[go: up one dir, main page]

US20120053253A1 - Gene signatures for cancer prognosis - Google Patents

Gene signatures for cancer prognosis Download PDF

Info

Publication number
US20120053253A1
US20120053253A1 US13/178,380 US201113178380A US2012053253A1 US 20120053253 A1 US20120053253 A1 US 20120053253A1 US 201113178380 A US201113178380 A US 201113178380A US 2012053253 A1 US2012053253 A1 US 2012053253A1
Authority
US
United States
Prior art keywords
genes
cancer
expression
test
ccgs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/178,380
Other languages
English (en)
Inventor
Steven Stone
Alexander Gutin
Susanne Wagner
Julia Reid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Myriad Genetics Inc
Original Assignee
Myriad Genetics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myriad Genetics Inc filed Critical Myriad Genetics Inc
Priority to US13/178,380 priority Critical patent/US20120053253A1/en
Assigned to MYRIAD GENETICS, INC. reassignment MYRIAD GENETICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUTIN, ALEXANDER, REID, JULIA, WAGNER, SUSANNE, STONE, STEVEN
Publication of US20120053253A1 publication Critical patent/US20120053253A1/en
Priority to US14/632,888 priority patent/US10954568B2/en
Priority to US15/060,090 priority patent/US20160355884A1/en
Priority to US15/921,416 priority patent/US20180334722A1/en
Priority to US17/678,357 priority patent/US20220259675A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • the invention generally relates to a molecular classification of disease and particularly to molecular markers for cancer prognosis and methods of use thereof.
  • Cancer is a major public health problem, accounting for roughly 25% of all deaths in the United States. Though many treatments have been devised for various cancers, these treatments often vary in severity of side effects. It is useful for clinicians to know how aggressive a patient's cancer is in order to determine how aggressively to treat the cancer.
  • the present invention is based in part on the surprising discovery that the expression of those genes whose expression closely tracks the cell cycle (“cell-cycle genes” or “CCGs” as further defined below) is particularly useful in classifying selected types of cancer and determining the prognosis of these cancers.
  • a method for determining gene expression in a tumor sample from a patient identified as having prostate cancer, lung cancer, bladder cancer or brain cancer.
  • the method includes at least the following steps: (1) obtaining a tumor sample from a patient identified as having prostate cancer, lung cancer, bladder cancer or brain cancer; (2) determining the expression of a panel of genes in said tumor sample including at least 4 cell-cycle genes; and (3) providing a test value by (a) weighting the determined expression of each of a plurality of test genes selected from said panel of genes with a predefined coefficient, and (b) combining the weighted expression to provide said test value, wherein at least 50%, at least 75% or at least 90% of said plurality of test genes are cell-cycle genes.
  • the plurality of test genes includes at least 8 cell-cycle genes, or at least 10, 15, 20, 25 or 30 cell-cycle genes. Preferably, all of the test genes are cell-cycle genes.
  • the step of determining the expression of the panel of genes in the tumor sample comprises measuring the amount of mRNA in the tumor sample transcribed from each of from 4 to about 200 cell-cycle genes; and measuring the amount of mRNA of one or more housekeeping genes in the tumor sample.
  • a method for determining the prognosis of prostate cancer, lung cancer, bladder cancer or brain cancer which comprises determining in a tumor sample from a patient diagnosed of prostate cancer, lung cancer, bladder cancer or brain cancer, the expression of at least 6, 8 or 10 cell-cycle genes, wherein overexpression of said at least 6, 8 or 10 cell-cycle genes indicates a poor prognosis or an increased likelihood of recurrence of cancer in the patient.
  • the prognosis method comprises (1) determining in a tumor sample from a patient diagnosed of prostate cancer, lung cancer, bladder cancer or brain cancer, the expression of a panel of genes in said tumor sample including at least 4 or at least 8 cell-cycle genes; and (2) providing a test value by (a) weighting the determined expression of each of a plurality of test genes selected from the panel of genes with a predefined coefficient, and (b) combining the weighted expression to provide the test value, wherein at least 50%, at least 75% or at least 85% of the plurality of test genes are cell-cycle genes, and wherein an increased level of overall expression of the plurality of test genes indicates a poor prognosis, whereas if there is no increase in the overall expression of the test genes, it would indicate a good prognosis or a low likelihood of recurrence of cancer in the patient.
  • the prognosis method further includes a step of comparing the test value provided in step (2) above to one or more reference values, and correlating the test value to a risk of cancer progression or risk of cancer recurrence.
  • a step of comparing the test value provided in step (2) above to one or more reference values and correlating the test value to a risk of cancer progression or risk of cancer recurrence.
  • an increased likelihood of poor prognosis is indicated if the test value is greater than the reference value.
  • the present invention also provide a method of treating cancer in a patient identified as having prostate cancer, lung cancer, bladder cancer or brain cancer, comprising: (1) determining in a tumor sample from a patient diagnosed of prostate cancer, lung cancer, bladder cancer or brain cancer, the expression of a panel of genes in the tumor sample including at least 4 or at least 8 cell-cycle genes; (2) providing a test value by (a) weighting the determined expression of each of a plurality of test genes selected from said panel of genes with a predefined coefficient, and (b) combining the weighted expression to provide said test value, wherein at least 50% or 75% or 85% of the plurality of test genes are cell-cycle genes, wherein an increased level of expression of the plurality of test genes indicates a poor prognosis, and an un-increased level of expression of the plurality of test genes indicates a good prognosis; and recommending, prescribing or administering a treatment regimen or watchful waiting based on the prognosis provided in step (2).
  • the present invention further provides a diagnostic kit for prognosing cancer in a patient diagnosed of prostate cancer, lung cancer, bladder cancer or brain cancer, comprising, in a compartmentalized container, a plurality of oligonucleotides hybridizing to at least 8 test genes, wherein less than 10%, 30% or less than 40% of all of the at least 8 test genes are non-cell-cycle genes; and one or more oligonucleotide hybridizing to at least one housekeeping gene.
  • the oligonucleotides can be hybridizing probes for hybridization with the test genes under stringent conditions or primers suitable for PCR amplification of the test genes.
  • the kit consists essentially of, in a compartmentalized container, a first plurality of PCR reaction mixtures for PCR amplification of from 5 or 10 to about 300 test genes, wherein at least 50%, at least 60% or at least 80% of such test genes are cell-cycle genes, and wherein each reaction mixture comprises a PCR primer pair for PCR amplifying one of the test genes; and a second plurality of PCR reaction mixtures for PCR amplification of at least one housekeeping gene.
  • the present invention also provides the use of (1) a plurality of oligonucleotides hybridizing to at least 4 or at least 8 cell-cycle genes; and (2) one or more oligonucleotides hybridizing to at least one housekeeping gene, for the manufacture of a diagnostic product for determining the expression of the test genes in a tumor sample from a patient diagnosed of prostate cancer, lung cancer, bladder cancer or brain cancer, to predict the prognosis of cancer, wherein an increased level of the overall expression of the test genes indicates a poor prognosis or an increased likelihood of recurrence of cancer in the patient, whereas if there is no increase in the overall expression of the test genes, it would indicate a good prognosis or a low likelihood of recurrence of cancer in the patient.
  • the oligonucleotides are PCR primers suitable for PCR amplification of the test genes. In other embodiments, the oligonucleotides are probes hybridizing to the test genes under stringent conditions. In some embodiments, the plurality of oligonucleotides are probes for hybridization under stringent conditions to, or are suitable for PCR amplification of, from 4 to about 300 test genes, at least 50%, 70% or 80% or 90% of the test genes being cell-cycle genes.
  • the plurality of oligonucleotides are hybridization probes for, or are suitable for PCR amplification of, from 20 to about 300 test genes, at least 30%, 40%, 50%, 70% or 80% or 90% of the test genes being cell-cycle genes.
  • the present invention further provides a system for determining gene expression in a tumor sample, comprising: (1) a sample analyzer for determining the expression levels of a panel of genes in a tumor sample including at least 4 cell-cycle genes, wherein the sample analyzer contains the tumor sample which is from a patient identified as having prostate cancer, lung cancer, bladder cancer or brain cancer, or cDNA molecules from mRNA expressed from the panel of genes; (2) a first computer program means for (a) receiving gene expression data on at least 4 test genes selected from the panel of genes, (b) weighting the determined expression of each of the test genes with a predefined coefficient, and (c) combining the weighted expression to provide a test value, wherein at least 50%, at least at least 75% of at least 4 test genes are cell-cycle genes; and optionally (3) a second computer program means for comparing the test value to one or more reference values each associated with a predetermined degree of risk of cancer recurrence or progression of the prostate cancer, lung cancer, bladder cancer or brain cancer.
  • the system further comprises:
  • FIG. 1 is an illustration of the predictive power over nomogram for CCG panels of different sizes.
  • FIG. 2 is an illustration of CCGs predicting time to recurrence.
  • FIG. 3 is an illustration of nomogram predicting time to recurrence.
  • FIG. 4 is an illustration of the non-overlapping recurrence predicted by nomogram and a CCG signature.
  • FIG. 5 is an illustration of time to recurrence for several patient populations defined by nomogram and/or CCG status.
  • FIG. 6 is an illustration of an example of a system useful in certain aspects and embodiments of the invention.
  • FIG. 7 is a flowchart illustrating an example of a computer-implemented method of the invention.
  • FIG. 8 a scatter plot comparing clinical parameters and CCG score as predictors of recurrence from Example 5.
  • FIG. 9 illustrates, from Example 5, the CCG threshold derived from analysis of the training cohort to the validation data set, with the CCG signature score effectively subdividing patients identified as low-risk using clinical parameters into patients with very low recurrence rates and a higher risk of recurrence.
  • FIG. 10 illustrates the predicted recurrence rate versus CCG score for patients in the validation cohort of Example 5.
  • FIG. 11 illustrates the predicted recurrence rate versus CCG score for patients in the validation cohort of Example 5.
  • FIG. 12 illustrates the distribution of clinical risk score in 443 patients studied in Example 5.
  • the dark vertical line represents the threshold chosen by KM means to divide low- and high-risk patients and used throughout this study.
  • FIG. 13 illustrates the correlation between CCP score and survival in brain cancer.
  • FIG. 14 illustrates illustrates the correlation between CCP score and survival in bladder cancer.
  • FIG. 15 illustrates illustrates the correlation between CCP score and survival in breast cancer.
  • FIG. 16 illustrates the correlation between CCP score and survival in lung cancer.
  • FIG. 17 is an illustration of the predictive power over nomogram for CCG panels of different sizes.
  • the present invention is based in part on the discovery that genes whose expression closely tracks the cell cycle (“cell-cycle genes” or “CCGs”) are particularly powerful genes for classifying selected cancers including prostate cancer, lung cancer, bladder cancer, brain cancer and breast cancer, but not other types of cancer such as colorectal cancer.
  • Cell-cycle gene and “CCG” herein refer to a gene whose expression level closely tracks the progression of the cell through the cell-cycle. See, e.g., Whitfield et al., M OL . B IOL . C ELL (2002) 13:1977-2000.
  • the term “cell-cycle progression” or “CCP” will also be used in this application and will generally be interchangeable with CCG (i.e., a CCP gene is a CCG; a CCP score is a CCG score). More specifically, CCGs show periodic increases and decreases in expression that coincide with certain phases of the cell cycle—e.g., STK15 and PLK show peak expression at G2/M. Id.
  • CCGs have clear, recognized cell-cycle related function—e.g., in DNA synthesis or repair, in chromosome condensation, in cell-division, etc.
  • some CCGs have expression levels that track the cell-cycle without having an obvious, direct role in the cell-cycle—e.g., UBE2S encodes a ubiquitin-conjugating enzyme, yet its expression closely tracks the cell-cycle.
  • a CCG according to the present invention need not have a recognized role in the cell-cycle.
  • Exemplary CCGs are listed in Tables 1, 2, 3, and 4.
  • Whether a particular gene is a CCG may be determined by any technique known in the art, including that taught in Whitfield et al., M OL . B IOL . C ELL (2002) 13:1977-2000.
  • a sample of cells e.g., HeLa cells
  • RNA is extracted from the cells after arrest in each phase and gene expression is quantitated using any suitable technique—e.g., expression microarray (genome-wide or specific genes of interest), real-time quantitative PCRTM (RTQ-PCR). Finally, statistical analysis (e.g., Fourier Transform) is applied to determine which genes show peak expression during particular cell-cycle phases. Genes may be ranked according to a periodicity score describing how closely the gene's expression tracks the cell-cycle—e.g., a high score indicates a gene very closely tracks the cell cycle. Finally, those genes whose periodicity score exceeds a defined threshold level (see Whitfield et al., M OL . B IOL .
  • C ELL (2002) 13:1977-2000 may be designated CCGs.
  • a large, but not exhaustive, list of nucleic acids associated with CCGs e.g., genes, ESTs, cDNA clones, etc.
  • Table 1 A large, but not exhaustive, list of nucleic acids associated with CCGs (e.g., genes, ESTs, cDNA clones, etc.) is given in Table 1. See Whitfield et al., M OL . B IOL . C ELL (2002) 13:1977-2000. All of the CCGs in Table 2 below form a panel of CCGs (“Panel A”) useful in the methods of the invention.
  • a method for determining gene expression in a tumor sample from a patient identified as having prostate cancer, lung cancer, bladder cancer or brain cancer.
  • the method includes at least the following steps: (1) obtaining a tumor sample from a patient identified as having prostate cancer, lung cancer, bladder cancer or brain cancer; (2) determining the expression of a panel of genes in the tumor sample including at least 2, 4, 6, 8 or 10 cell-cycle genes; and (3) providing a test value by (a) weighting the determined expression of each of a plurality of test genes selected from said panel of genes with a predefined coefficient, and (b) combining the weighted expression to provide said test value, wherein at least 20%, 50%, at least 75% or at least 90% of said plurality of test genes are cell-cycle genes.
  • Gene expression can be determined either at the RNA level (i.e., mRNA or noncoding RNA (ncRNA)) (e.g., miRNA, tRNA, rRNA, snoRNA, siRNA and piRNA) or at the protein level.
  • RNA level i.e., mRNA or noncoding RNA (ncRNA)
  • ncRNA noncoding RNA
  • levels of proteins in a tumor sample can be determined by any known techniques in the art, e.g., HPLC, mass spectrometry, or using antibodies specific to selected proteins (e.g., IHC, ELISA, etc.).
  • the amount of RNA transcribed from the panel of genes including test genes is measured in the tumor sample.
  • the amount of RNA of one or more housekeeping genes in the tumor sample is also measured, and used to normalize or calibrate the expression of the test genes.
  • normalizing genes and “housekeeping genes” are defined herein below.
  • the plurality of test genes includes at least 2, 3 or 4 cell-cycle genes, which constitute at least 50%, 75% or 80% of the plurality of test genes, and preferably 100% of the plurality of test genes.
  • the plurality of test genes includes at least 5, 6, 7, or at least 8 cell-cycle genes, which constitute at least 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80% or 90% of the plurality of test genes, and preferably 100% of the plurality of test genes.
  • a panel of genes is a plurality of genes. Typically these genes are assayed together in one or more samples from a patient.
  • the plurality of test genes includes at least 8, 10, 12, 15, 20, 25 or 30 cell-cycle genes, which constitute at least 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80% or 90% of the plurality of test genes, and preferably 100% of the plurality of test genes.
  • tumor sample means any biological sample containing one or more tumor cells, or one or more tumor derived RNA or protein, and obtained from a cancer patient.
  • a tissue sample obtained from a tumor tissue of a cancer patient is a useful tumor sample in the present invention.
  • the tissue sample can be an FFPE sample, or fresh frozen sample, and preferably contain largely tumor cells.
  • a single malignant cell from a cancer patient's tumor is also a useful tumor sample.
  • Such a malignant cell can be obtained directly from the patient's tumor, or purified from the patient's bodily fluid such as blood and urine.
  • a bodily fluid such as blood, urine, sputum and saliva containing one or tumor cells, or tumor-derived RNA or proteins, can also be useful as a tumor sample for purposes of practicing the present invention.
  • telomere length e.g., telomere length, telomere length, etc.
  • qRT-PCRTM quantitative real-time PCRTM
  • immunoanalysis e.g., ELISA, immunohistochemistry
  • the activity level of a polypeptide encoded by a gene may be used in much the same way as the expression level of the gene or polypeptide. Often higher activity levels indicate higher expression levels and while lower activity levels indicate lower expression levels.
  • the invention provides any of the methods discussed above, wherein the activity level of a polypeptide encoded by the CCG is determined rather than or in adition to the expression level of the CCG.
  • the methods of the invention may be practiced independent of the particular technique used.
  • the expression of one or more normalizing genes is also obtained for use in normalizing the expression of test genes.
  • normalizing genes referred to the genes whose expression is used to calibrate or normalize the measured expression of the gene of interest (e.g., test genes).
  • the expression of normalizing genes should be independent of cancer outcome/prognosis, and the expression of the normalizing genes is very similar among all the tumor samples. The normalization ensures accurate comparison of expression of a test gene between different samples. For this purpose, housekeeping genes known in the art can be used.
  • Housekeeping genes are well known in the art, with examples including, but are not limited to, GUSB (glucuronidase, beta), HMBS (hydroxymethylbilane synthase), SDHA (succinate dehydrogenase complex, subunit A, flavoprotein), UBC (ubiquitin C) and YWHAZ (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide).
  • GUSB glucose curonidase, beta
  • HMBS hydroxymethylbilane synthase
  • SDHA succinate dehydrogenase complex, subunit A, flavoprotein
  • UBC ubiquitin C
  • YWHAZ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide.
  • One or more housekeeping genes can be used.
  • at least 2, 5, 10 or 15 housekeeping genes are used to provide a combined normalizing gene
  • RNA levels for the genes In the case of measuring RNA levels for the genes, one convenient and sensitive approach is real-time quantitative PCR (qPCR) assay, following a reverse transcription reaction.
  • qPCR quantitative PCR
  • a cycle threshold C t is determined for each test gene and each normalizing gene, i.e., the number of cycle at which the fluoescence from a qPCR reaction above background is detectable.
  • the overall expression of the one or more normalizing genes can be represented by a “normalizing value” which can be generated by combining the expression of all normalizing genes, either weighted eaqually (straight addition or averaging) or by different predefined coefficients.
  • the normalizing value C tH can be the cycle threshold (C t ) of one single normalizing gene, or an average of the C t values of 2 or more, preferably 10 or more, or 15 or more normalizing genes, in which case, the predefined coefficient is 1/N, where N is the total number of normalizing genes used.
  • C tH (C tH1 +C tH2 +C tHn )/N.
  • the methods of the invention generally involve determining the level of expression of a panel of CCGs. With modern high-throughput techniques, it is often possible to determine the expression level of tens, hundreds or thousands of genes. Indeed, it is possible to determine the level of expression of the entire transcriptome (i.e., each transcribed sequence in the genome). Once such a global assay has been performed, one may then informatically analyze one or more subsets of transcripts (i.e., panels or, as often used herein, pluralities of test genes).
  • test genes comprising primarily CCGs according to the present invention by combining the expression level values of the individual test genes to obtain a test value.
  • the test value provided in the present invention represents the overall expression level of the plurality of test genes composed substantially of cell-cycle genes.
  • the test value representing the overall expression of the plurality of test genes can be provided by combining the normalized expression of all test genes, either by straight addition or averaging (i.e., weighted equally) or by a different predefined coefficient.
  • test value ( ⁇ C t1 + ⁇ C t2 + . . . + ⁇ C tn )/n.
  • test value ( ⁇ C t1 + ⁇ C t2 + . . . + ⁇ C tn )/n.
  • CCGs have been found to be very good surrogates for each other.
  • One way of assessing whether particular CCGs will serve well in the methods and compositions of the invention is by assessing their correlation with the mean expression of CCGs (e.g., all known CCGs, a specific set of CCGs, etc.). Those CCGs that correlate particularly well with the mean are expected to perform well in assays of the invention, e.g., because these will reduce noise in the assay. Rankings of select CCGs according to their correlation with the mean CCG expression as well as their ranking according to predictive value are given in Tables 9, 11 & 23 to 25.
  • the plurality of test genes comprises the top 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40 or more CCGs listed in Tables 9, 11, 23, 24 or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, or of the following genes: ASPM, BIRC5, BUB1B, CCNB2, CDC2, CDC20, CDCA8, CDKN3, CENPF, DL GAP5, FOXM1, KIAA 0101, KIF11, KIF2C, KIF4A, MCM10, NUSAP1, PRC1, RACGAP1, and TPX2.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, nine, or ten or all of gene numbers 1 & 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, or 1 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, nine, or ten or all of gene numbers 1 & 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, or 1 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, or nine or all of gene numbers 2 & 3, 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, or 2 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, or nine or all of gene numbers 2 & 3, 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, or 2 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, seven, or eight or all of gene numbers 3 & 4, 3 to 5, 3 to 6, 3 to 7, 3 to 8, 3 to 9, or 3 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, seven, or eight or all of gene numbers 3 & 4, 3 to 5, 3 to 6, 3 to 7, 3 to 8, 3 to 9, or 3 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, or seven or all of gene numbers 4 & 5, 4 to 6, 4 to 7, 4 to 8, 4 to 9, or 4 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, or seven or all of gene numbers 4 & 5, 4 to 6, 4 to 7, 4 to 8, 4 to 9, or 4 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, or 15 or all of gene numbers 1 & 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, 1 to 10, 1 to 11, 1 to 12, 1 to 13, 1 to 14, or 1 to 15 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, or 15 or all of gene numbers 1 & 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, 1 to 10, 1 to 11, 1
  • the expression of cell-cycle genes in tumor cells can accurately predict the degree of aggression of the cancer and risk of recurrence after treatment (e.g., surgical removal of cancer tissue, chemotherapy and radiation therapy, etc.).
  • treatment e.g., surgical removal of cancer tissue, chemotherapy and radiation therapy, etc.
  • the above-described method of determining cell-cycle gene expression can be applied in the prognosis and treatment of such cancers.
  • a method for prognosing cancer selected from prostate cancer, lung cancer, bladder cancer or brain cancer which comprises determining in a tumor sample from a patient diagnosed of prostate cancer, lung cancer, bladder cancer or brain cancer, the expression of at least 2, 4, 5, 6, 7 or at least 8, 9, 10 or 12 cell-cycle genes, wherein overexpression of the at least 4 cell-cycle genes indicates a poor prognosis or an increased likelihood of recurrence of cancer in the patient.
  • the expression can be determined in accordance with the method described above.
  • the prognosis method includes (1) obtaining a tumor sample from a patient identified as having prostate cancer, lung cancer, bladder cancer or brain cancer; (2) determining the expression of a panel of genes in the tumor sample including at least 2, 4, 6, 8 or 10 cell-cycle genes; and (3) providing a test value by (a) weighting the determined expression of each of a plurality of test genes selected from the panel of genes with a predefined coefficient, and (b) combining the weighted expression to provide said test value, wherein at least 20%, 50%, at least 75% or at least 90% of said plurality of test genes are cell-cycle genes, and wherein an increased level of expression of the plurality of test genes indicates a poor prognosis or an increased likelihood of cancer recurrence.
  • the test value representing the overall expression of the plurality of test genes is compared to one or more reference values (or index values), and optionally correlated to a risk of cancer progression or risk of cancer recurrence.
  • a risk of cancer progression or risk of cancer recurrence is optionally correlated to a risk of cancer progression or risk of cancer recurrence.
  • an increased likelihood of poor prognosis is indicated if the test value is greater than the reference value.
  • the index value may represent the gene expression levels found in a normal sample obtained from the patient of interest, in which case an expression level in the tumor sample significantly higher than this index value would indicate, e.g., a poor prognosis or increased likelihood of cancer recurrence or a need for aggressive treatment.
  • the index value may represent the average expression level of for a set of individuals from a diverse cancer population or a subset of the population. For example, one may determine the average expression level of a gene or gene panel in a random sampling of patients with cancer (e.g., prostate, bladder, brain, breast, or lung cancer). This average expression level may be termed the “threshold index value,” with patients having CCG expression higher than this value expected to have a poorer prognosis than those having expression lower than this value.
  • cancer e.g., prostate, bladder, brain, breast, or lung cancer
  • the index value may represent the average expression level of a particular gene marker in a plurality of training patients (e.g., prostate cancer patients) with similar outcomes whose clinical and follow-up data are available and sufficient to define and categorize the patients by disease outcome, e.g., recurrence or prognosis. See, e.g., Examples, infra.
  • a “good prognosis index value” can be generated from a plurality of training cancer patients characterized as having “good outcome”, e.g., those who have not had cancer recurrence five years (or ten years or more) after initial treatment, or who have not had progression in their cancer five years (or ten years or more) after initial diagnosis.
  • a “poor prognosis index value” can be generated from a plurality of training cancer patients defined as having “poor outcome”, e.g., those who have had cancer recurrence within five years (or ten years, etc.) after initial treatment, or who have had progression in their cancer within five years (or ten years, etc.) after initial diagnosis.
  • a good prognosis index value of a particular gene may represent the average level of expression of the particular gene in patients having a “good outcome,” whereas a poor prognosis index value of a particular gene represents the average level of expression of the particular gene in patients having a “poor outcome.”
  • one aspect of the invention provides a method of classifying cancer comprising determining the status of a panel of genes comprising at least two CCGs, in tissue or cell sample, particularly a tumor sample, from a patient, wherein an abnormal status indicates a negative cancer classification.
  • determining the status” of a gene refers to determining the presence, absence, or extent/level of some physical, chemical, or genetic characteristic of the gene or its expression product(s). Such characteristics include, but are not limited to, expression levels, activity levels, mutations, copy number, methylation status, etc.
  • characteristics include expression levels (e.g., mRNA or protein levels) and activity levels. Characteristics may be assayed directly (e.g., by assaying a CCG's expression level) or determined indirectly (e.g., assaying the level of a gene or genes whose expression level is correlated to the expression level of the CCG).
  • some embodiments of the invention provide a method of classifying cancer comprising determining the expression level, particularly mRNA level of a panel of genes comprising at least two CCGs, in a tumor sample, wherein elevated expression indicates a negative cancer classification, or an increased risk of cancer recurrence or progression, or a need for aggressive treatment.
  • “Abnormal status” means a marker's status in a particular sample differs from the status generally found in average samples (e.g., healthy samples or average diseased samples). Examples include mutated, elevated, decreased, present, absent, etc.
  • An “elevated status” means that one or more of the above characteristics (e.g., expression or mRNA level) is higher than normal levels. Generally this means an increase in the characteristic (e.g., expression or mRNA level) as compared to an index value.
  • a “low status” means that one or more of the above characteristics (e.g., gene expression or mRNA level) is lower than normal levels. Generally this means a decrease in the characteristic (e.g., expression) as compared to an index value.
  • a “negative status” generally means the characteristic is absent or undetectable.
  • PTEN status is negative if PTEN nucleic acid and/or protein is absent or undetectable in a sample.
  • negative PTEN status also includes a mutation or copy number reduction in PTEN.
  • the methods comprise determining the expression of one or more CCGs and, if this expression is “increased,” the patient has a poor prognosis.
  • “increased” expression of a CCG means the patient's expression level is either elevated over a normal index value or a threshold index (e.g., by at least some threshold amount) or closer to the “poor prognosis index value” than to the “good prognosis index value.”
  • the determined level of expression of a relevant gene marker is closer to the good prognosis index value of the gene than to the poor prognosis index value of the gene, then it can be concluded that the patient is more likely to have a good prognosis, i.e., a low (or no increased) likelihood of cancer recurrence.
  • the determined level of expression of a relevant gene marker is closer to the poor prognosis index value of the gene than to the good prognosis index value of the gene, then it can be concluded that the patient is more likely to have a poor prognosis, i.e., an increased likelihood of cancer recurrence.
  • index values may be determined thusly:
  • a threshold value will be set for the cell cycle mean.
  • the optimal threshold value is selected based on the receiver operating characteristic (ROC) curve, which plots sensitivity vs (1—specificity).
  • ROC receiver operating characteristic
  • the sensitivity and specificity of the test is calculated using that value as a threshold.
  • the actual threshold will be the value that optimizes these metrics according to the artisans requirements (e.g., what degree of sensitivity or specificity is desired, etc.).
  • Example 5 demonstrates determination of a threshold value determined and validated experimentally.
  • Panels of CCGs can accurately predict prognosis, as shown in Example 3.
  • Those skilled in the art are familiar with various ways of determining the expression of a panel of genes (i.e., a plurality of genes).
  • One may determine the expression of a panel of genes by determining the average expression level (normalized or absolute) of all panel genes in a sample obtained from a particular patient (either throughout the sample or in a subset of cells from the sample or in a single cell).
  • Increased expression in this context will mean the average expression is higher than the average expression level of these genes in normal patients (or higher than some index value that has been determined to represent the average expression level in a reference population such as patients with the same cancer).
  • a certain number e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30 or more
  • a certain proportion e.g., 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 100%
  • classifying a cancer and “cancer classification” refer to determining one or more clinically-relevant features of a cancer and/or determining a particular prognosis of a patient having said cancer.
  • classifying a cancer includes, but is not limited to: (i) evaluating metastatic potential, potential to metastasize to specific organs, risk of recurrence, and/or course of the tumor; (ii) evaluating tumor stage; (iii) determining patient prognosis in the absence of treatment of the cancer; (iv) determining prognosis of patient response (e.g., tumor shrinkage or progression-free survival) to treatment (e.g., chemotherapy, radiation therapy, surgery to excise tumor, etc.); (v) diagnosis of actual patient response to current and/or past treatment; (vi) determining a preferred course of treatment for the patient; (vii) prognosis for patient relapse after treatment (either treatment in general or some particular treatment); (viii) prognosis of patient life expectancy
  • a “negative classification” means an unfavorable clinical feature of the cancer (e.g., a poor prognosis).
  • examples include (i) an increased metastatic potential, potential to metastasize to specific organs, and/or risk of recurrence; (ii) an advanced tumor stage; (iii) a poor patient prognosis in the absence of treatment of the cancer; (iv) a poor prognosis of patient response (e.g., tumor shrinkage or progression-free survival) to a particular treatment (e.g., chemotherapy, radiation therapy, surgery to excise tumor, etc.); (v) a poor prognosis for patient relapse after treatment (either treatment in general or some particular treatment); (vi) a poor prognosis of patient life expectancy (e.g., prognosis for overall survival), etc.
  • a recurrence-associated clinical parameter or a high nomogram score
  • increased expression of a CCG indicate a negative classification in cancer (e.g.
  • cancer in a patient will often mean the patient has an increased likelihood of recurrence after treatment (e.g., the cancer cells not killed or removed by the treatment will quickly grow back).
  • a cancer can also mean the patient has an increased likelihood of cancer progression for more rapid progression (e.g., the rapidly proliferating cells will cause any tumor to grow quickly, gain in virulence, and/or metastasize).
  • Such a cancer can also mean the patient may require a relatively more aggressive treatment.
  • the invention provides a method of classifying cancer comprising determining the status of a panel of genes comprising at least two CCGs, wherein an abnormal status indicates an increased likelihood of recurrence or progression.
  • the status to be determined is gene expression levels.
  • the invention provides a method of determining the prognosis of a patient's cancer comprising determining the expression level of a panel of genes comprising at least two CCGs, wherein elevated expression indicates an increased likelihood of recurrence or progression of the cancer.
  • “Recurrence” and “progression” are terms well-known in the art and are used herein according to their known meanings.
  • the meaning of “progression” may be cancer-type dependent, with progression in lung cancer meaning something different from progression in prostate cancer.
  • progression may be cancer-type dependent, with progression in lung cancer meaning something different from progression in prostate cancer.
  • progression is clearly understood to those skilled in the art.
  • a patient has an “increased likelihood” of some clinical feature or outcome (e.g., recurrence or progression) if the probability of the patient having the feature or outcome exceeds some reference probability or value.
  • the reference probability may be the probability of the feature or outcome across the general relevant patient population.
  • the probability of recurrence in the general prostate cancer population is X % and a particular patient has been determined by the methods of the present invention to have a probability of recurrence of Y %, and if Y>X, then the patient has an “increased likelihood” of recurrence.
  • a threshold or reference value may be determined and a particular patient's probability of recurrence may be compared to that threshold or reference. Because predicting recurrence and predicting progression are prognostic endeavors, “predicting prognosis” will often be used herein to refer to either or both. In these cases, a “poor prognosis” will generally refer to an increased likelihood of recurrence, progression, or both.
  • the invention provides a method of predicting prognosis comprising determining the expression of at least one CCG listed in Table 1 or Panels A through G.
  • Example 3 also shows that panels of CCGs (e.g., 2, 3, 4, 5, or 6 CCGs) can accurately predict prognosis.
  • the invention provides a method of classifying a cancer comprising determining the status of a panel of genes (e.g., a plurality of test genes) comprising a plurality of CCGs.
  • a panel of genes e.g., a plurality of test genes
  • increased expression in a panel of genes (or plurality of test genes) may refer to the average expression level of all panel or test genes in a particular patient being higher than the average expression level of these genes in normal patients (or higher than some index value that has been determined to represent the normal average expression level).
  • increased expression in a panel of genes may refer to increased expression in at least a certain number (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30 or more) or at least a certain proportion (e.g., 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 100%) of the genes in the panel as compared to the average normal expression level.
  • a certain number e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30 or more
  • a certain proportion e.g., 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 100%
  • the panel comprises at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 70, 80, 90, 100, 200, or more CCGs. In some embodiments the panel comprises at least 10, 15, 20, or more CCGs. In some embodiments the panel comprises between 5 and 100 CCGs, between 7 and 40 CCGs, between 5 and 25 CCGs, between 10 and 20 CCGs, or between 10 and 15 CCGs. In some embodiments CCGs comprise at least a certain proportion of the panel. Thus in some embodiments the panel comprises at least 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% CCGs.
  • the panel comprises at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 70, 80, 90, 100, 200, or more CCGs, and such CCGs constitute of at least 50%, 60%, 70%, preferably at least 75%, 80%, 85%, more preferably at least 90%, 95%, 96%, 97%, 98%, or 99% or more of the total number of genes in the panel.
  • the CCGs are chosen from the group consisting of the genes in Table 1 and Panels A through G.
  • the panel comprises at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, or more of the genes in any of Table 1 and Panels A through G.
  • the invention provides a method of predicting prognosis comprising determining the status of the CCGs in Panels A through G, wherein abnormal status indicates a poor prognosis.
  • elevated expression indicates an increased likelihood of recurrence or progression.
  • the invention provides a method of predicting risk of cancer recurrence or progression in a patient comprising determining the status of a panel of genes, wherein the panel comprises between about 10 and about 15 CCGs, the CCGs constitute at least 90% of the panel, and an elevated status for the CCGs indicates an increased likelihood or recurrence or progression.
  • CCGs have been found to be very good surrogates for each other.
  • One way of assessing whether particular CCGs will serve well in the methods and compositions of the invention is by assessing their correlation with the mean expression of CCGs (e.g., all known CCGs, a specific set of CCGs, etc.). Those CCGs that correlate particularly well with the mean are expected to perform well in assays of the invention, e.g., because these will reduce noise in the assay.
  • a ranking of select CCGs according to their correlation with the mean CCG expression is given in Table 23.
  • CCG signatures the particular CCGs assayed is often not as important as the total number of CCGs.
  • the number of CCGs assayed can vary depending on many factors, e.g., technical constraints, cost considerations, the classification being made, the cancer being tested, the desired level of predictive power, etc.
  • Increasing the number of CCGs assayed in a panel according to the invention is, as a general matter, advantageous because, e.g., a larger pool of mRNAs to be assayed means less “noise” caused by outliers and less chance of an assay error throwing off the overall predictive power of the test.
  • cost and other considerations will generally limit this number and finding the optimal number of CCGs for a signature is desirable.
  • Predictive power can be defined in many ways known to those skilled in the art including, but not limited to, the signature's p-value.
  • C O can be chosen by the artisan based on his or her specific constraints. For example, if cost is not a critical factor and extremely high levels of sensitivity and specificity are desired, C O can be set very low such that only trivial increases in predictive power are disregarded. On the other hand, if cost is decisive and moderate levels of sensitivity and specificity are acceptable, C O can be set higher such that only significant increases in predictive power warrant increasing the number of genes in the signature.
  • a graph of predictive power as a function of gene number may be plotted (as in FIG. 1 ) and the second derivative of this plot taken.
  • the point at which the second derivative decreases to some predetermined value (C O ′) may be the optimal number of genes in the signature.
  • Examples 1 & 3 and FIGS. 1 & 17 illustrate the empirical determination of optimal numbers of CCGs in CCG panels of the invention. Randomly selected subsets of the 31 CCGs listed in Table 3 were tested as distinct CCG signatures and predictive power (i.e., p-value) was determined for each. As FIG. 1 shows, p-values ceased to improve significantly between about 10 and about 15 CCGs, thus indicating that an optimal number of CCGs in a prognostic panel is from about 10 to about 15.
  • some embodiments of the invention provide a method of predicting prognosis in a patient having prostate cancer comprising determining the status of a panel of genes, wherein the panel comprises between about 10 and about 15 CCGs and an elevated status for the CCGs indicates a poor prognosis.
  • the panel comprises between about 10 and about 15 CCGs and the CCGs constitute at least 90% of the panel.
  • the panel comprises CCGs plus one or more additional markers that significantly increase the predictive power of the panel (i.e., make the predictive power significantly better than if the panel consisted of only the CCGs). Any other combination of CCGs (including any of those listed in Table 1 or Panels A through G) can be used to practice the invention.
  • CCGs are particularly predictive in certain cancers.
  • panels of CCGs have been determined to be accurate in predicting recurrence in prostate cancer (Examples 1 through 5).
  • CCGs can determine prognosis in bladder, brain, breast and lung cancers, as summarized in Example 6 and Tables 21 and 22 below.
  • the invention provides a method comprising determining the status of a panel of genes comprising at least two CCGs, wherein an abnormal status indicates a poor prognosis.
  • the panel comprises at least 2 genes chosen from the group of genes in at least one of Panels A through G.
  • the panel comprises at least 10 genes chosen from the group of genes in at least one of Panels A through G.
  • the panel comprises at least 15 genes chosen from the group of genes in at least one of Panels A through G.
  • the panel comprises all of the genes in at least one of Panels A through G.
  • the invention also provides a method of determining the prognosis of bladder cancer, comprising determining the status of a panel of genes comprising at least two CCGs (e.g., at least two of the genes in any of Panels B, C, & F), wherein an abnormal status indicates a poor prognosis.
  • the invention also provides a method of determining the prognosis of brain cancer, comprising determining the status of a panel of genes comprising at least two CCGs (e.g., at least two of the genes in any of Panels B, C, & F), wherein an abnormal status indicates a poor prognosis.
  • the invention further provides a method of determining the prognosis of breast cancer, comprising determining the status of a panel of genes comprising at least two CCGs (e.g., at least two of the genes in any of Panels B, C, & F), wherein an abnormal status indicates a poor prognosis.
  • the invention also provides a method of determining the prognosis of lung cancer, comprising determining the status of a panel of genes comprising at least two CCGs (e.g., at least two of the genes in any of Panels B, C, & F), wherein an abnormal status indicates a poor prognosis.
  • the panel comprises at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs. In some embodiments the panel comprises between 5 and 100 CCGs, between 7 and 40 CCGs, between 5 and 25 CCGs, between 10 and 20 CCGs, or between 10 and 15 CCGs. In some embodiments CCGs comprise at least a certain proportion of the panel. Thus in some embodiments the panel comprises at least 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% CCGs. In some embodiments the CCGs are chosen from the group consisting of the genes listed in Tables 1, 9 & 11 and Panels A through G.
  • the panel comprises at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more genes chosen from the group of genes in any of Tables 1, 9 or 11 or Panels A through G. In some embodiments the panel comprises all of the genes in any of Tables 1, 9, or 11 or Panels A through G.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises the top 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40 or more CCGs listed in Table 9, 11, 23, 24, or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, or 20 of the following genes: ASPM, BIRC5, BUB1B, CCNB2, CDC2, CDC20, CDCA8, CDKN3, CENPF, DLGAP5, FOXM1, KIAA0101, KIF11, KIF2C, KIF4A, MCM10, NUSAP1, PRC1, RACGAP1, and TPX2.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • ASPM BIRC5, BUB1B, CCNB2, CDC2, CDC20, CDCA8, CDKN3, CENPF, DLGAP5, FOXM1, KIAA0101, KIF11, KIF2C
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, nine, or ten or all of gene numbers 1 & 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, or 1 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, nine, or ten or all of gene numbers 1 & 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, or 1 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, or nine or all of gene numbers 2 & 3, 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, or 2 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, or nine or all of gene numbers 2 & 3, 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, or 2 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, seven, or eight or all of gene numbers 3 & 4, 3 to 5, 3 to 6, 3 to 7, 3 to 8, 3 to 9, or 3 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, seven, or eight or all of gene numbers 3 & 4, 3 to 5, 3 to 6, 3 to 7, 3 to 8, 3 to 9, or 3 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, or seven or all of gene numbers 4 & 5, 4 to 6, 4 to 7, 4 to 8, 4 to 9, or 4 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, or seven or all of gene numbers 4 & 5, 4 to 6, 4 to 7, 4 to 8, 4 to 9, or 4 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, or 15 or all of gene numbers 1 & 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, 1 to 10, 1 to 11, 1 to 12, 1 to 13, 1 to 14, or 1 to 15 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, or 15 or all of gene numbers 1 & 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, 1 to 10, 1 to 11, 1
  • prostate cancer for example, it has been discovered that a high level of gene expression of any one of the genes in Panels C through F is associated with an increased risk of prostate cancer recurrence or progression in patients whose clinical nomogram score indicates a relatively low risk of recurrence or progression. Because evaluating CCG expression levels can thus detect increased risk not detected using clinical parameters alone, the invention generally provides methods combining evaluating at least one clinical parameter with evaluating the status of at least one CCG.
  • one aspect of the invention provides an in vitro diagnostic method comprising determining at least one clinical parameter for a cancer patient and determining the status of at least one CCG in a sample obtained from the patient. However, assessing the status of multiple CCGs improves predictive power even more (also shown in Example 1). Thus in some embodiments the status of a plurality of CCGs (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50 or more) is determined. In some embodiments abnormal status indicates an increased likelihood of recurrence or progression. In some embodiments the patient has prostate cancer. In some embodiments the patient has lung cancer.
  • clinical parameter and “clinical measure” refer to disease or patient characteristics that are typically applied to assess disease course and/or predict outcome.
  • cancer generally include tumor stage, tumor grade, lymph node status, histology, performance status, type of surgery, surgical margins, type of treatment, and age of onset.
  • stage defined by size of tumor and evidence of metastasis
  • Gleason score similar to concept of grade.
  • important clinical parameters in prostate cancer include margin and lymph node status.
  • breast cancer clinicians often use size of index lesion in cm, invasion, number of nodes involved, and grade.
  • certain clinical parameters are correlated with a particular disease character. For example, in cancer generally as well as in specific cancers, certain clinical parameters are correlated with, e.g., likelihood of recurrence or metastasis, prognosis for survival for a certain amount of time, likelihood of response to treatment generally or to a specific treatment, etc. In prostate cancer some clinical parameters are such that their status (presence, absence, level, etc.) is associated with increased likelihood of recurrence.
  • recurrence-associated parameters examples include high PSA levels (e.g., greater than 4 ng/ml), high Gleason score, large tumor size, evidence of metastasis, advanced tumor stage, nuclear grade, lymph node involvement, early age of onset.
  • Other types of cancer may have different parameters correlated to likelihood of recurrence or progression, and CCG status, as a measure of proliferative activity, adds to these parameters in predicting prognosis in these cancers.
  • “recurrence-associated clinical parameter” has its conventional meaning for each specific cancer, with which those skilled in the art are quite familiar. In fact, those skilled in the art are familiar with various recurrence-associated clinical parameters beyond those listed here.
  • Example 5 shows how CCG status can add to one particular grouping of clinical parameters used to determine risk of recurrence in prostate cancer.
  • Clinical parameters in Example 5 include binary variables for organ-confined disease and Gleason score less than or equal to 6, and a continuous variable for logarithmic PSA (Table 14).
  • This model includes all of the clinical parameters incorporated in the post-RP nomogram (i.e., Kattan-Stephenson nomogram) except for Year of RP and the two components of the Gleason score.
  • at least two clinical parameters are assessed along with the expression level of at least one CCG.
  • nomograms are representations (often visual) of a correlation between one or more parameters and one or more patient or disease characters.
  • An example of a prevalent clinical nomogram used in determining a prostate cancer patient's likelihood of recurrence is described in Kattan et al., J. C LIN . O NCOL . (1999) 17:1499-1507, and updated in Stephenson et al., J. C LIN . O NCOL . (2005) 23:7005-7012 (“Kattan-Stephenson nomogram”).
  • This nomogram evaluates a patient by assigning a point value to each of several clinical parameters (year of RP, surgical margins, extracapsular extension, seminal vesicle invasion, lymph node involvement, primary Gleason score, secondary Gleason score, and preoperative PSA level), totalling the points for a patient into a nomogram score, and then predicting the patient's likelihood of being recurrence-free at varying time intervals (up to 10 years) based on this nomogram score.
  • An example of a prevalent clinical nomogram used in determining a breast cancer patient's prognosis for survival is the Nottingham Prognostic Index (NPI). See, e.g., Galea et al., B REAST C ANCER R ES . & T REAT . (1992) 22:207-19.
  • Table 3 above provides an exemplary panel of 31 CCGs (Panel C) and a subset panel of 26 CCGs (Panel D, shown with *) determined in Example 2 to show predictive synergy with the Kattan-Stephenson nomogram in prostate cancer prognosis. It has also been discovered that determining the status of a CCG in a sample obtained from a breast cancer patient, along with the patient's NPI score, is a better prognostic predictor than NPI score alone. See, e.g., Example 6, infra. Specifically, adding CCG status to the NPI nomogram detects patients at significantly increased risk of recurrence that the nomogram alone does not. Panels B, C and D were determined in Example 2 to show predictive synergy with the NPI nomogram in breast cancer prognosis.
  • a clinical nomogram score e.g., Kattan-Stephenson or NPI nomogram score
  • Example 3 illustrates the empirical determination of the predictive power of individual CCGs and of several CCG panels of varying size over the Kattan-Stephenson nomogram. Randomly selected subsets of the 31 CCGs listed in Table 3 were tested as distinct CCG signatures and predictive power (i.e., p-value) was determined for each. As FIG. 1 shows, CCG signatures of 2, 3, 4, 5, 6, 10, 15, 20, 25, and 26 genes each add predictive power to the nomogram.
  • the invention provides a method of determining whether a prostate cancer patient has an increased likelihood of recurrence comprising determining the status of a panel of genes comprising at least 2, 3, 4, 5, 6, 10, 15, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 45, 50, 60, 70, 80, 90, or 100 or more CCGs, wherein an elevated status (e.g., increased expression) for the CCGs indicates an increased likelihood of recurrence.
  • the method further comprises determining a clinical nomogram score of the patient.
  • the invention further provides a method of determining whether a breast cancer patient has an increased likelihood of recurrence comprising determining the status of a panel of genes comprising at least 2, 3, 4, 5, 6, 10, 15, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 45, 50, 60, 70, 80, 90, or 100 or more CCGs, wherein an elevated status (e.g., increased expression) for the CCGs indicates an increased likelihood of recurrence.
  • the method further comprises determining a clinical nomogram score of the patient.
  • the invention provides a method of determining whether a cancer patient has an increased likelihood of recurrence or progression comprising determining a clinical nomogram score for the patient and determining the status of at least one CCG in a sample obtained from the patient, wherein a high nomogram score and/or an elevated CCG status indicate the patient has an increased likelihood of recurrence or progression.
  • the cancer is prostate cancer.
  • the cancer is lung cancer.
  • this assessment is made before radical prostatectomy (e.g., using a prostate biopsy sample) while in some embodiments it is made after (e.g., using the resected prostate sample).
  • a sample of one or more cells are obtained from a prostate cancer patient before or after treatment for analysis according to the present invention.
  • Prostate cancer treatment currently applied in the art includes, e.g., prostatectomy, radiotherapy, hormonal therapy (e.g., using GnRH antagonists, GnRH agonists, antiandrogens), chemotherapy, and high intensity focused ultrasound.
  • one or more prostate tumor cells from prostate cancer tissue are obtained from a prostate cancer patient during biopsy or prostatectomy and are used for analysis in the method of the present invention.
  • the present invention is also based on the discovery that PTEN status predicts aggressive prostate cancer.
  • PTEN status adds to both clinical parameters (e.g., Kattan-Stephenson nomogram) and CCGs (e.g., the genes in Table 1 or Panels A through G).
  • CCGs e.g., the genes in Table 1 or Panels A through G.
  • Negative PTEN status was found to be a significant predictor for risk of recurrence (p-value 0.031).
  • PTEN remained a significant predictor of recurrence after adjusting for post-surgery clinical parameters and the CCG signature shown in Table 3 (p-value 0.026).
  • the combination of PTEN and the CCG signature seems to be a better predictor of recurrence than post-surgery clinical parameters (p-value 0.0002).
  • one aspect of the invention provides a method of predicting a patient's likelihood of prostate cancer recurrence comprising determining PTEN status in a sample from the patient, wherein a low or negative PTEN status indicates the patient has a high likelihood of recurrence.
  • PTEN status can be determined by any technique known in the art, including but not limited to those discussed herein.
  • PTEN adds to CCG status in predicting prostate cancer recurrence
  • another aspect of the invention provides an in vitro method comprising determining PTEN status and determining the status of a plurality of CCGs in a sample obtained from a patient.
  • Different combinations of techniques can be used to determine the status the various markers.
  • PTEN status is determined by immunohistochemistry (IHC) while the status of the plurality of CCGs is determined by quantitative polymerase chain reaction (qPCRTM), e.g., TaqManTM.
  • IHC immunohistochemistry
  • qPCRTM quantitative polymerase chain reaction
  • Some embodiments of the invention provide a method of determining a prostate cancer patient's likelihood of recurrence comprising determining PTEN status in a sample obtained from the patient, determining the status of a plurality of CCGs in a sample obtained from the patient, wherein low or negative PTEN status and/or elevated CCG status indicate the patient has an increased likelihood of recurrence.
  • yet another aspect of the invention provides an in vitro method comprising determining PTEN status and determining at least one clinical parameter for a cancer patient. Often the clinical parameter is at least somewhat independently predictive of recurrence and the addition of PTEN status improves the predictive power.
  • the invention provides a method of determining whether a cancer patient has an increased likelihood of recurrence comprising determining the status of PTEN in a sample obtained from the patient and determining a clinical nomogram score for the patient, wherein low or negative PTEN status and/or a high nomogram score indicate the patient has an increased likelihood of recurrence.
  • some embodiments of the invention provide a method of determining whether a cancer patient has an increased likelihood of recurrence comprising determining the status of PTEN in a sample obtained from the patient, determining a clinical nomogram score for the patient and determining the status of at least one CCG in a sample obtained from the patient, wherein low or negative PTEN status, a high nomogram score and an elevated CCG status indicate the patient has an increased likelihood of recurrence.
  • results of any analyses according to the invention will often be communicated to physicians, genetic counselors and/or patients (or other interested parties such as researchers) in a transmittable form that can be communicated or transmitted to any of the above parties.
  • a transmittable form can vary and can be tangible or intangible.
  • the results can be embodied in descriptive statements, diagrams, photographs, charts, images or any other visual forms. For example, graphs showing expression or activity level or sequence variation information for various genes can be used in explaining the results. Diagrams showing such information for additional target gene(s) are also useful in indicating some testing results.
  • statements and visual forms can be recorded on a tangible medium such as papers, computer readable media such as floppy disks, compact disks, etc., or on an intangible medium, e.g., an electronic medium in the form of email or website on internet or intranet.
  • results can also be recorded in a sound form and transmitted through any suitable medium, e.g., analog or digital cable lines, fiber optic cables, etc., via telephone, facsimile, wireless mobile phone, internet phone and the like.
  • the information and data on a test result can be produced anywhere in the world and transmitted to a different location.
  • the information and data on a test result may be generated, cast in a transmittable form as described above, and then imported into the United States.
  • the present invention also encompasses a method for producing a transmittable form of information on at least one of (a) expression level or (b) activity level for at least one patient sample.
  • the method comprises the steps of (1) determining at least one of (a) or (b) above according to methods of the present invention; and (2) embodying the result of the determining step in a transmittable form.
  • the transmittable form is the product of such a method.
  • the present invention further provides a system for determining gene expression in a tumor sample, comprising: (1) a sample analyzer for determining the expression levels of a panel of genes in a tumor sample including at least 2, 4, 6, 8 or 10 cell-cycle genes, wherein the sample analyzer contains the tumor sample which is from a patient identified as having prostate cancer, lung cancer, bladder cancer or brain cancer, or cDNA molecules from mRNA expressed from the panel of genes; (2) a first computer program means for (a) receiving gene expression data on at least 4 test genes selected from the panel of genes, (b) weighting the determined expression of each of the test genes, and (c) combining the weighted expression to provide a test value, wherein at least 20%, 50%, at least 75% or at least 90% of the test genes are cell-cycle genes; and optionally (3) a second computer program means for comparing the test value to one or more reference values each associated with a predetermined degree of risk of cancer recurrence or progression of the prostate cancer, lung cancer, bladder cancer or brain cancer.
  • the amount of RNA transcribed from the panel of genes including test genes is measured in the tumor sample.
  • the amount of RNA of one or more housekeeping genes in the tumor sample is also measured, and used to normalize or calibrate the expression of the test genes, as described above.
  • the plurality of test genes includes at least 2, 3 or 4 cell-cycle genes, which constitute at least 50%, 75% or 80% of the plurality of test genes, and preferably 100% of the plurality of test genes. In some embodiments, the plurality of test genes includes at least 5, 6 or 7, or at least 8 cell-cycle genes, which constitute at least 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80% or 90% of the plurality of test genes, and preferably 100% of the plurality of test genes.
  • the plurality of test genes includes at least 8, 10, 12, 15, 20, 25 or 30 cell-cycle genes, which constitute at least 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80% or 90% of the plurality of test genes, and preferably 100% of the plurality of test genes.
  • the sample analyzer can be any instruments useful in determining gene expression, including, e.g., a sequencing machine, a real-time PCR machine, and a microarray instrument.
  • the computer-based analysis function can be implemented in any suitable language and/or browsers. For example, it may be implemented with C language and preferably using object-oriented high-level programming languages such as Visual Basic, SmallTalk, C++, and the like.
  • the application can be written to suit environments such as the Microsoft WindowsTM environment including WindowsTM 98, WindowsTM 2000, WindowsTM NT, and the like.
  • the application can also be written for the MacIntoshTM, SUNTM, UNIX or LINUX environment.
  • the functional steps can also be implemented using a universal or platform-independent programming language.
  • multi-platform programming languages include, but are not limited to, hypertext markup language (HTML), JAVATM, JavaScriptTM, Flash programming language, common gateway interface/structured query language (CGI/SQL), practical extraction report language (PERL), AppleScriptTM and other system script languages, programming language/structured query language (PL/SQL), and the like.
  • JavaTM- or JavaScriptTM-enabled browsers such as HotJavaTM, MicrosoftTM ExplorerTM, or NetscapeTM can be used.
  • active content web pages may include JavaTM applets or ActiveXTM controls or other active content technologies.
  • the analysis function can also be embodied in computer program products and used in the systems described above or other computer- or internet-based systems. Accordingly, another aspect of the present invention relates to a computer program product comprising a computer-usable medium having computer-readable program codes or instructions embodied thereon for enabling a processor to carry out gene status analysis.
  • These computer program instructions may be loaded onto a computer or other programmable apparatus to produce a machine, such that the instructions which execute on the computer or other programmable apparatus create means for implementing the functions or steps described above.
  • These computer program instructions may also be stored in a computer-readable memory or medium that can direct a computer or other programmable apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory or medium produce an article of manufacture including instruction means which implement the analysis.
  • the computer program instructions may also be loaded onto a computer or other programmable apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions or steps described above.
  • the system comprises (1) computer program means for receiving, storing, and/or retrieving a patient's gene status data (e.g., expression level, activity level, variants) and optionally clinical parameter data (e.g., Gleason score, nomogram score); (2) computer program means for querying this patient data; (3) computer program means for concluding whether there is an increased likelihood of recurrence based on this patient data; and optionally (4) computer program means for outputting/displaying this conclusion.
  • this means for outputting the conclusion may comprise a computer program means for informing a health care professional of the conclusion.
  • Computer system [ 600 ] may include at least one input module [ 630 ] for entering patient data into the computer system [ 600 ].
  • the computer system [ 600 ] may include at least one output module [ 624 ] for indicating whether a patient has an increased or decreased likelihood of response and/or indicating suggested treatments determined by the computer system [ 600 ].
  • Computer system [ 600 ] may include at least one memory module [ 606 ] in communication with the at least one input module [ 630 ] and the at least one output module [ 624 ].
  • the at least one memory module [ 606 ] may include, e.g., a removable storage drive [ 608 ], which can be in various forms, including but not limited to, a magnetic tape drive, a floppy disk drive, a VCD drive, a DVD drive, an optical disk drive, etc.
  • the removable storage drive [ 608 ] may be compatible with a removable storage unit [ 610 ] such that it can read from and/or write to the removable storage unit [ 610 ].
  • Removable storage unit [ 610 ] may include a computer usable storage medium having stored therein computer-readable program codes or instructions and/or computer readable data.
  • removable storage unit [ 610 ] may store patient data.
  • Example of removable storage unit [ 610 ] are well known in the art, including, but not limited to, floppy disks, magnetic tapes, optical disks, and the like.
  • the at least one memory module [ 606 ] may also include a hard disk drive [ 612 ], which can be used to store computer readable program codes or instructions, and/or computer readable data.
  • the at least one memory module [ 606 ] may further include an interface [ 614 ] and a removable storage unit [ 616 ] that is compatible with interface [ 614 ] such that software, computer readable codes or instructions can be transferred from the removable storage unit [ 616 ] into computer system [ 600 ].
  • interface [ 614 ] and removable storage unit [ 616 ] pairs include, e.g., removable memory chips (e.g., EPROMs or PROMs) and sockets associated therewith, program cartridges and cartridge interface, and the like.
  • Computer system [ 600 ] may also include a secondary memory module [ 618 ], such as random access memory (RAM).
  • RAM random access memory
  • Computer system [ 600 ] may include at least one processor module [ 602 ]. It should be understood that the at least one processor module [ 602 ] may consist of any number of devices.
  • the at least one processor module [ 602 ] may include a data processing device, such as a microprocessor or microcontroller or a central processing unit.
  • the at least one processor module [ 602 ] may include another logic device such as a DMA (Direct Memory Access) processor, an integrated communication processor device, a custom VLSI (Very Large Scale Integration) device or an ASIC (Application Specific Integrated Circuit) device.
  • the at least one processor module [ 602 ] may include any other type of analog or digital circuitry that is designed to perform the processing functions described herein.
  • the at least one memory module [ 606 ], the at least one processor module [ 602 ], and secondary memory module [ 618 ] are all operably linked together through communication infrastructure [ 620 ], which may be a communications bus, system board, cross-bar, etc.).
  • communication infrastructure [ 620 ] Through the communication infrastructure [ 620 ], computer program codes or instructions or computer readable data can be transferred and exchanged.
  • Input interface [ 626 ] may operably connect the at least one input module [ 626 ] to the communication infrastructure [ 620 ].
  • output interface [ 622 ] may operably connect the at least one output module [ 624 ] to the communication infrastructure [ 620 ].
  • the at least one input module [ 630 ] may include, for example, a keyboard, mouse, touch screen, scanner, and other input devices known in the art.
  • the at least one output module [ 624 ] may include, for example, a display screen, such as a computer monitor, TV monitor, or the touch screen of the at least one input module [ 630 ]; a printer; and audio speakers.
  • Computer system [ 600 ] may also include, modems, communication ports, network cards such as Ethernet cards, and newly developed devices for accessing intranets or the internet.
  • the at least one memory module [ 606 ] may be configured for storing patient data entered via the at least one input module [ 630 ] and processed via the at least one processor module [ 602 ].
  • Patient data relevant to the present invention may include expression level, activity level, copy number and/or sequence information for PTEN and/or a CCG.
  • Patient data relevant to the present invention may also include clinical parameters relevant to the patient's disease. Any other patient data a physician might find useful in making treatment decisions/recommendations may also be entered into the system, including but not limited to age, gender, and race/ethnicity and lifestyle data such as diet information.
  • Other possible types of patient data include symptoms currently or previously experienced, patient's history of illnesses, medications, and medical procedures.
  • the at least one memory module [ 606 ] may include a computer-implemented method stored therein.
  • the at least one processor module [ 602 ] may be used to execute software or computer-readable instruction codes of the computer-implemented method.
  • the computer-implemented method may be configured to, based upon the patient data, indicate whether the patient has an increased likelihood of recurrence, progression or response to any particular treatment, generate a list of possible treatments, etc.
  • the computer-implemented method may be configured to identify a patient as having or not having an increased likelihood of recurrence or progression. For example, the computer-implemented method may be configured to inform a physician that a particular patient has an increased likelihood of recurrence. Alternatively or additionally, the computer-implemented method may be configured to actually suggest a particular course of treatment based on the answers to/results for various queries.
  • FIG. 7 illustrates one embodiment of a computer-implemented method [ 700 ] of the invention that may be implemented with the computer system [ 600 ] of the invention.
  • the method [ 700 ] begins with one of three queries ([ 710 ], [ 711 ], [ 712 ]), either sequentially or substantially simultaneously. If the answer to/result for any of these queries is “Yes” [ 720 ], the method concludes [ 730 ] that the patient has an increased likelihood of recurrence. If the answer to/result for all of these queries is “No” [ 721 ], the method concludes [ 731 ] that the patient does not have an increased likelihood of recurrence. The method [ 700 ] may then proceed with more queries, make a particular treatment recommendation ([ 740 ], [ 741 ]), or simply end.
  • the queries When the queries are performed sequentially, they may be made in the order suggested by FIG. 7 or in any other order. Whether subsequent queries are made can also be dependent on the results/answers for preceding queries.
  • the method asks about clinical parameters [ 712 ] first and, if the patient has one or more clinical parameters identifying the patient as at increased risk for recurrence then the method concludes such [ 730 ] or optionally confirms by querying CCG status, while if the patient has no such clinical parameters then the method proceeds to ask about CCG status [ 711 ].
  • the method may continue to ask about PTEN status [ 710 ].
  • the preceding order of queries may be modified.
  • an answer of “yes” to one query e.g., [ 712 ]
  • the computer-implemented method of the invention [ 700 ] is open-ended.
  • the apparent first step [ 710 , 711 , and/or 712 ] in FIG. 7 may actually form part of a larger process and, within this larger process, need not be the first step/query. Additional steps may also be added onto the core methods discussed above.
  • Additional steps include, but are not limited to, informing a health care professional (or the patient itself) of the conclusion reached; combining the conclusion reached by the illustrated method [ 700 ] with other facts or conclusions to reach some additional or refined conclusion regarding the patient's diagnosis, prognosis, treatment, etc.; making a recommendation for treatment (e.g., “patient should/should not undergo radical prostatectomy”); additional queries about additional biomarkers, clinical parameters, or other useful patient information (e.g., age at diagnosis, general patient health, etc.).
  • the answers to the queries may be determined by the method instituting a search of patient data for the answer.
  • patient data may be searched for PTEN status (e.g., PTEN IHC or mutation screening), CCG status (e.g., CCG expression level data), or clinical parameters (e.g., Gleason score, nomogram score, etc.). If such a comparison has not already been performed, the method may compare these data to some reference in order to determine if the patient has an abnormal (e.g., elevated, low, negative) status.
  • PTEN status e.g., PTEN IHC or mutation screening
  • CCG status e.g., CCG expression level data
  • clinical parameters e.g., Gleason score, nomogram score, etc.
  • the method may present one or more of the queries [ 710 , 711 , 712 ] to a user (e.g., a physician) of the computer system [ 100 ].
  • a user e.g., a physician
  • the questions [ 710 , 711 , 712 ] may be presented via an output module [ 624 ].
  • the user may then answer “Yes” or “No” via an input module [ 630 ].
  • the method may then proceed based upon the answer received.
  • the conclusions [ 730 , 731 ] may be presented to a user of the computer-implemented method via an output module [ 624 ].
  • the invention provides a method comprising: accessing information on a patient's CCG status, clinical parameters and/or PTEN status stored in a computer-readable medium; querying this information to determine at least one of whether a sample obtained from the patient shows increased expression of at least one CCG, whether the patient has a recurrence-associated clinical parameter, and/or whether the patient has a low/negative PTEN status; outputting [or displaying] the sample's CCG expression status, the patient's recurrence-associated clinical parameter status, and/or the sample's PTEN status.
  • “displaying” means communicating any information by any sensory means.
  • Examples include, but are not limited to, visual displays, e.g., on a computer screen or on a sheet of paper printed at the command of the computer, and auditory displays, e.g., computer generated or recorded auditory expression of a patient's genotype.
  • recurrence-associated clinical parameters or PTEN status combined with elevated CCG status indicate a significantly increased likelihood of recurrence.
  • some embodiments provide a computer-implemented method of determining whether a patient has an increased likelihood of recurrence comprising accessing information on a patient's PTEN status (e.g., from a tumor sample obtained from the patient) or clinical parameters and CCG status (e.g., from a tumor sample obtained from the patient) stored in a computer-readable medium; querying this information to determine at least one of whether the patient has a low/negative PTEN status or whether the patient has a recurrence-associated clinical parameter; querying this information to determine whether a sample obtained from the patient shows increased expression of at least one CCG; outputting (or displaying) an indication that the patient has an increased likelihood of recurrence if the patient has a low/negative PTEN status or a recurrence-associated clinical parameter and the sample shows increased expression of at least one CCG.
  • Some embodiments further comprise displaying PTEN, clinical parameters (or their values) and/or the CCGs and their status (including, e.g., expression levels), optionally together with an indication of whether the PTEN or CCG status and/or clinical parameter indicates increased likelihood of risk.
  • Computer software products of the invention typically include computer readable media having computer-executable instructions for performing the logic steps of the method of the invention.
  • Suitable computer readable medium include floppy disk, CD-ROM/DVD/DVD-ROM, hard-disk drive, flash memory, ROM/RAM, magnetic tapes and etc.
  • Basic computational biology methods are described in, for example, Setubal et al., I NTRODUCTION TO C OMPUTATIONAL B IOLOGY M ETHODS (PWS Publishing Company, Boston, 1997); Salzberg et al.
  • the present invention may also make use of various computer program products and software for a variety of purposes, such as probe design, management of data, analysis, and instrument operation. See U.S. Pat. Nos. 5,593,839; 5,795,716; 5,733,729; 5,974,164; 6,066,454; 6,090,555; 6,185,561; 6,188,783; 6,223,127; 6,229,911 and 6,308,170. Additionally, the present invention may have embodiments that include methods for providing genetic information over networks such as the Internet as shown in U.S. Ser. Nos. 10/197,621 (U.S. Pub. No. 20030097222); 10/063,559 (U.S. Pub. No.
  • the invention provides a system for determining gene expression in a tumor sample, comprising:
  • sample analyzer for determining the expression levels in a sample of a panel of genes including at least 4 CCGs, wherein the sample analyzer contains the sample, RNA from the sample and expressed from the panel of genes, or DNA synthesized from said RNA;
  • the sample analyzer contains reagents for determining the expression levels in the sample of said panel of genes including at least 4 CCGs. In some embodiments the sample analyzer contains CCG-specific reagents as described below.
  • the invention provides a system for determining gene expression in a tumor sample, comprising: (1) a sample analyzer for determining the expression levels of a panel of genes in a tumor sample including at least 4 CCGs, wherein the sample analyzer contains the tumor sample which is from a patient identified as having prostate cancer, breast cancer, brain cancer, bladder cancer, or lung cancer, RNA from the sample and expressed from the panel of genes, or DNA synthesized from said RNA; (2) a first computer program for (a) receiving gene expression data on at least 4 test genes selected from the panel of genes, (b) weighting the determined expression of each of the test genes with a predefined coefficient, and (c) combining the weighted expression to provide a test value, wherein the combined weight given to said at least 4 or 5 or 6 CCGs is at least 40% (or 50%, 60%, 70%, 80%, 90%, 95% or 100%) of the total weight given to the expression of all of said plurality of test genes; and optionally (3) a second computer program for comparing the test value to one or more
  • the system comprises a computer program for determining the patient's prognosis and/or determining (including quantifying) the patient's degree of risk of cancer recurrence or progression based at least in part on the comparison of the test value with said one or more reference values.
  • the system further comprises a display module displaying the comparison between the test value and the one or more reference values, or displaying a result of the comparing step, or displaying the patient's prognosis and/or degree of risk of cancer recurrence or progression.
  • the amount of RNA transcribed from the panel of genes including test genes (and/or DNA reverse transcribed therefrom) is measured in the sample.
  • the amount of RNA of one or more housekeeping genes in the sample (and/or DNA reverse transcribed therefrom) is also measured, and used to normalize or calibrate the expression of the test genes, as described above.
  • the plurality of test genes includes at least 2, 3 or 4 CCGs, which constitute at least 50%, 75% or 80% of the plurality of test genes, and preferably 100% of the plurality of test genes. In some embodiments, the plurality of test genes includes at least 5, 6 or 7, or at least 8 CCGs, which constitute at least 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80% or 90% of the plurality of test genes, and preferably 100% of the plurality of test genes.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises the top 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40 or more CCGs listed in Table 9, 11, 23, 24, or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, or 20 of the following genes: ASPM, BIRC5, BUB1B, CCNB2, CDC2, CDC20, CDCA8, CDKN3, CENPF, DLGAP5, FOXM1, KIAA0101, KIF11, KIF2C, KIF4A, MCM10, NUSAP1, PRC1, RACGAP1, and TPX2.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • ASPM BIRC5, BUB1B, CCNB2, CDC2, CDC20, CDCA8, CDKN3, CENPF, DLGAP5, FOXM1, KIAA0101, KIF11, KIF2C
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, nine, or ten or all of gene numbers 1 & 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, or 1 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, nine, or ten or all of gene numbers 1 & 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, or 1 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, or nine or all of gene numbers 2 & 3, 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, or 2 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, or nine or all of gene numbers 2 & 3, 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, or 2 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, seven, or eight or all of gene numbers 3 & 4, 3 to 5, 3 to 6, 3 to 7, 3 to 8, 3 to 9, or 3 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, seven, or eight or all of gene numbers 3 & 4, 3 to 5, 3 to 6, 3 to 7, 3 to 8, 3 to 9, or 3 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, or seven or all of gene numbers 4 & 5, 4 to 6, 4 to 7, 4 to 8, 4 to 9, or 4 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, or seven or all of gene numbers 4 & 5, 4 to 6, 4 to 7, 4 to 8, 4 to 9, or 4 to 10 of any of Tables 9, 11, 23, 24, or 25.
  • the plurality of test genes comprises at least some number of CCGs (e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs) and this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, or 15 or all of gene numbers 1 & 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, 1 to 10, 1 to 11, 1 to 12, 1 to 13, 1 to 14, or 1 to 15 of any of Tables 9, 11, 23, 24, or 25.
  • CCGs e.g., at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more CCGs
  • this plurality of CCGs comprises any one, two, three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, or 15 or all of gene numbers 1 & 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, 1 to 10, 1 to 11, 1
  • the plurality of test genes includes at least 8, 10, 12, 15, 20, 25 or 30 CCGs, which constitute at least 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80% or 90% of the plurality of test genes, and preferably 100% of the plurality of test genes.
  • the sample analyzer can be any instrument useful in determining gene expression, including, e.g., a sequencing machine (e.g., Illumina HiSegTM, Ion Torrent PGM, ABI SOLiDTM sequencer, PacBio RS, Helicos HeliscopeTM, etc.), a real-time PCR machine (e.g., ABI 7900, Fluidigm BioMarkTM, etc.), a microarray instrument, etc.
  • a sequencing machine e.g., Illumina HiSegTM, Ion Torrent PGM, ABI SOLiDTM sequencer, PacBio RS, Helicos HeliscopeTM, etc.
  • a real-time PCR machine e.g., ABI 7900, Fluidigm BioMarkTM, etc.
  • microarray instrument e.g., a microarray instrument, etc.
  • the present invention provides methods of treating a cancer patient comprising obtaining CCG status information (e.g., the CCGs in Table 1 or Panels A through G), and recommending, prescribing or administering a treatment for the cancer patient based on the CCG status.
  • the method further includes obtaining clinical parameter information, and/or obtaining PTEN status information from a sample from the patient and treating the patient with a particular treatment based on the CCG status, clinical parameter and/or PTEN status information.
  • the invention provides a method of treating a cancer patient comprising:
  • Whether a treatment is aggressive or not will generally depend on the cancer-type, the age of the patient, etc.
  • adjuvant chemotherapy is a common aggressive treatment given to complement the less aggressive standards of surgery and hormonal therapy.
  • Those skilled in the art are familiar with various other aggressive and less aggressive treatments for each type of cancer.
  • “Active treatment” in prostate cancer is well-understood by those skilled in the art and, as used herein, has the conventional meaning in the art.
  • active treatment in prostate cancer is anything other than “watchful waiting.”
  • Active treatment currently applied in the art of prostate cancer treatment includes, e.g., prostatectomy, radiotherapy, hormonal therapy (e.g., GnRH antagonists, GnRH agonists, antiandrogens), chemotherapy, high intensity focused ultrasound (“HIFU”), etc.
  • hormonal therapy e.g., GnRH antagonists, GnRH agonists, antiandrogens
  • chemotherapy high intensity focused ultrasound (“HIFU”), etc.
  • HIFU high intensity focused ultrasound
  • Each treatment option carries with it certain risks as well as side-effects of varying severity, e.g., impotence, urinary incontinence, etc.
  • doctors depending on the age and general health of the man diagnosed with prostate cancer, to recommend a regime of “watchful-waiting.”
  • Watchful-waiting also called “active surveillance,” also has its conventional meaning in the art. This generally means observation and regular monitoring without invasive treatment. Watchful-waiting is sometimes used, e.g., when an early stage, slow-growing prostate cancer is found in an older man. Watchful-waiting may also be suggested when the risks of surgery, radiation therapy, or hormonal therapy outweigh the possible benefits. Other treatments can be started if symptoms develop, or if there are signs that the cancer growth is accelerating (e.g., rapidly rising PSA, increase in Gleason score on repeat biopsy, etc.).
  • watchful-waiting carries its own risks, e.g., increased risk of metastasis.
  • a trial of active surveillance may not mean avoiding treatment altogether, but may reasonably allow a delay of a few years or more, during which time the quality of life impact of active treatment can be avoided.
  • Published data to date suggest that carefully selected men will not miss a window for cure with this approach. Additional health problems that develop with advancing age during the observation period can also make it harder to undergo surgery and radiation therapy. Thus it is clinically important to carefully determine which prostate cancer patients are good candidates for watchful-waiting and which patients should receive active treatment.
  • the invention provides a method of treating a prostate cancer patient or providing guidance to the treatment of a patient.
  • the status of at least one CCG e.g., those in Table 1 or Panels A through G
  • at least one recurrence-associated clinical parameter, and/or the status of PTEN is determined, and (a) active treatment is recommended, initiated or continued if a sample from the patient has an elevated status for at least one CCG, the patient has at least one recurrence-associated clinical parameter, and/or low/negative PTEN status, or (b) watchful-waiting is recommended/initiated/continued if the patient has neither an elevated status for at least one CCG, a recurrence-associated clinical parameter, nor low/negative PTEN status.
  • CCG e.g., those in Table 1 or Panels A through G
  • active treatment is recommended, initiated or continued if a sample from the patient has an elevated status for at least one CCG, the patient has at least one recurrence-associated clinical parameter,
  • CCG status, the clinical parameter(s) and PTEN status may indicate not just that active treatment is recommended, but that a particular active treatment is preferable for the patient (including relatively aggressive treatments such as, e.g., RP and/or adjuvant therapy).
  • adjuvant therapy e.g., chemotherapy, radiotherapy, HIFU, hormonal therapy, etc. after prostatectomy or radiotherapy
  • adjuvant therapy is not the standard of care in prostate cancer.
  • physicians may be able to determine which prostate cancer patients have particularly aggressive disease and thus should receive adjuvant therapy.
  • the invention provides a method of treating a patient (e.g., a prostate cancer patient) comprising determining the status of at least one CCG (e.g., those in Table 1 or Panels A through G), the status of at least one recurrence-associated clinical parameter, and/or the status of PTEN and initiating adjuvant therapy after prostatectomy or radiotherapy if a sample from the patient has an elevated status for at least one CCG, the patient has at least one recurrence-associated clinical parameter and/or the patient has low/negative PTEN status.
  • CCG e.g., those in Table 1 or Panels A through G
  • PTEN e.g., those in Table 1 or Panels A through G
  • a sample from the patient has an elevated status for at least one CCG
  • the patient has at least one recurrence-associated clinical parameter and/or the patient has low/negative PTEN status.
  • the invention provides compositions for use in the above methods.
  • Such compositions include, but are not limited to, nucleic acid probes hybridizing to PTEN or a CCG (or to any nucleic acids encoded thereby or complementary thereto); nucleic acid primers and primer pairs suitable for amplifying all or a portion of PTEN or a CCG or any nucleic acids encoded thereby; antibodies binding immunologically to a polypeptide encoded by PTEN or a CCG; probe sets comprising a plurality of said nucleic acid probes, nucleic acid primers, antibodies, and/or polypeptides; microarrays comprising any of these; kits comprising any of these; etc.
  • the invention provides computer methods, systems, software and/or modules for use in the above methods.
  • the invention provides a probe comprising an isolated oligonucleotide capable of selectively hybridizing to PTEN or at least one of the genes in Table 1 or Panels A through G.
  • probe and “oligonucleotide” (also “oligo”), when used in the context of nucleic acids, interchangeably refer to a relatively short nucleic acid fragment or sequence.
  • the invention also provides primers useful in the methods of the invention. “Primers” are probes capable, under the right conditions and with the right companion reagents, of selectively amplifying a target nucleic acid (e.g., a target gene). In the context of nucleic acids, “probe” is used herein to encompass “primer” since primers can generally also serve as probes.
  • the probe can generally be of any suitable size/length. In some embodiments the probe has a length from about 8 to 200, 15 to 150, 15 to 100, 15 to 75, 15 to 60, or 20 to 55 bases in length. They can be labeled with detectable markers with any suitable detection marker including but not limited to, radioactive isotopes, fluorophores, biotin, enzymes (e.g., alkaline phosphatase), enzyme substrates, ligands and antibodies, etc. See Jablonski et al., N UCLEIC A CIDS R ES . (1986) 14:6115-6128; Nguyen et al., B IOTECHNIQUES (1992) 13:116-123; Rigby et al., J. M OL . B IOL . (1977) 113:237-251. Indeed, probes may be modified in any conventional manner for various molecular biological applications. Techniques for producing and using such oligonucleotide probes are conventional in the art.
  • Probes according to the invention can be used in the hybridization/amplification/detection techniques discussed above.
  • some embodiments of the invention comprise probe sets suitable for use in a microarray in detecting, amplifying and/or quantitating PTEN and/or a plurality of CCGs.
  • the probe sets have a certain proportion of their probes directed to CCGs—e.g., a probe set consisting of 10%, 20%, 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% probes specific for CCGs.
  • the probe set comprises probes directed to at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600, 700, or 800 or more, or all, of the genes in Table 1 or Panels A through G.
  • Such probe sets can be incorporated into high-density arrays comprising 5,000, 10,000, 20,000, 50,000, 100,000, 200,000, 300,000, 400,000, 500,000, 600,000, 700,000, 800,000, 900,000, or 1,000,000 or more different probes.
  • the probe sets comprise primers (e.g., primer pairs) for amplifying nucleic acids comprising at least a portion of PTEN or of one or more of the CCGs in Table 1 or Panels A through G.
  • kits for practicing the prognosis of the present invention.
  • the kit may include a carrier for the various components of the kit.
  • the carrier can be a container or support, in the form of, e.g., bag, box, tube, rack, and is optionally compartmentalized.
  • the carrier may define an enclosed confinement for safety purposes during shipment and storage.
  • the kit includes various components useful in determining the status of one or more CCGs and one or more housekeeping gene markers, using the above-discussed detection techniques.
  • the kit many include oligonucleotides specifically hybridizing under high stringency to mRNA or cDNA of the genes in Table 1 or Panels A through G.
  • kits comprises reagents (e.g., probes, primers, and or antibodies) for determining the expression level of a panel of genes, where said panel comprises at least 25%, 30%, 40%, 50%, 60%, 75%, 80%, 90%, 95%, 99%, or 100% CCGs (e.g., CCGs in Table 1 or any of Panels A through G).
  • reagents e.g., probes, primers, and or antibodies
  • the kit consists of reagents (e.g., probes, primers, and or antibodies) for determining the expression level of no more than 2500 genes, wherein at least 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 200, 250, or more of these genes are CCGs (e.g., CCGs in Table 1 or any of Panels A through G).
  • reagents e.g., probes, primers, and or antibodies
  • the oligonucleotides in the detection kit can be labeled with any suitable detection marker including but not limited to, radioactive isotopes, fluorephores, biotin, enzymes (e.g., alkaline phosphatase), enzyme substrates, ligands and antibodies, etc. See Jablonski et al., Nucleic Acids Res., 14:6115-6128 (1986); Nguyen et al., Biotechniques, 13:116-123 (1992); Rigby et al., J. Mol. Biol., 113:237-251(1977).
  • the oligonucleotides included in the kit are not labeled, and instead, one or more markers are provided in the kit so that users may label the oligonucleotides at the time of use.
  • the detection kit contains one or more antibodies selectively immunoreactive with one or more proteins encoded by PTEN or one or more CCGs or optionally any additional markers.
  • examples include antibodies that bind immunologically to PTEN or a protein encoded by a gene in Table 1 or Panels A through G. Methods for producing and using such antibodies have been described above in detail.
  • the detection kit of this invention preferably includes instructions on using the kit for practice the prognosis method of the present invention using human samples.
  • CCG cell cycle gene
  • the mean of CCG expression is robust to measurement error and individual variation between genes.
  • the predictive power of the mean was tested for randomly selected sets of from 1 to 30 of the CCGs listed above. This simulation showed that there is a threshold number of CCGs in a panel that provides significantly improved predictive power.
  • RNA was isolated from FFPE tumor sections derived from 411 prostate cancer patients treated with RP. Representative 10 ⁇ m thick tumor sections were used to isolate RNA. When necessary, a pathologist guided macro- or micro-dissection of the sample was used to enrich for tumor tissue before RNA isolation. None of the samples in the validation cohort were micro-dissected. Prior to any analysis, the cohort was split into 212 patients for initial characterization of the signature (“training set”) and 199 patients for validation. The clinical characteristics of the training and validation cohort are listed on Table 5.
  • Predictive power of the CCG signature after accounting for clinical variables typically included in a post-surgical nomogram was also evaluated.
  • the nomogram was a highly significant predictor of recurrence (p-value 1.6 ⁇ 10 ⁇ 10 ).
  • the CCG signature was a significant predictor of biochemical recurrence ( FIG. 3 ) in the discovery cohort (p-value 0.03) and in the clinical validation cohort (p-value 4.8 ⁇ 10 ⁇ 5 ).
  • Patients in the middle scoring cluster had at least one post-surgical parameter known to be associated with poor outcome (i.e., disease through the capsule, disease positive lymph nodes, and/or disease positive seminal vesicles) and low pre-surgical PSA ( ⁇ 10 ng/ml).
  • Patients in the highest scoring cluster had at least one unfavorable post-surgical parameter and high pre-surgery PSA.
  • the patients in the low and medium scoring clusters were divided by the mean of the CCG score. Outcomes for patients in the highest scoring cluster are adequately predicted by the nomogram and, therefore, were not divided further.
  • the scatter plot defines five patient groups with disease recurrence rates of 2%, 40% (for two groups), 65%, and 80% (Table 7). The recurrence rate of all five groups versus time is shown in FIG. 5 .
  • the aim of this experiment was to evaluate the association between PTEN mutations and biochemical recurrence in prostate cancer patients after radical prostatectomy. Somatic mutations in PTEN were found to be significantly associated with recurrence, and importantly, it added prognostic information beyond both the established clinical nomogram for prostate cancer recurrence (the Kattan-Stephenson nomogram) and the CCG signature score (described in Examples 1 & 2, supra).
  • Mutations were detected by designing sequencing primers to interrogate the PTEN genomic sequence.
  • the primers contained M13 forward and reverse tails to facilitate sequencing.
  • DNA sequence was determined on a Mega BASE 4500 (GE healthcare) using dye-primer chemistry as described in Frank et al., J. C LIN . O NCOL . (2002) 20:1480-1490. Due to the technical difficulties associated with sequencing DNA derived from FFPE material, each mutation was detected by at least two independent amplification and sequencing reactions.
  • RNA Isolated total RNA was treated with DNase I (Sigma) prior to cDNA synthesis. Subsequently, we employed the High-capacity cDNA Archive Kit (Applied Biosystems) to convert total RNA into single strand cDNA as described by the manufacturer. A minimum of 200 ng RNA was required for the RT reaction.
  • the cDNA Prior to measuring expression levels, the cDNA was pre-amplified with a pooled reaction containing TaqManTM assays. Pre-amplification reaction conditions were: 14 cycles of 95° C. for 15 sec and 60° C. for 4 minutes. The first cycle was modified to include a 10 minute incubation at 95° C. The amplification reaction was diluted 1:20 using the 1 ⁇ TE buffer prior to loading on TaqManTM Low Density Arrays (TLDA, Applied Biosystems) to measure gene expression.
  • TLDA TaqManTM Low Density Arrays
  • the CCG score is calculated from RNA expression of 31 CCGs (Panel F) normalized by 15 housekeeper genes (HK).
  • the relative numbers of CCGs (31) and HK genes (15) were optimized in order to minimize the variance of the CCG score.
  • the CCG score is the unweighted mean of CT values for CCG expression, normalized by the unweighted mean of the HK genes so that higher values indicate higher expression.
  • One unit is equivalent to a two-fold change in expression. Missing values were imputed using the mean expression for each gene determined in the training set using only good quality samples.
  • the CCG scores were centered by the mean value, again determined in the training set.
  • the CCG score threshold for determining low-risk was based on the lowest CCG score of recurrences in the training set. The threshold was then adjusted downward by 1 standard deviation in order to optimize the negative predictive value of the test.
  • a Cox proportional hazards model was used to summarize the available clinical parameter data and estimate the prior clinical risk of biochemical recurrence for each patient.
  • the data set consisted of 195 cases from the training set and 248 other cases with clinical parameter information but insufficient sample to measure RNA expression. Univariate tests were performed on clinical parameters known to be associated with outcome (see Table 13 below). Non-significant parameters were excluded from the model.
  • a composite variable was created for organ-confined disease, with invasion defined as surgical margins, extracapsular extension, or involvement of any of seminal vesicles, bladder neck/urethral margins, or lymph nodes. The composite variable for organ-confined disease proved more significant in the model than any of its five components, some of which were inter-correlated or not prevalent. Model fitting was performed using the AIC criteria for post-operative covariates.
  • the final model (i.e., nomogram) has binary variables for organ-confined disease and Gleason score less than or equal to 6, and a continuous variable for logarithmic PSA (Table 14).
  • This model includes all of the clinical parameters incorporated in the post-RP nomogram (i.e., Kattan-Stephenson nomogram) except for Year of RP and the two components of the Gleason score.
  • the distribution of prior clinical risk shows three distinct nodes ( FIG. 8 ). K-means clustering with 3 centers was used to set the threshold for the low-risk cluster, which comprises approximately 50% of the sample.
  • Kaplan-Meier plots are used to show estimated survival probabilities for subsets of patients; however, p-values are from the Cox likelihood ratio test for the continuous values of the variable. All statistical analyses were performed in S+Version 8.1.1 for Linux (TIBCO Spotfire) or R 2.9.0 (http://www.r-project.org).
  • RNA from FFPE tumor sections derived from 442 prostate cancer patients treated with RP was split into 195 patients for initial characterization of the signature (“training set”) and 247 patients for validation.
  • the clinical parameters of the training and validation cohort are listed in Table 15. There were no significant differences after adjusting for multiple comparisons.
  • the distribution of the scores from the clinical model contained several modes ( FIG. 8 ), separating high- and low-risk patient groups. Therefore, the score was used subsequently as a binary variable (high or low risk).
  • FIG. 12 shows this threshold applied to the 443 patients studied in this example. Forty percent of low-risk patients fall below this threshold, and it was selected so that there were no recurrences 10-years after RP (i.e., negative predictive value (NPV) of 100%).
  • NPV negative predictive value
  • CCGs cell cycle genes
  • the CCG signature (Panel F) is independently predictive and adds significantly to the predictive power of the clinical parameters typically employed to predict disease recurrence after surgery. This is true in both our training and validation cohorts.
  • the signature is immediately useful for defining the risk of patients who present with low-risk clinical parameters.
  • low-risk we essentially defined low-risk as Gleason ⁇ 7, PSA ⁇ 10 and organ-confined disease.
  • the CCG signature score effectively subdivides the low-risk group into patients with very low recurrence rates (5%), and a higher risk of recurrence (22%) ( FIG. 9 & Table 18).
  • the signature could be useful for a large number of patients.
  • nearly 60% of the cohort was characterized as low-risk and 40% of those are expected to have low CCG scores. Therefore, the CCG signature can predict indolent disease in a quarter of the patients who have previously been identified as high-risk (and therefore identified as candidates for radical prostatectomy).
  • the validation data in particular suggests that the CCG signature may be useful for defining risk in all patients. Specifically, it helped to divide patients defined as high-risk according to clinical parameters into those with 30% and 70% recurrence rates (Table 18).
  • the combination of clinical parameters and CCG signature enables physicians to more accurately predict risk of surgical failure, and therefore, identify the appropriate course of therapeutic intervention.
  • the signature dramatically improves the recurrence prediction for patients who present with general clinical parameters of non-aggressive disease (Table 19).
  • patients with low CCG scores would benefit from the absolute reassurance that no further treatment is indicated.
  • the high CCG group may warrant immediate intervention.
  • Patients with unfavorable post-surgical clinical parameters benefit from adjuvant radiation therapy. Therefore the CCG signature should predict the efficacy of adjuvant radiation for patients with low-risk clinical characteristics and high CCG scores.
  • Panels C, D, and F were found to be prognostic to varying degrees in bladder, brain, breast, and lung cancer.
  • GSE7390 (Desmedt et al., C LIN . C ANCER R ES . (2007) 13:3207-14; PMID 17545524); GSE11121 (Schmidt et al., C ANCER R ES . (2008) 68:5405-13; PMID 18593943); GSE8894 (Son et al.; no publication); Shedden (Shedden et al., N ATURE M ED . (2008) 14:822; PMID 18641660); GSE4412 (Freije et al., C ANCER R ES .
  • CCG score is an average expression of the genes in a panel. If a gene is represented by more than one probe set on the array, the gene expression is an average expression of all the probe sets representing the gene.
  • the association between CCG score and survival or disease recurrence was tested using univariate and multivariate Cox proportional hazard model. Multivariate analysis was performed when relevant clinical parameters (grade in brain cancer, stage in lung cancer, NPI in breast cancer) were available.
  • each Panel in univariate analysis, was a prognostic factor in each of the cancers analyzed.
  • each Panel was also prognostic in multivariate analysis when combined with at least one clinical parameter (or nomogram).
  • Tables 23 & 24 below provide rankings of select CCGs according to their correlation with the mean CCG expression.
  • Table 25 provides a ranking of the CCGs in Panel F according to their relative predictive value in Example 5 (analogous to Table 9).
  • Table 1 below provides a large, but not exhaustive, list of CCGs.
  • HMMR hyaluronan-mediated motility receptor
  • DKFZp762E1312 hypothetical protein DKFZp762E1312 Hs.104859 AA936181
  • CKAP2 cytoskeleton associated protein 2 Hs.24641 T52152
  • RAMP RA-regulated nuclear matrix-associated protein
  • SMAP thyroid hormone receptor coactivating protein Hs.5464 AA481555
  • FLJ22624 hypothetical protein FLJ22624 Hs.166425 AA488791
  • CKS1 CDC2-Associated Protein CKS1 Hs.77550
  • N48162 CDC2-Associated Protein CKS1 Hs.77550
  • NEK2 NIMA (never in mitosis gene a)-related kinase 2 Hs.153704 W93379
  • MKI67 antigen identified by monoclonal antibody Ki-67
  • TTK TTK protein kinase Hs
  • pombe homolog Hs.81848 AA683102 129 Homo sapiens cDNA FLJ10325 fis, clone NT2RM2000569 Hs.245342 AA430511: 130 NEK2: NIMA (never in mitosis gene a)-related kinase 2 Hs.153704 AA682321 131 FLJ20101: LIS1-interacting protein NUDE1, rat homolog Hs.263925 N79612 132 FZR1: Fzr1 protein Hs.268384 AA621026 133 ESTs: Hs.120605 AI220472 134 KIAA0855: golgin-67 Hs.182982 AA098902 135 SRD5A1: steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 1) Hs.552 H16833 136 RAD51:
  • KNSL6 kinesin-like 6 (mitotic centromere-associated kinesin) Hs.69360 AA400450 226
  • HN1 hematological and neurological expressed 1 Hs.109706 AA459865 227
  • TUBA3 Tubulin, alpha, brain-specific Hs.272897 AA865469 228 ESTs: Hs.221197 N55457 229 KIAA0175: KIAA0175 gene product Hs.184339 AA903137
  • CLASPIN homolog of Xenopus Claspin Hs.175613 AA857804 231
  • CTNNA1 **catenin (cadherin-associated protein), alpha 1 (102 kD) Hs.178452
  • Hs.68864 AA088857 294 HDAC3 histone deacetylase 3 Hs.279789 AA973283 295
  • DONSON downstream neighbor of SON Hs.17834 AA417895 296
  • LOC51053 geminin Hs.234896 AA447662 297
  • FLJ10545 hypothetical protein FLJ10545 Hs.88663 AA460110 298
  • MAD2L1 MAD2 (mitotic arrest deficient, yeast, homolog)-like 1 Hs.79078 AA481076 mitotic feedback control protein Madp2 homolog 299
  • TASR2 TLS-associated serine-arginine protein 2 Hs.3530 H11042 300
  • MCM6 minichromosome maintenance deficient (mis5, S.
  • Hs.154443 W74071 316 DKFZp434J0310 hypothetical protein Hs.278408 AA279657 Unknown UG Hs.23595 ESTs sc_id6950 317 PPP1R10: protein phosphatase 1, regulatory subunit 10 Hs.106019 AA071526 318 H11: protein kinase H11; small stress protein-like protein HSP22 Hs.111676 H57493 319 ESTs,: Weakly similar to KIAA1074 protein [ H.
  • Hs.68864 AA132858 339 TUBA3: Tubulin, alpha, brain-specific Hs.272897 AA864642 340 AI283530: 341 ESTs: Hs.302878 R92512 342
  • PPP1R10 protein phosphatase 1, regulatory subunit 10 Hs.106019 T75485 343
  • SFRS5 splicing factor, arginine/serine-rich 5 Hs.166975 R73672 344
  • SFRS3 splicing factor, arginine/serine-rich 3 Hs.167460 AA598400 345
  • PRIM1 primase, polypeptide 1 (49 kD) Hs.82741 AA025937 DNA primase (subunit p48) 346
  • FLJ20333 hypothetical protein FLJ20333 Hs.79828 H66982 347
  • HSPA8 heat shock 70 kD protein 8 Hs.180414 AA620511
  • Hs.222088 AI139629 382 ESTs: Hs.241101 AA133590 383
  • H4FI H4 histone family, member I Hs.143080 AI218900 384
  • SP38 zona pellucida binding protein Hs.99875 AA400474 385
  • GABPB1 GA-binding protein transcription factor, beta subunit 1 (53 kD) Hs.78915 H91651 386
  • LCHN LCHN protein Hs.12461 AA029330 387
  • DKFZP564D0462 hypothetical protein DKFZp564D0462 Hs.44197 N32904
  • LENG8 leukocyte receptor cluster (LRC) encoded novel gene 8 Hs.306121 AA464698 389
  • HIF1A hypoxia-inducible factor 1
  • alpha subunit basic helix-loop-helix transcription factor
  • Hs.197540 AA598526 390 ESTs: Hs.93
  • Hs.1280 KIAA1265 protein Hs.24936 AA479302 451 H1F0: H1 histone family, member 0 Hs.226117 H57830 452
  • ARGBP2 Arg/Abl-interacting protein ArgBP2 Hs.278626 H02525 453
  • ODF2 outer dense fibre of sperm tails 2 Hs.129055 AA149882 454
  • CD97 CD97 antigen Hs.3107 AI651871 455
  • BMI1 **murine leukemia viral (bmi-1) oncogene homolog Hs.431 AA193573 456
  • POLG polymerase (DNA directed), gamma Hs.80961 AA188629 457
  • XPR1 xenotropic and polytropic retrovirus receptor Hs.227656 AA453474 458 ESTs: Hs.1280
  • PRKAR1A protein kinase, cAMP-dependent, regulatory, type I, alpha (tissue specific extinguisher 1) Hs.183037 N25969
  • PKA-R1 alpha cAMP-dependent protein kinase type I-alpha-cata 491 ESTs: Hs.268991 H77818 492 ESTs,: Weakly similar to A53028 isopentenyl-diphosphate Delta-isomerase [ H.
  • Hs.78934 AA219060 MSH2 DNA mismatch repair mutS homologue 578 TOPBP1: topoisomerase (DNA) II binding protein Hs.91417 R97785 579 KIAA0869: KIAA0869 protein Hs.21543 R43798 580 H4FH: H4 histone family, member H Hs.93758 AA702781 581 FLJ23293: hypothetical protein FLJ23293 similar to ARL-6 interacting protein-2 Hs.31236 AA629027 582 ** Homo sapiens cDNA: FLJ23538 fis, clone LNG08010, highly similar to BETA2 Human MEN1 region clone epsilon/beta mRNA Hs.240443 AA053165: 583 KIAA0978: KIAA0978 protein Hs.3686 N64780 584 KIAA1547: KIAA
  • Hs.28848 AA486607 814 H2AFN H2A histone family, member N Hs.134999 AI095013 815
  • RERE arginine-glutamic acid dipeptide (RE) repeats Hs.194369 AA490249 816
  • USP1 ubiquitin specific protease 1 Hs.35086 T55607 817
  • TIP47 cargo selection protein (mannose 6 phosphate receptor binding protein) Hs.140452 AA416787 818
  • KIAA0135 KIAA0135 protein Hs.79337 AA427740
  • KIAA0135 related to pim-1 kinase 819 ESTs: Hs.214410 T95273 820
  • PPP1R2 protein phosphatase 1, regulatory (inhibitor) subunit 2 Hs.267819 N52605 821
  • Homo sapiens cDNA FLJ21210 fis, clone COL00479 Hs.325093
  • Hs.172208 AI820570 886 ESTs: Hs.21667 R15709 887 RBBP4: retinoblastoma-binding protein 4 Hs.16003 AA705035 888 Homo sapiens mRNA; cDNA DKFZp434J1027 (from clone DKFZp434J1027); partial cds Hs.22908 R20166: 889 ESTs: Hs.166539 AI080987 890 NKTR: natural killer-tumor recognition sequence Hs.241493 AA279666 NK-tumor recognition protein cyclophilin-related protein 891 MUC1: mucin 1, transmembrane Hs.89603 AA486365 892 AP4B1: adaptor-related protein complex 4, beta 1 subunit Hs.28298 AA481045 893 ESTs: Hs.94943 AA452165 894 MITF: microphthalmi
  • Hs.5890 N34799 fra-2 fos-related antigen 2 913
  • TXNRD1 thioredoxin reductase 1 Hs.13046 AA453335
  • GCSH glycine cleavage system protein H (aminomethyl carrier) Hs.77631 R71327 916
  • Hs.91192 H60690 996 LOC51064 **glutathione S-transferase subunit 13 homolog Hs.279952 W88497 997 NUCKS: similar to rat nuclear ubiquitous casein kinase 2 Hs.118064 AA927182 998 ESTs,: Weakly similar to T00370 hypothetical protein KIAA0659 [ H.
  • Hs.131899 W93155 999 FLJ13057 hypothetical protein FLJ13057 similar to germ cell-less Hs.243122 R23254 1000 ESTs: Hs.144796 AI219737 1001 FLJ10511: hypothetical protein FLJ10511 Hs.106768 R25877 1002 DKFZP564A122: DKFZP564A122 protein Hs.187991 N31577 1003 ODF2: outer dense fibre of sperm tails 2 Hs.129055 AA400407 1004 AMY2A: amylase, alpha 2A; pancreatic Hs.278399 R64129 1005 **ESTs,: Weakly similar to plakophilin 2b [ H.
  • CYP1B1 cytochrome P450, subfamily I (dioxin-inducible), polypeptide 1 (glaucoma 3, primary infantile) Hs.154654 AA029776 1007
  • CAPN7 calpain 7 Hs.7145 N46420 1008
  • FLJ20069 hypothetical protein FLJ20069 Hs.273294 AA229966
  • FLJ10618 hypothetical protein FLJ10618 Hs.42484 AA478847 1010
  • KIAA1637 **coactivator independent of AF-2 (CIA); KIAA1637 protein Hs.288140 AA452531 1011 FLJ20004: **hypothetical protein FLJ20004 Hs.17311 AA487895 1012 FLJ12892: hypothetical protein FLJ12892 Hs.17731 AA670363 1013
  • PLU-1 putative DNA/chromatin binding motif Hs.143323 AA464869 1014 **ESTs:
  • Hs.66718 AI372035 1121 MYLE: MYLE protein Hs.11902 T68845 1122 LOC51334: mesenchymal stem cell protein DSC54 Hs.157461 R63841 1123 PRIM2A: primase, polypeptide 2A (58 kD) Hs.74519 AA434404 1124 KIAA0056: KIAA0056 protein Hs.13421 AA430545 1125 ESTs,: Moderately similar to ALU7_HUMAN ALU SUBFAMILY SQ SEQUENCE CONTAMINATION WARNING ENTRY [ H.
  • Hs.203271 AA487918 1152 PLAB prostate differentiation factor Hs.296638 AA450062 1153
  • RBM14 RNA binding motif protein 14 Hs.11170 AA417283 1154
  • EGFL5 EGF-like-domain, multiple 5 Hs.5599 W67981 1155
  • H2AFO H2A histone family, member O Hs.795 AA047260 1156 ESTs,: Weakly similar to A46661 leukotriene B4 omega-hydroxylase [ H.
  • Hs.169001 N45556 1157 W78784: 1158 TOP3A: topoisomerase (DNA) III alpha Hs.91175 N21546 1159 W73732: Host cell factor-1 VP16 transactivator interacting protein 1160 CYP1B1: cytochrome P450, subfamily I (dioxin-inducible), polypeptide 1 (glaucoma 3, primary infantile) Hs.154654 AA448157 Cytochrome P450 IB1 (dioxin-inducible) 1161 ESTs: Hs.135276 AI092102 1162 RHEB2: Ras homolog enriched in brain 2 Hs.279903 AA482117 1163 ESTs,: Highly similar to EF-9 [ M.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Hospice & Palliative Care (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
US13/178,380 2010-07-07 2011-07-07 Gene signatures for cancer prognosis Abandoned US20120053253A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/178,380 US20120053253A1 (en) 2010-07-07 2011-07-07 Gene signatures for cancer prognosis
US14/632,888 US10954568B2 (en) 2010-07-07 2015-02-26 Gene signatures for cancer prognosis
US15/060,090 US20160355884A1 (en) 2010-07-07 2016-03-03 Gene signatures for cancer prognosis
US15/921,416 US20180334722A1 (en) 2010-07-07 2018-03-14 Gene signatures for cancer prognosis
US17/678,357 US20220259675A1 (en) 2010-07-07 2022-02-23 Gene signatures for cancer prognosis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36220910P 2010-07-07 2010-07-07
US13/178,380 US20120053253A1 (en) 2010-07-07 2011-07-07 Gene signatures for cancer prognosis

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/632,888 Continuation US10954568B2 (en) 2010-07-07 2015-02-26 Gene signatures for cancer prognosis

Publications (1)

Publication Number Publication Date
US20120053253A1 true US20120053253A1 (en) 2012-03-01

Family

ID=45441805

Family Applications (5)

Application Number Title Priority Date Filing Date
US13/178,380 Abandoned US20120053253A1 (en) 2010-07-07 2011-07-07 Gene signatures for cancer prognosis
US14/632,888 Active US10954568B2 (en) 2010-07-07 2015-02-26 Gene signatures for cancer prognosis
US15/060,090 Abandoned US20160355884A1 (en) 2010-07-07 2016-03-03 Gene signatures for cancer prognosis
US15/921,416 Abandoned US20180334722A1 (en) 2010-07-07 2018-03-14 Gene signatures for cancer prognosis
US17/678,357 Pending US20220259675A1 (en) 2010-07-07 2022-02-23 Gene signatures for cancer prognosis

Family Applications After (4)

Application Number Title Priority Date Filing Date
US14/632,888 Active US10954568B2 (en) 2010-07-07 2015-02-26 Gene signatures for cancer prognosis
US15/060,090 Abandoned US20160355884A1 (en) 2010-07-07 2016-03-03 Gene signatures for cancer prognosis
US15/921,416 Abandoned US20180334722A1 (en) 2010-07-07 2018-03-14 Gene signatures for cancer prognosis
US17/678,357 Pending US20220259675A1 (en) 2010-07-07 2022-02-23 Gene signatures for cancer prognosis

Country Status (4)

Country Link
US (5) US20120053253A1 (fr)
EP (2) EP2591126B1 (fr)
CA (1) CA2804391A1 (fr)
WO (1) WO2012006447A2 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014078700A1 (fr) 2012-11-16 2014-05-22 Myriad Genetics, Inc. Signatures génétiques utilisées en vue du pronostic d'un cancer
WO2015127101A1 (fr) * 2014-02-19 2015-08-27 The Trustees Of Columbia University In The City Of New York Procédé et composition pour le diagnostic du cancer agressif de la prostate
WO2015175692A1 (fr) 2014-05-13 2015-11-19 Myriad Genetics, Inc. Signatures génétiques utilisées en vue du pronostic d'un cancer
WO2017120456A1 (fr) 2016-01-06 2017-07-13 Myriad Genetics, Inc. Gènes et signatures génétiques pour le diagnostic et le traitement du mélanome
US9758829B2 (en) 2012-06-22 2017-09-12 Htg Molecular Diagnostics, Inc. Molecular malignancy in melanocytic lesions
WO2017193062A1 (fr) 2016-05-06 2017-11-09 Myriad Genetics, Inc. Signatures génétiques utilisées en vue du pronostic de cancer rénal
US10196697B2 (en) 2013-12-12 2019-02-05 Almac Diagnostics Limited Prostate cancer classification
WO2019232435A1 (fr) * 2018-06-01 2019-12-05 Grail, Inc. Systèmes et méthodes de réseaux neuronaux convolutifs permettant la classification de données
US11581062B2 (en) 2018-12-10 2023-02-14 Grail, Llc Systems and methods for classifying patients with respect to multiple cancer classes
US11746380B2 (en) 2016-10-05 2023-09-05 University Of East Anglia Classification and prognosis of cancer
WO2024015997A3 (fr) * 2022-07-15 2024-04-18 The Board Of Regents Of The University Of Texas System Méthode pour déterminer un signal immunitaire prédominant dans un micro-environnement du cancer du sein
WO2025077120A1 (fr) * 2023-10-13 2025-04-17 青岛瑞思德医学检验实验室有限公司 Kit et procédé de détection du cancer de la vessie

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120041274A1 (en) 2010-01-07 2012-02-16 Myriad Genetics, Incorporated Cancer biomarkers
EP2591126B1 (fr) 2010-07-07 2020-12-30 Myriad Genetics, Inc. Signatures génétiques utilisées pour le pronostic du cancer
US9605319B2 (en) 2010-08-30 2017-03-28 Myriad Genetics, Inc. Gene signatures for cancer diagnosis and prognosis
CA2831074A1 (fr) * 2011-03-26 2012-10-04 Oregon Health And Science University Predicteurs d'expression genique pour le pronostic du cancer
EP2744919A4 (fr) * 2011-08-19 2015-04-08 Myriad Genetics Inc Signatures de gène pour pronostic de cancer du poumon et sélection de thérapie
US9790556B2 (en) 2012-01-05 2017-10-17 Centre National De La Recherche Scientifique (Cnrs) Signature for the diagnosis of lung cancer aggressiveness and genetic instability
GB201200507D0 (en) * 2012-01-13 2012-02-22 Isis Innovation Biomarker
US11021752B2 (en) 2013-03-15 2021-06-01 Myriad Genetics, Inc. Genes and gene signatures for diagnosis and treatment of melanoma
WO2015042570A1 (fr) 2013-09-23 2015-03-26 The University Of Chicago Procédés et compositions concernant une thérapie anticancéreuse au moyen d'agents endommageant l'adn
CA2945175A1 (fr) * 2014-04-23 2015-10-29 Myriad Genetics, Inc. Signatures de pronostic du cancer
EP3164508B1 (fr) 2014-07-02 2023-06-07 Myriad myPath, LLC Gènes et signatures génétiques pour le diagnostic et le traitement du mélanome
US12026683B2 (en) * 2017-06-30 2024-07-02 Intuit Inc. System and method for risk assessment of a third party application for controlling competitive migration
EP3880846B1 (fr) 2018-11-13 2024-08-28 Bracco Imaging SPA Signatures génétiques pour la prédiction de la récurrence du cancer de la prostate
EP3901288A1 (fr) * 2020-04-20 2021-10-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dosage d'expression multigénique pour le carcinome de la prostate
US20250125054A1 (en) * 2023-10-17 2025-04-17 Pathomiq Inc. Systems and methods for identifying prostate cancer patients at high-risk of progression

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090555A (en) 1997-12-11 2000-07-18 Affymetrix, Inc. Scanned image alignment systems and methods
US5571639A (en) 1994-05-24 1996-11-05 Affymax Technologies N.V. Computer-aided engineering system for design of sequence arrays and lithographic masks
US5795716A (en) 1994-10-21 1998-08-18 Chee; Mark S. Computer-aided visualization and analysis system for sequence evaluation
US5733729A (en) 1995-09-14 1998-03-31 Affymetrix, Inc. Computer-aided probability base calling for arrays of nucleic acid probes on chips
US6586806B1 (en) 1997-06-20 2003-07-01 Cypress Semiconductor Corporation Method and structure for a single-sided non-self-aligned transistor
US5993388A (en) 1997-07-01 1999-11-30 Kattan; Michael W. Nomograms to aid in the treatment of prostatic cancer
US6409664B1 (en) 1997-07-01 2002-06-25 Michael W. Kattan Nomograms to aid in the treatment of prostatic cancer
JP2001515234A (ja) 1997-07-25 2001-09-18 アフィメトリックス インコーポレイテッド 多型性データベースを提供するためのシステム
US6420108B2 (en) 1998-02-09 2002-07-16 Affymetrix, Inc. Computer-aided display for comparative gene expression
WO1999009218A1 (fr) 1997-08-15 1999-02-25 Affymetrix, Inc. Detection des polymorphismes a l'aide de la theorie des grappes
JP3565025B2 (ja) 1998-07-07 2004-09-15 日産自動車株式会社 治具交換装置および治具交換方法
US6185561B1 (en) 1998-09-17 2001-02-06 Affymetrix, Inc. Method and apparatus for providing and expression data mining database
WO2000040749A2 (fr) * 1999-01-06 2000-07-13 Genenews Inc. Technique de detection de transcrits geniques dans le sang et leur utilisation
US20030097222A1 (en) 2000-01-25 2003-05-22 Craford David M. Method, system, and computer software for providing a genomic web portal
US20020183936A1 (en) 2001-01-24 2002-12-05 Affymetrix, Inc. Method, system, and computer software for providing a genomic web portal
US20030120432A1 (en) 2001-01-29 2003-06-26 Affymetrix, Inc. Method, system and computer software for online ordering of custom probe arrays
US6585606B2 (en) 2001-07-16 2003-07-01 Thomas S. Penrose Golf club accessory
US20030100995A1 (en) 2001-07-16 2003-05-29 Affymetrix, Inc. Method, system and computer software for variant information via a web portal
WO2003078662A1 (fr) 2002-03-13 2003-09-25 Genomic Health Profilage d'expression genique dans des tissus tumoraux ponctionnes
US20030235816A1 (en) 2002-03-14 2003-12-25 Baylor College Of Medicine (By Slawin And Shariat) Method to determine outcome for patients with prostatic disease
US6809118B2 (en) 2002-07-25 2004-10-26 Yih-Lin Chung Methods for therapy of radiation cutaneous syndrome
US20040049354A1 (en) 2002-04-26 2004-03-11 Affymetrix, Inc. Method, system and computer software providing a genomic web portal for functional analysis of alternative splice variants
EP1422526A1 (fr) * 2002-10-28 2004-05-26 MTM Laboratories AG Procédé ameliorée de diagnostic des dysplasies
US20040231909A1 (en) 2003-01-15 2004-11-25 Tai-Yang Luh Motorized vehicle having forward and backward differential structure
ATE412779T1 (de) 2003-02-20 2008-11-15 Genomic Health Inc Benutzung von intronischen rna sequenzen zur quantifizierung der genexpression
WO2004111603A2 (fr) 2003-05-28 2004-12-23 Genomic Health, Inc. Marqueurs de l'expression genetique permettant de predire la reponse une chimiotherapie
WO2005039382A2 (fr) 2003-06-24 2005-05-06 Genomic Health Prediction de probabilite de la recurrence d'un cancer
WO2005007830A2 (fr) 2003-07-14 2005-01-27 Mayo Foundation For Medical Education And Research Procedes et compositions pour diagnostic, stadage et pronostic du cancer de la prostate
EP1709152A4 (fr) * 2003-12-15 2007-11-07 Univ California Signature moleculaire du suppresseur de tumeur pten
US7871769B2 (en) 2004-04-09 2011-01-18 Genomic Health, Inc. Gene expression markers for predicting response to chemotherapy
US20050244872A1 (en) 2004-04-23 2005-11-03 Exagen Diagnostics, Inc. Breast cancer gene expression biomarkers
WO2006016697A1 (fr) * 2004-08-10 2006-02-16 Oncotherapy Science, Inc. Gène relatif au cancer du poumon non a petites cellules, anln, et ses interactions avec le rhoa
EP1815014B1 (fr) 2004-11-05 2012-03-21 Genomic Health, Inc. Indicateurs moléculaires de pronostic du cancer du sein et prédiction de réponse du traitement
WO2006052862A1 (fr) 2004-11-05 2006-05-18 Genomic Health, Inc. Prediction de reaction a la chimiotherapie au moyen de marqueurs d'expression genique
US20070059720A9 (en) 2004-12-06 2007-03-15 Suzanne Fuqua RNA expression profile predicting response to tamoxifen in breast cancer patients
US7666595B2 (en) 2005-02-25 2010-02-23 The Brigham And Women's Hospital, Inc. Biomarkers for predicting prostate cancer progression
US20070026424A1 (en) 2005-04-15 2007-02-01 Powell Charles A Gene profiles correlating with histology and prognosis
CN101356532B (zh) 2005-05-13 2012-08-01 布鲁塞尔自由大学 基于基因的算法型癌症预后
US20080275652A1 (en) 2005-05-13 2008-11-06 Universite Libre De Bruxelles Gene-based algorithmic cancer prognosis
WO2006135886A2 (fr) 2005-06-13 2006-12-21 The Regents Of The University Of Michigan Compositions et methodes pour le traitement et le diagnostic du cancer
KR101446626B1 (ko) 2005-09-02 2014-10-06 도레이 카부시키가이샤 신장암 진단, 신장암 환자 예후 예측을 위한 조성물 및 방법
GB0519405D0 (en) * 2005-09-23 2005-11-02 Univ Aberdeen Cancer therapy prognosis and target
WO2007067500A2 (fr) 2005-12-05 2007-06-14 Genomic Health, Inc. Predicteurs de la reponse d'un patient a un traitement avec des inhibiteurs d'egfr
WO2007067672A2 (fr) 2005-12-06 2007-06-14 Baylor College Of Medicine Procede de prediction de progression systemique chez des patients atteints de cancer de la prostate
WO2007070621A2 (fr) 2005-12-13 2007-06-21 Children's Medical Center Corporation Indicateurs de pronostic pour des tumeurs solides humaines
EP2412822A1 (fr) 2006-01-11 2012-02-01 Genomic Health, Inc. Marqueurs de l'expression génique pour le pronostic du cancer colorectal
US7914988B1 (en) 2006-03-31 2011-03-29 Illumina, Inc. Gene expression profiles to predict relapse of prostate cancer
US8338109B2 (en) 2006-11-02 2012-12-25 Mayo Foundation For Medical Education And Research Predicting cancer outcome
AT504702A1 (de) 2006-12-22 2008-07-15 Arc Austrian Res Centers Gmbh Set von tumormarkern
EP2754720A1 (fr) 2007-02-23 2014-07-16 Aviaradx, Inc. Survie et rechute liées au cancer de la prostate
EP2121738A2 (fr) 2007-02-26 2009-11-25 Oxford Genome Sciences (UK) Limited Protéines
EP2140020A2 (fr) 2007-03-15 2010-01-06 Genomic Health, Inc. Marqueurs d'expression de gène pour la prévision de la réponse d'un patient à une chimiothérapie
ES2304306B1 (es) * 2007-03-20 2009-07-07 Indas Biotech, S.L.U. Metodo de diagnostico y/o pronostico de cancer vesical.
EP2082065B1 (fr) 2007-06-01 2014-03-12 The Regents of the University of California Test pronostique multigénique pour le cancer du poumon
WO2009032915A2 (fr) 2007-09-06 2009-03-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Réseaux, kits et procédés de caractérisation de cancers
CA2699385A1 (fr) 2007-09-14 2009-03-19 Ventana Medical Systems, Inc. Biomarqueurs du cancer de la prostate
NZ562237A (en) * 2007-10-05 2011-02-25 Pacific Edge Biotechnology Ltd Proliferation signature and prognosis for gastrointestinal cancer
US8067178B2 (en) 2008-03-14 2011-11-29 Genomic Health, Inc. Gene expression markers for prediction of patient response to chemotherapy
EP2641977B1 (fr) 2008-05-12 2014-09-03 Genomic Health, Inc. Tests pour prédire une sensibilité de patients atteints de cancer à des options de traitement de chimiothérapie
US20100184063A1 (en) 2008-05-14 2010-07-22 Ming-Sound Tsao Prognostic and predictive gene signature for non-small cell lung cancer and adjuvant chemotherapy
EP2304630A1 (fr) 2008-06-16 2011-04-06 Sividon Diagnostics GmbH Marqueurs moléculaires permettant de poser un pronostic en matière de cancer
EP2304631A1 (fr) 2008-06-16 2011-04-06 Sividon Diagnostics GmbH Algorithmes de prediction de resultat pour des patientes atteintes de cancer du sein traite par chimiotherapie avec atteinte ganglionnaire
RU2011102743A (ru) 2008-06-26 2012-08-10 Дана-Фарбер Кэнсер Инститьют, Инк. (Us) Характерные признаки и детерминанты, связанные с метастазированием, и способы их применения
US20120108453A1 (en) 2008-10-01 2012-05-03 Noviogendix Research B.V. Molecular markers in prostate cancer
US20120041274A1 (en) 2010-01-07 2012-02-16 Myriad Genetics, Incorporated Cancer biomarkers
EP3118328A1 (fr) * 2009-01-07 2017-01-18 Myriad Genetics, Inc. Biomarqueurs du cancer
US20120039805A1 (en) 2009-02-20 2012-02-16 Pangea Biosciences, Inc. Therapeutics And Methods For Treating Neoplastic Diseases Comprising Determining The Level Of Caveolin-1 And/Or Caveolin-2 In A Stromal Cell Sample
WO2010096574A1 (fr) 2009-02-20 2010-08-26 Lisanti Michael P Procédé de diagnostic ou de pronostic d'un néoplasme comprenant la détermination du taux d'expression d'une protéine dans des cellules stromales adjacentes au néoplasme
EP2241634A1 (fr) 2009-04-16 2010-10-20 Université Libre de Bruxelles Procédé de diagnostic et outils pour prédire l'efficacité des agents ciblés contre l'activation de chemin IGF-1 dans le cancer
JP2012525159A (ja) 2009-05-01 2012-10-22 ジェノミック ヘルス, インコーポレイテッド 結腸直腸癌の再発および化学療法に対する応答の可能性における遺伝子発現プロファイルアルゴリズムおよび試験
AU2010321829B2 (en) 2009-11-23 2015-07-30 Genomic Health, Inc. Methods to predict clinical outcome of cancer
US20130058924A1 (en) 2010-02-05 2013-03-07 Myriad Genetics, Incorporated Hypoxia-related gene signatures for cancer classification
EP2591126B1 (fr) 2010-07-07 2020-12-30 Myriad Genetics, Inc. Signatures génétiques utilisées pour le pronostic du cancer
EP2409989A1 (fr) 2010-07-19 2012-01-25 International-Drug-Development-Biotech Procédé pour améliorer le profile de glycosylation d'un anticorps
US20130302808A1 (en) 2010-07-22 2013-11-14 Mayo Foundation For Medical Education And Research Predicting cancer outcome
MX338883B (es) 2010-07-27 2016-05-04 Genomic Health Inc Metodo para usar expresion de gen para determinar el pronostico de cancer de prostata.
US9605319B2 (en) 2010-08-30 2017-03-28 Myriad Genetics, Inc. Gene signatures for cancer diagnosis and prognosis
AU2012211964A1 (en) 2011-02-04 2013-08-22 Bioarray Genetics, Inc. Methods of using gene expression signatures to select a method of treatment, predict prognosis, survival, and/or predict response to treatment
CA2829776A1 (fr) 2011-03-14 2012-09-20 National Research Council Of Canada Jeux de marqueurs de pronostic du cancer de la prostate
CA2831074A1 (fr) 2011-03-26 2012-10-04 Oregon Health And Science University Predicteurs d'expression genique pour le pronostic du cancer
CA2835728A1 (fr) 2011-05-12 2012-11-15 Noviogendix Research B.V. Marqueurs moleculaires dans le cancer de la prostate
WO2012152811A1 (fr) 2011-05-12 2012-11-15 Noviogendix Research B.V. Marqueurs moléculaires du cancer de la prostate
EP2744919A4 (fr) 2011-08-19 2015-04-08 Myriad Genetics Inc Signatures de gène pour pronostic de cancer du poumon et sélection de thérapie
EP2920322B1 (fr) 2012-11-16 2023-01-11 Myriad Genetics, Inc. Signatures génétiques utilisées en vue du pronostic d'un cancer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wu, C-L. et al., PNAS USA, vol. 110, pp. 6121-6125 + Supplement pp. 1-9 (2013) *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9758829B2 (en) 2012-06-22 2017-09-12 Htg Molecular Diagnostics, Inc. Molecular malignancy in melanocytic lesions
WO2014078700A1 (fr) 2012-11-16 2014-05-22 Myriad Genetics, Inc. Signatures génétiques utilisées en vue du pronostic d'un cancer
EP4190918A1 (fr) 2012-11-16 2023-06-07 Myriad Genetics, Inc. Signatures géniques pour le pronostic du cancer
US10196697B2 (en) 2013-12-12 2019-02-05 Almac Diagnostics Limited Prostate cancer classification
WO2015127101A1 (fr) * 2014-02-19 2015-08-27 The Trustees Of Columbia University In The City Of New York Procédé et composition pour le diagnostic du cancer agressif de la prostate
EP3623482A1 (fr) 2014-05-13 2020-03-18 Myriad Genetics, Inc. Signatures geniques pour le pronostic du cancer
WO2015175692A1 (fr) 2014-05-13 2015-11-19 Myriad Genetics, Inc. Signatures génétiques utilisées en vue du pronostic d'un cancer
WO2017120456A1 (fr) 2016-01-06 2017-07-13 Myriad Genetics, Inc. Gènes et signatures génétiques pour le diagnostic et le traitement du mélanome
WO2017193062A1 (fr) 2016-05-06 2017-11-09 Myriad Genetics, Inc. Signatures génétiques utilisées en vue du pronostic de cancer rénal
US11746380B2 (en) 2016-10-05 2023-09-05 University Of East Anglia Classification and prognosis of cancer
US20240062849A1 (en) * 2018-06-01 2024-02-22 Grail, Llc Convolutional neural network systems and methods for data classification
US11482303B2 (en) * 2018-06-01 2022-10-25 Grail, Llc Convolutional neural network systems and methods for data classification
US20230045925A1 (en) * 2018-06-01 2023-02-16 Grail, Llc Convolutional neural network systems and methods for data classification
CN112888459B (zh) * 2018-06-01 2023-05-23 格里尔公司 卷积神经网络系统及数据分类方法
WO2019232435A1 (fr) * 2018-06-01 2019-12-05 Grail, Inc. Systèmes et méthodes de réseaux neuronaux convolutifs permettant la classification de données
CN112888459A (zh) * 2018-06-01 2021-06-01 格里尔公司 卷积神经网络系统及数据分类方法
US11783915B2 (en) * 2018-06-01 2023-10-10 Grail, Llc Convolutional neural network systems and methods for data classification
US20200005899A1 (en) * 2018-06-01 2020-01-02 Grail, Inc. Convolutional neural network systems and methods for data classification
US12380964B2 (en) * 2018-06-01 2025-08-05 Grail, Inc. Convolutional neural network systems and methods for data classification
US11581062B2 (en) 2018-12-10 2023-02-14 Grail, Llc Systems and methods for classifying patients with respect to multiple cancer classes
US12191000B2 (en) 2018-12-10 2025-01-07 Grail, Inc. Systems and methods for classifying patients with respect to multiple cancer classes
WO2024015997A3 (fr) * 2022-07-15 2024-04-18 The Board Of Regents Of The University Of Texas System Méthode pour déterminer un signal immunitaire prédominant dans un micro-environnement du cancer du sein
WO2025077120A1 (fr) * 2023-10-13 2025-04-17 青岛瑞思德医学检验实验室有限公司 Kit et procédé de détection du cancer de la vessie

Also Published As

Publication number Publication date
US20160355884A1 (en) 2016-12-08
WO2012006447A2 (fr) 2012-01-12
EP3812469A1 (fr) 2021-04-28
US20220259675A1 (en) 2022-08-18
US10954568B2 (en) 2021-03-23
EP2591126B1 (fr) 2020-12-30
CA2804391A1 (fr) 2012-01-12
EP2591126A2 (fr) 2013-05-15
US20180334722A1 (en) 2018-11-22
US20150167103A1 (en) 2015-06-18
WO2012006447A3 (fr) 2012-05-18
EP2591126A4 (fr) 2014-01-01

Similar Documents

Publication Publication Date Title
US20220259675A1 (en) Gene signatures for cancer prognosis
US10519513B2 (en) Cancer Biomarkers
EP3524697B1 (fr) Biomarqueurs du cancer
US9605319B2 (en) Gene signatures for cancer diagnosis and prognosis
US20210071269A1 (en) Gene signatures for cancer prognosis
US20220112565A1 (en) Gene signatures for cancer prognosis

Legal Events

Date Code Title Description
AS Assignment

Owner name: MYRIAD GENETICS, INC., UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STONE, STEVEN;GUTIN, ALEXANDER;WAGNER, SUSANNE;AND OTHERS;SIGNING DATES FROM 20110714 TO 20110718;REEL/FRAME:026716/0936

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION