassium hydrogen sulphite Nutrition 0.000 description 1
- 229940043349 potassium metabisulfite Drugs 0.000 description 1
- 235000010263 potassium metabisulphite Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 235000019252 potassium sulphite Nutrition 0.000 description 1
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 150000003864 primary ammonium salts Chemical class 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- RZKYDQNMAUSEDZ-UHFFFAOYSA-N prop-2-enylphosphonic acid Chemical compound OP(O)(=O)CC=C RZKYDQNMAUSEDZ-UHFFFAOYSA-N 0.000 description 1
- VPJDULFXCAQHRC-UHFFFAOYSA-N prop-2-enylurea Chemical compound NC(=O)NCC=C VPJDULFXCAQHRC-UHFFFAOYSA-N 0.000 description 1
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000005956 quaternization reaction Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 150000003865 secondary ammonium salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- PQVFIKHKSFZHLT-UHFFFAOYSA-M sodium;3-ethenylbenzenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=CC(C=C)=C1 PQVFIKHKSFZHLT-UHFFFAOYSA-M 0.000 description 1
- XFTALRAZSCGSKN-UHFFFAOYSA-M sodium;4-ethenylbenzenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=C(C=C)C=C1 XFTALRAZSCGSKN-UHFFFAOYSA-M 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229940072226 suprax Drugs 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- WMXCDAVJEZZYLT-UHFFFAOYSA-N tert-butylthiol Chemical compound CC(C)(C)S WMXCDAVJEZZYLT-UHFFFAOYSA-N 0.000 description 1
- 150000003866 tertiary ammonium salts Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 239000001038 titanium pigment Substances 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- UWHZIFQPPBDJPM-BQYQJAHWSA-N trans-vaccenic acid Chemical compound CCCCCC\C=C\CCCCCCCCCC(O)=O UWHZIFQPPBDJPM-BQYQJAHWSA-N 0.000 description 1
- 229940066528 trichloroacetate Drugs 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- IPBROXKVGHZHJV-UHFFFAOYSA-N tridecane-1-thiol Chemical compound CCCCCCCCCCCCCS IPBROXKVGHZHJV-UHFFFAOYSA-N 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- CCIDWXHLGNEQSL-UHFFFAOYSA-N undecane-1-thiol Chemical compound CCCCCCCCCCCS CCIDWXHLGNEQSL-UHFFFAOYSA-N 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960002703 undecylenic acid Drugs 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/02—Emulsion paints including aerosols
- C09D5/022—Emulsions, e.g. oil in water
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
- C08F2/24—Emulsion polymerisation with the aid of emulsifying agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/46—Polymerisation initiated by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1804—C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/062—Copolymers with monomers not covered by C09D133/06
- C09D133/066—Copolymers with monomers not covered by C09D133/06 containing -OH groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/40—Esters of unsaturated alcohols, e.g. allyl (meth)acrylate
Definitions
- the present invention provides aqueous emulsion polymers comprising
- the present invention likewise provides coating materials comprising the polymer dispersions of the invention, and also their preparation and use, more particularly in exterior architectural paints.
- the coating materials may either be free from organic solvents or comprise organic solvents.
- Another embodiment of the invention are coating materials which comprise as binders polymer dispersions of the invention having glass transition temperatures ⁇ 0° C., for elastic, crack-bridging coatings. Coatings based on the above-described coating materials are notable for improved soil pickup resistance.
- Whether a coating outdoors becomes soiled quickly or slowly is dependent on a multiplicity of factors, such as, firstly, on air pollution, climatic conditions, and so on, but also, secondly, on the roughness of the coating and on the interaction between soil particles and the coating's surface.
- One important parameter in this context is the hardness of the binder polymer. Binders which dry to form soft or even tacky films pick up soil more quickly than those with a hard surface. The problem of soiling is therefore apparent particularly with coating materials which comprise soft binder polymers, which are those solvent-free coating materials, for example, whose binders still coalesce at processing temperatures down to a little above 0° C., to form a film, and coating materials for elastic coatings.
- Elastic coatings are characterized by a high degree of elasticity. This quality is utilized to give the elastic coatings sufficient crack-bridging capacity even at low temperatures ( ⁇ 10° C.).
- the glass transition temperature of the polymer is normally adjusted by way of the monomer composition to temperatures below ⁇ 10° C. Polymers with a low glass transition temperature have an increased propensity toward soil pickup. This can be prevented using crosslinking systems which make the polymer more elastic and possibly harder (glass transition temperature is raised). State of the art, for example, is metal salt crosslinking or UV crosslinking. The subsequent addition of calcium ions results in crosslinking, as described by B. G. Bufkin and J. R. Grawe in J. Coatings Tech., 1978 50(644), 83.
- UV crosslinking and/or daylight crosslinking is achieved through addition of benzophenone and/or its derivatives, as described in U.S. Pat. No. 3,320,198, EP 100 00, EP 522 789, and EP 1 147 139.
- EP 1 845 142 describes the addition of a photoinitiator to AAEM-containing dispersions.
- aqueous emulsion polymers comprising
- binders are notable for high dirt pickup resistance without substantially affecting film extension overall.
- C 1 -C 4 alkyl is a linear or branched alkyl radical having 1 to 4 carbon atoms. This is methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl.
- C 1 -C 18 alkyl is a linear or branched alkyl radical having 1 to 12 carbon atoms. Examples thereof are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl, 2-propylheptyl, 4-methyl-2-propylhexyl, undecyl, dodecyl, and their constitutional isomers.
- Aryl is a carbocylic aromatic radical having 6 to 14 carbon atoms, such as phenyl, naphthyl, anthracenyl or phenanthrenyl.
- Aryl preferably is phenyl or naphthyl and more particularly is phenyl.
- C 1 -C 18 alkylaryl is C 1 -C 18 alkyl as defined above where one hydrogen atom has been replaced by an aryl group. Examples are benzyl, phenethyl, and the like.
- a primary amino group is understood to be a radical —NH 2 .
- Aqueous emulsion polymers are familiar to the skilled person and are prepared, for example, in the form of an aqueous polymer dispersion by free-radically initiated aqueous emulsion polymerization of ethylenically unsaturated monomers.
- This method has been widely described before now and is therefore sufficiently well known to the skilled person [cf., e.g., Encyclopedia of Polymer Science and Engineering, vol. 8, pages 659 to 677, John Wiley & Sons, Inc., 1987; D.C. Blackley, Emulsion Polymerisation, pages 155 to 465, Applied Science Publishers, Ltd., Essex, 1975; D.C Blackley, Polymer Latices, 2nd Edition, vol.
- the free-radically initiated aqueous emulsion polymerization is typically accomplished by dispersing the ethylenically unsaturated monomers in the aqueous medium, generally using dispersing assistants, such as emulsifiers and/or protective colloids, and polymerizing them by means of at least one water-soluble free-radical polymerization initiator.
- dispersing assistants such as emulsifiers and/or protective colloids
- the residual amounts of unreacted ethylenically unsaturated monomers are lowered by chemical and/or physical methods that are likewise known to the skilled person [see, for example, EP-A 771328, DE-A 19624299, DE-A 19621027, DE-A 19741184, DE-A 19741187, DE-A 19805122, DE-A 19828183, DE-A 19839199, DE-A 19840586 and 19847115], the polymer solids content is adjusted to a desired level by dilution or concentration, or other customary additives, such as bactericidal, foam-modifying or viscosity-modifying additives, are added to the aqueous polymer dispersion.
- customary additives such as bactericidal, foam-modifying or viscosity-modifying additives
- aqueous polymer dispersions in addition to these so-called primary aqueous polymer dispersions, the skilled person is also aware of so-called secondary aqueous polymer dispersions.
- secondary aqueous polymer dispersions By these are meant those aqueous polymer dispersions in whose preparation the polymer is produced outside of the aqueous dispersion medium, being located, for example, in solution in a suitable nonaqueous solvent. This solution is then transferred into the aqueous dispersion medium, and the solvent is separated off, generally by distillation, while dispersion takes place.
- dispersants are used which maintain not only the monomer droplets but also the resultant polymer particles in disperse distribution in the aqueous medium and so ensure the stability of the aqueous polymer dispersion produced.
- Suitable dispersants include not only the protective colloids typically used to implement free-radical aqueous emulsion polymerizations, but also emulsifiers.
- suitable protective colloids include polyvinyl alcohols, polyalkylene glycols, alkali metal salts of polyacrylic acids and polymethacrylic acids, gelatin derivatives or copolymers comprising acrylic acid, methacrylic acid, maleic anhydride, 2-acrylamido-2-methylpropanesulfonic acid and/or 4-styrenesulfonic acid, and the alkali metal salts of such copolymers, and also homopolymers and copolymers comprising N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylcarbazole, 1-vinylimidazole, 2-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, acrylamide, methacrylamide, amino-bearing acrylates, methacrylates, acrylamides and/or methacrylamides.
- mixtures of protective colloids and/or emulsifiers as well can be used. They may be anionic, cationic or nonionic in nature. It will be appreciated that, when using mixtures of surface-active substances, the individual components must be compatible with one another, something which in case of doubt can be ascertained by means of a few preliminary tests. Generally speaking, anionic emulsifiers are compatible with one another and with nonionic emulsifiers. The same is true of cationic emulsifiers, whereas anionic and cationic emulsifiers are usually not compatible with one another.
- emulsifiers exclusively are used as dispersants in accordance with the invention.
- Customary nonionic emulsifiers are, for example, ethoxylated mono-, di-, and tri-alkylphenols (EO degree: 3 to 50, alkyl radical: C 4 to C 12 ) and also ethoxylated fatty alcohols (EO degree: 3 to 80; alkyl radical: C 8 to C 36 ).
- Lutensol® A grades C 12 C 14 fatty alcohol ethoxylates, EO degree: 3 to 8
- Lutensol® AO grades C 13 C 15 oxo alcohol ethoxylates, EO degree: 3 to 30
- Lutensol® AT grades C 16 C 18 fatty alcohol ethoxylates, EO degree: 11 to 80
- Lutensol® ON grades C 10 oxo alcohol ethoxylates, EO degree 3 to 11
- Lutensol® TO grades C 13 oxo alcohol ethoxylates, EO degree: 3 to 20
- Typical anionic emulsifiers are, for example, alkali metal salts and ammonium salts of alkyl sulfates (alkyl radical: C 8 to C 12 ), of sulfuric monoesters with ethoxylated alkanols (EO degree: 4 to 30, alkyl radical: C 12 to C 18 ) and ethoxylated alkylphenols (EO degree: 3 to 50, alkyl radical: C 4 to C 12 ), of alkylsulfonic acids (alkyl radical: C 12 to C 18 ), and of alkylarylsulfonic acids (alkyl radical: C 9 to C 18 ).
- alkyl sulfates alkyl radical: C 8 to C 12
- sulfuric monoesters with ethoxylated alkanols EO degree: 4 to 30, alkyl radical: C 12 to C 18
- EO degree: 3 to 50 alkyl radical: C 4 to C 12
- alkylsulfonic acids alkyl radical:
- R 1 and R 2 are hydrogen atoms or C 4 to C 24 alkyl but are not simultaneously hydrogen atoms
- M 1 and M 2 can be alkali metal ions and/or ammonium ions.
- R 1 and R 2 are preferably linear or branched alkyl radicals having 6 to 18 carbon atoms, in particular having 6, 12, and 16 carbon atoms, or hydrogen, but R 1 and R 2 are not both simultaneously hydrogen atoms.
- M 1 and M 2 are preferably sodium, potassium or ammonium, particular preference being given to sodium.
- Particularly advantageous compounds (I) are those in which M 1 and M 2 are sodium, R 1 is a branched alkyl radical of 12 carbon atoms and, R 2 is a hydrogen atom or R 1 .
- Suitable cation-active emulsifiers are generally C 6 to C 18 alkyl-, C 6 to C 18 alkylaryl- or heterocyclyl-containing primary, secondary, tertiary or quaternary ammonium salts, alkanolammonium salts, pyridinium salts, imidazolinium salts, oxazolinium salts, morpholinium salts, thiazolinium salts, and salts of amine oxides, quinolinium salts, isoquinolinium salts, tropylium salts, sulfonium salts and phosphonium salts.
- Examples that may be mentioned include dodecylammonium acetate or the corresponding sulfate, the sulfates or acetates of the various paraffinic acid 2-(N,N,N-trimethylammonio)ethyl esters, N-cetylpyridinium sulfate, N-laurylpyridinium sulfate, and N-cetyl-N,N,N-trimethylammonium sulfate, N-dodecyl-N,N,N-trimethylammonium sulfate, N-octyl-N,N,N-trimethlyammonium sulfate, N,N-distearyl-N,N-dimethylammonium sulfate, and the Gemini surfactant N,N′-(lauryldimethyl)ethylenediamine disulfate, ethoxylated tallowalkyl-N-methylammonium sulfate and e
- the anionic counter-groups are, as far as possible, of low nucleophilicity, such as, for example, perchlorate, sulfate, phosphate, nitrate, and carboxylates, such as acetate, trifluoroacetate, trichloroacetate, propionate, oxalate, citrate, and benzoate, and also conjugated anions of organic sulfonic acids, such as methylsulfonate, trifluoromethylsulfonate, and para-toluenesulfonate, and additionally tetrafluoroborate, tetraphenylborate, tetrakis(pentafluorophenyl)borate, tetrakis[bis(3,5-trifluoromethyl)phenyl]borate, hexafluorophosphate, hexafluoroarsenate or hexafluoroantimonate.
- organic sulfonic acids such as methyl
- the emulsifiers used with preference as dispersants are employed advantageously in a total amount ⁇ 0.1% and ⁇ 10%, preferably ⁇ 0.1% and ⁇ 5%, in particular ⁇ 0.5% and ⁇ 4%, by weight, based in each case on the total monomer amount.
- the total amount of protective colloids used as dispersants, additionally to or in lieu of the emulsifiers, is often ⁇ 0.1% and ⁇ 10% and frequently ⁇ 0.2% and ⁇ 7%, by weight, based in each case on the total monomer amount.
- anionic and/or nonionic emulsifiers as dispersants.
- the approach then generally taken is to use what is called a polymer seed, which either has been prepared beforehand with other monomers, separately (exogenous polymer seed), or has been prepared in situ by partial polymerization of the monomers to be polymerized.
- Preparing an aqueous polymer dispersion using an in situ polymer seed is familiar to the skilled person (see, for example, DE-A 19609509, EP-A 690882, EP-A 710680, EP-A 1125949, EP-A 1294816, EP-A 1614732, WO-A 03/29300) and takes place generally, prior to the actual emulsion polymerization, a small portion of the monomer mixture used for the emulsion polymerization is introduced as an initial charge in the aqueous polymerization medium and is free-radically polymerized in the presence of a large amount of emulsifier.
- the particle size of the emulsion polymers of the invention is set preferably with the aid of an exogenous polymer seed.
- the free-radically initiated aqueous emulsion polymerization is started off by means of a free-radical polymerization initiator.
- Initiators may in principle include both peroxides and azo compounds. It will be appreciated that redox initiator systems as well are suitable.
- Peroxides used may in principle be inorganic peroxides, such as hydrogen peroxide or peroxodisulfates, such as the mono- or di-alkali metal or -ammonium salts of peroxodisulfuric acid, such as their mono- and di-sodium, -potassium or -ammonium salts, for example, or organic peroxides, such as alkyl hydroperoxides, examples being tert-butyl, p-menthyl, and cumyl hydroperoxide, and also dialkyl or diaryl peroxides, such as di-tert-butyl peroxide or dicumyl peroxide.
- inorganic peroxides such as hydrogen peroxide or peroxodisulfates, such as the mono- or di-alkali metal or -ammonium salts of peroxodisulfuric acid, such as their mono- and di-sodium, -potassium or -ammonium salts
- Suitable oxidizing agents for redox initiator systems include substantially the aforementioned peroxides.
- sulfur compounds with a low oxidation state such as alkali metal sulfites, examples being potassium and/or sodium sulfite, alkali metal hydrogensulfites, examples being potassium and/or sodium hydrogensulfite, alkali metal metabisulfites, examples being potassium and/or sodium metabisulfite, formaldehyde-sulfoxylates, examples being potassium and/or sodium formaldehyde-sulfoxylate, alkali metal salts, especially potassium salts and/or sodium salts, aliphatic sulfinic acids, and alkali metal hydrogensulfides, such as potassium and/or sodium hydrogensulfide, salts of polyvalent metals, such as iron(II) sulfate, iron(II) ammonium sulfate, iron(II) phosphate, endiols, such as dihydroxymaleic acid, benzoin and/or ascorbic acid, and reducing saccharides, such as sodium sulfites, examples being potassium
- the total amount of the free-radical initiator can be included in the initial charge in the aqueous polymerization medium before the polymerization reaction is initiated. It is also possible, however, optionally to include only a portion of the free-radical initiator in the initial charge in the aqueous polymerization medium before the polymerization reaction is initiated, and then, under polymerization conditions, during the free-radical emulsion polymerization of the invention, to add the entirety or, if applicable, any remainder in accordance with the rate of its consumption, such addition taking place discontinuously in one or more portions or continuously with constant or varying flow rates.
- initiation of the polymerization reaction is meant the start of the polymerization reaction of the monomers present in the aqueous polymerization medium, following formation of free radicals by the free-radical initiator.
- the polymerization reaction may be initiated by addition of free-radical initiator to the aqueous polymerization medium in the polymerization vessel under polymerization conditions. It is also possible, however, for a portion or the entirety of the free-radical initiator to be added to the aqueous polymerization medium in the polymerization vessel, optionally comprising monomers A and B included in the initial charge, under conditions which are not suitable for triggering a polymerization reaction, such as at low temperature, for example, and thereafter to bring about polymerization conditions in the aqueous polymerization medium.
- polymerization conditions are meant, generally speaking, those temperatures and pressures under which the free-radically initiated aqueous emulsion polymerization proceeds at a sufficient polymerization rate. They are dependent, in particular, on the free-radical initiator used.
- the nature and amount of the free-radical initiator, and the polymerization temperature and polymerization pressure are selected such that there are always sufficient initiating radicals available to initiate and maintain the polymerization reaction.
- Suitable reaction temperatures for the free-radical aqueous emulsion polymerization of the invention embrace the entire range from 0 to 170° C. In general the temperatures used are 50 to 120° C., frequently 60 to 110° C., and often 70 to 100° C.
- the free-radical aqueous emulsion polymerization of the invention can be carried out at a pressure less than, equal to or greater than 1 atm (atmosphere pressure), and the polymerization temperature may consequently exceed 100° C. and amount to up to 170° C.
- Highly volatile monomers such as, for example, ethylene, butadiene or vinyl chloride, are preferably polymerized under superatmospheric pressure.
- This pressure may adopt values of 1.2, 1.5, 2, 5, 10 or 15 bar (absolute) or even higher.
- pressures of 950 mbar, frequently of 900 mbar, and often 850 mbar (absolute) are set.
- the free-radical aqueous emulsion polymerization of the invention is conducted advantageously at 1 atm in the absence of oxygen, such as under an inert gas atmosphere, such as under nitrogen or argon, for example.
- the aqueous reaction medium may in principle also comprise, in minor amounts ( ⁇ 5% by weight), water-soluble organic solvents, such as methanol, ethanol, isopropanol, butanols, pentanols, but also acetone, etc. With preference, however, the process of the invention is carried out in the absence of such solvents.
- Suitable compounds in this context include substantially aliphatic and/or araliphatic halogen compounds, such as n-butyl chloride, n-butyl bromide, n-butyl iodide, methylene chloride, ethylene dichloride, chloroform, bromoform, bromotrichloromethane, dibromodichioromethane, carbon tetrachloride, carbon tetrabromide, benzyl chloride, benzyl bromide, organic thio compounds, such as primary, secondary or tertiary aliphatic thiols, such as ethanethiol, n-propanethiol, 2-propanethiol, n-butanethiol, 2-butanethio
- the total amount of free-radical chain transfer compounds used optionally in the process of the invention is generally ⁇ 5%, often ⁇ 3%, and frequently ⁇ 1% by weight.
- the metering of any remaining amount of monomers A and B can be effected batchwise in one or more portions or continuously at constant or changing flow rates.
- the metering of the monomers A to B is preferably effected continuously at constant flow rates.
- the remaining amounts of the monomers A to B can be metered in separate individual streams or as a monomer mixture.
- the metering of any remaining amount of the monomers A and B is effected as a monomer mixture, particularly advantageously in the form of an aqueous monomer emulsion.
- the process according to the invention is effected in such a way that the monomers A to B are reacted to a conversion of 95% by weight, advantageously 98% by weight and particularly advantageously —— 99% by weight. It is frequently advantageous if the aqueous polymer dispersion obtained after the end of polymerization stage 2 is subjected to an aftertreatment for reducing the residual monomer content.
- the aftertreatment is effected either chemically, for example by completion of the polymerization reaction by use of a more effective free radical initiator system (so-called postpolymerization) and/or physically, for example by stripping of the aqueous polymer dispersion with steam or inert gas.
- aqueous polymer dispersions whose polymers have a glass transition temperature or a melting point in the range from ⁇ 60 to 270° C.
- step or multiphase polymers having a plurality of glass transition temperatures can also be prepared.
- emulsion polymers in aqueous dispersion that comprise as monomers A at least one ⁇ , ⁇ -ethylenically unsaturated monomer, which is preferably selected from esters of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic and dicarboxylic acids with C 1 -C 20 alkanols, vinylaromatics, esters of vinyl alcohol with C 1 -C 30 monocarboxylic acids, ethylenically unsaturated nitriles, vinyl halides, vinylidene halides, monoethylenically unsaturated carboxylic and sulfonic acids, phosphorus monomers, esters of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic and dicarboxylic acids with C 2 -C 30 alkanediols, amides of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic
- Suitable esters of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic and dicarboxylic acids with C 1 -C 20 alkanols are methyl(meth)acrylate, methyl ethacrylate, ethyl(meth)acrylate, ethyl ethacrylate, n-propyl(meth)acrylate, isopropyl(meth)acrylate, n-butyl(meth)acrylate, sec-butyl(meth)acrylate, tert-butyl(meth)acrylate, tert-butyl ethacrylate, n-hexyl(meth)acrylate, n-heptyl(meth)acrylate, n-octyl(meth)acrylate, 1,1,3,3-tetramethylbutyl(meth)acrylate, ethylhexyl(meth)acrylate, propylheptyl(meth)acrylate,
- Preferred vinylaromatics are styrene, 2-methylstyrene, 4-methylstyrene, 2-(n-butyl)styrene, 4-(n-butyl)styrene, 4-(n-decyl)styrene, and, with particular preference, styrene.
- Suitable esters of vinyl alcohol with C 1 C 30 monocarboxylic acids are, for example, vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl laurate, vinyl stearate, vinyl propionate, Versatic acid vinyl esters, and mixtures thereof.
- Suitable ethylenically unsaturated nitriles are acrylonitrile, methacrylonitrile, and mixtures thereof.
- Suitable vinyl halides and vinylidene halides are vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, and mixtures thereof.
- Suitable ethylenically unsaturated carboxylic acids, sulfonic acids and phosphonic acids or their derivatives are acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid, fumaric acid, the monoesters of monoethylenically unsaturated dicarboxylic acids having 4 to 10, preferably 4 to 6, carbon atoms, e.g., monomethyl maleate, vinylsulfonic acid, allylsulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-acryloyloxypropylsulfonic acid, 2-hydroxy-3-methacryloyloxy
- Suitable styrenesulfonic acids and derivatives thereof are styrene-4-sulfonic acid and styrene-3-sulfonic acid and the alkali metal or alkaline earth metal salts thereof, such as sodium styrene-3-sulfonate and sodium styrene-4-sulfonate, for example.
- Particularly preferred are acrylic acid, methacrylic acid, and mixtures thereof.
- Examples of phosphorus-containing monomers are vinylphosphonic acid and allylphosphonic acid, for example. Also suitable are the monoesters and diesters of phosphonic acid and phosphoric acid with hydroxyalkyl(meth)acrylates, especially the monoesters. Additionally suitable are diesters of phosphonic acid and phosphoric acid that have been esterified once with hydroxyalkyl(meth)acrylate and also once with a different alcohol, such as an alkanol, for example. Suitable hydroxyalkyl(meth)acrylates for these esters are those specified below as separate monomers, more particularly 2-hydroxyethyl(meth)acrylate, 3-hydroxypropyl(meth)acrylate, 4-hydroxybutyl(meth)acrylate, etc.
- Corresponding dihydrogen phosphate ester monomers comprise phosphoalkyl(meth)acrylates, such as 2-phosphoethyl(meth)acrylate, 2-phosphopropyl(meth)acrylate, 3-phosphopropyl(meth)acrylate, phosphobutyl(meth)acrylate, and 3-phospho-2-hydroxypropyl(meth)acrylate.
- phosphoalkyl(meth)acrylates such as 2-phosphoethyl(meth)acrylate, 2-phosphopropyl(meth)acrylate, 3-phosphopropyl(meth)acrylate, phosphobutyl(meth)acrylate, and 3-phospho-2-hydroxypropyl(meth)acrylate.
- esters of phosphonic acid and phosphoric acid with alkoxylated hydroxyalkyl(meth)acrylates examples being the ethylene oxide condensates of (meth)acrylates, such as H 2 C ⁇ C(CH 3 )COO(CH 2 CH 2 O) n P(OH) 2 and H 2 C ⁇ C(CH 3 )COO(CH 2 CH 2 O) n P( ⁇ O)(OH) 2 , in which n is 1 to 50.
- phosphoalkyl crotonates phosphoalkyl maleates, phosphoalkyl fumarates, phosphodialkyl(meth)acrylates, phosphodialkyl crotonates and allyl phosphates.
- monomers containing phosphorus groups are described in WO 99/25780 and U.S. Pat. No. 4,733,005, hereby incorporated by reference.
- Suitable esters of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic and dicarboxylic acids with C 2 -C 30 alkanediols are, for example, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl ethacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate, 3-hydroxybutyl acrylate, 3-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, 6-hydroxyhexyl acrylate, 6-hydroxyhexyl methacrylate, 3-hydroxy-2-ethylhexyl acrylate, 3-hydroxy-2-ethylhexyl methacrylate, etc.
- Suitable primary amides of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids and their N-alkyl and N,N-dialkyl derivatives are acrylamide, methacrylamide, N-methyl(meth)acrylamide, N-ethyl(meth)acrylamide, N-propyl(meth)acrylamide, N-(n-butyl)(meth)acrylamide, N-(tert-butyl)(meth)acrylamide, N-(n-octyl)(meth)acrylamide, N-(1,1,3,3-tetramethylbutyl)(meth)acrylamide, N-ethylhexyl(meth)acrylamide, N-(n-nonyl)(meth)acrylamide, N-(n-decyl)(meth)acrylamide, N-(n-undecyl)(meth)acrylamide, N-tridecyl(meth)acrylamide, N-myristyl(
- N-vinyllactams and their derivatives are, for example, N-vinylpyrrolidone, N-vinylpiperidone, N-vinylcaprolactam, N-vinyl-5-methyl-2-pyrrolidone, N-vinyl-5-ethyl-2-pyrrolidone, N-vinyl-6-methyl-2-piperidone, N-vinyl-6-ethyl-2-piperidone, N-vinyl-7-methyl-2-caprolactam, N-vinyl-7-ethyl-2-caprolactam, etc.
- Suitable open-chain N-vinylamide compounds are, for example, N-vinylformamide, N-vinyl-N-methylformamide, N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinyl-N-ethylacetamide, N-vinylpropionamide, N-vinyl-N-methylpropionamide, and N-vinylbutyramide.
- Suitable esters of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic and dicarboxylic acids with amino alcohols are N,N-dimethylaminomethyl(meth)acrylate, N,N-dimethylaminoethyl(meth)acrylate, N,N-diethylaminoethyl acrylate, N,N-dimethylaminopropyl(meth)acrylate, N,N-diethylaminopropyl(meth)acrylate, and N,N-dimethylaminocyclohexyl(meth)acrylate.
- Suitable amides of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic and dicarboxylic acids with diamines which contain at least one primary or secondary amino group are N-[2-(dimethylamino)ethyl]acrylamide, N-[2-(dimethylamino)ethyl]methacrylamide, N-[3-(dimethylamino)propyl]acrylamide, N-[3-(dimethylamino)propyl]methacrylamide, N-[4-(dimethylamino)butyl]acrylamide, N-[4-(dimethylamino)butyl]methacrylamide, N-[2-(diethylamino)ethyl]acrylamide, N-[4-(dimethylamino)cyclohexyl]acrylamide, N-[4-(dimethylamino)cyclohexyl]methacrylamide, etc.
- Suitable monomers A are, furthermore, N,N-diallylamines and N,N-diallyl-N-alkylamines and their acid addition salts and quaternization products.
- Alkyl here is preferably C 1 -C 24 alkyl. Preference is given to N,N-diallyl-N-methylamine and to N,N-diallyl-N,N-dimethylammonium compounds, such as the chlorides and bromides, for example.
- Suitable monomers A are vinyl- and allyl-substituted nitrogen heterocycles, such as N-vinylimidazole, N-vinyl-2-methylimidazole, and vinyl- and allyl-substituted heteroaromatic compounds, such as 2- and 4-vinylpyridine, 2- and 4-allylpyridine, and the salts thereof.
- Suitable C 2 -C 8 monoolefins and nonaromatic hydrocarbons having at least two conjugated double bonds are for example ethylene, propylene, isobutylene, isoprene, butadiene, etc.
- Suitable monomers A containing urea groups are N-vinylurea or N-allylurea or derivatives of imidazolidin-2-one. They include N-vinyl- and N-allylimidazolidin-2-one, N-vinyloxyethylimidazolidin-2-one, N-(2-(meth)acrylamidoethyl)imidazolidin-2-one.
- Preferred monomers containing urea groups are N-(2-acryloxyethyl)imidazolidin-2-one and N-(2-methacryloxyethyl)imidazolidin-2-one. Particular preference is given to N-(2-methacryloxyethyl)imidazolidin-2-one (2-ureido methacrylate, UMA).
- crosslinking monomers examples being monomers which carry keto groups or aldehyde groups, such as (meth)acrolein, diacetoneacrylamide (DAAM), acetoacetoxyethyl methacrylate (AAEM), which may be combined with adipic dihydrazide (ADDH) or diamines, and also monomers which carry epoxide groups, such as glycidyl methacrylate (GMA), or diolefinically unsaturated compounds such as allyl(meth)acrylate (AMA), butanediol diacrylate, hexanediol diacrylate, for instance.
- keto groups or aldehyde groups such as (meth)acrolein, diacetoneacrylamide (DAAM), acetoacetoxyethyl methacrylate (AAEM), which may be combined with adipic dihydrazide (ADDH) or diamines
- epoxide groups such as glycidyl methacrylate
- the aforementioned monomers A may be used individually, in the form of mixtures within one class of monomer or in the form of mixtures from different classes of monomer. It is preferred in accordance with the invention to use those emulsion polymers which in addition to the monomers A comprise the monomers B in amounts of 0.1% to 30% by weight and component C, the at least one photoinitiator, in amounts of 0.01% to 5% by weight, in each case based on the sum of the monomers.
- glass transition temperature is ⁇ 100° C., more particularly ⁇ 60° C., preferably > ⁇ 50° C. and ⁇ 30° C., especially ⁇ 10° C. and advantageously ⁇ 40° C. and ⁇ 0° C.
- Tg glass transition temperature
- the glass transition temperature is determined by the DSC method (Differential Scanning Calorimetry, 20 K/min, midpoint measurement, DIN 53 765).
- the emulsion polymers may of course also have two or more glass transition temperatures.
- Tg1, Tg2, . . . Tgn are the glass transition temperatures of the polymers constructed in each case only from one of the monomers 1, 2, . . . n in degrees Kelvin.
- the Tg values for the homopolymers for the majority of monomers are known and are listed in, for example, Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, vol. A21, page 169, Verlag Chemie, Weinheim, 1992; further sources of glass transition temperatures for homopolymers include, for example, J. Brandrup, E. H. Immergut, Polymer Handbook, 1st Ed., J. Wiley, New York, 1966; 2nd Ed., J. Wiley, New York, 1975; and 3rd Ed., J. Wiley, New York, 1989.
- the average diameter of the emulsion polymers present in aqueous dispersion is generally in the range from 10 to 1000 nm, often 50 to 500 nm or 80 to 300 nm.
- the particle size distribution may be monomodal or multimodial. In the case of a bimodal particle size distribution, the finely divided component has particle diameters of preferably 50 to 150 nm, while the coarse-particled component has diameters of preferably 200 to 500 nm.
- the solids contents of the aqueous dispersions of emulsion polymers that can be used in accordance with the invention are generally ⁇ 10% and ⁇ 70%, advantageously ⁇ 30% and ⁇ 70% and with particular advantage ⁇ 40% and ⁇ 65%, by weight.
- the particle size of the polymer particles was determined by dynamic light scattering on a 0.01% by weight dispersion at 23° C., using a high performance particle sizer (HPPS) from Malvern Instruments, UK. The figure reported was the cumulant z-average of the measured autocorrelation function.
- the monomers B used are known per se to the skilled person and are described in, for example, publications WO 2009/047234 and WO 2009/146995, hereby incorporated in full by reference.
- the monomers B may have an iodine number in the range from 50 to 300 g iodine/100 g, more preferably in the range from 50 to 200 g iodine/100 g, more particularly preferably 50 to 180 g iodine/100 g, very preferably 80 to 150 g iodine/100 g monomer.
- the iodine number was determined by the method of Kaufmann, DGF Standard Methods C-V 11b (2002).
- (meth)acryl- stands for acrylic and methacrylic radicals, with methacrylic radicals being preferred.
- Particularly preferred monomers B are methacryloyloxy-2-ethyl-oleamide, methacryloyloxy-2-ethyl-linoleamide and/or methacryloyloxy-2-ethyl-linoleneamide, and also methacryloyloxy-2-hydroxypropyl-linoleic ester and methacryloyloxy-2-hydroxypropyl-oleic ester.
- the reaction of the methacrylates of the monomers B takes place preferably with suitable fatty acids.
- the preferred (meth)acrylates of the invention include more particularly octadecane-dien-yl(meth)acrylate, octadecane-trien-yl(meth)acrylate, hexadecenyl(meth)acrylate, octadecenyl(meth)acrylate and hexadecane-dien-yl(meth)acrylate.
- (meth)acrylates which in the alkyl radical have at least one double bond and 8 to 40 carbon atoms can also be obtained by reaction of unsaturated fatty acids with meth(acrylates) which have reactive groups in the alcohol residue.
- the reactive groups include, in particular, hydroxyl groups and also epoxy groups.
- hydroxyalkyl(meth)acrylates such as 3-hydroxypropyl(meth)acrylate, 3,4-dihydroxybutyl(meth)acrylate, 2-hydroxyethyl(meth)acrylate, 2-hydroxypropyl(meth)acrylate, 2,5-dimethyl-1,6-hexanediol(meth)acrylate, and 1,10-decanediol(meth)acrylate; or (meth)acrylates containing epoxy groups, an example being glycidyl(meth)acrylate.
- Suitable fatty acids for reaction of the aforementioned (meth)acrylates are widely available commercially and are obtained from natural sources. They include, among others, undecylenic acid, palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, icosenoic acid, cetoleic acid, erucic acid, nervonic acid, linoleic acid, linolenic acid, arachidonic acid, timnodonic acid, clupanodonic acid and/or cervonic acid.
- the especially preferred (meth)acrylates include more particularly (meth)acryloyloxy-2-hydroxypropyllinoleic ester, (meth)acryloyloxy-2-hydroxypropyl-linolenic ester and (meth)acryloyloxy-2-hydroxypropyl-oleic ester.
- the aforesaid (meth)acrylates with at least one double bond may be used individually or as a mixture of two or more (meth)acrylates.
- (meth)acrylate segments which comprise at least 5%, preferably at least 10%, and more preferably at least 15%, by weight, of units deriving from (meth)acryloyloxy-2-hydroxypropyl-oleic ester, based on the weight of the units derived from (meth)acrylates which in the alkyl radical have at least one double bond and 8 to 40 carbon atoms.
- the polymer preferably has 15% to 45%, more preferably 20% to 35%, by weight of units deriving from (meth)acryloyloxy-2-hydroxypropyl-oleic ester, based on the weight of the units deriving from (meth)acrylates which in the alkyl radical have at least one double bond and 8 to 40 carbon atoms.
- (meth)acrylate segments which comprise at least 20%, preferably at least 40%, and more preferably at least 50%, by weight, of units deriving from (meth)acryloyloxy-2-hydroxypropyl-linoleic ester, based on the weight of the units derived from (meth)acrylates which in the alkyl radical have at least one double bond and 8 to 40 carbon atoms.
- the polymer preferably has 45% to 80%, more preferably 55% to 70%, by weight of units deriving from (meth)acryloyloxy-2-hydroxypropyl-linoleic ester, based on the weight of the units deriving from (meth)acrylates which in the alkyl radical have at least one double bond and 8 to 40 carbon atoms.
- the monomers B are used in amounts of 0.1% to 30% by weight, preferably 0.1% to 10% by weight, more preferably in amounts of 0.5% to 8% by weight, based in each case on the total weight of the monomers.
- Component C the at least one photoinitiator
- benzophenone derivatives in liquid form They can simply be added to the polymer dispersion and incorporated by stirring.
- Esacure® TZM from Lehmann & Voss & Co., Germany.
- the at least one photoinitiator may also be metered in during the polymerization. This may take place in a separate feed or together with the monomers A and/or B. It is preferred to add the copolymerizable photoinitiator with the monomers A and B.
- the component C comprises, for example, benzophenone or acetophenone or derivatives with benzophenone or acetophenone substructures, such as substituted benzophenones, for instance 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, thioxanthones, such as isopropylthioxanthone, or olefinically unsaturated derivatives of benzophenone or of acetophenone, examples being those with a (meth)acrylic radical such as (meth)acryloxyethoxybenzophenone, or with a vinyl group such as 4-vinyloxybenzophenone, or mixtures of these active ingredients, such as 4-methylbenzophenone and 2,4,6-trimethylbenzophenone, for example.
- Other photoinitiators contemplated are described in EP 417 568, page 3, line 39 to page 7, line 51, hereby incorporated by reference.
- the emulsion polymers of the invention possess (poly)olefiically unsaturated side chains, and are therefore oxidatively crosslinkable in a similar way to, for example, alkyd resins, with the aid of what are called dryers (siccatives). Dryers are metal compounds with usually Co compounds or Mn compounds, occasionally also Fe compounds, as active component, and catalyze the reaction of the (poly)olefinically unsaturated alkyl chains with atmospheric oxygen (cf. U. Poth, Polyester and Alkydharze, p. 183 f). Surprisingly, the addition of dryers to the polymer dispersions of the invention had no effect on the soiling of coating films produced therefrom. In the polymer dispersions and in the coating materials based thereon, therefore, it is preferred not to use dryers.
- the present invention also provides coating materials, preferably exterior architectural paints, comprising the aqueous polymer dispersions of the invention as binders.
- Elastic coating compositions of this type are intended to bridge fine cracks on the building exterior and thus to protect buildings reliably against moisture and other weathering effects.
- the coating materials of the invention are produced in conventional ways by blending the components in mixing apparatus customary for the purpose. It has been found appropriate to prepare an aqueous paste or dispersion to start with from the pigments, fillers, water, and any auxiliaries, and only then to add the aqueous polymer dispersion, with stirring as an option.
- Coating materials of the invention comprise (in the wet state)
- Finely divided inorganic fillers (ii) used are substantially inorganic materials having refractive indices lower by comparison with the pigments.
- the finely divided fillers are often naturally occurring minerals, such as, for example, calcite, chalk, dolomite, kaolin, talc, talc/chlorite intergrowths, mica, diatomaceous earth, baryte, and quartz, but also synthetically prepared inorganic compounds, such as, for example, precipitated calcium carbonate, calcined kaolin or barium sulfate, and fumed silica.
- calcium carbonate in the form of crystalline calcite or of amorphous chalk.
- Preferred inorganic fillers are the Omyacarb® products from Omya and the Finntalc® products from Mondo Minerals, the Celite® and OptimatTM products from World Minerals, and the Aerosil® products from Evonik Industries AG.
- Pigments (iv) used are finely divided inorganic and organic compounds.
- the most important white pigment on account of its high refractive index and its high opacity, is titanium dioxide, in the form of its anatase and rutile modifications.
- typical commercial products include the Kronos® products from Kronos, the Tiona® products from Millenium, the TIOXIDE® products from Huntsman, Ti-Pure® products from Du-Pont de Nemours. Additionally, however, zinc oxide and zinc sulfide are used as white pigments.
- organic white pigments such as non-film-forming, styrene- (and carboxyl-)rich, hollow polymer particles with a particle size of around 300 to 400 nm (referred to as opaque particles) are used, examples being Rhopaque products from Dow.
- any of a very wide variety of chromatic pigments familiar to the skilled person are used for coloring the coating, examples being the somewhat less expensive inorganic iron, cadmium, chromium, and lead oxides and sulfides, lead molybdate, cobalt blue, carbon black, and also the somewhat more expensive organic pigments, examples being phthalocyanines, azo pigments, quinacridones, perylenes, carbozoles.
- the thickeners iii. are generally compounds of high molecular mass which absorb water and in doing so swell to form bulky structures, or are amphiphilic molecules which possess at least two hydrophobic groups and form relatively loose lattice structures in water via micelles.
- Examples are high molecular mass polymers based on acrylic acid and acrylamide (for example, Collacral® HP from BASF SE), carboxyl-rich acrylic ester copolymers such as Latekoll® D (BASF SE)—the latter may also possess hydrophobic groups as well (HASE thickeners), and also PU associative thickeners (for example, Collacral® PU 75 from BASF SE), celluloses and their derivatives, examples being cellulose ethers (Natrosol grades from Ashland-Aqualon) or carboxymethylcellulose, and also natural thickeners, such as bentonites, alginates or starch, for example.
- acrylic acid and acrylamide for example, Collacral® HP from BASF SE
- carboxyl-rich acrylic ester copolymers such as Latekoll® D (BASF SE)—the latter may also possess hydrophobic groups as well (HASE thickeners), and also PU associative thickeners (for example, Collacral® PU 75 from BASF
- the thickeners (iii.) are used in amounts of 0% to 5% by weight, preferably 0.1% to 2.5% by weight.
- the further auxiliaries (v.) include, for example, preservatives for preventing fungal and bacterial infestation, solvents for influencing the open time, such as ethylene glycol or propylene glycol, and the formation of a film, such as butyl glycol, butyl diglycol, propylene glycol ethers such as, for instance, Dowanol PP, DPM or DPnB (Dow), Texanol (Eastman), high-boiling esters, examples being diisobutyl esters of glutaric, succinic, and adipic acid, dispersants for stabilizing the finely dispersed pigment and filler particles, examples being polycarboxylates such as, for instance, Pigmentverteiler A or NL (BASF SE) or oligophosphates or polyphosphates such as Calgon N, emulsifiers (Emulphor® OPS 25, Lutensol® TO 89), antifreeze agents (ethylene glycol, propylene glycol) or defo
- Determination of the pH was performed in accordance with DIN 53785.
- the instrument was a pH meter from Methrom, a Titroprocessor 682. Around 50 ml of the sample are placed in a 100 ml glass beaker. The sample is subsequently conditioned at 23 ⁇ 1° C. in a thermostat. The glass electrode is kept ideally in a 3-molar KCl solution. Prior to measurement, it is washed a number of times with the polymer dispersion and then immersed into the sample. When the position of the pointer on the display of the meter is constant, the pH is read off.
- the Xenotest was carried out as follows:
- test specimens were weathered in accordance with DIN EN ISO 11341: December 2004 in a Heraeus Xenotest 1200 weathering apparatus for a total of 48 hours (3 xenon lamps each of 4500 W, irradiance at 300-400 nm (3 times Suprax specialty glass filters) around 60 W/m 2 , test chamber temperature in the dry period 38+/ ⁇ 3° C., relative humidity 65+/ ⁇ 5% , black standard temperature in the dry period 65+/ ⁇ 3° C., parallel operation, radiation source continually in operation, dry period 102 min, irrigation 18 min, beginning with dry period).
- a polymerization vessel equipped with metering devices and temperature regulation was charged under a nitrogen atmosphere at 20 to 25° C. (room temperature) with
- Emulan® OG 50.0 g of Emulan® OG (BASF SE)
- the resultant 2040.2 g of the aqueous polymer dispersion had a solids content of 51.8% by weight and a pH of 7.2. Diluted with deionized water, the aqueous polymer dispersion had a weight-average particle diameter of 143 nm.
- a polymerization vessel equipped with metering devices and temperature regulation was charged under a nitrogen atmosphere at 20 to 25° C. (room temperature) with
- the resultant 2038.7 g of the aqueous polymer dispersion had a solids content of 51.3% by weight and a pH of 7.2. Diluted with deionized water, the aqueous polymer dispersion had a weight-average particle diameter of 143 nm.
- a polymerization vessel equipped with metering devices and temperature regulation was charged under a nitrogen atmosphere at 20 to 25° C. (room temperature) with
- the aqueous polymer dispersion obtained was subsequently cooled to room temperature. At a temperature of 60° C., 1.5 g of benzophenone were added. Lastly, the dispersion was filtered through a 125 ⁇ m filter.
- the resultant 2040.2 g of the aqueous polymer dispersion had a solids content of 51.5% by weight and a pH of 7.5. Diluted with deionized water, the aqueous polymer dispersion had a weight-average particle diameter of 136 nm.
- a four-neck, round-bottom flask equipped with a saber stirrer with stirring sleeve and stirring motor, nitrogen inlet, liquid-phase thermometer and a distillation bridge was charged with 206.3 g (0.70 mol) of fatty acid methyl ester mixture, 42.8 g (0.70 mol) of ethanolamine and 0.27 g (0.26%) of LiOH.
- the fatty acid methyl ester mixture comprised 6% by weight of saturated C12 to C16 fatty acid methyl esters, 2.5% by weight of saturated C17 to C20 fatty acid methyl esters, 52% by weight of monounsaturated C18 fatty acid methyl esters, 1.5% by weight of monounsaturated C20 to C24 fatty acid methyl esters, 36% by weight of polyunsaturated C18 fatty acid methyl esters, and 2% by weight of polyunsaturated C20 to C24 fatty acid methyl esters.
- the reaction mixture was heated to 150° C. Over the course of 2 hours, 19.5 ml of methanol were taken off by distillation. The resulting reaction product contained 86.5% of fatty acid ethanolamides.
- the reaction mixture obtained was processed further without purification. After cooling had taken place, 1919 g (19.2 mol) of methyl methacrylate, 3.1 g of LiOH, and an inhibitor mixture consisting of 500 ppm of hydroquinone monomethyl ether and 500 ppm of phenothiazine were added.
- the reaction apparatus was flushed with nitrogen for 10 minutes with stirring. Thereafter the reaction mixture was heated to boiling. The methyl methacrylate/methanol azeotrope was removed and subsequently the overhead temperature was raised in steps to 100° C. After the end of the reaction, the reaction mixture was cooled to around 70° C. and filtered. Excess methyl methacrylate was removed on a rotary evaporator. This gave 370 g of product.
- a four-neck, round-bottom flask equipped with a saber stirrer with stirring sleeve and stirring motor, nitrogen inlet, liquid-phase thermometer and a distillation bridge was charged with 206.3 g (0.70 mol) of fatty acid methyl ester mixture, 42.8 g (0.70 mol) of ethanolamine and 0.27 g (0.26%) of LiOH.
- the fatty acid methyl ester mixture comprised 6% by weight of saturated C12 to C16 fatty acid methyl esters, 2.5% by weight of saturated C17 to C20 fatty acid methyl esters, 52% by weight of monounsaturated C18 fatty acid methyl esters, 1.5% by weight of monounsaturated C20 to C24 fatty acid methyl esters, 36% by weight of polyunsaturated C18 fatty acid methyl esters, and 2% by weight of polyunsaturated C20 to C24 fatty acid methyl esters.
- the reaction mixture was heated to 150° C. Over the course of 2 hours, 19.5 ml of methanol were taken off by distillation. The resulting reaction product contained 86.5% of fatty acid ethanolamides.
- the reaction mixture obtained was processed further without purification. Following the addition of an inhibitor mixture of 500 ppm of hydroquinone monomethyl ether and 500 ppm of phenothiazine, 108 g (0.70 mol) of methacrylic anhydride were metered in slowly at a liquid-phase temperature of 80° C. The reaction mixture was heated to 90° C. and stirred at this temperature for 6 hours. The methacrylic acid formed was removed on a thin-film evaporator. This gave a brown liquid product.
- Monomer B3 was obtained by reacting linoleic acid with glycidyl methacrylate.
- Monomer B4 was obtained by reacting oleic acid with glycidyl methacrylate.
- the ingredients were added in the order indicated above, with stirring.
- the paints were left to age at room temperature for 24 hours.
- fiber cement plaques were initially dewatered, brushed off while wet, and dried.
- the coating materials were applied each in 2 layers (with drying for 16 hours in between) by brush, at 500 g/m 2 in each case.
- the coatings were dried for 3 days at 23° C. and 50% relative humidity. Then, with the aid of a Color guide 45/0 from Byk Gardner, the colorimetric parameters L, a and b were ascertained (standard illuminant C 2).
- test specimens were weathered in a Xenotest 1200 weathering apparatus as indicated above for 48 hours. After weathering, the test specimens were dried. Activated carbon, dry, was then scattered on to form a covering. Excess activated carbon was removed by tapping on the edge or using compressed air. The soiled test specimens were subsequently immersed in water, rinsed off with in each case 1 I of running water, and, lastly, wiped off three times with a wet sponge, without pressure. After drying, a determination was made, as above, of the colorimetric parameters of the soiled area, and of the difference ⁇ E relative to the initial value before weathering and soiling.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Dispersion Chemistry (AREA)
- Paints Or Removers (AREA)
- Polymerisation Methods In General (AREA)
Abstract
-
- (A) monomers A
- (B) at least one (meth)acrylate with olefinically unsaturated side groups (monomers B), and
- (C) at least one photoinitiator, and also the use thereof in coating materials, more particularly in exterior architectural paints.
Description
- The present invention provides aqueous emulsion polymers comprising
-
- (A) monomers A
- (B) at least one (meth)acrylate with olefinically unsaturated side groups (monomers B), and
- (C) at least one photoinitiator.
- The present invention likewise provides coating materials comprising the polymer dispersions of the invention, and also their preparation and use, more particularly in exterior architectural paints. The coating materials may either be free from organic solvents or comprise organic solvents. Another embodiment of the invention are coating materials which comprise as binders polymer dispersions of the invention having glass transition temperatures<0° C., for elastic, crack-bridging coatings. Coatings based on the above-described coating materials are notable for improved soil pickup resistance.
- Coatings outdoors, as for example on the outsides of buildings, are exposed to wind and weather, and, over time, pick up particles of soil from the environment. Soiled coatings of this kind are indeed still capable of protecting the substrate, whether plaster or masonry, from effects of weathering. Frequently, however, exterior architectural coatings are renovated because soiling has rendered them gray and unattractive. This results in increased costs for maintenance.
- Whether a coating outdoors becomes soiled quickly or slowly is dependent on a multiplicity of factors, such as, firstly, on air pollution, climatic conditions, and so on, but also, secondly, on the roughness of the coating and on the interaction between soil particles and the coating's surface. One important parameter in this context is the hardness of the binder polymer. Binders which dry to form soft or even tacky films pick up soil more quickly than those with a hard surface. The problem of soiling is therefore apparent particularly with coating materials which comprise soft binder polymers, which are those solvent-free coating materials, for example, whose binders still coalesce at processing temperatures down to a little above 0° C., to form a film, and coating materials for elastic coatings. Elastic coatings are characterized by a high degree of elasticity. This quality is utilized to give the elastic coatings sufficient crack-bridging capacity even at low temperatures (−10° C.). The glass transition temperature of the polymer is normally adjusted by way of the monomer composition to temperatures below −10° C. Polymers with a low glass transition temperature have an increased propensity toward soil pickup. This can be prevented using crosslinking systems which make the polymer more elastic and possibly harder (glass transition temperature is raised). State of the art, for example, is metal salt crosslinking or UV crosslinking. The subsequent addition of calcium ions results in crosslinking, as described by B. G. Bufkin and J. R. Grawe in J. Coatings Tech., 1978 50(644), 83. One possible disadvantage might be increased sensitivity to water. UV crosslinking and/or daylight crosslinking is achieved through addition of benzophenone and/or its derivatives, as described in U.S. Pat. No. 3,320,198, EP 100 00, EP 522 789, and EP 1 147 139. EP 1 845 142 describes the addition of a photoinitiator to AAEM-containing dispersions.
- Other ways of achieving high elasticity and good water vapor permeability include the use of silicones, as described in U.S. Pat. No. 5,066,520, for example. The use of fluoroacrylates results in very hydrophobic coatings which may likewise repel soil (EP 890 621).
- It was an object of the present invention to develop an aqueuos dispersion which is suitable as a binder in coating compositions, more particularly in elastic coating compositions, and which in the coating ensures sufficient elasticity and water resistance in tandem with high soil pickup resistance and water vapor permeability.
- Surprisingly, aqueous emulsion polymers comprising
-
- (A) monomers A,
- (B) at least one (meth)acrylate with olefinically unsaturated side groups (monomers B), and
- (C) at least one photoinitiator (component C)
- as binders are notable for high dirt pickup resistance without substantially affecting film extension overall.
- Unless indicated otherwise, the following general definitions apply in the context of the present invention:
- C1-C4 alkyl is a linear or branched alkyl radical having 1 to 4 carbon atoms. This is methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl.
- C1-C18 alkyl is a linear or branched alkyl radical having 1 to 12 carbon atoms. Examples thereof are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl, 2-propylheptyl, 4-methyl-2-propylhexyl, undecyl, dodecyl, and their constitutional isomers.
- Aryl is a carbocylic aromatic radical having 6 to 14 carbon atoms, such as phenyl, naphthyl, anthracenyl or phenanthrenyl. Aryl preferably is phenyl or naphthyl and more particularly is phenyl.
- C1-C18 alkylaryl is C1-C18 alkyl as defined above where one hydrogen atom has been replaced by an aryl group. Examples are benzyl, phenethyl, and the like.
- A primary amino group is understood to be a radical —NH2.
- The observations below concerning preferred embodiments of the process of the invention, more particularly concerning the monomers and other reaction components used in accordance with the invention, and concerning the polymers obtainable by the process and also concerning their use, apply not only on their own, taken per se, but also, in particular, in any conceivable combination with one another.
- Aqueous emulsion polymers are familiar to the skilled person and are prepared, for example, in the form of an aqueous polymer dispersion by free-radically initiated aqueous emulsion polymerization of ethylenically unsaturated monomers. This method has been widely described before now and is therefore sufficiently well known to the skilled person [cf., e.g., Encyclopedia of Polymer Science and Engineering, vol. 8, pages 659 to 677, John Wiley & Sons, Inc., 1987; D.C. Blackley, Emulsion Polymerisation, pages 155 to 465, Applied Science Publishers, Ltd., Essex, 1975; D.C Blackley, Polymer Latices, 2nd Edition, vol. 1, pages 33 to 415, Chapman & Hall, 1997; H. Warson, The Applications of Synthetic Resin Emulsions, pages 49 to 244, Ernest Benn, Ltd., London, 1972; J. Piirma, Emulsion Polymerisation, pages 1 to 287, Academic Press, 1982; F. Hölscher, Dispersionen synthetischer Hochpolymerer, pages 1 to 160, Springer-Verlag, Berlin, 1969, and patent specification DE-A 40 03 422]. The free-radically initiated aqueous emulsion polymerization is typically accomplished by dispersing the ethylenically unsaturated monomers in the aqueous medium, generally using dispersing assistants, such as emulsifiers and/or protective colloids, and polymerizing them by means of at least one water-soluble free-radical polymerization initiator. Frequently, in the aqueous polymer dispersions obtained, the residual amounts of unreacted ethylenically unsaturated monomers are lowered by chemical and/or physical methods that are likewise known to the skilled person [see, for example, EP-A 771328, DE-A 19624299, DE-A 19621027, DE-A 19741184, DE-A 19741187, DE-A 19805122, DE-A 19828183, DE-A 19839199, DE-A 19840586 and 19847115], the polymer solids content is adjusted to a desired level by dilution or concentration, or other customary additives, such as bactericidal, foam-modifying or viscosity-modifying additives, are added to the aqueous polymer dispersion.
- In addition to these so-called primary aqueous polymer dispersions, the skilled person is also aware of so-called secondary aqueous polymer dispersions. By these are meant those aqueous polymer dispersions in whose preparation the polymer is produced outside of the aqueous dispersion medium, being located, for example, in solution in a suitable nonaqueous solvent. This solution is then transferred into the aqueous dispersion medium, and the solvent is separated off, generally by distillation, while dispersion takes place.
- Preferably, though, it is preferred for primary aqueous dispersions to be used.
- In accordance with the invention, for the purposes of the present process, dispersants are used which maintain not only the monomer droplets but also the resultant polymer particles in disperse distribution in the aqueous medium and so ensure the stability of the aqueous polymer dispersion produced. Suitable dispersants include not only the protective colloids typically used to implement free-radical aqueous emulsion polymerizations, but also emulsifiers.
- Examples of suitable protective colloids include polyvinyl alcohols, polyalkylene glycols, alkali metal salts of polyacrylic acids and polymethacrylic acids, gelatin derivatives or copolymers comprising acrylic acid, methacrylic acid, maleic anhydride, 2-acrylamido-2-methylpropanesulfonic acid and/or 4-styrenesulfonic acid, and the alkali metal salts of such copolymers, and also homopolymers and copolymers comprising N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylcarbazole, 1-vinylimidazole, 2-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, acrylamide, methacrylamide, amino-bearing acrylates, methacrylates, acrylamides and/or methacrylamides. An exhaustive description of further suitable protective colloids is found in Houben-Weyl, Methoden der organischen Chemie, volume XIV/1, Makromolekulare Stoffe [Macromolecular Compounds], Georg-Thieme-Verlag, Stuttgart, 1961, pages 411 to 420.
- It will be appreciated that mixtures of protective colloids and/or emulsifiers as well can be used. They may be anionic, cationic or nonionic in nature. It will be appreciated that, when using mixtures of surface-active substances, the individual components must be compatible with one another, something which in case of doubt can be ascertained by means of a few preliminary tests. Generally speaking, anionic emulsifiers are compatible with one another and with nonionic emulsifiers. The same is true of cationic emulsifiers, whereas anionic and cationic emulsifiers are usually not compatible with one another. An overview of suitable emulsifiers is found in Houben-Weyl, Methoden der organischen Chemie, volume XIV/1, Makromolekulare Stoffe [Macromolecular Compounds], Georg-Thieme-Verlag, Stuttgart, 1961, pages 192 to 208.
- Preferably, however, emulsifiers exclusively are used as dispersants in accordance with the invention.
- Customary nonionic emulsifiers are, for example, ethoxylated mono-, di-, and tri-alkylphenols (EO degree: 3 to 50, alkyl radical: C4 to C12) and also ethoxylated fatty alcohols (EO degree: 3 to 80; alkyl radical: C8 to C36). Examples thereof are the Lutensol® A grades (C12C14 fatty alcohol ethoxylates, EO degree: 3 to 8), Lutensol® AO grades (C13C15 oxo alcohol ethoxylates, EO degree: 3 to 30), Lutensol® AT grades (C16C18 fatty alcohol ethoxylates, EO degree: 11 to 80), Lutensol® ON grades (C10 oxo alcohol ethoxylates, EO degree 3 to 11), and Lutensol® TO grades (C13 oxo alcohol ethoxylates, EO degree: 3 to 20), all from BASF SE.
- Typical anionic emulsifiers are, for example, alkali metal salts and ammonium salts of alkyl sulfates (alkyl radical: C8 to C12), of sulfuric monoesters with ethoxylated alkanols (EO degree: 4 to 30, alkyl radical: C12 to C18) and ethoxylated alkylphenols (EO degree: 3 to 50, alkyl radical: C4 to C12), of alkylsulfonic acids (alkyl radical: C12 to C18), and of alkylarylsulfonic acids (alkyl radical: C9 to C18).
- Compounds which have proven suitable as further anionic emulsifiers are, additionally, compounds of the general formula (I)
- in which R1 and R2 are hydrogen atoms or C4 to C24 alkyl but are not simultaneously hydrogen atoms, and M1 and M2 can be alkali metal ions and/or ammonium ions. In the general formula (I) R1 and R2 are preferably linear or branched alkyl radicals having 6 to 18 carbon atoms, in particular having 6, 12, and 16 carbon atoms, or hydrogen, but R1 and R2 are not both simultaneously hydrogen atoms. M1 and M2 are preferably sodium, potassium or ammonium, particular preference being given to sodium. Particularly advantageous compounds (I) are those in which M1 and M2 are sodium, R1 is a branched alkyl radical of 12 carbon atoms and, R2 is a hydrogen atom or R1. Frequently use is made of technical mixtures containing a fraction of 50% to 90% by weight of the monoalkylated product, an example being Dowfax® 2A1 (brand of the Dow Chemical Company). The compounds (I) are common knowledge, from U.S. Pat. No. 4,269,749 for example, and are available commercially.
- Suitable cation-active emulsifiers are generally C6 to C18 alkyl-, C6 to C18 alkylaryl- or heterocyclyl-containing primary, secondary, tertiary or quaternary ammonium salts, alkanolammonium salts, pyridinium salts, imidazolinium salts, oxazolinium salts, morpholinium salts, thiazolinium salts, and salts of amine oxides, quinolinium salts, isoquinolinium salts, tropylium salts, sulfonium salts and phosphonium salts. Examples that may be mentioned include dodecylammonium acetate or the corresponding sulfate, the sulfates or acetates of the various paraffinic acid 2-(N,N,N-trimethylammonio)ethyl esters, N-cetylpyridinium sulfate, N-laurylpyridinium sulfate, and N-cetyl-N,N,N-trimethylammonium sulfate, N-dodecyl-N,N,N-trimethylammonium sulfate, N-octyl-N,N,N-trimethlyammonium sulfate, N,N-distearyl-N,N-dimethylammonium sulfate, and the Gemini surfactant N,N′-(lauryldimethyl)ethylenediamine disulfate, ethoxylated tallowalkyl-N-methylammonium sulfate and ethoxylated oleylamine (for example Uniperol® AC from BASF SE, about 12 ethylene oxide units). Numerous further examples are found in H. Stache, Tensid-Taschenbuch, Carl-Hanser-Verlag, Munich, Vienna, 1981 and in McCutcheon's, Emulsifiers & Detergents, MC Publishing Company, Glen Rock, 1989. It is advantageous if the anionic counter-groups are, as far as possible, of low nucleophilicity, such as, for example, perchlorate, sulfate, phosphate, nitrate, and carboxylates, such as acetate, trifluoroacetate, trichloroacetate, propionate, oxalate, citrate, and benzoate, and also conjugated anions of organic sulfonic acids, such as methylsulfonate, trifluoromethylsulfonate, and para-toluenesulfonate, and additionally tetrafluoroborate, tetraphenylborate, tetrakis(pentafluorophenyl)borate, tetrakis[bis(3,5-trifluoromethyl)phenyl]borate, hexafluorophosphate, hexafluoroarsenate or hexafluoroantimonate.
- The emulsifiers used with preference as dispersants are employed advantageously in a total amount ≧0.1% and ≦10%, preferably ≧0.1% and ≦5%, in particular ≧0.5% and ≦4%, by weight, based in each case on the total monomer amount.
- The total amount of protective colloids used as dispersants, additionally to or in lieu of the emulsifiers, is often ≧0.1% and ≦10% and frequently ≧0.2% and ≦7%, by weight, based in each case on the total monomer amount.
- It is preferred, however, to use anionic and/or nonionic emulsifiers as dispersants.
- If the particle size of the polymer particles to be prepared by means of the free-radically initiated aqueous emulsion polymerization is to be set in a targeted way, the approach then generally taken is to use what is called a polymer seed, which either has been prepared beforehand with other monomers, separately (exogenous polymer seed), or has been prepared in situ by partial polymerization of the monomers to be polymerized.
- Preparing an aqueous polymer dispersion using an in situ polymer seed is familiar to the skilled person (see, for example, DE-A 19609509, EP-A 690882, EP-A 710680, EP-A 1125949, EP-A 1294816, EP-A 1614732, WO-A 03/29300) and takes place generally, prior to the actual emulsion polymerization, a small portion of the monomer mixture used for the emulsion polymerization is introduced as an initial charge in the aqueous polymerization medium and is free-radically polymerized in the presence of a large amount of emulsifier.
- The particle size of the emulsion polymers of the invention is set preferably with the aid of an exogenous polymer seed.
- The free-radically initiated aqueous emulsion polymerization is started off by means of a free-radical polymerization initiator. Initiators may in principle include both peroxides and azo compounds. It will be appreciated that redox initiator systems as well are suitable. Peroxides used may in principle be inorganic peroxides, such as hydrogen peroxide or peroxodisulfates, such as the mono- or di-alkali metal or -ammonium salts of peroxodisulfuric acid, such as their mono- and di-sodium, -potassium or -ammonium salts, for example, or organic peroxides, such as alkyl hydroperoxides, examples being tert-butyl, p-menthyl, and cumyl hydroperoxide, and also dialkyl or diaryl peroxides, such as di-tert-butyl peroxide or dicumyl peroxide. As an azo compound use is made substantially of 2,2′-azobis(isobutyronitrile), 2,2′-azobis(2,4-dimethylvaleronitrile), and 2,2′-azobis(amidinopropyl)dihydrochloride (AIBA, corresponding to V-50 from Wako Chemicals). Suitable oxidizing agents for redox initiator systems include substantially the aforementioned peroxides. As corresponding reducing agents it is possible to use sulfur compounds with a low oxidation state, such as alkali metal sulfites, examples being potassium and/or sodium sulfite, alkali metal hydrogensulfites, examples being potassium and/or sodium hydrogensulfite, alkali metal metabisulfites, examples being potassium and/or sodium metabisulfite, formaldehyde-sulfoxylates, examples being potassium and/or sodium formaldehyde-sulfoxylate, alkali metal salts, especially potassium salts and/or sodium salts, aliphatic sulfinic acids, and alkali metal hydrogensulfides, such as potassium and/or sodium hydrogensulfide, salts of polyvalent metals, such as iron(II) sulfate, iron(II) ammonium sulfate, iron(II) phosphate, endiols, such as dihydroxymaleic acid, benzoin and/or ascorbic acid, and reducing saccharides, such as sorbose, glucose, fructose and/or dihydroxyacetone. In general the amount of free-radical initiator used, based on the total monomer amount, is 0.01% to 5%, preferably 0.1% to 3%, and more preferably 0.2% to 1.5% by weight.
- The total amount of the free-radical initiator can be included in the initial charge in the aqueous polymerization medium before the polymerization reaction is initiated. It is also possible, however, optionally to include only a portion of the free-radical initiator in the initial charge in the aqueous polymerization medium before the polymerization reaction is initiated, and then, under polymerization conditions, during the free-radical emulsion polymerization of the invention, to add the entirety or, if applicable, any remainder in accordance with the rate of its consumption, such addition taking place discontinuously in one or more portions or continuously with constant or varying flow rates.
- By initiation of the polymerization reaction is meant the start of the polymerization reaction of the monomers present in the aqueous polymerization medium, following formation of free radicals by the free-radical initiator. The polymerization reaction may be initiated by addition of free-radical initiator to the aqueous polymerization medium in the polymerization vessel under polymerization conditions. It is also possible, however, for a portion or the entirety of the free-radical initiator to be added to the aqueous polymerization medium in the polymerization vessel, optionally comprising monomers A and B included in the initial charge, under conditions which are not suitable for triggering a polymerization reaction, such as at low temperature, for example, and thereafter to bring about polymerization conditions in the aqueous polymerization medium. By polymerization conditions are meant, generally speaking, those temperatures and pressures under which the free-radically initiated aqueous emulsion polymerization proceeds at a sufficient polymerization rate. They are dependent, in particular, on the free-radical initiator used. Advantageously, the nature and amount of the free-radical initiator, and the polymerization temperature and polymerization pressure, are selected such that there are always sufficient initiating radicals available to initiate and maintain the polymerization reaction.
- Suitable reaction temperatures for the free-radical aqueous emulsion polymerization of the invention embrace the entire range from 0 to 170° C. In general the temperatures used are 50 to 120° C., frequently 60 to 110° C., and often 70 to 100° C. The free-radical aqueous emulsion polymerization of the invention can be carried out at a pressure less than, equal to or greater than 1 atm (atmosphere pressure), and the polymerization temperature may consequently exceed 100° C. and amount to up to 170° C. Highly volatile monomers, such as, for example, ethylene, butadiene or vinyl chloride, are preferably polymerized under superatmospheric pressure. This pressure may adopt values of 1.2, 1.5, 2, 5, 10 or 15 bar (absolute) or even higher. Where emulsion polymerizations are carried out under subatmospheric pressure, pressures of 950 mbar, frequently of 900 mbar, and often 850 mbar (absolute) are set. The free-radical aqueous emulsion polymerization of the invention is conducted advantageously at 1 atm in the absence of oxygen, such as under an inert gas atmosphere, such as under nitrogen or argon, for example.
- The aqueous reaction medium may in principle also comprise, in minor amounts (≦5% by weight), water-soluble organic solvents, such as methanol, ethanol, isopropanol, butanols, pentanols, but also acetone, etc. With preference, however, the process of the invention is carried out in the absence of such solvents.
- Besides the aforementioned components it is also possible optionally in the process of the invention to use free-radical chain transfer compounds in order to reduce or to control the molecular weight of the polymers obtainable by means of the polymerization. Suitable compounds in this context include substantially aliphatic and/or araliphatic halogen compounds, such as n-butyl chloride, n-butyl bromide, n-butyl iodide, methylene chloride, ethylene dichloride, chloroform, bromoform, bromotrichloromethane, dibromodichioromethane, carbon tetrachloride, carbon tetrabromide, benzyl chloride, benzyl bromide, organic thio compounds, such as primary, secondary or tertiary aliphatic thiols, such as ethanethiol, n-propanethiol, 2-propanethiol, n-butanethiol, 2-butanethiol, 2-methyl-2-propanethiol, n-pentanethiol, 2-pentanethiol, 3-pentanethiol, 2-methyl-2-butanethiol, 3-methyl-2-butanethiol, n-hexanethiol, 2-hexanethiol, 3-hexanethiol, 2-methyl-2-pentanethiol, 3-methyl-2-pentanethiol, 4-methyl-2-pentanethiol, 2-methyl-3-pentanethiol, 3-methyl-3-pentanethiol, 2-ethylbutanethiol, 2-ethyl-2-butanethiol, n-heptanethiol and its isomers, n-octanethiol and its isomers, n-nonanethiol and its isomers, n-decanethiol and its isomers, n-undecanethiol and its isomers, n-dodecanethiol and its isomers, n-tridecanethiol and its isomers, substituted thiols, such as 2-hydroxyethanethiol, aromatic thiols, such as benzenethiol, ortho-, meta-, or para-methylbenzenethiol, and also all other sulfur compounds described in the Polymer Handbook, 3rd edition, 1989, J. Brandrup and E. H. Immergut, John Wiley & Sons, Section II, pages 133-41, but also aliphatic and/or aromatic aldehydes, such as acetaldehyde, propionaldehyde and/or benzaldehyde, unsaturated fatty acids, such as oleic acid, dienes containing nonconjugated double bonds, such as divinylmethane or vinylcyclohexane, or hydrocarbons having readily abstractable hydrogen atoms, such as toluene. It is, however, also possible to use mixtures of mutually compatible aforementioned free-radical chain transfer compounds.
- The total amount of free-radical chain transfer compounds used optionally in the process of the invention, based on the total monomer amount, is generally ≦5%, often ≦3%, and frequently ≦1% by weight.
- It is often advantageous if a portion or the entirety of the optionally employed free-radical chain transfer compound is supplied to the aqueous polymerization reaction medium before the free-radical emulsion polymerization is initiated. It is particularly favorable, though, if a portion or the entirety of the optionally employed free-radical chain transfer compound is supplied to the aqueous polymerization medium together with the monomers A to B under polymerization conditions.
- The metering of any remaining amount of monomers A and B can be effected batchwise in one or more portions or continuously at constant or changing flow rates. The metering of the monomers A to B is preferably effected continuously at constant flow rates.
- Furthermore, the remaining amounts of the monomers A to B can be metered in separate individual streams or as a monomer mixture. Preferably, the metering of any remaining amount of the monomers A and B is effected as a monomer mixture, particularly advantageously in the form of an aqueous monomer emulsion. What is important is that, according to the invention, process variants in which the compositions of the respective monomers A and/or B change, for example in a gradient or step procedure familiar to the person skilled in the art, are also to be included.
- Particularly advantageously, the process according to the invention is effected in such a way that the monomers A to B are reacted to a conversion of 95% by weight, advantageously 98% by weight and particularly advantageously —— 99% by weight. It is frequently advantageous if the aqueous polymer dispersion obtained after the end of polymerization stage 2 is subjected to an aftertreatment for reducing the residual monomer content. The aftertreatment is effected either chemically, for example by completion of the polymerization reaction by use of a more effective free radical initiator system (so-called postpolymerization) and/or physically, for example by stripping of the aqueous polymer dispersion with steam or inert gas. Corresponding chemical and/or physical methods are familiar to the skilled person [see for example EP-A 771328, DE-A 19624299, DE-A 19621027, DE-A 19741184, DE-A 19741187, DE-A 19805122, DE-A 19828183, DE-A 19839199, DE-A 19840586 and 19847115]. The combination of chemical and physical aftertreatment has the advantage that, in addition to the unconverted ethylenically unsaturated monomers, other troublesome readily volatile organic constituents (so-called VOCs [volatile organic compounds]) are also removed from the aqueous polymer dispersion.
- By targeted variation of type and amount of the monomers A and B, it is possible according to the invention for the skilled person to prepare aqueous polymer dispersions whose polymers have a glass transition temperature or a melting point in the range from −60 to 270° C. Of course, step or multiphase polymers having a plurality of glass transition temperatures can also be prepared.
- Advantageously in accordance with the invention it is possible to make use more particularly of those emulsion polymers in aqueous dispersion that comprise as monomers A at least one α,β-ethylenically unsaturated monomer, which is preferably selected from esters of α,β-ethylenically unsaturated monocarboxylic and dicarboxylic acids with C1-C20 alkanols, vinylaromatics, esters of vinyl alcohol with C1-C30 monocarboxylic acids, ethylenically unsaturated nitriles, vinyl halides, vinylidene halides, monoethylenically unsaturated carboxylic and sulfonic acids, phosphorus monomers, esters of α,β-ethylenically unsaturated monocarboxylic and dicarboxylic acids with C2-C30 alkanediols, amides of α,β-ethylenically unsaturated monocarboxylic and dicarboxylic acids with C2-C30 amino alcohols which contain a primary or secondary amino group, primary amides of α,β-ethylenically unsaturated monocarboxylic acids and their N-alkyl and N,N-dialkyl derivatives, N-vinyllactams, open-chain N-vinylamide compounds, esters of allyl alcohol with C1-C30 monocarboxylic acids, esters of α,β-ethylenically unsaturated monocarboxylic and dicarboxylic acids with amino alcohols, amides of α,β-ethylenically unsaturated monocarboxylic and dicarboxylic acids with diamines which contain at least one primary or secondary amino group, N,N-diallylamines, N,N-diallyl-N-alkylamines, vinyl- and allyl-substituted nitrogen heterocycles, vinyl ethers, C2-C8 monoolefins, nonaromatic hydrocarbons having at least two conjugated double bonds, polyether(meth)acrylates, monomers containing urea groups, and/or mixtures thereof.
- Suitable esters of α,β-ethylenically unsaturated monocarboxylic and dicarboxylic acids with C1-C20 alkanols are methyl(meth)acrylate, methyl ethacrylate, ethyl(meth)acrylate, ethyl ethacrylate, n-propyl(meth)acrylate, isopropyl(meth)acrylate, n-butyl(meth)acrylate, sec-butyl(meth)acrylate, tert-butyl(meth)acrylate, tert-butyl ethacrylate, n-hexyl(meth)acrylate, n-heptyl(meth)acrylate, n-octyl(meth)acrylate, 1,1,3,3-tetramethylbutyl(meth)acrylate, ethylhexyl(meth)acrylate, propylheptyl(meth)acrylate, n-nonyl(meth)acrylate, n-decyl(meth)acrylate, n-undecyl(meth)acrylate, tridecyl(meth)acrylate, myristyl(meth)acrylate, pentadecyl(meth)acrylate, palmityl(meth)acrylate, heptadecyl(meth)acrylate, nonadecyl(meth)acrylate, arachinyl(meth)acrylate, behenyl(meth)acrylate, lignoceryl(meth)acrylate, cerotinyl(meth)acrylate, melissinyl(meth)acrylate, stearyl(meth)acrylate, lauryl(meth)acrylate, and mixtures thereof.
- Preferred vinylaromatics are styrene, 2-methylstyrene, 4-methylstyrene, 2-(n-butyl)styrene, 4-(n-butyl)styrene, 4-(n-decyl)styrene, and, with particular preference, styrene.
- Suitable esters of vinyl alcohol with C1C30 monocarboxylic acids are, for example, vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl laurate, vinyl stearate, vinyl propionate, Versatic acid vinyl esters, and mixtures thereof.
- Suitable ethylenically unsaturated nitriles are acrylonitrile, methacrylonitrile, and mixtures thereof.
- Suitable vinyl halides and vinylidene halides are vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, and mixtures thereof.
- Suitable ethylenically unsaturated carboxylic acids, sulfonic acids and phosphonic acids or their derivatives are acrylic acid, methacrylic acid, ethacrylic acid, α-chloroacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid, fumaric acid, the monoesters of monoethylenically unsaturated dicarboxylic acids having 4 to 10, preferably 4 to 6, carbon atoms, e.g., monomethyl maleate, vinylsulfonic acid, allylsulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-acryloyloxypropylsulfonic acid, 2-hydroxy-3-methacryloyloxypropylsulfonic acid, styrenesulfonic acids, and 2-acrylamido-2-methylpropanesulfonic acid. Suitable styrenesulfonic acids and derivatives thereof are styrene-4-sulfonic acid and styrene-3-sulfonic acid and the alkali metal or alkaline earth metal salts thereof, such as sodium styrene-3-sulfonate and sodium styrene-4-sulfonate, for example. Particularly preferred are acrylic acid, methacrylic acid, and mixtures thereof.
- Examples of phosphorus-containing monomers are vinylphosphonic acid and allylphosphonic acid, for example. Also suitable are the monoesters and diesters of phosphonic acid and phosphoric acid with hydroxyalkyl(meth)acrylates, especially the monoesters. Additionally suitable are diesters of phosphonic acid and phosphoric acid that have been esterified once with hydroxyalkyl(meth)acrylate and also once with a different alcohol, such as an alkanol, for example. Suitable hydroxyalkyl(meth)acrylates for these esters are those specified below as separate monomers, more particularly 2-hydroxyethyl(meth)acrylate, 3-hydroxypropyl(meth)acrylate, 4-hydroxybutyl(meth)acrylate, etc. Corresponding dihydrogen phosphate ester monomers comprise phosphoalkyl(meth)acrylates, such as 2-phosphoethyl(meth)acrylate, 2-phosphopropyl(meth)acrylate, 3-phosphopropyl(meth)acrylate, phosphobutyl(meth)acrylate, and 3-phospho-2-hydroxypropyl(meth)acrylate. Also suitable are the esters of phosphonic acid and phosphoric acid with alkoxylated hydroxyalkyl(meth)acrylates, examples being the ethylene oxide condensates of (meth)acrylates, such as H2C═C(CH3)COO(CH2CH2O)nP(OH)2 and H2C═C(CH3)COO(CH2CH2O)nP(═O)(OH)2, in which n is 1 to 50. Of further suitability are phosphoalkyl crotonates, phosphoalkyl maleates, phosphoalkyl fumarates, phosphodialkyl(meth)acrylates, phosphodialkyl crotonates and allyl phosphates. Further suitable monomers containing phosphorus groups are described in WO 99/25780 and U.S. Pat. No. 4,733,005, hereby incorporated by reference.
- Suitable esters of α,β-ethylenically unsaturated monocarboxylic and dicarboxylic acids with C2-C30 alkanediols are, for example, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl ethacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate, 3-hydroxybutyl acrylate, 3-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, 6-hydroxyhexyl acrylate, 6-hydroxyhexyl methacrylate, 3-hydroxy-2-ethylhexyl acrylate, 3-hydroxy-2-ethylhexyl methacrylate, etc.
- Suitable primary amides of α,β-ethylenically unsaturated monocarboxylic acids and their N-alkyl and N,N-dialkyl derivatives are acrylamide, methacrylamide, N-methyl(meth)acrylamide, N-ethyl(meth)acrylamide, N-propyl(meth)acrylamide, N-(n-butyl)(meth)acrylamide, N-(tert-butyl)(meth)acrylamide, N-(n-octyl)(meth)acrylamide, N-(1,1,3,3-tetramethylbutyl)(meth)acrylamide, N-ethylhexyl(meth)acrylamide, N-(n-nonyl)(meth)acrylamide, N-(n-decyl)(meth)acrylamide, N-(n-undecyl)(meth)acrylamide, N-tridecyl(meth)acrylamide, N-myristyl(meth)acrylamide, N-pentadecyl(meth)acrylamide, N-palmityl(meth)acrylamide, N-heptadecyl(meth)acrylamide, N-nonadecyl(meth)acrylamide, N-arachidyl(meth)acrylamide, N-behenyl(meth)acrylamide, N-lignoceryl(meth)acrylamide, N-cerotinyl(meth)acrylamide, N-melissinyl(meth)acrylamide, N-stearyl(meth)acrylamide, N-lauryl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, morpholinyl(meth)acrylamide.
- Suitable N-vinyllactams and their derivatives are, for example, N-vinylpyrrolidone, N-vinylpiperidone, N-vinylcaprolactam, N-vinyl-5-methyl-2-pyrrolidone, N-vinyl-5-ethyl-2-pyrrolidone, N-vinyl-6-methyl-2-piperidone, N-vinyl-6-ethyl-2-piperidone, N-vinyl-7-methyl-2-caprolactam, N-vinyl-7-ethyl-2-caprolactam, etc.
- Suitable open-chain N-vinylamide compounds are, for example, N-vinylformamide, N-vinyl-N-methylformamide, N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinyl-N-ethylacetamide, N-vinylpropionamide, N-vinyl-N-methylpropionamide, and N-vinylbutyramide.
- Suitable esters of α,β-ethylenically unsaturated monocarboxylic and dicarboxylic acids with amino alcohols are N,N-dimethylaminomethyl(meth)acrylate, N,N-dimethylaminoethyl(meth)acrylate, N,N-diethylaminoethyl acrylate, N,N-dimethylaminopropyl(meth)acrylate, N,N-diethylaminopropyl(meth)acrylate, and N,N-dimethylaminocyclohexyl(meth)acrylate.
- Suitable amides of α,β-ethylenically unsaturated monocarboxylic and dicarboxylic acids with diamines which contain at least one primary or secondary amino group are N-[2-(dimethylamino)ethyl]acrylamide, N-[2-(dimethylamino)ethyl]methacrylamide, N-[3-(dimethylamino)propyl]acrylamide, N-[3-(dimethylamino)propyl]methacrylamide, N-[4-(dimethylamino)butyl]acrylamide, N-[4-(dimethylamino)butyl]methacrylamide, N-[2-(diethylamino)ethyl]acrylamide, N-[4-(dimethylamino)cyclohexyl]acrylamide, N-[4-(dimethylamino)cyclohexyl]methacrylamide, etc.
- Suitable monomers A are, furthermore, N,N-diallylamines and N,N-diallyl-N-alkylamines and their acid addition salts and quaternization products. Alkyl here is preferably C1-C24 alkyl. Preference is given to N,N-diallyl-N-methylamine and to N,N-diallyl-N,N-dimethylammonium compounds, such as the chlorides and bromides, for example.
- Further suitable monomers A are vinyl- and allyl-substituted nitrogen heterocycles, such as N-vinylimidazole, N-vinyl-2-methylimidazole, and vinyl- and allyl-substituted heteroaromatic compounds, such as 2- and 4-vinylpyridine, 2- and 4-allylpyridine, and the salts thereof.
- Suitable C2-C8 monoolefins and nonaromatic hydrocarbons having at least two conjugated double bonds are for example ethylene, propylene, isobutylene, isoprene, butadiene, etc.
- Examples of suitable monomers A containing urea groups are N-vinylurea or N-allylurea or derivatives of imidazolidin-2-one. They include N-vinyl- and N-allylimidazolidin-2-one, N-vinyloxyethylimidazolidin-2-one, N-(2-(meth)acrylamidoethyl)imidazolidin-2-one.
- Preferred monomers containing urea groups are N-(2-acryloxyethyl)imidazolidin-2-one and N-(2-methacryloxyethyl)imidazolidin-2-one. Particular preference is given to N-(2-methacryloxyethyl)imidazolidin-2-one (2-ureido methacrylate, UMA).
- And also crosslinking monomers, examples being monomers which carry keto groups or aldehyde groups, such as (meth)acrolein, diacetoneacrylamide (DAAM), acetoacetoxyethyl methacrylate (AAEM), which may be combined with adipic dihydrazide (ADDH) or diamines, and also monomers which carry epoxide groups, such as glycidyl methacrylate (GMA), or diolefinically unsaturated compounds such as allyl(meth)acrylate (AMA), butanediol diacrylate, hexanediol diacrylate, for instance.
- The aforementioned monomers A may be used individually, in the form of mixtures within one class of monomer or in the form of mixtures from different classes of monomer. It is preferred in accordance with the invention to use those emulsion polymers which in addition to the monomers A comprise the monomers B in amounts of 0.1% to 30% by weight and component C, the at least one photoinitiator, in amounts of 0.01% to 5% by weight, in each case based on the sum of the monomers.
- It is preferred in accordance with the invention to use those emulsion polymers, present in aqueous dispersion, whose glass transition temperature is ≦100° C., more particularly ≦60° C., preferably >−50° C. and ≦30° C., especially ≦10° C. and advantageously ≧−40° C. and ≦0° C. By the glass transition temperature (Tg) is meant the limiting value of the glass transition temperature toward which the latter tends with increasing molecular weight, according to G. Kanig (Kolloid-Zeitschrift & Zeitschrift fur Polymere, vol. 190, page 1, equation 1). The glass transition temperature is determined by the DSC method (Differential Scanning Calorimetry, 20 K/min, midpoint measurement, DIN 53 765).
- In the case of a staged or gradient polymerization, the emulsion polymers may of course also have two or more glass transition temperatures.
- According to Fox (T. G. Fox, Bull. Am. Phys. Soc. 1956 [Ser. II] 1, page 123 and in accordance with Ullmann's Encyclopädie der technischen Chemie, vol. 19, page 18, 4th edition, Verlag Chemie, Weinheim, 1980), the glass transition temperature of comonomers with no more than low degrees of crosslinking is given in good approximation by:
-
1/Tg=x1/Tg1+x2/Tg2+ . . . xn/Tgn, - where x1, x2, . . . xn are the mass fractions of the monomers 1, 2, . . . n and Tg1, Tg2, . . . Tgn are the glass transition temperatures of the polymers constructed in each case only from one of the monomers 1, 2, . . . n in degrees Kelvin. The Tg values for the homopolymers for the majority of monomers are known and are listed in, for example, Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, vol. A21, page 169, Verlag Chemie, Weinheim, 1992; further sources of glass transition temperatures for homopolymers include, for example, J. Brandrup, E. H. Immergut, Polymer Handbook, 1st Ed., J. Wiley, New York, 1966; 2nd Ed., J. Wiley, New York, 1975; and 3rd Ed., J. Wiley, New York, 1989.
- The average diameter of the emulsion polymers present in aqueous dispersion (polymer particles) is generally in the range from 10 to 1000 nm, often 50 to 500 nm or 80 to 300 nm. The particle size distribution may be monomodal or multimodial. In the case of a bimodal particle size distribution, the finely divided component has particle diameters of preferably 50 to 150 nm, while the coarse-particled component has diameters of preferably 200 to 500 nm. The solids contents of the aqueous dispersions of emulsion polymers that can be used in accordance with the invention, furthermore, are generally ≧10% and ≦70%, advantageously ≧30% and ≦70% and with particular advantage ≧40% and ≦65%, by weight.
- The solids content has been determined, generally speaking, by drying a defined amount of the aqueous polymer dispersion (approximately 1 g) to constant weight in an aluminum crucible having an internal diameter of around 5 cm at 140° C. in a drying cabinet. Two separate measurements were carried out. The figures reported in the examples represent the average value of the two measurement results in each case.
- The particle size of the polymer particles was determined by dynamic light scattering on a 0.01% by weight dispersion at 23° C., using a high performance particle sizer (HPPS) from Malvern Instruments, UK. The figure reported was the cumulant z-average of the measured autocorrelation function.
- The monomers B used are known per se to the skilled person and are described in, for example, publications WO 2009/047234 and WO 2009/146995, hereby incorporated in full by reference.
- According to one particular embodiment of the present invention, the monomers B may have an iodine number in the range from 50 to 300 g iodine/100 g, more preferably in the range from 50 to 200 g iodine/100 g, more particularly preferably 50 to 180 g iodine/100 g, very preferably 80 to 150 g iodine/100 g monomer.
- The iodine number was determined by the method of Kaufmann, DGF Standard Methods C-V 11b (2002).
- The notation “(meth)acryl-” stands for acrylic and methacrylic radicals, with methacrylic radicals being preferred. Particularly preferred monomers B are methacryloyloxy-2-ethyl-oleamide, methacryloyloxy-2-ethyl-linoleamide and/or methacryloyloxy-2-ethyl-linoleneamide, and also methacryloyloxy-2-hydroxypropyl-linoleic ester and methacryloyloxy-2-hydroxypropyl-oleic ester.
- The reaction of the methacrylates of the monomers B takes place preferably with suitable fatty acids.
- The preferred (meth)acrylates of the invention include more particularly octadecane-dien-yl(meth)acrylate, octadecane-trien-yl(meth)acrylate, hexadecenyl(meth)acrylate, octadecenyl(meth)acrylate and hexadecane-dien-yl(meth)acrylate.
- Furthermore, (meth)acrylates which in the alkyl radical have at least one double bond and 8 to 40 carbon atoms can also be obtained by reaction of unsaturated fatty acids with meth(acrylates) which have reactive groups in the alcohol residue. The reactive groups include, in particular, hydroxyl groups and also epoxy groups. Accordingly, for example, use may also be made, as reactants for preparing the aforementioned (meth)acrylates, of hydroxyalkyl(meth)acrylates, such as 3-hydroxypropyl(meth)acrylate, 3,4-dihydroxybutyl(meth)acrylate, 2-hydroxyethyl(meth)acrylate, 2-hydroxypropyl(meth)acrylate, 2,5-dimethyl-1,6-hexanediol(meth)acrylate, and 1,10-decanediol(meth)acrylate; or (meth)acrylates containing epoxy groups, an example being glycidyl(meth)acrylate.
- Suitable fatty acids for reaction of the aforementioned (meth)acrylates are widely available commercially and are obtained from natural sources. They include, among others, undecylenic acid, palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, icosenoic acid, cetoleic acid, erucic acid, nervonic acid, linoleic acid, linolenic acid, arachidonic acid, timnodonic acid, clupanodonic acid and/or cervonic acid.
- The especially preferred (meth)acrylates include more particularly (meth)acryloyloxy-2-hydroxypropyllinoleic ester, (meth)acryloyloxy-2-hydroxypropyl-linolenic ester and (meth)acryloyloxy-2-hydroxypropyl-oleic ester.
- The reaction of the unsaturated fatty acids with (meth)acrylates which have reactive groups in the alcohol residue is known per se and set out in, for example, DE-A-41 05 134, DE-A-25 13 516, DE-A-26 38 544 and U.S. Pat. No. 5,750,751.
- The aforesaid (meth)acrylates with at least one double bond may be used individually or as a mixture of two or more (meth)acrylates.
- Advantages may be achieved in particular with (meth)acrylate segments which comprise at least 5%, preferably at least 10%, and more preferably at least 15%, by weight, of units deriving from (meth)acryloyloxy-2-hydroxypropyl-oleic ester, based on the weight of the units derived from (meth)acrylates which in the alkyl radical have at least one double bond and 8 to 40 carbon atoms. The polymer preferably has 15% to 45%, more preferably 20% to 35%, by weight of units deriving from (meth)acryloyloxy-2-hydroxypropyl-oleic ester, based on the weight of the units deriving from (meth)acrylates which in the alkyl radical have at least one double bond and 8 to 40 carbon atoms.
- According to a further aspect of the present invention, preference is given to (meth)acrylate segments which comprise at least 20%, preferably at least 40%, and more preferably at least 50%, by weight, of units deriving from (meth)acryloyloxy-2-hydroxypropyl-linoleic ester, based on the weight of the units derived from (meth)acrylates which in the alkyl radical have at least one double bond and 8 to 40 carbon atoms. The polymer preferably has 45% to 80%, more preferably 55% to 70%, by weight of units deriving from (meth)acryloyloxy-2-hydroxypropyl-linoleic ester, based on the weight of the units deriving from (meth)acrylates which in the alkyl radical have at least one double bond and 8 to 40 carbon atoms.
- The monomers B are used in amounts of 0.1% to 30% by weight, preferably 0.1% to 10% by weight, more preferably in amounts of 0.5% to 8% by weight, based in each case on the total weight of the monomers.
- Component C, the at least one photoinitiator, may either be copolymerized or else added after the actual emulsion polymerization. If it is added after the actual emulsion polymerization, stirring is continued thereafter until the at least one photoinitiator is homogeneously dispersed. In the case of a solid, it is often advantageous to add the at least one photoinitiator under hot conditions, i.e. at temperatures above the melting point. There are also, for example, benzophenone derivatives in liquid form. They can simply be added to the polymer dispersion and incorporated by stirring. One example of such a derivative is Esacure® TZM from Lehmann & Voss & Co., Germany. Where the at least one photoinitiator possesses copolymerizable double bonds, it may also be metered in during the polymerization. This may take place in a separate feed or together with the monomers A and/or B. It is preferred to add the copolymerizable photoinitiator with the monomers A and B.
- The component C, the at least one photoinitiator, comprises, for example, benzophenone or acetophenone or derivatives with benzophenone or acetophenone substructures, such as substituted benzophenones, for instance 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, thioxanthones, such as isopropylthioxanthone, or olefinically unsaturated derivatives of benzophenone or of acetophenone, examples being those with a (meth)acrylic radical such as (meth)acryloxyethoxybenzophenone, or with a vinyl group such as 4-vinyloxybenzophenone, or mixtures of these active ingredients, such as 4-methylbenzophenone and 2,4,6-trimethylbenzophenone, for example. Other photoinitiators contemplated are described in EP 417 568, page 3, line 39 to page 7, line 51, hereby incorporated by reference.
- The emulsion polymers of the invention possess (poly)olefiically unsaturated side chains, and are therefore oxidatively crosslinkable in a similar way to, for example, alkyd resins, with the aid of what are called dryers (siccatives). Dryers are metal compounds with usually Co compounds or Mn compounds, occasionally also Fe compounds, as active component, and catalyze the reaction of the (poly)olefinically unsaturated alkyl chains with atmospheric oxygen (cf. U. Poth, Polyester and Alkydharze, p. 183 f). Surprisingly, the addition of dryers to the polymer dispersions of the invention had no effect on the soiling of coating films produced therefrom. In the polymer dispersions and in the coating materials based thereon, therefore, it is preferred not to use dryers.
- The present invention also provides coating materials, preferably exterior architectural paints, comprising the aqueous polymer dispersions of the invention as binders.
- This also includes coating materials which dry to form elastic coatings.
- Elastic coating compositions of this type are intended to bridge fine cracks on the building exterior and thus to protect buildings reliably against moisture and other weathering effects.
- The coating materials of the invention are produced in conventional ways by blending the components in mixing apparatus customary for the purpose. It has been found appropriate to prepare an aqueous paste or dispersion to start with from the pigments, fillers, water, and any auxiliaries, and only then to add the aqueous polymer dispersion, with stirring as an option.
- Coating materials of the invention comprise (in the wet state)
-
- i. 10% to 98%, preferably 20% to 80%, more preferably 30% to 50% by weight of the polymer dispersion of the invention,
- ii. 0% to 60%, preferably 1% to 50%, more preferably 5% to 30% by weight of one or more inorganic fillers,
- iii. 0% to 5%, preferably 0.01% to 3%, more preferably 0.05% to 2.5% by weight of one or more thickeners,
- iv. 0% to 30%, preferably 1% to 25%, by weight of one or more pigments, and
- v. 0% to 20%, preferably 0% to 10%, more preferably 0% to 5% by weight each of other auxiliaries, such as, for example, biocides, dispersants, film-forming assistants, and defoamers,
- vi. water,
- the sum of components i. to vi. being 100% by weight.
- Finely divided inorganic fillers (ii) used are substantially inorganic materials having refractive indices lower by comparison with the pigments. The finely divided fillers are often naturally occurring minerals, such as, for example, calcite, chalk, dolomite, kaolin, talc, talc/chlorite intergrowths, mica, diatomaceous earth, baryte, and quartz, but also synthetically prepared inorganic compounds, such as, for example, precipitated calcium carbonate, calcined kaolin or barium sulfate, and fumed silica. As a filler it is preferred to use calcium carbonate in the form of crystalline calcite or of amorphous chalk.
- Preferred inorganic fillers are the Omyacarb® products from Omya and the Finntalc® products from Mondo Minerals, the Celite® and Optimat™ products from World Minerals, and the Aerosil® products from Evonik Industries AG.
- Pigments (iv) used are finely divided inorganic and organic compounds. The most important white pigment, on account of its high refractive index and its high opacity, is titanium dioxide, in the form of its anatase and rutile modifications. Examples of typical commercial products include the Kronos® products from Kronos, the Tiona® products from Millenium, the TIOXIDE® products from Huntsman, Ti-Pure® products from Du-Pont de Nemours. Additionally, however, zinc oxide and zinc sulfide are used as white pigments. As well as these, however, organic white pigments too, such as non-film-forming, styrene- (and carboxyl-)rich, hollow polymer particles with a particle size of around 300 to 400 nm (referred to as opaque particles) are used, examples being Rhopaque products from Dow.
- As well as white pigments, any of a very wide variety of chromatic pigments familiar to the skilled person are used for coloring the coating, examples being the somewhat less expensive inorganic iron, cadmium, chromium, and lead oxides and sulfides, lead molybdate, cobalt blue, carbon black, and also the somewhat more expensive organic pigments, examples being phthalocyanines, azo pigments, quinacridones, perylenes, carbozoles.
- The thickeners iii. are generally compounds of high molecular mass which absorb water and in doing so swell to form bulky structures, or are amphiphilic molecules which possess at least two hydrophobic groups and form relatively loose lattice structures in water via micelles.
- Examples are high molecular mass polymers based on acrylic acid and acrylamide (for example, Collacral® HP from BASF SE), carboxyl-rich acrylic ester copolymers such as Latekoll® D (BASF SE)—the latter may also possess hydrophobic groups as well (HASE thickeners), and also PU associative thickeners (for example, Collacral® PU 75 from BASF SE), celluloses and their derivatives, examples being cellulose ethers (Natrosol grades from Ashland-Aqualon) or carboxymethylcellulose, and also natural thickeners, such as bentonites, alginates or starch, for example.
- The thickeners (iii.) are used in amounts of 0% to 5% by weight, preferably 0.1% to 2.5% by weight.
- The further auxiliaries (v.) include, for example, preservatives for preventing fungal and bacterial infestation, solvents for influencing the open time, such as ethylene glycol or propylene glycol, and the formation of a film, such as butyl glycol, butyl diglycol, propylene glycol ethers such as, for instance, Dowanol PP, DPM or DPnB (Dow), Texanol (Eastman), high-boiling esters, examples being diisobutyl esters of glutaric, succinic, and adipic acid, dispersants for stabilizing the finely dispersed pigment and filler particles, examples being polycarboxylates such as, for instance, Pigmentverteiler A or NL (BASF SE) or oligophosphates or polyphosphates such as Calgon N, emulsifiers (Emulphor® OPS 25, Lutensol® TO 89), antifreeze agents (ethylene glycol, propylene glycol) or defoamers (Lumiten® products).
- Determination of the pH was performed in accordance with DIN 53785. The instrument was a pH meter from Methrom, a Titroprocessor 682. Around 50 ml of the sample are placed in a 100 ml glass beaker. The sample is subsequently conditioned at 23±1° C. in a thermostat. The glass electrode is kept ideally in a 3-molar KCl solution. Prior to measurement, it is washed a number of times with the polymer dispersion and then immersed into the sample. When the position of the pointer on the display of the meter is constant, the pH is read off.
- Three determinations are carried out, in each case with new samples, on the dispersion to be measured.
- The Xenotest was carried out as follows:
- The test specimens were weathered in accordance with DIN EN ISO 11341: December 2004 in a Heraeus Xenotest 1200 weathering apparatus for a total of 48 hours (3 xenon lamps each of 4500 W, irradiance at 300-400 nm (3 times Suprax specialty glass filters) around 60 W/m2, test chamber temperature in the dry period 38+/−3° C., relative humidity 65+/−5% , black standard temperature in the dry period 65+/−3° C., parallel operation, radiation source continually in operation, dry period 102 min, irrigation 18 min, beginning with dry period).
- A polymerization vessel equipped with metering devices and temperature regulation was charged under a nitrogen atmosphere at 20 to 25° C. (room temperature) with
- 307.9 g of deionized water and
- 41.9 g of a 33% strength by weight aqueous solution of a polystyrene seed dispersion and this initial charge was heated to 85° C. with stirring. When this temperature was reached, 39.6 g of a 1.8% strength by weight aqueous solution of sodium peroxodisulfate were added and the mixture was stirred for 5 minutes, during which this temperature was maintained. Thereafter feeds 1 and 2 were commenced; feed 1 was metered in over 180 minutes, and feed 2 over 210 minutes. After the end of feed 2, polymerization was continued for 30 minutes, followed by cooling to 75° C., after which feeds 3 and 4 were metered in over 60 minutes in parallel. Subsequently, feed 5 was commenced and was metered in over the course of 30 minutes.
- Feed 1 (Homogeneous Mixture of):
- 436.1 g of deionized water
- 50.0 g of Emulan® OG (BASF SE)
- 60.6 g of Disponil® FES 77 (Cognis, DE)
- 16.0 g of a 50% strength by weight aqueous solution of acrylamide
- 28.0 g of acrylic acid
- 294.2 g of styrene
- 619.8 g of n-butyl acrylate
- 50.0 g of monomer B4
- Feed 2 (Homogeneous Solution of):
- 30.5 g of deionized water and
- 2.3 g of sodium peroxodisulfate
- Feed 3:
- 18.0 g of a 10% strength aqueous solution of tert-butyl hydroperoxide
- Feed 4 (Homogeneous Mixture of):
- 13.5 g of deionized water and
- 1.5 g of ascorbic acid
- Feed 5:
- 14.0 g of a 5% strength by weight aqueous solution of hydrogen peroxide
- After the end of feed 5, 14.8 g of a 25% strength by weight ammonia solution were added. The aqueous polymer dispersion obtained was subsequently cooled to room temperature. At a temperature of 60° C., 1.5 g of benzophenone were added. Lastly, the dispersion was filtered through a 125 μm filter.
- The resultant 2040.2 g of the aqueous polymer dispersion had a solids content of 51.8% by weight and a pH of 7.2. Diluted with deionized water, the aqueous polymer dispersion had a weight-average particle diameter of 143 nm.
- A polymerization vessel equipped with metering devices and temperature regulation was charged under a nitrogen atmosphere at 20 to 25° C. (room temperature) with
- 307.9 g of deionized water and
- 41.9 g of a 33% strength by weight aqueous solution of a polystyrene seed dispersion and this initial charge was heated to 85° C. with stirring. When this temperature was reached, 39.6 g of a 1.8% strength by weight aqueous solution of sodium peroxodisulfate were added and the mixture was stirred for 5 minutes, during which this temperature was maintained. Thereafter feeds 1 and 2 were commenced; feed 1 was metered in over 180 minutes, and feed 2 over 210 minutes. After the end of feed 2, polymerization was continued for 30 minutes, followed by cooling to 75° C., after which feeds 3 and 4 were metered in over 60 minutes in parallel. Subsequently, feed 5 was commenced and was metered in over the course of 30 minutes.
- Feed 1 (Homogeneous Mixture of):
- 436.1 g of deionized water
- 50.0 g of Emulan® OG
- 60.6 g of Disponil® FES 77
- 16.0 g of a 50% strength by weight aqueous solution of acrylamide
- 28.0 g of acrylic acid
- 294.2 g of styrene
- 619.8 g of n-butyl acrylate
- 50.0 g of monomer B4
- Feed 2 (Homogeneous Solution of):
- 30.5 g of deionized water and
- 2.3 g of sodium peroxodisulfate
- Feed 3:
- 18.0 g of a 10% strength by weight aqueous solution of tert-butyl hydroperoxide
- Feed 4 (Homogeneous Mixture of):
- 13.5 g of deionized water and
- 1.5 g of ascorbic acid
- Feed 5:
- 14.0 g of a 5% strength by weight aqueous solution of hydrogen peroxide
- After the end of feed 5, 14.8 g of a 25% strength by weight ammonia solution were added. The aqueous polymer dispersion obtained was subsequently cooled to room temperature. Lastly, the dispersion was filtered through a 125 μm filter.
- The resultant 2038.7 g of the aqueous polymer dispersion had a solids content of 51.3% by weight and a pH of 7.2. Diluted with deionized water, the aqueous polymer dispersion had a weight-average particle diameter of 143 nm.
- A polymerization vessel equipped with metering devices and temperature regulation was charged under a nitrogen atmosphere at 20 to 25° C. (room temperature) with
- 307.9 g of deionized water and
- 41.9 g of a 33% strength by weight aqueous solution of a polystyrene seed dispersion and this initial charge was heated to 85° C. with stirring. When this temperature was reached, 39.6 g of a 1.8% strength by weight aqueous solution of sodium peroxodisulfate were added and the mixture was stirred for 5 minutes, during which this temperature was maintained. Thereafter feeds 1 and 2 were commenced; feed 1 was metered in over 180 minutes, and feed 2 over 210 minutes. After the end of feed 2, polymerization was continued for 30 minutes, followed by cooling to 75° C., after which feeds 3 and 4 were metered in over 60 minutes in parallel. Subsequently, feed 5 was commenced and was metered in over the course of 30 minutes.
- Feed 1 (Homogeneous Mixture of):
- 436.1 g of deionized water
- 50.0 g of Emulan® OG
- 60.6 g of Disponil® FES 77
- 16.0 g of a 50% strength by weight aqueous solution of acrylamide
- 28.0 g of acrylic acid
- 294.2 g of styrene
- 669.8 g of n-butyl acrylate
- Feed 2 (Homogeneous Solution of):
- 30.5 g of deionized water and
- 2.3 g of sodium peroxodisulfate
- Feed 3:
- 18.0 g of a 10% strength by weight aqueous solution of tert-butyl hydroperoxide
- Feed 4 (Homogeneous Mixture of):
- 13.5 g of deionized water and
- 1.5 g of ascorbic acid
- Feed 5:
- 14.0 g of a 5% strength by weight aqueous solution of hydrogen peroxide
- After the end of feed 5, 14.8 g of a 25% strength by weight ammonia solution were added.
- The aqueous polymer dispersion obtained was subsequently cooled to room temperature. At a temperature of 60° C., 1.5 g of benzophenone were added. Lastly, the dispersion was filtered through a 125 μm filter.
- The resultant 2040.2 g of the aqueous polymer dispersion had a solids content of 51.5% by weight and a pH of 7.5. Diluted with deionized water, the aqueous polymer dispersion had a weight-average particle diameter of 136 nm.
- Monomer B1
- (Preparation of a Mixture of methacryloyloxy-2-ethyl-fatty Acid Amides)
- A four-neck, round-bottom flask equipped with a saber stirrer with stirring sleeve and stirring motor, nitrogen inlet, liquid-phase thermometer and a distillation bridge was charged with 206.3 g (0.70 mol) of fatty acid methyl ester mixture, 42.8 g (0.70 mol) of ethanolamine and 0.27 g (0.26%) of LiOH. The fatty acid methyl ester mixture comprised 6% by weight of saturated C12 to C16 fatty acid methyl esters, 2.5% by weight of saturated C17 to C20 fatty acid methyl esters, 52% by weight of monounsaturated C18 fatty acid methyl esters, 1.5% by weight of monounsaturated C20 to C24 fatty acid methyl esters, 36% by weight of polyunsaturated C18 fatty acid methyl esters, and 2% by weight of polyunsaturated C20 to C24 fatty acid methyl esters.
- The reaction mixture was heated to 150° C. Over the course of 2 hours, 19.5 ml of methanol were taken off by distillation. The resulting reaction product contained 86.5% of fatty acid ethanolamides. The reaction mixture obtained was processed further without purification. After cooling had taken place, 1919 g (19.2 mol) of methyl methacrylate, 3.1 g of LiOH, and an inhibitor mixture consisting of 500 ppm of hydroquinone monomethyl ether and 500 ppm of phenothiazine were added.
- The reaction apparatus was flushed with nitrogen for 10 minutes with stirring. Thereafter the reaction mixture was heated to boiling. The methyl methacrylate/methanol azeotrope was removed and subsequently the overhead temperature was raised in steps to 100° C. After the end of the reaction, the reaction mixture was cooled to around 70° C. and filtered. Excess methyl methacrylate was removed on a rotary evaporator. This gave 370 g of product.
- Monomer B2
- A four-neck, round-bottom flask equipped with a saber stirrer with stirring sleeve and stirring motor, nitrogen inlet, liquid-phase thermometer and a distillation bridge was charged with 206.3 g (0.70 mol) of fatty acid methyl ester mixture, 42.8 g (0.70 mol) of ethanolamine and 0.27 g (0.26%) of LiOH. The fatty acid methyl ester mixture comprised 6% by weight of saturated C12 to C16 fatty acid methyl esters, 2.5% by weight of saturated C17 to C20 fatty acid methyl esters, 52% by weight of monounsaturated C18 fatty acid methyl esters, 1.5% by weight of monounsaturated C20 to C24 fatty acid methyl esters, 36% by weight of polyunsaturated C18 fatty acid methyl esters, and 2% by weight of polyunsaturated C20 to C24 fatty acid methyl esters.
- The reaction mixture was heated to 150° C. Over the course of 2 hours, 19.5 ml of methanol were taken off by distillation. The resulting reaction product contained 86.5% of fatty acid ethanolamides. The reaction mixture obtained was processed further without purification. Following the addition of an inhibitor mixture of 500 ppm of hydroquinone monomethyl ether and 500 ppm of phenothiazine, 108 g (0.70 mol) of methacrylic anhydride were metered in slowly at a liquid-phase temperature of 80° C. The reaction mixture was heated to 90° C. and stirred at this temperature for 6 hours. The methacrylic acid formed was removed on a thin-film evaporator. This gave a brown liquid product.
- Monomer B3 (methacryloyloxy-2-hydroxypropyl-linoleic ester)
- Monomer B3 was obtained by reacting linoleic acid with glycidyl methacrylate.
- Monomer B4 (methacryloyloxy-2-hydroxypropyl-oleic ester)
- Monomer B4 was obtained by reacting oleic acid with glycidyl methacrylate.
- Production of the Coating Materials
-
without with Formulation: dryer dryer Water 100 100 Pigmentverteiler ® A dispersant from 5 5 BASF SE Parmetol ® A26 preservative from 2 2 Schülke & Mayr Byk ® 023 defoamer from Byk 2 2 Propylene glycol solvent 20 20 Butyldiglycol solvent 15 15 Ammonia, conc. 2 2 Collacral ® LR 8990, 40% form thickener from 4 4 BASF SE Natrosol ® 250HR thickener from 3 3 Hercules Inc. . . . add in order and briefly disperse . . . Kronos ® RN 2190 titanium pigment from 125 125 dioxide Kronos International Inc. Omyacarb ® 5 GU filler from Omya 240 240 . . . add in order and disperse for 15 minutes at 1000 rpm with a toothed disk stirrer . . . Dispersion (51.8%) 454 454 Byk ® 023 defoamer from Byk 4 4 Water 24 24 Additol ® VXW 4940 dryer (siccative) — 0.39 from Cytec Total amount: 1000 1000 - The ingredients were added in the order indicated above, with stirring. The paints were left to age at room temperature for 24 hours.
- Processing and Testing
- Before being coated, fiber cement plaques were initially dewatered, brushed off while wet, and dried. The coating materials were applied each in 2 layers (with drying for 16 hours in between) by brush, at 500 g/m2 in each case. The coatings were dried for 3 days at 23° C. and 50% relative humidity. Then, with the aid of a Color guide 45/0 from Byk Gardner, the colorimetric parameters L, a and b were ascertained (standard illuminant C 2).
- The test specimens were weathered in a Xenotest 1200 weathering apparatus as indicated above for 48 hours. After weathering, the test specimens were dried. Activated carbon, dry, was then scattered on to form a covering. Excess activated carbon was removed by tapping on the edge or using compressed air. The soiled test specimens were subsequently immersed in water, rinsed off with in each case 1 I of running water, and, lastly, wiped off three times with a wet sponge, without pressure. After drying, a determination was made, as above, of the colorimetric parameters of the soiled area, and of the difference ΔE relative to the initial value before weathering and soiling.
- Furthermore, the soiled test specimens were placed alongside one another and the degree of soiling was evaluated using school grades (0=white, 5=black).
-
Mono- Photo- After 3 d RT + 6 h Xenotest Sam- mer initiator Sicca- school ple B4 (component C) tive ΔE grade E 1 yes yes no 5.5 2 yes yes yes 6.5 2 CE 1 yes no no 22.8 4-5 yes no yes 14.6 4 CE 2 no yes no 12.8 3-4 - From these figures it is clearly apparent that the combination of monomer B4 and photoinitiator produces the improvement in the soiling resistance after light exposure, and also that this improvement is significantly greater than if only photoinitiator is used. The addition of siccative does not produce any improvement.
Claims (17)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/221,021 US8722756B2 (en) | 2010-09-01 | 2011-08-30 | Aqueous emulsion polymers, their preparation and use |
| US14/134,481 US9150732B2 (en) | 2010-09-01 | 2013-12-19 | Aqueous emulsion polymers, their preparation and use |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US37897010P | 2010-09-01 | 2010-09-01 | |
| US13/221,021 US8722756B2 (en) | 2010-09-01 | 2011-08-30 | Aqueous emulsion polymers, their preparation and use |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/134,481 Continuation US9150732B2 (en) | 2010-09-01 | 2013-12-19 | Aqueous emulsion polymers, their preparation and use |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20120053260A1 true US20120053260A1 (en) | 2012-03-01 |
| US8722756B2 US8722756B2 (en) | 2014-05-13 |
Family
ID=45698063
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/221,021 Expired - Fee Related US8722756B2 (en) | 2010-09-01 | 2011-08-30 | Aqueous emulsion polymers, their preparation and use |
| US14/134,481 Expired - Fee Related US9150732B2 (en) | 2010-09-01 | 2013-12-19 | Aqueous emulsion polymers, their preparation and use |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/134,481 Expired - Fee Related US9150732B2 (en) | 2010-09-01 | 2013-12-19 | Aqueous emulsion polymers, their preparation and use |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US8722756B2 (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180201710A1 (en) * | 2017-01-17 | 2018-07-19 | Behr Process Corporation | Self-healing resin |
| CN111372955A (en) * | 2017-11-20 | 2020-07-03 | 巴斯夫欧洲公司 | Aqueous acrylic polymer latex and its use as a binder |
| WO2020225348A1 (en) * | 2019-05-08 | 2020-11-12 | Basf Se | Aqueous polymer latex |
| WO2022006509A1 (en) * | 2020-07-02 | 2022-01-06 | Behr Process Corporation | Dirt pick up resistant latex resin |
| US11370924B2 (en) * | 2018-06-26 | 2022-06-28 | Eastman Kodak Company | Aqueous functional composition for articles |
| US11884834B2 (en) | 2013-03-15 | 2024-01-30 | Swimc Llc | Dirt pick-up resistant composition |
| US11905434B2 (en) | 2018-05-29 | 2024-02-20 | Swimc Llc | Water-based compositions with long term gloss retention |
| US11976207B2 (en) | 2013-03-15 | 2024-05-07 | Swimc Llc | Water-based compositions that resist dirt pick-up |
| US12084558B2 (en) | 2020-06-22 | 2024-09-10 | Eastman Kodac Company | Aqueous functional composition for articles |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES2641752T3 (en) * | 2014-11-04 | 2017-11-13 | Basf Se | Process for the preparation of an aqueous polymer dispersion |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0222789B1 (en) * | 1985-04-24 | 1991-02-06 | Elf Atochem S.A. | Thermoplastic composition comprising a copolymer based on ethylene and maleic anhydride, and industrial articles obtained from such a composition |
| US20080146724A1 (en) * | 2006-12-15 | 2008-06-19 | James Charles Bohling | Phosphorous-containing organic polymer and compositions and processes including same |
| US20090143540A1 (en) * | 2007-11-29 | 2009-06-04 | Tirthankar Ghosh | Aqueous emulsion copolymer compositions |
| US7691942B2 (en) * | 2005-08-19 | 2010-04-06 | Rohm And Haas Company | Aqueous dispersion of polymeric particles |
| DE102009001966A1 (en) * | 2009-03-30 | 2010-10-07 | Evonik Röhm Gmbh | Coating composition, (meth) acrylic polymer and monomer mixture for producing the (meth) acrylic polymer |
| US20100261840A1 (en) * | 2007-10-08 | 2010-10-14 | Evonik Roehm Gmbh | Emulsion polymers, aqueous dispersions and method for producing the same |
Family Cites Families (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3320198A (en) | 1963-01-28 | 1967-05-16 | Du Pont | Latex paint containing benzophenone |
| JPS5425530B2 (en) | 1974-03-28 | 1979-08-29 | ||
| AT337850B (en) | 1975-11-26 | 1977-07-25 | Vianova Kunstharz Ag | PROCESS FOR THE PRODUCTION OF OXIDATIVE DRYING AQUATIC POLYMERISATE DISPERSIONS |
| CA1150434A (en) | 1978-10-10 | 1983-07-19 | Lawrence S. Frankel | Mastic, caulking and sealant compositions having reduced surface tack |
| US4269749A (en) | 1979-04-30 | 1981-05-26 | The Dow Chemical Company | Method of imparting salt and/or mechanical stability to aqueous polymer microsuspensions |
| US4733005A (en) | 1986-04-21 | 1988-03-22 | The Dow Chemical Company | Phosphinyl-containing ethylenically unsaturated compounds |
| JP2683548B2 (en) | 1988-12-27 | 1997-12-03 | 出光石油化学株式会社 | Polypropylene resin composition |
| IT1228982B (en) * | 1989-03-07 | 1991-07-11 | Lamberti Flli Spa | WATER DISPERSIONS OF PHOTOS INITIATORS AND THEIR USE. |
| DE3930585A1 (en) | 1989-09-13 | 1991-03-21 | Basf Ag | WAITRESS ART RESIN PREPARATIONS |
| DE4003422A1 (en) | 1990-02-06 | 1991-08-08 | Basf Ag | WAITER POLYURETHANE PREPARATIONS |
| DE4105134C1 (en) | 1991-02-15 | 1992-10-08 | Lankwitzer Lackfabrik Gmbh & Co.Kg, 1000 Berlin, De | |
| CA2071756A1 (en) | 1991-07-03 | 1993-01-04 | Rohm And Haas Company | Multi-staged binder for use in elastomeric coatings, caulks, and sealants |
| FR2703061B1 (en) | 1993-03-24 | 1995-06-30 | Cray Valley Sa | Latex for solvent-free paints with improved leachability. |
| FR2715157B1 (en) | 1994-01-20 | 1996-03-01 | Atochem Elf Sa | Acrylic latexes capable of forming photocrosslinkable films. |
| CN1120180C (en) | 1994-06-03 | 2003-09-03 | 巴斯福股份公司 | Preparation of aqueous polymer dispersions |
| DE4439459A1 (en) | 1994-11-04 | 1995-05-04 | Basf Ag | Aqueous polymer dispersion |
| DE19624299A1 (en) | 1995-06-30 | 1997-01-02 | Basf Ag | Removal of malodorous organic cpds. from dispersion |
| US5750751A (en) | 1995-11-02 | 1998-05-12 | Michigan Molecular Institute | Glycol co-esters of drying-oil fatty acids and vinyl carboxylic acids made via biphasic catalysis and resulting products |
| DE19609509B4 (en) | 1996-03-11 | 2006-11-02 | Celanese Emulsions Gmbh | Aqueous polymer dispersions as a binder for elastic block and scratch resistant coatings |
| DE19621027A1 (en) | 1996-05-24 | 1997-11-27 | Basf Ag | Continuous removal of monomer from aqueous suspension or dispersion |
| DE69832850D1 (en) | 1997-07-08 | 2006-01-26 | Arkema Puteaux | coating material |
| DE19741184A1 (en) | 1997-09-18 | 1999-03-25 | Basf Ag | Reducing residual monomer content of e.g. acrylic polymers |
| DE19741187A1 (en) | 1997-09-18 | 1999-03-25 | Basf Ag | Reducing residual monomer content in aqueous polymer dispersion |
| DE19750618A1 (en) | 1997-11-14 | 1999-05-20 | Basf Ag | Pigment preparation for dispersion dye |
| DE19805122A1 (en) | 1998-02-09 | 1999-04-22 | Basf Ag | Aqueous polymer dispersion useful as binder agent for pigments for interior and exterior paints |
| DE19828183A1 (en) | 1998-06-24 | 1999-12-30 | Basf Ag | Process for removing residual volatile components from polymer dispersions |
| DE19839199A1 (en) | 1998-08-28 | 2000-03-02 | Basf Ag | Process for reducing the amount of residual monomers in aqueous polymer dispersions |
| DE19840586A1 (en) | 1998-09-05 | 2000-03-09 | Basf Ag | Process for reducing the amount of residual monomers in aqueous polymer dispersions |
| DE19847115C1 (en) | 1998-10-13 | 2000-05-04 | Basf Ag | Counterflow stripping tube |
| DE19858851C5 (en) | 1998-12-19 | 2006-09-28 | Celanese Emulsions Gmbh | Aqueous copolymer dispersion based on acrylate, process for their preparation and their use in elastic coatings |
| DK1125949T3 (en) | 2000-02-16 | 2006-08-21 | Nuplex Resins Bv | Aqueous dispersions of polymers with glass transition temperature gradient |
| AU2001266053A1 (en) | 2000-06-13 | 2001-12-24 | Akzo Nobel N.V. | Water borne binder composition |
| GB0123572D0 (en) | 2001-10-02 | 2001-11-21 | Avecia Bv | Polymer compositions |
| EP1614732B1 (en) | 2002-11-22 | 2007-05-02 | Rohm and Haas Company | Acrylic based aqueous coating composition |
| AU2007201184B8 (en) | 2006-04-11 | 2013-02-07 | Rohm And Haas Company | Dirt pickup resistant coating binder having high adhesion to substrates |
| WO2009146995A1 (en) | 2008-06-06 | 2009-12-10 | Evonik Röhm Gmbh | Monomer mixtures, polymers and coating compositions |
-
2011
- 2011-08-30 US US13/221,021 patent/US8722756B2/en not_active Expired - Fee Related
-
2013
- 2013-12-19 US US14/134,481 patent/US9150732B2/en not_active Expired - Fee Related
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0222789B1 (en) * | 1985-04-24 | 1991-02-06 | Elf Atochem S.A. | Thermoplastic composition comprising a copolymer based on ethylene and maleic anhydride, and industrial articles obtained from such a composition |
| US7691942B2 (en) * | 2005-08-19 | 2010-04-06 | Rohm And Haas Company | Aqueous dispersion of polymeric particles |
| US20080146724A1 (en) * | 2006-12-15 | 2008-06-19 | James Charles Bohling | Phosphorous-containing organic polymer and compositions and processes including same |
| US20100261840A1 (en) * | 2007-10-08 | 2010-10-14 | Evonik Roehm Gmbh | Emulsion polymers, aqueous dispersions and method for producing the same |
| US20090143540A1 (en) * | 2007-11-29 | 2009-06-04 | Tirthankar Ghosh | Aqueous emulsion copolymer compositions |
| DE102009001966A1 (en) * | 2009-03-30 | 2010-10-07 | Evonik Röhm Gmbh | Coating composition, (meth) acrylic polymer and monomer mixture for producing the (meth) acrylic polymer |
| US20110318595A1 (en) * | 2009-03-30 | 2011-12-29 | Evonik Roehm Gmbh | Coating composition, (meth)acrylic polymer and monomer mixture for producing the (meth)acrylic polymer |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12428575B2 (en) | 2013-03-13 | 2025-09-30 | Swimc Llc | Water-based compositions that resist dirt pick-up |
| US12297368B2 (en) | 2013-03-15 | 2025-05-13 | Swimc Llc | Dirt pick-up resistant composition |
| US11976207B2 (en) | 2013-03-15 | 2024-05-07 | Swimc Llc | Water-based compositions that resist dirt pick-up |
| US11884834B2 (en) | 2013-03-15 | 2024-01-30 | Swimc Llc | Dirt pick-up resistant composition |
| US10800866B2 (en) * | 2017-01-17 | 2020-10-13 | Behr Process Corporation | Self-healing resin |
| US20180201710A1 (en) * | 2017-01-17 | 2018-07-19 | Behr Process Corporation | Self-healing resin |
| CN111372955A (en) * | 2017-11-20 | 2020-07-03 | 巴斯夫欧洲公司 | Aqueous acrylic polymer latex and its use as a binder |
| US11905434B2 (en) | 2018-05-29 | 2024-02-20 | Swimc Llc | Water-based compositions with long term gloss retention |
| US11370924B2 (en) * | 2018-06-26 | 2022-06-28 | Eastman Kodak Company | Aqueous functional composition for articles |
| CN113840848A (en) * | 2019-05-08 | 2021-12-24 | 巴斯夫欧洲公司 | Aqueous polymer latex |
| US12378419B2 (en) | 2019-05-08 | 2025-08-05 | Basf Se | Aqueous polymer latex |
| WO2020225348A1 (en) * | 2019-05-08 | 2020-11-12 | Basf Se | Aqueous polymer latex |
| AU2020267861B2 (en) * | 2019-05-08 | 2025-10-30 | Basf Se | Aqueous polymer latex |
| US12084558B2 (en) | 2020-06-22 | 2024-09-10 | Eastman Kodac Company | Aqueous functional composition for articles |
| US11945967B2 (en) | 2020-07-02 | 2024-04-02 | Behr Process Corporation | Dirt pick up resistant latex resin |
| CN116194539A (en) * | 2020-07-02 | 2023-05-30 | 贝洱工艺公司 | Stain Resistant Latex Resin |
| WO2022006509A1 (en) * | 2020-07-02 | 2022-01-06 | Behr Process Corporation | Dirt pick up resistant latex resin |
Also Published As
| Publication number | Publication date |
|---|---|
| US9150732B2 (en) | 2015-10-06 |
| US20140107249A1 (en) | 2014-04-17 |
| US8722756B2 (en) | 2014-05-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2011298374B2 (en) | Aqueous emulsion polymers, production of same and use thereof | |
| US8722756B2 (en) | Aqueous emulsion polymers, their preparation and use | |
| KR101924667B1 (en) | Aqueous multistage polymer dispersion, process for its preparation and use thereof as binder for coating substrates | |
| US6790272B1 (en) | Dispersion resins containing itaconic acid for improving wet abrasion resistance | |
| AU2012381922B2 (en) | Aqueous coating composition with improved stability | |
| AU2013347005B2 (en) | Use of aqueous polymer dispersion in coating agents for improving colour retention | |
| US20120129965A1 (en) | Use of film-forming polymers and organic hollow particles for coating agents | |
| CN111315832B (en) | Aqueous polymer dispersions | |
| CN108350124B (en) | Aqueous polymer dispersion and preparation method thereof | |
| CN102471421B (en) | Aqueous polymer dispersions and their use as binders for coating substrates | |
| CN111655759A (en) | Aqueous adhesive composition | |
| EP4004058A1 (en) | Process for producing an aqueous polymer dispersion | |
| US20190389993A1 (en) | Aqueous polymer dispersions | |
| US7632883B2 (en) | Aqueous synthetic resin preparation | |
| EP4590726A1 (en) | Mar and scuff resistant architectural coating | |
| CN120187764A (en) | Aqueous polymer latexes suitable as film-forming copolymers for use as binders in aqueous coating compositions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BASF SE, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BALK, ROELOF;DERSCH, ROLF;ROLLER, SEBASTIAN;AND OTHERS;SIGNING DATES FROM 20110523 TO 20110704;REEL/FRAME:026828/0669 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20220513 |