US20120028956A1 - Bicyclic mglur5 positive allosteric modulators and methods of making and using same - Google Patents
Bicyclic mglur5 positive allosteric modulators and methods of making and using same Download PDFInfo
- Publication number
- US20120028956A1 US20120028956A1 US13/269,977 US201113269977A US2012028956A1 US 20120028956 A1 US20120028956 A1 US 20120028956A1 US 201113269977 A US201113269977 A US 201113269977A US 2012028956 A1 US2012028956 A1 US 2012028956A1
- Authority
- US
- United States
- Prior art keywords
- optionally substituted
- carbon atoms
- organic radical
- amino
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 94
- 230000003281 allosteric effect Effects 0.000 title abstract description 29
- 125000002619 bicyclic group Chemical group 0.000 title abstract description 3
- 150000001875 compounds Chemical class 0.000 claims abstract description 247
- 108010065028 Metabotropic Glutamate 5 Receptor Proteins 0.000 claims abstract description 66
- 102000012777 Metabotropic Glutamate 5 Receptor Human genes 0.000 claims abstract description 66
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims abstract description 46
- 229930195712 glutamate Natural products 0.000 claims abstract description 44
- 208000020016 psychiatric disease Diseases 0.000 claims abstract description 19
- 208000012902 Nervous system disease Diseases 0.000 claims abstract description 18
- 230000004064 dysfunction Effects 0.000 claims abstract description 17
- 230000000926 neurological effect Effects 0.000 claims abstract description 17
- 125000004432 carbon atom Chemical group C* 0.000 claims description 309
- 229910052739 hydrogen Inorganic materials 0.000 claims description 219
- 239000001257 hydrogen Substances 0.000 claims description 219
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 209
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 163
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 121
- 229910052736 halogen Inorganic materials 0.000 claims description 118
- 150000002367 halogens Chemical group 0.000 claims description 118
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 117
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 115
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 115
- 125000001072 heteroaryl group Chemical group 0.000 claims description 112
- 125000004366 heterocycloalkenyl group Chemical group 0.000 claims description 96
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 96
- 125000003107 substituted aryl group Chemical group 0.000 claims description 93
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 73
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 claims description 73
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 72
- 150000003839 salts Chemical class 0.000 claims description 70
- 125000006716 (C1-C6) heteroalkyl group Chemical group 0.000 claims description 69
- 102000016193 Metabotropic glutamate receptors Human genes 0.000 claims description 58
- 108010010914 Metabotropic glutamate receptors Proteins 0.000 claims description 58
- 125000005415 substituted alkoxy group Chemical group 0.000 claims description 57
- 125000004644 alkyl sulfinyl group Chemical group 0.000 claims description 55
- 125000004390 alkyl sulfonyl group Chemical group 0.000 claims description 55
- 125000004001 thioalkyl group Chemical group 0.000 claims description 55
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 54
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 54
- 150000003857 carboxamides Chemical class 0.000 claims description 54
- 230000000694 effects Effects 0.000 claims description 54
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 claims description 52
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 51
- 150000001204 N-oxides Chemical class 0.000 claims description 50
- 229910052757 nitrogen Inorganic materials 0.000 claims description 49
- 241000124008 Mammalia Species 0.000 claims description 48
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 42
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 35
- 208000035475 disorder Diseases 0.000 claims description 34
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 33
- 239000000376 reactant Substances 0.000 claims description 33
- 150000004820 halides Chemical class 0.000 claims description 32
- 230000004044 response Effects 0.000 claims description 32
- 125000002577 pseudohalo group Chemical group 0.000 claims description 27
- 125000000623 heterocyclic group Chemical group 0.000 claims description 21
- 230000008878 coupling Effects 0.000 claims description 20
- 238000010168 coupling process Methods 0.000 claims description 20
- 238000005859 coupling reaction Methods 0.000 claims description 20
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 17
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 16
- 230000002152 alkylating effect Effects 0.000 claims description 15
- MXOQNVMDKHLYCZ-UHFFFAOYSA-N benzamidoxime Chemical compound ON=C(N)C1=CC=CC=C1 MXOQNVMDKHLYCZ-UHFFFAOYSA-N 0.000 claims description 14
- 125000002837 carbocyclic group Chemical group 0.000 claims description 14
- 201000000980 schizophrenia Diseases 0.000 claims description 14
- 208000028017 Psychotic disease Diseases 0.000 claims description 13
- YWPMKTWUFVOFPL-UHFFFAOYSA-N 3,4-dihydro-2h-isoquinolin-1-one Chemical class C1=CC=C2C(=O)NCCC2=C1 YWPMKTWUFVOFPL-UHFFFAOYSA-N 0.000 claims description 12
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims description 11
- 125000006729 (C2-C5) alkenyl group Chemical group 0.000 claims description 11
- 125000006730 (C2-C5) alkynyl group Chemical group 0.000 claims description 11
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 11
- 208000019901 Anxiety disease Diseases 0.000 claims description 10
- 208000002193 Pain Diseases 0.000 claims description 9
- 230000003389 potentiating effect Effects 0.000 claims description 8
- 101001032838 Rattus norvegicus Metabotropic glutamate receptor 5 Proteins 0.000 claims description 7
- 125000003368 amide group Chemical group 0.000 claims description 7
- 230000036506 anxiety Effects 0.000 claims description 7
- 208000019906 panic disease Diseases 0.000 claims description 7
- 150000003951 lactams Chemical class 0.000 claims description 6
- 208000024714 major depressive disease Diseases 0.000 claims description 6
- 206010012289 Dementia Diseases 0.000 claims description 5
- 208000019695 Migraine disease Diseases 0.000 claims description 5
- 125000005843 halogen group Chemical group 0.000 claims description 5
- 206010027599 migraine Diseases 0.000 claims description 5
- 208000020925 Bipolar disease Diseases 0.000 claims description 4
- 206010048962 Brain oedema Diseases 0.000 claims description 4
- 208000019022 Mood disease Diseases 0.000 claims description 4
- 208000008589 Obesity Diseases 0.000 claims description 4
- 230000007000 age related cognitive decline Effects 0.000 claims description 4
- 208000006752 brain edema Diseases 0.000 claims description 4
- 206010015037 epilepsy Diseases 0.000 claims description 4
- 210000003292 kidney cell Anatomy 0.000 claims description 4
- 125000005647 linker group Chemical group 0.000 claims description 4
- 201000003631 narcolepsy Diseases 0.000 claims description 4
- 235000020824 obesity Nutrition 0.000 claims description 4
- 208000019116 sleep disease Diseases 0.000 claims description 4
- 208000017194 Affective disease Diseases 0.000 claims description 3
- 208000031091 Amnestic disease Diseases 0.000 claims description 3
- 208000021465 Brief psychotic disease Diseases 0.000 claims description 3
- 206010008748 Chorea Diseases 0.000 claims description 3
- 206010012218 Delirium Diseases 0.000 claims description 3
- 208000024254 Delusional disease Diseases 0.000 claims description 3
- 208000020401 Depressive disease Diseases 0.000 claims description 3
- 208000014094 Dystonic disease Diseases 0.000 claims description 3
- 208000030814 Eating disease Diseases 0.000 claims description 3
- 208000019454 Feeding and Eating disease Diseases 0.000 claims description 3
- 208000016285 Movement disease Diseases 0.000 claims description 3
- 206010033664 Panic attack Diseases 0.000 claims description 3
- 208000020186 Schizophreniform disease Diseases 0.000 claims description 3
- 208000012601 choreatic disease Diseases 0.000 claims description 3
- 206010012601 diabetes mellitus Diseases 0.000 claims description 3
- 235000014632 disordered eating Nutrition 0.000 claims description 3
- 208000010118 dystonia Diseases 0.000 claims description 3
- 201000003104 endogenous depression Diseases 0.000 claims description 3
- 208000002851 paranoid schizophrenia Diseases 0.000 claims description 3
- 208000022610 schizoaffective disease Diseases 0.000 claims description 3
- 208000020685 sleep-wake disease Diseases 0.000 claims description 3
- 208000011117 substance-related disease Diseases 0.000 claims description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 claims 15
- 125000000467 secondary amino group Chemical class [H]N([*:1])[*:2] 0.000 claims 4
- 125000005462 imide group Chemical group 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 44
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 28
- 208000025966 Neurological disease Diseases 0.000 abstract description 11
- BOVJHNHRQNCDEQ-UHFFFAOYSA-N 6-(2-phenylethynyl)-3,4-dihydro-2h-isoquinolin-1-one Chemical compound C=1C=C2C(=O)NCCC2=CC=1C#CC1=CC=CC=C1 BOVJHNHRQNCDEQ-UHFFFAOYSA-N 0.000 abstract description 7
- 230000000670 limiting effect Effects 0.000 abstract description 7
- 238000010189 synthetic method Methods 0.000 abstract description 2
- 150000003254 radicals Chemical class 0.000 description 238
- 150000003573 thiols Chemical group 0.000 description 108
- -1 bicyclic compound Chemical class 0.000 description 106
- 0 *N1C(=O)C2=C(C=C(*[5*])C=C2)C1(*)* Chemical compound *N1C(=O)C2=C(C=C(*[5*])C=C2)C1(*)* 0.000 description 99
- 125000001424 substituent group Chemical group 0.000 description 53
- 239000000556 agonist Substances 0.000 description 42
- 229940049906 glutamate Drugs 0.000 description 39
- 125000003118 aryl group Chemical group 0.000 description 37
- 229910052799 carbon Inorganic materials 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 30
- 125000000217 alkyl group Chemical group 0.000 description 26
- 125000003545 alkoxy group Chemical group 0.000 description 24
- 125000000547 substituted alkyl group Chemical group 0.000 description 23
- 239000003814 drug Substances 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 125000003342 alkenyl group Chemical group 0.000 description 18
- 125000000304 alkynyl group Chemical group 0.000 description 18
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 17
- 201000010099 disease Diseases 0.000 description 17
- 239000000047 product Substances 0.000 description 16
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 16
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 15
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical class C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 15
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 14
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 14
- 229940079593 drug Drugs 0.000 description 14
- 239000007787 solid Substances 0.000 description 14
- 239000004480 active ingredient Substances 0.000 description 13
- 230000008484 agonism Effects 0.000 description 13
- 230000036961 partial effect Effects 0.000 description 13
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 12
- 239000003937 drug carrier Substances 0.000 description 12
- 125000005842 heteroatom Chemical group 0.000 description 12
- 125000004076 pyridyl group Chemical group 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 239000000543 intermediate Substances 0.000 description 11
- PXZQEOJJUGGUIB-UHFFFAOYSA-N isoindolin-1-one Chemical class C1=CC=C2C(=O)NCC2=C1 PXZQEOJJUGGUIB-UHFFFAOYSA-N 0.000 description 11
- 150000003335 secondary amines Chemical class 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 239000002585 base Substances 0.000 description 10
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 10
- 150000002148 esters Chemical class 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 239000000969 carrier Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- QGNQEODJYRGEJX-UHFFFAOYSA-N 4h-isoquinoline-1,3-dione Chemical class C1=CC=C2C(=O)NC(=O)CC2=C1 QGNQEODJYRGEJX-UHFFFAOYSA-N 0.000 description 8
- WJNKJYJCWXMBNV-UHFFFAOYSA-N 5-bromo-2,3-dihydroisoindol-1-one Chemical compound BrC1=CC=C2C(=O)NCC2=C1 WJNKJYJCWXMBNV-UHFFFAOYSA-N 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000001575 pathological effect Effects 0.000 description 8
- 229920000728 polyester Polymers 0.000 description 8
- 102000005962 receptors Human genes 0.000 description 8
- 108020003175 receptors Proteins 0.000 description 8
- WDZUVAWJPSCQMY-UHFFFAOYSA-N 6-[2-(3-methylphenyl)ethynyl]-3,4-dihydro-2h-isoquinolin-1-one Chemical compound CC1=CC=CC(C#CC=2C=C3CCNC(=O)C3=CC=2)=C1 WDZUVAWJPSCQMY-UHFFFAOYSA-N 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 7
- 102000004868 N-Methyl-D-Aspartate Receptors Human genes 0.000 description 7
- 108090001041 N-Methyl-D-Aspartate Receptors Proteins 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 150000001350 alkyl halides Chemical class 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 235000019439 ethyl acetate Nutrition 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 239000011574 phosphorus Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 230000002265 prevention Effects 0.000 description 7
- 150000003141 primary amines Chemical class 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 6
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 6
- AMCCIZZHSRTGNW-UHFFFAOYSA-N 2-(cyclopropylmethyl)-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-1-one Chemical compound C1CC2=CC(C#CC=3C=CC=CC=3)=CC=C2C(=O)N1CC1CC1 AMCCIZZHSRTGNW-UHFFFAOYSA-N 0.000 description 6
- AVUGQCGDCQGXBZ-UHFFFAOYSA-N 2-methyl-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-1-one Chemical compound C=1C=C2C(=O)N(C)CCC2=CC=1C#CC1=CC=CC=C1 AVUGQCGDCQGXBZ-UHFFFAOYSA-N 0.000 description 6
- CMIGNZXEBWFSIG-UHFFFAOYSA-N 4-bromo-2-(hydroxymethyl)benzamide Chemical compound NC(=O)C1=CC=C(Br)C=C1CO CMIGNZXEBWFSIG-UHFFFAOYSA-N 0.000 description 6
- CRMBUIXNAOQITN-UHFFFAOYSA-N 6-[2-(2,4-difluorophenyl)ethynyl]-3,4-dihydro-2h-isoquinolin-1-one Chemical compound FC1=CC(F)=CC=C1C#CC1=CC=C(C(=O)NCC2)C2=C1 CRMBUIXNAOQITN-UHFFFAOYSA-N 0.000 description 6
- HTSLACJPGNOCFH-UHFFFAOYSA-N 6-[2-(3,5-difluorophenyl)ethynyl]-3,4-dihydro-2h-isoquinolin-1-one Chemical compound FC1=CC(F)=CC(C#CC=2C=C3CCNC(=O)C3=CC=2)=C1 HTSLACJPGNOCFH-UHFFFAOYSA-N 0.000 description 6
- IWTCUKCWSWEELG-UHFFFAOYSA-N 6-[2-(4-chlorophenyl)ethynyl]-3,4-dihydro-2h-isoquinolin-1-one Chemical compound C1=CC(Cl)=CC=C1C#CC1=CC=C(C(=O)NCC2)C2=C1 IWTCUKCWSWEELG-UHFFFAOYSA-N 0.000 description 6
- IVRWALPRJLVBSN-UHFFFAOYSA-N 6-[2-(4-fluorophenyl)ethynyl]-3,4-dihydro-2h-isoquinolin-1-one Chemical compound C1=CC(F)=CC=C1C#CC1=CC=C(C(=O)NCC2)C2=C1 IVRWALPRJLVBSN-UHFFFAOYSA-N 0.000 description 6
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 6
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 6
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 6
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 6
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 6
- 150000001299 aldehydes Chemical class 0.000 description 6
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 150000001540 azides Chemical class 0.000 description 6
- PXXJHWLDUBFPOL-UHFFFAOYSA-N benzamidine Chemical group NC(=N)C1=CC=CC=C1 PXXJHWLDUBFPOL-UHFFFAOYSA-N 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 125000006617 triphenylamine group Chemical group 0.000 description 6
- RELVPCCGNHCTRU-UHFFFAOYSA-N 2-(cyclobutylmethyl)-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-1-one Chemical compound C1CC2=CC(C#CC=3C=CC=CC=3)=CC=C2C(=O)N1CC1CCC1 RELVPCCGNHCTRU-UHFFFAOYSA-N 0.000 description 5
- QJWFKIVCNFKJIA-UHFFFAOYSA-N 2-[1-oxo-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-2-yl]acetamide Chemical compound C=1C=C2C(=O)N(CC(=O)N)CCC2=CC=1C#CC1=CC=CC=C1 QJWFKIVCNFKJIA-UHFFFAOYSA-N 0.000 description 5
- BCJDKXJKMWLLJE-UHFFFAOYSA-N 2-[2-(4-hydroxypiperidin-1-yl)-2-oxoethyl]-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-1-one Chemical compound C1CC(O)CCN1C(=O)CN1C(=O)C2=CC=C(C#CC=3C=CC=CC=3)C=C2CC1 BCJDKXJKMWLLJE-UHFFFAOYSA-N 0.000 description 5
- KMZKPNYIZYXFMM-UHFFFAOYSA-N 2-[2-(4-hydroxypiperidin-1-yl)ethyl]-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-1-one Chemical compound C1CC(O)CCN1CCN1C(=O)C2=CC=C(C#CC=3C=CC=CC=3)C=C2CC1 KMZKPNYIZYXFMM-UHFFFAOYSA-N 0.000 description 5
- QLNMGDBQBWVIHV-UHFFFAOYSA-N 2-[2-(azetidin-1-yl)ethyl]-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-1-one Chemical compound C1CC2=CC(C#CC=3C=CC=CC=3)=CC=C2C(=O)N1CCN1CCC1 QLNMGDBQBWVIHV-UHFFFAOYSA-N 0.000 description 5
- JDUUUOFISWZLLP-UHFFFAOYSA-N 2-benzyl-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-1-one Chemical compound C1CC2=CC(C#CC=3C=CC=CC=3)=CC=C2C(=O)N1CC1=CC=CC=C1 JDUUUOFISWZLLP-UHFFFAOYSA-N 0.000 description 5
- RTUKPSOCDCOAMX-UHFFFAOYSA-N 5-(2-phenylethynyl)isoindole-1,3-dione Chemical compound C=1C=C2C(=O)NC(=O)C2=CC=1C#CC1=CC=CC=C1 RTUKPSOCDCOAMX-UHFFFAOYSA-N 0.000 description 5
- CKYMPVYCUBULHZ-UHFFFAOYSA-N 5-[2-(2,3-difluorophenyl)ethynyl]-2,3-dihydroisoindol-1-one Chemical compound FC1=CC=CC(C#CC=2C=C3CNC(=O)C3=CC=2)=C1F CKYMPVYCUBULHZ-UHFFFAOYSA-N 0.000 description 5
- ODMRUSZTWJEVMY-UHFFFAOYSA-N 6-(2-phenylethynyl)-2-propyl-3,4-dihydroisoquinolin-1-one Chemical compound C=1C=C2C(=O)N(CCC)CCC2=CC=1C#CC1=CC=CC=C1 ODMRUSZTWJEVMY-UHFFFAOYSA-N 0.000 description 5
- QKAAYQOZQLVCJX-UHFFFAOYSA-N 6-(2-pyridin-4-ylethynyl)-3,4-dihydro-2h-isoquinolin-1-one Chemical compound C=1C=C2C(=O)NCCC2=CC=1C#CC1=CC=NC=C1 QKAAYQOZQLVCJX-UHFFFAOYSA-N 0.000 description 5
- DNVTWDKKJYJBDU-UHFFFAOYSA-N 6-[2-(2-fluorophenyl)ethynyl]-3,4-dihydro-2h-isoquinolin-1-one Chemical compound FC1=CC=CC=C1C#CC1=CC=C(C(=O)NCC2)C2=C1 DNVTWDKKJYJBDU-UHFFFAOYSA-N 0.000 description 5
- WDJVDWUIAFCQAL-UHFFFAOYSA-N 6-[2-(2-methylphenyl)ethynyl]-3,4-dihydro-2h-isoquinolin-1-one Chemical compound CC1=CC=CC=C1C#CC1=CC=C(C(=O)NCC2)C2=C1 WDJVDWUIAFCQAL-UHFFFAOYSA-N 0.000 description 5
- PTHNDXWOSDSQQZ-UHFFFAOYSA-N 6-[2-(3-chlorophenyl)ethynyl]-3,4-dihydro-2h-isoquinolin-1-one Chemical compound ClC1=CC=CC(C#CC=2C=C3CCNC(=O)C3=CC=2)=C1 PTHNDXWOSDSQQZ-UHFFFAOYSA-N 0.000 description 5
- IQPXKWOZCDYATK-UHFFFAOYSA-N 6-[2-(4-fluoro-3-methylphenyl)ethynyl]-3,4-dihydro-2h-isoquinolin-1-one Chemical compound C1=C(F)C(C)=CC(C#CC=2C=C3CCNC(=O)C3=CC=2)=C1 IQPXKWOZCDYATK-UHFFFAOYSA-N 0.000 description 5
- OKZLWGVWDIAQPK-UHFFFAOYSA-N 6-[2-[3-(trifluoromethyl)phenyl]ethynyl]-3,4-dihydro-2h-isoquinolin-1-one Chemical compound FC(F)(F)C1=CC=CC(C#CC=2C=C3CCNC(=O)C3=CC=2)=C1 OKZLWGVWDIAQPK-UHFFFAOYSA-N 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- 102000006541 Ionotropic Glutamate Receptors Human genes 0.000 description 5
- 108010008812 Ionotropic Glutamate Receptors Proteins 0.000 description 5
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000002671 adjuvant Substances 0.000 description 5
- 150000001345 alkine derivatives Chemical class 0.000 description 5
- QQQABSSDJJIWNF-UHFFFAOYSA-N benzyl 2-[1-oxo-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-2-yl]acetate Chemical compound C=1C=CC=CC=1COC(=O)CN(C(C1=CC=2)=O)CCC1=CC=2C#CC1=CC=CC=C1 QQQABSSDJJIWNF-UHFFFAOYSA-N 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 5
- 210000003169 central nervous system Anatomy 0.000 description 5
- 229960003920 cocaine Drugs 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000003326 hypnotic agent Substances 0.000 description 5
- 230000000147 hypnotic effect Effects 0.000 description 5
- 150000003949 imides Chemical group 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 231100000252 nontoxic Toxicity 0.000 description 5
- 230000003000 nontoxic effect Effects 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- 230000001242 postsynaptic effect Effects 0.000 description 5
- 229940125723 sedative agent Drugs 0.000 description 5
- 239000000932 sedative agent Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 4
- KWTSXDURSIMDCE-QMMMGPOBSA-N (S)-amphetamine Chemical compound C[C@H](N)CC1=CC=CC=C1 KWTSXDURSIMDCE-QMMMGPOBSA-N 0.000 description 4
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Chemical compound C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 4
- NAAPGGVKJGZAIT-UHFFFAOYSA-N 2-(2-morpholin-4-yl-2-oxoethyl)-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-1-one Chemical compound C1COCCN1C(=O)CN(C(C1=CC=2)=O)CCC1=CC=2C#CC1=CC=CC=C1 NAAPGGVKJGZAIT-UHFFFAOYSA-N 0.000 description 4
- IMRFBYOXNLNSCH-UHFFFAOYSA-N 2-(2-morpholin-4-ylethyl)-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-1-one Chemical compound C1CC2=CC(C#CC=3C=CC=CC=3)=CC=C2C(=O)N1CCN1CCOCC1 IMRFBYOXNLNSCH-UHFFFAOYSA-N 0.000 description 4
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- CMSWIWJBEZTKAF-UHFFFAOYSA-N 5-(2-phenylethynyl)-2,3-dihydroisoindol-1-one Chemical compound C=1C=C2C(=O)NCC2=CC=1C#CC1=CC=CC=C1 CMSWIWJBEZTKAF-UHFFFAOYSA-N 0.000 description 4
- VOBGVCYQSAKPDU-UHFFFAOYSA-N 5-[2-(3,4-difluorophenyl)ethynyl]-2,3-dihydroisoindol-1-one Chemical compound C1=C(F)C(F)=CC=C1C#CC1=CC=C(C(=O)NC2)C2=C1 VOBGVCYQSAKPDU-UHFFFAOYSA-N 0.000 description 4
- GPVPJZVWVWATKU-UHFFFAOYSA-N 6-[2-(2-chlorophenyl)ethynyl]-3,4-dihydro-2h-isoquinolin-1-one Chemical compound ClC1=CC=CC=C1C#CC1=CC=C(C(=O)NCC2)C2=C1 GPVPJZVWVWATKU-UHFFFAOYSA-N 0.000 description 4
- SPIIEWMQSJAYAN-UHFFFAOYSA-N 6-[2-(3-methoxyphenyl)ethynyl]-3,4-dihydro-2h-isoquinolin-1-one Chemical compound COC1=CC=CC(C#CC=2C=C3CCNC(=O)C3=CC=2)=C1 SPIIEWMQSJAYAN-UHFFFAOYSA-N 0.000 description 4
- GDUHETXGOMJGEZ-UHFFFAOYSA-N 6-[2-(4-methoxyphenyl)ethynyl]-3,4-dihydro-2h-isoquinolin-1-one Chemical compound C1=CC(OC)=CC=C1C#CC1=CC=C(C(=O)NCC2)C2=C1 GDUHETXGOMJGEZ-UHFFFAOYSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 4
- 238000005787 Castro-Stephens coupling reaction Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- 238000003477 Sonogashira cross-coupling reaction Methods 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 229940025084 amphetamine Drugs 0.000 description 4
- 229940049706 benzodiazepine Drugs 0.000 description 4
- 150000001557 benzodiazepines Chemical class 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 239000012267 brine Substances 0.000 description 4
- 229910052794 bromium Inorganic materials 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 239000006274 endogenous ligand Substances 0.000 description 4
- VLXYTRKJGGLGJF-UHFFFAOYSA-N ethyl 2-[1-oxo-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-2-yl]propanoate Chemical compound C=1C=C2C(=O)N(C(C)C(=O)OCC)CCC2=CC=1C#CC1=CC=CC=C1 VLXYTRKJGGLGJF-UHFFFAOYSA-N 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 230000035863 hyperlocomotion Effects 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 4
- NKAORBAJBBPLBZ-UHFFFAOYSA-N n-(2-methoxyethyl)-2-[1-oxo-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-2-yl]acetamide Chemical compound C=1C=C2C(=O)N(CC(=O)NCCOC)CCC2=CC=1C#CC1=CC=CC=C1 NKAORBAJBBPLBZ-UHFFFAOYSA-N 0.000 description 4
- CZCDYXUPLHOKDY-UHFFFAOYSA-N n-(cyclopropylmethyl)-2-[1-oxo-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-2-yl]acetamide Chemical compound C1CC1CNC(=O)CN(C(C1=CC=2)=O)CCC1=CC=2C#CC1=CC=CC=C1 CZCDYXUPLHOKDY-UHFFFAOYSA-N 0.000 description 4
- FUBPFLJTQLUSPD-UHFFFAOYSA-N n-[2-(dimethylamino)ethyl]-2-[1-oxo-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-2-yl]acetamide Chemical compound C=1C=C2C(=O)N(CC(=O)NCCN(C)C)CCC2=CC=1C#CC1=CC=CC=C1 FUBPFLJTQLUSPD-UHFFFAOYSA-N 0.000 description 4
- HJKUSMPUBJJOJP-UHFFFAOYSA-N n-cyclopropyl-2-[1-oxo-6-(2-phenylethynyl)-3,4-dihydroisoquinolin-2-yl]acetamide Chemical compound C1CC1NC(=O)CN(C(C1=CC=2)=O)CCC1=CC=2C#CC1=CC=CC=C1 HJKUSMPUBJJOJP-UHFFFAOYSA-N 0.000 description 4
- 229960002715 nicotine Drugs 0.000 description 4
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 4
- 229940127240 opiate Drugs 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 229910000104 sodium hydride Inorganic materials 0.000 description 4
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 235000019505 tobacco product Nutrition 0.000 description 4
- BBVIDBNAYOIXOE-UHFFFAOYSA-N 1,2,4-oxadiazole Chemical group C=1N=CON=1 BBVIDBNAYOIXOE-UHFFFAOYSA-N 0.000 description 3
- VLIWMQMEWIHKGI-UHFFFAOYSA-N 2-methyl-5-(2-phenylethynyl)isoindole-1,3-dione Chemical compound C1=C2C(=O)N(C)C(=O)C2=CC=C1C#CC1=CC=CC=C1 VLIWMQMEWIHKGI-UHFFFAOYSA-N 0.000 description 3
- UPGRRPUXXWPEMV-UHFFFAOYSA-N 5-(2-phenylethynyl)-2-benzofuran-1,3-dione Chemical class C=1C=C2C(=O)OC(=O)C2=CC=1C#CC1=CC=CC=C1 UPGRRPUXXWPEMV-UHFFFAOYSA-N 0.000 description 3
- IUSPXLCLQIZFHL-UHFFFAOYSA-N 5-bromo-3h-2-benzofuran-1-one Chemical class BrC1=CC=C2C(=O)OCC2=C1 IUSPXLCLQIZFHL-UHFFFAOYSA-N 0.000 description 3
- URDGCPQHZSDBRG-UHFFFAOYSA-N 6-bromo-1,2,3,4-tetrahydroisoquinoline Chemical class C1NCCC2=CC(Br)=CC=C21 URDGCPQHZSDBRG-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 3
- 206010012335 Dependence Diseases 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- 208000011688 Generalised anxiety disease Diseases 0.000 description 3
- 208000021384 Obsessive-Compulsive disease Diseases 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical group [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000013626 chemical specie Substances 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 125000004850 cyclobutylmethyl group Chemical group C1(CCC1)C* 0.000 description 3
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 3
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 3
- 239000012039 electrophile Substances 0.000 description 3
- YFXCNIVBAVFOBX-UHFFFAOYSA-N ethenylboronic acid Chemical compound OB(O)C=C YFXCNIVBAVFOBX-UHFFFAOYSA-N 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 208000029364 generalized anxiety disease Diseases 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 150000002596 lactones Chemical class 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- WFMJTCLDCCCFHE-UHFFFAOYSA-N n-(2-methoxyethyl)acetamide Chemical compound COCCNC(C)=O WFMJTCLDCCCFHE-UHFFFAOYSA-N 0.000 description 3
- GDQTVPUAZAECHX-UHFFFAOYSA-N n-(cyclopropylmethyl)acetamide Chemical compound CC(=O)NCC1CC1 GDQTVPUAZAECHX-UHFFFAOYSA-N 0.000 description 3
- 239000002858 neurotransmitter agent Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 125000004043 oxo group Chemical group O=* 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid group Chemical group C(CCCCCCCCC(=O)O)(=O)O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 3
- 239000012312 sodium hydride Substances 0.000 description 3
- 238000012453 sprague-dawley rat model Methods 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- UGUHFDPGDQDVGX-UHFFFAOYSA-N 1,2,3-thiadiazole Chemical compound C1=CSN=N1 UGUHFDPGDQDVGX-UHFFFAOYSA-N 0.000 description 2
- HTJMXYRLEDBSLT-UHFFFAOYSA-N 1,2,4,5-tetrazine Chemical compound C1=NN=CN=N1 HTJMXYRLEDBSLT-UHFFFAOYSA-N 0.000 description 2
- 150000005071 1,2,4-oxadiazoles Chemical class 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- HOOWCUZPEFNHDT-UHFFFAOYSA-N 2-amino-2-(3,5-dihydroxyphenyl)acetic acid Chemical compound OC(=O)C(N)C1=CC(O)=CC(O)=C1 HOOWCUZPEFNHDT-UHFFFAOYSA-N 0.000 description 2
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 2
- PFPZLALCGJVWCA-UHFFFAOYSA-N 5-[2-(3-fluorophenyl)ethynyl]-2,3-dihydroisoindol-1-one Chemical compound FC1=CC=CC(C#CC=2C=C3CNC(=O)C3=CC=2)=C1 PFPZLALCGJVWCA-UHFFFAOYSA-N 0.000 description 2
- QMPLQUHHKDSCPR-UHFFFAOYSA-N 6-[2-[4-(dimethylamino)phenyl]ethynyl]-3,4-dihydro-2h-isoquinolin-1-one Chemical compound C1=CC(N(C)C)=CC=C1C#CC1=CC=C(C(=O)NCC2)C2=C1 QMPLQUHHKDSCPR-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- 208000008811 Agoraphobia Diseases 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- HFECCAIIBPBIKY-UHFFFAOYSA-N CC(=O)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.CC1CCN(CCN2CCC3=C(C=CC(C#CC4=CC=CC=C4)=C3)C2=O)CC1.CCOC(=O)C(C)N1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.O=C(CC1CC1)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.O=C(CCC1CC1)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.O=C(CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O)OCC1=CC=CC=C1.O=C1C2=C(C=C(C#CC3=CC=CC=C3)C=C2)CCN1CCN1CCCCC1 Chemical compound CC(=O)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.CC1CCN(CCN2CCC3=C(C=CC(C#CC4=CC=CC=C4)=C3)C2=O)CC1.CCOC(=O)C(C)N1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.O=C(CC1CC1)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.O=C(CCC1CC1)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.O=C(CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O)OCC1=CC=CC=C1.O=C1C2=C(C=C(C#CC3=CC=CC=C3)C=C2)CCN1CCN1CCCCC1 HFECCAIIBPBIKY-UHFFFAOYSA-N 0.000 description 2
- BNBQWTJZXOZYRC-UHFFFAOYSA-N CC1=C(F)C=CC(C#CC2=CC3=C(C=C2)C(=O)CCC3)=C1.CC1=CC=C(C#CC2=CC3=C(C=C2)C(=O)CCC3)C=C1.CC1=CC=CC(C#CC2=CC3=C(C=C2)C(=O)CCC3)=C1.O=C1CCCC2=C1C=CC(C#CC1=C(Cl)C=CC=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=C(F)C=CC=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC=C(Cl)C=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC=C(F)C=C1)=C2 Chemical compound CC1=C(F)C=CC(C#CC2=CC3=C(C=C2)C(=O)CCC3)=C1.CC1=CC=C(C#CC2=CC3=C(C=C2)C(=O)CCC3)C=C1.CC1=CC=CC(C#CC2=CC3=C(C=C2)C(=O)CCC3)=C1.O=C1CCCC2=C1C=CC(C#CC1=C(Cl)C=CC=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=C(F)C=CC=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC=C(Cl)C=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC=C(F)C=C1)=C2 BNBQWTJZXOZYRC-UHFFFAOYSA-N 0.000 description 2
- LNXXIUOZWUKNET-UHFFFAOYSA-N CC1=CC=C(C#CC2=CC3=C(C=C2)C(=O)NCC3)C=C1 Chemical compound CC1=CC=C(C#CC2=CC3=C(C=C2)C(=O)NCC3)C=C1 LNXXIUOZWUKNET-UHFFFAOYSA-N 0.000 description 2
- GEFLRGWXKIQOHI-UHFFFAOYSA-N CC1=CC=CC(C#CC2=CC3=C(C=C2)C(=O)CCC3)=C1.CC1=CC=CC=C1C#CC1=CC2=C(C=C1)C(=O)CCC2.CC1CCN(C(=O)CN2CCC3=C(C=CC(C#CC4=CC=CC=C4)=C3)C2=O)CC1.CN(C)CCCC(=O)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.COCCCC(=O)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.O=C(CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O)N1CCCCC1 Chemical compound CC1=CC=CC(C#CC2=CC3=C(C=C2)C(=O)CCC3)=C1.CC1=CC=CC=C1C#CC1=CC2=C(C=C1)C(=O)CCC2.CC1CCN(C(=O)CN2CCC3=C(C=CC(C#CC4=CC=CC=C4)=C3)C2=O)CC1.CN(C)CCCC(=O)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.COCCCC(=O)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.O=C(CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O)N1CCCCC1 GEFLRGWXKIQOHI-UHFFFAOYSA-N 0.000 description 2
- QYJGPJJTIWSMBX-UHFFFAOYSA-N CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.O=C1C2=C(C=C(C#CC3=CC=CC=C3)C=C2)CCN1CC1=CC=CC=C1.O=C1C2=C(C=C(C#CC3=CC=CC=C3)C=C2)CCN1CC1CC1.O=C1C2=C(C=C(C#CC3=CC=CC=C3)C=C2)CCN1CC1CCC1.O=C1C2=C(C=C(C#CC3=CC=CC=C3)C=C2)CCN1CCN1CCC1.O=C1CCCC2=C1C=CC(C#CC1=CC=CC=C1)=C2 Chemical compound CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.O=C1C2=C(C=C(C#CC3=CC=CC=C3)C=C2)CCN1CC1=CC=CC=C1.O=C1C2=C(C=C(C#CC3=CC=CC=C3)C=C2)CCN1CC1CC1.O=C1C2=C(C=C(C#CC3=CC=CC=C3)C=C2)CCN1CC1CCC1.O=C1C2=C(C=C(C#CC3=CC=CC=C3)C=C2)CCN1CCN1CCC1.O=C1CCCC2=C1C=CC(C#CC1=CC=CC=C1)=C2 QYJGPJJTIWSMBX-UHFFFAOYSA-N 0.000 description 2
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 2
- ASNFTDCKZKHJSW-UHFFFAOYSA-N DL-Quisqualic acid Natural products OC(=O)C(N)CN1OC(=O)NC1=O ASNFTDCKZKHJSW-UHFFFAOYSA-N 0.000 description 2
- UEXCJVNBTNXOEH-UHFFFAOYSA-N Ethynylbenzene Chemical group C#CC1=CC=CC=C1 UEXCJVNBTNXOEH-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 102000018899 Glutamate Receptors Human genes 0.000 description 2
- 108010027915 Glutamate Receptors Proteins 0.000 description 2
- 101150087728 Grm5 gene Proteins 0.000 description 2
- 238000007341 Heck reaction Methods 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 108090000862 Ion Channels Proteins 0.000 description 2
- 102000004310 Ion Channels Human genes 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 102100036837 Metabotropic glutamate receptor 2 Human genes 0.000 description 2
- 102100038352 Metabotropic glutamate receptor 3 Human genes 0.000 description 2
- 102100038354 Metabotropic glutamate receptor 4 Human genes 0.000 description 2
- 102100038357 Metabotropic glutamate receptor 5 Human genes 0.000 description 2
- 102100038300 Metabotropic glutamate receptor 6 Human genes 0.000 description 2
- 102100038294 Metabotropic glutamate receptor 7 Human genes 0.000 description 2
- 102100037636 Metabotropic glutamate receptor 8 Human genes 0.000 description 2
- 238000006751 Mitsunobu reaction Methods 0.000 description 2
- 229940123685 Monoamine oxidase inhibitor Drugs 0.000 description 2
- 229940127523 NMDA Receptor Antagonists Drugs 0.000 description 2
- 229910004749 OS(O)2 Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N Pd(PPh3)4 Substances [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- ASNFTDCKZKHJSW-REOHCLBHSA-N Quisqualic acid Chemical compound OC(=O)[C@@H](N)CN1OC(=O)NC1=O ASNFTDCKZKHJSW-REOHCLBHSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000006619 Stille reaction Methods 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 238000006069 Suzuki reaction reaction Methods 0.000 description 2
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 2
- DPOPAJRDYZGTIR-UHFFFAOYSA-N Tetrazine Chemical compound C1=CN=NN=N1 DPOPAJRDYZGTIR-UHFFFAOYSA-N 0.000 description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001344 alkene derivatives Chemical class 0.000 description 2
- 125000005431 alkyl carboxamide group Chemical group 0.000 description 2
- 125000005119 alkyl cycloalkyl group Chemical group 0.000 description 2
- 125000005233 alkylalcohol group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010640 amide synthesis reaction Methods 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000000164 antipsychotic agent Substances 0.000 description 2
- 229940005529 antipsychotics Drugs 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000012131 assay buffer Substances 0.000 description 2
- HONIICLYMWZJFZ-UHFFFAOYSA-N azetidine Chemical compound C1CNC1 HONIICLYMWZJFZ-UHFFFAOYSA-N 0.000 description 2
- 150000005347 biaryls Chemical group 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical group C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 125000005432 dialkylcarboxamide group Chemical group 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 238000007877 drug screening Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000002964 excitative effect Effects 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 230000000848 glutamatergic effect Effects 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 2
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 108010038421 metabotropic glutamate receptor 2 Proteins 0.000 description 2
- 108010038445 metabotropic glutamate receptor 3 Proteins 0.000 description 2
- 108010038422 metabotropic glutamate receptor 4 Proteins 0.000 description 2
- 108010038450 metabotropic glutamate receptor 6 Proteins 0.000 description 2
- 108010038449 metabotropic glutamate receptor 7 Proteins 0.000 description 2
- 108010038448 metabotropic glutamate receptor 8 Proteins 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002899 monoamine oxidase inhibitor Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- SBOJXQVPLKSXOG-UHFFFAOYSA-N o-amino-hydroxylamine Chemical compound NON SBOJXQVPLKSXOG-UHFFFAOYSA-N 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920001281 polyalkylene Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 2
- 229940124834 selective serotonin reuptake inhibitor Drugs 0.000 description 2
- 239000012896 selective serotonin reuptake inhibitor Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 150000003536 tetrazoles Chemical class 0.000 description 2
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical compound C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 1
- UDGKZGLPXCRRAM-UHFFFAOYSA-N 1,2,5-thiadiazole Chemical compound C=1C=NSN=1 UDGKZGLPXCRRAM-UHFFFAOYSA-N 0.000 description 1
- QQADCAPKFRAHQW-UHFFFAOYSA-N 1,2,5-thiadiazole;1,3,4-thiadiazole Chemical compound C=1C=NSN=1.C1=NN=CS1 QQADCAPKFRAHQW-UHFFFAOYSA-N 0.000 description 1
- FKASFBLJDCHBNZ-UHFFFAOYSA-N 1,3,4-oxadiazole Chemical compound C1=NN=CO1 FKASFBLJDCHBNZ-UHFFFAOYSA-N 0.000 description 1
- XKWUKXNDZOSLNB-UHFFFAOYSA-N 1,3,4-oxadiazole;thiadiazole Chemical compound C1=CSN=N1.C1=NN=CO1 XKWUKXNDZOSLNB-UHFFFAOYSA-N 0.000 description 1
- MBIZXFATKUQOOA-UHFFFAOYSA-N 1,3,4-thiadiazole Chemical compound C1=NN=CS1 MBIZXFATKUQOOA-UHFFFAOYSA-N 0.000 description 1
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical compound C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 1
- ZOBPZXTWZATXDG-UHFFFAOYSA-N 1,3-thiazolidine-2,4-dione Chemical compound O=C1CSC(=O)N1 ZOBPZXTWZATXDG-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- PTRUTZFCVFUTMW-UHFFFAOYSA-N 1-ethynyl-3-fluorobenzene Chemical group FC1=CC=CC(C#C)=C1 PTRUTZFCVFUTMW-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- SURCGQGDUADKBL-UHFFFAOYSA-N 2-(2-hydroxyethylamino)-5-nitrobenzo[de]isoquinoline-1,3-dione Chemical compound [O-][N+](=O)C1=CC(C(N(NCCO)C2=O)=O)=C3C2=CC=CC3=C1 SURCGQGDUADKBL-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 229940013085 2-diethylaminoethanol Drugs 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 102000003678 AMPA Receptors Human genes 0.000 description 1
- 108090000078 AMPA Receptors Proteins 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 206010002859 Anxiety disorder due to a general medical condition Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 201000006474 Brain Ischemia Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- PSGWWBRFUJVKDA-UHFFFAOYSA-N C#CC1=CC(F)=CC=C1.I[IH][I-4].I[IH][I-5].I[IH][IH-3].O=C1NCC2=C1C=CC(Br)=C2.O=C1NCC2=C1C=CC(C#CC1=CC(F)=CC=C1)=C2 Chemical compound C#CC1=CC(F)=CC=C1.I[IH][I-4].I[IH][I-5].I[IH][IH-3].O=C1NCC2=C1C=CC(Br)=C2.O=C1NCC2=C1C=CC(C#CC1=CC(F)=CC=C1)=C2 PSGWWBRFUJVKDA-UHFFFAOYSA-N 0.000 description 1
- ASYCNTNUZBVRNW-UHFFFAOYSA-N C.CC(=O)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.CC1=C(F)C=CC(C#CC2=CC3=C(C=C2)C(=O)CCC3)=C1.CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.O=C1C2=C(C=C(C#CC3=CC=CC=C3)C=C2)CCN1CC1CC1.O=C1CCCC2=C1C=CC(C#CC1=CC=C(F)C=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC=CC=C1)=C2 Chemical compound C.CC(=O)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.CC1=C(F)C=CC(C#CC2=CC3=C(C=C2)C(=O)CCC3)=C1.CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.O=C1C2=C(C=C(C#CC3=CC=CC=C3)C=C2)CCN1CC1CC1.O=C1CCCC2=C1C=CC(C#CC1=CC=C(F)C=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC=CC=C1)=C2 ASYCNTNUZBVRNW-UHFFFAOYSA-N 0.000 description 1
- XOFQMZZBRNQFMZ-UHFFFAOYSA-N C.CN1C(=O)C2=C(C=C(C#CC3=CC=CC=C3)C=C2)C1=O.O=C1NC(=O)C2=C1C=CC(C#CC1=CC=CC=C1)=C2 Chemical compound C.CN1C(=O)C2=C(C=C(C#CC3=CC=CC=C3)C=C2)C1=O.O=C1NC(=O)C2=C1C=CC(C#CC1=CC=CC=C1)=C2 XOFQMZZBRNQFMZ-UHFFFAOYSA-N 0.000 description 1
- AAQNCBRVIFGVSP-UHFFFAOYSA-N C.O=C1CC(=O)C2=C1C=CC(C#CC1=CC=CC(F)=C1F)=C2.O=C1CC(=O)C2=C1C=CC(C#CC1=CC=CC=C1)=C2.O=C1CCC2=C1C=CC(C#CC1=CC=C(F)C(F)=C1)=C2 Chemical compound C.O=C1CC(=O)C2=C1C=CC(C#CC1=CC=CC(F)=C1F)=C2.O=C1CC(=O)C2=C1C=CC(C#CC1=CC=CC=C1)=C2.O=C1CCC2=C1C=CC(C#CC1=CC=C(F)C(F)=C1)=C2 AAQNCBRVIFGVSP-UHFFFAOYSA-N 0.000 description 1
- PDXDWUOIKOHYMY-UHFFFAOYSA-N C1CCOC1.I[IH][I-2].I[IH][IH-3].NC(=O)C1=C(CO)C=C(Br)C=C1.O=C1NCC2=C1C=CC(Br)=C2 Chemical compound C1CCOC1.I[IH][I-2].I[IH][IH-3].NC(=O)C1=C(CO)C=C(Br)C=C1.O=C1NCC2=C1C=CC(Br)=C2 PDXDWUOIKOHYMY-UHFFFAOYSA-N 0.000 description 1
- ROAMRXLESOSLPU-UHFFFAOYSA-N CC1=CC=C(C#CC2=CC3=C(C=C2)C(=O)CCC3)C=C1.CC1=CC=CC(C#CC2=CC3=C(C=C2)C(=O)CCC3)=C1.O=C1CCCC2=C1C=CC(C#CC1=C(F)C=C(F)C=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC(Cl)=CC=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC(F)=CC(F)=C1)=C2 Chemical compound CC1=CC=C(C#CC2=CC3=C(C=C2)C(=O)CCC3)C=C1.CC1=CC=CC(C#CC2=CC3=C(C=C2)C(=O)CCC3)=C1.O=C1CCCC2=C1C=CC(C#CC1=C(F)C=C(F)C=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC(Cl)=CC=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC(F)=CC(F)=C1)=C2 ROAMRXLESOSLPU-UHFFFAOYSA-N 0.000 description 1
- WYPZYWZTTOOJPQ-UHFFFAOYSA-N CC1=CC=C(C#CC2=CC3=C(C=C2)C(=O)CCC3)C=C1.CC1=CC=CC(C#CC2=CC3=C(C=C2)C(=O)CCC3)=C1.O=C1CCCC2=C1C=CC(C#CC1=C(F)C=C(F)C=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC(Cl)=CC=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC(F)=CC(F)=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC=NC=C1)=C2 Chemical compound CC1=CC=C(C#CC2=CC3=C(C=C2)C(=O)CCC3)C=C1.CC1=CC=CC(C#CC2=CC3=C(C=C2)C(=O)CCC3)=C1.O=C1CCCC2=C1C=CC(C#CC1=C(F)C=C(F)C=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC(Cl)=CC=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC(F)=CC(F)=C1)=C2.O=C1CCCC2=C1C=CC(C#CC1=CC=NC=C1)=C2 WYPZYWZTTOOJPQ-UHFFFAOYSA-N 0.000 description 1
- WSMVGNORKXMLBO-UHFFFAOYSA-N CCCCN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O Chemical compound CCCCN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O WSMVGNORKXMLBO-UHFFFAOYSA-N 0.000 description 1
- RJZVEAXLQOTECN-UHFFFAOYSA-N CCCI.CCCN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.I[I-2].I[IH-].O=C1NCCC2=C1C=CC(C#CC1=CC=CC=C1)=C2 Chemical compound CCCI.CCCN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O.I[I-2].I[IH-].O=C1NCCC2=C1C=CC(C#CC1=CC=CC=C1)=C2 RJZVEAXLQOTECN-UHFFFAOYSA-N 0.000 description 1
- VGCGLWDVKGYMSR-UHFFFAOYSA-N CCOC(=O)C(CC)N1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O Chemical compound CCOC(=O)C(CC)N1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O VGCGLWDVKGYMSR-UHFFFAOYSA-N 0.000 description 1
- FELGRJYIVLWHGK-UHFFFAOYSA-N CN(C)CCCC(=O)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O Chemical compound CN(C)CCCC(=O)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O FELGRJYIVLWHGK-UHFFFAOYSA-N 0.000 description 1
- BXCKTZFASNRKDX-UHFFFAOYSA-N CN1C(=O)C2=C(C=C(C#CC3=CC=CC=C3)C=C2)C1=O.O=C1CC(=O)C2=C1C=CC(C#CC1=CC=CC=C1)=C2.O=C1CCC2=C1C=CC(C#CC1=CC=C(F)C(F)=C1)=C2.O=C1CCC2=C1C=CC(C#CC1=CC=CC(F)=C1F)=C2.O=C1CCC2=C1C=CC(C#CC1=CC=CC=C1)=C2 Chemical compound CN1C(=O)C2=C(C=C(C#CC3=CC=CC=C3)C=C2)C1=O.O=C1CC(=O)C2=C1C=CC(C#CC1=CC=CC=C1)=C2.O=C1CCC2=C1C=CC(C#CC1=CC=C(F)C(F)=C1)=C2.O=C1CCC2=C1C=CC(C#CC1=CC=CC(F)=C1F)=C2.O=C1CCC2=C1C=CC(C#CC1=CC=CC=C1)=C2 BXCKTZFASNRKDX-UHFFFAOYSA-N 0.000 description 1
- LSNBBDDEYDMJGX-UHFFFAOYSA-N CN1CCN(C(=O)CN2CCC3=C(C=CC(C#CC4=CC=CC=C4)=C3)C2=O)CC1 Chemical compound CN1CCN(C(=O)CN2CCC3=C(C=CC(C#CC4=CC=CC=C4)=C3)C2=O)CC1 LSNBBDDEYDMJGX-UHFFFAOYSA-N 0.000 description 1
- GJKQHNRFJJJTOK-UHFFFAOYSA-N CO.I[IH][I-2].I[IH][IH-].N.NC(=O)C1=C(CO)C=C(Br)C=C1.O.O=C1OCC2=C1C=CC(Br)=C2 Chemical compound CO.I[IH][I-2].I[IH][IH-].N.NC(=O)C1=C(CO)C=C(Br)C=C1.O.O=C1OCC2=C1C=CC(Br)=C2 GJKQHNRFJJJTOK-UHFFFAOYSA-N 0.000 description 1
- SGJPRWQJJIUVQW-UHFFFAOYSA-N COC1=CC=C(C#CC2=CC=C3C(=O)NCCC3=C2)C(C)=C1 Chemical compound COC1=CC=C(C#CC2=CC=C3C(=O)NCCC3=C2)C(C)=C1 SGJPRWQJJIUVQW-UHFFFAOYSA-N 0.000 description 1
- JPDJYYCORPOOJQ-UHFFFAOYSA-N COCCCC(=O)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O Chemical compound COCCCC(=O)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O JPDJYYCORPOOJQ-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 206010008120 Cerebral ischaemia Diseases 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 208000027691 Conduct disease Diseases 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-RXMQYKEDSA-N D-lysine Chemical compound NCCCC[C@@H](N)C(O)=O KDXKERNSBIXSRK-RXMQYKEDSA-N 0.000 description 1
- 206010011878 Deafness Diseases 0.000 description 1
- 229940123736 Decarboxylase inhibitor Drugs 0.000 description 1
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 1
- 241000208713 Dionaea Species 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- OUVXYXNWSVIOSJ-UHFFFAOYSA-N Fluo-4 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=C(C=2)C2=C3C=C(F)C(=O)C=C3OC3=CC(O)=C(F)C=C32)N(CC(O)=O)CC(O)=O)=C1 OUVXYXNWSVIOSJ-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 206010019196 Head injury Diseases 0.000 description 1
- 208000010496 Heart Arrest Diseases 0.000 description 1
- 101001032845 Homo sapiens Metabotropic glutamate receptor 5 Proteins 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- XCHWBRFFCBEDHU-UHFFFAOYSA-N Ic1n[o]c(I)n1 Chemical compound Ic1n[o]c(I)n1 XCHWBRFFCBEDHU-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 208000004404 Intractable Pain Diseases 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- 229930195714 L-glutamate Natural products 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 241000270322 Lepidosauria Species 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 102000004086 Ligand-Gated Ion Channels Human genes 0.000 description 1
- 108090000543 Ligand-Gated Ion Channels Proteins 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 206010026749 Mania Diseases 0.000 description 1
- 102100036834 Metabotropic glutamate receptor 1 Human genes 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 208000008238 Muscle Spasticity Diseases 0.000 description 1
- 208000021642 Muscular disease Diseases 0.000 description 1
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 208000037212 Neonatal hypoxic and ischemic brain injury Diseases 0.000 description 1
- MGDNEBFSBNVCJC-UHFFFAOYSA-N O=C(CC1CC1)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O Chemical compound O=C(CC1CC1)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O MGDNEBFSBNVCJC-UHFFFAOYSA-N 0.000 description 1
- AAFDMNBMAFNEBE-UHFFFAOYSA-N O=C(CCC1CC1)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O Chemical compound O=C(CCC1CC1)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O AAFDMNBMAFNEBE-UHFFFAOYSA-N 0.000 description 1
- IYSVDSRUEYMIDN-UHFFFAOYSA-N O=C1CCCC2=C1C=CC(C#CC1=CC=NC=C1)=C2 Chemical compound O=C1CCCC2=C1C=CC(C#CC1=CC=NC=C1)=C2 IYSVDSRUEYMIDN-UHFFFAOYSA-N 0.000 description 1
- NYQXYVRXRQOHJE-UHFFFAOYSA-L O=C1NC(=O)C2=C1C=CC(C#CC1=CC=CC=C1)=C2.O=C1OC(=O)C2=C1C=CC(C#CC1=CC=CC=C1)=C2.[V-2]I.[V-]I Chemical compound O=C1NC(=O)C2=C1C=CC(C#CC1=CC=CC=C1)=C2.O=C1OC(=O)C2=C1C=CC(C#CC1=CC=CC=C1)=C2.[V-2]I.[V-]I NYQXYVRXRQOHJE-UHFFFAOYSA-L 0.000 description 1
- MWOPKSUYGCGMKR-UHFFFAOYSA-N O=C1NCCC2=C1C=CC(Br)=C2.O=C1NCCC2=C1C=CC(C#CC1=CC=CC=C1)=C2.[H]C#CC1=CC=CC=C1.[I-].[IH-2] Chemical compound O=C1NCCC2=C1C=CC(Br)=C2.O=C1NCCC2=C1C=CC(C#CC1=CC=CC=C1)=C2.[H]C#CC1=CC=CC=C1.[I-].[IH-2] MWOPKSUYGCGMKR-UHFFFAOYSA-N 0.000 description 1
- CCAAGDPRVKICCX-UHFFFAOYSA-N O=C1NCCC2=CC(C#CC3=CC=CC=C3C(F)(F)F)=CC=C12 Chemical compound O=C1NCCC2=CC(C#CC3=CC=CC=C3C(F)(F)F)=CC=C12 CCAAGDPRVKICCX-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 206010034912 Phobia Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 206010065016 Post-traumatic pain Diseases 0.000 description 1
- MWQCHHACWWAQLJ-UHFFFAOYSA-N Prazepam Chemical compound O=C1CN=C(C=2C=CC=CC=2)C2=CC(Cl)=CC=C2N1CC1CC1 MWQCHHACWWAQLJ-UHFFFAOYSA-N 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000017442 Retinal disease Diseases 0.000 description 1
- 206010038923 Retinopathy Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 206010041250 Social phobia Diseases 0.000 description 1
- 102100023145 Sodium- and chloride-dependent glycine transporter 1 Human genes 0.000 description 1
- 101710083171 Sodium- and chloride-dependent glycine transporter 1 Proteins 0.000 description 1
- 208000005392 Spasm Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 206010043118 Tardive Dyskinesia Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229940123464 Thiazolidinedione Drugs 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 208000009205 Tinnitus Diseases 0.000 description 1
- 208000031674 Traumatic Acute Stress disease Diseases 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 238000010162 Tukey test Methods 0.000 description 1
- 206010046543 Urinary incontinence Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- INAPMGSXUVUWAF-GCVPSNMTSA-N [(2r,3s,5r,6r)-2,3,4,5,6-pentahydroxycyclohexyl] dihydrogen phosphate Chemical compound OC1[C@H](O)[C@@H](O)C(OP(O)(O)=O)[C@H](O)[C@@H]1O INAPMGSXUVUWAF-GCVPSNMTSA-N 0.000 description 1
- OIKLRQCMFDZJBT-UHFFFAOYSA-N [H]N(CCN1CCCCC1)C(=O)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O Chemical compound [H]N(CCN1CCCCC1)C(=O)CN1CCC2=C(C=CC(C#CC3=CC=CC=C3)=C2)C1=O OIKLRQCMFDZJBT-UHFFFAOYSA-N 0.000 description 1
- QOMNQGZXFYNBNG-UHFFFAOYSA-N acetyloxymethyl 2-[2-[2-[5-[3-(acetyloxymethoxy)-2,7-difluoro-6-oxoxanthen-9-yl]-2-[bis[2-(acetyloxymethoxy)-2-oxoethyl]amino]phenoxy]ethoxy]-n-[2-(acetyloxymethoxy)-2-oxoethyl]-4-methylanilino]acetate Chemical compound CC(=O)OCOC(=O)CN(CC(=O)OCOC(C)=O)C1=CC=C(C)C=C1OCCOC1=CC(C2=C3C=C(F)C(=O)C=C3OC3=CC(OCOC(C)=O)=C(F)C=C32)=CC=C1N(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O QOMNQGZXFYNBNG-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 208000005298 acute pain Diseases 0.000 description 1
- 208000026345 acute stress disease Diseases 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 102000030621 adenylate cyclase Human genes 0.000 description 1
- 108060000200 adenylate cyclase Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940052651 anticholinergic tertiary amines Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 230000000949 anxiolytic effect Effects 0.000 description 1
- 229940005530 anxiolytics Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960003121 arginine Drugs 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 208000015802 attention deficit-hyperactivity disease Diseases 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 239000002439 beta secretase inhibitor Substances 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- YSXKPIUOCJLQIE-UHFFFAOYSA-N biperiden Chemical compound C1C(C=C2)CC2C1C(C=1C=CC=CC=1)(O)CCN1CCCCC1 YSXKPIUOCJLQIE-UHFFFAOYSA-N 0.000 description 1
- 229960003003 biperiden Drugs 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- RDHPKYGYEGBMSE-UHFFFAOYSA-N bromoethane Chemical compound CCBr RDHPKYGYEGBMSE-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000003543 catechol methyltransferase inhibitor Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 206010008118 cerebral infarction Diseases 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 239000000064 cholinergic agonist Substances 0.000 description 1
- QZUDBNBUXVUHMW-UHFFFAOYSA-N clozapine Chemical compound C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 QZUDBNBUXVUHMW-UHFFFAOYSA-N 0.000 description 1
- 229960004170 clozapine Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 230000007278 cognition impairment Effects 0.000 description 1
- 208000010877 cognitive disease Diseases 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001047 cyclobutenyl group Chemical group C1(=CCC1)* 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000003678 cyclohexadienyl group Chemical group C1(=CC=CCC1)* 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000298 cyclopropenyl group Chemical group [H]C1=C([H])C1([H])* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000003954 decarboxylase inhibitor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000586 desensitisation Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229940052760 dopamine agonists Drugs 0.000 description 1
- 239000003136 dopamine receptor stimulating agent Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000755 effect on ion Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- JRURYQJSLYLRLN-BJMVGYQFSA-N entacapone Chemical compound CCN(CC)C(=O)C(\C#N)=C\C1=CC(O)=C(O)C([N+]([O-])=O)=C1 JRURYQJSLYLRLN-BJMVGYQFSA-N 0.000 description 1
- 229960003337 entacapone Drugs 0.000 description 1
- 238000006345 epimerization reaction Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229960002464 fluoxetine Drugs 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- WCZBUQIZTSIQFE-UHFFFAOYSA-N furan;thiophene Chemical compound C=1C=COC=1.C=1C=CSC=1 WCZBUQIZTSIQFE-UHFFFAOYSA-N 0.000 description 1
- JKFAIQOWCVVSKC-UHFFFAOYSA-N furazan Chemical compound C=1C=NON=1 JKFAIQOWCVVSKC-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000003540 gamma secretase inhibitor Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 150000002306 glutamic acid derivatives Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 125000004438 haloalkoxy group Chemical group 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 229960003878 haloperidol Drugs 0.000 description 1
- 230000010370 hearing loss Effects 0.000 description 1
- 231100000888 hearing loss Toxicity 0.000 description 1
- 208000016354 hearing loss disease Diseases 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- XGIHQYAWBCFNPY-AZOCGYLKSA-N hydrabamine Chemical compound C([C@@H]12)CC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC[C@@]1(C)CNCCNC[C@@]1(C)[C@@H]2CCC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC1 XGIHQYAWBCFNPY-AZOCGYLKSA-N 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000002218 hypoglycaemic effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000001057 ionotropic effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 229960004502 levodopa Drugs 0.000 description 1
- 125000002463 lignoceryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 235000014666 liquid concentrate Nutrition 0.000 description 1
- 229960001078 lithium Drugs 0.000 description 1
- 230000006742 locomotor activity Effects 0.000 description 1
- 230000027928 long-term synaptic potentiation Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 208000002780 macular degeneration Diseases 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- BMQVDVJKPMGHDO-UHFFFAOYSA-K magnesium;potassium;chloride;sulfate;trihydrate Chemical compound O.O.O.[Mg+2].[Cl-].[K+].[O-]S([O-])(=O)=O BMQVDVJKPMGHDO-UHFFFAOYSA-K 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 108010014719 metabotropic glutamate receptor type 1 Proteins 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 239000000472 muscarinic agonist Substances 0.000 description 1
- 230000003551 muscarinic effect Effects 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- PVWOIHVRPOBWPI-UHFFFAOYSA-N n-propyl iodide Chemical compound CCCI PVWOIHVRPOBWPI-UHFFFAOYSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 208000004296 neuralgia Diseases 0.000 description 1
- 230000008587 neuronal excitability Effects 0.000 description 1
- 230000003961 neuronal insult Effects 0.000 description 1
- 208000021722 neuropathic pain Diseases 0.000 description 1
- 230000003957 neurotransmitter release Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 125000006574 non-aromatic ring group Chemical group 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 238000002638 palliative care Methods 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 208000033300 perinatal asphyxia Diseases 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 229950010883 phencyclidine Drugs 0.000 description 1
- DDBREPKUVSBGFI-UHFFFAOYSA-N phenobarbital Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NC(=O)NC1=O DDBREPKUVSBGFI-UHFFFAOYSA-N 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229940126027 positive allosteric modulator Drugs 0.000 description 1
- 208000028173 post-traumatic stress disease Diseases 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000014483 powder concentrate Nutrition 0.000 description 1
- 229960004856 prazepam Drugs 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000003518 presynaptic effect Effects 0.000 description 1
- DBABZHXKTCFAPX-UHFFFAOYSA-N probenecid Chemical compound CCCN(CCC)S(=O)(=O)C1=CC=C(C(O)=O)C=C1 DBABZHXKTCFAPX-UHFFFAOYSA-N 0.000 description 1
- 229960003081 probenecid Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- VVWRJUBEIPHGQF-MDZDMXLPSA-N propan-2-yl (ne)-n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)\N=N\C(=O)OC(C)C VVWRJUBEIPHGQF-MDZDMXLPSA-N 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000000296 purinergic P1 receptor antagonist Substances 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- ZXYONNJZMLKRBJ-UHFFFAOYSA-N pyrazine;triazine Chemical compound C1=CN=NN=C1.C1=CN=CC=N1 ZXYONNJZMLKRBJ-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- OIMWEHOYHJJPJD-UHFFFAOYSA-N pyridine;pyrimidine Chemical compound C1=CC=NC=C1.C1=CN=CN=C1 OIMWEHOYHJJPJD-UHFFFAOYSA-N 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- RAPZEAPATHNIPO-UHFFFAOYSA-N risperidone Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCCC4=NC=3C)=NOC2=C1 RAPZEAPATHNIPO-UHFFFAOYSA-N 0.000 description 1
- 229960001534 risperidone Drugs 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 230000021317 sensory perception Effects 0.000 description 1
- 239000003215 serotonin 5-HT2 receptor antagonist Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 235000020374 simple syrup Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 208000018198 spasticity Diseases 0.000 description 1
- 201000001716 specific phobia Diseases 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 238000013222 sprague-dawley male rat Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000005017 substituted alkenyl group Chemical group 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000003956 synaptic plasticity Effects 0.000 description 1
- 230000005062 synaptic transmission Effects 0.000 description 1
- 230000024587 synaptic transmission, glutamatergic Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 229960004559 theobromine Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 231100000886 tinnitus Toxicity 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 206010044652 trigeminal neuralgia Diseases 0.000 description 1
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- JOLJIIDDOBNFHW-UHFFFAOYSA-N xanomeline Chemical compound CCCCCCOC1=NSN=C1C1=CCCN(C)C1 JOLJIIDDOBNFHW-UHFFFAOYSA-N 0.000 description 1
- 229950006755 xanomeline Drugs 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/397—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having four-membered rings, e.g. azetidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4704—2-Quinolinones, e.g. carbostyril
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/06—Antimigraine agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/20—Hypnotics; Sedatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/44—Iso-indoles; Hydrogenated iso-indoles
- C07D209/46—Iso-indoles; Hydrogenated iso-indoles with an oxygen atom in position 1
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/44—Iso-indoles; Hydrogenated iso-indoles
- C07D209/48—Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D217/00—Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
- C07D217/22—Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the nitrogen-containing ring
- C07D217/24—Oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/06—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
Definitions
- L-glutamic acid the most commonly occurring neurotransmitter in the central nervous system, plays a role in a large number of physiological processes.
- the glutamate-dependent stimulus receptors are divided into two main groups.
- the first main group forms ligand-controlled ion channels.
- the second main group is metabotropic glutamate receptors (mGluRs), which belong to the family of G-protein-coupled receptors.
- Metabotropic glutamate receptors, including mGluR5 have been implicated in a wide range of biological functions, indicating a potential role for the mGluR5 receptor in a variety of disease processes in mammals.
- Ligands of metabotropic glutamate receptors can be used for the treatment or prevention of acute and/or chronic neurological and/or psychiatric disorders associated with glutamate dysfunction, such as psychosis, schizophrenia, age-related cognitive decline, and the like.
- Selective positive allosteric modulators are compounds that do not directly activate receptors by themselves, but binding of these compounds increase the affinity of a glutamate-site agonist at its extracellular N-terminal binding site. Positive allosteric modulation (potentiation) is thus an attractive mechanism for enhancing appropriate physiological receptor activation.
- the invention in one aspect, relates to compounds useful as positive allosteric modulators (i.e., potentiators) of the metabotropic glutamate receptor subtype 5 (mGluR5), methods of making same, pharmaceutical compositions comprising same, and methods of treating neurological and psychiatric disorders associated with glutamate dysfunction using same.
- positive allosteric modulators i.e., potentiators
- mGluR5 metabotropic glutamate receptor subtype 5
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R 1 is hydrogen, then R 5 is optionally substituted phenyl or optionally substituted pyridinyl; (b) an isoindoline-1,3-dione derivative having a structure:
- R 1 is hydrogen or is selected from optionally substituted C1-C12 alkyl, optionally substituted C1-C12 heteroalkyl, optionally substituted C3-C12 cycloalkyl, or optionally substituted C3-C12 heterocycloalkyl, with the proviso that R 1 does not comprise silicon; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R 1 is hydrogen, then R 5 is optionally substituted phenyl or optionally substituted pyridinyl, and with the proviso that if R 1 is methyl, then R 5 is an organic radical comprising 4 to 14 carbon atoms; (c) a 3,4-dihydroisoquinolin-1(2H)-one derivative having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms; (d) an isoquinoline-1,3(2H,4H)-dione derivative having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that R 5 does not comprise a triphenylamine residue or a benzimidamide residue; or (e) a bicyclic compound having a structure:
- n 2, 3 or 4; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R 2a and R 2b together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Y 1 is selected from N and C—R 4 ; wherein Y 2 is selected from N and C—H; wherein each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is
- R 7a and R 7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted
- compositions comprising a therapeutically effective amount of at least one disclosed compound and a pharmaceutically acceptable carrier.
- Also disclosed are methods for preparing a compound comprising the steps of (a) providing a first reactant having a structure represented by a formula:
- n 0, 1, 2, 3 or 4; wherein Y 1 and Y 2 are independently selected from C and N; wherein R 1 is selected from hydrogen and an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH 2 ) m -aryl or —(CH 2 ) m -heterocycle, wherein
- R 5 is an organic radical comprising 4 to 14 carbon atoms selected from optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, and optionally substituted heteroaryl; and wherein X 2 comprises a halide, a pseudohalide, a carboxylic acid, a carboxylic acid derivative, a terminal acetylene moiety, an activated vinyl moiety, a N′-hydroxybenzimidamide, or a primary or secondary amine; (c) coupling the first reactant with the second reactant, thereby forming linking moiety L, to provide a compound having a structure represented by a formula:
- L is an organic divalent radical comprising 1 to 7 carbon atoms selected from optionally substituted C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, and optionally substituted amido; wherein, when X 1 is halide or pseudohalide, X 2 is a terminal acetylene moiety, or an activated vinyl moiety; wherein, when X 1 is a carboxylic acid or a carboxylic acid derivative, X 2 is a N′-hydroxybenzimidamide, or a primary or secondary amine; wherein, when X 2 is halide or pseudohalide, X 1 is a terminal acetylene moiety, or an activated vinyl moiety; wherein, when X
- Also disclosed are methods for preparing a compound comprising the steps of (a) providing a reactant comprising an anhydride having a structure represented by a formula:
- n is 0 or 1; wherein Y 1 and Y 2 are independently selected from C and N; wherein R 2a and R 2b , when present, together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted ary
- R 1 is hydrogen, alkylating the imide moiety.
- Also disclosed are methods for preparing a compound comprising the steps of (a) providing a reactant comprising a lactone having a structure represented by a formula:
- n is 0, 1, 2, 3 or 4; wherein Y 1 and Y 2 are independently selected from C and N; wherein R 2a and R 2b , when present, together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted
- R 1 is hydrogen, alkylating the lactam moiety.
- Also disclosed are methods for potentiation of metabotropic glutamate receptor activity in a mammal comprising the step of administering to the mammal at least one compound having a structure:
- n is 0, 1, 2, 3 or 4; wherein Y 1 and Y 2 are independently selected from C and N; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R 2a and R 2b , when present, together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 3a and R 3b together comprise ⁇ O or ⁇ S or each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7
- Also disclosed are methods for partial agonism of metabotropic glutamate receptor activity in a mammal comprising the step of administering to the mammal at least one compound having a structure:
- n is 0, 1, 2, 3 or 4; wherein Y 1 and Y 2 are independently selected from C and N; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R 2a and R 2b , when present, together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 3a and R 3b together comprise ⁇ O or ⁇ S or each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7
- Also disclosed are methods for the treatment of a disorder in a mammal comprising the step of administering to the mammal at least one compound having a structure:
- n is 0, 1, 2, 3 or 4; wherein Y 1 and Y 2 are independently selected from C and N; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R 2a and R 2b , when present, together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 3a and R 3b together comprise ⁇ O or ⁇ S or each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7
- Also disclosed are methods for the manufacture of a medicament for potentiation of metabotropic glutamate receptor activity in a mammal comprising combining at least one compound having a structure:
- n is 0, 1, 2, 3 or 4; wherein Y 1 and Y 2 are independently selected from C and N; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R 2a and R 2b , when present, together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 3a and R 3b together comprise ⁇ O or ⁇ S or each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7
- n is 0, 1, 2, 3 or 4; wherein Y 1 and Y 2 are independently selected from C and N; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R 2a and R 2b , when present, together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 3a and R 3b together comprise ⁇ O or ⁇ S or each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7
- FIG. 1 shows a schematic of the NMDA receptor.
- FIG. 2 shows a schematic illustrating that activation of mGluR5 potentiates NMDA receptor function.
- FIG. 3 illustrates allosteric modulation of mGluR5.
- Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
- mGluR5 receptor allosteric potentiator refers to any exogenously administered compound or agent that directly or indirectly augments the response produced by the endogenous ligand (such as glutamate) when it binds to the orthosteric site of the mGluR5 receptor in an animal, in particular a mammal, for example a human.
- the mGluR5 receptor allosteric potentiator binds to a site other than the orthosteric site (an allosteric site) and positively augments the response of the receptor to an agonist.
- activity of a compound as an mGluR5 receptor allosteric potentiator provides advantages over the use of a pure mGluR5 receptor allosteric agonist. Such advantages can include, for example, increased safety margin, higher tolerability, diminished potential for abuse, and reduced toxicity.
- mGluR5 receptor allosteric agonist refers to any exogenously administered compound or agent that directly augments the activity of the mGluR5 receptor in the absence of the endogenous ligand (such as glutamate) in an animal, in particular a mammal, for example a human.
- the mGluR5 receptor allosteric agonist binds to the orthosteric glutamate site of the mGluR5 receptor and directly influences the orthosteric site of the mGluR5 receptor.
- activity of a compound as an mGluR5 receptor allosteric agonist provides advantages over the use of a pure mGluR5 receptor allosteric potentiator, such as more rapid onset of action.
- treatment refers to the medical management of a patient with the intent to cure, ameliorate, stabilize, or prevent a disease, pathological condition, or disorder.
- This term includes active treatment, that is, treatment directed specifically toward the improvement of a disease, pathological condition, or disorder, and also includes causal treatment, that is, treatment directed toward removal of the cause of the associated disease, pathological condition, or disorder.
- this term includes palliative treatment, that is, treatment designed for the relief of symptoms rather than the curing of the disease, pathological condition, or disorder; preventative treatment, that is, treatment directed to minimizing or partially or completely inhibiting the development of the associated disease, pathological condition, or disorder; and supportive treatment, that is, treatment employed to supplement another specific therapy directed toward the improvement of the associated disease, pathological condition, or disorder.
- prevent refers to precluding, averting, obviating, forestalling, stopping, or hindering something from happening, especially by advance action. It is understood that where reduce, inhibit or prevent are used herein, unless specifically indicated otherwise, the use of the other two words is also expressly disclosed.
- the term “diagnosed with a need for potentiation of metabotropic glutamate receptor activity” refers to having been subjected to a physical examination by a person of skill, for example, a physician, and found to have a condition that can be diagnosed or treated by potentiation of metabotropic glutamate receptor activity.
- “diagnosed with a need for partial agonism of metabotropic glutamate receptor activity” means having been subjected to a physical examination by a person of skill, for example, a physician, and found to have a condition that can be diagnosed or treated by partial agonism of metabotropic glutamate receptor activity.
- diagnosisd with a need for treatment of one or more neurological and/or psychiatric disorder associated with glutamate dysfunction means having been subjected to a physical examination by a person of skill, for example, a physician, and found to have one or more neurological and/or psychiatric disorder associated with glutamate dysfunction.
- administering refers to any method of providing a pharmaceutical preparation to a subject. Such methods are well known to those skilled in the art and include, but are not limited to, oral administration, transdermal administration, administration by inhalation, nasal administration, topical administration, intravaginal administration, ophthalmic administration, intraaural administration, intracerebral administration, rectal administration, and parenteral administration, including injectable such as intravenous administration, intra-arterial administration, intramuscular administration, and subcutaneous administration. Administration can be continuous or intermittent.
- a preparation can be administered therapeutically; that is, administered to treat an existing disease or condition.
- a preparation can be administered prophylactically; that is, administered for prevention of a disease or condition.
- the term “therapeutically effective amount” refers to an amount that is sufficient to achieve the desired therapeutic result or to have an effect on undesired symptoms, but is generally insufficient to cause adverse side affects.
- the specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration; the route of administration; the rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed and like factors well known in the medical arts.
- the effective daily dose can be divided into multiple doses for purposes of administration. Consequently, single dose compositions can contain such amounts or submultiples thereof to make up the daily dose.
- the dosage can be adjusted by the individual physician in the event of any contraindications. Dosage can vary, and can be administered in one or more dose administrations daily, for one or several days. Guidance can be found in the literature for appropriate dosages for given classes of pharmaceutical products.
- a preparation can be administered in a “prophylactically effective amount”; that is, an amount effective for prevention of a disease or condition.
- aqueous and nonaqueous carriers include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol and the like), carboxymethylcellulose and suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate.
- Proper fluidity can be maintained, for example, by the use of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants.
- These compositions can also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents.
- Prevention of the action of microorganisms can be ensured by the inclusion of various antibacterial and antifungal agents such as paraben, chlorobutanol, phenol, sorbic acid and the like. It can also be desirable to include isotonic agents such as sugars, sodium chloride and the like.
- Prolonged absorption of the injectable pharmaceutical form can be brought about by the inclusion of agents, such as aluminum monostearate and gelatin, which delay absorption.
- Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide-polyglycolide, poly(orthoesters) and poly(anhydrides). Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.
- the injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable media just prior to use.
- Suitable inert carriers can include sugars such as lactose. Desirably, at least 95% by weight of the particles of the active ingredient have an effective particle size in the range of 0.01 to 10 micrometers.
- a residue of a chemical species refers to the moiety that is the resulting product of the chemical species in a particular reaction scheme or subsequent formulation or chemical product, regardless of whether the moiety is actually obtained from the chemical species.
- an ethylene glycol residue in a polyester refers to one or more —OCH 2 CH 2 O— units in the polyester, regardless of whether ethylene glycol was used to prepare the polyester.
- a sebacic acid residue in a polyester refers to one or more —CO(CH 2 ) 8 CO— moieties in the polyester, regardless of whether the residue is obtained by reacting sebacic acid or an ester thereof to obtain the polyester.
- the term “substituted” is contemplated to include all permissible substituents of organic compounds.
- the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, and aromatic and nonaromatic substituents of organic compounds.
- Illustrative substituents include, for example, those described below.
- the permissible substituents can be one or more and the same or different for appropriate organic compounds.
- the heteroatoms, such as nitrogen can have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms.
- substitution or “substituted with” include the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., a compound that does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc.
- a 1 ,” “A 2 ,” “A 3 ,” and “A 4 ” are used herein as generic symbols to represent various specific substituents. These symbols can be any substituent, not limited to those disclosed herein, and when they are defined to be certain substituents in one instance, they can, in another instance, be defined as some other substituents.
- alkyl as used herein is a branched or unbranched saturated hydrocarbon group of 1 to 24 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, s-pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, dode cyl, tetradecyl, hexadecyl, eicosyl, tetracosyl, and the like.
- the alkyl group can also be substituted or unsubstituted.
- the alkyl group can be substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, amino, ether, halide, hydroxy, nitro, silyl, sulfo-oxo, or thiol, as described herein.
- a “lower alkyl” group is an alkyl group containing from one to six carbon atoms.
- alkyl is generally used to refer to both unsubstituted alkyl groups and substituted alkyl groups; however, substituted alkyl groups are also specifically referred to herein by identifying the specific substituent(s) on the alkyl group.
- halogenated alkyl specifically refers to an alkyl group that is substituted with one or more halide, e.g., fluorine, chlorine, bromine, or iodine.
- alkoxyalkyl specifically refers to an alkyl group that is substituted with one or more alkoxy groups, as described below.
- alkylamino specifically refers to an alkyl group that is substituted with one or more amino groups, as described below, and the like.
- alkyl is used in one instance and a specific term such as “alkylalcohol” is used in another, it is not meant to imply that the term “alkyl” does not also refer to specific terms such as “alkylalcohol” and the like.
- cycloalkyl refers to both unsubstituted and substituted cycloalkyl moieties
- the substituted moieties can, in addition, be specifically identified herein; for example, a particular substituted cycloalkyl can be referred to as, e.g., an “alkylcycloalkyl.”
- a substituted alkoxy can be specifically referred to as, e.g., a “halogenated alkoxy”
- a particular substituted alkenyl can be, e.g., an “alkenylalcohol,” and the like.
- the practice of using a general term, such as “cycloalkyl,” and a specific term, such as “alkylcycloalkyl,” is not meant to imply that the general term does not also include the specific term.
- cycloalkyl as used herein is a non-aromatic carbon-based ring composed of at least three carbon atoms.
- examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, and the like.
- heterocycloalkyl is a type of cycloalkyl group as defined above, and is included within the meaning of the term “cycloalkyl,” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus.
- the cycloalkyl group and heterocycloalkyl group can be substituted or unsubstituted.
- the cycloalkyl group and heterocycloalkyl group can be substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, amino, ether, halide, hydroxy, nitro, silyl, sulfo-oxo, or thiol as described herein.
- polyalkylene group as used herein is a group having two or more CH 2 groups linked to one another.
- the polyalkylene group can be represented by the formula —(CH 2 ) a —, where “a” is an integer of from 2 to 500.
- Alkoxy also includes polymers of alkoxy groups as just described; that is, an alkoxy can be a polyether such as —OA 1 -OA 2 or —OA 1 -(OA 2 ) a —OA 3 , where “a” is an integer of from 1 to 200 and A 1 , A 2 , and A 3 are alkyl and/or cycloalkyl groups.
- alkenyl as used herein is a hydrocarbon group of from 2 to 24 carbon atoms with a structural formula containing at least one carbon-carbon double bond.
- Asymmetric structures such as (A 1 A 2 )C ⁇ C(A 3 A 4 ) are intended to include both the E and Z isomers. This can be presumed in structural formulae herein wherein an asymmetric alkene is present, or it can be explicitly indicated by the bond symbol C ⁇ C.
- the alkenyl group can be substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol, as described herein.
- cycloalkenyl as used herein is a non-aromatic carbon-based ring composed of at least three carbon atoms and containing at least one carbon-carbon double bound, i.e., C ⁇ C.
- Examples of cycloalkenyl groups include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, cyclohexadienyl, norbornenyl, and the like.
- heterocycloalkenyl is a type of cycloalkenyl group as defined above, and is included within the meaning of the term “cycloalkenyl,” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus.
- the cycloalkenyl group and heterocycloalkenyl group can be substituted or unsubstituted.
- the cycloalkenyl group and heterocycloalkenyl group can be substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein.
- alkynyl as used herein is a hydrocarbon group of 2 to 24 carbon atoms with a structural formula containing at least one carbon-carbon triple bond.
- the alkynyl group can be unsubstituted or substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol, as described herein.
- cycloalkynyl as used herein is a non-aromatic carbon-based ring composed of at least seven carbon atoms and containing at least one carbon-carbon triple bound.
- cycloalkynyl groups include, but are not limited to, cycloheptynyl, cyclooctynyl, cyclononynyl, and the like.
- heterocycloalkynyl is a type of cycloalkenyl group as defined above, and is included within the meaning of the term “cycloalkynyl,” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus.
- the cycloalkynyl group and heterocycloalkynyl group can be substituted or unsubstituted.
- the cycloalkynyl group and heterocycloalkynyl group can be substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein.
- aryl as used herein is a group that contains any carbon-based aromatic group including, but not limited to, benzene, naphthalene, phenyl, biphenyl, phenoxybenzene, and the like.
- aryl also includes “heteroaryl,” which is defined as a group that contains an aromatic group that has at least one heteroatom incorporated within the ring of the aromatic group. Examples of heteroatoms include, but are not limited to, nitrogen, oxygen, sulfur, and phosphorus.
- non-heteroaryl which is also included in the term “aryl,” defines a group that contains an aromatic group that does not contain a heteroatom. The aryl group can be substituted or unsubstituted.
- the aryl group can be substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein.
- biasing is a specific type of aryl group and is included in the definition of “aryl.”
- Biaryl refers to two aryl groups that are bound together via a fused ring structure, as in naphthalene, or are attached via one or more carbon-carbon bonds, as in biphenyl.
- aldehyde as used herein is represented by the formula —C(O)H. Throughout this specification “C(O)” is a short hand notation for a carbonyl group, i.e., C ⁇ O.
- amine or “amino” as used herein are represented by the formula NA 1 A 2 A 3 , where A 1 , A 2 , and A 3 can be, independently, hydrogen or optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.
- carboxylic acid as used herein is represented by the formula —C(O)OH.
- esters as used herein is represented by the formula —OC(O)A 1 or —C(O)OA 1 , where A 1 can be an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.
- polyester as used herein is represented by the formula -(A 1 O(O)C-A 2 -C(O)O) a — or -(A 1 O(O)C-A 2 -OC(O)) a —, where A 1 and A 2 can be, independently, an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein and “a” is an interger from 1 to 500. “Polyester” is as the term used to describe a group that is produced by the reaction between a compound having at least two carboxylic acid groups with a compound having at least two hydroxyl groups.
- ether as used herein is represented by the formula A 1 OA 2 , where A 1 and A 2 can be, independently, an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein.
- polyether as used herein is represented by the formula -(A 1 O-A 2 O) a —, wherein A 1 and A 2 can be, independently, an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein and “a” is an integer of from 1 to 500.
- Examples of polyether groups include polyethylene oxide, polypropylene oxide, and polybutylene oxide.
- halide refers to the halogens fluorine, chlorine, bromine, and iodine.
- heterocycle refers to single and multi-cyclic aromatic or non-aromatic ring systems in which at least one of the ring members is other than carbon.
- Heterocycle includes pyridinde, pyrimidine, furan, thiophene, pyrrole, isoxazole, isothiazole, pyrazole, oxazole, thiazole, imidazole, oxazole, including, 1,2,3-oxadiazole, 1,2,5-oxadiazole and 1,3,4-oxadiazole, thiadiazole, including, 1,2,3-thiadiazole, 1,2,5-thiadiazole, and 1,3,4-thiadiazole, triazole, including, 1,2,3-triazole, 1,3,4-triazole, tetrazole, including 1,2,3,4-tetrazole and 1,2,4,5-tetrazole, pyridine, pyridazine, pyrimidine, pyrazin
- hydroxyl as used herein is represented by the formula —OH.
- ketone as used herein is represented by the formula A 1 C(O)A 2 , where A 1 and A 2 can be, independently, an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.
- nitro as used herein is represented by the formula —NO 2 .
- nitrile as used herein is represented by the formula —CN.
- sil as used herein is represented by the formula —SiA 1 A 2 A 3 , where A 1 , A 2 , and A 3 can be, independently, hydrogen or an optionally substituted alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.
- sulfo-oxo as used herein is represented by the formulas —S(O)A 1 , —S(O) 2 A 1 , —OS(O) 2 A 1 , or —OS(O) 2 OA 1 , where A 1 can be hydrogen or an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.
- S(O) is a short hand notation for S ⁇ O.
- sulfonyl is used herein to refer to the sulfo-oxo group represented by the formula —S(O) 2 A 1 , where A 1 can be hydrogen or an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.
- a 1 S(O) 2 A 2 is represented by the formula A 1 S(O) 2 A 2 , where A 1 and A 2 can be, independently, an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.
- sulfoxide as used herein is represented by the formula A 1 S(O)A 2 , where A 1 and A 2 can be, independently, an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.
- thiol as used herein is represented by the formula —SH.
- organic residue defines a carbon containing residue, i.e., a residue comprising at least one carbon atom, and includes but is not limited to the carbon-containing groups, residues, or radicals defined hereinabove.
- Organic residues can contain various heteroatoms, or be bonded to another molecule through a heteroatom, including oxygen, nitrogen, sulfur, phosphorus, or the like. Examples of organic residues include but are not limited alkyl or substituted alkyls, alkoxy or substituted alkoxy, mono or di-substituted amino, amide groups, etc.
- Organic residues can preferably comprise 1 to 18 carbon atoms, 1 to 15, carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms.
- an organic residue can comprise 2 to 18 carbon atoms, 2 to 15, carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, 2 to 4 carbon atoms, or 2 to 4 carbon atoms
- a very close synonym of the term “residue” is the term “radical,” which as used in the specification and concluding claims, refers to a fragment, group, or substructure of a molecule described herein, regardless of how the molecule is prepared.
- radical refers to a fragment, group, or substructure of a molecule described herein, regardless of how the molecule is prepared.
- a 2,4-thiazolidinedione radical in a particular compound has the structure
- radical for example an alkyl
- substituted alkyl can be further modified (i.e., substituted alkyl) by having bonded thereto one or more “substituent radicals.”
- the number of atoms in a given radical is not critical to the present invention unless it is indicated to the contrary elsewhere herein.
- Organic radicals contain one or more carbon atoms.
- An organic radical can have, for example, 1-26 carbon atoms, 1-18 carbon atoms, 1-12 carbon atoms, 1-8 carbon atoms, 1-6 carbon atoms, or 1-4 carbon atoms.
- an organic radical can have 2-26 carbon atoms, 2-18 carbon atoms, 2-12 carbon atoms, 2-8 carbon atoms, 2-6 carbon atoms, or 2-4 carbon atoms.
- Organic radicals often have hydrogen bound to at least some of the carbon atoms of the organic radical.
- an organic radical that comprises no inorganic atoms is a 5, 6,7,8-tetrahydro-2-naphthyl radical.
- an organic radical can contain 1-10 inorganic heteroatoms bound thereto or therein, including halogens, oxygen, sulfur, nitrogen, phosphorus, and the like.
- organic radicals include but are not limited to an alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, mono-substituted amino, di-substituted amino, acyloxy, cyano, carboxy, carboalkoxy, alkylcarboxamide, substituted alkylcarboxamide, dialkylcarboxamide, substituted dialkylcarboxamide, alkylsulfonyl, alkylsulfinyl, thioalkyl, thiohaloalkyl, alkoxy, substituted alkoxy, haloalkyl, haloalkoxy, aryl, substituted aryl, heteroaryl, heterocyclic, or substituted heterocyclic radicals, wherein the terms are defined elsewhere herein.
- organic radicals that include heteroatoms include alkoxy radicals, trifluoromethoxy radicals, acetoxy radicals, dimethylamino radicals and the like.
- Inorganic radicals contain no carbon atoms and therefore comprise only atoms other than carbon.
- Inorganic radicals comprise bonded combinations of atoms selected from hydrogen, nitrogen, oxygen, silicon, phosphorus, sulfur, selenium, and halogens such as fluorine, chlorine, bromine, and iodine, which can be present individually or bonded together in their chemically stable combinations.
- Inorganic radicals have 10 or fewer, or preferably one to six or one to four inorganic atoms as listed above bonded together. Examples of inorganic radicals include, but not limited to, amino, hydroxy, halogens, nitro, thiol, sulfate, phosphate, and like commonly known inorganic radicals.
- the inorganic radicals do not have bonded therein the metallic elements of the periodic table (such as the alkali metals, alkaline earth metals, transition metals, lanthanide metals, or actinide metals), although such metal ions can sometimes serve as a pharmaceutically acceptable cation for anionic inorganic radicals such as a sulfate, phosphate, or like anionic inorganic radical.
- Inorganic radicals do not comprise metalloids elements such as boron, aluminum, gallium, germanium, arsenic, tin, lead, or tellurium, or the noble gas elements, unless otherwise specifically indicated elsewhere herein.
- a formula with chemical bonds shown only as solid lines and not as wedges or dashed lines contemplates each possible isomer, e.g., each enantiomer and diastereomer, and a mixture of isomers, such as a racemic or scalemic mixture.
- Compounds described herein can contain one or more asymmetric centers and, thus, potentially give rise to diastereomers and optical isomers.
- the present invention includes all such possible diastereomers as well as their racemic mixtures, their substantially pure resolved enantiomers, all possible geometric isomers, and pharmaceutically acceptable salts thereof. Mixtures of stereoisomers, as well as isolated specific stereoisomers, are also included.
- the products of such procedures can be a mixture of stereoisomers.
- DMF dimethyl formamide.
- EtOAc ethyl acetate.
- THF tetrahydrofuran.
- DIPEA or DIEA diisopropylethylamine.
- HOBt 1-hydroxybenzotriazole.
- EDC 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride.
- DMSO dimethylsulfoxide.
- DMAP 4-Dimethylaminopyridine. RT: Room temperature. h: Hours. Min: Minutes.
- DCM Dichloromethane.
- MeCN Acetonitrile.
- MeOH methanol.
- iPrOH 2-Propanol.
- n-BuOH 1-Butanol.
- compositions of the invention Disclosed are the components to be used to prepare the compositions of the invention as well as the compositions themselves to be used within the methods disclosed herein.
- these and other materials are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed that while specific reference of each various individual and collective combinations and permutation of these compounds can not be explicitly disclosed, each is specifically contemplated and described herein. For example, if a particular compound is disclosed and discussed and a number of modifications that can be made to a number of molecules including the compounds are discussed, specifically contemplated is each and every combination and permutation of the compound and the modifications that are possible unless specifically indicated to the contrary.
- compositions disclosed herein have certain functions. Disclosed herein are certain structural requirements for performing the disclosed functions, and it is understood that there are a variety of structures that can perform the same function that are related to the disclosed structures, and that these structures will typically achieve the same result.
- Phencyclidine (PCP) and other NMDA receptor antagonists induce a psychotic state in humans similar to schizophrenia.
- PCP and ketamine exacerbate/precipitate preexisting positive and negative symptoms in stable patients.
- Treatment with NMDA receptor co-agonists can improve positive and negative symptoms.
- a schematic of the NMDA receptor is shown in FIG. 1 .
- Activation of mGluR5 potentiates NMDA receptor function. See FIG. 2 .
- Orthosteric ligands lack subtype selectivity and can cause unwanted side effects. Allosteric modulators (see FIG. 3 ) targeting transmembrane domain offer alternative: TMD is significantly less conserved.
- mGluR5 metabotropic glutamate receptor subtype 5
- compounds useful as positive allosteric modulators (potentiators) of the metabotropic glutamate receptor subtype 5 mGluR5
- compounds that allosterically modulate mGluR5 receptor activity affecting the sensitivity of mGluR5 receptors to agonists without acting as orthosteric agonists themselves.
- the compounds of the invention are useful in the treatment neurological and psychiatric disorders associated with glutamate dysfunction and other diseases in which metabotropic glutamate receptors are involved, as further discussed infra.
- the invention relates to compounds useful as positive allosteric modulators (potentiators) of the metabotropic glutamate receptor subtype 5 (mGluR5). More specifically, the present invention relates to compounds that allosterically modulate mGluR5 receptor activity, affecting the sensitivity of mGluR5 receptors to agonists without acting as orthosteric agonists themselves.
- the compounds of the invention are useful in the treatment neurological and psychiatric disorders associated with glutamate dysfunction and other diseases in which metabotropic glutamate receptors are involved, as further described herein.
- the disclosed compounds exhibit potentiation of mGluR5 response to glutamate as an increase in response to non-maximal concentrations of glutamate in human embryonic kidney cells transfected with rat mGluR5 in the presence of the compound, compared to the response to glutamate in the absence of the compound.
- the compounds are isoindolin-1-one derivatives, isoindoline-1,3-dione derivatives, 3,4-dihydroisoquinolin-1(2H)-one derivatives, isoquinoline-1,3(2H,4H)-dione derivatives, other related bicyclic compounds, or a pharmaceutically acceptable salts or N-oxides thereof.
- each derivative can be optionally further substituted. It is also contemplated that any one or more derivative can be optionally omitted from the invention.
- Y 1 is selected from N and C—R 4 .
- Y 2 is selected from N and C—H.
- each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms.
- R 4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms.
- R 3a and R 3b can together comprise a cycloalkyl having from 2-12 carbon atoms, R 3a and R 3b do not form a bridge with the adjacent aromatic ring.
- L is an organic divalent radical comprising 1 to 7 carbon atoms and is selected from:
- R 7a and R 7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted
- R 8 is selected from hydrogen, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroal
- each substitutent can be optionally further substituted. It is also contemplated that any one or more substitutent can be optionally omitted from the invention.
- the invention relates to an isoindolin-1-one derivative having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R 1 is hydrogen, then R 5 is optionally substituted phenyl or optionally substituted pyridinyl; or a pharmaceutically acceptable salt or N-oxide thereof.
- the invention relates to an isoindoline-1,3-dione derivative having a structure:
- R 1 is hydrogen or is selected from optionally substituted C1-C12 alkyl, optionally substituted C1-C12 heteroalkyl, optionally substituted C3-C12 cycloalkyl, or optionally substituted C3-C12 heterocycloalkyl, with the proviso that R 1 does not comprise silicon; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R 1 is hydrogen, then R 5 is optionally substituted phenyl or optionally substituted pyridinyl, and with the proviso that if R 1 is methyl, then R 5 is an organic radical comprising 4 to 14 carbon atoms; or a pharmaceutically acceptable salt or N-oxide thereof.
- the invention relates to a 3,4-dihydroisoquinolin-1(2H)-one derivative having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms; or a pharmaceutically acceptable salt or N-oxide thereof.
- the invention relates to an isoquinoline-1,3(2H,4H)-dione derivative having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that R 5 does not comprise a triphenylamine residue or a benzimidamide residue; or a pharmaceutically acceptable salt or N-oxide thereof.
- the invention relates to a bicyclic compound having a structure:
- n 2, 3 or 4; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R 2a and R 2b together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, or a pharmaceutically acceptable salt or N-oxide thereof.
- R 1 is an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH 2 ) m -aryl or —(CH 2 ) m -heterocycle, wherein m is 1, 2, 3 or 4; wherein R 2a and R 2b , when present, together comprise
- the compound has a structure comprising a formula:
- the compound has a structure comprising a formula:
- the compound has a structure comprising a formula:
- the compound has a structure comprising a formula:
- the compound has a structure comprising a formula:
- n is 0 or 1.
- the compound has a structure having a formula:
- a compound wherein R 1 is selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl; and wherein R 1 is mono- or di-substituted with substituents selected from hydroxy, oxo, halo, C1-C6 alkyl, —CF 3 , —CHF 2 , —CH 2 F, C1-C4 alky
- R 1 is a heterocycle selected from optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, and optionally substituted heteroaryl.
- a compound wherein R 1 is mono- or di-substituted with substituents selected from hydroxy, oxo, halo, C1-C6 alkyl, —CF 3 , —CHF 2 , —CH 2 F, C1-C4 alkyl-CF 3 , C1-C4alkyl-CHF 2 , C1-C4alkyl-CH 2 F, C1-C6 alkoxyl, —OCF 3 , —OCHF 2 , —OCH 2 F, C1-C4 alkoxyl-CF 3 , C1-C4 alkoxyl-CHF 2 , C1-C4 alkoxyl-CH 2 F, -hydroxy-C1-C4 alkyl, —S(O) 2 —R 9 , —C(O)—C1-C6 alkoxyl, —C(O)—NR 9 R 10 , —C(O)—O—C(CH 3
- R 1 is selected from residues of pyridine; pyrimidine; furan; thiophene; pyrrole; isoxazole; isothiazole; pyrazole; oxazole; thiazole; imidazole; oxazole; 1,2,3-oxadiazole; 1,2,5-oxadiazole; 1,3,4-oxadiazole; thiadiazole; 1,2,3-thiadiazole; 1,2,5-thiadiazole; 1,3,4-thiadiazole; triazole; 1,2,3-triazole; 1,3,4-triazole; tetrazole; 1,2,3,4-tetrazole; 1,2,4,5-tetrazole; pyridazine; pyrazine; triazine; 1,2,4-triazine; 1,3,5-triazine; tetrazine; 1,2,4,5-tetrazine; pyrrolidine; piperidine; piperazine;
- a compound wherein R 1 is mono- or di-substituted with substituents selected from hydroxy, oxo, halo, C1-C6 alkyl, —CF 3 , —CHF 2 , —CH 2 F, C1-C4 alkyl-CF 3 , C1-C4alkyl-CHF 2 , C1-C4alkyl-CH 2 F, C1-C6 alkoxyl, —OCF 3 , —OCHF 2 , —OCH 2 F, C1-C4 alkoxyl-CF 3 , C1-C4 alkoxyl-CHF 2 , C1-C4 alkoxyl-CH 2 F, -hydroxy-C1-C4 alkyl, —S(O) 2 —R 9 , —C(O)—C1-C6 alkoxyl, —C(O)—NR 9 R 10 , —C(O)—O—C(CH 3
- R 1 is selected from 2-(4-hydroxypiperidin-1-yl)-2-oxoethyl, 2-(4-hydroxypiperidin-1-yl)ethyl, 2-(azetidin-1-yl), 2-acetamide, 2-morpholino-2-oxoethyl, 2-morpholinoethyl, benzyl, benzyl 2-acetate, cyclobutylmethyl, cyclopropylmethyl, ethyl 2-propanoate, hydrogen, methyl, N-(2-(dimethylamino)ethyl acetamide, N-2-methoxyethyl acetamide, N-cyclopropyl-2-acetamide, and N-cyclopropylmethyl acetamide.
- R 5 is selected from:
- Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 are independently selected from C and N; and wherein R 6 comprises one, two, three, four, five, six, or seven substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted C
- R 6 is selected from chloro, dimethylamino, fluoro, methoxy, methyl, and trifluoromethyl.
- R 5 is selected from:
- R 6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 8 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkyl
- R 5 is selected from:
- R 5 comprises a structure having a formula:
- R 6 comprises one or two substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 8 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl
- the compounds can be alkyne derivatives, alkene derivatives, 1,2,4-oxadiazole derivatives, or amide derivatives. That is, in certain aspects, L can be an alkyne residue, and alkene residue, an 1,2,4-oxadiazole residue, or an amide residue. It is understood that the alkyne, alkene, 1,2,4-oxadiazole, and amide residues can be further substuted. It is also contemplated that any one or more alkyne, alkene, 1,2,4-oxadiazole, or amide residue can be optionally omitted from the invention.
- a compound has a structure having a formula:
- R 5 is selected from:
- R 6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkyl
- a compound is provided as a structure having a formula:
- n is 0 or 1; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH 2 ) m -aryl or —(CH 2 ) m -heterocycle, wherein m is 1, 2, 3 or 4; wherein R 2a and R 2b , when present
- a compound comprises a structure having a formula:
- a compound is selected from:
- a compound is selected from:
- a compound is selected from:
- a compound comprises a structure having a formula:
- R 1 is selected from hydrogen and an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH 2 ) m -aryl or —(CH 2 ) m -heterocycle, wherein m is 1, 2, 3 or 4; wherein n is 0 or 1; wherein if n is 0, then R 3
- a compound comprises a structure having a formula
- a compound wherein R 1 is selected from 2-(4-hydroxypiperidin-1-yl)-2-oxoethyl, 2-(4-hydroxypiperidin-1-yl)ethyl, 2-(azetidin-1-yl), 2-acetamide, 2-morpholino-2-oxoethyl, 2-morpholinoethyl, benzyl, benzyl 2-acetate, cyclobutylmethyl, cyclopropylmethyl, ethyl 2-propanoate, hydrogen, methyl, N-(2-(dimethylamino)ethyl acetamide, N-2-methoxyethyl acetamide, N-cyclopropyl-2-acetamide, and N-cyclopropylmethyl acetamide; wherein R 6 comprises one or two substituents selected from chloro, dimethylamino, fluoro, methoxy, methyl, and trifluoromethyl; and wherein Z is C.
- a compound is selected from:
- a compound is selected from:
- a compound is selected from:
- a compound is selected from:
- a compound is selected from:
- a compound is selected from:
- a compound is present as 6-(pyridin-4-ylethynyl)-3,4-dihydroisoquinolin-1(2H)-one.
- a compound has a structure having a formula:
- R 7a and R 7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl,
- R 5 is selected from:
- R 6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkyl
- a compound is comprises a structure having a formula:
- R 7a and R 7b are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl,
- a compound is selected from:
- R 6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkyl
- a compound has a structure having a formula:
- R 5 is selected from:
- R 6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkyl
- a compound has a structure having a formula:
- R 8 is selected from hydrogen and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- R 5 is selected from:
- R 6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkyl
- the compound exhibits potentiation of mGluR5 response to glutamate as an increase in response to non-maximal concentrations of glutamate in human embryonic kidney cells transfected with rat mGluR5 in the presence of the compound, compared to the response to glutamate in the absence of the compound, compared to the response to glutamate in the absence of the compound, having an EC 50 of less than about 1.0 ⁇ 10 ⁇ 6 , for example, less than about 5.0 ⁇ 10 ⁇ 7 , less than about 1.0 ⁇ 10 ⁇ 7 , less than about 5.0 ⁇ 10 ⁇ 8 , or less than about 1.0 ⁇ 10 ⁇ 8 .
- HEK Human embryonic kidney
- FDSS Functional Drug Screening System
- the cells were loaded with a Ca 2+ -sensitive fluorescent dye (e.g., Fluo-4), and the plates were washed and placed in the FDSS instrument. After establishment of a fluorescence baseline for twelve seconds, the compounds of the present invention were added to the cells, and the response in cells was measured.
- a Ca 2+ -sensitive fluorescent dye e.g., Fluo-4
- an mGluR5 agonist e.g., glutamate, 3,5-dihydroxyphenylglycine, or quisqualate
- an mGluR5 agonist e.g., glutamate, 3,5-dihydroxyphenylglycine, or quisqualate
- the above described assay operated in two modes.
- a range of concentrations of the present compounds were added to cells, followed by a single fixed concentration of agonist. If a compound acted as a potentiator, an EC 50 value for potentiation and a maximum extent of potentiation by the compound at this concentration of agonist was determined by non-linear curve fitting.
- the second mode several fixed concentrations of the present compounds were added to various wells on a plate, followed by a range of concentrations of agonist for each concentration of present compound; the EC 50 values for the agonist at each concentration of compound were determined by non-linear curve fitting.
- a decrease in the EC 50 value of the agonist with increasing concentrations of the present compounds is an indication of the degree of mGluR5 potentiation at a given concentration of the present compound.
- An increase in the EC 50 value of the agonist with increasing concentrations of the present compounds is an indication of the degree of mGluR5 antagonism at a given concentration of the present compound.
- the second mode also indicates whether the present compounds also affect the maximum response to mGluR5 to agonists.
- the disclosed compounds had activity in potentiating the mGluR5 receptor in the aforementioned assays, generally with an EC 50 for potentiation of less than about 10 ⁇ M.
- Preferred compounds within the present invention had activity in potentiating the mGluR5 receptor with an EC 50 for potentiation of less than about 500 nM.
- Preferred compounds further caused a leftward shift of the agonist EC 50 by greater than 3-fold.
- These compounds did not cause mGluR5 to respond in the absence of agonist, and they did not elicit a significant increase in the maximal response of mGluR5 to agonists.
- These compounds are positive allosteric modulators (potentiators) of human and rat mGluR5 and were selective for mGluR5 compared to the other seven subtypes of metabotropic glutamate receptors.
- Preferred compounds of the present invention also showed in vivo efficacy in a number of preclinical rat behavioral model where known, clinically useful antipsychotics display similar positive responses.
- compounds of the present invention reverse amphetamine-induced hyperlocomotion in male Sprague-Dawley rats at doses ranging from 1 to 100 mg/kg i.p. Data for three example compounds follow:
- the invention relates to methods of making compounds useful as positive allosteric modulators (potentiators) of the metabotropic glutamate receptor subtype 5 (mGluR5), which can beuseful in the treatment neurological and psychiatric disorders associated with glutamate dysfunction and other diseases in which metabotropic glutamate receptors are involved.
- positive allosteric modulators potentiators
- mGluR5 metabotropic glutamate receptor subtype 5
- the compounds of this invention can be prepared by employing reactions as shown in the following schemes, in addition to other standard manipulations that are known in the literature, exemplified in the experimental sections or clear to one skilled in the art. Substituent numbering as shown in schemes does not necessarily correlate to that used in the claims and often, for clarity, a single substituent is shown to attach to the compound where multiple substituents are allowed under the definitions disclosed herein.
- Reactions used to generate the compounds of this invention are prepared by employing reactions as shown in Reaction Schemes I and II, in addition to other standard manipulations known in the literature or to one skilled in the art.
- the following examples are provided so that the invention might be more fully understood, are illustrative only, and should not be construed as limiting.
- a suitably substituted 6-bromo-3,4-dihydro-2H-isoquinoline I-1 is subjected to a Sonogashira/Castro-Stephens coupling reaction employing catalytic copper (I) iodide and catalytic palladium (0) and a suitably functionalized acetylene under microwave irradiation to deliver the corresponding product I-2.
- the suitably substituted 6-bromo-3,4-dihydro-2H-isoquinolines I-1 were commercially available, or could be easily prepared according to literature methods. The following examples are provided so that the invention might be ore fully understood. These examples are illustrative only and should not be construed as limiting in any way.
- a suitably 6-substituted-3,4-dihydro-2H-isoquinoline II-1 is subjected to an S N 2 reaction with a suitably functionalized electrophile (R3-X) to deliver the corresponding product II-2.
- R3-X suitably functionalized electrophile
- the suitably substituted 6-substituted-3,4-dihydro-2H-isoquinoline II-1 were prepared according to REACTION SCHEME I and the electrophiles were commercially available, or could be easily prepared according to literature methods.
- the following examples are provided so that the invention might be ore fully understood. These examples are illustrative only and should not be construed as limiting in any way.
- a suitably substituted 5-bromoisobenzofuran-1(3H)-one III-1 is treated with ammonium hydrodixed in methanol to afford 4-bromo-2-(hydroxylmethyl)benzamide III-2, and a subsequent Mitsunobu reation under standard conditions delivers 5-bromoisoindolin-1-one III-3.
- Intermediate III-3 is subjected to a Sonogashira/Castro-Stephens coupling reaction employing catalytic copper (I) iodide and catalytic palladium (0) and a suitably functionalized acetylene III-4 under microwave irradiation to deliver the corresponding product III-5.
- a suitably substituted 5-(phenylethynyl)isobenzofuran-1,3-dione IV-1 is treated with urea in DMF under microwave irradiation to afford 5-(phenethynyl)isoindoline-1,3-dione IV-2.
- Intermediate IV-2 is alklyated with a suitably functionalized alkly halide (Cl, Br, I) to provide 2-alklyl-5-(phenethynyl)isoindoline-1,3-dione IV-3.
- the suitably substituted 5-(phenylethynyl)isobenzofuran-1,3-dione IV-1 were commercially available, or could be easily prepared according to literature methods.
- the invention relates to a method for preparing a compound comprising the steps of:
- R 5 is an organic radical comprising 4 to 14 carbon atoms selected from optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, and optionally substituted heteroaryl; and wherein X 2 comprises a halide, a pseudohalide, a carboxylic acid, a carboxylic acid derivative, a terminal acetylene moiety, an activated vinyl moiety, a N′-hydroxybenzimidamide, or a primary or secondary amine; coupling the first reactant with the second reactant, thereby forming linking moiety L, to provide a compound having a structure represented by a formula:
- L is an organic divalent radical comprising 1 to 7 carbon atoms selected from optionally substituted C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, and optionally substituted amido; wherein, when X 1 is halide or pseudohalide, X 2 is a terminal acetylene moiety, or an activated vinyl moiety; wherein, when X 1 is a carboxylic acid or a carboxylic acid derivative, X 2 is a N′-hydroxybenzimidamide, or a primary or secondary amine; wherein, when X 2 is halide or pseudohalide, X 1 is a terminal acetylene moiety, or an activated vinyl moiety; wherein, when X
- L is selected from:
- R 7a and R 7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted
- a compound when R 1 is H, can be alkylated with an electrophilic alkyl functionality, for example, an alkyl halide or pseudohalide.
- the reactive vinyl moiety comprises a monosubstituted vinyl moiety, a vinyl boronic acid, a vinyl boronic ester, or a vinyltrialkylstannane.
- the coupling step comprises a Sonogashira/Castro-Stephens coupling reaction; wherein X 1 comprises a halide or a pseudohalide; wherein X 2 comprises a terminal acetylene moiety; and wherein the compound has a structure represented by a formula:
- the coupling step comprises a Sonogashira/Castro-Stephens coupling reaction; wherein X 1 comprises a terminal acetylene moiety; wherein X 2 comprises a halide or a pseudohalide; and wherein the compound has a structure represented by a formula:
- the coupling step comprises a Suzuki coupling reaction, wherein X 1 comprises a vinyl boronic acid or a vinyl boronic ester; wherein X 2 comprises a halide or a pseudohalide; and wherein the compound has a structure represented by a formula:
- the coupling step comprises a Suzuki coupling reaction, wherein X 1 comprises a halide or a pseudohalide; wherein X 2 comprises a vinyl boronic acid or a vinyl boronic ester; and wherein the compound has a structure represented by a formula:
- the coupling step comprises a Stille coupling reaction; wherein X 1 comprises a vinyltrialkylstannane; wherein X 2 comprises a halide or a pseudohalide; and wherein the compound has a structure represented by a formula:
- the coupling step comprises a Stille coupling reaction; wherein X 1 comprises a halide or a pseudohalide; wherein X 2 comprises a vinyltrialkylstannane; and wherein the compound has a structure represented by a formula:
- the coupling step comprises a Heck reaction, wherein X 1 comprises a monosubstituted vinyl moiety; wherein X 2 comprises a halide or a pseudohalide; and wherein the compound has a structure represented by a formula:
- the coupling step comprises a Heck reaction, wherein X 1 comprises a halide or a pseudohalide; wherein X 2 comprises a monosubstituted vinyl moiety; and wherein the compound has a structure represented by a formula:
- the coupling step comprises a condensation reaction; wherein X 1 comprises a carboxylic acid or a carboxylic acid derivative; wherein X 2 comprises a N′-hydroxybenzimidamide; and wherein the compound has a structure represented by a formula:
- the coupling step comprises a condensation reaction; wherein X 1 comprises a N′-hydroxybenzimidamide; wherein X 2 comprises a carboxylic acid or a carboxylic acid derivative; and wherein the compound has a structure represented by a formula:
- the coupling step comprises an amide formation reaction; wherein X 1 comprises a carboxylic acid or a carboxylic acid derivative; wherein X 2 comprises a primary or secondary amine; and wherein the compound has a structure represented by a formula:
- R 8 is selected from hydrogen and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- the coupling step comprises an amide formation reaction; wherein X 1 comprises a primary or secondary amine; wherein X 2 comprises a carboxylic acid or a carboxylic acid derivative; and wherein the compound has a structure represented by a formula:
- R 8 is selected from hydrogen and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- the providing a first reactant step comprises the steps of:
- n 0 or 1; with ammonia or a primary amine to afford a compound having a structure represented by a formula:
- R 1 is hydrogen, alkylating the imide moiety.
- the providing a first reactant step comprises the steps of: treating a lactone having a structure represented by a formula:
- n 0, 1, 2, 3 or 4; with ammonia or a primary amine to afford an intermediate having a structure represented by a formula:
- R 1 is hydrogen, alkylating the lactam moiety.
- the cyclizing step comprises subjecting the intermediate to Mitsunobu reaction conditions; or converting the hydroxyl functionality to a pseudohalide.
- the first reactant has a structure comprising a formula:
- the first reactant has a structure comprising a formula:
- the first reactant has a structure comprising a formula:
- the first reactant has a structure comprising a formula:
- the first reactant has a structure comprising a formula:
- the second reactant has a structure represented by a formula:
- Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 are independently selected from C and N; and wherein R 6 comprises one, two, three, four, five, six, or seven substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted C
- the second reactant has a structure represented by a formula:
- R 6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkyl
- the second reactant has a structure represented by a formula:
- the second reactant has a structure represented by a formula:
- R 6 comprises one or two substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl
- the alkylating step is performed by reaction with a base and an alkyl halide or alkyl pseudohalide.
- the base is sodium hydride.
- the alkyl moiety of the alkyl halide or alkyl pseudohalide comprises an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, or —(CH 2 ) m -aryl or —(CH 2 ) m -heterocycle, wherein m is 1, 2, 3 or 4.
- the alkylating step is performed before the coupling step.
- the invention related to a method for preparing a compound comprising the steps of:
- n is 0 or 1; wherein Y 1 and Y 2 are independently selected from C and N; wherein Rea and R 2b , when present, together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl
- R 1 is hydrogen, alkylating the imide moiety.
- R 1 is selected from 2-(4-hydroxypiperidin-1-yl)-2-oxoethyl, 2-(4-hydroxypiperidin-1-yl)ethyl, 2-(azetidin-1-yl), 2-acetamide, 2-morpholino-2-oxoethyl, 2-morpholinoethyl, benzyl, benzyl 2-acetate, cyclobutylmethyl, cyclopropylmethyl, ethyl 2-propanoate, hydrogen, methyl, N-(2-(dimethylamino)ethyl acetamide, N-2-methoxyethyl acetamide, N-cyclopropyl-2-acetamide, and N-cyclopropylmethyl acetamide.
- R 5 is selected from:
- Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , L and Z 6 are independently selected from C and N; and wherein R 6 comprises one, two, three, four, five, six, or seven substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted
- R 5 is selected from:
- R 6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkyl
- R 5 is selected from:
- R 5 is comprises a structure having a formula:
- R 6 comprises one or two substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl
- L is selected from:
- R 7a and R 7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl,
- the alkylating step is performed by reaction with a base and an alkyl halide or alkyl pseudohalide.
- the base is sodium hydride.
- the alkyl moiety of the alkyl halide or alkyl pseudohalide comprises an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH 2 ) m -aryl or —(CH 2 ) m -heterocycle, wherein m is 1, 2, 3 or 4.
- the alkylating step is performed before the coupling step.
- the invention relates to a method for preparing a compound comprising the steps of:
- n is 0, 1, 2, 3 or 4; wherein Y 1 and Y 2 are independently selected from C and N; wherein R 2a and R 2b , when present, together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted
- R 1 is hydrogen, alkylating the lactam moiety.
- the cyclizing step comprises subjecting the intermediate to Mitsunobu reaction conditions; or converting the hydroxyl functionality to a pseudohalide.
- L is selected from:
- R 7a and R 7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted
- the alkylating step is performed by reaction with a base and an alkyl halide or alkyl pseudohalide.
- the base is sodium hydride.
- the alkyl moiety of the alkyl halide or alkyl pseudohalide comprises an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH 2 ) m -aryl or —(CH 2 ) m -heterocycle, wherein m is 1, 2, 3 or 4.
- the method provides a disclosed compound, for example, a compound listed in Table 1.
- a disclosed compound for example, a compound listed in Table 1.
- Compounds in Table 1 were synthesized as shown in reaction Schemes I and II, but substituting the appropriately substituted acetylene and electrophile as described in Scheme 1 and 2.
- the requisite starting materials were commercially available, described in the literature or readily synthesized by one skilled in the art of organic synthesis.
- the invention relates to pharmaceutical compositions comprising the disclosed compounds. That is, a pharmaceutical composition can be provided comprising a therapeutically effective amount of at least one disclosed compound or at least one product of a disclosed method and a pharmaceutically acceptable carrier.
- the disclosed pharmaceutical compositions comprise the disclosed compounds (including pharmaceutically acceptable salt(s) thereof) as an active ingredient, a pharmaceutically acceptable carrier, and, optionally, other therapeutic ingredients or adjuvants.
- the instant compositions include those suitable for oral, rectal, topical, and parenteral (including subcutaneous, intramuscular, and intravenous) administration, although the most suitable route in any given case will depend on the particular host, and nature and severity of the conditions for which the active ingredient is being administered.
- the pharmaceutical compositions can be conveniently presented in unit dosage form and prepared by any of the methods well known in the art of pharmacy.
- salts refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids.
- the compound of the present invention is acidic, its corresponding salt can be conveniently prepared from pharmaceutically acceptable non-toxic bases, including inorganic bases and organic bases.
- Salts derived from such inorganic bases include aluminum, ammonium, calcium, copper (-ic and -ous), ferric, ferrous, lithium, magnesium, manganese (-ic and -ous), potassium, sodium, zinc and the like salts. Particularly preferred are the ammonium, calcium, magnesium, potassium and sodium salts.
- Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, as well as cyclic amines and substituted amines such as naturally occurring and synthesized substituted amines.
- Other pharmaceutically acceptable organic non-toxic bases from which salts can be formed include ion exchange resins such as, for example, arginine, betaine, caffeine, choline, N,N′-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine,
- the term “pharmaceutically acceptable non-toxic acids”, includes inorganic acids, organic acids, and salts prepared therefrom, for example, acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid and the like.
- the compounds of the invention, or pharmaceutically acceptable salts thereof, of this invention can be combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques.
- the carrier can take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral (including intravenous).
- the pharmaceutical compositions of the present invention can be presented as discrete units suitable for oral administration such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient.
- compositions can be presented as a powder, as granules, as a solution, as a suspension in an aqueous liquid, as a non-aqueous liquid, as an oil-in-water emulsion or as a water-in-oil liquid emulsion.
- the compounds of the invention, and/or pharmaceutically acceptable salt(s) thereof can also be administered by controlled release means and/or delivery devices.
- the compositions can be prepared by any of the methods of pharmacy. In general, such methods include a step of bringing into association the active ingredient with the carrier that constitutes one or more necessary ingredients. In general, the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both. The product can then be conveniently shaped into the desired presentation.
- compositions of this invention can include a pharmaceutically acceptable carrier and a compound or a pharmaceutically acceptable salt of the compounds of the invention.
- the compounds of the invention, or pharmaceutically acceptable salts thereof, can also be included in pharmaceutical compositions in combination with one or more other therapeutically active compounds.
- the pharmaceutical carrier employed can be, for example, a solid, liquid, or gas.
- solid carriers include lactose, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, and stearic acid.
- liquid carriers are sugar syrup, peanut oil, olive oil, and water.
- gaseous carriers include carbon dioxide and nitrogen.
- any convenient pharmaceutical media can be employed.
- water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like can be used to form oral liquid preparations such as suspensions, elixirs and solutions; while carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents, and the like can be used to form oral solid preparations such as powders, capsules and tablets.
- carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents, and the like
- oral solid preparations such as powders, capsules and tablets.
- tablets and capsules are the preferred oral dosage units whereby solid pharmaceutical carriers are employed.
- tablets can be coated by standard aqueous or nonaqueous techniques
- a tablet containing the composition of this invention can be prepared by compression or molding, optionally with one or more accessory ingredients or adjuvants.
- Compressed tablets can be prepared by compressing, in a suitable machine, the active ingredient in a free-flowing form such as powder or granules, optionally mixed with a binder, lubricant, inert diluent, surface active or dispersing agent. Molded tablets can be made by molding in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent.
- compositions of the present invention comprise a compound of the invention (or pharmaceutically acceptable salts thereof) as an active ingredient, a pharmaceutically acceptable carrier, and optionally one or more additional therapeutic agents or adjuvants.
- the instant compositions include compositions suitable for oral, rectal, topical, and parenteral (including subcutaneous, intramuscular, and intravenous) administration, although the most suitable route in any given case will depend on the particular host, and nature and severity of the conditions for which the active ingredient is being administered.
- the pharmaceutical compositions can be conveniently presented in unit dosage form and prepared by any of the methods well known in the art of pharmacy.
- compositions of the present invention suitable for parenteral administration can be prepared as solutions or suspensions of the active compounds in water.
- a suitable surfactant can be included such as, for example, hydroxypropylcellulose.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof in oils. Further, a preservative can be included to prevent the detrimental growth of microorganisms.
- compositions of the present invention suitable for injectable use include sterile aqueous solutions or dispersions.
- the compositions can be in the form of sterile powders for the extemporaneous preparation of such sterile injectable solutions or dispersions.
- the final injectable form must be sterile and must be effectively fluid for easy syringability.
- the pharmaceutical compositions must be stable under the conditions of manufacture and storage; thus, preferably should be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol and liquid polyethylene glycol), vegetable oils, and suitable mixtures thereof.
- compositions of the present invention can be in a form suitable for topical use such as, for example, an aerosol, cream, ointment, lotion, dusting powder, mouth washes, gargles and the like. Further, the compositions can be in a form suitable for use in transdermal devices. These formulations can be prepared, utilizing a compound of the invention, or pharmaceutically acceptable salts thereof, via conventional processing methods. As an example, a cream or ointment is prepared by mixing hydrophilic material and water, together with about 5 wt % to about 10 wt % of the compound, to produce a cream or ointment having a desired consistency.
- compositions of this invention can be in a form suitable for rectal administration wherein the carrier is a solid. It is preferable that the mixture forms unit dose suppositories. Suitable carriers include cocoa butter and other materials commonly used in the art. The suppositories can be conveniently formed by first admixing the composition with the softened or melted carrier(s) followed by chilling and shaping in moulds.
- the pharmaceutical formulations described above can include, as appropriate, one or more additional carrier ingredients such as diluents, buffers, flavoring agents, binders, surface-active agents, thickeners, lubricants, preservatives (including anti-oxidants) and the like.
- additional carrier ingredients such as diluents, buffers, flavoring agents, binders, surface-active agents, thickeners, lubricants, preservatives (including anti-oxidants) and the like.
- additional carrier ingredients such as diluents, buffers, flavoring agents, binders, surface-active agents, thickeners, lubricants, preservatives (including anti-oxidants) and the like.
- additional carrier ingredients such as diluents, buffers, flavoring agents, binders, surface-active agents, thickeners, lubricants, preservatives (including anti-oxidants) and the like.
- other adjuvants can be included to render the formulation isotonic with the blood of the intended recipient
- a potentiated amount of an mGluR agonist to be administered in combination with an effective amount of a compound of formula I is expected to vary from about 0.1 milligram per kilogram of body weight per day (mg/kg/day) to about 100 mg/kg/day and is expected to be less than the amount that is required to provide the same effect when administered without an effective amount of a compound of formula I.
- Preferred amounts of a co-administered mGluR agonist are able to be determined by one skilled in the art.
- an appropriate dosage level will generally be about 0.01 to 500 mg per kg patient body weight per day and can be administered in single or multiple doses.
- the dosage level will be about 0.1 to about 250 mg/kg per day; more preferably 0.5 to 100 mg/kg per day.
- a suitable dosage level can be about 0.01 to 250 mg/kg per day, about 0.05 to 100 mg/kg per day, or about 0.1 to 50 mg/kg per day. Within this range the dosage can be 0.05 to 0.5, 0.5 to 5.0 or 5.0 to 50 mg/kg per day.
- compositions are preferably provided in the from of tablets containing 1.0 to 1000 miligrams of the active ingredient, particularly 1.0, 5.0, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600, 750, 800, 900 and 1000 milligrams of the active ingredient for the symptomatic adjustment of the dosage of the patient to be treated.
- the compound can be administered on a regimen of 1 to 4 times per day, preferably once or twice per day. This dosing regimen can be adjusted to provide the optimal therapeutic response.
- the specific dose level for any particular patient will depend upon a variety of factors. Such factors include the age, body weight, general health, sex, and diet of the patient. Other factors include the time and route of administration, rate of excretion, drug combination, and the type and severity of the particular disease undergoing therapy.
- the present invention is further directed to a method for the manufacture of a medicament for poteniating glutamate receptor activity (e.g., treatment of one or more neurological and/or psychiatric disorder associated with glutamate dysfunction) in mammals (e.g., humans) comprising combining one or more disclosed compounds, products, or compositions with a pharmaceutically acceptable carrier or diluent.
- a medicament for poteniating glutamate receptor activity e.g., treatment of one or more neurological and/or psychiatric disorder associated with glutamate dysfunction
- mammals e.g., humans
- compositions can further comprise other therapeutically active compounds, which are usually applied in the treatment of the above mentioned pathological conditions.
- compositions can be employed in the disclosed methods of using.
- the amino acid L-glutamate (referred to herein simply as glutamate) is the principal excitatory neurotransmitter in the mammalian central nervous system (CNS). Within the CNS, glutamate plays a key role in synaptic plasticity (e.g., long term potentiation (the basis of learning and memory)), motor control and sensory perception. It is now well understood that a variety of neurological and psychiatric disorders, including, but not limited to, schizophrenia general psychosis and cognitive deficits, are associated with dysfunctions in the glutamatergic system. Thus, modulation of the glutamatergic system is an important therapeutic goal. Glutamate acts through two distinct receptors: ionotropic and metabotropic glutamate receptors.
- the first class is comprised of multi-subunit ligand-gated ion channels that mediate excitatory post-synaptic currents.
- Three subtypes of ionotropic glutamate receptors have been identified, and despite glutamate serving as agonist for all three receptor subtypes, selective ligands have been discovered that activate each subtype.
- the ionotropic glutamate receptors are named after their respective selective ligands: kainite receptors, AMPA receptors and NMDA receptors.
- the second class of glutamate receptor termed metabotropic glutamate receptors, (mGluRs) are G-protein coupled receptors (GPCRs) that modulate neurotransmitter release or the strength of synaptic transmission, based on their location (pre- or post-synaptic).
- GPCRs G-protein coupled receptors
- the mGluRs are family C GPCR, characterized by a large ( ⁇ 560 amino acid) “venus fly trap” agonist binding domain in the amino-terminal domain of the receptor. This unique agonist binding domain distinguishes family C GPCRs from family A and B GPCRs wherein the agonist binding domains are located within the 7-strand transmembrane spanning (7TM) region or within the extracellular loops that connect the strands to this region.
- mGluRs eight distinct mGluRs have been identified, cloned and sequenced. Based on structural similarity, primary coupling to intracellular signaling pathways and pharmacology, the mGluRs have been assigned to three groups: Group I (mGluR1 and mGluR5), Group II (mGluR2 and mGluR3) and Group III (mGluR4, mGluR6, mGluR7 and mGluR8).
- Group I mGluRs are coupled through G ⁇ q/11 to increase inositol phosphate and metabolism and resultant increases in intracellular calcium.
- Group I mGluRs are primarily located post-synaptically and have a modualtory effect on ion channel activity and neuronal excitability.
- Group II (mGluR2 and mGluR3) and Group III (mGluR4, mGluR6, mGluR7 and mGluR8) mGluRs are primarily located pre-synaptically where they regulate the release of neurotransmitters, such as glutamate.
- Group II and Group III mGluRs are coupled to G ⁇ i and its associated effectors such as adenylate cyclase.
- Post-synaptic mGluRs are known to functionally interact with post-synaptic ionotropic glutamate receptors, such as the NMDA receptor.
- mGluR5 activation of mGluR5 by a selective agonist has been shown to increase post-synaptic NMDA currents (Mannaioni et.al. J. Neurosci. 21:5925-5934 (2001)). Therefore, modulation of mGluRs is an approach to modulating glutamatergic transmission.
- Numerous reports indicate that mGluR5 plays a role in a number of disease states including anxiety (Spooren et. al. J. Pharmacol. Exp. Therapeut. 295:1267-1275 (2000), Tatarczynska et al. Br. J. Pharmaol. 132:1423-1430 (2001)), schizophrenia (reviewed in Chavez-Noriega et al. Curr. Drug
- the disclosed compounds can be used as single agents or in combination with one or more other drugs in the treatment, prevention, control, amelioration or reduction of risk of the aforementioned diseases, disorders and conditions for which compounds of formula I or the other drugs have utility, where the combination of drugs together are safer or more effective than either drug alone.
- the other drug(s) can be administered by a route and in an amount commonly used therefore, contemporaneously or sequentially with a disclosed compound.
- a pharmaceutical composition in unit dosage form containing such drugs and the disclosed compound is preferred.
- the combination therapy can also be administered on overlapping schedules. It is also envisioned that the combination of one or more active ingredients and a disclosed compound will be more efficacious than either as a single agent.
- the subject compounds can be coadministered with ant-Alzheimer's agents, beta-secretase inhibitors, gamma-secretase inhibitors, muscarinic agonists, muscarinic potentiatorsHMG-CoA reductase inhibitors, NSAIDs and anti-amyloid antibodies.
- the subject compounds can be administered in combination with sedatives, hypnotics, anxiolytics, antipsychotics, selective serotonin reuptake inhibitors (SSRIs), monoamine oxidase inhibitors (MAOIs), 5-HT2 antagonists, GlyT1 inhibitors and the like such as, but not limited to: risperidone, clozapine, haloperidol, fluoxetine, prazepam, xanomeline, lithium, phenobarbitol, and salts thereof and combinations thereof.
- SSRIs selective serotonin reuptake inhibitors
- MAOIs monoamine oxidase inhibitors
- 5-HT2 antagonists GlyT1 inhibitors and the like
- GlyT1 inhibitors and the like such as, but not limited to: risperidone, clozapine, haloperidol, fluoxetine, prazepam, xanomeline, lithium, phenobarbitol, and salts thereof and
- the subject compound can be used in combination with levodopa (with or without a selective extracerebral decarboxylase inhibitor), anitcholinergics such as biperiden, COMT inhibitors such as entacapone, A2a adenosine antagonists, cholinergic agonists, NMDA receptor antagonists and dopamine agonists.
- anitcholinergics such as biperiden
- COMT inhibitors such as entacapone
- A2a adenosine antagonists such as entacapone
- cholinergic agonists cholinergic agonists
- NMDA receptor antagonists NMDA receptor antagonists
- dopamine agonists dopamine agonists.
- compositions and methods of the present invention can further comprise other therapeutically active compounds as noted herein which are usually applied in the treatment of the above mentioned pathological conditions.
- the compounds disclosed herein are useful for treating, preventing, ameliorating, controlling or reducing the risk of a variety of neurological and psychiatric disorders associated with glutamate dysfunction.
- a method of treating or preventing a disorder in a subject comprising the step of administering to the subject at least one disclosed compound; at least one disclosed pharmaceutical composition; and/or at least one disclosed product in a dosage and amount effective to treat the disorder in the subject.
- Also provided is a method for the treatment of one or more neurological and/or psychiatric disorders associated with glutamate dysfunction in a subject comprising the step of administering to the subject at least one disclosed compound; at least one disclosed pharmaceutical composition; and/or at least one disclosed product in a dosage and amount effective to treat the disorder in the subject.
- disorders associated with glutamate dysfunction include: acute and chronic neurological and psychiatric disorders such as cerebral deficits subsequent to cardiac bypass surgery and grafting, stroke, cerebral ischemia, spinal cord trauma, head trauma, perinatal hypoxia, cardiac arrest, hypoglycemic neuronal damage, dementia (including AIDS-induced dementia), Alzheimer's disease, Huntington's Chorea, amyotrophic lateral sclerosis, ocular damage, retinopathy, cognitive disorders, idiopathic and drug-induced Parkinson's disease, muscular spasms and disorders associated with muscular spasticity including tremors, epilepsy, convulsions, migraine (including migraine headache), urinary incontinence, substance tolerance, addictive behavior, including addiction to substances (including opiates, nicotine, tobacco products, alcohol, benzodiazepines, cocaine, sedatives, hypnotics, etc.), withdrawal from such addictive substances (including substances such as opiates, nicotine, tobacco products, alcohol, benzodiazepines, cocaine, sedatives, hypnotics
- Anxiety disorders that can be treated or prevented by the compositions disclosed herein include generalized anxiety disorder, panic disorder, and obsessive compulsive disorder.
- Addictive behaviors include addiction to substances (including opiates, nicotine, tobacco products, alcohol, benzodiazepines, cocaine, sedatives, hypnotics, etc.), withdrawal from such addictive substances (including substances such as opiates, nicotine, tobacco products, alcohol, benzodiazepines, cocaine, sedatives, hypnotics, etc.) and substance tolerance.
- the disorder is dementia, delirium, amnestic disorders, age-related cognitive decline, schizophrenia, psychosis including schizophrenia, schizophreniform disorder, schizoaffective disorder, delusional disorder, brief psychotic disorder, substance-related disorder, movement disorders, epilepsy, chorea, pain, migraine, diabetes, dystonia, obesity, eating disorders, brain edema, sleep disorder, narcolepsy, anxiety, affective disorder, panic attacks, unipolar depression, bipolar disorder, psychotic depression.
- schizophrenia psychosis including schizophrenia, schizophreniform disorder, schizoaffective disorder, delusional disorder, brief psychotic disorder, substance-related disorder, movement disorders, epilepsy, chorea, pain, migraine, diabetes, dystonia, obesity, eating disorders, brain edema, sleep disorder, narcolepsy, anxiety, affective disorder, panic attacks, unipolar depression, bipolar disorder, psychotic depression.
- a method for treating or prevention schizophrenia comprising: administering to a subject at least one disclosed compound; at least one disclosed pharmaceutical composition; and/or at least one disclosed product in a dosage and amount effective to treat the disorder in the subject.
- DSM-IV Diagnostic and Statistical Manual of Mental Disorders
- Also provided is a method for treating or prevention anxiety comprising: administering to a subject at least one disclosed compound; at least one disclosed pharmaceutical composition; and/or at least one disclosed product in a dosage and amount effective to treat the disorder in the subject.
- Also provided is a method for potentiation of metabotropic glutamate receptor activity in a mammal comprising the step of administering to the mammal at least one compound having a structure:
- n is 0, 1, 2, 3 or 4; wherein Y 1 and Y 2 are independently selected from C and N; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R 2a and R 2b , when present, together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 3a and R 3b together comprise ⁇ O or ⁇ S or each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7
- the mammal is a human. In a further aspect, the mammal has been diagnosed with a need for potentiation of metabotropic glutamate receptor activity prior to the administering step.
- Also provided is a method for partial agonism of metabotropic glutamate receptor activity in a mammal comprising the step of administering to the mammal at least one compound having a structure:
- n 0, 1, 2, 3 or 4; wherein Y 1 and Y 2 are independently selected from C and N; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein Rea and R 2b , when present, together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 3a and R 3b together comprise ⁇ O or ⁇ S or each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7 carbon
- Y 1 is selected from N and C—R 4 .
- Y 2 is selected from N and C—H.
- each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms.
- R 4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms.
- L is an organic divalent radical comprising 1 to 7 carbon atoms and is selected from:
- R 7a and R 7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted
- the compound comprises an isoindolin-1-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R 1 is hydrogen, then R 5 is optionally substituted phenyl or optionally substituted pyridinyl.
- the compound comprises an isoindoline-1,3-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or is selected from optionally substituted C1-C12 alkyl, optionally substituted C1-C12 heteroalkyl, optionally substituted C3-C12 cycloalkyl, or optionally substituted C3-C12 heterocycloalkyl, with the proviso that R 1 does not comprise silicon; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R 1 is hydrogen, then R 5 is optionally substituted phenyl or optionally substituted pyridinyl, and with the proviso that if R 1 is methyl, then R 5 is an organic radical comprising 4 to 14 carbon atoms.
- the compound comprises a 3,4-dihydroisoquinolin-1(2H)-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms.
- the compound comprises an isoquinoline-1,3(2H,4H)-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that R 5 does not comprise a triphenylamine residue or a benzimidamide residue.
- the compound comprises a bicyclic compound or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- n 2, 3 or 4; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R 2a and R 2b together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms,
- the mammal is a human. In a further aspect, the mammal has been diagnosed with a need for partial agonism of metabotropic glutamate receptor activity prior to the administering step.
- Also provided is a method for the treatment of a disorder in a mammal comprising the step of administering to the mammal at least one compound having a structure:
- n 0, 1, 2, 3 or 4; wherein Y 1 and Y 2 are independently selected from C and N; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein Rea and R 2b , when present, together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 3a and R 3b together comprise ⁇ O or ⁇ S or each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7 carbon
- Y 1 is selected from N and C—R 4 .
- Y 2 is selected from N and C—H.
- each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms.
- R 4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms.
- L is an organic divalent radical comprising 1 to 7 carbon atoms and is selected from:
- R 7a and R 7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl
- R 8 is selected from hydrogen, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- the compound comprises an isoindolin-1-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R 1 is hydrogen, then R 5 is optionally substituted phenyl or optionally substituted pyridinyl.
- the compound comprises an isoindoline-1,3-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or is selected from optionally substituted C1-C12 alkyl, optionally substituted C1-C12 heteroalkyl, optionally substituted C3-C12 cycloalkyl, or optionally substituted C3-C12 heterocycloalkyl, with the proviso that R 1 does not comprise silicon; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R 1 is hydrogen, then R 5 is optionally substituted phenyl or optionally substituted pyridinyl, and with the proviso that if R 1 is methyl, then R 5 is an organic radical comprising 4 to 14 carbon atoms.
- the compound comprises a 3,4-dihydroisoquinolin-1(2H)-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms.
- the compound comprises an isoquinoline-1,3(2H,4H)-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that R 5 does not comprise a triphenylamine residue or a benzimidamide residue.
- the compound comprises a bicyclic compound or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- n 2, 3 or 4; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R 2a and R 2b together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms.
- the disorder is a neurological and/or psychiatric disorder associated with glutamate dysfunction.
- the disorder is selected from dementia, delirium, amnestic disorders, age-related cognitive decline, schizophrenia, psychosis including schizophrenia, schizophreniform disorder, schizoaffective disorder, delusional disorder, brief psychotic disorder, substance-related disorder, movement disorders, epilepsy, chorea, pain, migraine, diabetes, dystonia, obesity, eating disorders, brain edema, sleep disorder, narcolepsy, anxiety, affective disorder, panic attacks, unipolar depression, bipolar disorder, and psychotic depression.
- the mammal is a human. In a further aspect, the mammal has been diagnosed with a need for treatment of the disorder prior to the administering step.
- Also provided is a method for the manufacture of a medicament for potentiation of metabotropic glutamate receptor activity in a mammal comprising combining at least one compound having a structure:
- n 0, 1, 2, 3 or 4; wherein Y 1 and Y 2 are independently selected from C and N; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein Rea and R 2b , when present, together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 3a and R 3b together comprise ⁇ O or ⁇ S or each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7 carbon
- Y 1 is selected from N and C—R 4 .
- Y 2 is selected from N and C—H.
- each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms.
- R 4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms.
- L is an organic divalent radical comprising 1 to 7 carbon atoms and is selected from:
- R 7a and R 7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl
- R 8 is selected from hydrogen, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- the compound comprises an isoindolin-1-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R 1 is hydrogen, then R 5 is optionally substituted phenyl or optionally substituted pyridinyl.
- the compound comprises an isoindoline-1,3-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or is selected from optionally substituted C1-C12 alkyl, optionally substituted C1-C12 heteroalkyl, optionally substituted C3-C12 cycloalkyl, or optionally substituted C3-C12 heterocycloalkyl, with the proviso that R 1 does not comprise silicon; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R 1 is hydrogen, then R 5 is optionally substituted phenyl or optionally substituted pyridinyl, and with the proviso that if R 1 is methyl, then R 5 is an organic radical comprising 4 to 14 carbon atoms.
- the compound comprises a 3,4-dihydroisoquinolin-1(2H)-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms.
- the compound comprises an isoquinoline-1,3(2H,4H)-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that R 5 does not comprise a triphenylamine residue or a benzimidamide residue.
- the compound comprises a bicyclic compound or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- n 2, 3 or 4; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R 2a and R 2b together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms.
- n is 0, 1, 2, 3 or 4; wherein Y 1 and Y 2 are independently selected from C and N; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R 2a and R 2b , when present, together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 3a and R 3b together comprise ⁇ O or ⁇ S or each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R 4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7
- Y 1 is selected from N and C—R 4 .
- Y 2 is selected from N and C—H.
- each R 3a and R 3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms.
- R 4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms.
- L is an organic divalent radical comprising 1 to 7 carbon atoms and is selected from:
- R 7a and R 7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl
- R 8 is selected from hydrogen, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- the compound comprises an isoindolin-1-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R 1 is hydrogen, then R 5 is optionally substituted phenyl or optionally substituted pyridinyl.
- the compound comprises an isoindoline-1,3-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or is selected from optionally substituted C1-C12 alkyl, optionally substituted C1-C12 heteroalkyl, optionally substituted C3-C12 cycloalkyl, or optionally substituted C3-C12 heterocycloalkyl, with the proviso that R 1 does not comprise silicon; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R 1 is hydrogen, then R 5 is optionally substituted phenyl or optionally substituted pyridinyl, and with the proviso that if R 1 is methyl, then R 5 is an organic radical comprising 4 to 14 carbon atoms.
- the compound comprises a 3,4-dihydroisoquinolin-1(2H)-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms.
- the compound comprises an isoquinoline-1,3(2H,4H)-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that R 5 does not comprise a triphenylamine residue or a benzimidamide residue.
- the compound comprises a bicyclic compound or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- n 2, 3 or 4; wherein R 1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R 2a and R 2b together comprise ⁇ O or ⁇ S or each R 2a and R 2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R 5 is an organic radical comprising 4 to 14 carbon atoms.
- the use is characterized in that the mammal is a human.
- the use relates to a treatment of a disorder in a mammal.
- the use is characterized in that the disorder is a neurological and/or psychiatric disorder associated with glutamate dysfunction.
- the use relates to potentiation for partial agonism of metabotropic glutamate receptor activity in a mammal.
- mGluR metabotropic glutamate receptor
- Also provided is a method for partial agonism of metabotropic glutamate receptor activity in a subject comprising the step of administering to the subject at least one disclosed compound; at least one disclosed pharmaceutical composition; and/or at least one disclosed product in a dosage and amount effective to exhibit partial agonism of metabotropic glutamate receptor activity in the subject.
- the mGluR of the disclosed methods is a type I mGluR. In some aspects, the mGluR of the disclosed methods is mGluR5.
- the subject of the herein disclosed methods can be a vertebrate, such as a mammal, a fish, a bird, a reptile, or an amphibian.
- the subject of the herein disclosed methods can be a human, non-human primate, horse, pig, rabbit, dog, sheep, goat, cow, cat, guinea pig or rodent.
- the term does not denote a particular age or sex. Thus, adult and newborn subjects, as well as fetuses, whether male or female, are intended to be covered.
- a patient refers to a subject afflicted with a disease or disorder.
- patient includes human and veterinary subjects.
- the subject has been diagnosed with a need for treatment of one or more neurological and/or psychiatric disorder associated with glutamate dysfunction prior to the administering step. In some aspects of the disclosed method, the subject has been diagnosed with a need for potentiation of metabotropic glutamate receptor activity prior to the administering step. In some aspects of the disclosed method, the subject has been diagnosed with a need for partial agonism of metabotropic glutamate receptor activity prior to the administering step.
- urea 121 mg, 2.02 mmol
- 5-(phenylethynyl)isobenzofuran-1,3-dione IV-1 100 mg, 0.403 mmol
- anhydrous DMF 3 ml
- the reaction vessel was sealed and heated to 200° C. for 15 min.
- the reaction was diluted with EtOAc (20 ml) and washed with water (20 ml) then brine (20 ml).
- the organic extract was dried over MgSO 4 , and filtered through a silica plug to afford 5-(phenethynyl)isoindoline-1,3-dione IV-2 as a tan solid (82 mg, 83%). %).
- HEK Human embryonic kidney
- rat mGluR5 Human embryonic kidney cells transfected with rat mGluR5 were plated in clear-bottomed, poly-D-lysine-coated assay plates in glutamate-glutamine-free medium growth and incubated overnight at 37° C. in 5% CO 2 .
- cells were loaded with 2 ⁇ M calcium indicator dye, fluo-4 AM, for 1 h at 37° C.
- Dye was removed and replaced with assay buffer containing 1 ⁇ Hanks balanced salt solution (Invitrogen, Carlsbad, Calif.), 20 mM HEPES, and 2.5 mM probenecid, pH 7.4.
- Cell plates were then loaded into the Functional Drug Screening System 6000 (FDSS 6000, Hamamatsu, Japan).
- test compounds of the present invention were added to the cells, and the response in cells was measured.
- an mGluR5 agonist e.g., glutamate, 3,5-dihydroxyphenylglycine, or quisqualate
- an EC 20 concentration of glutamate was measured. All test compounds were dissolved and diluted in 100% DMSO and then serially diluted into assay buffer for a 2.5 ⁇ stock in 0.25% DMSO;
- Locomotor activity can be assessed as mean distance traveled (cm) in standard 16 ⁇ 16 photocell testing chambers measuring 43.2 cm (L) ⁇ 43.2 cm (W) ⁇ 30.5 cm (H) (Med Associates, St. Albans, Vt.). Animals can be habituated to individual activity chambers for at least 60 min prior to drug administration. Following administration of appropriate drugs or vehicle, activity can be recorded for a 3 hr time period. Data can be expressed as the mean ( ⁇ SEM) distance traveled recorded in 10 min intervals over the test period. The data can be analyzed using repeated measures analysis of variance (ANOVA) followed by post-hoc testing using Tukey's HSD test, when appropriate. A difference can be considered significant when p ⁇ 0.05.
- ANOVA repeated measures analysis of variance
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Epidemiology (AREA)
- Diabetes (AREA)
- Psychiatry (AREA)
- Pain & Pain Management (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Child & Adolescent Psychology (AREA)
- Anesthesiology (AREA)
- Addiction (AREA)
- Endocrinology (AREA)
- Emergency Medicine (AREA)
- Psychology (AREA)
- Hospice & Palliative Care (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
In one aspect, the invention relates to bicyclic mGluR5 positive allosteric modulators, for example 6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one, derivatives thereof, and related compounds, which are useful as positive allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGluR5); synthetic methods for making the compounds; pharmaceutical compositions comprising the compounds; and methods of treating neurological and psychiatric disorders associated with glutamate dysfunction using the compounds and compositions. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
Description
- This application is a continuation application of, and claims the benefit of, U.S. Nonprovisional patent application Ser. No. 12/263,224, filed Oct. 31, 2008 (issued Oct. 11, 2011, as U.S. Pat. No. 8,034,806), which claims the benefit of U.S. Provisonal Patent Application Ser. No. 60/985,041, filed Nov. 2, 2007, which are hereby incorporated herein by reference in their entireties.
- This invention was made with government support under Grants NIH/NIMH R01 MH062646 and F32 NS049865 awarded by the National Institutes of Health. The United States government has certain rights in the invention.
- L-glutamic acid, the most commonly occurring neurotransmitter in the central nervous system, plays a role in a large number of physiological processes. The glutamate-dependent stimulus receptors are divided into two main groups. The first main group forms ligand-controlled ion channels. The second main group is metabotropic glutamate receptors (mGluRs), which belong to the family of G-protein-coupled receptors. Metabotropic glutamate receptors, including mGluR5, have been implicated in a wide range of biological functions, indicating a potential role for the mGluR5 receptor in a variety of disease processes in mammals. Ligands of metabotropic glutamate receptors can be used for the treatment or prevention of acute and/or chronic neurological and/or psychiatric disorders associated with glutamate dysfunction, such as psychosis, schizophrenia, age-related cognitive decline, and the like.
- Selective positive allosteric modulators are compounds that do not directly activate receptors by themselves, but binding of these compounds increase the affinity of a glutamate-site agonist at its extracellular N-terminal binding site. Positive allosteric modulation (potentiation) is thus an attractive mechanism for enhancing appropriate physiological receptor activation.
- Unfortunately, there is a scarcity of selective positive allosteric modulators for the mGluR5 receptor. Further, conventional mGluR5 receptor modulators typically lack satisfactory aqueous solubility and exhibit poor oral bioavailability. Therefore, there remains a need for methods and compositions that overcome these deficiencies and that effectively provide selective positive allosteric modulators for the mGluR5 receptor.
- In accordance with the purpose(s) of the invention, as embodied and broadly described herein, the invention, in one aspect, relates to compounds useful as positive allosteric modulators (i.e., potentiators) of the metabotropic glutamate receptor subtype 5 (mGluR5), methods of making same, pharmaceutical compositions comprising same, and methods of treating neurological and psychiatric disorders associated with glutamate dysfunction using same.
- Disclosed are compounds that exhibits potentiation of mGluR5 response to glutamate as an increase in response to non-maximal concentrations of glutamate in human embryonic kidney cells transfected with rat mGluR5 in the presence of the compound, compared to the response to glutamate in the absence of the compound, comprising (a) an isoindolin-1-one derivative having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R1 is hydrogen, then R5 is optionally substituted phenyl or optionally substituted pyridinyl; (b) an isoindoline-1,3-dione derivative having a structure:
- wherein R1 is hydrogen or is selected from optionally substituted C1-C12 alkyl, optionally substituted C1-C12 heteroalkyl, optionally substituted C3-C12 cycloalkyl, or optionally substituted C3-C12 heterocycloalkyl, with the proviso that R1 does not comprise silicon; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R1 is hydrogen, then R5 is optionally substituted phenyl or optionally substituted pyridinyl, and with the proviso that if R1 is methyl, then R5 is an organic radical comprising 4 to 14 carbon atoms; (c) a 3,4-dihydroisoquinolin-1(2H)-one derivative having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms; (d) an isoquinoline-1,3(2H,4H)-dione derivative having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that R5 does not comprise a triphenylamine residue or a benzimidamide residue; or (e) a bicyclic compound having a structure:
- wherein n is 2, 3 or 4; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R2a and R2b together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Y1 is selected from N and C—R4; wherein Y2 is selected from N and C—H; wherein each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7 carbon atoms and is selected from:
- wherein R7a and R7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; and wherein R8 is selected from hydrogen, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- Also disclosed are pharmaceutical compositions comprising a therapeutically effective amount of at least one disclosed compound and a pharmaceutically acceptable carrier.
- Also disclosed are methods for preparing a compound comprising the steps of (a) providing a first reactant having a structure represented by a formula:
- wherein n is 0, 1, 2, 3 or 4; wherein Y1 and Y2 are independently selected from C and N; wherein R1 is selected from hydrogen and an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH2)m-aryl or —(CH2)m-heterocycle, wherein m is 1, 2, 3 or 4; wherein R2a and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R4 comprises one, two, or three substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; and wherein X1 comprises a halide, a pseudohalide, a carboxylic acid, a carboxylic acid derivative, a terminal acetylene moiety, an activated vinyl moiety, a N′-hydroxybenzimidamide, or a primary or secondary amine; or a pharmaceutically acceptable salt or N-oxide thereof; (b) providing a second reactant having a structure represented by a formula:
- wherein R5 is an organic radical comprising 4 to 14 carbon atoms selected from optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, and optionally substituted heteroaryl; and wherein X2 comprises a halide, a pseudohalide, a carboxylic acid, a carboxylic acid derivative, a terminal acetylene moiety, an activated vinyl moiety, a N′-hydroxybenzimidamide, or a primary or secondary amine; (c) coupling the first reactant with the second reactant, thereby forming linking moiety L, to provide a compound having a structure represented by a formula:
- wherein L is an organic divalent radical comprising 1 to 7 carbon atoms selected from optionally substituted C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, and optionally substituted amido; wherein, when X1 is halide or pseudohalide, X2 is a terminal acetylene moiety, or an activated vinyl moiety; wherein, when X1 is a carboxylic acid or a carboxylic acid derivative, X2 is a N′-hydroxybenzimidamide, or a primary or secondary amine; wherein, when X2 is halide or pseudohalide, X1 is a terminal acetylene moiety, or an activated vinyl moiety; wherein, when X2 is a carboxylic acid or a carboxylic acid derivative, X1 is a N′-hydroxybenzimidamide, or a primary or secondary amine; and (d) optionally, if R1 is hydrogen, alkylating the lactam or imide moiety.
- Also disclosed are methods for preparing a compound comprising the steps of (a) providing a reactant comprising an anhydride having a structure represented by a formula:
- wherein n is 0 or 1; wherein Y1 and Y2 are independently selected from C and N; wherein R2a and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R4 comprises one, two, or three substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R5 is an organic radical comprising 4 to 14 carbon atoms selected from optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, and optionally substituted heteroaryl; and wherein X1 comprises a halide or a pseudohalide or -L-R5, wherein L is an organic divalent radical comprising 1 to 7 carbon atoms and R5 is an organic radical comprising 4 to 14 carbon atoms; or a pharmaceutically acceptable salt or N-oxide thereof; (b) treating the reactant with ammonia or a primary amine to afford a compound having a structure represented by a formula:
- and (c) optionally, if R1 is hydrogen, alkylating the imide moiety.
- Also disclosed are methods for preparing a compound comprising the steps of (a) providing a reactant comprising a lactone having a structure represented by a formula:
- wherein n is 0, 1, 2, 3 or 4; wherein Y1 and Y2 are independently selected from C and N; wherein R2a and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R4 comprises one, two, or three substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R5 is an organic radical comprising 4 to 14 carbon atoms selected from optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, and optionally substituted heteroaryl; and wherein X1 comprises a halide or a pseudohalide or -L-R5, wherein L is an organic divalent radical comprising 1 to 7 carbon atoms and R5 is an organic radical comprising 4 to 14 carbon atoms; or a pharmaceutically acceptable salt or N-oxide thereof; (b) treating the reactant with ammonia or a primary amine to afford an intermediate having a structure represented by a formula:
- (c) cyclizing the intermediate to afford a compound having a structure represented by a formula:
- and (d) optionally, if R1 is hydrogen, alkylating the lactam moiety.
- Also disclosed are the products of the disclosed methods.
- Also disclosed are methods for potentiation of metabotropic glutamate receptor activity in a mammal comprising the step of administering to the mammal at least one compound having a structure:
- wherein n is 0, 1, 2, 3 or 4; wherein Y1 and Y2 are independently selected from C and N; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R2a and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, or a pharmaceutically acceptable salt or N-oxide thereof, in a dosage and amount effective to potentiate metabotropic glutamate receptor activity in the mammal.
- Also disclosed are methods for partial agonism of metabotropic glutamate receptor activity in a mammal comprising the step of administering to the mammal at least one compound having a structure:
- wherein n is 0, 1, 2, 3 or 4; wherein Y1 and Y2 are independently selected from C and N; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R2a and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, or a pharmaceutically acceptable salt or N-oxide thereof, in a dosage and amount effective to exhibit partial agonism of metabotropic glutamate receptor activity in the mammal.
- Also disclosed are methods for the treatment of a disorder in a mammal comprising the step of administering to the mammal at least one compound having a structure:
- wherein n is 0, 1, 2, 3 or 4; wherein Y1 and Y2 are independently selected from C and N; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R2a and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, or a pharmaceutically acceptable salt or N-oxide thereof, in a dosage and amount effective to treat the disorder in the mammal.
- Also disclosed are methods for the manufacture of a medicament for potentiation of metabotropic glutamate receptor activity in a mammal comprising combining at least one compound having a structure:
- wherein n is 0, 1, 2, 3 or 4; wherein Y1 and Y2 are independently selected from C and N; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R2a and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, or a pharmaceutically acceptable salt or N-oxide thereof, with a pharmaceutically acceptable carrier.
- Also disclosed are uses of a compound having a structure:
- wherein n is 0, 1, 2, 3 or 4; wherein Y1 and Y2 are independently selected from C and N; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R2a and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, or a pharmaceutically acceptable salt or N-oxide thereof, to potentiate mGluR5 response in a mammal.
- While aspects of the present invention can be described and claimed in a particular statutory class, such as the system statutory class, this is for convenience only and one of skill in the art will understand that each aspect of the present invention can be described and claimed in any statutory class. Unless otherwise expressly stated, it is in no way intended that any method or aspect set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not specifically state in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that an order be inferred, in any respect. This holds for any possible non-express basis for interpretation, including matters of logic with respect to arrangement of steps or operational flow, plain meaning derived from grammatical organization or punctuation, or the number or type of aspects described in the specification.
- The accompanying figures, which are incorporated in and constitute a part of this specification, illustrate several aspects and together with the description serve to explain the principles of the invention.
-
FIG. 1 shows a schematic of the NMDA receptor. -
FIG. 2 shows a schematic illustrating that activation of mGluR5 potentiates NMDA receptor function. -
FIG. 3 illustrates allosteric modulation of mGluR5. -
FIG. 4 shows effects of VU000067 on amphetamine-induced hyperlocomotion (Male Sprague-Dawley Rats-200-225 grams; N=4/treatment group;VU000067 pretreatment 30 min i.p.). -
FIG. 5 shows effects of VU000098 on amphetamine-induced hyperlocomotion (Male Sprague-Dawley Rats-200-225 grams; N=4/treatment group;VU000098 pretreatment 30 min i.p.). -
FIG. 6 shows effects of VU000069 on amphetamine-induced hyperlocomotion (Male Sprague-Dawley Rats-200-225 grams; N=4/treatment group;VU000069 pretreatment 30 min i.p.). - Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or can be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
- The present invention can be understood more readily by reference to the following detailed description of the invention and the Examples included therein.
- Before the present compounds, compositions, articles, systems, devices, and/or methods are disclosed and described, it is to be understood that they are not limited to specific synthetic methods unless otherwise specified, or to particular reagents unless otherwise specified, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, example methods and materials are now described.
- All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided herein can be different from the actual publication dates, which can require independent confirmation.
- As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a functional group,” “an alkyl,” or “a residue” includes mixtures of two or more such functional groups, alkyls, or residues, and the like.
- Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
- As used herein, the terms “optional” or “optionally” means that the subsequently described event or circumstance can or can not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
- As used herein, the term “mGluR5 receptor positive allosteric modulator” refers to any exogenously administered compound or agent that directly or indirectly augments the activity of the mGluR5 receptor in the presence or in the absence of the endogenous ligand (such as glutamate) in an animal, in particular a mammal, for example a human. The term “mGluR5 receptor positive allosteric modulator5 includes a compound that is an “mGluR5 receptor allosteric potentiator” or an “mGluR5 receptor allosteric agonist,” as well as a compound that has mixed activity as both an “mGluR5 receptor allosteric potentiator” and an “mGluR5 receptor allosteric agonist.”
- As used herein, the term “mGluR5 receptor allosteric potentiator” refers to any exogenously administered compound or agent that directly or indirectly augments the response produced by the endogenous ligand (such as glutamate) when it binds to the orthosteric site of the mGluR5 receptor in an animal, in particular a mammal, for example a human. The mGluR5 receptor allosteric potentiator binds to a site other than the orthosteric site (an allosteric site) and positively augments the response of the receptor to an agonist. Because it does not induce desensitization of the receptor, activity of a compound as an mGluR5 receptor allosteric potentiator provides advantages over the use of a pure mGluR5 receptor allosteric agonist. Such advantages can include, for example, increased safety margin, higher tolerability, diminished potential for abuse, and reduced toxicity.
- As used herein, the term “mGluR5 receptor allosteric agonist” refers to any exogenously administered compound or agent that directly augments the activity of the mGluR5 receptor in the absence of the endogenous ligand (such as glutamate) in an animal, in particular a mammal, for example a human. The mGluR5 receptor allosteric agonist binds to the orthosteric glutamate site of the mGluR5 receptor and directly influences the orthosteric site of the mGluR5 receptor. Because it does not require the presence of the endogenous ligand, activity of a compound as an mGluR5 receptor allosteric agonist provides advantages over the use of a pure mGluR5 receptor allosteric potentiator, such as more rapid onset of action.
- As used herein, the term “treatment” refers to the medical management of a patient with the intent to cure, ameliorate, stabilize, or prevent a disease, pathological condition, or disorder. This term includes active treatment, that is, treatment directed specifically toward the improvement of a disease, pathological condition, or disorder, and also includes causal treatment, that is, treatment directed toward removal of the cause of the associated disease, pathological condition, or disorder. In addition, this term includes palliative treatment, that is, treatment designed for the relief of symptoms rather than the curing of the disease, pathological condition, or disorder; preventative treatment, that is, treatment directed to minimizing or partially or completely inhibiting the development of the associated disease, pathological condition, or disorder; and supportive treatment, that is, treatment employed to supplement another specific therapy directed toward the improvement of the associated disease, pathological condition, or disorder.
- As used herein, the term “prevent” or “preventing” refers to precluding, averting, obviating, forestalling, stopping, or hindering something from happening, especially by advance action. It is understood that where reduce, inhibit or prevent are used herein, unless specifically indicated otherwise, the use of the other two words is also expressly disclosed.
- As used herein, the term “diagnosed with a need for potentiation of metabotropic glutamate receptor activity” refers to having been subjected to a physical examination by a person of skill, for example, a physician, and found to have a condition that can be diagnosed or treated by potentiation of metabotropic glutamate receptor activity. As used herein, “diagnosed with a need for partial agonism of metabotropic glutamate receptor activity” means having been subjected to a physical examination by a person of skill, for example, a physician, and found to have a condition that can be diagnosed or treated by partial agonism of metabotropic glutamate receptor activity. As used herein, “diagnosed with a need for treatment of one or more neurological and/or psychiatric disorder associated with glutamate dysfunction” means having been subjected to a physical examination by a person of skill, for example, a physician, and found to have one or more neurological and/or psychiatric disorder associated with glutamate dysfunction.
- As used herein, the terms “administering” and “administration” refer to any method of providing a pharmaceutical preparation to a subject. Such methods are well known to those skilled in the art and include, but are not limited to, oral administration, transdermal administration, administration by inhalation, nasal administration, topical administration, intravaginal administration, ophthalmic administration, intraaural administration, intracerebral administration, rectal administration, and parenteral administration, including injectable such as intravenous administration, intra-arterial administration, intramuscular administration, and subcutaneous administration. Administration can be continuous or intermittent. In various aspects, a preparation can be administered therapeutically; that is, administered to treat an existing disease or condition. In further various aspects, a preparation can be administered prophylactically; that is, administered for prevention of a disease or condition.
- As used herein, the term “therapeutically effective amount” refers to an amount that is sufficient to achieve the desired therapeutic result or to have an effect on undesired symptoms, but is generally insufficient to cause adverse side affects. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration; the route of administration; the rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed and like factors well known in the medical arts. For example, it is well within the skill of the art to start doses of a compound at levels lower than those required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved. If desired, the effective daily dose can be divided into multiple doses for purposes of administration. Consequently, single dose compositions can contain such amounts or submultiples thereof to make up the daily dose. The dosage can be adjusted by the individual physician in the event of any contraindications. Dosage can vary, and can be administered in one or more dose administrations daily, for one or several days. Guidance can be found in the literature for appropriate dosages for given classes of pharmaceutical products. In further various aspects, a preparation can be administered in a “prophylactically effective amount”; that is, an amount effective for prevention of a disease or condition.
- As used herein, the term “pharmaceutically acceptable carrier” refers to sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, as well as sterile powders for reconstitution into sterile injectable solutions or dispersions just prior to use. Examples of suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol and the like), carboxymethylcellulose and suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants. These compositions can also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms can be ensured by the inclusion of various antibacterial and antifungal agents such as paraben, chlorobutanol, phenol, sorbic acid and the like. It can also be desirable to include isotonic agents such as sugars, sodium chloride and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the inclusion of agents, such as aluminum monostearate and gelatin, which delay absorption. Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide-polyglycolide, poly(orthoesters) and poly(anhydrides). Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues. The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable media just prior to use. Suitable inert carriers can include sugars such as lactose. Desirably, at least 95% by weight of the particles of the active ingredient have an effective particle size in the range of 0.01 to 10 micrometers.
- A residue of a chemical species, as used in the specification and concluding claims, refers to the moiety that is the resulting product of the chemical species in a particular reaction scheme or subsequent formulation or chemical product, regardless of whether the moiety is actually obtained from the chemical species. Thus, an ethylene glycol residue in a polyester refers to one or more —OCH2CH2O— units in the polyester, regardless of whether ethylene glycol was used to prepare the polyester. Similarly, a sebacic acid residue in a polyester refers to one or more —CO(CH2)8CO— moieties in the polyester, regardless of whether the residue is obtained by reacting sebacic acid or an ester thereof to obtain the polyester.
- As used herein, the term “substituted” is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, and aromatic and nonaromatic substituents of organic compounds. Illustrative substituents include, for example, those described below. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this disclosure, the heteroatoms, such as nitrogen, can have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms. This disclosure is not intended to be limited in any manner by the permissible substituents of organic compounds. Also, the terms “substitution” or “substituted with” include the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., a compound that does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc.
- In defining various terms, “A1,” “A2,” “A3,” and “A4” are used herein as generic symbols to represent various specific substituents. These symbols can be any substituent, not limited to those disclosed herein, and when they are defined to be certain substituents in one instance, they can, in another instance, be defined as some other substituents.
- The term “alkyl” as used herein is a branched or unbranched saturated hydrocarbon group of 1 to 24 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, s-pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, dode cyl, tetradecyl, hexadecyl, eicosyl, tetracosyl, and the like. The alkyl group can also be substituted or unsubstituted. The alkyl group can be substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, amino, ether, halide, hydroxy, nitro, silyl, sulfo-oxo, or thiol, as described herein. A “lower alkyl” group is an alkyl group containing from one to six carbon atoms.
- Throughout the specification “alkyl” is generally used to refer to both unsubstituted alkyl groups and substituted alkyl groups; however, substituted alkyl groups are also specifically referred to herein by identifying the specific substituent(s) on the alkyl group. For example, the term “halogenated alkyl” specifically refers to an alkyl group that is substituted with one or more halide, e.g., fluorine, chlorine, bromine, or iodine. The term “alkoxyalkyl” specifically refers to an alkyl group that is substituted with one or more alkoxy groups, as described below. The term “alkylamino” specifically refers to an alkyl group that is substituted with one or more amino groups, as described below, and the like. When “alkyl” is used in one instance and a specific term such as “alkylalcohol” is used in another, it is not meant to imply that the term “alkyl” does not also refer to specific terms such as “alkylalcohol” and the like.
- This practice is also used for other groups described herein. That is, while a term such as “cycloalkyl” refers to both unsubstituted and substituted cycloalkyl moieties, the substituted moieties can, in addition, be specifically identified herein; for example, a particular substituted cycloalkyl can be referred to as, e.g., an “alkylcycloalkyl.” Similarly, a substituted alkoxy can be specifically referred to as, e.g., a “halogenated alkoxy,” a particular substituted alkenyl can be, e.g., an “alkenylalcohol,” and the like. Again, the practice of using a general term, such as “cycloalkyl,” and a specific term, such as “alkylcycloalkyl,” is not meant to imply that the general term does not also include the specific term.
- The term “cycloalkyl” as used herein is a non-aromatic carbon-based ring composed of at least three carbon atoms. Examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, and the like. The term “heterocycloalkyl” is a type of cycloalkyl group as defined above, and is included within the meaning of the term “cycloalkyl,” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus. The cycloalkyl group and heterocycloalkyl group can be substituted or unsubstituted. The cycloalkyl group and heterocycloalkyl group can be substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, amino, ether, halide, hydroxy, nitro, silyl, sulfo-oxo, or thiol as described herein.
- The term “polyalkylene group” as used herein is a group having two or more CH2 groups linked to one another. The polyalkylene group can be represented by the formula —(CH2)a—, where “a” is an integer of from 2 to 500.
- The terms “alkoxy” and “alkoxyl” as used herein to refer to an alkyl or cycloalkyl group bonded through an ether linkage; that is, an “alkoxy” group can be defined as —OA1 where A1 is alkyl or cycloalkyl as defined above. “Alkoxy” also includes polymers of alkoxy groups as just described; that is, an alkoxy can be a polyether such as —OA1-OA2 or —OA1-(OA2)a—OA3, where “a” is an integer of from 1 to 200 and A1, A2, and A3 are alkyl and/or cycloalkyl groups.
- The term “alkenyl” as used herein is a hydrocarbon group of from 2 to 24 carbon atoms with a structural formula containing at least one carbon-carbon double bond. Asymmetric structures such as (A1A2)C═C(A3A4) are intended to include both the E and Z isomers. This can be presumed in structural formulae herein wherein an asymmetric alkene is present, or it can be explicitly indicated by the bond symbol C═C. The alkenyl group can be substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol, as described herein.
- The term “cycloalkenyl” as used herein is a non-aromatic carbon-based ring composed of at least three carbon atoms and containing at least one carbon-carbon double bound, i.e., C═C. Examples of cycloalkenyl groups include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, cyclohexadienyl, norbornenyl, and the like. The term “heterocycloalkenyl” is a type of cycloalkenyl group as defined above, and is included within the meaning of the term “cycloalkenyl,” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus. The cycloalkenyl group and heterocycloalkenyl group can be substituted or unsubstituted. The cycloalkenyl group and heterocycloalkenyl group can be substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein.
- The term “alkynyl” as used herein is a hydrocarbon group of 2 to 24 carbon atoms with a structural formula containing at least one carbon-carbon triple bond. The alkynyl group can be unsubstituted or substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol, as described herein.
- The term “cycloalkynyl” as used herein is a non-aromatic carbon-based ring composed of at least seven carbon atoms and containing at least one carbon-carbon triple bound. Examples of cycloalkynyl groups include, but are not limited to, cycloheptynyl, cyclooctynyl, cyclononynyl, and the like. The term “heterocycloalkynyl” is a type of cycloalkenyl group as defined above, and is included within the meaning of the term “cycloalkynyl,” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus. The cycloalkynyl group and heterocycloalkynyl group can be substituted or unsubstituted. The cycloalkynyl group and heterocycloalkynyl group can be substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein.
- The term “aryl” as used herein is a group that contains any carbon-based aromatic group including, but not limited to, benzene, naphthalene, phenyl, biphenyl, phenoxybenzene, and the like. The term “aryl” also includes “heteroaryl,” which is defined as a group that contains an aromatic group that has at least one heteroatom incorporated within the ring of the aromatic group. Examples of heteroatoms include, but are not limited to, nitrogen, oxygen, sulfur, and phosphorus. Likewise, the term “non-heteroaryl,” which is also included in the term “aryl,” defines a group that contains an aromatic group that does not contain a heteroatom. The aryl group can be substituted or unsubstituted. The aryl group can be substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein. The term “biaryl” is a specific type of aryl group and is included in the definition of “aryl.” Biaryl refers to two aryl groups that are bound together via a fused ring structure, as in naphthalene, or are attached via one or more carbon-carbon bonds, as in biphenyl.
- The term “aldehyde” as used herein is represented by the formula —C(O)H. Throughout this specification “C(O)” is a short hand notation for a carbonyl group, i.e., C═O.
- The terms “amine” or “amino” as used herein are represented by the formula NA1A2A3, where A1, A2, and A3 can be, independently, hydrogen or optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.
- The term “carboxylic acid” as used herein is represented by the formula —C(O)OH.
- The term “ester” as used herein is represented by the formula —OC(O)A1 or —C(O)OA1, where A1 can be an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. The term “polyester” as used herein is represented by the formula -(A1O(O)C-A2-C(O)O)a— or -(A1O(O)C-A2-OC(O))a—, where A1 and A2 can be, independently, an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein and “a” is an interger from 1 to 500. “Polyester” is as the term used to describe a group that is produced by the reaction between a compound having at least two carboxylic acid groups with a compound having at least two hydroxyl groups.
- The term “ether” as used herein is represented by the formula A1OA2, where A1 and A2 can be, independently, an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein. The term “polyether” as used herein is represented by the formula -(A1O-A2O)a—, wherein A1 and A2 can be, independently, an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein and “a” is an integer of from 1 to 500. Examples of polyether groups include polyethylene oxide, polypropylene oxide, and polybutylene oxide.
- The term “halide” as used herein refers to the halogens fluorine, chlorine, bromine, and iodine.
- The term “heterocycle,” as used herein refers to single and multi-cyclic aromatic or non-aromatic ring systems in which at least one of the ring members is other than carbon. Heterocycle includes pyridinde, pyrimidine, furan, thiophene, pyrrole, isoxazole, isothiazole, pyrazole, oxazole, thiazole, imidazole, oxazole, including, 1,2,3-oxadiazole, 1,2,5-oxadiazole and 1,3,4-oxadiazole, thiadiazole, including, 1,2,3-thiadiazole, 1,2,5-thiadiazole, and 1,3,4-thiadiazole, triazole, including, 1,2,3-triazole, 1,3,4-triazole, tetrazole, including 1,2,3,4-tetrazole and 1,2,4,5-tetrazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, including 1,2,4-triazine and 1,3,5-triazine, tetrazine, including 1,2,4,5-tetrazine, pyrrolidine, piperidine, piperazine, morpholine, azetidine, tetrahydropyran, tetrahydrofuran, dioxane, and the like.
- The term “hydroxyl” as used herein is represented by the formula —OH.
- The term “ketone” as used herein is represented by the formula A1C(O)A2, where A1 and A2 can be, independently, an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.
- The term “azide” as used herein is represented by the formula —N3.
- The term “nitro” as used herein is represented by the formula —NO2.
- The term “nitrile” as used herein is represented by the formula —CN.
- The term “silyl” as used herein is represented by the formula —SiA1A2A3, where A1, A2, and A3 can be, independently, hydrogen or an optionally substituted alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.
- The term “sulfo-oxo” as used herein is represented by the formulas —S(O)A1, —S(O)2A1, —OS(O)2A1, or —OS(O)2OA1, where A1 can be hydrogen or an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. Throughout this specification “S(O)” is a short hand notation for S═O. The term “sulfonyl” is used herein to refer to the sulfo-oxo group represented by the formula —S(O)2A1, where A1 can be hydrogen or an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. The term “sulfone” as used herein is represented by the formula A1S(O)2A2, where A1 and A2 can be, independently, an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. The term “sulfoxide” as used herein is represented by the formula A1S(O)A2, where A1 and A2 can be, independently, an optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.
- The term “thiol” as used herein is represented by the formula —SH.
- The term “organic residue” defines a carbon containing residue, i.e., a residue comprising at least one carbon atom, and includes but is not limited to the carbon-containing groups, residues, or radicals defined hereinabove. Organic residues can contain various heteroatoms, or be bonded to another molecule through a heteroatom, including oxygen, nitrogen, sulfur, phosphorus, or the like. Examples of organic residues include but are not limited alkyl or substituted alkyls, alkoxy or substituted alkoxy, mono or di-substituted amino, amide groups, etc. Organic residues can preferably comprise 1 to 18 carbon atoms, 1 to 15, carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms. In a further aspect, an organic residue can comprise 2 to 18 carbon atoms, 2 to 15, carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, 2 to 4 carbon atoms, or 2 to 4 carbon atoms
- A very close synonym of the term “residue” is the term “radical,” which as used in the specification and concluding claims, refers to a fragment, group, or substructure of a molecule described herein, regardless of how the molecule is prepared. For example, a 2,4-thiazolidinedione radical in a particular compound has the structure
- regardless of whether thiazolidinedione is used to prepare the compound. In some embodiments the radical (for example an alkyl) can be further modified (i.e., substituted alkyl) by having bonded thereto one or more “substituent radicals.” The number of atoms in a given radical is not critical to the present invention unless it is indicated to the contrary elsewhere herein.
- “Organic radicals,” as the term is defined and used herein, contain one or more carbon atoms. An organic radical can have, for example, 1-26 carbon atoms, 1-18 carbon atoms, 1-12 carbon atoms, 1-8 carbon atoms, 1-6 carbon atoms, or 1-4 carbon atoms. In a further aspect, an organic radical can have 2-26 carbon atoms, 2-18 carbon atoms, 2-12 carbon atoms, 2-8 carbon atoms, 2-6 carbon atoms, or 2-4 carbon atoms. Organic radicals often have hydrogen bound to at least some of the carbon atoms of the organic radical. One example, of an organic radical that comprises no inorganic atoms is a 5, 6,7,8-tetrahydro-2-naphthyl radical. In some embodiments, an organic radical can contain 1-10 inorganic heteroatoms bound thereto or therein, including halogens, oxygen, sulfur, nitrogen, phosphorus, and the like. Examples of organic radicals include but are not limited to an alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, mono-substituted amino, di-substituted amino, acyloxy, cyano, carboxy, carboalkoxy, alkylcarboxamide, substituted alkylcarboxamide, dialkylcarboxamide, substituted dialkylcarboxamide, alkylsulfonyl, alkylsulfinyl, thioalkyl, thiohaloalkyl, alkoxy, substituted alkoxy, haloalkyl, haloalkoxy, aryl, substituted aryl, heteroaryl, heterocyclic, or substituted heterocyclic radicals, wherein the terms are defined elsewhere herein. A few non-limiting examples of organic radicals that include heteroatoms include alkoxy radicals, trifluoromethoxy radicals, acetoxy radicals, dimethylamino radicals and the like.
- “Inorganic radicals,” as the term is defined and used herein, contain no carbon atoms and therefore comprise only atoms other than carbon. Inorganic radicals comprise bonded combinations of atoms selected from hydrogen, nitrogen, oxygen, silicon, phosphorus, sulfur, selenium, and halogens such as fluorine, chlorine, bromine, and iodine, which can be present individually or bonded together in their chemically stable combinations. Inorganic radicals have 10 or fewer, or preferably one to six or one to four inorganic atoms as listed above bonded together. Examples of inorganic radicals include, but not limited to, amino, hydroxy, halogens, nitro, thiol, sulfate, phosphate, and like commonly known inorganic radicals. The inorganic radicals do not have bonded therein the metallic elements of the periodic table (such as the alkali metals, alkaline earth metals, transition metals, lanthanide metals, or actinide metals), although such metal ions can sometimes serve as a pharmaceutically acceptable cation for anionic inorganic radicals such as a sulfate, phosphate, or like anionic inorganic radical. Inorganic radicals do not comprise metalloids elements such as boron, aluminum, gallium, germanium, arsenic, tin, lead, or tellurium, or the noble gas elements, unless otherwise specifically indicated elsewhere herein.
- Compounds described herein can contain one or more double bonds and, thus, potentially give rise to cis/trans (E/Z) isomers, as well as other conformational isomers. Unless stated to the contrary, the invention includes all such possible isomers, as well as mixtures of such isomers.
- Unless stated to the contrary, a formula with chemical bonds shown only as solid lines and not as wedges or dashed lines contemplates each possible isomer, e.g., each enantiomer and diastereomer, and a mixture of isomers, such as a racemic or scalemic mixture. Compounds described herein can contain one or more asymmetric centers and, thus, potentially give rise to diastereomers and optical isomers. Unless stated to the contrary, the present invention includes all such possible diastereomers as well as their racemic mixtures, their substantially pure resolved enantiomers, all possible geometric isomers, and pharmaceutically acceptable salts thereof. Mixtures of stereoisomers, as well as isolated specific stereoisomers, are also included. During the course of the synthetic procedures used to prepare such compounds, or in using racemization or epimerization procedures known to those skilled in the art, the products of such procedures can be a mixture of stereoisomers.
- The following abbreviations are used herein. DMF: dimethyl formamide. EtOAc: ethyl acetate. THF: tetrahydrofuran. DIPEA or DIEA: diisopropylethylamine. HOBt: 1-hydroxybenzotriazole. EDC: 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride. DMSO: dimethylsulfoxide. DMAP: 4-Dimethylaminopyridine. RT: Room temperature. h: Hours. Min: Minutes. DCM: Dichloromethane. MeCN: Acetonitrile. MeOH: methanol. iPrOH: 2-Propanol. n-BuOH: 1-Butanol.
- Disclosed are the components to be used to prepare the compositions of the invention as well as the compositions themselves to be used within the methods disclosed herein. These and other materials are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed that while specific reference of each various individual and collective combinations and permutation of these compounds can not be explicitly disclosed, each is specifically contemplated and described herein. For example, if a particular compound is disclosed and discussed and a number of modifications that can be made to a number of molecules including the compounds are discussed, specifically contemplated is each and every combination and permutation of the compound and the modifications that are possible unless specifically indicated to the contrary. Thus, if a class of molecules A, B, and C are disclosed as well as a class of molecules D, E, and F and an example of a combination molecule, A-D is disclosed, then even if each is not individually recited each is individually and collectively contemplated meaning combinations, A-E, A-F, B-D, B-E, B-F, C-D, C-E, and C-F are considered disclosed. Likewise, any subset or combination of these is also disclosed. Thus, for example, the sub-group of A-E, B-F, and C-E would be considered disclosed. This concept applies to all aspects of this application including, but not limited to, steps in methods of making and using the compositions of the invention. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the methods of the invention.
- It is understood that the compositions disclosed herein have certain functions. Disclosed herein are certain structural requirements for performing the disclosed functions, and it is understood that there are a variety of structures that can perform the same function that are related to the disclosed structures, and that these structures will typically achieve the same result.
- Phencyclidine (PCP) and other NMDA receptor antagonists induce a psychotic state in humans similar to schizophrenia. In schizophrenia patients, PCP and ketamine exacerbate/precipitate preexisting positive and negative symptoms in stable patients. Treatment with NMDA receptor co-agonists can improve positive and negative symptoms. A schematic of the NMDA receptor is shown in
FIG. 1 . Activation of mGluR5 potentiates NMDA receptor function. SeeFIG. 2 . Orthosteric ligands lack subtype selectivity and can cause unwanted side effects. Allosteric modulators (seeFIG. 3 ) targeting transmembrane domain offer alternative: TMD is significantly less conserved. - Disclosed are compounds useful as positive allosteric modulators (potentiators) of the metabotropic glutamate receptor subtype 5 (mGluR5). More specifically, disclosed arecompounds that allosterically modulate mGluR5 receptor activity, affecting the sensitivity of mGluR5 receptors to agonists without acting as orthosteric agonists themselves. The compounds of the invention are useful in the treatment neurological and psychiatric disorders associated with glutamate dysfunction and other diseases in which metabotropic glutamate receptors are involved, as further discussed infra.
- In one aspect, the invention relates to compounds useful as positive allosteric modulators (potentiators) of the metabotropic glutamate receptor subtype 5 (mGluR5). More specifically, the present invention relates to compounds that allosterically modulate mGluR5 receptor activity, affecting the sensitivity of mGluR5 receptors to agonists without acting as orthosteric agonists themselves. The compounds of the invention are useful in the treatment neurological and psychiatric disorders associated with glutamate dysfunction and other diseases in which metabotropic glutamate receptors are involved, as further described herein.
- Generally, the disclosed compounds exhibit potentiation of mGluR5 response to glutamate as an increase in response to non-maximal concentrations of glutamate in human embryonic kidney cells transfected with rat mGluR5 in the presence of the compound, compared to the response to glutamate in the absence of the compound. In various aspects, the compounds are isoindolin-1-one derivatives, isoindoline-1,3-dione derivatives, 3,4-dihydroisoquinolin-1(2H)-one derivatives, isoquinoline-1,3(2H,4H)-dione derivatives, other related bicyclic compounds, or a pharmaceutically acceptable salts or N-oxides thereof.
- It is understood that each derivative can be optionally further substituted. It is also contemplated that any one or more derivative can be optionally omitted from the invention.
- In one aspect, Y1 is selected from N and C—R4. In a further aspect, Y2 is selected from N and C—H.
- In one aspect, each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms.
- In one aspect, R4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms.
- In certain aspects, while R3a and R3b (when present) can together comprise a cycloalkyl having from 2-12 carbon atoms, R3a and R3b do not form a bridge with the adjacent aromatic ring.
- In one aspect, L is an organic divalent radical comprising 1 to 7 carbon atoms and is selected from:
- In one aspect, R7a and R7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In one aspect, R8 is selected from hydrogen, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- It is understood that each substitutent can be optionally further substituted. It is also contemplated that any one or more substitutent can be optionally omitted from the invention.
- In one aspect, the invention relates to an isoindolin-1-one derivative having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R1 is hydrogen, then R5 is optionally substituted phenyl or optionally substituted pyridinyl; or a pharmaceutically acceptable salt or N-oxide thereof.
- In one aspect, the invention relates to an isoindoline-1,3-dione derivative having a structure:
- wherein R1 is hydrogen or is selected from optionally substituted C1-C12 alkyl, optionally substituted C1-C12 heteroalkyl, optionally substituted C3-C12 cycloalkyl, or optionally substituted C3-C12 heterocycloalkyl, with the proviso that R1 does not comprise silicon; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R1 is hydrogen, then R5 is optionally substituted phenyl or optionally substituted pyridinyl, and with the proviso that if R1 is methyl, then R5 is an organic radical comprising 4 to 14 carbon atoms; or a pharmaceutically acceptable salt or N-oxide thereof.
- In one aspect, the invention relates to a 3,4-dihydroisoquinolin-1(2H)-one derivative having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms; or a pharmaceutically acceptable salt or N-oxide thereof.
- In one aspect, the invention relates to an isoquinoline-1,3(2H,4H)-dione derivative having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that R5 does not comprise a triphenylamine residue or a benzimidamide residue; or a pharmaceutically acceptable salt or N-oxide thereof.
- In one aspect, the invention relates to a bicyclic compound having a structure:
- wherein n is 2, 3 or 4; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R2a and R2b together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, or a pharmaceutically acceptable salt or N-oxide thereof.
- In one aspect, a compound is provided wherein R1 is an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH2)m-aryl or —(CH2)m-heterocycle, wherein m is 1, 2, 3 or 4; wherein R2a and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R4, when present, is an organic radical comprising 1 to 12 carbon atoms independently selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms selected from optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, and optionally substituted heteroaryl.
- In a further aspect, the compound has a structure comprising a formula:
- In a further aspect, the compound has a structure comprising a formula:
- In a further aspect, the compound has a structure comprising a formula:
- In a further aspect, the compound has a structure comprising a formula:
- In a further aspect, the compound has a structure comprising a formula:
- In a yet further aspect, n is 0 or 1.
- In a further aspect, the compound has a structure having a formula:
- In one aspect, a compound is provided wherein R1 is selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl; and wherein R1 is mono- or di-substituted with substituents selected from hydroxy, oxo, halo, C1-C6 alkyl, —CF3, —CHF2, —CH2F, C1-C4 alkyl-CF3, C1-C4alkyl-CHF2, C1-C4alkyl-CH2F, C1-C6 alkoxyl, —OCF3, —OCHF2, —OCH2F, C1-C4 alkoxyl-CF3, C1-C4 alkoxyl-CHF2, C1-C4 alkoxyl-CH2F, -hydroxy-C1-C4 alkyl, —S(O)2—R9, —C(O)—C1-C6 alkoxyl, —C(O)—NR9R10, —C(O)—O—C(CH3)3, C3-C6 cycloalkyl, —NR9R10, —NH—C(O)—R9, —NH—C(O)—NR9R10, and —NH—S(O)2—R9; wherein R9 is selected from hydrogen, —CF3, C1-C4 alkyl, C3-C6 cycloalkyl, aryl, and heterocycle; and wherein R10 is selected from hydrogen and C1-C4 alkyl.
- In a further aspect, R1 is a heterocycle selected from optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, and optionally substituted heteroaryl.
- In a further aspect, a compound is provided wherein R1 is mono- or di-substituted with substituents selected from hydroxy, oxo, halo, C1-C6 alkyl, —CF3, —CHF2, —CH2F, C1-C4 alkyl-CF3, C1-C4alkyl-CHF2, C1-C4alkyl-CH2F, C1-C6 alkoxyl, —OCF3, —OCHF2, —OCH2F, C1-C4 alkoxyl-CF3, C1-C4 alkoxyl-CHF2, C1-C4 alkoxyl-CH2F, -hydroxy-C1-C4 alkyl, —S(O)2—R9, —C(O)—C1-C6 alkoxyl, —C(O)—NR9R10, —C(O)—O—C(CH3)3, C3-C6 cycloalkyl, —NR9R10, —NH—C(O)—R9, —NH—C(O)—NR9R10, and —NH—S(O)2—R9; wherein R9 is selected from hydrogen, —CF3, C1-C4 alkyl, C3-C6 cycloalkyl, aryl, and heterocycle; and wherein R10 is selected from hydrogen and C1-C4 alkyl.
- In a further aspect, R1 is selected from residues of pyridine; pyrimidine; furan; thiophene; pyrrole; isoxazole; isothiazole; pyrazole; oxazole; thiazole; imidazole; oxazole; 1,2,3-oxadiazole; 1,2,5-oxadiazole; 1,3,4-oxadiazole; thiadiazole; 1,2,3-thiadiazole; 1,2,5-thiadiazole; 1,3,4-thiadiazole; triazole; 1,2,3-triazole; 1,3,4-triazole; tetrazole; 1,2,3,4-tetrazole; 1,2,4,5-tetrazole; pyridazine; pyrazine; triazine; 1,2,4-triazine; 1,3,5-triazine; tetrazine; 1,2,4,5-tetrazine; pyrrolidine; piperidine; piperazine; morpholine; azetidine; tetrahydropyran; tetrahydrofuran; and dioxane.
- In a further aspect, a compound is provided wherein R1 is mono- or di-substituted with substituents selected from hydroxy, oxo, halo, C1-C6 alkyl, —CF3, —CHF2, —CH2F, C1-C4 alkyl-CF3, C1-C4alkyl-CHF2, C1-C4alkyl-CH2F, C1-C6 alkoxyl, —OCF3, —OCHF2, —OCH2F, C1-C4 alkoxyl-CF3, C1-C4 alkoxyl-CHF2, C1-C4 alkoxyl-CH2F, -hydroxy-C1-C4 alkyl, —S(O)2—R9, —C(O)—C1-C6 alkoxyl, —C(O)—NR9R10, —C(O)—O—C(CH3)3, C3-C6 cycloalkyl, —NR9R10, —NH—C(O)—R9, —NH—C(O)—NR9R10, and —NH—S(O)2—R9; wherein R9 is selected from hydrogen, —CF3, C1-C4 alkyl, C3-C6 cycloalkyl, aryl, and heterocycle; and wherein R10 is selected from hydrogen and C1-C4 alkyl.
- In a further aspect, R1 is selected from 2-(4-hydroxypiperidin-1-yl)-2-oxoethyl, 2-(4-hydroxypiperidin-1-yl)ethyl, 2-(azetidin-1-yl), 2-acetamide, 2-morpholino-2-oxoethyl, 2-morpholinoethyl, benzyl, benzyl 2-acetate, cyclobutylmethyl, cyclopropylmethyl, ethyl 2-propanoate, hydrogen, methyl, N-(2-(dimethylamino)ethyl acetamide, N-2-methoxyethyl acetamide, N-cyclopropyl-2-acetamide, and N-cyclopropylmethyl acetamide.
- In a further aspect, a compound is provided wherein R5 is selected from:
- wherein Z1, Z2, Z3, Z4, Z5, and Z6 are independently selected from C and N; and wherein R6 comprises one, two, three, four, five, six, or seven substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, R6 is selected from chloro, dimethylamino, fluoro, methoxy, methyl, and trifluoromethyl.
- In a further aspect, a compound is provided wherein R5 is selected from:
- wherein R6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 8 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, R5 is selected from:
- In a further aspect, a compound is provided wherein R5 comprises a structure having a formula:
- wherein R6 comprises one or two substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 8 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In certain aspects, the compounds can be alkyne derivatives, alkene derivatives, 1,2,4-oxadiazole derivatives, or amide derivatives. That is, in certain aspects, L can be an alkyne residue, and alkene residue, an 1,2,4-oxadiazole residue, or an amide residue. It is understood that the alkyne, alkene, 1,2,4-oxadiazole, and amide residues can be further substuted. It is also contemplated that any one or more alkyne, alkene, 1,2,4-oxadiazole, or amide residue can be optionally omitted from the invention.
- In one aspect, a compound has a structure having a formula:
- In a further aspect, a compound is provided wherein R5 is selected from:
- wherein R6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, a compound is provided as a structure having a formula:
- wherein n is 0 or 1; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH2)m-aryl or —(CH2)m-heterocycle, wherein m is 1, 2, 3 or 4; wherein R2a and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently selected from hydrogen and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently selected from hydrogen and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R4 comprises one, two, or three substituents independently selected from hydrogen and an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein Z1, Z2, and Z3 are independently selected from C and N; and wherein R6 comprises one or two substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, a compound comprises a structure having a formula:
- In a further aspect, a compound is selected from:
- In a further aspect, a compound is selected from:
- In a further aspect, a compound is selected from:
- In a further aspect, a compound comprises a structure having a formula:
- wherein R1 is selected from hydrogen and an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH2)m-aryl or —(CH2)m-heterocycle, wherein m is 1, 2, 3 or 4; wherein n is 0 or 1; wherein if n is 0, then R3a and R3b are hydrogen or together comprise ═O; wherein if n is 1, then R2a and R2b are hydrogen or together comprise ═O and R3a and R3b are hydrogen; wherein Z is selected from C and N; and wherein R6 comprises one or two substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, a compound comprises a structure having a formula
- In a further aspect, a compound is provided wherein R1 is selected from 2-(4-hydroxypiperidin-1-yl)-2-oxoethyl, 2-(4-hydroxypiperidin-1-yl)ethyl, 2-(azetidin-1-yl), 2-acetamide, 2-morpholino-2-oxoethyl, 2-morpholinoethyl, benzyl, benzyl 2-acetate, cyclobutylmethyl, cyclopropylmethyl, ethyl 2-propanoate, hydrogen, methyl, N-(2-(dimethylamino)ethyl acetamide, N-2-methoxyethyl acetamide, N-cyclopropyl-2-acetamide, and N-cyclopropylmethyl acetamide; wherein R6 comprises one or two substituents selected from chloro, dimethylamino, fluoro, methoxy, methyl, and trifluoromethyl; and wherein Z is C.
- In a further aspect, a compound is selected from:
- or a pharmaceutically acceptable salt or N-oxide thereof.
- In a further aspect, a compound is selected from:
- 2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)acetamide,
- 2-(2-(4-hydroxypiperidin-1-yl)-2-oxoethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-(2-(4-hydroxypiperidin-1-yl)ethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-(2-(azetidin-1-yl)ethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-(2-morpholino-2-oxoethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-(2-morpholinoethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-(cyclobutylmethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-(cyclopropylmethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-benzyl-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-methyl-5-(phenylethynyl)isoindoline-1,3-dione,
- 2-methyl-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 5-((2,3-difluorophenyl)ethynyl)isoindolin-1-one,
- 5-((3,4-difluorophenyl)ethynyl)isoindolin-1-one,
- 5-(phenylethynyl)isoindolin-1-one,
- 5-(phenylethynyl)isoindoline-1,3-dione,
- 6-((2,4-difluorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((2-chlorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((2-fluorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((3-(trifluoromethyl)phenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((3,5-difluorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((3-chlorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((3-methoxyphenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-(4-(dimethylamino)phenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((4-chlorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((4-fluoro-3-methylphenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((4-fluorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((4-methoxyphenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-(m-tolylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-(o-tolylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-(pyridin-4-ylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- benzyl 2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)acetate,
- ethyl 2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)propanoate,
- N-(2-(dimethylamino)ethyl)-2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)acetamide,
- N-(2-methoxyethyl)-2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)acetamide,
- N-(cyclopropylmethyl)-2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)acetamide, and
- N-cyclopropyl-2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)acetamide,
or a pharmaceutically acceptable salt or N-oxide thereof. - In a further aspect, a compound is selected from:
- 2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)acetamide,
- 2-(2-(4-hydroxypiperidin-1-yl)-2-oxoethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-(2-(4-hydroxypiperidin-1-yl)ethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-(2-(azetidin-1-yl)ethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-(2-morpholino-2-oxoethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-(2-morpholinoethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-(cyclobutylmethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-(cyclopropylmethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-benzyl-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-methyl-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((2,4-difluorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((2-chlorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((2-fluorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((3-(trifluoromethyl)phenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((3,5-difluorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((3-chlorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((3-methoxyphenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-(4-(dimethylamino)phenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((4-chlorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((4-fluoro-3-methylphenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((4-fluorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((4-methoxyphenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-(m-tolylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-(o-tolylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- benzyl 2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)acetate,
- ethyl 2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)propanoate,
- N-(2-(dimethylamino)ethyl)-2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)acetamide,
- N-(2-methoxyethyl)-2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)acetamide,
- N-(cyclopropylmethyl)-2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)acetamide, and
- N-cyclopropyl-2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)acetamide.
- In a further aspect, a compound is selected from:
- 6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-(1-oxo-6-(phenylethynyl)-3,4-dihydroisoquinolin-2(1H)-yl)acetamide,
- 2-(cyclopropylmethyl)-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 2-methyl-6-(phenylethynyl)-3,4-dihydroisoquinolin-1(2H)-one,
- 6-((4-fluorophenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one, and
- 6-((4-fluoro-3-methylphenyl)ethynyl)-3,4-dihydroisoquinolin-1(2H)-one.
- In a further aspect, a compound is selected from:
- 5-(phenylethynyl)isoindoline-1,3-dione and
- 2-methyl-5-(phenylethynyl)isoindoline-1,3-dione.
- In a further aspect, a compound is selected from:
- 5-(phenylethynyl)isoindolin-1-one,
- 5-((2,3-difluorophenyl)ethynyl)isoindolin-1-one, and
- 5-((3,4-difluorophenyl)ethynyl)isoindolin-1-one.
- In a further aspect, a compound is present as 6-(pyridin-4-ylethynyl)-3,4-dihydroisoquinolin-1(2H)-one.
- In one aspect, a compound has a structure having a formula:
- wherein R7a and R7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, a compound is provided wherein R5 is selected from:
- wherein R6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, a compound is comprises a structure having a formula:
- wherein R7a and R7b are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, a compound is selected from:
- wherein R6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In one aspect, a compound has a structure having a formula:
- In a further aspect, a compound is provided wherein R5 is selected from:
- wherein R6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In one aspect, a compound has a structure having a formula:
- wherein R8 is selected from hydrogen and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- In a further aspect, a compound is provided wherein R5 is selected from:
- wherein R6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In one aspect the compound exhibits potentiation of mGluR5 response to glutamate as an increase in response to non-maximal concentrations of glutamate in human embryonic kidney cells transfected with rat mGluR5 in the presence of the compound, compared to the response to glutamate in the absence of the compound, compared to the response to glutamate in the absence of the compound, having an EC50 of less than about 1.0×10−6, for example, less than about 5.0×10−7, less than about 1.0×10−7, less than about 5.0×10−8, or less than about 1.0×10−8.
- The utility of the compounds in accordance with the present invention as potentiators of metabotropic glutamate receptor activity, in particular mGluR5 activity, can be demonstrated by methodology known in the art. Human embryonic kidney (HEK) cells transfected with rat mGluR5 were plated in clear bottom assay plates for assay in a Functional Drug Screening System (FDSS). The cells were loaded with a Ca2+-sensitive fluorescent dye (e.g., Fluo-4), and the plates were washed and placed in the FDSS instrument. After establishment of a fluorescence baseline for twelve seconds, the compounds of the present invention were added to the cells, and the response in cells was measured. Five minutes later, an mGluR5 agonist (e.g., glutamate, 3,5-dihydroxyphenylglycine, or quisqualate) was added to the cells, and the response of the cells was measured. Potentiation of the agonist response of mGluR5 by the compounds in the present invention was observed as an increase in response to non-maximal concentrations of agonist (here, glutamate) in the presence of compound compared to the response to agonist in the absence of compound.
- The above described assay operated in two modes. In the first mode, a range of concentrations of the present compounds were added to cells, followed by a single fixed concentration of agonist. If a compound acted as a potentiator, an EC50 value for potentiation and a maximum extent of potentiation by the compound at this concentration of agonist was determined by non-linear curve fitting. In the second mode, several fixed concentrations of the present compounds were added to various wells on a plate, followed by a range of concentrations of agonist for each concentration of present compound; the EC50 values for the agonist at each concentration of compound were determined by non-linear curve fitting. A decrease in the EC50 value of the agonist with increasing concentrations of the present compounds (a leftward shift of the agonist concentration-response curve) is an indication of the degree of mGluR5 potentiation at a given concentration of the present compound. An increase in the EC50 value of the agonist with increasing concentrations of the present compounds (a rightward shift of the agonist concentration-response curve) is an indication of the degree of mGluR5 antagonism at a given concentration of the present compound. The second mode also indicates whether the present compounds also affect the maximum response to mGluR5 to agonists.
- In particular, the disclosed compounds had activity in potentiating the mGluR5 receptor in the aforementioned assays, generally with an EC50 for potentiation of less than about 10 μM. Preferred compounds within the present invention had activity in potentiating the mGluR5 receptor with an EC50 for potentiation of less than about 500 nM. Preferred compounds further caused a leftward shift of the agonist EC50 by greater than 3-fold. These compounds did not cause mGluR5 to respond in the absence of agonist, and they did not elicit a significant increase in the maximal response of mGluR5 to agonists. These compounds are positive allosteric modulators (potentiators) of human and rat mGluR5 and were selective for mGluR5 compared to the other seven subtypes of metabotropic glutamate receptors.
- Preferred compounds of the present invention also showed in vivo efficacy in a number of preclinical rat behavioral model where known, clinically useful antipsychotics display similar positive responses. For example, compounds of the present invention reverse amphetamine-induced hyperlocomotion in male Sprague-Dawley rats at doses ranging from 1 to 100 mg/kg i.p. Data for three example compounds follow:
- In one aspect, the invention relates to methods of making compounds useful as positive allosteric modulators (potentiators) of the metabotropic glutamate receptor subtype 5 (mGluR5), which can beuseful in the treatment neurological and psychiatric disorders associated with glutamate dysfunction and other diseases in which metabotropic glutamate receptors are involved.
- The compounds of this invention can be prepared by employing reactions as shown in the following schemes, in addition to other standard manipulations that are known in the literature, exemplified in the experimental sections or clear to one skilled in the art. Substituent numbering as shown in schemes does not necessarily correlate to that used in the claims and often, for clarity, a single substituent is shown to attach to the compound where multiple substituents are allowed under the definitions disclosed herein.
- Reactions used to generate the compounds of this invention are prepared by employing reactions as shown in Reaction Schemes I and II, in addition to other standard manipulations known in the literature or to one skilled in the art. The following examples are provided so that the invention might be more fully understood, are illustrative only, and should not be construed as limiting.
- As illustrated in Reaction Scheme I, a suitably substituted 6-bromo-3,4-dihydro-2H-isoquinoline I-1 is subjected to a Sonogashira/Castro-Stephens coupling reaction employing catalytic copper (I) iodide and catalytic palladium (0) and a suitably functionalized acetylene under microwave irradiation to deliver the corresponding product I-2. In this instance, the suitably substituted 6-bromo-3,4-dihydro-2H-isoquinolines I-1 were commercially available, or could be easily prepared according to literature methods. The following examples are provided so that the invention might be ore fully understood. These examples are illustrative only and should not be construed as limiting in any way.
- As illustrated in Reaction Scheme II, a suitably 6-substituted-3,4-dihydro-2H-isoquinoline II-1 is subjected to an SN2 reaction with a suitably functionalized electrophile (R3-X) to deliver the corresponding product II-2. In this instance, the suitably substituted 6-substituted-3,4-dihydro-2H-isoquinoline II-1 were prepared according to REACTION SCHEME I and the electrophiles were commercially available, or could be easily prepared according to literature methods. The following examples are provided so that the invention might be ore fully understood. These examples are illustrative only and should not be construed as limiting in any way.
- As illustrated in Reaction Scheme III, a suitably substituted 5-bromoisobenzofuran-1(3H)-one III-1 is treated with ammonium hydrodixed in methanol to afford 4-bromo-2-(hydroxylmethyl)benzamide III-2, and a subsequent Mitsunobu reation under standard conditions delivers 5-bromoisoindolin-1-one III-3. Intermediate III-3 is subjected to a Sonogashira/Castro-Stephens coupling reaction employing catalytic copper (I) iodide and catalytic palladium (0) and a suitably functionalized acetylene III-4 under microwave irradiation to deliver the corresponding product III-5. In this instance, the suitably substituted 5-bromoisobenzofuran-1(3H)-ones III-1 were commercially available, or could be easily prepared according to literature methods. The following examples are provided so that the invention might be ore fully understood. These examples are illustrative only and should not be construed as limiting in any way.
- As illustrated in Reaction Scheme IV, a suitably substituted 5-(phenylethynyl)isobenzofuran-1,3-dione IV-1 is treated with urea in DMF under microwave irradiation to afford 5-(phenethynyl)isoindoline-1,3-dione IV-2. Intermediate IV-2 is alklyated with a suitably functionalized alkly halide (Cl, Br, I) to provide 2-alklyl-5-(phenethynyl)isoindoline-1,3-dione IV-3. In this instance, the suitably substituted 5-(phenylethynyl)isobenzofuran-1,3-dione IV-1 were commercially available, or could be easily prepared according to literature methods.
- In one aspect, the invention relates to a method for preparing a compound comprising the steps of:
- providing a first reactant having a structure represented by a formula:
- wherein n is 0, 1, 2, 3 or 4; wherein Y1 and Y2 are independently selected from C and N; wherein R1 is selected from hydrogen and an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH2)m-aryl or —(CH2)m-heterocycle, wherein m is 1, 2, 3 or 4; wherein R2a and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R4 comprises one, two, or three substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; and wherein X1 comprises a halide, a pseudohalide, a carboxylic acid, a carboxylic acid derivative, a terminal acetylene moiety, an activated vinyl moiety, a N′-hydroxybenzimidamide, or a primary or secondary amine; or a pharmaceutically acceptable salt or N-oxide thereof;
providing a second reactant having a structure represented by a formula: - wherein R5 is an organic radical comprising 4 to 14 carbon atoms selected from optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, and optionally substituted heteroaryl; and wherein X2 comprises a halide, a pseudohalide, a carboxylic acid, a carboxylic acid derivative, a terminal acetylene moiety, an activated vinyl moiety, a N′-hydroxybenzimidamide, or a primary or secondary amine;
coupling the first reactant with the second reactant, thereby forming linking moiety L, to provide a compound having a structure represented by a formula: - wherein L is an organic divalent radical comprising 1 to 7 carbon atoms selected from optionally substituted C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, and optionally substituted amido; wherein, when X1 is halide or pseudohalide, X2 is a terminal acetylene moiety, or an activated vinyl moiety; wherein, when X1 is a carboxylic acid or a carboxylic acid derivative, X2 is a N′-hydroxybenzimidamide, or a primary or secondary amine; wherein, when X2 is halide or pseudohalide, X1 is a terminal acetylene moiety, or an activated vinyl moiety; wherein, when X2 is a carboxylic acid or a carboxylic acid derivative, X1 is a N′-hydroxybenzimidamide, or a primary or secondary amine; and optionally, if R1 is hydrogen, alkylating the lactam or imide moiety.
- In a further aspect, L is selected from:
- wherein R7a and R7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; and wherein R8 is selected from hydrogen and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- In a further aspect, when R1 is H, a compound can be alkylated with an electrophilic alkyl functionality, for example, an alkyl halide or pseudohalide.
- In a further aspect, the reactive vinyl moiety comprises a monosubstituted vinyl moiety, a vinyl boronic acid, a vinyl boronic ester, or a vinyltrialkylstannane.
- In a further aspect, the coupling step comprises a Sonogashira/Castro-Stephens coupling reaction; wherein X1 comprises a halide or a pseudohalide; wherein X2 comprises a terminal acetylene moiety; and wherein the compound has a structure represented by a formula:
- In a further aspect, the coupling step comprises a Sonogashira/Castro-Stephens coupling reaction; wherein X1 comprises a terminal acetylene moiety; wherein X2 comprises a halide or a pseudohalide; and wherein the compound has a structure represented by a formula:
- In a further aspect, the coupling step comprises a Suzuki coupling reaction, wherein X1 comprises a vinyl boronic acid or a vinyl boronic ester; wherein X2 comprises a halide or a pseudohalide; and wherein the compound has a structure represented by a formula:
- In a further aspect, the coupling step comprises a Suzuki coupling reaction, wherein X1 comprises a halide or a pseudohalide; wherein X2 comprises a vinyl boronic acid or a vinyl boronic ester; and wherein the compound has a structure represented by a formula:
- In a further aspect, the coupling step comprises a Stille coupling reaction; wherein X1 comprises a vinyltrialkylstannane; wherein X2 comprises a halide or a pseudohalide; and wherein the compound has a structure represented by a formula:
- In a further aspect, the coupling step comprises a Stille coupling reaction; wherein X1 comprises a halide or a pseudohalide; wherein X2 comprises a vinyltrialkylstannane; and wherein the compound has a structure represented by a formula:
- In a further aspect, the coupling step comprises a Heck reaction, wherein X1 comprises a monosubstituted vinyl moiety; wherein X2 comprises a halide or a pseudohalide; and wherein the compound has a structure represented by a formula:
- In a further aspect, the coupling step comprises a Heck reaction, wherein X1 comprises a halide or a pseudohalide; wherein X2 comprises a monosubstituted vinyl moiety; and wherein the compound has a structure represented by a formula:
- In a further aspect, the coupling step comprises a condensation reaction; wherein X1 comprises a carboxylic acid or a carboxylic acid derivative; wherein X2 comprises a N′-hydroxybenzimidamide; and wherein the compound has a structure represented by a formula:
- In a further aspect, the coupling step comprises a condensation reaction; wherein X1 comprises a N′-hydroxybenzimidamide; wherein X2 comprises a carboxylic acid or a carboxylic acid derivative; and wherein the compound has a structure represented by a formula:
- In a further aspect, the coupling step comprises an amide formation reaction; wherein X1 comprises a carboxylic acid or a carboxylic acid derivative; wherein X2 comprises a primary or secondary amine; and wherein the compound has a structure represented by a formula:
- wherein R8 is selected from hydrogen and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- In a further aspect, the coupling step comprises an amide formation reaction; wherein X1 comprises a primary or secondary amine; wherein X2 comprises a carboxylic acid or a carboxylic acid derivative; and wherein the compound has a structure represented by a formula:
- wherein R8 is selected from hydrogen and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- In a further aspect, the providing a first reactant step comprises the steps of:
- treating an anhydride having a structure represented by a formula:
- wherein n is 0 or 1; with ammonia or a primary amine to afford a compound having a structure represented by a formula:
- and optionally, if R1 is hydrogen, alkylating the imide moiety.
- In a further aspect, the providing a first reactant step comprises the steps of: treating a lactone having a structure represented by a formula:
- wherein n is 0, 1, 2, 3 or 4; with ammonia or a primary amine to afford an intermediate having a structure represented by a formula:
- cyclizing the intermediate to afford a compound having a structure represented by a formula:
- and optionally, if R1 is hydrogen, alkylating the lactam moiety.
- In a further aspect, the cyclizing step comprises subjecting the intermediate to Mitsunobu reaction conditions; or converting the hydroxyl functionality to a pseudohalide.
- In a further aspect, the first reactant has a structure comprising a formula:
- In a further aspect, the first reactant has a structure comprising a formula:
- In a further aspect, the first reactant has a structure comprising a formula:
- In a further aspect, the first reactant has a structure comprising a formula:
- In a further aspect, the first reactant has a structure comprising a formula:
- In a further aspect, the second reactant has a structure represented by a formula:
- wherein Z1, Z2, Z3, Z4, Z5, and Z6 are independently selected from C and N; and wherein R6 comprises one, two, three, four, five, six, or seven substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl. In a further aspect, R6 is selected from chloro, dimethylamino, fluoro, methoxy, methyl, and trifluoromethyl.
- In a further aspect, the second reactant has a structure represented by a formula:
- wherein R6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, the second reactant has a structure represented by a formula:
- In a further aspect, the second reactant has a structure represented by a formula:
- wherein R6 comprises one or two substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, the alkylating step is performed by reaction with a base and an alkyl halide or alkyl pseudohalide. In a further aspect, the base is sodium hydride.
- In a further aspect, the alkyl moiety of the alkyl halide or alkyl pseudohalide comprises an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, or —(CH2)m-aryl or —(CH2)m-heterocycle, wherein m is 1, 2, 3 or 4.
- In a further aspect, the alkylating step is performed before the coupling step.
- In one aspect, the invention related to a method for preparing a compound comprising the steps of:
- providing a reactant comprising an anhydride having a structure represented by a formula:
- wherein n is 0 or 1; wherein Y1 and Y2 are independently selected from C and N; wherein Rea and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R4 comprises one, two, or three substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R5 is an organic radical comprising 4 to 14 carbon atoms selected from optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, and optionally substituted heteroaryl; and wherein X1 comprises a halide or a pseudohalide or -L-R5, wherein L is an organic divalent radical comprising 1 to 7 carbon atoms and R5 is an organic radical comprising 4 to 14 carbon atoms; or a pharmaceutically acceptable salt or N-oxide thereof;
treating the reactant with ammonia or a primary amine to afford a compound having a structure represented by a formula: - and optionally, if R1 is hydrogen, alkylating the imide moiety.
- In a further aspect, R1 is selected from 2-(4-hydroxypiperidin-1-yl)-2-oxoethyl, 2-(4-hydroxypiperidin-1-yl)ethyl, 2-(azetidin-1-yl), 2-acetamide, 2-morpholino-2-oxoethyl, 2-morpholinoethyl, benzyl, benzyl 2-acetate, cyclobutylmethyl, cyclopropylmethyl, ethyl 2-propanoate, hydrogen, methyl, N-(2-(dimethylamino)ethyl acetamide, N-2-methoxyethyl acetamide, N-cyclopropyl-2-acetamide, and N-cyclopropylmethyl acetamide.
- In a further aspect, R5 is selected from:
- wherein Z1, Z2, Z3, Z4, Z5, L and Z6 are independently selected from C and N; and wherein R6 comprises one, two, three, four, five, six, or seven substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl. In a further aspect, R6 is selected from chloro, dimethylamino, fluoro, methoxy, methyl, and trifluoromethyl.
- In a further aspect, R5 is selected from:
- wherein R6 comprises one, two, three, four, or five substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, R5 is selected from:
- In a further aspect, R5 is comprises a structure having a formula:
- wherein R6 comprises one or two substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 10 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, L is selected from:
- wherein R7a and R7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; and wherein R8 is selected from hydrogen and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- In a further aspect, the alkylating step is performed by reaction with a base and an alkyl halide or alkyl pseudohalide. In a further aspect, the base is sodium hydride.
- In a further aspect, the alkyl moiety of the alkyl halide or alkyl pseudohalide comprises an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH2)m-aryl or —(CH2)m-heterocycle, wherein m is 1, 2, 3 or 4.
- In a further aspect, the alkylating step is performed before the coupling step.
- In one aspect, the invention relates to a method for preparing a compound comprising the steps of:
- providing a reactant comprising a lactone having a structure represented by a formula:
- wherein n is 0, 1, 2, 3 or 4; wherein Y1 and Y2 are independently selected from C and N; wherein R2a and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R4 comprises one, two, or three substituents independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; wherein R5 is an organic radical comprising 4 to 14 carbon atoms selected from optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, and optionally substituted heteroaryl; and wherein X1 comprises a halide or a pseudohalide or -L-R5, wherein L is an organic divalent radical comprising 1 to 7 carbon atoms and R5 is an organic radical comprising 4 to 14 carbon atoms; or a pharmaceutically acceptable salt or N-oxide thereof;
treating the reactant with ammonia or a primary amine to afford an intermediate having a structure represented by a formula: - cyclizing the intermediate to afford a compound having a structure represented by a formula:
- and optionally, if R1 is hydrogen, alkylating the lactam moiety.
- In a further aspect, the cyclizing step comprises subjecting the intermediate to Mitsunobu reaction conditions; or converting the hydroxyl functionality to a pseudohalide.
- In a further aspect, L is selected from:
- wherein R7a and R7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; and wherein R8 is selected from hydrogen and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- In a further aspect, the alkylating step is performed by reaction with a base and an alkyl halide or alkyl pseudohalide. In a further aspect, the base is sodium hydride.
- In a further aspect, the alkyl moiety of the alkyl halide or alkyl pseudohalide comprises an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH2)m-aryl or —(CH2)m-heterocycle, wherein m is 1, 2, 3 or 4. In a further aspect, the alkylating step is performed before the coupling step.
- In a further aspect, the method provides a disclosed compound, for example, a compound listed in Table 1. Compounds in Table 1 were synthesized as shown in reaction Schemes I and II, but substituting the appropriately substituted acetylene and electrophile as described in Scheme 1 and 2. The requisite starting materials were commercially available, described in the literature or readily synthesized by one skilled in the art of organic synthesis.
-
TABLE 1 MS Compound Nomenclature (M + 1) 6-(phenylethynyl)-3,4- dihydroisoquinolin-1(2H)-one 248.1 2-methyl-6-(phenylethynyl)- 3,4-dihydroisoquinolin-1(2H)-one 262.3 2-benzyl-6-(phenylethynyl)- 3,4-dihydroisoquinolin-1(2H)-one 304.4 2-(cyclopropylmethyl)-6-(phenylethynyl)- 3,4-dihydroisoquinolin-1(2H)-one 302.3 2-(cyclobutylmethyl)-6-(phenylethynyl)- 3,4-dihydroisoquinolin-1(2H)-one 316.4 2-(2-(azetidin-1-yl)ethyl)-6-(phenylethynyl)- 3,4-dihydroisoquinolin-1(2H)-one 331.4 2-(2-morpholinoethyl)-6-(phenylethynyl)- 3,4-dihydroisoquinolin-1(2H)-one 361.4 ethyl 2-(1-oxo-6-(phenylethynyl)- 3,4-dihydroisoquinolin-2(1H)-yl)propanoate 362.4 benzyl 2-(1-oxo-6-(phenylethynyl)- 3,4-dihydroisoquinolin-2(1H)-yl)acetate 396.4 2-(2-(4-hydroxypiperidin-1-yl)ethyl)- 6-(phenylethynyl)- 3,4-dihydroisoquinolin-1(2H)-one 375.4 2-(1-oxo-6-(phenylethynyl)-3,4- dihydroisoquinolin-2(1H)-yl)acetamide 304.3 N-cyclopropyl-2-(1-oxo-6-(phenylethynyl)- 3,4-dihydroisoquinolin-2(1H)-yl)acetamide 345.3 N-(cyclopropylmethyl)-2-(1-oxo-6- (phenylethynyl)- 3,4-dihydroisoquinolin-2(1H)-yl)acetamide 359.4 N-(2-methoxyethyl)-2-(1-oxo-6- (phenylethynyl)- 3,4-dihydroisoquinolin-2(1H)-yl)acetamide 363.4 N-(2-(dimethylamino)ethyl)-2-(1-oxo-6- (phenylethynyl)- 3,4-dihydroisoquinolin-2(1H)-yl)acetamide 376.4 2-(2-morpholino-2-oxoethyl)-6- (phenylethynyl)- 3,4-dihydroisoquinolin-1(2H)-one 375.4 2-(2-(4-hydroxypiperidin-1-yl)-2-oxoethyl)-6- (phenylethynyl)-3,4-dihydroisoquinolin- 1(2H)-one 389.4 6-(o-tolylethynyl)-3,4-dihydroisoquinolin- 1(2H)-one 262.3 6-(m-tolylethynyl)-3,4-dihydroisoquinolin- 1(2H)-one 262.3 6-((4-fluorophenyl)ethynyl)-3,4- dihydroisoquinolin-1(2H)-one 266.3 6-((2-fluorophenyl)ethynyl)-3,4- dihydroisoquinolin-1(2H)-one 266.3 6-((4-methoxyphenyl)ethynyl)-3,4- dihydroisoquinolin-1(2H)-one 278.3 6-((3-methoxyphenyl)ethynyl)-3,4- dihydroisoquinolin-1(2H)-one 278.3 6-((4-fluoro-3methylphenyl))ethynyl)- 3,4-dihydroisoquinolin-1(2H)-one 280.3 6-((2-chlorophenyl)ethynyl)- 3,4-dihydroisoquinolin-1(2H)-one 282.7 6-((4-chlorophenyl)ethynyl)-3,4- dihydroisoquinolin-1(2H)-one 282.7 6-((3-chlorophenyl)ethynyl)-3,4- dihydroisoquinolin-1(2H)-one 282.7 6-((2,4-difluorophenyl)ethynyl)-3,4- dihydroisoquinolin-1(2H)-one 284.2 6-((3,5-difluorophenyl)ethynyl)-3,4- dihydroisoquinolin-1(2H)-one 284.2 6-(pyridin-4-ylethynyl)-3,4- dihydroisoquinolin-1(2H)-one 249.3 6-((4-(dimethylamino)phenyl)ethynyl)- 3,4-dihydroisoquinolin-1(2H)-one 291.3 6-((3-(trifluoromethyl)phenyl)ethynyl)- 3,4-dihydroisoquinolin-1(2H)-one 316.3 5-(phenylethynyl)isoindoline-1,3- dione 248.1 2-methyl-5-(phenylethynyl)isoindoline- 1,3-dione 262.1 5-(phenylethynyl)isoindolin-1-one 234.1 5-((2,3-difluorophenyl)ethynyl) isoindolin-1-one 270.1 5-((3,4-difluorophenyl)ethynyl) isoindolin-1-one 270.1 - Thus, it is understood that a disclosed methods can be used to provide the disclosed compounds.
- In one aspect, the invention relates to pharmaceutical compositions comprising the disclosed compounds. That is, a pharmaceutical composition can be provided comprising a therapeutically effective amount of at least one disclosed compound or at least one product of a disclosed method and a pharmaceutically acceptable carrier.
- In certain aspects, the disclosed pharmaceutical compositions comprise the disclosed compounds (including pharmaceutically acceptable salt(s) thereof) as an active ingredient, a pharmaceutically acceptable carrier, and, optionally, other therapeutic ingredients or adjuvants. The instant compositions include those suitable for oral, rectal, topical, and parenteral (including subcutaneous, intramuscular, and intravenous) administration, although the most suitable route in any given case will depend on the particular host, and nature and severity of the conditions for which the active ingredient is being administered. The pharmaceutical compositions can be conveniently presented in unit dosage form and prepared by any of the methods well known in the art of pharmacy.
- As used herein, the term “pharmaceutically acceptable salts” refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids. When the compound of the present invention is acidic, its corresponding salt can be conveniently prepared from pharmaceutically acceptable non-toxic bases, including inorganic bases and organic bases. Salts derived from such inorganic bases include aluminum, ammonium, calcium, copper (-ic and -ous), ferric, ferrous, lithium, magnesium, manganese (-ic and -ous), potassium, sodium, zinc and the like salts. Particularly preferred are the ammonium, calcium, magnesium, potassium and sodium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, as well as cyclic amines and substituted amines such as naturally occurring and synthesized substituted amines. Other pharmaceutically acceptable organic non-toxic bases from which salts can be formed include ion exchange resins such as, for example, arginine, betaine, caffeine, choline, N,N′-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine and the like.
- As used herein, the term “pharmaceutically acceptable non-toxic acids”, includes inorganic acids, organic acids, and salts prepared therefrom, for example, acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid and the like. Preferred are citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, and tartaric acids.
- In practice, the compounds of the invention, or pharmaceutically acceptable salts thereof, of this invention can be combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier can take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral (including intravenous). Thus, the pharmaceutical compositions of the present invention can be presented as discrete units suitable for oral administration such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient. Further, the compositions can be presented as a powder, as granules, as a solution, as a suspension in an aqueous liquid, as a non-aqueous liquid, as an oil-in-water emulsion or as a water-in-oil liquid emulsion. In addition to the common dosage forms set out above, the compounds of the invention, and/or pharmaceutically acceptable salt(s) thereof, can also be administered by controlled release means and/or delivery devices. The compositions can be prepared by any of the methods of pharmacy. In general, such methods include a step of bringing into association the active ingredient with the carrier that constitutes one or more necessary ingredients. In general, the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both. The product can then be conveniently shaped into the desired presentation.
- Thus, the pharmaceutical compositions of this invention can include a pharmaceutically acceptable carrier and a compound or a pharmaceutically acceptable salt of the compounds of the invention. The compounds of the invention, or pharmaceutically acceptable salts thereof, can also be included in pharmaceutical compositions in combination with one or more other therapeutically active compounds.
- The pharmaceutical carrier employed can be, for example, a solid, liquid, or gas. Examples of solid carriers include lactose, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, and stearic acid. Examples of liquid carriers are sugar syrup, peanut oil, olive oil, and water. Examples of gaseous carriers include carbon dioxide and nitrogen.
- In preparing the compositions for oral dosage form, any convenient pharmaceutical media can be employed. For example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like can be used to form oral liquid preparations such as suspensions, elixirs and solutions; while carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents, and the like can be used to form oral solid preparations such as powders, capsules and tablets. Because of their ease of administration, tablets and capsules are the preferred oral dosage units whereby solid pharmaceutical carriers are employed. Optionally, tablets can be coated by standard aqueous or nonaqueous techniques
- A tablet containing the composition of this invention can be prepared by compression or molding, optionally with one or more accessory ingredients or adjuvants. Compressed tablets can be prepared by compressing, in a suitable machine, the active ingredient in a free-flowing form such as powder or granules, optionally mixed with a binder, lubricant, inert diluent, surface active or dispersing agent. Molded tablets can be made by molding in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent.
- The pharmaceutical compositions of the present invention comprise a compound of the invention (or pharmaceutically acceptable salts thereof) as an active ingredient, a pharmaceutically acceptable carrier, and optionally one or more additional therapeutic agents or adjuvants. The instant compositions include compositions suitable for oral, rectal, topical, and parenteral (including subcutaneous, intramuscular, and intravenous) administration, although the most suitable route in any given case will depend on the particular host, and nature and severity of the conditions for which the active ingredient is being administered. The pharmaceutical compositions can be conveniently presented in unit dosage form and prepared by any of the methods well known in the art of pharmacy.
- Pharmaceutical compositions of the present invention suitable for parenteral administration can be prepared as solutions or suspensions of the active compounds in water. A suitable surfactant can be included such as, for example, hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof in oils. Further, a preservative can be included to prevent the detrimental growth of microorganisms.
- Pharmaceutical compositions of the present invention suitable for injectable use include sterile aqueous solutions or dispersions. Furthermore, the compositions can be in the form of sterile powders for the extemporaneous preparation of such sterile injectable solutions or dispersions. In all cases, the final injectable form must be sterile and must be effectively fluid for easy syringability. The pharmaceutical compositions must be stable under the conditions of manufacture and storage; thus, preferably should be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol and liquid polyethylene glycol), vegetable oils, and suitable mixtures thereof.
- Pharmaceutical compositions of the present invention can be in a form suitable for topical use such as, for example, an aerosol, cream, ointment, lotion, dusting powder, mouth washes, gargles and the like. Further, the compositions can be in a form suitable for use in transdermal devices. These formulations can be prepared, utilizing a compound of the invention, or pharmaceutically acceptable salts thereof, via conventional processing methods. As an example, a cream or ointment is prepared by mixing hydrophilic material and water, together with about 5 wt % to about 10 wt % of the compound, to produce a cream or ointment having a desired consistency.
- Pharmaceutical compositions of this invention can be in a form suitable for rectal administration wherein the carrier is a solid. It is preferable that the mixture forms unit dose suppositories. Suitable carriers include cocoa butter and other materials commonly used in the art. The suppositories can be conveniently formed by first admixing the composition with the softened or melted carrier(s) followed by chilling and shaping in moulds.
- In addition to the aforementioned carrier ingredients, the pharmaceutical formulations described above can include, as appropriate, one or more additional carrier ingredients such as diluents, buffers, flavoring agents, binders, surface-active agents, thickeners, lubricants, preservatives (including anti-oxidants) and the like. Furthermore, other adjuvants can be included to render the formulation isotonic with the blood of the intended recipient. Compositions containing a compound of the invention, and/or pharmaceutically acceptable salts thereof, can also be prepared in powder or liquid concentrate form.
- A potentiated amount of an mGluR agonist to be administered in combination with an effective amount of a compound of formula I is expected to vary from about 0.1 milligram per kilogram of body weight per day (mg/kg/day) to about 100 mg/kg/day and is expected to be less than the amount that is required to provide the same effect when administered without an effective amount of a compound of formula I. Preferred amounts of a co-administered mGluR agonist are able to be determined by one skilled in the art.
- In the treatment conditions which require potentiation of metabotropic glutamate receptor activity an appropriate dosage level will generally be about 0.01 to 500 mg per kg patient body weight per day and can be administered in single or multiple doses. Preferably, the dosage level will be about 0.1 to about 250 mg/kg per day; more preferably 0.5 to 100 mg/kg per day. A suitable dosage level can be about 0.01 to 250 mg/kg per day, about 0.05 to 100 mg/kg per day, or about 0.1 to 50 mg/kg per day. Within this range the dosage can be 0.05 to 0.5, 0.5 to 5.0 or 5.0 to 50 mg/kg per day. For oral administration, the compositions are preferably provided in the from of tablets containing 1.0 to 1000 miligrams of the active ingredient, particularly 1.0, 5.0, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600, 750, 800, 900 and 1000 milligrams of the active ingredient for the symptomatic adjustment of the dosage of the patient to be treated. The compound can be administered on a regimen of 1 to 4 times per day, preferably once or twice per day. This dosing regimen can be adjusted to provide the optimal therapeutic response.
- It is understood, however, that the specific dose level for any particular patient will depend upon a variety of factors. Such factors include the age, body weight, general health, sex, and diet of the patient. Other factors include the time and route of administration, rate of excretion, drug combination, and the type and severity of the particular disease undergoing therapy.
- The present invention is further directed to a method for the manufacture of a medicament for poteniating glutamate receptor activity (e.g., treatment of one or more neurological and/or psychiatric disorder associated with glutamate dysfunction) in mammals (e.g., humans) comprising combining one or more disclosed compounds, products, or compositions with a pharmaceutically acceptable carrier or diluent.
- The disclosed pharmaceutical compositions can further comprise other therapeutically active compounds, which are usually applied in the treatment of the above mentioned pathological conditions.
- It is understood that the disclosed compositions can be employed in the disclosed methods of using.
- The amino acid L-glutamate (referred to herein simply as glutamate) is the principal excitatory neurotransmitter in the mammalian central nervous system (CNS). Within the CNS, glutamate plays a key role in synaptic plasticity (e.g., long term potentiation (the basis of learning and memory)), motor control and sensory perception. It is now well understood that a variety of neurological and psychiatric disorders, including, but not limited to, schizophrenia general psychosis and cognitive deficits, are associated with dysfunctions in the glutamatergic system. Thus, modulation of the glutamatergic system is an important therapeutic goal. Glutamate acts through two distinct receptors: ionotropic and metabotropic glutamate receptors. The first class, the ionotropic glutamate receptors, is comprised of multi-subunit ligand-gated ion channels that mediate excitatory post-synaptic currents. Three subtypes of ionotropic glutamate receptors have been identified, and despite glutamate serving as agonist for all three receptor subtypes, selective ligands have been discovered that activate each subtype. The ionotropic glutamate receptors are named after their respective selective ligands: kainite receptors, AMPA receptors and NMDA receptors.
- The second class of glutamate receptor, termed metabotropic glutamate receptors, (mGluRs), are G-protein coupled receptors (GPCRs) that modulate neurotransmitter release or the strength of synaptic transmission, based on their location (pre- or post-synaptic). The mGluRs are family C GPCR, characterized by a large (−560 amino acid) “venus fly trap” agonist binding domain in the amino-terminal domain of the receptor. This unique agonist binding domain distinguishes family C GPCRs from family A and B GPCRs wherein the agonist binding domains are located within the 7-strand transmembrane spanning (7TM) region or within the extracellular loops that connect the strands to this region. To date, eight distinct mGluRs have been identified, cloned and sequenced. Based on structural similarity, primary coupling to intracellular signaling pathways and pharmacology, the mGluRs have been assigned to three groups: Group I (mGluR1 and mGluR5), Group II (mGluR2 and mGluR3) and Group III (mGluR4, mGluR6, mGluR7 and mGluR8). Group I mGluRs are coupled through Gαq/11 to increase inositol phosphate and metabolism and resultant increases in intracellular calcium. Group I mGluRs are primarily located post-synaptically and have a modualtory effect on ion channel activity and neuronal excitability. Group II (mGluR2 and mGluR3) and Group III (mGluR4, mGluR6, mGluR7 and mGluR8) mGluRs are primarily located pre-synaptically where they regulate the release of neurotransmitters, such as glutamate. Group II and Group III mGluRs are coupled to Gαi and its associated effectors such as adenylate cyclase.
- Post-synaptic mGluRs are known to functionally interact with post-synaptic ionotropic glutamate receptors, such as the NMDA receptor. For example, activation of mGluR5 by a selective agonist has been shown to increase post-synaptic NMDA currents (Mannaioni et.al. J. Neurosci. 21:5925-5934 (2001)). Therefore, modulation of mGluRs is an approach to modulating glutamatergic transmission. Numerous reports indicate that mGluR5 plays a role in a number of disease states including anxiety (Spooren et. al. J. Pharmacol. Exp. Therapeut. 295:1267-1275 (2000), Tatarczynska et al. Br. J. Pharmaol. 132:1423-1430 (2001)), schizophrenia (reviewed in Chavez-Noriega et al. Curr. Drug
- Targets: CNS & Neurological Disorders 1:261-281 (2002), Kinney, G. G. et al. J. Pharmacol. Exp. Therapeut. 313:199-206 (2005)), addiction to cocaine (Chiamulera et al. Nature Neurosci. 4:873-874 (2001), Parkinson's disease (Awad et al. J. Neurosci. 20:7871-7879 (2000), Ossowska et al. Neuropharmacol. 41: 413-420 (2001), and pain (Salt and Binns Neurosci. 100:375-380 (2001).
- The disclosed compounds can be used as single agents or in combination with one or more other drugs in the treatment, prevention, control, amelioration or reduction of risk of the aforementioned diseases, disorders and conditions for which compounds of formula I or the other drugs have utility, where the combination of drugs together are safer or more effective than either drug alone. The other drug(s) can be administered by a route and in an amount commonly used therefore, contemporaneously or sequentially with a disclosed compound. When a disclosed compound is used contemporaneously with one or more other drugs, a pharmaceutical composition in unit dosage form containing such drugs and the disclosed compound is preferred. However, the combination therapy can also be administered on overlapping schedules. It is also envisioned that the combination of one or more active ingredients and a disclosed compound will be more efficacious than either as a single agent.
- In one aspect, the subject compounds can be coadministered with ant-Alzheimer's agents, beta-secretase inhibitors, gamma-secretase inhibitors, muscarinic agonists, muscarinic potentiatorsHMG-CoA reductase inhibitors, NSAIDs and anti-amyloid antibodies.
- In another aspect, the subject compounds can be administered in combination with sedatives, hypnotics, anxiolytics, antipsychotics, selective serotonin reuptake inhibitors (SSRIs), monoamine oxidase inhibitors (MAOIs), 5-HT2 antagonists, GlyT1 inhibitors and the like such as, but not limited to: risperidone, clozapine, haloperidol, fluoxetine, prazepam, xanomeline, lithium, phenobarbitol, and salts thereof and combinations thereof.
- In another aspect, the subject compound can be used in combination with levodopa (with or without a selective extracerebral decarboxylase inhibitor), anitcholinergics such as biperiden, COMT inhibitors such as entacapone, A2a adenosine antagonists, cholinergic agonists, NMDA receptor antagonists and dopamine agonists.
- The pharmaceutical compositions and methods of the present invention can further comprise other therapeutically active compounds as noted herein which are usually applied in the treatment of the above mentioned pathological conditions.
- 1. Treatment Methods
- The compounds disclosed herein are useful for treating, preventing, ameliorating, controlling or reducing the risk of a variety of neurological and psychiatric disorders associated with glutamate dysfunction. Thus, provided is a method of treating or preventing a disorder in a subject comprising the step of administering to the subject at least one disclosed compound; at least one disclosed pharmaceutical composition; and/or at least one disclosed product in a dosage and amount effective to treat the disorder in the subject.
- Also provided is a method for the treatment of one or more neurological and/or psychiatric disorders associated with glutamate dysfunction in a subject comprising the step of administering to the subject at least one disclosed compound; at least one disclosed pharmaceutical composition; and/or at least one disclosed product in a dosage and amount effective to treat the disorder in the subject.
- Examples of disorders associated with glutamate dysfunction include: acute and chronic neurological and psychiatric disorders such as cerebral deficits subsequent to cardiac bypass surgery and grafting, stroke, cerebral ischemia, spinal cord trauma, head trauma, perinatal hypoxia, cardiac arrest, hypoglycemic neuronal damage, dementia (including AIDS-induced dementia), Alzheimer's disease, Huntington's Chorea, amyotrophic lateral sclerosis, ocular damage, retinopathy, cognitive disorders, idiopathic and drug-induced Parkinson's disease, muscular spasms and disorders associated with muscular spasticity including tremors, epilepsy, convulsions, migraine (including migraine headache), urinary incontinence, substance tolerance, addictive behavior, including addiction to substances (including opiates, nicotine, tobacco products, alcohol, benzodiazepines, cocaine, sedatives, hypnotics, etc.), withdrawal from such addictive substances (including substances such as opiates, nicotine, tobacco products, alcohol, benzodiazepines, cocaine, sedatives, hypnotics, etc.), obesity, psychosis, schizophrenia, anxiety (including generalized anxiety disorder, panic disorder, and obsessive compulsive disorder), mood disorders (including depression, mania, bipolar disorders), trigeminal neuralgia, hearing loss, tinnitus, macular degeneration of the eye, emesis, brain edema, pain (including acute and chronic pain states, severe pain, intractable pain, neuropathic pain, and post-traumatic pain), tardive dyskinesia, sleep disorders (including narcolepsy), attention deficit/hyperactivity disorder, and conduct disorder.
- Anxiety disorders that can be treated or prevented by the compositions disclosed herein include generalized anxiety disorder, panic disorder, and obsessive compulsive disorder. Addictive behaviors include addiction to substances (including opiates, nicotine, tobacco products, alcohol, benzodiazepines, cocaine, sedatives, hypnotics, etc.), withdrawal from such addictive substances (including substances such as opiates, nicotine, tobacco products, alcohol, benzodiazepines, cocaine, sedatives, hypnotics, etc.) and substance tolerance.
- Thus, in some aspects of the disclosed method, the disorder is dementia, delirium, amnestic disorders, age-related cognitive decline, schizophrenia, psychosis including schizophrenia, schizophreniform disorder, schizoaffective disorder, delusional disorder, brief psychotic disorder, substance-related disorder, movement disorders, epilepsy, chorea, pain, migraine, diabetes, dystonia, obesity, eating disorders, brain edema, sleep disorder, narcolepsy, anxiety, affective disorder, panic attacks, unipolar depression, bipolar disorder, psychotic depression.
- Thus, provided is a method for treating or prevention schizophrenia, comprising: administering to a subject at least one disclosed compound; at least one disclosed pharmaceutical composition; and/or at least one disclosed product in a dosage and amount effective to treat the disorder in the subject. At present, the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) (1994, American Psychiatric Association, Washington, D.C.), provides a diagnostic tool including schizophrenia and related disorders.
- Also provided is a method for treating or prevention anxiety, comprising: administering to a subject at least one disclosed compound; at least one disclosed pharmaceutical composition; and/or at least one disclosed product in a dosage and amount effective to treat the disorder in the subject. At present, the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) (1994, American Psychiatric Association, Washington, D.C.), provides a diagnostic tool including anxiety and related disorders. These include: panic disorder with or without agoraphobia, agoraphobia without history of panic disorder, specific phobia, social phobia, obsessive-compulsive disorder, post-traumatic stress disorder, acute stress disorder, generalized anxiety disorder, anxiety disorder due to a general medical condition, substance-induced anxiety disorder and anxiety disorder not otherwise specified.
- a. Potentiation of Metabotropic Glutamate Receptor Activity
- Also provided is a method for potentiation of metabotropic glutamate receptor activity in a mammal comprising the step of administering to the mammal at least one compound having a structure:
- wherein n is 0, 1, 2, 3 or 4; wherein Y1 and Y2 are independently selected from C and N; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R2a and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, or a pharmaceutically acceptable salt or N-oxide thereof, in a dosage and amount effective to potentiate metabotropic glutamate receptor activity in the mammal.
- In one aspect, the mammal is a human. In a further aspect, the mammal has been diagnosed with a need for potentiation of metabotropic glutamate receptor activity prior to the administering step.
- b. Partial Agonism of Metabotropic Glutamate Receptor Activity
- Also provided is a method for partial agonism of metabotropic glutamate receptor activity in a mammal comprising the step of administering to the mammal at least one compound having a structure:
- wherein n is 0, 1, 2, 3 or 4; wherein Y1 and Y2 are independently selected from C and N; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein Rea and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, or a pharmaceutically acceptable salt or N-oxide thereof, in a dosage and amount effective to exhibit partial agonism of metabotropic glutamate receptor activity in the mammal.
- In one aspect, Y1 is selected from N and C—R4. In a further aspect, Y2 is selected from N and C—H.
- In a further aspect, each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms.
- In a further aspect, R4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms.
- In a further aspect, L is an organic divalent radical comprising 1 to 7 carbon atoms and is selected from:
- wherein R7a and R7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; and wherein R8 is selected from hydrogen, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- In a further aspect, the compound comprises an isoindolin-1-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R1 is hydrogen, then R5 is optionally substituted phenyl or optionally substituted pyridinyl.
- In a further aspect, the compound comprises an isoindoline-1,3-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or is selected from optionally substituted C1-C12 alkyl, optionally substituted C1-C12 heteroalkyl, optionally substituted C3-C12 cycloalkyl, or optionally substituted C3-C12 heterocycloalkyl, with the proviso that R1 does not comprise silicon; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R1 is hydrogen, then R5 is optionally substituted phenyl or optionally substituted pyridinyl, and with the proviso that if R1 is methyl, then R5 is an organic radical comprising 4 to 14 carbon atoms.
- In a further aspect, the compound comprises a 3,4-dihydroisoquinolin-1(2H)-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms.
- In a further aspect, the compound comprises an isoquinoline-1,3(2H,4H)-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that R5 does not comprise a triphenylamine residue or a benzimidamide residue.
- In a further aspect, the compound comprises a bicyclic compound or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein n is 2, 3 or 4; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R2a and R2b together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms,
- In one aspect, the mammal is a human. In a further aspect, the mammal has been diagnosed with a need for partial agonism of metabotropic glutamate receptor activity prior to the administering step.
- c. Treatment of a Disorder in a Mammal
- Also provided is a method for the treatment of a disorder in a mammal comprising the step of administering to the mammal at least one compound having a structure:
- wherein n is 0, 1, 2, 3 or 4; wherein Y1 and Y2 are independently selected from C and N; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein Rea and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, or a pharmaceutically acceptable salt or N-oxide thereof, in a dosage and amount effective to treat the disorder in the mammal.
- In a further aspect, Y1 is selected from N and C—R4.
- In a further aspect, Y2 is selected from N and C—H.
- In a further aspect, each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms.
- In a further aspect, R4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms.
- In a further aspect, L is an organic divalent radical comprising 1 to 7 carbon atoms and is selected from:
- In a further aspect, R7a and R7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, R8 is selected from hydrogen, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- In a further aspect, the compound comprises an isoindolin-1-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R1 is hydrogen, then R5 is optionally substituted phenyl or optionally substituted pyridinyl.
- In a further aspect, the compound comprises an isoindoline-1,3-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or is selected from optionally substituted C1-C12 alkyl, optionally substituted C1-C12 heteroalkyl, optionally substituted C3-C12 cycloalkyl, or optionally substituted C3-C12 heterocycloalkyl, with the proviso that R1 does not comprise silicon; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R1 is hydrogen, then R5 is optionally substituted phenyl or optionally substituted pyridinyl, and with the proviso that if R1 is methyl, then R5 is an organic radical comprising 4 to 14 carbon atoms.
- In a further aspect, the compound comprises a 3,4-dihydroisoquinolin-1(2H)-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms.
- In a further aspect, the compound comprises an isoquinoline-1,3(2H,4H)-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that R5 does not comprise a triphenylamine residue or a benzimidamide residue.
- In a further aspect, the compound comprises a bicyclic compound or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein n is 2, 3 or 4; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R2a and R2b together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms.
- In a further aspect, the disorder is a neurological and/or psychiatric disorder associated with glutamate dysfunction. In a further aspect, the disorder is selected from dementia, delirium, amnestic disorders, age-related cognitive decline, schizophrenia, psychosis including schizophrenia, schizophreniform disorder, schizoaffective disorder, delusional disorder, brief psychotic disorder, substance-related disorder, movement disorders, epilepsy, chorea, pain, migraine, diabetes, dystonia, obesity, eating disorders, brain edema, sleep disorder, narcolepsy, anxiety, affective disorder, panic attacks, unipolar depression, bipolar disorder, and psychotic depression.
- In one aspect, the mammal is a human. In a further aspect, the mammal has been diagnosed with a need for treatment of the disorder prior to the administering step.
- 2. Manufacture of a Medicament
- Also provided is a method for the manufacture of a medicament for potentiation of metabotropic glutamate receptor activity in a mammal comprising combining at least one compound having a structure:
- wherein n is 0, 1, 2, 3 or 4; wherein Y1 and Y2 are independently selected from C and N; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein Rea and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, or a pharmaceutically acceptable salt or N-oxide thereof, with a pharmaceutically acceptable carrier.
- In a further aspect, Y1 is selected from N and C—R4.
- In a further aspect, Y2 is selected from N and C—H.
- In a further aspect, each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms.
- wherein R4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms.
- In a further aspect, L is an organic divalent radical comprising 1 to 7 carbon atoms and is selected from:
- In a further aspect, R7a and R7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, R8 is selected from hydrogen, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- In a further aspect, the compound comprises an isoindolin-1-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R1 is hydrogen, then R5 is optionally substituted phenyl or optionally substituted pyridinyl.
- In a further aspect, the compound comprises an isoindoline-1,3-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or is selected from optionally substituted C1-C12 alkyl, optionally substituted C1-C12 heteroalkyl, optionally substituted C3-C12 cycloalkyl, or optionally substituted C3-C12 heterocycloalkyl, with the proviso that R1 does not comprise silicon; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R1 is hydrogen, then R5 is optionally substituted phenyl or optionally substituted pyridinyl, and with the proviso that if R1 is methyl, then R5 is an organic radical comprising 4 to 14 carbon atoms.
- In a further aspect, the compound comprises a 3,4-dihydroisoquinolin-1(2H)-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms.
- In a further aspect, the compound comprises an isoquinoline-1,3(2H,4H)-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that R5 does not comprise a triphenylamine residue or a benzimidamide residue.
- In a further aspect, the compound comprises a bicyclic compound or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein n is 2, 3 or 4; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R2a and R2b together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms.
- 3. Use of Compounds
- Also provided is the use of a compound having a structure:
- wherein n is 0, 1, 2, 3 or 4; wherein Y1 and Y2 are independently selected from C and N; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R2a and R2b, when present, together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R3a and R3b together comprise ═O or ═S or each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; wherein R4 comprises one, two, or three substituents independently present as hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; wherein L is an organic divalent radical comprising 1 to 7 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, or a pharmaceutically acceptable salt or N-oxide thereof, to potentiate mGluR5 response in a mammal.
- In a further aspect, Y1 is selected from N and C—R4.
- In a further aspect, Y2 is selected from N and C—H.
- In a further aspect, each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms.
- In a further aspect, R4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms.
- In a further aspect, L is an organic divalent radical comprising 1 to 7 carbon atoms and is selected from:
- In a further aspect, R7a and R7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl.
- In a further aspect, R8 is selected from hydrogen, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl.
- In a further aspect, the compound comprises an isoindolin-1-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R1 is hydrogen, then R5 is optionally substituted phenyl or optionally substituted pyridinyl.
- In a further aspect, the compound comprises an isoindoline-1,3-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or is selected from optionally substituted C1-C12 alkyl, optionally substituted C1-C12 heteroalkyl, optionally substituted C3-C12 cycloalkyl, or optionally substituted C3-C12 heterocycloalkyl, with the proviso that R1 does not comprise silicon; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that if R1 is hydrogen, then R5 is optionally substituted phenyl or optionally substituted pyridinyl, and with the proviso that if R1 is methyl, then R5 is an organic radical comprising 4 to 14 carbon atoms.
- In a further aspect, the compound comprises a 3,4-dihydroisoquinolin-1(2H)-one derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms.
- In a further aspect, the compound comprises an isoquinoline-1,3(2H,4H)-dione derivative or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms, with the proviso that R5 does not comprise a triphenylamine residue or a benzimidamide residue.
- In a further aspect, the compound comprises a bicyclic compound or a pharmaceutically acceptable salt or N-oxide thereof having a structure:
- wherein n is 2, 3 or 4; wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms; wherein R2a and R2b together comprise ═O or ═S or each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms; and wherein R5 is an organic radical comprising 4 to 14 carbon atoms.
- In one aspect, the use is characterized in that the mammal is a human.
- In one aspect, the use relates to a treatment of a disorder in a mammal.
- In one aspect, the use is characterized in that the disorder is a neurological and/or psychiatric disorder associated with glutamate dysfunction.
- In one aspect, the use relates to potentiation for partial agonism of metabotropic glutamate receptor activity in a mammal.
- 4. Potentiation/Partial Agonism of mGluR Activity
- Also provided is a method for potentiation of metabotropic glutamate receptor (mGluR) activity in a subject comprising the step of administering to the subject at least one disclosed compound; at least one disclosed pharmaceutical composition; and/or at least one disclosed product in a dosage and amount effective to potentiate metabotropic glutamate receptor activity in the subject.
- Also provided is a method for partial agonism of metabotropic glutamate receptor activity in a subject comprising the step of administering to the subject at least one disclosed compound; at least one disclosed pharmaceutical composition; and/or at least one disclosed product in a dosage and amount effective to exhibit partial agonism of metabotropic glutamate receptor activity in the subject.
- In some aspects, the mGluR of the disclosed methods is a type I mGluR. In some aspects, the mGluR of the disclosed methods is mGluR5.
- 5. Subjects
- The subject of the herein disclosed methods can be a vertebrate, such as a mammal, a fish, a bird, a reptile, or an amphibian. Thus, the subject of the herein disclosed methods can be a human, non-human primate, horse, pig, rabbit, dog, sheep, goat, cow, cat, guinea pig or rodent. The term does not denote a particular age or sex. Thus, adult and newborn subjects, as well as fetuses, whether male or female, are intended to be covered. A patient refers to a subject afflicted with a disease or disorder. The term “patient” includes human and veterinary subjects.
- In some aspects of the disclosed methods, the subject has been diagnosed with a need for treatment of one or more neurological and/or psychiatric disorder associated with glutamate dysfunction prior to the administering step. In some aspects of the disclosed method, the subject has been diagnosed with a need for potentiation of metabotropic glutamate receptor activity prior to the administering step. In some aspects of the disclosed method, the subject has been diagnosed with a need for partial agonism of metabotropic glutamate receptor activity prior to the administering step.
- The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, articles, devices and/or methods claimed herein are made and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.), but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in ° C. or is at ambient temperature, and pressure is at or near atmospheric.
- Several methods for preparing the compounds of this invention are illustrated in the following Examples. Starting materials and the requisite intermediates are in some cases commercially available, or can be prepared according to literature procedures or as illustrated herein. All 1H NMR spectra were obtained on instrumentation at a field strength of 300 to 500 MHz.
-
- To a solution of 6-bromo-3,4-dihydro-2H-isoquinoline, I-1 (600 mg, 2.65 mmol) in DMF (3 mL) was added phenylacetylene (266 mg, 2.61 mmol), Pd(PPh3)4 (127 mg, 0.11 mmol), Cu(I) I (42 mg, 0.22 mmol) and diethylamine (2.02 g, 27.7 mmol). The reaction vessel was sealed and heated 60° C. for 1 h using a microwave reactor. The reaction was diluted with EtOAc/Heaxnes (1:1, 40 mL) and washed with water (x2, 30 mL) and brine (30 mL), dried over MgSO4, and concentrated under vacuum. The residue was triturated with CH2Cl2/hexanes (1:3, 50 mL) to afford 6-(phenethynyl)-3,4-dihydroisoquinolin-1-(2H)-one, I-2, as a tan solid (309 mg. 47%). 1H-nmr (400 MHz, CDCl3) δ 8.02 (bd s, 1H), 7.86 (d, J=8.5Hz, 1H), 7.59-7.54 (m, 2H), 7.53-7.49 (m, 2H), 7.47-7.43 (m, 3H), 3.42 (t, J=6.5Hz, 2H), 2.93 (t, J=6.5Hz, 2H); MS (ESI) m/z 248.0.
-
- To a solution of 6-(phenethynyl)-3,4-dihydroisoquinolin-1(2H)-one (II-1) (50 mg, 0.20 mmol) in DMF (0.5 mL) was added NaH (9 mg, 0.22 mmol) and stirred for 1 h. Added 1-iodopropane (110 mg, 0.64 mmol) and stirred for 18 h. Added PS-Ph3P (200 mg) and stirred for 4 h. The insoluble material was removed by filtration and the filtrate was concentrated under vacuum to afford 6-(phenylethynyl)-2-propyl-3,4-dihydroisoquinolin-1-(2H)-one (II-2) as a yellow waxy solid (44 mg, 76%). 1H-nmr (400 MHz, d6-DMSO) δ 8.08 (d, J=8Hz, 1H), 7.59-7.52 (m, 2H), 7.51 (d, J=8Hz, 1H), 7.41-7.35 (m, 4H), 3.57 (q, J=7 Hz, 4H), 3.00 (t, J=6.5Hz, 2H), 1.69 (sextet, J=7Hz, 2H), 0.99 (t, J=7Hz, 3H); MS (ESI) m/z 303.9.
-
- To a suspension of 5-bromoisobenzofuran-1(3H)-one III-1 (6.57 g, 30.1 mmol) in MeOH (140 mL) was added NH4OH (60 mL). The reaction vessel was sealed and stirred for 36 h. The reaction was The reaction was concentrated under vacuum to afford 4-bromo-2-(hydroxymethyl)benzamide (7.10 g, 99%) as a white solid; 1H-nmr (400 MHz, CDCl3) δ 7.80 (d, J=8.5Hz, 1H), 7.70 (s, 1H), 7.68 (s, 2H), 7.61 (s, 1H), 7.59-7.50 (m, 2H), 6.34 (br s, 1H), 5.72 (br s, 1H), 4.64 (s, 2H); LC (254 nM) 1.12 min (>98%); MS (ESI) m/z=231.8.
-
- To a solution of 4-bromo-2-(hydroxymethyl)benzamide III-2 (3.50 g, 15.2 mmol) in THF (100 mL) was added Ph3P (4.78 g, 18.3 mmol) and DIAD (3.38 g, 16.7 mmol). The reaction was stirred at room temperature 20 h. The reaction mixture was concentrated under vacuum and purified by column chromatography (silica gel) using 0 to 25% EtOAc in hexanes to afford 5-bromoisoindolin-1-one III-3 as a white solid (786 mg, 24%) as a white solid; 1H-nmr (400 MHz, CDCl3) δ 7.80 (d, J=8.0Hz, 1H), 7.70 (s, 1H), 7.67 (s, 2H), 5.31 (s, 2H); LC (254 nM) 4.88 min (>98%); MS (ESI) m/z=212.8, 214.8.
-
- To a solution of 5-bromoisoindolin-1-one III-3 (100 mg, 0.47 mmol) in DMF (2 mL) was added 3-fluorophenylacetylene III-4 (67 mg, 0.56 mmol), Pd(Ph3P)4 (27 mg, 0.02 mmol), CuI (9 mg, 0.04 mmol) and diethylamine (200 μL). The reaction vessel was sealed and heated at 60° C. for 1 h in a microwave reactor. The reaction was cooled to rt, diluted with EtOAc:hexanes (2:1, 8 mL) and washed with water (2×5 mL) and brine (5 mL). The organic phase was dried over MgSO4, filtered and concentrated under vacuum. The crude product was purified by mass directed preparative HPLC to afford 5-((3-fluorophenyl)ethynyl)isoindolin-1-one III-5 (42 mg, 35%) as a light brown solid; 1H-nmr (400 MHz, CDCl3) δ 7.92 (d, J=8.0Hz, 1H), 7.68 (d, J=8.0Hz, 1H), 7.56 (s, 1H), 7.40-7.31 (m, 2H), 7.28-7.22 (m, 1H), 7.14-7.07 (m, 1H), 5.36 (s, 2H); LC (214 nM) 3.38 min (>98%); MS (ESI) m/z=253.1.
-
- To a 10 mL microwave vial was added urea (121 mg, 2.02 mmol), 5-(phenylethynyl)isobenzofuran-1,3-dione IV-1 (100 mg, 0.403 mmol), and anhydrous DMF (3 ml). The reaction vessel was sealed and heated to 200° C. for 15 min. The reaction was diluted with EtOAc (20 ml) and washed with water (20 ml) then brine (20 ml). The organic extract was dried over MgSO4, and filtered through a silica plug to afford 5-(phenethynyl)isoindoline-1,3-dione IV-2 as a tan solid (82 mg, 83%). %). 1H-nmr (400 MHz, CDCl3) δ 7.99 (s, 1H), 7.89-7.84 (m, 2H), 7.65 (br s, 1H), 7.58-7.56 (m, 2H), 7.41-7.39 (m, 3H); MS (ESI) m/z 248.0.
-
- To a 10 mL microwave vial was added K2CO3 (276 mg, 2.02 mmol), 5-(phenethynyl)isoindoline-1,3-dione IV-2 (100 mg, 0.403 mmol), ethyl bromide (45 mg, 0.4 mmol) and anhydrous DMF (3 ml). The reaction vessel was sealed and heated to 150° C. for 15 min. The reaction was diluted with EtOAc (20 ml) and washed with water (20 ml) then brine (20 ml). The organic extract was dried over MgSO4, and filtered through a silica plug to afford 2-ethyl-5-(phenethynyl)isoindoline-1,3-dione IV-3 as a white solid (100 mg, 91%). %). 1H-nmr (400 MHz, CDCl3) δ 7.99 (s, 1H), 7.89-7.84 (m, 2H), 7.65 (br s, 1H), 7.58-7.56 (m, 2H), 7.41-7.39 (m, 3H) 3.61 (q, J=7Hz, 2H), 1.22 (t, J=7Hz, 3H); MS (ESI) m/z 276.3.
- Human embryonic kidney (HEK) cells transfected with rat mGluR5 were plated in clear-bottomed, poly-D-lysine-coated assay plates in glutamate-glutamine-free medium growth and incubated overnight at 37° C. in 5% CO2. The following day, cells were loaded with 2 μM calcium indicator dye, fluo-4 AM, for 1 h at 37° C. Dye was removed and replaced with assay buffer containing 1× Hanks balanced salt solution (Invitrogen, Carlsbad, Calif.), 20 mM HEPES, and 2.5 mM probenecid, pH 7.4. Cell plates were then loaded into the Functional Drug Screening System 6000 (FDSS 6000, Hamamatsu, Japan). After establishment of a fluorescence baseline for twelve seconds, the compounds of the present invention were added to the cells, and the response in cells was measured. Five minutes later, an mGluR5 agonist (e.g., glutamate, 3,5-dihydroxyphenylglycine, or quisqualate) was added to the cells, and the response of the cells was measured during a 1 minute incubation with agonists. Typically, the effect of test compounds of the present invention was on an EC20 concentration of glutamate was measured. All test compounds were dissolved and diluted in 100% DMSO and then serially diluted into assay buffer for a 2.5× stock in 0.25% DMSO;
- stock compounds were then added to the assay for a final DMSO concentration of 0.1%. Calcium fluorescence measures were recorded as fold over basal fluorescence; raw data was then normalized to the maximal response to agonist. Potentiation of the agonist response of mGluR5 by the compounds in the present invention was observed as an increase in response to non-maximal concentrations of agonist (here, glutamate) in the presence of compound compared to the response to agonist in the absence of compound.
-
TABLE 2 mGluR5 mGluR5 mGluR5 Reference Potentiator Potentiator Fold Compound Number EC50 Max Shift VU000067 4.98E−08 112 10.8 VU000068 2.54E−08 53.4 1.8 VU000069 1.62E−08 96.5 11.8 VU000070 0.000000096 96.7 9.6 VU000071 0.000000546 89.9 5.7 VU000072 7.73E−08 88.4 7.4 VU000073 8.77E−08 85.4 5.7 VU000098 1.75E−08 69.4 5.5 VU000099 2.67E−08 90.7 ND VU000100 0.00000404 76.3 ND VU000101 0.00000357 84 ND VU000102 0.00000404 45.7 ND VU000105 0.000000612 53.4 ND VU000106 0.000000172 75.7 ND VU000107 0.000000259 81 ND VU000108 0.000000145 80.4 ND VU000109 0.001 28.2 ND VU000110 0.00000339 58.1 ND VU000111 0.00000489 53.2 ND VU000112 0.00000367 49.7 ND VU000113 0.001 28.6 ND VU000114 0.00000047 67.9 ND VU000115 0.000000853 58.7 ND VU000116 0.000003 35.6 ND VU000117 0.000000243 58 ND VU000118 0.001 28.9 ND VU000119 0.001 29.7 ND VU000120 0.001 33.5 ND VU000121 0.001 34.8 ND VU000124 0.000000953 53.7 ND VU000125 0.00000308 52.6 ND VU000126 1.66E−09 35.4 ND VU000127 0.00000306 52.3 ND VU000128 0.001 37.6 ND VU000129 0.001 30 ND VU000130 0.00000235 55.4 ND VU000131 0.0000072 35.4 ND VU000185 5.6E−09 103.92 ND ND = not determined - Locomotor activity can be assessed as mean distance traveled (cm) in standard 16×16 photocell testing chambers measuring 43.2 cm (L)×43.2 cm (W)×30.5 cm (H) (Med Associates, St. Albans, Vt.). Animals can be habituated to individual activity chambers for at least 60 min prior to drug administration. Following administration of appropriate drugs or vehicle, activity can be recorded for a 3 hr time period. Data can be expressed as the mean (±SEM) distance traveled recorded in 10 min intervals over the test period. The data can be analyzed using repeated measures analysis of variance (ANOVA) followed by post-hoc testing using Tukey's HSD test, when appropriate. A difference can be considered significant when p≦0.05.
- It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Claims (24)
1. A compound that exhibits potentiation of mGluR5 response to glutamate as an increase in response to non-maximal concentrations of glutamate in human embryonic kidney cells transfected with rat mGluR5 in the presence of the compound, compared to the response to glutamate in the absence of the compound, comprising:
a 3,4-dihydroisoquinolin-1(2H)-one derivative having a structure:
wherein Y1 is selected from N and C—R4;
wherein Y2 is selected from N and C—H;
wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms;
wherein each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms;
wherein each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms;
wherein R4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms;
wherein R5 is an organic radical comprising 4 to 14 carbon atoms;
wherein L is an organic divalent radical comprising 1 to 7 carbon atoms and is selected from:
wherein R7a and R7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; and
wherein R8 is selected from hydrogen, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl,
or a pharmaceutically acceptable salt or N-oxide thereof.
2. The compound of claim 1 ,
wherein R1 is an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH2)m-aryl or —(CH2)m-heterocycle, wherein m is 1, 2, 3 or 4; and
wherein R5 is an organic radical comprising 4 to 14 carbon atoms selected from optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, and optionally substituted heteroaryl.
6. A method for preparing a compound having a structure:
wherein Y1 and Y2 are independently selected from N and C—R4;
wherein L is an organic divalent radical comprising 1 to 7 carbon atoms selected from optionally substituted C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, and optionally substituted amido;
wherein R1 is selected from hydrogen and an organic radical comprising 1 to 12 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C8 cycloalkyl or C3-C8 cycloalkenyl or C6-C8 cycloalkynyl, optionally substituted C3-C8 heterocycloalkyl or C3-C8 heterocycloalkenyl or C6-C8 heterocycloalkynyl, optionally substituted aryl, optionally substituted heteroaryl, and —(CH2)m-aryl or —(CH2)m-heterocycle, wherein m is 1, 2, 3 or 4;
wherein each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms;
wherein each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms;
wherein R4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms; and
wherein R5 is an organic radical comprising 4 to 14 carbon atoms;
or a pharmaceutically acceptable salt or N-oxide thereof,
the method comprising the step of coupling a first reactant with a second reactant, thereby forming linking moiety L.
10. The method of claim 6 , wherein the method comprises the steps of:
a) providing a first reactant having a structure represented by a formula:
wherein X1 comprises a halide, a pseudohalide, a carboxylic acid, a carboxylic acid derivative, a terminal acetylene moiety, an activated vinyl moiety, a N′-hydroxybenzimidamide, or a primary or secondary amine;
or a pharmaceutically acceptable salt or N-oxide thereof, and
b) providing a second reactant having a structure represented by a formula:
wherein X2 comprises a halide, a pseudohalide, a carboxylic acid, a carboxylic acid derivative, a terminal acetylene moiety, an activated vinyl moiety, a N′-hydroxybenzimidamide, or a primary or secondary amine;
c) coupling the first reactant with the second reactant, thereby forming linking moiety L, to provide a compound having a structure represented by a formula:
wherein L is an organic divalent radical comprising 1 to 7 carbon atoms selected from optionally substituted C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, and optionally substituted amido;
wherein, when X1 is halide or pseudohalide, X2 is a terminal acetylene moiety, or an activated vinyl moiety;
wherein, when X1 is a carboxylic acid or a carboxylic acid derivative, X2 is a N′-hydroxybenzimidamide, or a primary or secondary amine;
wherein, when X2 is halide or pseudohalide, X1 is a terminal acetylene moiety, or an activated vinyl moiety;
wherein, when X2 is a carboxylic acid or a carboxylic acid derivative, X1 is a N′-hydroxybenzimidamide, or a primary or secondary amine; and
d) optionally, if R1 is hydrogen, alkylating the lactam or imide moiety.
11. A method for potentiation of metabotropic glutamate receptor activity in a mammal comprising the step of administering to the mammal at least one compound having a structure:
wherein Y1 is selected from N and C—R4;
wherein Y2 is selected from N and C—H;
wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms;
wherein each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms;
wherein each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms;
wherein R4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms;
wherein R5 is an organic radical comprising 4 to 14 carbon atoms;
wherein L is an organic divalent radical comprising 1 to 7 carbon atoms and is selected from:
wherein R7a and R7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; and
wherein R8 is selected from hydrogen, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl,
or a pharmaceutically acceptable salt or N-oxide thereof,
in a dosage and amount effective to potentiate metabotropic glutamate receptor activity in the mammal.
15. The method of claim 11 , wherein the mammal is human.
16. The method of claim 11 , wherein the mammal has been diagnosed with a need for potentiation of metabotropic glutamate receptor activity prior to the administering step.
17. A method for the treatment of a disorder in a mammal comprising the step of administering to the mammal at least one compound having a structure:
wherein Y1 is selected from N and C—R4;
wherein Y2 is selected from N and C—H;
wherein R1 is hydrogen or an organic radical comprising 1 to 12 carbon atoms;
wherein each R2a and R2b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms;
wherein each R3a and R3b is independently hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, or an organic radical comprising 1 to 6 carbon atoms;
wherein R4 is hydrogen, halogen, hydroxyl, cyano, nitro, thiol, or an organic radical comprising 1 to 12 carbon atoms;
wherein R5 is an organic radical comprising 4 to 14 carbon atoms;
wherein L is an organic divalent radical comprising 1 to 7 carbon atoms and is selected from:
wherein R7a and R7b together form an optionally substituted carbocyclic or heterocyclic ring having from two to five carbons or are independently selected from hydrogen, halogen, hydroxyl, cyano, nitro, thiol, amino, and an organic radical comprising 1 to 5 carbon atoms selected from optionally substituted C1-C5 alkyl or C2-C5 alkenyl or C2-C5 alkynyl, optionally substituted C1-C5 heteroalkyl or C2-C5 heteroalkenyl or C2-C5 heteroalkynyl, optionally substituted C3-C5 cycloalkyl or C3-C5 cycloalkenyl, optionally substituted C3-C5 heterocycloalkyl or C3-C5 heterocycloalkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxyl, optionally substituted thioalkyl, optionally substituted alkylsulfinyl, optionally substituted alkylsulfonyl, and optionally substituted amino, thioamido, amidosulfonyl, alkoxycarbonyl, carboxamide, amino-carbonyl, and alkylamine-carbonyl; and
wherein R8 is selected from hydrogen, and an organic radical comprising 1 to 6 carbon atoms selected from optionally substituted C1-C6 alkyl or C2-C6 alkenyl or C2-C6 alkynyl, optionally substituted C1-C6 heteroalkyl or C2-C6 heteroalkenyl or C2-C6 heteroalkynyl, optionally substituted C3-C6 cycloalkyl or C3-C6 cycloalkenyl or C6 cycloalkynyl, optionally substituted C3-C6 heterocycloalkyl or C3-C6 heterocycloalkenyl or C6 heterocycloalkynyl, optionally substituted aryl, and optionally substituted heteroaryl,
or a pharmaceutically acceptable salt or N-oxide thereof,
in a dosage and amount effective to treat the disorder in the mammal.
21. The method of claim 17 , wherein the mammal is human.
22. The method of claim 17 , wherein the disorder is a neurological and/or psychiatric disorder associated with glutamate dysfunction.
23. The method of claim 17 , wherein the disorder is selected from dementia, delirium, amnestic disorders, age-related cognitive decline, schizophrenia, psychosis including schizophrenia, schizophreniform disorder, schizoaffective disorder, delusional disorder, brief psychotic disorder, substance-related disorder, movement disorders, epilepsy, chorea, pain, migraine, diabetes, dystonia, obesity, eating disorders, brain edema, sleep disorder, narcolepsy, anxiety, affective disorder, panic attacks, unipolar depression, bipolar disorder, and psychotic depression.
24. The method of claim 17 , wherein the mammal has been diagnosed with a need for treatment of the disorder prior to the administering step.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/269,977 US20120028956A1 (en) | 2007-11-02 | 2011-10-10 | Bicyclic mglur5 positive allosteric modulators and methods of making and using same |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US98504107P | 2007-11-02 | 2007-11-02 | |
| US12/263,224 US8034806B2 (en) | 2007-11-02 | 2008-10-31 | Bicyclic mGluR5 positive allosteric modulators and methods of making and using same |
| US13/269,977 US20120028956A1 (en) | 2007-11-02 | 2011-10-10 | Bicyclic mglur5 positive allosteric modulators and methods of making and using same |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/263,224 Continuation US8034806B2 (en) | 2007-11-02 | 2008-10-31 | Bicyclic mGluR5 positive allosteric modulators and methods of making and using same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120028956A1 true US20120028956A1 (en) | 2012-02-02 |
Family
ID=41215593
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/263,224 Expired - Fee Related US8034806B2 (en) | 2007-11-02 | 2008-10-31 | Bicyclic mGluR5 positive allosteric modulators and methods of making and using same |
| US13/269,933 Abandoned US20120028955A1 (en) | 2007-11-02 | 2011-10-10 | Bicyclic mglur5 positive allosteric modulators and methods of making and using same |
| US13/269,977 Abandoned US20120028956A1 (en) | 2007-11-02 | 2011-10-10 | Bicyclic mglur5 positive allosteric modulators and methods of making and using same |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/263,224 Expired - Fee Related US8034806B2 (en) | 2007-11-02 | 2008-10-31 | Bicyclic mGluR5 positive allosteric modulators and methods of making and using same |
| US13/269,933 Abandoned US20120028955A1 (en) | 2007-11-02 | 2011-10-10 | Bicyclic mglur5 positive allosteric modulators and methods of making and using same |
Country Status (1)
| Country | Link |
|---|---|
| US (3) | US8034806B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013188465A3 (en) * | 2012-06-13 | 2014-01-30 | Arizona Board Of Regents, For And On Behalf Of, Arizona State University | Treating drug addiction and preventing drug relapse |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103037693A (en) * | 2010-05-24 | 2013-04-10 | 范德比尔特大学 | Substituted-6-methylnicotinamides as MGLUR5 positive allosteric modulators |
| EP2595996A2 (en) * | 2010-07-14 | 2013-05-29 | Merck Sharp & Dohme Corp. | Tricyclic compounds as allosteric modulators of metabotropic glutamate receptors |
| WO2012031024A1 (en) * | 2010-08-31 | 2012-03-08 | Vanderbilt University | Bicyclic oxazole and thiazole compounds and their use as allosteric modulators of mglur5 receptors |
| EP2648723A4 (en) | 2010-12-08 | 2014-04-02 | Univ Vanderbilt | USE OF BICYCLIC PYRAZOLE COMPOUNDS AS ALLUSTERIC MODULATORS OF MGLUR5 RECEPTORS |
| WO2012083224A1 (en) * | 2010-12-17 | 2012-06-21 | Vanderbilt University | Bicyclic triazole and pyrazole lactams as allosteric modulators of mglur5 receptors |
| US20130274294A1 (en) * | 2010-12-20 | 2013-10-17 | David Carcache | 4-(Hetero)Aryl-Ethynyl-Octahydro-Indole-1-Esters |
| US8853237B2 (en) | 2010-12-30 | 2014-10-07 | Vanderbilt University | Naphthyridinone analogs as mGluR5 positive allosteric modulators |
| US8710074B2 (en) | 2011-01-12 | 2014-04-29 | Vanderbilt University | Dihydronaphthyridinyl(organo)methanone analogs as positive allosteric mGluR5 modulators |
| US8865725B2 (en) | 2011-03-15 | 2014-10-21 | Vanderbilt University | Substituted imidazopyrimidin-5(6H)-ones as allosteric modulators of MGLUR5 receptors |
| EP2685825A4 (en) * | 2011-03-15 | 2014-09-10 | Univ Vanderbilt | IMADAZAPYRINIDIN-5 (6H) -ESONS SUBSTITUTED AS ALLOSTERIC MODULATORS OF MGLUR5 RECEPTORS |
| MX337443B (en) * | 2011-04-26 | 2016-03-07 | Hoffmann La Roche | ETHYLLY DERIVATIVES AS POSITIVE ALOSTERIC MODULATORS OF THE METABOTROPIC GLUTAMATE RECEIVER OF SUBTIPO 5 (MGLUR5). |
| WO2013192347A1 (en) * | 2012-06-20 | 2013-12-27 | Vanderbilt University | Substituted bicyclic cycloalkyl pyrazole lactam analogs as allosteric modulators of mglur5 receptors |
| US20130345205A1 (en) * | 2012-06-20 | 2013-12-26 | Vanderbilt University | Substituted bicyclic aralkyl pyrazole lactam analogs as allosteric modulators of mglur5 receptors |
| UA113779C2 (en) * | 2012-09-27 | 2017-03-10 | ARYLETINYL DERIVATIVES | |
| WO2016179351A1 (en) | 2015-05-05 | 2016-11-10 | Northwestern University | Treatment of levodopa-induced dyskinesias |
| CR20170536A (en) | 2015-06-03 | 2018-02-01 | Hoffmann La Roche | ETHYLENE DERIVATIVES |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007093364A1 (en) * | 2006-02-15 | 2007-08-23 | Sanofi-Aventis | Azacyclyl-substituted aryldihydroisoquinolinones, process for their preparation and their use as medicaments |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS4313473Y1 (en) | 1966-03-23 | 1968-06-08 | ||
| BE787340A (en) * | 1971-08-12 | 1973-02-09 | Agfa Gevaert Nv | SENSITIVE, THERMICALLY DEVELOPABLE MATERIAL BASED ON SPECTRALLY SENSITIZED ORGANIC SILVER SALTS |
| US4156065A (en) * | 1977-01-21 | 1979-05-22 | The Upjohn Company | Catalytic condensation of isocyanates and carboxylic acids or anhydrides |
| US5731324A (en) | 1993-07-22 | 1998-03-24 | Eli Lilly And Company | Glycoprotein IIb/IIIa antagonists |
| US6137002A (en) | 1993-07-22 | 2000-10-24 | Eli Lilly And Company | Glycoprotein IIb/IIIa antagonists |
| WO1996011210A1 (en) | 1994-10-07 | 1996-04-18 | Fujisawa Pharmaceutical Co., Ltd. | Cyclic hexapeptides having antibiotic activity |
| AU6320998A (en) | 1997-02-21 | 1998-09-09 | Bristol-Myers Squibb Company | Benzoic acid derivatives and related compounds as antiarrhythmic agents |
| TW544448B (en) | 1997-07-11 | 2003-08-01 | Novartis Ag | Pyridine derivatives |
| FR2794747B1 (en) | 1999-06-09 | 2004-04-16 | Hoechst Marion Roussel Inc | NOVEL ECHINOCANDIN DERIVATIVES, PROCESS FOR PREPARING THEM AND THEIR APPLICATION AS ANTI-FUNGI |
| JP2005162612A (en) | 2002-01-09 | 2005-06-23 | Ajinomoto Co Inc | Acylsulfonamide derivative |
| AU2003250482A1 (en) * | 2002-08-13 | 2004-02-25 | Warner-Lambert Company Llc | Phthalimide derivatives as matrix metalloproteinase inhibitors |
| JP2006521358A (en) | 2003-03-26 | 2006-09-21 | メルク エンド カムパニー インコーポレーテッド | Benzamide modulators of metabotropic glutamate receptors |
| US20050267182A1 (en) | 2003-11-13 | 2005-12-01 | Ambit Biosciences Corporation | Urea derivatives as FLT-3 modulators |
| WO2005108370A1 (en) | 2004-04-16 | 2005-11-17 | Ajinomoto Co., Inc. | Benzene compounds |
| TW200613272A (en) | 2004-08-13 | 2006-05-01 | Astrazeneca Ab | Isoindolone compounds and their use as metabotropic glutamate receptor potentiators |
| EP2162136A4 (en) | 2007-06-03 | 2012-02-15 | Univ Vanderbilt | POSITIVE ALLOSTERIC MGLUR5 BENZAMIDE MODULATORS AND METHOD FOR THEIR PREPARATION AND USE |
| WO2009047303A2 (en) | 2007-10-12 | 2009-04-16 | Novartis Ag | Metabotropic glutamate receptor modulators for the treatment of pervasive developmental disorder |
| EP2222668B1 (en) | 2007-12-18 | 2011-11-02 | Arena Pharmaceuticals, Inc. | Tetrahydrocyclopenta[b]indol-3-yl carboxylic acid derivatives useful in the treatment of autoimmune and inflammatory disorders |
-
2008
- 2008-10-31 US US12/263,224 patent/US8034806B2/en not_active Expired - Fee Related
-
2011
- 2011-10-10 US US13/269,933 patent/US20120028955A1/en not_active Abandoned
- 2011-10-10 US US13/269,977 patent/US20120028956A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007093364A1 (en) * | 2006-02-15 | 2007-08-23 | Sanofi-Aventis | Azacyclyl-substituted aryldihydroisoquinolinones, process for their preparation and their use as medicaments |
Non-Patent Citations (5)
| Title |
|---|
| Lindsley et. al., Journal of Medicinal Chemistry, 2004, American Chemical Society, vol. 47, pp. 5825-5828 * |
| Moghaddam, Psychopharmacology, 2004, Springer-Verlag, vol. 174, pp. 39-44 * |
| Moldrich et. al., European Journal of Pharmacology, 2003, Elsevier, vol. 476, pp. 3-16 * |
| Neugebauer, Trends in Neuroscience, 2001, Elsevier Science, vol. 24, no. 10, pp. 550-552 * |
| Riek-Burchardt et. al., Neuroscience Research, 2007, Elsevier, vol. 57, pp. 499-503 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013188465A3 (en) * | 2012-06-13 | 2014-01-30 | Arizona Board Of Regents, For And On Behalf Of, Arizona State University | Treating drug addiction and preventing drug relapse |
| US20150141462A1 (en) * | 2012-06-13 | 2015-05-21 | Arizona Board Of Regents, For And On Behalf Of, Arizona State University | Pharmaceutical compositions and methods for treating drug addiction and preventing a drug relapse |
Also Published As
| Publication number | Publication date |
|---|---|
| US20090270362A1 (en) | 2009-10-29 |
| US20120028955A1 (en) | 2012-02-02 |
| US8034806B2 (en) | 2011-10-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8034806B2 (en) | Bicyclic mGluR5 positive allosteric modulators and methods of making and using same | |
| US9085562B2 (en) | 6-alkyl-N-(pyridin-2-yl)-4-aryloxypicolinamide analogs as mGluR5 negative allosteric modulators and methods of making and using the same | |
| CN101795689B (en) | Benzamide mGluR5 positive allosteric modulators and methods of making and using said modulators | |
| US8853392B2 (en) | Benzamide mGluR5 positive allosteric modulators and methods of making and using same | |
| US8796295B2 (en) | Substituted benzamide analogs as mGluR5 negative allosteric modulators and methods of making and using the same | |
| US8703946B2 (en) | Substituted pyrazolo[1,5-A]pyrazine compounds as allosteric modulators of mGluR5 receptors | |
| US20170247366A1 (en) | Substituted 4-alkoxypicolinamide analogs as mglur5 negative allosteric modulators and methods of making and using the same | |
| US9550778B2 (en) | Substituted 6-aryl-imidazopyridine and 6-aryl-triazolopyridine carboxamide analogs as negative allosteric modulators of mGluR5 | |
| US8969389B2 (en) | Substituted 6-methylnicotinamides as mGluR5 positive allosteric modulators | |
| US20110183980A1 (en) | O-benzyl nicotinamide analogs as mglur5 positive allosteric modulators | |
| US20240390350A1 (en) | Phenyl core compounds as mglu5 negative allosteric modulators and methods of making and using the same | |
| WO2024059207A2 (en) | Pyrazoloether analogs as mglu5 negative allosteric modulators and methods of making and using the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: VANDERBILT UNIVERSITY, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CONN, P. JEFFREY;LINDSLEY, CRAIG W.;WEAVER, CHARLES DAVID;AND OTHERS;SIGNING DATES FROM 20131023 TO 20140109;REEL/FRAME:032779/0220 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |