US20110286573A1 - Method and apparatus for large field of view imaging and detection and compensation of motion artifacts - Google Patents
Method and apparatus for large field of view imaging and detection and compensation of motion artifacts Download PDFInfo
- Publication number
- US20110286573A1 US20110286573A1 US13/145,128 US200913145128A US2011286573A1 US 20110286573 A1 US20110286573 A1 US 20110286573A1 US 200913145128 A US200913145128 A US 200913145128A US 2011286573 A1 US2011286573 A1 US 2011286573A1
- Authority
- US
- United States
- Prior art keywords
- motion
- projection data
- detector
- during
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/005—Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4064—Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
- A61B6/4085—Cone-beams
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4208—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
- A61B6/4233—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4429—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
- A61B6/4452—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/488—Diagnostic techniques involving pre-scan acquisition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/542—Control of apparatus or devices for radiation diagnosis involving control of exposure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/58—Testing, adjusting or calibrating thereof
- A61B6/587—Alignment of source unit to detector unit
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10116—X-ray image
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
- G06T2207/20032—Median filtering
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2211/00—Image generation
- G06T2211/40—Computed tomography
- G06T2211/412—Dynamic
Definitions
- a conventional CT imaging device includes an x-ray source and an x-ray sensitive detector disposed on opposite sides of an examination region.
- a human patient or other object to be examined is supported in the examination region by a suitable support.
- the source emits x-ray radiation which transverses the examination region and is detected by the detector as the source and detector rotate about a center of rotation.
- a CT imaging device capable of having an offset geometry includes an x-ray source and an x-ray sensitive detector that may be transversely displaced from the center of rotation in the transaxial plane in certain configurations. Such offset geometry CT imaging devices are desirable because they allow for an increased field of view or allow for the use of a smaller sized detector.
- the quality of images obtained from CT imaging devices is also frequently degraded by uncontrolled patient movement, such as the patient's failure to hold his or her breath, intestinal contractions, nervous shaking, natural cyclic motion, heartbeat, respiration, or other forms of motion.
- iterative algorithmic motion compensation methods are used to improve image quality for images that contain motion artifacts. While such methods are capable of improving image quality for certain types of motion, the motion compensation effects accomplished by these methods are often inaccurate and they also can introduce artifacts into image regions that have not been affected by any motion.
- a method and apparatus are provided for the detection and compensation of motion artifacts when reconstructing tomographic images.
- a method and apparatus for creating a motion map is provided. The motion map is utilized to indicate which image regions may be corrupted by motion artifacts and/or for motion compensation to prevent motion artifacts in the reconstructed tomographic image.
- the invention may take form in various components and arrangements of components, and in various process operations and arrangements of process operations.
- FIG. 1 is a transaxial view of a centered CT acquisition geometry according to an embodiment of the invention
- FIG. 2A is a transaxial view of a virtual detector which results from combining the data gathered from the centered geometry of FIG. 1 and the offset geometry of FIG. 2 ;
- FIG. 3 is an imaging system according to an embodiment of the invention.
- FIG. 4 depicts an imaging method according to an embodiment of the invention
- FIG. 5 depicts a method for detecting motion according to an embodiment of the invention
- FIGS. 6A and 6B depict optional methods for refining a motion map in accordance with an embodiment of the present invention
- FIG. 7 is exemplary image generated by a software program depicting a motion map in accordance with an embodiment of the present invention.
- FIG. 8 is an exemplary image generated by a software program depicting a motion-corrupted reconstructed image without any motion correction
- FIG. 9 is an exemplary image generated by a software program depicting the reconstructed image of FIG. 8 after a global motion correction.
- FIG. 10 is an exemplary image generated by a software program depicting the reconstructed image of FIG. 8 after a local motion correction.
- One aspect of the present invention is directed generally to a method and apparatus for CT image acquisition, and more particularly to a method and apparatus for providing a large field of view (“FOV”) with improved image quality by utilizing at least two scanning procedures taken by a CT image apparatus. At least one scan is taken with the radiation source and detector of the CT image apparatus in a centered geometry and at least one scan is taken with the detector and/or source in an offset geometry. The image data obtained from the at least two scanning procedures is then combined to produce a reconstructed image.
- FOV large field of view
- FIG. 1 depicts an exemplary centered geometry 100 for a CT imaging apparatus.
- the exemplary centered geometry 100 has an x-ray source 102 , such as an x-ray tube, and an x-ray sensitive detector 104 , such as a flat panel area detector array extending in the transverse and axial directions.
- the center of rotation 114 may also serve as the center of the transverse field of view (FOV) 118 .
- FOV transverse field of view
- center of rotation 114 is not necessarily always aligned with the center of the transverse FOV 118 in every application.
- an object support 110 supports the object 108 under examination in an examination region 106 .
- a central ray or projection 116 of the x-ray beam 112 is perpendicular to the detector center 119 , which is aligned with the center of rotation 114 .
- the x-ray source 102 and the x-ray sensitive detector 104 rotate about the center of rotation 114 .
- the source 102 and detector 104 are generally mounted to a rotating gantry (not shown) for rotation about the examination region 106 . In some embodiments, however, the source 102 and detector 104 may remain at a constant angular position while the object 108 is moved and/or rotated to produce the requisite angular sampling. While the figures and description are focused on the use of flat panel detectors, arcuate detectors or detectors having yet other shapes may also be used. Furthermore, while the figures and discussion focus on a CT system in which the source 102 is a point source, other alternatives are contemplated. For example, the source 102 may be a line source. Gamma and other radiation sources may also be used. Multiple sources 102 and detectors 104 may also be provided, in which case corresponding sets of sources and detectors may be offset angularly and/or longitudinally from one another.
- the x-ray source 102 and detector 104 of the exemplary centered geometry 100 are depicted in two opposing positions in the transaxial plane, position A in solid lines and position B in dotted lines.
- position B the x-ray source 102 and detector 104 are rotated 180 degrees about the center of rotation 114 from position A.
- the central ray 116 of the x-ray beam 112 and the detector center 119 are aligned with the center of rotation 114 when the x-ray source 102 and detector 104 are in both position A and position B.
- FIG. 2 depicts an exemplary offset geometry 200 for an imaging apparatus.
- the detector center 119 of the detector 104 of the exemplary offset geometry 200 is transversely displaced or offset from the center of rotation 114 in the transaxial plane by a distance D.
- the x-ray source 102 and the x-ray sensitive detector 104 of the offset geometry 200 rotate about the center of rotation 114 .
- the x-ray source 102 and detector 104 of the exemplary offset geometry 100 are depicted in two opposing positions in the transaxial plane, position A in solid lines and position B in dotted lines. In position B, the x-ray source 102 and detector 104 are rotated 180 degrees about the center of rotation 140 from position A.
- the detector center 119 is offset from the center of rotation 114 in the transaxial plane by a distance D in both position A and position B.
- the transverse FOV 218 of the offset geometry 200 is larger than the transverse FOV 118 of the centered geometry 100 .
- the detector center 119 may be offset from the center of rotation 114 in the transaxial plane by various distances in different embodiments of the present invention by varying the distance D.
- the detector center 114 may be offset from the center of rotation 119 by a distance D between 0 and 35 centimeters or greater.
- the distance D may approximate, or even exceed, the transverse half-width of the detector, so that there is a “hole” 222 in the center of the transverse FOV 218 .
- the distance D may be varied in multiple ways to customize the size of the transverse FOV 218 .
- the detector 104 may be shifted to vary the size of the transverse FOV 118 by any suitable means.
- the detector 104 may be moved in various directions relative to the rotating gantry and the center of rotation 114 either manually by a human user or by a mechanical drive. It can be shifted linearly, as is useful with a flat panel detector, or rotationally, as is useful for a curved detector.
- the exemplary offset geometry 200 described includes a centered source and an offset detector, it should be understood that additional CT imaging device geometries, which include an offset source or an offset source and an offset detector are contemplated.
- FIG. 2A depicts an overlay of the exemplary centered geometry 100 and the exemplary offset geometry 200 .
- the x-ray source 102 and detector 104 of the exemplary centered geometry 100 and exemplary offset geometry 200 are overlaid each other in two opposing positions in the transaxial plane, position A in solid lines and position B in dotted lines.
- the area of the detector 104 of the exemplary centered geometry 100 in position A that overlaps with the detector 104 of the exemplary offset geometry 200 in position A is indicated by the cross-hatched section 220 in FIG. 2A .
- projection data obtained from the exemplary centered geometry 100 and exemplary offset geometry 200 can be combined together, as if they were measured by a single larger virtual detector V. This may be accomplished, for example, with faded weighting and/or averaging the projection data obtained in the overlapping region 220 .
- projection data may not be obtained from a centered geometry and an offset geometry, but, rather, projection data may be obtained from two different offset geometries. For example, projection data could be obtained from a scan taken with the detector center 114 offset from the center of rotation 119 by a first distance D and a second set of projection data could be obtained from another scan taken with the detector center 114 offset from the center of rotation 199 by a second distance D.
- FIG. 3 depicts a CT imaging system 300 suitable for use with the exemplary centered geometry 100 and offset geometry 200 described above.
- the CT imaging system 300 includes a CT data acquisition system 302 , a reconstructor 304 , an image processor 306 , a user interface 308 , and a user input 310 .
- the CT data acquisition system 302 includes the source 102 and detector 104 , which are mounted to a rotating gantry 312 for rotation about the examination region. Circular or other angular sampling ranges as well as axial, helical, circle and line, saddle, or other desired scanning trajectories are contemplated.
- the embodiment of the CT imaging device system 300 illustrated in FIG. 3 includes a drive 318 , such as a microstep motor, that provides the requisite force required to move the source 102 and/or detector 104 .
- the reconstructor 304 reconstructs the data generated by the data acquisition system 302 using reconstruction techniques to generate volumetric data indicative of the imaged subject.
- Reconstruction techniques include analytical techniques such as filtered backprojection, as well as iterative techniques.
- the image processor 306 processes the volumetric data as required, for example for display in a desired fashion on the user interface 308 , which may include one or more output devices such as a monitor and printer and one or more input devices such as a keyboard and mouse.
- the user interface 308 which is advantageously implemented using software instructions executed by a general purpose or other computer so as to provide a graphical user interface (“GUI”), allows the user to control or otherwise interact with the imaging system 300 , for example by selecting a desired FOV configuration or dimension, initiating and/or terminating scans, selecting desired scan or reconstruction protocols, manipulating the volumetric data, and the like.
- GUI graphical user interface
- a user input 310 operatively connected to the user interface 308 controls the operation of the CT data acquisition system 302 , for example to carry out a desired scanning protocol, optionally position the detector 104 and/or the source 102 so as to provide the desired FOV, and the like.
- FIG. 4 An exemplary imaging process 400 according to one aspect of the present invention is illustrated in FIG. 4 .
- the CT imaging system 300 is utilized to take at least one scan of the imaged subject with the source 102 and detector 104 in the centered geometry 100 to acquire projection data at a sufficient plurality of angular positions about the examination region 106 .
- at least one scan is taken by the CT imaging system 300 with the source 102 and detector 104 in an offset geometry 200 .
- the order of steps 402 and 404 may be reversed, as the first scan(s) may be taken with the CT imaging system 300 in the offset geometry 200 followed by scan(s) with the CT imaging system 300 in the centered geometry 100 .
- the detector 104 and/or the source 102 of the offset geometry 200 may be offset by a variety of distances D from the center of rotation 114 in the transaxial plane.
- one or more scanning procedures may be conducted with the detector 104 and/or the source 102 offset from the center of rotation 114 in the transaxial plane by a different distance D in each scan.
- centered geometry projection data 406 is obtained from the centered geometry scan(s) of step 402 and offset geometry projection data 408 is obtained from the offset geometry scan(s) of step 404 .
- the reconstructor 304 reconstructs the centered geometry projection data 406 and offset geometry projection data 408 at step 410 using known reconstruction techniques currently used in connection with offset geometry CT imaging devices to generate volumetric data indicative of the imaged subject 108 , i.e., reconstructed image data 412 .
- the centered geometry projection data 406 and the offset geometry projection data 408 are pair-wised stitched together using the overlapping region between the projection data 406 and 408 resulting from the overlapping region 220 of the detector 104 for the registration of the projection data 406 and 408 with each other. Faded weighting and/or averaging may be optionally applied in the overlap regions of the centered geometry projection data 406 and the offset geometry projection data 408 during the reconstruction process.
- the combined reconstruction of the projection data 406 and 408 emulates a single scan with the large virtual detector V illustrated in FIG. 2A .
- the image acquisition method disclosed herein involves the usage of at least two scanning operations provides certain freedom with the distribution of radiation dosage during the scanning procedures.
- Different levels of radiation dosage may be associated with each of the scan(s) of step 404 and 402 as desired by the operator of the CT imaging device 300 .
- the offset geometry scan(s) of step 404 may be adapted to deliver less than half of the radiation dosage that is used in connection with the centered geometry scan(s) of step 402 .
- dosage techniques can result in a better contrast-to-noise ratio being obtained for the centered geometry scan(s) of step 402 .
- the border areas of the imaged subject scanned by the offset geometry scan(s) of step 404 which are less relevant for medical diagnosis but useful for attenuation correction, will be exposed to relatively less radiation.
- the radiation dosage delivered to a patient during the scanning procedures of steps 402 and 404 can be tailored to be generally equivalent or less than the radiation dosage delivered to a patient during a single scan with a wide detector, such as those used in helical CT imaging.
- Another aspect of the present invention is directed generally to a method and apparatus for the detection, estimation and/or compensation of motion artifacts encountered when reconstructing tomographic images.
- a method and apparatus are provided for generating a motion map.
- the motion map is utilized to indicate which image regions may be corrupted by motion artifacts and/or for motion estimation and motion compensation to prevent or diminish motion artifacts in the reconstructed tomographic image.
- FIG. 5 An exemplary method 500 of detecting motion in reconstructed tomographic images according to one aspect of the present invention is illustrated in FIG. 5 .
- the CT imaging system 300 is used to obtain a set of acquired projection data 504 of the imaged subject 108 .
- tomographic reconstruction is applied to this acquired projection data 504 using known reconstruction techniques, such as filtered backprojection (FBP), to generate a reconstructed image (i.e., the “reference” image) 508 .
- the reference image 508 may have artifacts as a result of object movement during the scanning process.
- known forward projection techniques are applied to the previously reconstructed reference image 508 to derive reference projection data 512 .
- reference projection data by the forward projection of a reconstructed image is a conventional aspect of iterative image reconstruction, it should be understood by those skilled in the art that the accuracy of image space interpolations and the possible truncation of projections are two important potential issues that may need to be addressed during this process. Furthermore, if the reference image 508 is reconstructed using the classical Feldkamp-Davis-Kress (FDK) algorithm, cone beam artifacts may corrupt the reference projections and hence should be accounted for.
- FDK Feldkamp-Davis-Kress
- the line integral differences 516 between the acquired projection data 504 and the reference projection data 512 are computed. Any such differences likely result from artifacts caused by movement of the object during the imaging scan 502 .
- the line integral differences 516 between the acquired projection data 504 and the reference projection data 512 are computed independently for each pair of corresponding projections from the acquired projection data 504 and reference projection data 512 .
- a data correction step could be optionally employed at this stage using, for example, the Helgason-Ludwig conditions or other similar data correction measures to correct any data inconsistencies.
- the line integral differences 516 represent an isolation of motion that occurred during the scanning procedure 502 in projection space.
- FIG. 6A An optional exemplary method 600 for refining the motion map 520 in accordance with an embodiment of the present invention is illustrated in FIG. 6A .
- the line integral differences 516 may be processed or refined, such as for example by windowing, normalization, or filtering, to produce pre-processed line integral differences 604 .
- a windowing refinement is a non-linear mapping of input values to modified output values, where input values below a given minimum value and above a given maximum value are ignored or set to zero.
- thresholding may be applied, where input values below a given threshold are set to zero and values above the threshold are set to one.
- Another sort of refinement is normalization, wherein the line integral differences are transformed to values between 0 and 1 to standardize and simplify subsequent mathematical calculations.
- Yet another sort of refinement is to apply a volumetric median filter, a Gaussian blur, or some other filtering process.
- the size of the neighborhood for the volumetric median filter and the size of the convolution kernel for the Gaussian blur are set to 3 ⁇ 3 ⁇ 3.
- the pre-processing refinement 602 may also involve other kinds of image processing in additional embodiments.
- the pre-processed line integral differences 604 are reconstructed using known reconstruction techniques, such as filtered backprojection (FBP), at step 606 .
- the resulting image that is generated is a refined motion map 608 , that has been windowed, normalized, filtered, or otherwise refined.
- the refined motion map 608 could be adapted to be either a binary motion map that simply indicates whether or not motion exists in a given image voxel or the refined motion map 608 could indicate the amplitude of the motion that exists in any given image voxel.
- FIG. 6B Another optional exemplary method 610 for refining the motion map 520 in accordance with an embodiment of the present invention is illustrated in FIG. 6B .
- the line integral differences 516 are reconstructed using known reconstruction techniques, such as filtered backprojection (FBP).
- FBP filtered backprojection
- the resulting image that is generated is an initial motion map 614 .
- the initial motion map 614 is then processed or refined at step 616 , such as for example by windowing, normalization, filtering, to produce a post-processed refined motion map 618 .
- the initial motion map 614 is thresholded at 150 Hounsfield units (HU).
- Such processing or refining of the motion map 614 serves to remove “reconstruction noise” or other inconsistencies in the data and to avoid streaking
- a motion map such as the motion map 520 , 608 or 618 has multiple uses.
- the motion map can be used as a reference by a radiologist or other individual performing the imaging process to indicate which voxels of a particular reconstructed image could potentially contain reconstruction artifacts due to motion, e.g., regions of an image with potential motion artifacts that cause them to be unsuitable for diagnosis or localization.
- the motion map serves as a reliability indicator to be used in conjunction with a reconstructed image, as it supplies information about the location of in-scan motion present in the reconstructed image.
- the motion map can be combined with a motion estimation and compensation scheme to apply local motion correction during image reconstruction.
- Conventional global motion compensation techniques are applied universally to the entire image during the reconstruction process. This can result in artifacts being introduced into regions of the reconstructed image which were not affected by any motion. As a result, in practice, these global motion compensation methods can corrupt static regions of reconstructed images with artifacts resulting from incorrect motion compensation.
- the use of the motion map in conjunction with local motion correction prevents the application of motion compensation in static regions where no motion occurred during the scanning procedure. This can prevent artifacts in such static regions.
- the motion map could be used as a “blending map” with motion correction techniques being applied only in those areas which are indicated to have experienced motion based upon the motion map.
- the motion map could also be used as a “weighting map.” Under this approach, the motion map would be used to determine a “weighted” amount of motion correction that would be applied to any given image voxel, which would be an adjusted value between zero motion correction being applied and, at most, the amount of motion correction that would be applied under current conventional global motion correction techniques.
- FIG. 8 an exemplary motion-corrupted image generated by a software program is illustrated in FIG. 8 .
- FIG. 9 is a reconstruction of the image in FIG. 8 that has undergone global motion correction.
- FIG. 10 is a reconstruction of the image in FIG. 8 that has undergone local motion correction using a motion map.
- Logic includes but is not limited to hardware, firmware, software and/or combinations of each to perform a function(s) or an action(s), and/or to cause a function or action from another component.
- logic may include a software controlled microprocessor, discrete logic such as an application specific integrated circuit (ASIC), or other programmed logic device.
- ASIC application specific integrated circuit
- Software includes but is not limited to one or more computer readable and/or executable instructions that cause a computer or other electronic device to perform functions, actions, and/or behave in a desired manner.
- the instructions may be embodied in various forms such as routines, algorithms, modules or programs including separate applications or code from dynamically linked libraries.
- Software may also be implemented in various forms such as a stand-alone program, a function call, a servlet, an applet, instructions stored in a memory, part of an operating system or other type of executable instructions. It will be appreciated by one of ordinary skill in the art that the form of software is dependent on, for example, requirements of a desired application, the environment it runs on, and/or the desires of a designer/programmer or the like.
- the systems and methods described herein can be implemented on a variety of platforms including, for example, networked control systems and stand-alone control systems. Additionally, the logic, databases or tables shown and described herein preferably reside in or on a computer readable medium, such as a component of the imaging system 300 . Examples of different computer readable media include Flash Memory, Read-Only Memory (ROM), Random-Access Memory (RAM), programmable read-only memory (PROM), electrically programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic disk or tape, optically readable mediums including CD-ROM and DVD-ROM, and others. Still further, the processes and logic described herein can be merged into one large process flow or divided into many sub-process flows. The order in which the process flows herein have been described is not critical and can be rearranged while still accomplishing the same results. Indeed, the process flows described herein may be rearranged, consolidated, and/or re-organized in their implementation as warranted or desired.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Pulmonology (AREA)
- Physiology (AREA)
- Mathematical Physics (AREA)
- Multimedia (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/145,128 US20110286573A1 (en) | 2009-01-21 | 2009-12-23 | Method and apparatus for large field of view imaging and detection and compensation of motion artifacts |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14609309P | 2009-01-21 | 2009-01-21 | |
| US13/145,128 US20110286573A1 (en) | 2009-01-21 | 2009-12-23 | Method and apparatus for large field of view imaging and detection and compensation of motion artifacts |
| PCT/IB2009/055951 WO2010084389A1 (fr) | 2009-01-21 | 2009-12-23 | Procédé et appareil d'imagerie à grand champ de vision et détection et compensation d'artéfacts de mouvement |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2009/055951 A-371-Of-International WO2010084389A1 (fr) | 2009-01-21 | 2009-12-23 | Procédé et appareil d'imagerie à grand champ de vision et détection et compensation d'artéfacts de mouvement |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/856,713 Division US9710936B2 (en) | 2009-01-21 | 2015-09-17 | Method and apparatus for large field of view imaging and detection and compensation of motion artifacts |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20110286573A1 true US20110286573A1 (en) | 2011-11-24 |
Family
ID=41820756
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/145,128 Abandoned US20110286573A1 (en) | 2009-01-21 | 2009-12-23 | Method and apparatus for large field of view imaging and detection and compensation of motion artifacts |
| US14/856,713 Expired - Fee Related US9710936B2 (en) | 2009-01-21 | 2015-09-17 | Method and apparatus for large field of view imaging and detection and compensation of motion artifacts |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/856,713 Expired - Fee Related US9710936B2 (en) | 2009-01-21 | 2015-09-17 | Method and apparatus for large field of view imaging and detection and compensation of motion artifacts |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US20110286573A1 (fr) |
| EP (2) | EP2389114A1 (fr) |
| JP (2) | JP2012515592A (fr) |
| CN (2) | CN102325499B (fr) |
| RU (1) | RU2529478C2 (fr) |
| WO (1) | WO2010084389A1 (fr) |
Cited By (152)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103222877A (zh) * | 2012-01-27 | 2013-07-31 | 株式会社东芝 | X射线ct装置 |
| US20140081131A1 (en) * | 2012-09-18 | 2014-03-20 | Yiannis Kyriakou | Angiographic examination method |
| US20140226891A1 (en) * | 2013-02-13 | 2014-08-14 | Holger Kunze | Method and Device for Correction of Movement Artifacts in a Computed Tomography Image |
| US20180139467A1 (en) * | 2016-11-14 | 2018-05-17 | Samsung Electronics Co., Ltd. | Medical imaging apparatus, medical image processing method, and computer-readable recording medium related to the medical image processing method |
| US10008012B2 (en) | 2015-12-11 | 2018-06-26 | Shenyang Neusoft Medical Systems Co., Ltd. | Image reconstruction |
| US10117632B2 (en) | 2016-02-03 | 2018-11-06 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
| US10163233B2 (en) | 2015-12-11 | 2018-12-25 | Shenyang Neusoft Medical Systems Co., Ltd. | Image reconstruction |
| CN109419526A (zh) * | 2017-08-31 | 2019-03-05 | 通用电气公司 | 用于数字乳房断层合成中的运动评估和校正的方法和系统 |
| US10292778B2 (en) | 2014-04-24 | 2019-05-21 | Globus Medical, Inc. | Surgical instrument holder for use with a robotic surgical system |
| US10350013B2 (en) | 2012-06-21 | 2019-07-16 | Globus Medical, Inc. | Surgical tool systems and methods |
| US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
| US10357257B2 (en) | 2014-07-14 | 2019-07-23 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
| US10420616B2 (en) | 2017-01-18 | 2019-09-24 | Globus Medical, Inc. | Robotic navigation of robotic surgical systems |
| US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
| US10485617B2 (en) | 2012-06-21 | 2019-11-26 | Globus Medical, Inc. | Surgical robot platform |
| US10546423B2 (en) | 2015-02-03 | 2020-01-28 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
| US10548620B2 (en) | 2014-01-15 | 2020-02-04 | Globus Medical, Inc. | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
| US10555782B2 (en) | 2015-02-18 | 2020-02-11 | Globus Medical, Inc. | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
| US10573023B2 (en) | 2018-04-09 | 2020-02-25 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
| US10569794B2 (en) | 2015-10-13 | 2020-02-25 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
| US10624710B2 (en) | 2012-06-21 | 2020-04-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
| US10639112B2 (en) | 2012-06-21 | 2020-05-05 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
| US10646298B2 (en) | 2015-07-31 | 2020-05-12 | Globus Medical, Inc. | Robot arm and methods of use |
| US10646283B2 (en) | 2018-02-19 | 2020-05-12 | Globus Medical Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
| US10646280B2 (en) | 2012-06-21 | 2020-05-12 | Globus Medical, Inc. | System and method for surgical tool insertion using multiaxis force and moment feedback |
| US10653497B2 (en) | 2006-02-16 | 2020-05-19 | Globus Medical, Inc. | Surgical tool systems and methods |
| US10660712B2 (en) | 2011-04-01 | 2020-05-26 | Globus Medical Inc. | Robotic system and method for spinal and other surgeries |
| US10675094B2 (en) | 2017-07-21 | 2020-06-09 | Globus Medical Inc. | Robot surgical platform |
| US10687905B2 (en) | 2015-08-31 | 2020-06-23 | KB Medical SA | Robotic surgical systems and methods |
| US10758315B2 (en) | 2012-06-21 | 2020-09-01 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
| US10765438B2 (en) | 2014-07-14 | 2020-09-08 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
| US10786313B2 (en) | 2015-08-12 | 2020-09-29 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
| US10799298B2 (en) | 2012-06-21 | 2020-10-13 | Globus Medical Inc. | Robotic fluoroscopic navigation |
| US10806471B2 (en) | 2017-01-18 | 2020-10-20 | Globus Medical, Inc. | Universal instrument guide for robotic surgical systems, surgical instrument systems, and methods of their use |
| US10813704B2 (en) | 2013-10-04 | 2020-10-27 | Kb Medical, Sa | Apparatus and systems for precise guidance of surgical tools |
| US10828120B2 (en) | 2014-06-19 | 2020-11-10 | Kb Medical, Sa | Systems and methods for performing minimally invasive surgery |
| US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
| US10842461B2 (en) | 2012-06-21 | 2020-11-24 | Globus Medical, Inc. | Systems and methods of checking registrations for surgical systems |
| US10866119B2 (en) | 2016-03-14 | 2020-12-15 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
| US10864057B2 (en) | 2017-01-18 | 2020-12-15 | Kb Medical, Sa | Universal instrument guide for robotic surgical systems, surgical instrument systems, and methods of their use |
| US10874466B2 (en) | 2012-06-21 | 2020-12-29 | Globus Medical, Inc. | System and method for surgical tool insertion using multiaxis force and moment feedback |
| US10893912B2 (en) | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
| US10898252B2 (en) | 2017-11-09 | 2021-01-26 | Globus Medical, Inc. | Surgical robotic systems for bending surgical rods, and related methods and devices |
| US20210049795A1 (en) * | 2019-10-29 | 2021-02-18 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for medical imaging |
| US10925681B2 (en) | 2015-07-31 | 2021-02-23 | Globus Medical Inc. | Robot arm and methods of use |
| US10939968B2 (en) | 2014-02-11 | 2021-03-09 | Globus Medical Inc. | Sterile handle for controlling a robotic surgical system from a sterile field |
| US10973594B2 (en) | 2015-09-14 | 2021-04-13 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
| US11039893B2 (en) | 2016-10-21 | 2021-06-22 | Globus Medical, Inc. | Robotic surgical systems |
| US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
| US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
| US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
| US11071594B2 (en) | 2017-03-16 | 2021-07-27 | KB Medical SA | Robotic navigation of robotic surgical systems |
| US11103316B2 (en) | 2014-12-02 | 2021-08-31 | Globus Medical Inc. | Robot assisted volume removal during surgery |
| US11116576B2 (en) | 2012-06-21 | 2021-09-14 | Globus Medical Inc. | Dynamic reference arrays and methods of use |
| US11134862B2 (en) | 2017-11-10 | 2021-10-05 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
| US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
| US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
| US11253216B2 (en) | 2020-04-28 | 2022-02-22 | Globus Medical Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
| US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
| US11278360B2 (en) | 2018-11-16 | 2022-03-22 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
| US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
| US11317973B2 (en) | 2020-06-09 | 2022-05-03 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
| US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
| US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11337742B2 (en) | 2018-11-05 | 2022-05-24 | Globus Medical Inc | Compliant orthopedic driver |
| US11357548B2 (en) | 2017-11-09 | 2022-06-14 | Globus Medical, Inc. | Robotic rod benders and related mechanical and motor housings |
| US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
| US11382713B2 (en) | 2020-06-16 | 2022-07-12 | Globus Medical, Inc. | Navigated surgical system with eye to XR headset display calibration |
| US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
| US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
| US11395706B2 (en) | 2012-06-21 | 2022-07-26 | Globus Medical Inc. | Surgical robot platform |
| US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
| US11419616B2 (en) | 2019-03-22 | 2022-08-23 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
| US11439444B1 (en) | 2021-07-22 | 2022-09-13 | Globus Medical, Inc. | Screw tower and rod reduction tool |
| US11439471B2 (en) | 2012-06-21 | 2022-09-13 | Globus Medical, Inc. | Surgical tool system and method |
| US11464581B2 (en) | 2020-01-28 | 2022-10-11 | Globus Medical, Inc. | Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums |
| US11510684B2 (en) | 2019-10-14 | 2022-11-29 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
| US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
| US11523785B2 (en) | 2020-09-24 | 2022-12-13 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
| US11571265B2 (en) | 2019-03-22 | 2023-02-07 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11571171B2 (en) | 2019-09-24 | 2023-02-07 | Globus Medical, Inc. | Compound curve cable chain |
| US11589771B2 (en) | 2012-06-21 | 2023-02-28 | Globus Medical Inc. | Method for recording probe movement and determining an extent of matter removed |
| US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
| US11607149B2 (en) | 2012-06-21 | 2023-03-21 | Globus Medical Inc. | Surgical tool systems and method |
| US11628023B2 (en) | 2019-07-10 | 2023-04-18 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
| US11717350B2 (en) | 2020-11-24 | 2023-08-08 | Globus Medical Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
| US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
| US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
| US11786324B2 (en) | 2012-06-21 | 2023-10-17 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
| US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
| US11793588B2 (en) | 2020-07-23 | 2023-10-24 | Globus Medical, Inc. | Sterile draping of robotic arms |
| US11794338B2 (en) | 2017-11-09 | 2023-10-24 | Globus Medical Inc. | Robotic rod benders and related mechanical and motor housings |
| US11806084B2 (en) | 2019-03-22 | 2023-11-07 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
| US11850009B2 (en) | 2021-07-06 | 2023-12-26 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
| US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
| US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
| US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
| US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
| US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
| US11877807B2 (en) | 2020-07-10 | 2024-01-23 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
| US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
| US11890066B2 (en) | 2019-09-30 | 2024-02-06 | Globus Medical, Inc | Surgical robot with passive end effector |
| US11896446B2 (en) | 2012-06-21 | 2024-02-13 | Globus Medical, Inc | Surgical robotic automation with tracking markers |
| US11911115B2 (en) | 2021-12-20 | 2024-02-27 | Globus Medical Inc. | Flat panel registration fixture and method of using same |
| US11911112B2 (en) | 2020-10-27 | 2024-02-27 | Globus Medical, Inc. | Robotic navigational system |
| US11918313B2 (en) | 2019-03-15 | 2024-03-05 | Globus Medical Inc. | Active end effectors for surgical robots |
| US11941814B2 (en) | 2020-11-04 | 2024-03-26 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
| US11944325B2 (en) | 2019-03-22 | 2024-04-02 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| CN117838169A (zh) * | 2024-03-08 | 2024-04-09 | 江苏一影医疗设备有限公司 | 一种基于站立位cbct的成像方法、系统和设备 |
| US11963755B2 (en) | 2012-06-21 | 2024-04-23 | Globus Medical Inc. | Apparatus for recording probe movement |
| US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
| US11974886B2 (en) | 2016-04-11 | 2024-05-07 | Globus Medical Inc. | Surgical tool systems and methods |
| US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
| US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
| US12048493B2 (en) | 2022-03-31 | 2024-07-30 | Globus Medical, Inc. | Camera tracking system identifying phantom markers during computer assisted surgery navigation |
| US12064189B2 (en) | 2019-12-13 | 2024-08-20 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
| US12070286B2 (en) | 2021-01-08 | 2024-08-27 | Globus Medical, Inc | System and method for ligament balancing with robotic assistance |
| US12070276B2 (en) | 2020-06-09 | 2024-08-27 | Globus Medical Inc. | Surgical object tracking in visible light via fiducial seeding and synthetic image registration |
| US12076091B2 (en) | 2020-10-27 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system |
| US12082886B2 (en) | 2017-04-05 | 2024-09-10 | Globus Medical Inc. | Robotic surgical systems for preparing holes in bone tissue and methods of their use |
| US12103480B2 (en) | 2022-03-18 | 2024-10-01 | Globus Medical Inc. | Omni-wheel cable pusher |
| US12133772B2 (en) | 2019-12-10 | 2024-11-05 | Globus Medical, Inc. | Augmented reality headset for navigated robotic surgery |
| US12150728B2 (en) | 2021-04-14 | 2024-11-26 | Globus Medical, Inc. | End effector for a surgical robot |
| US12161427B2 (en) | 2022-06-08 | 2024-12-10 | Globus Medical, Inc. | Surgical navigation system with flat panel registration fixture |
| US12178523B2 (en) | 2021-04-19 | 2024-12-31 | Globus Medical, Inc. | Computer assisted surgical navigation system for spine procedures |
| US12184636B2 (en) | 2021-10-04 | 2024-12-31 | Globus Medical, Inc. | Validating credential keys based on combinations of credential value strings and input order strings |
| US12201375B2 (en) | 2021-09-16 | 2025-01-21 | Globus Medical Inc. | Extended reality systems for visualizing and controlling operating room equipment |
| US12220176B2 (en) | 2019-12-10 | 2025-02-11 | Globus Medical, Inc. | Extended reality instrument interaction zone for navigated robotic |
| US12220120B2 (en) | 2012-06-21 | 2025-02-11 | Globus Medical, Inc. | Surgical robotic system with retractor |
| US12226169B2 (en) | 2022-07-15 | 2025-02-18 | Globus Medical, Inc. | Registration of 3D and 2D images for surgical navigation and robotic guidance without using radiopaque fiducials in the images |
| US12238087B2 (en) | 2021-10-04 | 2025-02-25 | Globus Medical, Inc. | Validating credential keys based on combinations of credential value strings and input order strings |
| US12232820B2 (en) | 2021-12-01 | 2025-02-25 | Globus Medical, Inc. | Extended reality systems with three-dimensional visualizations of medical image scan slices |
| US12251140B2 (en) | 2012-06-21 | 2025-03-18 | Globus Medical, Inc. | Methods for performing medical procedures using a surgical robot |
| US12263027B2 (en) | 2020-05-09 | 2025-04-01 | Shanghai United Imaging Healthcare Co., Ltd. | Scanning apparatus, method, and system |
| US12262954B2 (en) | 2012-06-21 | 2025-04-01 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
| US12310683B2 (en) | 2012-06-21 | 2025-05-27 | Globus Medical, Inc. | Surgical tool systems and method |
| US12318150B2 (en) | 2022-10-11 | 2025-06-03 | Globus Medical Inc. | Camera tracking system for computer assisted surgery navigation |
| US12329391B2 (en) | 2019-09-27 | 2025-06-17 | Globus Medical, Inc. | Systems and methods for robot-assisted knee arthroplasty surgery |
| US12329593B2 (en) | 2012-06-21 | 2025-06-17 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
| US12354263B2 (en) | 2022-07-15 | 2025-07-08 | Globus Medical Inc. | Registration of 3D and 2D images for surgical navigation and robotic guidance without using radiopaque fiducials in the images |
| US12394086B2 (en) | 2022-05-10 | 2025-08-19 | Globus Medical, Inc. | Accuracy check and automatic calibration of tracked instruments |
| US12396692B2 (en) | 2019-09-24 | 2025-08-26 | Globus Medical, Inc. | Compound curve cable chain |
| US12408929B2 (en) | 2019-09-27 | 2025-09-09 | Globus Medical, Inc. | Systems and methods for navigating a pin guide driver |
| US12414752B2 (en) | 2020-02-17 | 2025-09-16 | Globus Medical, Inc. | System and method of determining optimal 3-dimensional position and orientation of imaging device for imaging patient bones |
| US12430760B2 (en) | 2021-10-20 | 2025-09-30 | Globus Medical, Inc. | Registering intra-operative images transformed from pre-operative images of different imaging-modality for computer assisted navigation during surgery |
| US12446981B2 (en) | 2012-06-21 | 2025-10-21 | Globus Medical, Inc. | System and method for surgical tool insertion using multiaxis force and moment feedback |
| US12458454B2 (en) | 2021-06-21 | 2025-11-04 | Globus Medical, Inc. | Gravity compensation of end effector arm for robotic surgical system |
| US12465433B2 (en) | 2012-06-21 | 2025-11-11 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
| US12472008B2 (en) | 2012-06-21 | 2025-11-18 | Globus Medical, Inc. | Robotic fluoroscopic navigation |
| US12484969B2 (en) | 2021-07-06 | 2025-12-02 | Globdus Medical Inc. | Ultrasonic robotic surgical navigation |
| US12502220B2 (en) | 2022-11-15 | 2025-12-23 | Globus Medical, Inc. | Machine learning system for spinal surgeries |
Families Citing this family (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012083372A1 (fr) * | 2010-12-24 | 2012-06-28 | The Australian National University | Reconstruction de données d'image multidimensionnelles dynamiques |
| JP5872593B2 (ja) * | 2011-03-17 | 2016-03-01 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | マルチモダリティの心臓撮像 |
| US9986983B2 (en) | 2014-10-31 | 2018-06-05 | Covidien Lp | Computed tomography enhanced fluoroscopic system, device, and method of utilizing the same |
| CN104352246A (zh) * | 2014-12-02 | 2015-02-18 | 东南大学 | 基于可视化的锥束ct感兴趣区域的扫描方法 |
| CN104545976B (zh) * | 2014-12-30 | 2017-04-19 | 上海优益基医疗器械有限公司 | 计算机体层摄影方法和装置 |
| US10674982B2 (en) | 2015-08-06 | 2020-06-09 | Covidien Lp | System and method for local three dimensional volume reconstruction using a standard fluoroscope |
| US10716525B2 (en) | 2015-08-06 | 2020-07-21 | Covidien Lp | System and method for navigating to target and performing procedure on target utilizing fluoroscopic-based local three dimensional volume reconstruction |
| US10702226B2 (en) | 2015-08-06 | 2020-07-07 | Covidien Lp | System and method for local three dimensional volume reconstruction using a standard fluoroscope |
| US11172895B2 (en) | 2015-12-07 | 2021-11-16 | Covidien Lp | Visualization, navigation, and planning with electromagnetic navigation bronchoscopy and cone beam computed tomography integrated |
| US11051886B2 (en) | 2016-09-27 | 2021-07-06 | Covidien Lp | Systems and methods for performing a surgical navigation procedure |
| JP7126171B2 (ja) * | 2016-11-16 | 2022-08-26 | ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド | ヘリカルコンピュータ断層撮影における動き推定および補償システムと方法 |
| JP6858259B2 (ja) * | 2016-12-21 | 2021-04-14 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | ショートスキャン偏心検出器x線トモグラフィのための冗長重み付け |
| CN106780395B (zh) * | 2016-12-30 | 2019-12-20 | 上海联影医疗科技有限公司 | 去除cbct系统投影图像中运动模糊的方法及装置 |
| US10699448B2 (en) | 2017-06-29 | 2020-06-30 | Covidien Lp | System and method for identifying, marking and navigating to a target using real time two dimensional fluoroscopic data |
| WO2019075074A1 (fr) | 2017-10-10 | 2019-04-18 | Covidien Lp | Système et procédé d'identification et de marquage d'une cible dans une reconstruction tridimensionnelle fluoroscopique |
| CN107714072B (zh) * | 2017-11-20 | 2019-09-20 | 中国科学院高能物理研究所 | 缺失数据的补偿方法、计算机断层扫描成像方法及系统 |
| US10905498B2 (en) | 2018-02-08 | 2021-02-02 | Covidien Lp | System and method for catheter detection in fluoroscopic images and updating displayed position of catheter |
| KR20190103816A (ko) | 2018-02-28 | 2019-09-05 | 삼성전자주식회사 | 컴퓨터 단층 촬영 영상을 보정하는 방법 및 장치 |
| EP3618001A1 (fr) * | 2018-08-30 | 2020-03-04 | Koninklijke Philips N.V. | Compensation de mouvement efficace en tomographie à faisceau conique sur la base de la cohérence de données |
| CN113164136B (zh) | 2018-11-30 | 2025-01-07 | 爱可瑞公司 | 多模式放射设备和方法 |
| EP3909013A4 (fr) * | 2019-01-11 | 2022-10-05 | University of Central Florida Research Foundation, Inc. | Estimation et compensation de mouvement dans une tomographie assistée par ordinateur à faisceau conique (cbct) |
| CN110517330B (zh) * | 2019-08-07 | 2021-05-28 | 北京航空航天大学 | 一种偏置扫描模式下的工业锥束ct重建方法 |
| EP3827750B1 (fr) | 2019-11-29 | 2024-02-28 | SIRONA Dental Systems GmbH | Dispositif de radiographie en 3d et procédé de production d'une image radiographique en 3d |
| GB201917578D0 (en) * | 2019-12-02 | 2020-01-15 | Volpara Health Tech Limited | Sytem and method for generating training images |
| CN111528890B (zh) * | 2020-05-09 | 2024-03-15 | 上海联影医疗科技股份有限公司 | 一种医学图像获取方法和系统 |
| CN111896566B (zh) * | 2020-07-20 | 2023-07-18 | 上海交通大学 | 一种增加同步辐射光源成像范围的装置及方法 |
| CN112221022A (zh) * | 2020-09-24 | 2021-01-15 | 西安大医集团股份有限公司 | 一种成像系统、方法及放射治疗系统 |
| US11647975B2 (en) | 2021-06-04 | 2023-05-16 | Accuray, Inc. | Radiotherapy apparatus and methods for treatment and imaging using hybrid MeV-keV, multi-energy data acquisition for enhanced imaging |
| US11605186B2 (en) | 2021-06-30 | 2023-03-14 | Accuray, Inc. | Anchored kernel scatter estimate |
| US11794039B2 (en) * | 2021-07-13 | 2023-10-24 | Accuray, Inc. | Multimodal radiation apparatus and methods |
| US11854123B2 (en) | 2021-07-23 | 2023-12-26 | Accuray, Inc. | Sparse background measurement and correction for improving imaging |
| US12257083B2 (en) | 2022-02-07 | 2025-03-25 | Accuray Inc. | Methods for saturation correction and dynamic gain configuration and apparatuses for performing the same |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6546068B1 (en) * | 1999-01-19 | 2003-04-08 | Fuji Photo Film Co., Ltd. | Image data acquisition method and image data acquisition device |
| US20040013225A1 (en) * | 2002-03-19 | 2004-01-22 | Breakaway Imaging, Llc | Systems and methods for imaging large field-of-view objects |
| US20040179643A1 (en) * | 2002-08-21 | 2004-09-16 | Breakaway Imaging, Llc, Littleton, Ma | Apparatus and method for reconstruction of volumetric images in a divergent scanning computed tomography system |
| US20040258195A1 (en) * | 2003-06-17 | 2004-12-23 | Yukihiro Hara | Diagnostic X-ray system and CT image production method |
| GB2422759A (en) * | 2004-08-05 | 2006-08-02 | Elekta Ab | Rotatable X-ray scan apparatus with cone beam offset |
| US20080049891A1 (en) * | 2006-08-28 | 2008-02-28 | Zhye Yin | Methods for analytic reconstruction for mult-source inverse geometry ct |
| US20080089468A1 (en) * | 2006-09-01 | 2008-04-17 | Siemens Aktiengesellschaft | Method for reconstructing a three-dimensional image volume and x-ray devices |
Family Cites Families (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2614083B2 (de) * | 1976-04-01 | 1979-02-08 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Röntgenschichtgerät zur Herstellung von Transversalschichtbildern |
| US4670892A (en) * | 1977-11-15 | 1987-06-02 | Philips Medical Systems, Inc. | Method and apparatus for computed tomography of portions of a body plane |
| JP2508078B2 (ja) | 1987-04-30 | 1996-06-19 | 株式会社島津製作所 | X線画像処理装置 |
| US5032990A (en) * | 1989-05-30 | 1991-07-16 | General Electric Company | Translate rotate scanning method for x-ray imaging |
| US5233518A (en) * | 1989-11-13 | 1993-08-03 | General Electric Company | Extrapolative reconstruction method for helical scanning |
| JP2589613B2 (ja) * | 1991-09-17 | 1997-03-12 | 株式会社日立製作所 | X線ctの画像化方法及びx線ct装置 |
| US5319693A (en) * | 1992-12-30 | 1994-06-07 | General Electric Company | Three dimensional computerized tomography scanning configuration for imaging large objects with smaller area detectors |
| JP3548339B2 (ja) | 1996-06-12 | 2004-07-28 | 株式会社日立メディコ | X線撮影装置 |
| JP3540916B2 (ja) * | 1997-06-26 | 2004-07-07 | 株式会社日立メディコ | 3次元x線ct装置 |
| JP2002541896A (ja) * | 1999-04-15 | 2002-12-10 | ゼネラル・エレクトリック・カンパニイ | 半撮影域のみをカバーする縮小サイズ検出器を利用するコンピュータ断層撮影システムに用いる装置及び方法 |
| US6463118B2 (en) * | 2000-12-29 | 2002-10-08 | Ge Medical Systems Global Technology Company, Llc | Computed tomography (CT) weighting for high quality image recontruction |
| US6643351B2 (en) * | 2001-03-12 | 2003-11-04 | Shimadzu Corporation | Radiographic apparatus |
| US6683935B2 (en) * | 2001-09-28 | 2004-01-27 | Bio-Imaging Research, Inc. | Computed tomography with virtual tilt and angulation |
| JP2004136021A (ja) * | 2002-10-21 | 2004-05-13 | Toshiba Corp | 集中照射型放射線治療装置 |
| JP2004173856A (ja) * | 2002-11-26 | 2004-06-24 | Canon Inc | X線デジタル断層撮影装置 |
| JP2004180715A (ja) * | 2002-11-29 | 2004-07-02 | Toshiba Corp | X線コンピュータ断層撮影装置 |
| EP1639550A1 (fr) * | 2003-06-18 | 2006-03-29 | Philips Intellectual Property & Standards GmbH | Technique de reconstruction a compensation du mouvement |
| US7333587B2 (en) | 2004-02-27 | 2008-02-19 | General Electric Company | Method and system for imaging using multiple offset X-ray emission points |
| JP4579971B2 (ja) * | 2004-03-02 | 2010-11-10 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 動き補償方法および装置 |
| US6956925B1 (en) * | 2004-03-29 | 2005-10-18 | Ge Medical Systems Global Technology Company, Llc | Methods and systems for multi-modality imaging |
| US7142629B2 (en) * | 2004-03-31 | 2006-11-28 | General Electric Company | Stationary computed tomography system and method |
| JP2005334230A (ja) * | 2004-05-26 | 2005-12-08 | Ge Medical Systems Global Technology Co Llc | 放射線ct装置およびそれを用いた画像再構成方法 |
| US20050265523A1 (en) * | 2004-05-28 | 2005-12-01 | Strobel Norbert K | C-arm device with adjustable detector offset for cone beam imaging involving partial circle scan trajectories |
| US20090185655A1 (en) * | 2004-10-06 | 2009-07-23 | Koninklijke Philips Electronics N.V. | Computed tomography method |
| US7272205B2 (en) * | 2004-11-17 | 2007-09-18 | Purdue Research Foundation | Methods, apparatus, and software to facilitate computing the elements of a forward projection matrix |
| EP1828985A1 (fr) | 2004-11-24 | 2007-09-05 | Wisconsin Alumni Research Foundation | Reconstruction d'image de faisceau eventail et de faisceau conique utilisant une retroprojection filtree de donnees de projection differenciees |
| DE102004057308A1 (de) * | 2004-11-26 | 2006-07-13 | Siemens Ag | Angiographische Röntgendiagnostikeinrichtung zur Rotationsangiographie |
| US7062006B1 (en) | 2005-01-19 | 2006-06-13 | The Board Of Trustees Of The Leland Stanford Junior University | Computed tomography with increased field of view |
| WO2007020318A2 (fr) * | 2005-08-17 | 2007-02-22 | Palodex Group Oy | Appareil d'imagerie par rayons x et procede d'imagerie par rayons x |
| US7783096B2 (en) * | 2005-10-17 | 2010-08-24 | Siemens Corporation | Device systems and methods for imaging |
| DE102006046034A1 (de) * | 2006-02-01 | 2007-08-16 | Siemens Ag | Röntgen-CT-System zur Erzeugung projektiver und tomographischer Phasenkontrastaufnahmen |
| US20070268994A1 (en) | 2006-05-02 | 2007-11-22 | Guang-Hong Chen | X- Ray System For Use in Image Guided Procedures |
| CN100570343C (zh) | 2006-06-13 | 2009-12-16 | 北京航空航天大学 | 大视场三维ct成像方法 |
| US7388940B1 (en) * | 2006-11-24 | 2008-06-17 | General Electric Company | Architectures for cardiac CT based on area x-ray sources |
-
2009
- 2009-12-23 EP EP09804149A patent/EP2389114A1/fr not_active Withdrawn
- 2009-12-23 JP JP2011546980A patent/JP2012515592A/ja active Pending
- 2009-12-23 RU RU2011134879/14A patent/RU2529478C2/ru not_active IP Right Cessation
- 2009-12-23 US US13/145,128 patent/US20110286573A1/en not_active Abandoned
- 2009-12-23 WO PCT/IB2009/055951 patent/WO2010084389A1/fr not_active Ceased
- 2009-12-23 EP EP13150490.4A patent/EP2586374B1/fr not_active Not-in-force
- 2009-12-23 CN CN200980156960.4A patent/CN102325499B/zh not_active Expired - Fee Related
- 2009-12-23 CN CN201310248572.7A patent/CN103349556B/zh not_active Expired - Fee Related
-
2015
- 2015-03-10 JP JP2015046575A patent/JP6270760B2/ja not_active Expired - Fee Related
- 2015-09-17 US US14/856,713 patent/US9710936B2/en not_active Expired - Fee Related
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6546068B1 (en) * | 1999-01-19 | 2003-04-08 | Fuji Photo Film Co., Ltd. | Image data acquisition method and image data acquisition device |
| US20040013225A1 (en) * | 2002-03-19 | 2004-01-22 | Breakaway Imaging, Llc | Systems and methods for imaging large field-of-view objects |
| US20040179643A1 (en) * | 2002-08-21 | 2004-09-16 | Breakaway Imaging, Llc, Littleton, Ma | Apparatus and method for reconstruction of volumetric images in a divergent scanning computed tomography system |
| US20040258195A1 (en) * | 2003-06-17 | 2004-12-23 | Yukihiro Hara | Diagnostic X-ray system and CT image production method |
| GB2422759A (en) * | 2004-08-05 | 2006-08-02 | Elekta Ab | Rotatable X-ray scan apparatus with cone beam offset |
| US20080049891A1 (en) * | 2006-08-28 | 2008-02-28 | Zhye Yin | Methods for analytic reconstruction for mult-source inverse geometry ct |
| US20080089468A1 (en) * | 2006-09-01 | 2008-04-17 | Siemens Aktiengesellschaft | Method for reconstructing a three-dimensional image volume and x-ray devices |
Non-Patent Citations (3)
| Title |
|---|
| 21CFR1020.30, Code of Federal Regulation, Title 21, Volume 8, Section 1020.30, Revised 1 April 2007 * |
| 21CFR1020.31, Code of Federal Regulation, Title 21, Volume 8, Section 1020.31, Revised 1 April 2013 * |
| Lillian Gill, Director of Compliance, Resource manual for compliance test parameters of diagnostic x-ray systems, Food and Drug Administration, 15 July 1999 * |
Cited By (282)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10653497B2 (en) | 2006-02-16 | 2020-05-19 | Globus Medical, Inc. | Surgical tool systems and methods |
| US11628039B2 (en) | 2006-02-16 | 2023-04-18 | Globus Medical Inc. | Surgical tool systems and methods |
| US10893912B2 (en) | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
| US11744648B2 (en) | 2011-04-01 | 2023-09-05 | Globus Medicall, Inc. | Robotic system and method for spinal and other surgeries |
| US11202681B2 (en) | 2011-04-01 | 2021-12-21 | Globus Medical, Inc. | Robotic system and method for spinal and other surgeries |
| US12096994B2 (en) | 2011-04-01 | 2024-09-24 | KB Medical SA | Robotic system and method for spinal and other surgeries |
| US10660712B2 (en) | 2011-04-01 | 2020-05-26 | Globus Medical Inc. | Robotic system and method for spinal and other surgeries |
| US20130195240A1 (en) * | 2012-01-27 | 2013-08-01 | Toshiba Medical Systems Corporation | X-ray ct system |
| CN103222877A (zh) * | 2012-01-27 | 2013-07-31 | 株式会社东芝 | X射线ct装置 |
| US9782142B2 (en) * | 2012-01-27 | 2017-10-10 | Toshiba Medical Systems Corporation | X-ray CT system |
| US11819283B2 (en) | 2012-06-21 | 2023-11-21 | Globus Medical Inc. | Systems and methods related to robotic guidance in surgery |
| US11395706B2 (en) | 2012-06-21 | 2022-07-26 | Globus Medical Inc. | Surgical robot platform |
| US10350013B2 (en) | 2012-06-21 | 2019-07-16 | Globus Medical, Inc. | Surgical tool systems and methods |
| US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
| US11589771B2 (en) | 2012-06-21 | 2023-02-28 | Globus Medical Inc. | Method for recording probe movement and determining an extent of matter removed |
| US12376916B2 (en) | 2012-06-21 | 2025-08-05 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
| US11439471B2 (en) | 2012-06-21 | 2022-09-13 | Globus Medical, Inc. | Surgical tool system and method |
| US10485617B2 (en) | 2012-06-21 | 2019-11-26 | Globus Medical, Inc. | Surgical robot platform |
| US10531927B2 (en) | 2012-06-21 | 2020-01-14 | Globus Medical, Inc. | Methods for performing invasive medical procedures using a surgical robot |
| US11607149B2 (en) | 2012-06-21 | 2023-03-21 | Globus Medical Inc. | Surgical tool systems and method |
| US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
| US11026756B2 (en) | 2012-06-21 | 2021-06-08 | Globus Medical, Inc. | Surgical robot platform |
| US12336775B2 (en) | 2012-06-21 | 2025-06-24 | Globus Medical Inc. | Surgical robot platform |
| US12329593B2 (en) | 2012-06-21 | 2025-06-17 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
| US11684433B2 (en) | 2012-06-21 | 2023-06-27 | Globus Medical Inc. | Surgical tool systems and method |
| US10624710B2 (en) | 2012-06-21 | 2020-04-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
| US10639112B2 (en) | 2012-06-21 | 2020-05-05 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
| US11684431B2 (en) | 2012-06-21 | 2023-06-27 | Globus Medical, Inc. | Surgical robot platform |
| US11690687B2 (en) | 2012-06-21 | 2023-07-04 | Globus Medical Inc. | Methods for performing medical procedures using a surgical robot |
| US11331153B2 (en) | 2012-06-21 | 2022-05-17 | Globus Medical, Inc. | Surgical robot platform |
| US10646280B2 (en) | 2012-06-21 | 2020-05-12 | Globus Medical, Inc. | System and method for surgical tool insertion using multiaxis force and moment feedback |
| US12409001B2 (en) | 2012-06-21 | 2025-09-09 | Globus Medical, Inc. | Surgical robot platform |
| US12446981B2 (en) | 2012-06-21 | 2025-10-21 | Globus Medical, Inc. | System and method for surgical tool insertion using multiaxis force and moment feedback |
| US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
| US12262954B2 (en) | 2012-06-21 | 2025-04-01 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
| US12251140B2 (en) | 2012-06-21 | 2025-03-18 | Globus Medical, Inc. | Methods for performing medical procedures using a surgical robot |
| US10758315B2 (en) | 2012-06-21 | 2020-09-01 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
| US11786324B2 (en) | 2012-06-21 | 2023-10-17 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
| US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
| US10799298B2 (en) | 2012-06-21 | 2020-10-13 | Globus Medical Inc. | Robotic fluoroscopic navigation |
| US12220120B2 (en) | 2012-06-21 | 2025-02-11 | Globus Medical, Inc. | Surgical robotic system with retractor |
| US11284949B2 (en) | 2012-06-21 | 2022-03-29 | Globus Medical, Inc. | Surgical robot platform |
| US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
| US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
| US10835326B2 (en) | 2012-06-21 | 2020-11-17 | Globus Medical Inc. | Surgical robot platform |
| US10835328B2 (en) | 2012-06-21 | 2020-11-17 | Globus Medical, Inc. | Surgical robot platform |
| US11819365B2 (en) | 2012-06-21 | 2023-11-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
| US10842461B2 (en) | 2012-06-21 | 2020-11-24 | Globus Medical, Inc. | Systems and methods of checking registrations for surgical systems |
| US12453609B2 (en) | 2012-06-21 | 2025-10-28 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
| US12472008B2 (en) | 2012-06-21 | 2025-11-18 | Globus Medical, Inc. | Robotic fluoroscopic navigation |
| US12070285B2 (en) | 2012-06-21 | 2024-08-27 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
| US10874466B2 (en) | 2012-06-21 | 2020-12-29 | Globus Medical, Inc. | System and method for surgical tool insertion using multiaxis force and moment feedback |
| US12465433B2 (en) | 2012-06-21 | 2025-11-11 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
| US11191598B2 (en) | 2012-06-21 | 2021-12-07 | Globus Medical, Inc. | Surgical robot platform |
| US10912617B2 (en) | 2012-06-21 | 2021-02-09 | Globus Medical, Inc. | Surgical robot platform |
| US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
| US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
| US11135022B2 (en) | 2012-06-21 | 2021-10-05 | Globus Medical, Inc. | Surgical robot platform |
| US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
| US12310683B2 (en) | 2012-06-21 | 2025-05-27 | Globus Medical, Inc. | Surgical tool systems and method |
| US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
| US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
| US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
| US11963755B2 (en) | 2012-06-21 | 2024-04-23 | Globus Medical Inc. | Apparatus for recording probe movement |
| US11116576B2 (en) | 2012-06-21 | 2021-09-14 | Globus Medical Inc. | Dynamic reference arrays and methods of use |
| US11911225B2 (en) | 2012-06-21 | 2024-02-27 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
| US11896446B2 (en) | 2012-06-21 | 2024-02-13 | Globus Medical, Inc | Surgical robotic automation with tracking markers |
| US11109922B2 (en) | 2012-06-21 | 2021-09-07 | Globus Medical, Inc. | Surgical tool systems and method |
| US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
| US11103317B2 (en) | 2012-06-21 | 2021-08-31 | Globus Medical, Inc. | Surgical robot platform |
| US20140081131A1 (en) * | 2012-09-18 | 2014-03-20 | Yiannis Kyriakou | Angiographic examination method |
| US9320488B2 (en) * | 2013-02-13 | 2016-04-26 | Siemens Aktiengesellschaft | Method and device for correction of movement artifacts in a computed tomography image |
| US20140226891A1 (en) * | 2013-02-13 | 2014-08-14 | Holger Kunze | Method and Device for Correction of Movement Artifacts in a Computed Tomography Image |
| US11896363B2 (en) | 2013-03-15 | 2024-02-13 | Globus Medical Inc. | Surgical robot platform |
| US12295676B2 (en) | 2013-10-04 | 2025-05-13 | Kb Medical, Sa | Apparatus, systems, and methods for precise guidance of surgical tools |
| US10813704B2 (en) | 2013-10-04 | 2020-10-27 | Kb Medical, Sa | Apparatus and systems for precise guidance of surgical tools |
| US12114939B2 (en) | 2013-10-04 | 2024-10-15 | KB Medical SA | Apparatus, systems, and methods for precise guidance of surgical tools |
| US11172997B2 (en) | 2013-10-04 | 2021-11-16 | Kb Medical, Sa | Apparatus and systems for precise guidance of surgical tools |
| US10548620B2 (en) | 2014-01-15 | 2020-02-04 | Globus Medical, Inc. | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
| US11737766B2 (en) | 2014-01-15 | 2023-08-29 | Globus Medical Inc. | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
| US10939968B2 (en) | 2014-02-11 | 2021-03-09 | Globus Medical Inc. | Sterile handle for controlling a robotic surgical system from a sterile field |
| US11793583B2 (en) | 2014-04-24 | 2023-10-24 | Globus Medical Inc. | Surgical instrument holder for use with a robotic surgical system |
| US10828116B2 (en) | 2014-04-24 | 2020-11-10 | Kb Medical, Sa | Surgical instrument holder for use with a robotic surgical system |
| US10292778B2 (en) | 2014-04-24 | 2019-05-21 | Globus Medical, Inc. | Surgical instrument holder for use with a robotic surgical system |
| US12042243B2 (en) | 2014-06-19 | 2024-07-23 | Globus Medical, Inc | Systems and methods for performing minimally invasive surgery |
| US10828120B2 (en) | 2014-06-19 | 2020-11-10 | Kb Medical, Sa | Systems and methods for performing minimally invasive surgery |
| US11534179B2 (en) | 2014-07-14 | 2022-12-27 | Globus Medical, Inc. | Anti-skid surgical instrument for use in preparing holes in bone tissue |
| US10945742B2 (en) | 2014-07-14 | 2021-03-16 | Globus Medical Inc. | Anti-skid surgical instrument for use in preparing holes in bone tissue |
| US10357257B2 (en) | 2014-07-14 | 2019-07-23 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
| US10765438B2 (en) | 2014-07-14 | 2020-09-08 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
| US11103316B2 (en) | 2014-12-02 | 2021-08-31 | Globus Medical Inc. | Robot assisted volume removal during surgery |
| US11461983B2 (en) | 2015-02-03 | 2022-10-04 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
| US11763531B2 (en) | 2015-02-03 | 2023-09-19 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
| US12002171B2 (en) | 2015-02-03 | 2024-06-04 | Globus Medical, Inc | Surgeon head-mounted display apparatuses |
| US10546423B2 (en) | 2015-02-03 | 2020-01-28 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
| US12229906B2 (en) | 2015-02-03 | 2025-02-18 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
| US11217028B2 (en) | 2015-02-03 | 2022-01-04 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
| US11176750B2 (en) | 2015-02-03 | 2021-11-16 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
| US11734901B2 (en) | 2015-02-03 | 2023-08-22 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
| US10650594B2 (en) | 2015-02-03 | 2020-05-12 | Globus Medical Inc. | Surgeon head-mounted display apparatuses |
| US11062522B2 (en) | 2015-02-03 | 2021-07-13 | Global Medical Inc | Surgeon head-mounted display apparatuses |
| US10580217B2 (en) | 2015-02-03 | 2020-03-03 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
| US12076095B2 (en) | 2015-02-18 | 2024-09-03 | Globus Medical, Inc. | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
| US10555782B2 (en) | 2015-02-18 | 2020-02-11 | Globus Medical, Inc. | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
| US11266470B2 (en) | 2015-02-18 | 2022-03-08 | KB Medical SA | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
| US11672622B2 (en) | 2015-07-31 | 2023-06-13 | Globus Medical, Inc. | Robot arm and methods of use |
| US10646298B2 (en) | 2015-07-31 | 2020-05-12 | Globus Medical, Inc. | Robot arm and methods of use |
| US11337769B2 (en) | 2015-07-31 | 2022-05-24 | Globus Medical, Inc. | Robot arm and methods of use |
| US12364562B2 (en) | 2015-07-31 | 2025-07-22 | Globus Medical, Inc. | Robot arm and methods of use |
| US10925681B2 (en) | 2015-07-31 | 2021-02-23 | Globus Medical Inc. | Robot arm and methods of use |
| US11751950B2 (en) | 2015-08-12 | 2023-09-12 | Globus Medical Inc. | Devices and methods for temporary mounting of parts to bone |
| US10786313B2 (en) | 2015-08-12 | 2020-09-29 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
| US11872000B2 (en) | 2015-08-31 | 2024-01-16 | Globus Medical, Inc | Robotic surgical systems and methods |
| US12472015B2 (en) | 2015-08-31 | 2025-11-18 | Globus Medical Inc. | Robotic surgical systems and methods |
| US10687905B2 (en) | 2015-08-31 | 2020-06-23 | KB Medical SA | Robotic surgical systems and methods |
| US10973594B2 (en) | 2015-09-14 | 2021-04-13 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
| US12465437B2 (en) | 2015-09-14 | 2025-11-11 | Global Medical, Inc. | Surgical robotic systems and methods thereof |
| US10569794B2 (en) | 2015-10-13 | 2020-02-25 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
| US11066090B2 (en) | 2015-10-13 | 2021-07-20 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
| US10008012B2 (en) | 2015-12-11 | 2018-06-26 | Shenyang Neusoft Medical Systems Co., Ltd. | Image reconstruction |
| US10163233B2 (en) | 2015-12-11 | 2018-12-25 | Shenyang Neusoft Medical Systems Co., Ltd. | Image reconstruction |
| US11986333B2 (en) | 2016-02-03 | 2024-05-21 | Globus Medical Inc. | Portable medical imaging system |
| US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
| US11801022B2 (en) | 2016-02-03 | 2023-10-31 | Globus Medical, Inc. | Portable medical imaging system |
| US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
| US12016714B2 (en) | 2016-02-03 | 2024-06-25 | Globus Medical Inc. | Portable medical imaging system |
| US10687779B2 (en) | 2016-02-03 | 2020-06-23 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
| US10117632B2 (en) | 2016-02-03 | 2018-11-06 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
| US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
| US12484866B2 (en) | 2016-02-03 | 2025-12-02 | Globus Medical, Inc. | Portable medical imaging system and method |
| US11523784B2 (en) | 2016-02-03 | 2022-12-13 | Globus Medical, Inc. | Portable medical imaging system |
| US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
| US10849580B2 (en) | 2016-02-03 | 2020-12-01 | Globus Medical Inc. | Portable medical imaging system |
| US10866119B2 (en) | 2016-03-14 | 2020-12-15 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
| US11920957B2 (en) | 2016-03-14 | 2024-03-05 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
| US12044552B2 (en) | 2016-03-14 | 2024-07-23 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
| US11668588B2 (en) | 2016-03-14 | 2023-06-06 | Globus Medical Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
| US11974886B2 (en) | 2016-04-11 | 2024-05-07 | Globus Medical Inc. | Surgical tool systems and methods |
| US12295682B2 (en) | 2016-10-21 | 2025-05-13 | Globus Medical, Inc. | Robotic surgical systems |
| US11806100B2 (en) | 2016-10-21 | 2023-11-07 | Kb Medical, Sa | Robotic surgical systems |
| US11039893B2 (en) | 2016-10-21 | 2021-06-22 | Globus Medical, Inc. | Robotic surgical systems |
| US20180139467A1 (en) * | 2016-11-14 | 2018-05-17 | Samsung Electronics Co., Ltd. | Medical imaging apparatus, medical image processing method, and computer-readable recording medium related to the medical image processing method |
| US11529195B2 (en) | 2017-01-18 | 2022-12-20 | Globus Medical Inc. | Robotic navigation of robotic surgical systems |
| US10864057B2 (en) | 2017-01-18 | 2020-12-15 | Kb Medical, Sa | Universal instrument guide for robotic surgical systems, surgical instrument systems, and methods of their use |
| US11779408B2 (en) | 2017-01-18 | 2023-10-10 | Globus Medical, Inc. | Robotic navigation of robotic surgical systems |
| US12186032B2 (en) | 2017-01-18 | 2025-01-07 | Globus Medical Inc. | Robotic navigation of robotic surgical systems |
| US10806471B2 (en) | 2017-01-18 | 2020-10-20 | Globus Medical, Inc. | Universal instrument guide for robotic surgical systems, surgical instrument systems, and methods of their use |
| US10420616B2 (en) | 2017-01-18 | 2019-09-24 | Globus Medical, Inc. | Robotic navigation of robotic surgical systems |
| US11813030B2 (en) | 2017-03-16 | 2023-11-14 | Globus Medical, Inc. | Robotic navigation of robotic surgical systems |
| US11071594B2 (en) | 2017-03-16 | 2021-07-27 | KB Medical SA | Robotic navigation of robotic surgical systems |
| US12082886B2 (en) | 2017-04-05 | 2024-09-10 | Globus Medical Inc. | Robotic surgical systems for preparing holes in bone tissue and methods of their use |
| US12193756B2 (en) | 2017-07-21 | 2025-01-14 | Globus Medical, Inc. | Robot surgical platform |
| US11135015B2 (en) | 2017-07-21 | 2021-10-05 | Globus Medical, Inc. | Robot surgical platform |
| US10675094B2 (en) | 2017-07-21 | 2020-06-09 | Globus Medical Inc. | Robot surgical platform |
| US11771499B2 (en) | 2017-07-21 | 2023-10-03 | Globus Medical Inc. | Robot surgical platform |
| US11253320B2 (en) | 2017-07-21 | 2022-02-22 | Globus Medical Inc. | Robot surgical platform |
| CN109419526A (zh) * | 2017-08-31 | 2019-03-05 | 通用电气公司 | 用于数字乳房断层合成中的运动评估和校正的方法和系统 |
| US11357548B2 (en) | 2017-11-09 | 2022-06-14 | Globus Medical, Inc. | Robotic rod benders and related mechanical and motor housings |
| US11794338B2 (en) | 2017-11-09 | 2023-10-24 | Globus Medical Inc. | Robotic rod benders and related mechanical and motor housings |
| US10898252B2 (en) | 2017-11-09 | 2021-01-26 | Globus Medical, Inc. | Surgical robotic systems for bending surgical rods, and related methods and devices |
| US11382666B2 (en) | 2017-11-09 | 2022-07-12 | Globus Medical Inc. | Methods providing bend plans for surgical rods and related controllers and computer program products |
| US11786144B2 (en) | 2017-11-10 | 2023-10-17 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
| US12471801B2 (en) | 2017-11-10 | 2025-11-18 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
| US11134862B2 (en) | 2017-11-10 | 2021-10-05 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
| US10646283B2 (en) | 2018-02-19 | 2020-05-12 | Globus Medical Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
| US12336771B2 (en) | 2018-02-19 | 2025-06-24 | Globus Medical Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
| US11694355B2 (en) | 2018-04-09 | 2023-07-04 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
| US11100668B2 (en) | 2018-04-09 | 2021-08-24 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
| US10573023B2 (en) | 2018-04-09 | 2020-02-25 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
| US11751927B2 (en) | 2018-11-05 | 2023-09-12 | Globus Medical Inc. | Compliant orthopedic driver |
| US11832863B2 (en) | 2018-11-05 | 2023-12-05 | Globus Medical, Inc. | Compliant orthopedic driver |
| US11337742B2 (en) | 2018-11-05 | 2022-05-24 | Globus Medical Inc | Compliant orthopedic driver |
| US12121278B2 (en) | 2018-11-05 | 2024-10-22 | Globus Medical, Inc. | Compliant orthopedic driver |
| US12295677B2 (en) | 2018-11-16 | 2025-05-13 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
| US11278360B2 (en) | 2018-11-16 | 2022-03-22 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
| US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
| US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
| US11969224B2 (en) | 2018-12-04 | 2024-04-30 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
| US12329476B2 (en) | 2018-12-04 | 2025-06-17 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
| US12484981B2 (en) | 2019-03-15 | 2025-12-02 | Globus Medical, Inc. | Active end effectors for surgical robots |
| US11918313B2 (en) | 2019-03-15 | 2024-03-05 | Globus Medical Inc. | Active end effectors for surgical robots |
| US11419616B2 (en) | 2019-03-22 | 2022-08-23 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US12458451B2 (en) | 2019-03-22 | 2025-11-04 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
| US11806084B2 (en) | 2019-03-22 | 2023-11-07 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
| US11944325B2 (en) | 2019-03-22 | 2024-04-02 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11571265B2 (en) | 2019-03-22 | 2023-02-07 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
| US12127803B2 (en) | 2019-03-22 | 2024-10-29 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US12268506B2 (en) | 2019-03-22 | 2025-04-08 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
| US11744598B2 (en) | 2019-03-22 | 2023-09-05 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US12268401B2 (en) | 2019-03-22 | 2025-04-08 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11737696B2 (en) | 2019-03-22 | 2023-08-29 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
| US11850012B2 (en) | 2019-03-22 | 2023-12-26 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
| US11628023B2 (en) | 2019-07-10 | 2023-04-18 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
| US12076097B2 (en) | 2019-07-10 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
| US12396692B2 (en) | 2019-09-24 | 2025-08-26 | Globus Medical, Inc. | Compound curve cable chain |
| US11571171B2 (en) | 2019-09-24 | 2023-02-07 | Globus Medical, Inc. | Compound curve cable chain |
| US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
| US12408929B2 (en) | 2019-09-27 | 2025-09-09 | Globus Medical, Inc. | Systems and methods for navigating a pin guide driver |
| US12329391B2 (en) | 2019-09-27 | 2025-06-17 | Globus Medical, Inc. | Systems and methods for robot-assisted knee arthroplasty surgery |
| US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
| US11890066B2 (en) | 2019-09-30 | 2024-02-06 | Globus Medical, Inc | Surgical robot with passive end effector |
| US11844532B2 (en) | 2019-10-14 | 2023-12-19 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
| US11510684B2 (en) | 2019-10-14 | 2022-11-29 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
| US12121240B2 (en) | 2019-10-14 | 2024-10-22 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
| US20210049795A1 (en) * | 2019-10-29 | 2021-02-18 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for medical imaging |
| US11776170B2 (en) * | 2019-10-29 | 2023-10-03 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for medical imaging |
| US12220176B2 (en) | 2019-12-10 | 2025-02-11 | Globus Medical, Inc. | Extended reality instrument interaction zone for navigated robotic |
| US12336868B2 (en) | 2019-12-10 | 2025-06-24 | Globus Medical, Inc. | Augmented reality headset with varied opacity for navigated robotic surgery |
| US12133772B2 (en) | 2019-12-10 | 2024-11-05 | Globus Medical, Inc. | Augmented reality headset for navigated robotic surgery |
| US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
| US12064189B2 (en) | 2019-12-13 | 2024-08-20 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
| US12310678B2 (en) | 2020-01-28 | 2025-05-27 | Globus Medical, Inc. | Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums |
| US11883117B2 (en) | 2020-01-28 | 2024-01-30 | Globus Medical, Inc. | Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums |
| US11464581B2 (en) | 2020-01-28 | 2022-10-11 | Globus Medical, Inc. | Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums |
| US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
| US12414752B2 (en) | 2020-02-17 | 2025-09-16 | Globus Medical, Inc. | System and method of determining optimal 3-dimensional position and orientation of imaging device for imaging patient bones |
| US12295798B2 (en) | 2020-02-19 | 2025-05-13 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
| US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
| US11690697B2 (en) | 2020-02-19 | 2023-07-04 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
| US12310776B2 (en) | 2020-04-28 | 2025-05-27 | Globus Medical, Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
| US11253216B2 (en) | 2020-04-28 | 2022-02-22 | Globus Medical Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
| US12115028B2 (en) | 2020-05-08 | 2024-10-15 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
| US12225181B2 (en) | 2020-05-08 | 2025-02-11 | Globus Medical, Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
| US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
| US11838493B2 (en) | 2020-05-08 | 2023-12-05 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
| US11839435B2 (en) | 2020-05-08 | 2023-12-12 | Globus Medical, Inc. | Extended reality headset tool tracking and control |
| US12349987B2 (en) | 2020-05-08 | 2025-07-08 | Globus Medical, Inc. | Extended reality headset tool tracking and control |
| US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
| US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
| US12263027B2 (en) | 2020-05-09 | 2025-04-01 | Shanghai United Imaging Healthcare Co., Ltd. | Scanning apparatus, method, and system |
| US11317973B2 (en) | 2020-06-09 | 2022-05-03 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
| US12070276B2 (en) | 2020-06-09 | 2024-08-27 | Globus Medical Inc. | Surgical object tracking in visible light via fiducial seeding and synthetic image registration |
| US12239388B2 (en) | 2020-06-09 | 2025-03-04 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
| US11382713B2 (en) | 2020-06-16 | 2022-07-12 | Globus Medical, Inc. | Navigated surgical system with eye to XR headset display calibration |
| US11877807B2 (en) | 2020-07-10 | 2024-01-23 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
| US12376932B2 (en) | 2020-07-23 | 2025-08-05 | Globus Medical, Inc. | Sterile draping of robotic arms |
| US11793588B2 (en) | 2020-07-23 | 2023-10-24 | Globus Medical, Inc. | Sterile draping of robotic arms |
| US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
| US12295765B2 (en) | 2020-09-24 | 2025-05-13 | Globus Medical Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal c-arm movement |
| US11890122B2 (en) | 2020-09-24 | 2024-02-06 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal c-arm movement |
| US11523785B2 (en) | 2020-09-24 | 2022-12-13 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
| US11911112B2 (en) | 2020-10-27 | 2024-02-27 | Globus Medical, Inc. | Robotic navigational system |
| US12076091B2 (en) | 2020-10-27 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system |
| US12299893B2 (en) | 2020-11-04 | 2025-05-13 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
| US11941814B2 (en) | 2020-11-04 | 2024-03-26 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
| US11717350B2 (en) | 2020-11-24 | 2023-08-08 | Globus Medical Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
| US12491030B2 (en) | 2020-11-24 | 2025-12-09 | Globus Medical, Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
| US12161433B2 (en) | 2021-01-08 | 2024-12-10 | Globus Medical, Inc. | System and method for ligament balancing with robotic assistance |
| US12070286B2 (en) | 2021-01-08 | 2024-08-27 | Globus Medical, Inc | System and method for ligament balancing with robotic assistance |
| US12150728B2 (en) | 2021-04-14 | 2024-11-26 | Globus Medical, Inc. | End effector for a surgical robot |
| US12178523B2 (en) | 2021-04-19 | 2024-12-31 | Globus Medical, Inc. | Computer assisted surgical navigation system for spine procedures |
| US12458454B2 (en) | 2021-06-21 | 2025-11-04 | Globus Medical, Inc. | Gravity compensation of end effector arm for robotic surgical system |
| US11857273B2 (en) | 2021-07-06 | 2024-01-02 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
| US12484969B2 (en) | 2021-07-06 | 2025-12-02 | Globdus Medical Inc. | Ultrasonic robotic surgical navigation |
| US12262961B2 (en) | 2021-07-06 | 2025-04-01 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
| US11850009B2 (en) | 2021-07-06 | 2023-12-26 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
| US11439444B1 (en) | 2021-07-22 | 2022-09-13 | Globus Medical, Inc. | Screw tower and rod reduction tool |
| US12310634B2 (en) | 2021-07-22 | 2025-05-27 | Globus Medical Inc. | Screw tower and rod reduction tool |
| US11622794B2 (en) | 2021-07-22 | 2023-04-11 | Globus Medical, Inc. | Screw tower and rod reduction tool |
| US12213745B2 (en) | 2021-09-16 | 2025-02-04 | Globus Medical, Inc. | Extended reality systems for visualizing and controlling operating room equipment |
| US12201375B2 (en) | 2021-09-16 | 2025-01-21 | Globus Medical Inc. | Extended reality systems for visualizing and controlling operating room equipment |
| US12238087B2 (en) | 2021-10-04 | 2025-02-25 | Globus Medical, Inc. | Validating credential keys based on combinations of credential value strings and input order strings |
| US12184636B2 (en) | 2021-10-04 | 2024-12-31 | Globus Medical, Inc. | Validating credential keys based on combinations of credential value strings and input order strings |
| US12444045B2 (en) | 2021-10-20 | 2025-10-14 | Globus Medical, Inc. | Interpolation of medical images |
| US12430760B2 (en) | 2021-10-20 | 2025-09-30 | Globus Medical, Inc. | Registering intra-operative images transformed from pre-operative images of different imaging-modality for computer assisted navigation during surgery |
| US12232820B2 (en) | 2021-12-01 | 2025-02-25 | Globus Medical, Inc. | Extended reality systems with three-dimensional visualizations of medical image scan slices |
| US12324634B2 (en) | 2021-12-20 | 2025-06-10 | Globus Medical, Inc. | Flat panel registration fixture and method of using same |
| US12295673B2 (en) | 2021-12-20 | 2025-05-13 | Globus Medical, Inc. | Robotic fluoroscopic navigation |
| US11911115B2 (en) | 2021-12-20 | 2024-02-27 | Globus Medical Inc. | Flat panel registration fixture and method of using same |
| US11918304B2 (en) | 2021-12-20 | 2024-03-05 | Globus Medical, Inc | Flat panel registration fixture and method of using same |
| US12103480B2 (en) | 2022-03-18 | 2024-10-01 | Globus Medical Inc. | Omni-wheel cable pusher |
| US12048493B2 (en) | 2022-03-31 | 2024-07-30 | Globus Medical, Inc. | Camera tracking system identifying phantom markers during computer assisted surgery navigation |
| US12394086B2 (en) | 2022-05-10 | 2025-08-19 | Globus Medical, Inc. | Accuracy check and automatic calibration of tracked instruments |
| US12161427B2 (en) | 2022-06-08 | 2024-12-10 | Globus Medical, Inc. | Surgical navigation system with flat panel registration fixture |
| US12354263B2 (en) | 2022-07-15 | 2025-07-08 | Globus Medical Inc. | Registration of 3D and 2D images for surgical navigation and robotic guidance without using radiopaque fiducials in the images |
| US12226169B2 (en) | 2022-07-15 | 2025-02-18 | Globus Medical, Inc. | Registration of 3D and 2D images for surgical navigation and robotic guidance without using radiopaque fiducials in the images |
| US12318150B2 (en) | 2022-10-11 | 2025-06-03 | Globus Medical Inc. | Camera tracking system for computer assisted surgery navigation |
| US12502220B2 (en) | 2022-11-15 | 2025-12-23 | Globus Medical, Inc. | Machine learning system for spinal surgeries |
| CN117838169A (zh) * | 2024-03-08 | 2024-04-09 | 江苏一影医疗设备有限公司 | 一种基于站立位cbct的成像方法、系统和设备 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102325499B (zh) | 2014-07-16 |
| JP6270760B2 (ja) | 2018-01-31 |
| EP2389114A1 (fr) | 2011-11-30 |
| US9710936B2 (en) | 2017-07-18 |
| JP2015131127A (ja) | 2015-07-23 |
| RU2011134879A (ru) | 2013-02-27 |
| EP2586374B1 (fr) | 2015-03-18 |
| EP2586374A2 (fr) | 2013-05-01 |
| RU2529478C2 (ru) | 2014-09-27 |
| CN102325499A (zh) | 2012-01-18 |
| US20160005194A1 (en) | 2016-01-07 |
| EP2586374A3 (fr) | 2013-08-28 |
| CN103349556B (zh) | 2015-09-23 |
| CN103349556A (zh) | 2013-10-16 |
| JP2012515592A (ja) | 2012-07-12 |
| WO2010084389A1 (fr) | 2010-07-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9710936B2 (en) | Method and apparatus for large field of view imaging and detection and compensation of motion artifacts | |
| CN102688060B (zh) | 图像处理装置、x 线ct 装置以及图像处理方法 | |
| US6765983B2 (en) | Method and apparatus for imaging a region of dynamic tissue | |
| US7142633B2 (en) | Enhanced X-ray imaging system and method | |
| JP4347672B2 (ja) | 構造、灌流及び機能に関する異常を検出する方法及び装置 | |
| US10789738B2 (en) | Method and apparatus to reduce artifacts in a computed-tomography (CT) image by iterative reconstruction (IR) using a cost function with a de-emphasis operator | |
| EP2691932B1 (fr) | Image de résolution en fonction du contraste | |
| US10111638B2 (en) | Apparatus and method for registration and reprojection-based material decomposition for spectrally resolved computed tomography | |
| US20110110570A1 (en) | Apparatus and methods for generating a planar image | |
| EP1926431B1 (fr) | Mesure et correction directes de dispersion pour tomographie par ordinateur | |
| US11813101B2 (en) | Image quality improved virtual non-contrast images generated by a spectral computed tomography (CT) scanner | |
| CN103229209A (zh) | 对比噪声比(cnr)增强器 | |
| US9858688B2 (en) | Methods and systems for computed tomography motion compensation | |
| US20110103543A1 (en) | Scatter correction based on raw data in computer tomography | |
| US20120177173A1 (en) | Method and apparatus for reducing imaging artifacts | |
| US20100045696A1 (en) | Method for producing 2D image slices from 3D projection data acquired by means of a CT system from an examination subject containing metal parts | |
| US8364244B2 (en) | Methods and systems to facilitate reducing banding artifacts in images | |
| US12016718B2 (en) | Apparatus and methods for image quality improvement based on noise and dose optimization | |
| WO2006090321A1 (fr) | Determination de la couverture d'un tomodensitogramme | |
| US20150170358A1 (en) | Image reconstruction in interleaved multi-energy imaging | |
| JP2006239118A (ja) | X線ct装置 | |
| EP4379664A1 (fr) | Garantie de qualité pour des événements de variation d'agent de contraste dans une imagerie par rayons x à double énergie 3d | |
| WO2010052615A2 (fr) | Extraction d'informations de mouvement | |
| CN116490896A (zh) | 用于在x射线ct图像重建中使用的方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: KONINKLIJKE PHILIPS ELECTRONICS N V, NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHRETTER, COLAS;BERTRAM, MATTHIAS;NEUKIRCHEN, CHRISTOPH;REEL/FRAME:026611/0664 Effective date: 20090123 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |