US20120024206A1 - Method for reducing nitrogen oxide emissions in oxyfuel combustion - Google Patents
Method for reducing nitrogen oxide emissions in oxyfuel combustion Download PDFInfo
- Publication number
- US20120024206A1 US20120024206A1 US13/254,660 US201013254660A US2012024206A1 US 20120024206 A1 US20120024206 A1 US 20120024206A1 US 201013254660 A US201013254660 A US 201013254660A US 2012024206 A1 US2012024206 A1 US 2012024206A1
- Authority
- US
- United States
- Prior art keywords
- gas
- furnace
- oxygen
- combustion
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims abstract description 60
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000007789 gas Substances 0.000 claims abstract description 67
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 44
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 41
- 239000001301 oxygen Substances 0.000 claims abstract description 41
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000003546 flue gas Substances 0.000 claims abstract description 33
- 238000002156 mixing Methods 0.000 claims abstract description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 18
- 239000000446 fuel Substances 0.000 description 15
- 239000001569 carbon dioxide Substances 0.000 description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 6
- 239000000567 combustion gas Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910001868 water Inorganic materials 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000000571 coke Substances 0.000 description 3
- 238000005243 fluidization Methods 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003467 diminishing effect Effects 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 239000004291 sulphur dioxide Substances 0.000 description 1
- 235000010269 sulphur dioxide Nutrition 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C6/00—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
- F23C6/04—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
- F23C6/045—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C10/00—Fluidised bed combustion apparatus
- F23C10/02—Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
- F23C10/04—Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
- F23C10/08—Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
- F23C10/10—Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C9/00—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
- F23C9/003—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for pulverulent fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L7/00—Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
- F23L7/007—Supplying oxygen or oxygen-enriched air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2201/00—Staged combustion
- F23C2201/10—Furnace staging
- F23C2201/101—Furnace staging in vertical direction, e.g. alternating lean and rich zones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L2900/00—Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
- F23L2900/07001—Injecting synthetic air, i.e. a combustion supporting mixture made of pure oxygen and an inert gas, e.g. nitrogen or recycled fumes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/32—Direct CO2 mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Definitions
- the invention relates to a method for reducing nitrogen oxide emissions in oxyfuel combustion, in which method at least one primary gas flow and at least one secondary gas flow are supplied in a furnace of a circulating fluidised bed boiler, which primary gas and secondary gas have been produced by mixing oxygen and circulated flue gas together.
- Oxyfuel combustion enables relatively simple recovery of carbon dioxide. After water carried along with fuel and developed in combustion reactions has been removed from flue gas by condensing, remaining carbon dioxide can be liquefied by cooling and compressing. Oxyfuel combustion can be utilised in both pulverised fuel combustion and fluidised bed combustion.
- combustion takes place in solids suspension that is fluidised and circulated by means of a gas flow blown from below.
- the fluidised bed consists of particle-like fluidised material (e.g. sand), fuel, combustion gas, and flue gas and ash produced in combustion.
- combustion gas refers to primary and secondary gases, which usually comprise air or some other oxygenous gas mixture.
- the primary gas flow is supplied at the bottom of the furnace and the secondary gas flow is guided to the furnace via nozzles on its walls above the grate plane.
- fluidised material is carried along with flue gas away from the fluidising space and, for providing a steady state, it is returned to the furnace via separating and circulating devices.
- Circulating fluidised bed boiler utilises low combustion temperature (e.g. 700-900° C.) compared to pulverised fuel combustion, which together with staged air supply enables low nitrogen oxide emissions.
- Nitrogen oxides (NO x ) refer to nitric oxide (NO) and nitrogen dioxide (NO 2 ), which are mostly produced from nitrogen contained by fuel in fluidised bed combustion. Staging of air supply provides reducing conditions in the lower section of the bed, whereby less nitrogen oxides are produced. The rest of air required for perfect combustion is supplied as secondary and possibly tertiary air.
- Circulating fluidised bed technology also enables desulphurisation of flue gases already in the boiler by supplying limestone or dolomite directly to the furnace.
- U.S. Pat. No. 4,704,084 and U.S. Pat. No. 4,962,711 disclose examples of circulating fluidised bed boilers according to prior art which aim at reducing NO x emissions by staged supply of combustion air. In both specifications, in the lower section of the furnace is formed a reducing zone by adjusting the supply of primary, secondary and possible tertiary air to the furnace.
- combustion air is replaced by a mixture of oxygen and circulated flue gas. If the process is run with a standard oxygen concentration, as it is usual in air combustion, diminishing the quantity of primary gas to provide a reducing zone decreases the internal and external circulation of fluidised material, whereby heat transfer onto the furnace walls and into a possible external heat exchanger also weakens. Furthermore, the temperature of the fluidised bed may rise too high, which causes sintering of solid particles.
- the object of the invention is to avoid the above problems and enhance the reduction of nitrogen oxides in an oxyfuel combusted circulating fluidised bed boiler.
- the method according to the invention is characterised by what is presented in the characterising part of claim 1 .
- the oxygen content of primary gas is adjusted such that at the bottom of the furnace is formed a reducing zone in which nitrogen oxides carried to the furnace along with circulated flue gas reduce to nitrogen when reacting with carbon monoxide and coke.
- the oxygen content of secondary gas is adjusted such that above the reducing zone is formed an oxidising zone in which combustion can be completed.
- Fluidisation speed can be kept constant or it can be adjusted independently, when the oxygen contents of primary and secondary gases are separately adjustable in a wide range.
- the proportion of oxygen in the secondary gas can be equivalently increased in order to provide desired total oxygen content.
- the oxygen content and volume flow of both gas flows are separately adjusted, it is easier than before to maintain a suitable temperature level in both the reducing and oxidising zones.
- the invention provides an easy method based on running mode for the reduction of nitrogen oxides in a circulating fluidised bed boiler.
- By varying the oxygen contents of the primary and secondary gas it is also possible to adjust the temperatures in the furnace, which is important for sulphur reduction, among others.
- the FIGURE schematically shows circulating fluidised bed combustion with a mixture of oxygen and circulated flue gas.
- a circulating fluidised bed boiler 10 shown in the FIGURE comprises a furnace 11 in which fuel is combusted in a circulating fluidised bed, a cyclone separator 12 in which fluidised material is separated from flue gas, and a return channel 13 via which fluidised material is circulated back to the furnace 11 .
- Fuel 14 is supplied to the furnace 11 to which is also supplied oxygenous fluidisation and combustion gas as a primary gas flow 15 and as a secondary gas flow 16 . Combustion takes place in the fluidised bed, which is put to fluidise and circulate by means of the primary gas flow 15 supplied from below.
- the fuel 14 can be e.g. solid fuel, such as coal.
- the fluidised bed consists of solid inert bed material (usually sand), fuel supplied in it, fuel ash, possible limestone, combustion gas, and flue gas produced in combustion.
- the gas flows 15 , 16 are arranged so great that a part of fluidised material exits along with flue gas from the upper section of the furnace to the cyclone separator 12 .
- the cyclone separator 12 separates solid particles from flue gas, which are returned to the furnace 11 via the return channel 13 and an external heat exchanger (not shown in the FIGURE) possibly connected to it.
- the flue gas is guided from the cyclone separator 12 to heat recovery 17 and from there further to fly ash separation 18 , which can be implemented e.g. with electrostatic or bag filters.
- fly ash separation 18 the flue gas is guided to a condenser 19 , in which water and gases are separated from it by condensing.
- the flue gas 20 of oxyfuel combustion mainly contains carbon dioxide, which can be cleansed and pressurised with methods known as such.
- the primary gas flow 15 is supplied at the bottom of the furnace 11 via a wind box (not shown in the FIGURE) or equivalent.
- One or more secondary gas flows 16 are supplied above the bottom via injection nozzles (not shown in the FIGURE) on the walls of the furnace 11 .
- Both gas flows 15 , 16 contain oxygen and circulated flue gas, the main components of which are carbon dioxide and possibly water vapour.
- flue gas contains small amounts of, inter alia, nitrogen oxides, sulphur dioxide, oxygen, and carbon monoxide.
- the proportion of the primary gas flow 15 is usually at least 60% of the total amount of the combustion gases 15 , 16 supplied to the furnace 11 .
- the primary gas flow 15 is produced by means of first mixing means 21 by mixing oxygen 24 and circulated flue gas 25 together in a desired ratio.
- the secondary gas flow 16 is produced by means of second mixing means 22 by mixing oxygen 24 and circulated flue gas 25 together in a desired ratio.
- the oxygen 24 can be produced e.g. by removing nitrogen from air by means of an oxygen plant 23 or by some other equivalent means.
- the circulated flue gas 25 can be taken from the furnace flue either before the condenser 19 or after the condenser 19 depending on the wish of using wet or dry flue gas.
- the first mixing means 21 for producing the primary gas flow 15 and the second mixing means 22 for producing the secondary gas flow can be in connection with the injection nozzles supplying gas to the furnace 11 or they can be separate from the furnace 11 , whereby the gas nozzles are supplied with a ready-mixed gas mixture.
- the mixing means 21 , 22 can consist of means known as such (valves, measuring sensors, adjusters etc.) for adjusting the oxygen content of the gas flow supplied to the furnace.
- the oxygen content of the primary gas flow 15 is adjusted such that a reducing zone I is formed at the bottom of the furnace 11 , in which zone there is oxygen less than required for the perfect combustion of fuel.
- the speed of the primary gas flow is again adjusted such that a suitable level of internal and external circulation of fluidised material can be provided.
- the oxygen content of the secondary gas flow 16 is adjusted such that above the reducing zone I is formed an oxidising zone II in which there is oxygen more than required for the perfect combustion of fuel. In the oxidising zone II, the combustion of fuel is completed.
- each secondary gas flow 16 can be provided with its own mixing means 22 for adjusting the oxygen content of the secondary gas flows.
- flue gas exiting from the circulating fluidised bed boiler to the carbon dioxide recovery only contains a very small amount of nitrogen oxides.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Abstract
A method for reducing nitrogen oxide emissions in oxyfuel combustion, which method comprises supplying in a furnace (11) of a circulating fluidised bed boiler (10) at least one primary gas flow (15) and at least one secondary gas flow (16), which both have been produced by mixing oxygen and circulated flue gas together. The oxygen content of the primary gas (15) is adjusted such that a reducing zone (I) is formed at the bottom of the furnace, in which zone nitrogen oxides are reduced to nitrogen. The oxygen content of the secondary gas is adjusted such that above the reducing zone (I) is formed an oxidising zone (II), in which zone combustion is completed.
Description
- The invention relates to a method for reducing nitrogen oxide emissions in oxyfuel combustion, in which method at least one primary gas flow and at least one secondary gas flow are supplied in a furnace of a circulating fluidised bed boiler, which primary gas and secondary gas have been produced by mixing oxygen and circulated flue gas together.
- Concern about climate change has brought on seeking new means to reduce carbon dioxide emissions causing global warming in energy production. One of the means suggested for diminishing greenhouse emissions is oxyfuel combustion. When fuel is combusted by means of air, flue gas contains a considerable amount of nitrogen that originates from the air. Recovery of carbon dioxide from such flue gas is expensive and technically difficult. When air used in combustion is replaced by a mixture of oxygen and circulated flue gas, flue gas produced as the result of combustion mainly contains carbon dioxide, oxygen, water vapour, and some impurities. Oxyfuel combustion enables relatively simple recovery of carbon dioxide. After water carried along with fuel and developed in combustion reactions has been removed from flue gas by condensing, remaining carbon dioxide can be liquefied by cooling and compressing. Oxyfuel combustion can be utilised in both pulverised fuel combustion and fluidised bed combustion.
- In circulating fluidised bed combustion, combustion takes place in solids suspension that is fluidised and circulated by means of a gas flow blown from below. The fluidised bed consists of particle-like fluidised material (e.g. sand), fuel, combustion gas, and flue gas and ash produced in combustion. In this context, combustion gas refers to primary and secondary gases, which usually comprise air or some other oxygenous gas mixture. The primary gas flow is supplied at the bottom of the furnace and the secondary gas flow is guided to the furnace via nozzles on its walls above the grate plane. In the circulating fluidised bed boiler, fluidised material is carried along with flue gas away from the fluidising space and, for providing a steady state, it is returned to the furnace via separating and circulating devices.
- Circulating fluidised bed boiler utilises low combustion temperature (e.g. 700-900° C.) compared to pulverised fuel combustion, which together with staged air supply enables low nitrogen oxide emissions. Nitrogen oxides (NOx) refer to nitric oxide (NO) and nitrogen dioxide (NO2), which are mostly produced from nitrogen contained by fuel in fluidised bed combustion. Staging of air supply provides reducing conditions in the lower section of the bed, whereby less nitrogen oxides are produced. The rest of air required for perfect combustion is supplied as secondary and possibly tertiary air. Circulating fluidised bed technology also enables desulphurisation of flue gases already in the boiler by supplying limestone or dolomite directly to the furnace.
- Specifications U.S. Pat. No. 4,704,084 and U.S. Pat. No. 4,962,711 disclose examples of circulating fluidised bed boilers according to prior art which aim at reducing NOx emissions by staged supply of combustion air. In both specifications, in the lower section of the furnace is formed a reducing zone by adjusting the supply of primary, secondary and possible tertiary air to the furnace.
- In oxyfuel combustion, combustion air is replaced by a mixture of oxygen and circulated flue gas. If the process is run with a standard oxygen concentration, as it is usual in air combustion, diminishing the quantity of primary gas to provide a reducing zone decreases the internal and external circulation of fluidised material, whereby heat transfer onto the furnace walls and into a possible external heat exchanger also weakens. Furthermore, the temperature of the fluidised bed may rise too high, which causes sintering of solid particles.
- The object of the invention is to avoid the above problems and enhance the reduction of nitrogen oxides in an oxyfuel combusted circulating fluidised bed boiler.
- The method according to the invention is characterised by what is presented in the characterising part of claim 1.
- In the method according to the invention, the oxygen content of primary gas is adjusted such that at the bottom of the furnace is formed a reducing zone in which nitrogen oxides carried to the furnace along with circulated flue gas reduce to nitrogen when reacting with carbon monoxide and coke. Simultaneously, the oxygen content of secondary gas is adjusted such that above the reducing zone is formed an oxidising zone in which combustion can be completed.
- Fluidisation speed can be kept constant or it can be adjusted independently, when the oxygen contents of primary and secondary gases are separately adjustable in a wide range. When decreasing the oxygen content of the primary gas, the proportion of oxygen in the secondary gas can be equivalently increased in order to provide desired total oxygen content. When the oxygen content and volume flow of both gas flows are separately adjusted, it is easier than before to maintain a suitable temperature level in both the reducing and oxidising zones.
- It is possible to deliver secondary gas onto several different height levels, and different oxygen contents can be used on different levels in order for unburnt gases carried from the reducing zone not to cause a large temperature peak at the height of the secondary gas injection. Thus, it is possible to prevent forming of a hot oxygenous section at the height of secondary gas injections, which could easily lead to production of nitrogen oxides.
- The invention provides an easy method based on running mode for the reduction of nitrogen oxides in a circulating fluidised bed boiler. By varying the oxygen contents of the primary and secondary gas, it is also possible to adjust the temperatures in the furnace, which is important for sulphur reduction, among others.
- Effective reduction of nitrogen oxides decreases the risk of NOx reacting with water and oxygen, thus producing corroding nitric acid during the pressurisation of flue gas, which could cause problems in the carbon dioxide cleansing and pressurising facility.
- The invention will now be described with reference to the FIGURE of the accompanying drawing, to which the invention is by no means intended to be narrowly restricted.
- The FIGURE schematically shows circulating fluidised bed combustion with a mixture of oxygen and circulated flue gas.
- A circulating
fluidised bed boiler 10 shown in the FIGURE comprises afurnace 11 in which fuel is combusted in a circulating fluidised bed, acyclone separator 12 in which fluidised material is separated from flue gas, and areturn channel 13 via which fluidised material is circulated back to thefurnace 11.Fuel 14 is supplied to thefurnace 11 to which is also supplied oxygenous fluidisation and combustion gas as aprimary gas flow 15 and as asecondary gas flow 16. Combustion takes place in the fluidised bed, which is put to fluidise and circulate by means of theprimary gas flow 15 supplied from below. Thefuel 14 can be e.g. solid fuel, such as coal. - The fluidised bed consists of solid inert bed material (usually sand), fuel supplied in it, fuel ash, possible limestone, combustion gas, and flue gas produced in combustion. The gas flows 15, 16 are arranged so great that a part of fluidised material exits along with flue gas from the upper section of the furnace to the
cyclone separator 12. Thecyclone separator 12 separates solid particles from flue gas, which are returned to thefurnace 11 via thereturn channel 13 and an external heat exchanger (not shown in the FIGURE) possibly connected to it. - After separating solid matter, the flue gas is guided from the
cyclone separator 12 toheat recovery 17 and from there further to flyash separation 18, which can be implemented e.g. with electrostatic or bag filters. After thefly ash separation 18, the flue gas is guided to acondenser 19, in which water and gases are separated from it by condensing. After thecondenser 19, theflue gas 20 of oxyfuel combustion mainly contains carbon dioxide, which can be cleansed and pressurised with methods known as such. - The
primary gas flow 15 is supplied at the bottom of thefurnace 11 via a wind box (not shown in the FIGURE) or equivalent. One or moresecondary gas flows 16 are supplied above the bottom via injection nozzles (not shown in the FIGURE) on the walls of thefurnace 11. Both gas flows 15, 16 contain oxygen and circulated flue gas, the main components of which are carbon dioxide and possibly water vapour. Furthermore, flue gas contains small amounts of, inter alia, nitrogen oxides, sulphur dioxide, oxygen, and carbon monoxide. In order to provide good fluidisation and circulation of the solids suspension, the proportion of theprimary gas flow 15 is usually at least 60% of the total amount of the 15, 16 supplied to thecombustion gases furnace 11. - The
primary gas flow 15 is produced by means of first mixing means 21 by mixingoxygen 24 and circulatedflue gas 25 together in a desired ratio. Equivalently, thesecondary gas flow 16 is produced by means of second mixing means 22 by mixingoxygen 24 and circulatedflue gas 25 together in a desired ratio. Theoxygen 24 can be produced e.g. by removing nitrogen from air by means of anoxygen plant 23 or by some other equivalent means. The circulatedflue gas 25 can be taken from the furnace flue either before thecondenser 19 or after thecondenser 19 depending on the wish of using wet or dry flue gas. - The first mixing means 21 for producing the
primary gas flow 15 and the second mixing means 22 for producing the secondary gas flow can be in connection with the injection nozzles supplying gas to thefurnace 11 or they can be separate from thefurnace 11, whereby the gas nozzles are supplied with a ready-mixed gas mixture. The mixing means 21, 22 can consist of means known as such (valves, measuring sensors, adjusters etc.) for adjusting the oxygen content of the gas flow supplied to the furnace. - The oxygen content of the
primary gas flow 15 is adjusted such that a reducing zone I is formed at the bottom of thefurnace 11, in which zone there is oxygen less than required for the perfect combustion of fuel. The speed of the primary gas flow is again adjusted such that a suitable level of internal and external circulation of fluidised material can be provided. - In the reducing zone I, substochiometric conditions prevail in which more carbon monoxide and unburnt coal, i.e. coke, are produced than in the normal stochiometric combustion. From the effect of coke and carbon monoxide, nitrogen oxides NOx, both those carried along with the primary gas and those produced from the fuel, are reduced to nitrogen gas N2 in this zone.
- The oxygen content of the
secondary gas flow 16 is adjusted such that above the reducing zone I is formed an oxidising zone II in which there is oxygen more than required for the perfect combustion of fuel. In the oxidising zone II, the combustion of fuel is completed. - There can be secondary gas nozzles located on several different heights and they can be supplied with secondary gas having different oxygen content. Then, each
secondary gas flow 16 can be provided with its own mixing means 22 for adjusting the oxygen content of the secondary gas flows. - Due to the circulation of flue gas and the reducing zone, flue gas exiting from the circulating fluidised bed boiler to the carbon dioxide recovery only contains a very small amount of nitrogen oxides.
- Many different variations of the invention are possible within the scope defined by claims presented next.
Claims (6)
1. A method for reducing nitrogen oxide emissions in oxyfuel combustion, the method comprising supplying in a furnace of a circulating fluidised bed boiler at least one primary gas flow and at least one secondary gas flow, which primary gas and secondary gas have been produced by mixing oxygen and circulated flue gas together, characterised by adjusting the oxygen content of the primary gas such that at the bottom of the furnace is formed a reducing zone (I), and adjusting the oxygen content of the secondary gas such that above the reducing zone (I) is formed an oxidising zone (II), wherein the oxygen contents of the primary gas and the secondary gas are adjusted by changing the ratio of oxygen to circulated flue gas in said gas flows.
2. A method according to claim 1 , characterised by supplying in the furnace two or more secondary gas flows at two or more different heights.
3. A method according to claim 2 , characterised by adjusting the oxygen contents of the secondary gas flows supplied at different heights different from each other.
4. A method according to any one of claims 1 -3, characterised by mixing oxygen and circulated flue gas together with mixing means in connection with the furnace just before supplying the primary gas or the secondary gas to the furnace.
5. A method according to claim 1 , characterised by mixing oxygen and circulated flue gas together with mixing means just before supplying the primary gas flow or the secondary gas flow into connection with the furnace.
6. A method according to claim 1 , characterised by adjusting the temperature of the furnace by varying the oxygen content of the primary gas and/or the secondary gas.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FI20095220A FI123853B (en) | 2009-03-06 | 2009-03-06 | Procedure for reducing nitric oxide emissions during oxygen combustion |
| FI20095220 | 2009-03-06 | ||
| PCT/FI2010/050075 WO2010100324A1 (en) | 2009-03-06 | 2010-02-08 | Method for reducing nitrogen oxide emissions in oxyfuel combustion |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120024206A1 true US20120024206A1 (en) | 2012-02-02 |
Family
ID=40510220
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/254,660 Abandoned US20120024206A1 (en) | 2009-03-06 | 2010-02-08 | Method for reducing nitrogen oxide emissions in oxyfuel combustion |
Country Status (11)
| Country | Link |
|---|---|
| US (1) | US20120024206A1 (en) |
| EP (1) | EP2404111B1 (en) |
| CN (1) | CN102341650B (en) |
| BR (1) | BRPI1009998A2 (en) |
| CA (1) | CA2753334A1 (en) |
| DK (1) | DK2404111T3 (en) |
| ES (1) | ES2729674T3 (en) |
| FI (1) | FI123853B (en) |
| PL (1) | PL2404111T3 (en) |
| RU (1) | RU2511819C2 (en) |
| WO (1) | WO2010100324A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120148961A1 (en) * | 2009-08-17 | 2012-06-14 | Metso Power Oy | Method and arrangement for optimising combustion conditions in a fluidised-bed boiler |
| US20120244479A1 (en) * | 2011-03-22 | 2012-09-27 | General Electric Company | Combustion System Using Recycled Flue Gas to Boost Overfire Air |
| US20130260324A1 (en) * | 2012-03-29 | 2013-10-03 | Luoyang Petrochemical Engineering Corporation/Sinopec | Fired heater and method of using the same |
| CN104861991A (en) * | 2015-04-23 | 2015-08-26 | 武汉钢铁(集团)公司 | Coke oven flue gas recycling system and processing method |
| EP3064830A4 (en) * | 2013-09-06 | 2017-08-16 | Institute Of Engineering Thermophysics, Chinese Academy Of Sciences | Method for distributing air for oxygen-enriched combustion on circulating fluidized bed |
| WO2024112660A1 (en) * | 2022-11-22 | 2024-05-30 | Honeywell International Inc. | Low nox burner with targeted gas injection |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103697466A (en) * | 2013-12-20 | 2014-04-02 | 哈尔滨锅炉厂有限责任公司 | Circulating fluidized bed boiler with smoke recirculating bypass, and NOX discharging method |
| CZ307680B6 (en) * | 2015-10-26 | 2019-02-13 | České vysoké učenà technické v Praze | A system for providing a fluidizing and oxidizing medium in the oxyfuel mode for a fluidized bed boiler |
| CN105650628B (en) * | 2016-02-06 | 2019-04-30 | 中国科学院工程热物理研究所 | Circulating fluidized bed oxygen-enriched combustion device and method for supplying air for oxygen-enriched combustion |
| CN105716091B (en) * | 2016-02-17 | 2018-04-10 | 无锡国联环保科技股份有限公司 | Flue gas recirculation sludge spouted fluidized bed CIU and method |
| CN105588120B (en) * | 2016-03-02 | 2018-05-11 | 内蒙古金土环保科技有限公司 | A kind of general oxygen combustion system of desulfurization |
| CN105864755B (en) * | 2016-03-30 | 2018-09-04 | 中国科学院工程热物理研究所 | Recirculating fluidized bed oxygen-enriched burning device and its combustion method |
| CN111664445A (en) * | 2020-07-10 | 2020-09-15 | 青岛特利尔环保集团股份有限公司 | Semi-coke powder circulating fluidized bed boiler based on material heat balance |
| FI20225751A1 (en) * | 2022-08-25 | 2024-02-26 | Aliceco Energy Ab Oy | System and method for updating an oxy-combustion combustion plant |
Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3215508A (en) * | 1962-03-15 | 1965-11-02 | Pittsburgh Plate Glass Co | Gas distributor |
| US4102989A (en) * | 1974-05-15 | 1978-07-25 | Iowa State University Research Foundation, Inc. | Simultaneous reductive and oxidative decomposition of calcium sulfate in the same fluidized bed |
| US4111158A (en) * | 1976-05-31 | 1978-09-05 | Metallgesellschaft Aktiengesellschaft | Method of and apparatus for carrying out an exothermic process |
| US4704084A (en) * | 1979-12-26 | 1987-11-03 | Battelle Development Corporation | NOX reduction in multisolid fluidized bed combustors |
| US4962711A (en) * | 1988-01-12 | 1990-10-16 | Mitsubishi Jukogyo Kabushiki Kaisha | Method of burning solid fuel by means of a fluidized bed |
| US5660125A (en) * | 1995-05-05 | 1997-08-26 | Combustion Engineering, Inc. | Circulating fluid bed steam generator NOx control |
| US5826521A (en) * | 1993-04-22 | 1998-10-27 | Sbw Sonderabfallentsorgung Badenwurttemberg Gmbh | Method for reducing the emissions produced by incinerating waste |
| US6230664B1 (en) * | 1997-02-07 | 2001-05-15 | Kvaerner Pulping Oy | Method and arrangement for supplying air to a fluidized bed boiler |
| US6415743B2 (en) * | 1999-11-22 | 2002-07-09 | Abb Alstom Power Combustion | Method of decreasing nitrogen oxide emissions in a circulating fluidized bed combustion system |
| US6505567B1 (en) * | 2001-11-26 | 2003-01-14 | Alstom (Switzerland) Ltd | Oxygen fired circulating fluidized bed steam generator |
| US20060150510A1 (en) * | 2001-12-21 | 2006-07-13 | Foster Wheeler Energia Oy | Method and apparatus for gasifying carbonaceous material |
| US20070175411A1 (en) * | 2004-02-25 | 2007-08-02 | Jean-Xavier Morin | Oxygen-producing oxycombustion boiler |
| US20070295249A1 (en) * | 2006-06-21 | 2007-12-27 | Metso Power Oy | Method for reducing nitrogen oxide emissions of a recovery boiler, and a recovery boiler |
| US20080000403A1 (en) * | 2004-05-28 | 2008-01-03 | Alstom Technology Ltd | Fluidized-Bed Device With Oxygen-Enriched Oxidizer |
| US20080149012A1 (en) * | 2005-02-11 | 2008-06-26 | Metso Power Oy | Method For Reducing Nitrogen Oxide Emissions of a Bubbling Fluidized Bed Boiler and an Air Distribution System of a Bubbling Fluidized Bed Boiler |
| US20090007827A1 (en) * | 2007-06-05 | 2009-01-08 | Hamid Sarv | System and Method for Minimizing Nitrogen Oxide (NOx) Emissions in Cyclone Combustors |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1523500A (en) * | 1975-10-21 | 1978-09-06 | Battelle Development Corp | Method of operating a fluidized bed system |
| JPS5860107A (en) * | 1981-10-03 | 1983-04-09 | Osaka Gas Co Ltd | Heat treating furnace of fluidized bed type |
| US5325796A (en) * | 1992-05-22 | 1994-07-05 | Foster Wheeler Energy Corporation | Process for decreasing N2 O emissions from a fluidized bed reactor |
| DE19703197A1 (en) * | 1997-01-30 | 1998-08-06 | Umsicht Inst Fuer Umwelt Siche | Wood or biomass combustion process |
| US6430914B1 (en) * | 2000-06-29 | 2002-08-13 | Foster Wheeler Energy Corporation | Combined cycle power generation plant and method of operating such a plant |
| CN100441946C (en) * | 2006-11-09 | 2008-12-10 | 华中科技大学 | Oxygen-enriched combustion circulating fluidized bed boiler system |
-
2009
- 2009-03-06 FI FI20095220A patent/FI123853B/en active IP Right Grant
-
2010
- 2010-02-08 PL PL10748380T patent/PL2404111T3/en unknown
- 2010-02-08 US US13/254,660 patent/US20120024206A1/en not_active Abandoned
- 2010-02-08 CA CA2753334A patent/CA2753334A1/en not_active Abandoned
- 2010-02-08 CN CN2010800103421A patent/CN102341650B/en active Active
- 2010-02-08 EP EP10748380.2A patent/EP2404111B1/en active Active
- 2010-02-08 ES ES10748380T patent/ES2729674T3/en active Active
- 2010-02-08 WO PCT/FI2010/050075 patent/WO2010100324A1/en not_active Ceased
- 2010-02-08 BR BRPI1009998-0A patent/BRPI1009998A2/en not_active IP Right Cessation
- 2010-02-08 DK DK10748380.2T patent/DK2404111T3/en active
- 2010-02-08 RU RU2011135189/06A patent/RU2511819C2/en active
Patent Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3215508A (en) * | 1962-03-15 | 1965-11-02 | Pittsburgh Plate Glass Co | Gas distributor |
| US4102989A (en) * | 1974-05-15 | 1978-07-25 | Iowa State University Research Foundation, Inc. | Simultaneous reductive and oxidative decomposition of calcium sulfate in the same fluidized bed |
| US4111158A (en) * | 1976-05-31 | 1978-09-05 | Metallgesellschaft Aktiengesellschaft | Method of and apparatus for carrying out an exothermic process |
| US4704084A (en) * | 1979-12-26 | 1987-11-03 | Battelle Development Corporation | NOX reduction in multisolid fluidized bed combustors |
| US4962711A (en) * | 1988-01-12 | 1990-10-16 | Mitsubishi Jukogyo Kabushiki Kaisha | Method of burning solid fuel by means of a fluidized bed |
| US5826521A (en) * | 1993-04-22 | 1998-10-27 | Sbw Sonderabfallentsorgung Badenwurttemberg Gmbh | Method for reducing the emissions produced by incinerating waste |
| US5660125A (en) * | 1995-05-05 | 1997-08-26 | Combustion Engineering, Inc. | Circulating fluid bed steam generator NOx control |
| US6230664B1 (en) * | 1997-02-07 | 2001-05-15 | Kvaerner Pulping Oy | Method and arrangement for supplying air to a fluidized bed boiler |
| US6415743B2 (en) * | 1999-11-22 | 2002-07-09 | Abb Alstom Power Combustion | Method of decreasing nitrogen oxide emissions in a circulating fluidized bed combustion system |
| US6505567B1 (en) * | 2001-11-26 | 2003-01-14 | Alstom (Switzerland) Ltd | Oxygen fired circulating fluidized bed steam generator |
| US20060150510A1 (en) * | 2001-12-21 | 2006-07-13 | Foster Wheeler Energia Oy | Method and apparatus for gasifying carbonaceous material |
| US20070175411A1 (en) * | 2004-02-25 | 2007-08-02 | Jean-Xavier Morin | Oxygen-producing oxycombustion boiler |
| US20080000403A1 (en) * | 2004-05-28 | 2008-01-03 | Alstom Technology Ltd | Fluidized-Bed Device With Oxygen-Enriched Oxidizer |
| US20080149012A1 (en) * | 2005-02-11 | 2008-06-26 | Metso Power Oy | Method For Reducing Nitrogen Oxide Emissions of a Bubbling Fluidized Bed Boiler and an Air Distribution System of a Bubbling Fluidized Bed Boiler |
| US20070295249A1 (en) * | 2006-06-21 | 2007-12-27 | Metso Power Oy | Method for reducing nitrogen oxide emissions of a recovery boiler, and a recovery boiler |
| US20090007827A1 (en) * | 2007-06-05 | 2009-01-08 | Hamid Sarv | System and Method for Minimizing Nitrogen Oxide (NOx) Emissions in Cyclone Combustors |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120148961A1 (en) * | 2009-08-17 | 2012-06-14 | Metso Power Oy | Method and arrangement for optimising combustion conditions in a fluidised-bed boiler |
| US9052106B2 (en) * | 2009-08-17 | 2015-06-09 | Valmet Technologies Oy | Method and arrangement for optimising combustion conditions in a fluidised-bed boiler |
| US20120244479A1 (en) * | 2011-03-22 | 2012-09-27 | General Electric Company | Combustion System Using Recycled Flue Gas to Boost Overfire Air |
| US20130260324A1 (en) * | 2012-03-29 | 2013-10-03 | Luoyang Petrochemical Engineering Corporation/Sinopec | Fired heater and method of using the same |
| US9683741B2 (en) * | 2012-03-29 | 2017-06-20 | China Petroleum & Chemical Corporation | Fired heater and method of using the same |
| EP3064830A4 (en) * | 2013-09-06 | 2017-08-16 | Institute Of Engineering Thermophysics, Chinese Academy Of Sciences | Method for distributing air for oxygen-enriched combustion on circulating fluidized bed |
| AU2014317540B2 (en) * | 2013-09-06 | 2017-12-14 | Institute Of Engineering Thermophysics, Chinese Academy Of Sciences | Method for distributing air for oxygen-enriched combustion on circulating fluidized bed |
| US10174937B2 (en) | 2013-09-06 | 2019-01-08 | Institute Of Engineering Thermophysics, Chinese Academy Of Sciences | Method for distributing gas for oxy-fuel combustion in circulating fluidized bed |
| CN104861991A (en) * | 2015-04-23 | 2015-08-26 | 武汉钢铁(集团)公司 | Coke oven flue gas recycling system and processing method |
| WO2024112660A1 (en) * | 2022-11-22 | 2024-05-30 | Honeywell International Inc. | Low nox burner with targeted gas injection |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2404111A1 (en) | 2012-01-11 |
| CN102341650B (en) | 2013-12-25 |
| WO2010100324A1 (en) | 2010-09-10 |
| FI123853B (en) | 2013-11-15 |
| BRPI1009998A2 (en) | 2019-02-26 |
| CN102341650A (en) | 2012-02-01 |
| FI20095220L (en) | 2010-09-07 |
| CA2753334A1 (en) | 2010-09-10 |
| EP2404111B1 (en) | 2019-05-01 |
| ES2729674T3 (en) | 2019-11-05 |
| PL2404111T3 (en) | 2019-12-31 |
| EP2404111A4 (en) | 2014-11-26 |
| RU2511819C2 (en) | 2014-04-10 |
| DK2404111T3 (en) | 2019-07-29 |
| FI20095220A0 (en) | 2009-03-06 |
| RU2011135189A (en) | 2013-04-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2404111B1 (en) | Method for reducing nitrogen oxide emissions in oxyfuel combustion | |
| AU2012251090B2 (en) | Oxycombustion in transport oxy-combustor | |
| CN102483231B (en) | For optimizing the method and apparatus of the burning condition in fluidized-bed combustion boiler | |
| US20120145052A1 (en) | Apparatus and method of controlling the thermal performance of an oxygen-fired boiler | |
| CN101592336A (en) | A kind of fluidized-bed combustion boiler | |
| CN102016419A (en) | Method of controlling exhaust gas in oxygen combustion boiler and apparatus therefor | |
| CN101280920B (en) | Fluidization-suspension combined combustion boiler | |
| CN103884013B (en) | Manifold type environment-friendly type fluidized-bed combustion boiler combustion method and device | |
| CN201434374Y (en) | A fluidized bed boiler | |
| US5230871A (en) | Method for generating heat, comprising desulphurization of effluent with fine particles of absorbent in a entrained bed | |
| EP2574841A2 (en) | Method for reducing nitrogen oxide emissions and corrosion in a bubbling fluidized bed boiler and a bubbling fluidized bed boiler | |
| CN102927566A (en) | Correcting method for secondary air quantity curve of conventional boiler after local oxygen-enriched combustion transformation | |
| CN107726307A (en) | The technique that a kind of CFB boiler mixes scoria oil coke | |
| CN106122950A (en) | A kind of CFBB of low nitrogen burning | |
| Vimalchand et al. | Oxy-combustion in transport oxy-combustor | |
| Hornberger | Results-fluidised bed calcium looping | |
| HK1193371B (en) | Oxycombustion in transport oxy-combustor | |
| CN109578981A (en) | A kind of grate firing boiler and its processing method with coal-fired loosening component | |
| Abdulally et al. | Operating Experience and Latest Developments of Alstom Power's 300 MWe Class CFB Boilers | |
| Verhoeff | The Design of a Large Industrial Fluidized Bed Boiler | |
| OA16651A (en) | Oxycombustion in transport oxy-combustor. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: METSO POWER OY, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VARONEN, MIKKO;REEL/FRAME:026964/0857 Effective date: 20110912 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |