US20120040573A1 - Deep water and ultra deep water mooring system - Google Patents
Deep water and ultra deep water mooring system Download PDFInfo
- Publication number
- US20120040573A1 US20120040573A1 US13/202,371 US201013202371A US2012040573A1 US 20120040573 A1 US20120040573 A1 US 20120040573A1 US 201013202371 A US201013202371 A US 201013202371A US 2012040573 A1 US2012040573 A1 US 2012040573A1
- Authority
- US
- United States
- Prior art keywords
- mooring
- pendant
- vessel
- riser
- flowline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 claims abstract description 25
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 2
- 239000006260 foam Substances 0.000 claims description 2
- 230000004044 response Effects 0.000 claims description 2
- 238000009434 installation Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229930091051 Arenine Natural products 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/50—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
- B63B21/507—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers with mooring turrets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/50—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B27/00—Arrangement of ship-based loading or unloading equipment for cargo or passengers
- B63B27/24—Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
Definitions
- This invention relates to a mooring and flowline system for use in floating facilities for handling petroleum and petroleum products.
- the system is particularly, but not exclusively applicable to the mooring and loading of floating production vessels operating in waters in excess of 1000 m deep.
- Tanker conversions used hitherto have required extensive conversion.
- a turret mooring which includes a rotary oil flowline joint. This requires major structural work on the tanker in addition to the complex mooring turret.
- a flexible riser to the tanker has been used, but has required large quick disconnect (QDC) valves with a physical size and weight requiring installation outboard of the tanker bow on a specially installed and relatively large structure.
- QDC quick disconnect
- a Tri-Catenary Mooring System has more recently been proposed in U.S. Pat. No. 5,944,448 and U.S. Pat. No. 6,435,124 (assigned to Mooring Systems Limited of Aberdeen, UK) and such a system has proved very effective in operation in the Oudna field, offshore Tunisia, in approximately 260 m water depth.
- An object of embodiments in accordance with the present invention is to provide an improved mooring and flowline system which is quickly and fully disconnectable from the FPSO vessel, which is simple and economical to install and which is suitable for use in Deep Water (i.e. at depths greater than 500 m) and Ultra Deep Water (i.e. at depths greater than 1000 m). It is also an object of embodiments in accordance with the invention to provide a system which requires minimum use of heavy lifting gear located on the FPSO vessel or other support vessel.
- the present invention provides a mooring and flowline system comprising:
- the system comprises two or more guide frames and more preferably comprises more than two guide frames such as in the region of 6 to 12 guide frames.
- the buoyancy means are distributed along the length of the mooring pendant, between the common mooring node member and the upper end of the mooring pendant for connection to the vessel and more preferably are distributed substantially equi-distant along the length of the mooring pendant.
- the buoyancy means are provided on, in-between, for or by each of the one or more guide frames such that the one or more guide frames support the mooring pendant when disconnected from the floating production and/or storage vessel and more preferably, the buoyancy means are provided by each of the one or more guide frames.
- the mooring and flowline system is arranged such that when the mooring pendant is connected to the floating production and/or storage vessel, in use, at least one of the guide frames is located above the surface of the sea and at least one of the guide frames is located below the surface of the sea.
- the one or more guide frames are sealed pressure vessels.
- the one or more guide frames consist of sealed chambers that are filled with air.
- the sealed chambers are filled with any suitable buoyant material, for example foam.
- the buoyancy of the one or more guide frames can be adjusted to control the position in use, of the common mooring node member and mooring pendant below the surface of the sea and above the seabed, when the mooring pendant is disconnected from the floating production and/or storage vessel.
- buoyancy means is provided for, on or by the mooring means to reduce the likelihood of the anchor risers clashing or interfering with the flowline risers when the system is connected to and disconnected from the vessel.
- the system is capable of operating at depths up to 1000 m, and more preferably at depths greater than 1000 m such as between 1000 and 1500 m of water.
- disconnection of the system can be made without the need to lower the system into the water using a winch.
- the one or more guide frames are located below the surface of the sea and above the sea bed and more preferably, the buoyancy provided by the buoyancy means of the one or more guide frames supports the mooring pendant and one or more flowline risers attached thereto when disconnected at a depth in the region of 50 m to 100 m and more preferably in the region of 70 m.
- the system adopts a stable submerged configuration.
- the buoyancy on the flowlines is in the form of buoyancy tanks.
- yet further buoyancy means is provided for, on or by the anchor risers such that the profile of the anchor risers is increased in that the anchor risers are raised and held above the flowlines. Increasing the profile of the anchor risers helps to reduce the likelihood of the anchor risers clashing or interfering with the flowline risers.
- a riser jumper provides fluid communication between each riser tower and the floating production and/or storage vessel.
- each riser jumper is a continuous conduit with a single axial rotational coupling, located between the uppermost guide frame and a riser jumper hang-off point on the vessel.
- the buoyancy tanks support a connection between the riser tower and the riser jumper at a depth of 150 m.
- buoyancy tanks pull on the connection via 20 m of chain.
- the system is fully disconnectable in 10 hrs, more preferably in 8 hrs, and in less than 8 hrs being particularly preferred.
- anchors there are at least three anchors in an angular array, three anchors at mutual 120° spacings being particularly preferred.
- the anchors may be arranged to point north, south-west and south-east.
- the common mooring node member may be a plain ring, shackle or plate.
- a conventional tanker is used as the production vessel with minimal conversion, the chafe chain brought inboard of the tanker to a standard chain stopper or to a remotely controlled release stopper, the riser jumpers are brought inboard of the tanker over a chute to have their inboard ends lying near the tanker deck, and quick disconnect valves are located near the tanker deck between said riser jumpers and a tank manifold of the tanker.
- the chafe chain may comprise two parallel chains, one passing over each bow of the vessel.
- anchor risers are chains between 120 and 147 mm in diameter of Grade R3 or optionally of higher strength material.
- the chafe chain is 147 mm in diameter of Grade R3 or optionally of higher strength material.
- the vessel is a tanker.
- FIG. 1 is a schematic side view of an embodiment of a mooring and flowline system in accordance with the present invention, in use with a production tanker;
- FIG. 2 is a plan view corresponding to FIG. 1 ;
- FIG. 3 is a schematic side view of the chafe chain and guide frames in particular of FIG. 1 ;
- FIG. 4 is a schematic side view of the embodiment of FIG. 1 , the mooring and flowline system having been disconnected from the production tanker;
- FIG. 5 is a schematic perspective view of a guide frame of FIG. 3 ;
- FIG. 6 is a schematic perspective view of the connection between the chafe chain and a guide frame of FIG. 3 .
- a floating production tanker or FPSO 10 is anchored to the sea bed 12 by means of a three-leg anchor system consisting of anchor risers 14 a , 14 b , 14 c and mooring buoys 16 a , 16 b , 16 c , 16 d , 16 e and 16 f .
- the anchor risers 14 a , 14 b and 14 c are connected to a common mooring node 18 , from which a mooring pendant 20 is secured to the tanker 10 .
- the anchor system is in the vicinity of a wellhead (not shown in the drawings) from which oil is transferred via a number of flowlines, as will now be described.
- the flowlines consist of riser towers 22 a , 22 b and 22 c and riser jumpers 24 a , 24 b and 24 c .
- the riser towers 22 a , 22 b and 22 c are provided with buoyancy tanks 26 a , 26 b and 26 c .
- the riser towers 22 a , 22 b and 22 c may be tensioned steel catenary risers.
- the upper part of the riser jumpers 24 a , 24 b and 24 c are secured along the mooring pendant 20 by the guide frames 32 that are each rigidly connected to plates 56 integral to the chafe chain 36 as shown in FIG. 6 .
- the riser jumpers 24 a , 24 b and 24 c are taken aboard the tanker 10 via a turret 34 .
- the riser jumpers 24 a , 24 b and 24 c are flexible with sufficient dynamic properties to accept movement of the ship's bow and movement of the anchor risers 14 a , 14 b and 14 c.
- the riser jumpers 24 a , 24 b and 24 c are continuous conduits with a single axial rotational coupling (not shown), located between the uppermost guide frame 32 and a riser jumper hang off point (not shown) on the turret 34 of the tanker 10 .
- the mooring buoys 16 a , 16 b , 16 c , 16 d , 16 e and 16 f increase the profile of the anchor risers 14 a , 14 b and 14 c such that anchor risers 14 a , 14 b and 14 c are held above and clear of the riser jumpers 24 a , 24 b and 24 c , reducing the likelihood of the anchor risers 14 a , 14 b and 14 c clashing or interfering with the riser jumpers 24 a , 24 b and 24 c.
- the riser jumpers 24 a , 24 b and 24 c can be unbonded or bonded pipes of a wide variety of sizes and specifications.
- the mooring pendant 20 is particularly for use with a mooring and flowline system as described herein that can be operated in Ultra Deep Water.
- the mooring pendant 20 can also be used with a lazy-wave arrangement of flowlines such as that described in U.S. Pat. No. 5,944,448 and U.S. Pat. No. 6,435,124 (assigned to Mooring Systems Limited of Aberdeen, UK), and such systems could be operated in Deep Water (but would not likely be suited for Ultra Deep Water).
- FIG. 2 shows umbilicals 28 a , 28 b and 28 c provided with flotation collars 30 a , 30 b and 30 c .
- the umbilicals 28 a , 28 b and 28 c provide communication between the vessel 10 and wellhead (not shown).
- the anchors may be any suitable form of conventional mooring anchor. At least some of the length of each anchor riser 14 a , 14 b and 14 c is chain. In this embodiment the on-bottom section is chain, the lower part of the anchor risers 14 a , 14 b , 14 c is chain and the upper 350 m of the anchor risers 14 a , 14 b , 14 c is preferably of synthetic rope.
- rope for part of the anchor riser 14 a , 14 b , 14 c has several advantages. Principally, it reduces the weight which has to be lifted when the tanker 10 is connecting to the system, as is discussed more fully below. It also simplifies stowage on the vessel 10 used to deploy the system. When rope is used it is desirable to have the final 30 metres or so of anchor riser 14 a , 14 b , 14 c nearest the node 18 , of chain, to reduce the risk of kinking the rope.
- the node 18 is a plate that connects together the three anchor risers 14 a , 14 b and 14 c and the pendant 20 with adequate mechanical strength.
- a suitably sized master ring may be used, or a triangular plate arrangement, together with conventional shackles.
- No swivel is incorporated in the node 18 .
- the lower most end of the chafe chain 36 is secured to the node 18 with a suitable shackle or the like.
- Guide frames 32 are secured to the chafe chain 36 as shown in FIG. 6 and described below.
- FIG. 3 shows the disposition of the three riser jumpers 24 a , 24 b and 24 c passing through nine guide frames 32 , although ten guide frames 32 are shown in FIG. 1 , secured to the chafe chain 36 .
- the guide frames 32 are evenly distributed along the length of the chafe chain 36 .
- the tanker 10 is a segregated ballast tanker of 600,000 to 750,000 bbl capacity and the mooring is designed to hold the node 18 at a depth of 30 metres, and thus up to about 15 metres beneath the tanker hull.
- the chafe chain 36 will be of the order of 40 to 60 m in length.
- the preferred form for the mooring pendant 20 comprises a single large-size chafe chain 36 extending from the node 18 and connected to the tanker 10 .
- a suitable chain has a diameter in the region of 120 mm to 147 mm, which will fit many standard chain stoppers (not shown). This arrangement simplifies the design of the node 18 and minimises modification to the tanker 10 .
- a suitable tanker bow installation or turret is used that requires minimum modification of standard shipping practices, as described in for example U.S. Pat. No. 6,435,124.
- each anchor (not shown) to be laid in turn, and the anchor risers 14 a , 14 b , 14 c to be run back to a common point.
- each anchor riser 14 a , 14 b , 14 c is buoyed off on a pendant wire (not shown).
- Tensioning of the anchors can be achieved using the bollard pull of suitable vessels or with the inclusion in the system of a standard chain tensioner.
- One of the mooring legs (not shown) includes a standard seabed chain stopper for correct pre-tensioning of the system.
- FIG. 4 depicts the mooring and flowline system disconnected from the vessel.
- the buoyancy provided by the guide frames 32 provided on the mooring pendant 20 ; mooring buoys 16 a , 16 b , 16 c , 16 d , 16 e and 16 f ; and buoyancy tanks 26 a , 26 b and 26 c maintain the necessary profile of the riser jumpers 24 a , 24 b and 24 c and anchor risers 14 a , 14 b and 14 c .
- the system adopts a stable submerged configuration, the mooring pendant 20 preferably being arranged to sink to a depth of 70 m.
- FIG. 4 illustrates a pick-up rope 42 attached to the upper end of the mooring pendant 20 and a buoy 46 .
- the pick-up rope 42 is recovered from buoy 46 , either by the tanker 10 itself or by a support vessel (not shown) and fired across to the tanker using a compressed air rocket gun (not shown).
- the tanker 10 pulls on the pick-up rope and starts to retrieve the mooring pendant 20 , securing the chafe chain 36 in the chain stoppers (not shown).
- the winches (also not shown) of a typical tanker 10 can be supplemented by a block and tackle or a temporary winch to achieve sufficient pull for this application, which may require a pull of up to 400 tonnes.
- the guide frames 32 provide buoyancy and therefore an upward force which reduces the pull or recovery force required to lift the mooring pendant 20 , and the rest of the mooring and flowline system, from a depth of 70 m up to the sea surface 66 . Therefore, the guide frames 32 provide sufficient buoyancy to the mooring and flowline system such that the force provided by the buoyancy of the guide frames 32 (when the upper most guide frame 32 is in the region of 70 m water depth) is substantially equal and opposite to the weight of the rest of the mooring and flowline system and thus provides stability to the mooring and flowline system in the water after it has been disconnected from the tanker 10 .
- FIG. 5 shows a guide frame 32 in more detail.
- the guide frame 32 is a sealed pressure vessel.
- the central slot 48 receives the chafe chain (not shown).
- Ports 50 a , 50 b and 50 c receive riser jumpers 24 a , 24 b and 24 c .
- Ports 52 a and 52 b receive two of the umbilicals 28 a , 28 b and 28 c .
- Port 54 receives a gas export pipe (not shown).
- FIG. 6 further depicts the plate 56 used for connecting the guide frame 32 to the chafe chain 36 .
- the embodiment of the invention shown in FIG. 6 comprises chambers 60 filled with air, although they could be partially or fully evacuated to provide a partial or full vacuum.
- the chambers 60 are sealed to provide buoyancy.
- the chafe chain 36 is secured to the guide frame 32 by bolts 62 that pass through plate 56 and guide frame 32 .
- a breakaway-cum-emergency release unit may be provided, suitably a Gall-Thomson coupling is included and consists of bolts which shear at a predetermined axial load, a chute and a short section of flexible pipe ensuring that the load on the coupling is always axial.
- the breakaway-cum-emergency release unit also seals the pipe both sides of the unit as the unit breaks apart.
- a manually operated ball valve would be used to close the connection in normal disconnection routines.
- the hydraulically or gas pressure activated release system (not shown) within the breakaway-cum-emergency release unit can be operated remotely, for example, from the bridge of the vessel, when it is decided to make an emergency disconnection of the tanker.
- the emergency shutdown valve is included to provide shutdown of flow without disconnection and would normally be part of the tanker's equipment even if not located close to the release system.
- the vessel 10 aligns with its stern 64 meeting the waves (not shown).
- the vessel 10 is able to weathervane up to three times before it must turn back to unwind the riser jumpers 24 a , 24 b and 24 c ; umbilicals 28 a , 28 b and 28 c ; and gas export pipe (not shown) from around the chafe chain 36 .
- the invention provides a mooring and flowline system which can handle one or more flowlines making use of a minimally converted tanker and relatively small, standard components.
- the present invention may use individual hose swivels each typically 600 mm long, weighing 120 kg and costing about GBP 20,000, made as standard components by manufacturers such as Woodfield.
- prior art systems require the use of a multi-path (toroidal) flowline swivel which can be up to 10 m high, weigh several tens of tons, and cost GBP 3-4 million.
- buoyancy can be added to the chafe chain 36 in-between guide frames 32 either instead of the inherent buoyancy provided by the sealed pressure vessel guide frames 32 disclosed herein or in addition thereto, to support the mooring pendant 20 when disconnected from the vessel 10 and submerged.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Earth Drilling (AREA)
- Revetment (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB09028705 | 2009-02-20 | ||
| GB0902870A GB2467938A (en) | 2009-02-20 | 2009-02-20 | Deep water and ultra deep water mooring system |
| PCT/GB2010/050291 WO2010094973A2 (fr) | 2009-02-20 | 2010-02-19 | Système d'ancrage en eaux profondes et ultra-profondes |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120040573A1 true US20120040573A1 (en) | 2012-02-16 |
Family
ID=40565430
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/202,371 Abandoned US20120040573A1 (en) | 2009-02-20 | 2010-02-19 | Deep water and ultra deep water mooring system |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20120040573A1 (fr) |
| EP (1) | EP2398695B1 (fr) |
| BR (1) | BRPI1008301A2 (fr) |
| GB (1) | GB2467938A (fr) |
| SG (1) | SG173783A1 (fr) |
| WO (1) | WO2010094973A2 (fr) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016057455A1 (fr) * | 2014-10-09 | 2016-04-14 | Seahorse Equipment Corp | Système d'amarrage de caténaire inversée tendue |
| CN107107994A (zh) * | 2014-10-09 | 2017-08-29 | 海马设备公司 | 张紧倒置悬链线式系泊系统 |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NO20230328A1 (en) * | 2023-03-24 | 2024-09-25 | Oddmund Vik | Submerged retrievable swivel for a floating structure, such as a floating windmill |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4648848A (en) * | 1985-11-12 | 1987-03-10 | Fluor Corporation | Spar buoy fluid transfer system |
| US6435124B1 (en) * | 2000-02-08 | 2002-08-20 | Brovig Rds Limited | Mooring and flowline system |
| US7059416B2 (en) * | 2003-11-21 | 2006-06-13 | Technip France | Buoyancy can for offshore oil and gas riser |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1285530A (en) * | 1971-07-27 | 1972-08-16 | North American Rockwell | Multi-conduit buoyed underwater line |
| FR2413536A1 (fr) * | 1977-12-30 | 1979-07-27 | Inst Francais Du Petrole | Poste de mouillage et de transfert pour la production d'hydrocarbures au large des cotes |
| US5041038A (en) * | 1989-11-20 | 1991-08-20 | Single Buoy Moorings Inc. | Offshore loading system |
| US5944448A (en) | 1996-12-18 | 1999-08-31 | Brovig Offshore Asa | Oil field installation with mooring and flowline system |
| WO2003031765A1 (fr) * | 2001-10-10 | 2003-04-17 | Rockwater Limited | Tube goulotte et procede d'installation de celui-ci |
| GB0227851D0 (en) * | 2002-11-29 | 2003-01-08 | Stolt Offshore Sa | Subsea structure and methods of construction and installation thereof |
| US7770532B2 (en) * | 2007-06-12 | 2010-08-10 | Single Buoy Moorings, Inc. | Disconnectable riser-mooring system |
-
2009
- 2009-02-20 GB GB0902870A patent/GB2467938A/en not_active Withdrawn
-
2010
- 2010-02-19 SG SG2011060043A patent/SG173783A1/en unknown
- 2010-02-19 WO PCT/GB2010/050291 patent/WO2010094973A2/fr not_active Ceased
- 2010-02-19 US US13/202,371 patent/US20120040573A1/en not_active Abandoned
- 2010-02-19 EP EP10710098A patent/EP2398695B1/fr not_active Not-in-force
- 2010-02-19 BR BRPI1008301A patent/BRPI1008301A2/pt not_active IP Right Cessation
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4648848A (en) * | 1985-11-12 | 1987-03-10 | Fluor Corporation | Spar buoy fluid transfer system |
| US6435124B1 (en) * | 2000-02-08 | 2002-08-20 | Brovig Rds Limited | Mooring and flowline system |
| US7059416B2 (en) * | 2003-11-21 | 2006-06-13 | Technip France | Buoyancy can for offshore oil and gas riser |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016057455A1 (fr) * | 2014-10-09 | 2016-04-14 | Seahorse Equipment Corp | Système d'amarrage de caténaire inversée tendue |
| US20160101831A1 (en) * | 2014-10-09 | 2016-04-14 | Seahorse Equipment Corp | Taut Inverted Catenary Mooring System |
| CN107107994A (zh) * | 2014-10-09 | 2017-08-29 | 海马设备公司 | 张紧倒置悬链线式系泊系统 |
| US10059409B2 (en) * | 2014-10-09 | 2018-08-28 | Single Buoy Moorings, Inc. | Taut inverted catenary mooring system |
| AU2015328337B2 (en) * | 2014-10-09 | 2018-09-20 | Single Buoy Moorings Inc. | Taut inverted catenary mooring system |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2398695A2 (fr) | 2011-12-28 |
| BRPI1008301A2 (pt) | 2016-03-15 |
| SG173783A1 (en) | 2011-09-29 |
| EP2398695B1 (fr) | 2012-12-19 |
| WO2010094973A3 (fr) | 2011-06-23 |
| GB0902870D0 (en) | 2009-04-08 |
| WO2010094973A2 (fr) | 2010-08-26 |
| GB2467938A (en) | 2010-08-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5944448A (en) | Oil field installation with mooring and flowline system | |
| US6435124B1 (en) | Mooring and flowline system | |
| JP5362819B2 (ja) | 回転可能なターンテーブルを備えた分離可能なタレット係留システム | |
| CA2637832C (fr) | Systeme de chargement immerge | |
| US9032892B2 (en) | Mooring system and connector assembly | |
| AU2015328337B2 (en) | Taut inverted catenary mooring system | |
| US11738828B2 (en) | Disconnectable yoke mooring systems and processes for using same | |
| EP2576334B1 (fr) | Unité flottante de production à système de transfert déconnectable | |
| EP0729882B1 (fr) | Système d'amarrage et de transvasement | |
| EP2398695B1 (fr) | Système d'ancrage en eaux profondes et ultra-profondes | |
| US9409631B2 (en) | Loading hose | |
| US12473053B2 (en) | Disconnectable yoke mooring systems and processes for using same | |
| EP3204285A1 (fr) | Système d'amarrage de caténaire inversée tendue | |
| KR20240150497A (ko) | 계류 시스템 및 이를 사용하기 위한 방법 | |
| CN117622381A (zh) | 一种同时具有系泊和流线系统的油田开发设施 | |
| US20160083051A1 (en) | Arc Loading System |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MOORING SYSTEMS LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAVIDSON, DOUGLAS BARCLAY;JURY, JONATHAN FREDERICK;SIGNING DATES FROM 20111011 TO 20111017;REEL/FRAME:027104/0413 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |