US20110281031A1 - Industrial Vapour Generator For Depositing An Alloy Coating On A Metal Strip - Google Patents
Industrial Vapour Generator For Depositing An Alloy Coating On A Metal Strip Download PDFInfo
- Publication number
- US20110281031A1 US20110281031A1 US13/140,061 US200913140061A US2011281031A1 US 20110281031 A1 US20110281031 A1 US 20110281031A1 US 200913140061 A US200913140061 A US 200913140061A US 2011281031 A1 US2011281031 A1 US 2011281031A1
- Authority
- US
- United States
- Prior art keywords
- metal
- substrate
- ejector
- mixer
- vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 85
- 239000002184 metal Substances 0.000 title claims abstract description 83
- 238000000151 deposition Methods 0.000 title claims abstract description 58
- 238000000576 coating method Methods 0.000 title claims abstract description 44
- 239000011248 coating agent Substances 0.000 title claims abstract description 39
- 229910045601 alloy Inorganic materials 0.000 title claims description 35
- 239000000956 alloy Substances 0.000 title claims description 35
- 239000000758 substrate Substances 0.000 claims abstract description 45
- 230000008021 deposition Effects 0.000 claims abstract description 41
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract description 21
- 150000002739 metals Chemical class 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 238000004891 communication Methods 0.000 claims abstract description 4
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 30
- 238000002156 mixing Methods 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 13
- 230000033001 locomotion Effects 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 9
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 238000007669 thermal treatment Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 238000005192 partition Methods 0.000 claims description 4
- 238000007740 vapor deposition Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000013598 vector Substances 0.000 claims description 2
- 238000001771 vacuum deposition Methods 0.000 abstract description 5
- 239000011701 zinc Substances 0.000 description 20
- 239000010410 layer Substances 0.000 description 16
- 239000011777 magnesium Substances 0.000 description 16
- 229910052725 zinc Inorganic materials 0.000 description 13
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 12
- 229910052749 magnesium Inorganic materials 0.000 description 11
- 238000001704 evaporation Methods 0.000 description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 9
- 230000008020 evaporation Effects 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000001912 gas jet deposition Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000005240 physical vapour deposition Methods 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 229910001338 liquidmetal Inorganic materials 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000002902 bimodal effect Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000002355 dual-layer Substances 0.000 description 2
- 238000001336 glow discharge atomic emission spectroscopy Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005339 levitation Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/243—Crucibles for source material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/548—Controlling the composition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the present invention relates to an industrial vapor generator for continuously vacuum coating a substrate in motion, more particularly a metal strip, using metallic vapors in order to form a layer of metal alloy on its surface, so as to give it excellent resistance to corrosion while preserving good drawing and weldability characteristics.
- Such an alloy deposition is generally only possible by the usual techniques, such as electrolytic deposition, hot dipping, etc., within certain composition limits.
- contamination of the liquid metal bath by the oxygen in the air may occur, which forms oxide mattes on the surface of the bath.
- a first way to proceed for depositing an alloy coating on a strip is to first deposit a layer of the first metal, such as zinc, for example by hot dipping, electrolysis or vacuum magnetron spraying, then deposit a layer of a second metal, such as aluminum, for example in a vacuum, and to finally perform a thermal diffusion treatment, for example low temperature annealing, which produces the alloy.
- a layer of the first metal such as zinc
- a second metal such as aluminum
- a thermal diffusion treatment for example low temperature annealing
- the advantage of this method is that it has a simple design, allowing for a step by step regulation.
- a first drawback is, however, multiplying the steps of the method, and therefore its cost.
- thermal diffusion treatment consumes a significant amount of energy.
- the relative thickness of the coating is 1%, the required energy must be provided to the entire thickness of the finished product, i.e. 100%, which corresponds to several megawatts for an industrial line.
- document WO-A-02/14573 describes the development of a coating from a base zinc plated coating obtained by a conventional hot dipping or electro-galvanizing method, which in turn is then vacuum coated with magnesium. Rapid induction heating allows to postpone the fusion deposition for several seconds and to obtain, after cooling, a favorable microstructural distribution of alloyed phase ZnMg in the entire thickness of the layer.
- Document FR 2 843 130 A describes a method for coating a surface with a metal material, according to which:
- the Applicant has also proposed an industrial dual-layer electro-galvanized/ZnMg alloy product obtained by PVD (EP-A-0 756 022), as well as an improvement of the method with an infrared heating system to alloy the magnesium with the zinc in order to minimize the formation of the fragile intermetallic FeZn phase.
- a second drawback is that not all types of steel accept this thermal treatment.
- BH (bake hardening) steels are malleable, deformable, anti-corrosion steels intended for automobiles, which have instabilities that are displaced during curing of the paint, which causes the sheet metal to harden.
- This product therefore has a difficulty related to hardening that results from its reheating.
- a direct alloy deposition would therefore allow to overcome these drawbacks.
- Another method is therefore to produce metal coating alloys by direct deposition of the alloy without thermal treatment, by rigorously controlling the concentration of both metals in the crucible. For example, if 50% Zn and 50% Mg are placed in the crucible, an alloy of 85% Zn/15% Mg is obtained, given the different evaporation speeds.
- this control involves great difficulties in managing the system, in light of the continuous concentration variation in the crucible. In particular, it is difficult to ensure homogeneity in the crucible, especially if it is not of circular section.
- POSCO Publication: “ Next Generation Automotive Steels at POSCO ,” January 2008 proposes a coating obtained by PVD at very high velocity, with a high vapor yield and high energy yield, in particular in the form of an alloy co-deposition from a single evaporation source.
- Still another method consists in using two crucibles, each generating a type of vapor, both generated vapors being oriented by a channel towards a mixing device, from which the alloy is deposited on the strip.
- Patent BE 1010720 A3 describes a method for continuously coating a substrate in motion using a metallic alloy in vapor phase, in which the various components of the alloy are evaporated into suitable distinct elements and whereof the different metal vapors obtained are channeled towards the location where the deposition occurs.
- One of the vapors coming from the metal baths with the components of the metal alloy plays the role of a propellant element relative to the other metal vapors present.
- a ZnMg coating is obtained in a vacuum by evaporating from two crucibles, one with zinc and the other with magnesium. Before they are projected on the strip, the vapors are mixed in a throttling device in the form of plates provided with holes or slots, which allows to obtain maximum sonic velocity and vapor flow rate.
- a throttling device in the form of plates provided with holes or slots, which allows to obtain maximum sonic velocity and vapor flow rate.
- the high speed of the vapors before mixing makes it very difficult to obtain a homogenous mixture by molecular diffusion.
- Patent application EP-A-2 048 261 in the name of the Applicant, discloses a vapor generator for depositing a metal coating on a steel strip, comprising a vacuum chamber in the form of an enclosure, provided with means for ensuring a vacuum state therein relative to the outside environment and provided with means allowing the strip to enter and exit, while being essentially sealed relative to the outside environment.
- This enclosure covers a vapor deposition head, called ejector, configured to create a metallic vapor jet at sonic velocity towards and perpendicular to the surface of the strip.
- the ejector is in sealed communication via a supply duct with at least one crucible containing a coating metal in liquid form and situated outside the vacuum chamber.
- the vapor generator comprises means for regulating the flow rate, pressure, and/or speed of the metallic vapor in the ejector.
- Document EP-A-2 048 261 belongs to the state of the art pursuant to Article 54(3) EPC.
- Prior patent application EP-A-1 972 699 discloses a method and facility for coating a substrate according to which a layer of metallic alloy comprising at least two metal elements is continuously deposited on said substrate, using the vacuum deposition facility comprising a vapor jet coating device, allowing to project on the substrate a vapor comprising the metallic elements in a predetermined relative and constant proportion, the vapor being brought to sonic velocity beforehand.
- the method is more particularly intended for the deposition of ZnMg coatings.
- the present invention aims to provide a solution that allows to overcome the drawbacks of the state of the art.
- the invention aims to achieve the following objectives:
- a first object of the present invention relates to a facility for depositing under vacuum a metal alloy coating on a substrate, preferably a metal strip in continuous motion, equipped with a vapor generator-mixer comprising a vacuum chamber in the form of an enclosure, provided with means for ensuring a vacuum state therein relative to the external environment and provided with means for the inlet and outlet of the substrate, while being essentially sealed relative to the external environment, said enclosure comprising a vapor deposition head, called the ejector, configured so as to create a jet of metal alloy vapor at sonic velocity towards the surface of the substrate and perpendicular thereto, said ejector being in sealed communication with a separate mixer device, which is itself connected upstream to at least two crucibles, respectively, and containing different metals M 1 and M 2 in liquid form, each crucible being connected to the mixer by its own pipe.
- a separate mixer device which is itself connected upstream to at least two crucibles, respectively, and containing different metals M 1 and M 2 in liquid form
- the facility for depositing under vacuum a metal alloy coating on a substrate also comprises one or more of the following features in combination with the basic features of the facility:
- a second object of the present invention relates to a method for depositing a metal alloy coating on a substrate, preferably a metal strip in continuous motion, using the facility described above, wherein:
- the method is implemented so that the flow velocity is less than 100 m/s, preferably from 5 to 50 m/s.
- the first metal M 1 may be deposited on the substrate at the level of the additional ejector and the second metal M 2 may be deposited at the level of the ejector in the vacuum chamber, successively.
- the M 1 +M 2 alloy is directly deposited on the substrate at the level of the ejector in the vacuum chamber.
- both the additional valve and the isolating valve being open, the first metal M 1 is deposited on the substrate at the level of the additional ejector and the M 1 +M 2 alloy is directly deposited at the level of the ejector in the vacuum chamber, successively.
- the metal or alloy deposition(s) are followed by a thermal treatment.
- FIG. 1 diagrammatically shows a vapor generator with a mixer according to the invention, which allows an alloy deposition of two pure metals on the substrate.
- FIGS. 2A to 2C show detailed views of the metal vapor mixer according to one preferred embodiment of the present invention.
- FIGS. 3A and 3B diagrammatically show a planar view and an elevation view, respectively, of a complete bimodal facility according to one preferred embodiment of the present invention, which can be used either for the deposition of two distinct metal species on a metal strip, or for a direct alloy deposition using the aforementioned mixer.
- FIG. 4 shows more perspective views of the pipes of the facility according to FIGS. 3A and 3B .
- FIG. 5 shows the analysis results of a ZnMg coating by glow discharge optical emission spectroscopy (GDOES) during implementation tests of the invention on a pilot line, expressed in zinc and magnesium weight (in % of the targeted nominal values, I/In), obtained at various points over the entire width of the coated strip.
- GDOES glow discharge optical emission spectroscopy
- FIG. 6 shows the composition of an alloy of the ZnMg type as well as the evolution of the layer weight obtained as of the moment when the valves of the JVD facility are open (ICP analysis along the strip).
- the solution recommended according to the present invention consists in using an offboard evaporation crucible, i.e. that is dissociated from a JVD evaporation head with a longitudinal slot or calibrated holes for the vapor outlet, herein after called ejector.
- an offboard evaporation crucible i.e. that is dissociated from a JVD evaporation head with a longitudinal slot or calibrated holes for the vapor outlet, herein after called ejector.
- the present patent application is based on the deposition of an alloy coating and therefore requires at least the use of two different sources of metal vapor.
- two melting chambers or crucibles 11 , 12 containing two different pure metals are each connected by a pipe 4 , 4 ′ provided with a valve 5 , 5 ′ to a mixing chamber 14 coupled to the ejector 3 .
- the concentration of both metals in the mixture is adjusted on one hand using the energy supplied and on the other hand using respective proportional valves 5 , 5 ′, which simplifies the management problem.
- the bulk of this system is advantageously reduced (see below).
- this device allows to finely and quickly regulate the vapor flow.
- the choice of cylindrical pipes allows to obtain a good high-temperature vacuum sealing and the use of a proportional valve 5 , for example a butterfly valve as commercially available, possibly with a head loss device 5 A, to regulate the vapor flow rate.
- the deposited thickness depends on the metal vapor flow rate, the flow rate itself being proportional to the useful power supplied.
- the mass flow rates also change instantaneously, which makes transients practically nonexistent during the change of position of the valve.
- the ejector 3 is a box with a length greater than the width of the strip to be coated.
- This device comprises a filtering medium or a medium creating a head loss (not shown) to ensure the equalization of the vapor flow rate over the entire length of the box.
- the ejector 3 is heated to a temperature above that of the metal vapor and is thermally insulated on the outside.
- a calibrated slot or a series of holes ensure the projection, at the speed of sound, of the metal vapor on the strip 7 .
- the velocities obtained typically range from 500 to 800 m/s.
- the sonic throat over the entire length of the slot very effectively completes the filtering medium to ensure the uniformity of the deposition on the strip.
- the size of the slot or holes S imposes the volume flow rate (k ⁇ v son ⁇ S, k ⁇ 0, 8).
- the speed of sound, v sound is reached in the ejector at the outlet of the slot or holes.
- the vapor flow rate may be regulated and imparted with a low initial pressure.
- the device according to the invention allows to mix the vapors this time at a low speed owing to the head loss elements incorporated into the system such as valves.
- the mixing is done between vapors having regulated flow velocities and typically between 5 and 50 m/s at the inlet of the mixer (these flow velocities therefore being lower by at least a factor of 10, preferably by a factor of 50, than sonic velocity), which allows to reduce the homogeneity length by a factor ranging from 10 to 100 (therefore typically several meters).
- the total pressures (Zn+Mg) in the mixer obtained during these same tests were between 241 Pa and 1440 Pa.
- the velocities of the metal vapors in the mixer calculated from this experimental data are between 9.81 m/s and 22.7 m/s, or between 0.02 and 0.04 Mach (therefore much lower than the speed of sound).
- FIG. 5 shows, as an example, the zinc and magnesium weights (expressed in percentage of the targeted nominal values) obtained by analysis at various points over the entire width of the strip coated using this method.
- FIG. 6 shows the evolution of the composition of a standard alloy as well as the evolution of the weight of the obtained layer as of the moment when the valves of the JVD facility are open.
- this extreme example demonstrates that the system established according to this invention allows to manage the transients of an industrial line (stop, speed change, format change, etc.), since the desired target is obtained as soon as the valves are opened and remains stable all through the rest of the production campaign.
- the principle of increasing the molecular diffusion is known if several layers of two gases A and B are alternatingly put in contact, rather than a layer of A and a layer of B.
- the number of separating walls in the diffuser allows to further substantially reduce the diffusion length and the mixing time.
- the application of this principle in a mixer of the type described above allows to reduce the mixing length to a few centimeters, and therefore to design a smaller mixer, which is an advantage given the complexity of the system (vacuum ejector, high temperature).
- the mixing device 14 is in the form of a cylindrical envelope 14 C whereof the inside comprises a plurality of tubes 14 A arranged regularly and connected to the supply pipe 4 ′ of a first metal vapor M 1 , along the axis of said cylinder.
- the supply pipe 4 of the second metal vapor M 2 is connected, laterally to the cylindrical envelope, to the interstitial space 14 B located inside said cylindrical envelope 14 C, between the tubes 14 A.
- the tubes 14 A are maintained and fastened on a flange 16 . Both the tubes 14 A and the interstitial space 14 B all emerge at the outlet on the mixing space strictly speaking 15 .
- a first porous surface is arranged at the outlet of the tubes 14 A (metal M 1 ) and a second porous surface is arranged at the outlet of the interstitial gas (metal M 2 ).
- metal M 1 the outlet of the tubes 14 A
- metal M 2 the interstitial gas
- the advantage of the invention in this respect is to be able to manage gases with different temperatures or pressures at the inlet, since head losses are used in the form of valves that allow, in combination with the energy source, to adjust the content levels of the two metal vapors.
- Another object of the invention is to propose a “bimodal” vacuum deposition facility, shown in FIGS. 3A , 3 B and 4 , which allows the follow deposition forms:
- the part of the facility that provides the metal M 2 from the crucible 11 is provided with a mixer 14 .
- the facility can operate independently for the deposition of M 1 on the metal strip at the level of the ejector 3 ′ in the vacuum chamber 6 , if M 1 is not mixed with M 2 , i.e. if a valve 5 B is closed in the portion of the pipe 4 ′ conveying M 1 in the mixer (when this valve 5 B is open).
- the portion of the facility supplying M 2 from the crucible 11 can operate autonomously and allow the deposition of M 2 in the vacuum chamber 6 , for example above the layer of M 1 already deposited (for a left-to-right travel direction of the strip in FIG. 3A ).
- the aforementioned valve 5 B is open, the mixing M 1 +M 2 will be achieved in the mixer 14 and deposited on the strip at the level of the ejector 3 in the vacuum chamber 6 .
- Other alloy deposition possibilities can be considered with this facility such as a deposition of M 1 at the level of the ejector 3 ′ followed by a later deposition of the mixture M 1 +M 2 at the level of the ejector 3 . It can in fact be advantageous to perform a deposition of zinc and magnesium alloy on a sub-layer of zinc, which is relatively ductile, in order to prevent chalking of the coating.
- the present invention fits into a context of evolution of the technical field that approaches “full PVD” for the following reasons:
- the system according to the invention allows to obtain a very good uniformity of the temperature and velocity of the deposited vapor, while being reliable and accessible and having very low response times.
- the invention thus meets the requirements for industrialization of the method very well.
- the offboard device according to the invention is particularly suited to alloy deposition by vapor mixing because it allows to adjust the deposited chemical composition without having to modify the composition of a liquid alloy.
- the vapor mixing is thus achieved in a pipe at very low flow velocity, unlike the state of the art.
- Another significant advantage is allowing, using the mixer of the aforementioned type, to obtain a mixing length at values as low as 300-600 mm, this advantage being particularly decisive in light of the necessary bulk reduction, knowing that such a device should be kept in a vacuum at a temperature of about 750° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physical Vapour Deposition (AREA)
- Manufacturing Of Electric Cables (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP08172179.7 | 2008-12-18 | ||
| EP08172179A EP2199425A1 (fr) | 2008-12-18 | 2008-12-18 | Générateur de vapeur industriel pour le dépôt d'un revêtement d'alliage sur une bande métallique (II) |
| PCT/EP2009/067448 WO2010070067A1 (fr) | 2008-12-18 | 2009-12-17 | Générateur de vapeur industriel pour le dépôt d'un revêtement d'alliage sur une bande métallique (ii) |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2009/067448 A-371-Of-International WO2010070067A1 (fr) | 2008-12-18 | 2009-12-17 | Générateur de vapeur industriel pour le dépôt d'un revêtement d'alliage sur une bande métallique (ii) |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/198,388 Division US10711339B2 (en) | 2008-12-18 | 2018-11-21 | Industrial vapor generator for depositing an alloy coating on a metal strip |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20110281031A1 true US20110281031A1 (en) | 2011-11-17 |
Family
ID=40636672
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/140,061 Abandoned US20110281031A1 (en) | 2008-12-18 | 2009-12-17 | Industrial Vapour Generator For Depositing An Alloy Coating On A Metal Strip |
| US16/198,388 Active US10711339B2 (en) | 2008-12-18 | 2018-11-21 | Industrial vapor generator for depositing an alloy coating on a metal strip |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/198,388 Active US10711339B2 (en) | 2008-12-18 | 2018-11-21 | Industrial vapor generator for depositing an alloy coating on a metal strip |
Country Status (19)
| Country | Link |
|---|---|
| US (2) | US20110281031A1 (fr) |
| EP (2) | EP2199425A1 (fr) |
| JP (1) | JP5599816B2 (fr) |
| KR (1) | KR101642364B1 (fr) |
| CN (1) | CN102257175B (fr) |
| AU (1) | AU2009327078B2 (fr) |
| BR (1) | BRPI0918113B1 (fr) |
| CA (1) | CA2746325C (fr) |
| DK (1) | DK2358921T3 (fr) |
| ES (1) | ES2397593T3 (fr) |
| HR (1) | HRP20121013T1 (fr) |
| MX (1) | MX342910B (fr) |
| PL (1) | PL2358921T3 (fr) |
| PT (1) | PT2358921E (fr) |
| RU (1) | RU2515875C2 (fr) |
| SI (1) | SI2358921T1 (fr) |
| UA (1) | UA104747C2 (fr) |
| WO (1) | WO2010070067A1 (fr) |
| ZA (1) | ZA201104315B (fr) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015067662A1 (fr) * | 2013-11-05 | 2015-05-14 | Tata Steel Nederland Technology B.V. | Procédé et appareil pour réguler la composition de métal liquide dans un dispositif évaporateur |
| CN111542644A (zh) * | 2017-12-26 | 2020-08-14 | Posco公司 | 沉积装置及沉积方法 |
| CN112553578A (zh) * | 2019-09-26 | 2021-03-26 | 宝山钢铁股份有限公司 | 一种具有抑流式喷嘴的真空镀膜装置 |
| US20210238735A1 (en) * | 2018-06-13 | 2021-08-05 | Arcelormittal | Vacuum deposition facility and method for coating a substrate |
| US11319626B2 (en) | 2016-07-27 | 2022-05-03 | Arcelormittal | Apparatus and method for vacuum deposition |
| US11492695B2 (en) | 2018-06-13 | 2022-11-08 | Arcelormittal | Vacuum deposition facility and method for coating a substrate |
| US12091739B2 (en) | 2018-06-13 | 2024-09-17 | Arcelormittal | Vacuum deposition facility and method for coating a substrate |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101786160B1 (ko) * | 2011-01-14 | 2017-10-17 | 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 | 산업적 금속 증기 발생기용 자동 공급 장치 |
| WO2015088523A1 (fr) | 2013-12-11 | 2015-06-18 | ArcelorMittal Investigación y Desarrollo, S.L. | Tôle en acier laminée à froid et recuite |
| US20170022605A1 (en) * | 2014-03-11 | 2017-01-26 | Joled Inc. | Deposition apparatus, method for controlling same, deposition method using deposition apparatus, and device manufacturing method |
| CN105925936B (zh) * | 2016-07-08 | 2018-04-20 | 武汉钢铁有限公司 | 一种高档门窗用轻金属复合镀层钢带的生产方法 |
| CN110004411B (zh) * | 2019-03-29 | 2021-05-11 | 北京钢研新冶工程设计有限公司 | 一种合金镀膜方法 |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4587134A (en) * | 1984-05-28 | 1986-05-06 | Nisshin Steel Company, Ltd. | Method of rapidly changing deposition amount in a continuous vacuum deposition process |
| US4786490A (en) * | 1985-10-29 | 1988-11-22 | Ube Industries, Ltd. | Process and apparatus for producing high purity magnesium oxide fine particles |
| US5350598A (en) * | 1993-03-27 | 1994-09-27 | Leybold Aktiengesellschaft | Apparatus and method for selectively coating a substrate in strip form |
| US5776254A (en) * | 1994-12-28 | 1998-07-07 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for forming thin film by chemical vapor deposition |
| US6423144B1 (en) * | 1996-08-07 | 2002-07-23 | Matsushita Electric Industrial Co., Ltd. | Coating apparatus and coating method |
| US20020192375A1 (en) * | 1997-06-02 | 2002-12-19 | Sun James J. | Method and apparatus for vapor generation and film deposition |
| US20040022942A1 (en) * | 2000-07-17 | 2004-02-05 | Schade Van Westrum Johannes Alphonsus Franciscus Maria | Vapour deposition |
| US20040241189A1 (en) * | 2001-09-14 | 2004-12-02 | Nobuaki Ishii | Silica-coated mixed crystal oxide particle, production process thereof and cosmetic material using the same |
| WO2008002559A2 (fr) * | 2006-06-26 | 2008-01-03 | Precision Combustion, Inc. | Mélangeur de fluides simplifié |
| US20080085226A1 (en) * | 2006-10-10 | 2008-04-10 | Asm America, Inc. | Precursor delivery system |
| US20090098280A1 (en) * | 2007-10-12 | 2009-04-16 | Jean-Pierre Tahon | Vapor deposition apparatus and method of vapor deposition making use thereof |
| US20090251989A1 (en) * | 2007-06-26 | 2009-10-08 | Pfefferle William C | Streamlined flow mixer |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU433252A1 (ru) * | 1971-07-16 | 1974-06-25 | В. В. Горбачев, В. Г. Дзевалтовский , Г. П. Жариков Ордена Ленина институт кибернетики | Испаритель |
| SU788831A1 (ru) * | 1976-11-15 | 1989-07-15 | Предприятие П/Я В-8495 | Установка дл нанесени покрытий в вакууме |
| JPS5834172A (ja) * | 1981-08-26 | 1983-02-28 | Mitsubishi Heavy Ind Ltd | 合金蒸着用蒸発源構造 |
| US5002837A (en) | 1988-07-06 | 1991-03-26 | Kabushiki Kaisha Kobe Seiko Sho | Zn-Mg alloy vapor deposition plated metals of high corrosion resistance, as well as method of producing them |
| JPH02125866A (ja) * | 1988-11-04 | 1990-05-14 | Kobe Steel Ltd | 合金蒸着めっき装置 |
| SU1737924A1 (ru) * | 1989-09-27 | 1994-03-30 | Всесоюзный научно-исследовательский институт экспериментальной физики | Способ получения покрытия с градиентом плотности в вакууме |
| JP3463693B2 (ja) * | 1992-10-29 | 2003-11-05 | 石川島播磨重工業株式会社 | 連続帯状物用真空蒸着装置 |
| JPH07268605A (ja) * | 1994-03-29 | 1995-10-17 | Nisshin Steel Co Ltd | 合金化Zn−Mg蒸着めっき鋼板の製造方法 |
| DE19527515C1 (de) | 1995-07-27 | 1996-11-28 | Fraunhofer Ges Forschung | Verfahren zur Herstellung von korrosionsgeschütztem Stahlblech |
| BE1010351A6 (fr) | 1996-06-13 | 1998-06-02 | Centre Rech Metallurgique | Procede et dispositif pour revetir en continu un substrat en mouvement au moyen d'une vapeur metallique. |
| BE1010720A3 (fr) | 1996-10-30 | 1998-12-01 | Centre Rech Metallurgique | Procede et dispositif pour revetir en continu un substrat en mouvement au moyen d'un alliage metallique en phase vapeur. |
| US6399017B1 (en) * | 2000-06-01 | 2002-06-04 | Aemp Corporation | Method and apparatus for containing and ejecting a thixotropic metal slurry |
| DE10039375A1 (de) | 2000-08-11 | 2002-03-28 | Fraunhofer Ges Forschung | Korrosionsgeschütztes Stahlblech und Verfahren zu seiner Herstellung |
| FR2843130B1 (fr) | 2002-08-05 | 2004-10-29 | Usinor | Procede de revetement de la surface d'un materiau metallique, dispositif pour sa mise en oeuvre et produit ainsi obtenu |
| LV13383B (en) * | 2004-05-27 | 2006-02-20 | Sidrabe As | Method and device for vacuum vaporization metals or alloys |
| WO2007005832A2 (fr) * | 2005-06-30 | 2007-01-11 | University Of Virginia Patent Foundation | Systeme de couche barriere thermique fiable, procedes s'y rapportant et appareil de production du systeme |
| EP1972699A1 (fr) * | 2007-03-20 | 2008-09-24 | ArcelorMittal France | Procede de revetement d'un substrat et installation de depot sous vide d'alliage metallique |
| EP2048261A1 (fr) * | 2007-10-12 | 2009-04-15 | ArcelorMittal France | Générateur de vapeur industriel pour le dépôt d'un revêtement d'alliage sur une bande métallique |
| WO2009153865A1 (fr) * | 2008-06-18 | 2009-12-23 | 産機電業株式会社 | Appareil et procédé de production de micropoudre |
-
2008
- 2008-12-18 EP EP08172179A patent/EP2199425A1/fr not_active Withdrawn
-
2009
- 2009-12-17 DK DK09775223.2T patent/DK2358921T3/da active
- 2009-12-17 UA UAA201108931A patent/UA104747C2/ru unknown
- 2009-12-17 CN CN2009801507152A patent/CN102257175B/zh active Active
- 2009-12-17 BR BRPI0918113-0A patent/BRPI0918113B1/pt active IP Right Grant
- 2009-12-17 PT PT97752232T patent/PT2358921E/pt unknown
- 2009-12-17 US US13/140,061 patent/US20110281031A1/en not_active Abandoned
- 2009-12-17 JP JP2011541453A patent/JP5599816B2/ja active Active
- 2009-12-17 CA CA2746325A patent/CA2746325C/fr active Active
- 2009-12-17 KR KR1020117014038A patent/KR101642364B1/ko active Active
- 2009-12-17 RU RU2011129058/02A patent/RU2515875C2/ru active
- 2009-12-17 AU AU2009327078A patent/AU2009327078B2/en active Active
- 2009-12-17 MX MX2011006554A patent/MX342910B/es active IP Right Grant
- 2009-12-17 HR HRP20121013AT patent/HRP20121013T1/hr unknown
- 2009-12-17 EP EP09775223A patent/EP2358921B1/fr active Active
- 2009-12-17 WO PCT/EP2009/067448 patent/WO2010070067A1/fr not_active Ceased
- 2009-12-17 PL PL09775223T patent/PL2358921T3/pl unknown
- 2009-12-17 ES ES09775223T patent/ES2397593T3/es active Active
- 2009-12-17 SI SI200930445T patent/SI2358921T1/sl unknown
-
2011
- 2011-06-09 ZA ZA2011/04315A patent/ZA201104315B/en unknown
-
2018
- 2018-11-21 US US16/198,388 patent/US10711339B2/en active Active
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4587134A (en) * | 1984-05-28 | 1986-05-06 | Nisshin Steel Company, Ltd. | Method of rapidly changing deposition amount in a continuous vacuum deposition process |
| US4786490A (en) * | 1985-10-29 | 1988-11-22 | Ube Industries, Ltd. | Process and apparatus for producing high purity magnesium oxide fine particles |
| US5350598A (en) * | 1993-03-27 | 1994-09-27 | Leybold Aktiengesellschaft | Apparatus and method for selectively coating a substrate in strip form |
| US5776254A (en) * | 1994-12-28 | 1998-07-07 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for forming thin film by chemical vapor deposition |
| US6423144B1 (en) * | 1996-08-07 | 2002-07-23 | Matsushita Electric Industrial Co., Ltd. | Coating apparatus and coating method |
| US20020192375A1 (en) * | 1997-06-02 | 2002-12-19 | Sun James J. | Method and apparatus for vapor generation and film deposition |
| US20040022942A1 (en) * | 2000-07-17 | 2004-02-05 | Schade Van Westrum Johannes Alphonsus Franciscus Maria | Vapour deposition |
| US20040241189A1 (en) * | 2001-09-14 | 2004-12-02 | Nobuaki Ishii | Silica-coated mixed crystal oxide particle, production process thereof and cosmetic material using the same |
| WO2008002559A2 (fr) * | 2006-06-26 | 2008-01-03 | Precision Combustion, Inc. | Mélangeur de fluides simplifié |
| US20080085226A1 (en) * | 2006-10-10 | 2008-04-10 | Asm America, Inc. | Precursor delivery system |
| US20090251989A1 (en) * | 2007-06-26 | 2009-10-08 | Pfefferle William C | Streamlined flow mixer |
| US20090098280A1 (en) * | 2007-10-12 | 2009-04-16 | Jean-Pierre Tahon | Vapor deposition apparatus and method of vapor deposition making use thereof |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102242070B1 (ko) | 2013-11-05 | 2021-04-20 | 타타 스틸 네덜란드 테크날러지 베.뷔. | 증발기 디바이스 내의 액상 금속의 조성을 제어하는 방법 및 장치 |
| CN105793464A (zh) * | 2013-11-05 | 2016-07-20 | 塔塔钢铁荷兰科技有限责任公司 | 用于控制蒸发器装置中的液体金属的组成的方法和设备 |
| US10131983B2 (en) | 2013-11-05 | 2018-11-20 | Tata Steel Nederland Technology B.V. | Method and apparatus for controlling the composition of liquid metal in an evaporator device |
| KR20160082523A (ko) * | 2013-11-05 | 2016-07-08 | 타타 스틸 네덜란드 테크날러지 베.뷔. | 증발기 디바이스 내의 액상 금속의 조성을 제어하는 방법 및 장치 |
| WO2015067662A1 (fr) * | 2013-11-05 | 2015-05-14 | Tata Steel Nederland Technology B.V. | Procédé et appareil pour réguler la composition de métal liquide dans un dispositif évaporateur |
| US11781213B2 (en) * | 2016-07-27 | 2023-10-10 | Arcelormittal | Apparatus and method for vacuum deposition |
| US11319626B2 (en) | 2016-07-27 | 2022-05-03 | Arcelormittal | Apparatus and method for vacuum deposition |
| US20220228252A1 (en) * | 2016-07-27 | 2022-07-21 | Arcelormittal | Apparatus and Method for Vacuum Deposition |
| CN111542644B (zh) * | 2017-12-26 | 2023-05-30 | 浦项股份有限公司 | 沉积装置及沉积方法 |
| CN111542644A (zh) * | 2017-12-26 | 2020-08-14 | Posco公司 | 沉积装置及沉积方法 |
| US11492695B2 (en) | 2018-06-13 | 2022-11-08 | Arcelormittal | Vacuum deposition facility and method for coating a substrate |
| US20210238735A1 (en) * | 2018-06-13 | 2021-08-05 | Arcelormittal | Vacuum deposition facility and method for coating a substrate |
| US12091744B2 (en) * | 2018-06-13 | 2024-09-17 | Arcelormittal | Vacuum deposition facility and method for coating a substrate |
| US12091739B2 (en) | 2018-06-13 | 2024-09-17 | Arcelormittal | Vacuum deposition facility and method for coating a substrate |
| CN112553578A (zh) * | 2019-09-26 | 2021-03-26 | 宝山钢铁股份有限公司 | 一种具有抑流式喷嘴的真空镀膜装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2010070067A1 (fr) | 2010-06-24 |
| MX2011006554A (es) | 2011-08-03 |
| CA2746325A1 (fr) | 2010-06-24 |
| KR101642364B1 (ko) | 2016-08-10 |
| US20190093210A1 (en) | 2019-03-28 |
| EP2358921B1 (fr) | 2012-11-28 |
| AU2009327078A1 (en) | 2011-07-07 |
| PT2358921E (pt) | 2013-01-24 |
| SI2358921T1 (sl) | 2013-03-29 |
| CN102257175A (zh) | 2011-11-23 |
| RU2515875C2 (ru) | 2014-05-20 |
| HRP20121013T1 (hr) | 2013-01-31 |
| JP5599816B2 (ja) | 2014-10-01 |
| AU2009327078B2 (en) | 2014-06-19 |
| BRPI0918113B1 (pt) | 2019-07-09 |
| ZA201104315B (en) | 2012-11-28 |
| CN102257175B (zh) | 2013-06-26 |
| BRPI0918113A2 (pt) | 2015-11-24 |
| EP2199425A1 (fr) | 2010-06-23 |
| JP2012512959A (ja) | 2012-06-07 |
| ES2397593T3 (es) | 2013-03-08 |
| US10711339B2 (en) | 2020-07-14 |
| RU2011129058A (ru) | 2013-01-27 |
| UA104747C2 (ru) | 2014-03-11 |
| KR20110102886A (ko) | 2011-09-19 |
| MX342910B (es) | 2016-10-17 |
| CA2746325C (fr) | 2019-04-30 |
| EP2358921A1 (fr) | 2011-08-24 |
| DK2358921T3 (da) | 2013-01-02 |
| PL2358921T3 (pl) | 2013-04-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10711339B2 (en) | Industrial vapor generator for depositing an alloy coating on a metal strip | |
| CA2702188C (fr) | Generateur de vapeur industriel pour le depot d'un revetement d'alliage sur une bande metallique | |
| KR101453583B1 (ko) | 기재를 코팅하는 방법 및 금속 합금 진공 증착 장치 | |
| US7838083B1 (en) | Ion beam assisted deposition of thermal barrier coatings | |
| US9133542B2 (en) | Coating methods and apparatus | |
| EP2180077B1 (fr) | Procédé pour déposer un revêtement en céramique | |
| MXPA05005113A (es) | Proceso para la aplicacion por alto vacio de substratos acintados con una capa de barrera transparente de oxido de aluminio. | |
| PL187394B1 (pl) | Urządzenie do próżniowego powlekania łożysk ślizgowych | |
| US6145470A (en) | Apparatus for electron beam physical vapor deposition | |
| Yumoto et al. | In situ synthesis of titanium-aluminides in coating with supersonic free-jet PVD using Ti and Al nanoparticles | |
| US11866816B2 (en) | Apparatus for use in coating process | |
| US20160326628A1 (en) | Coating process using gas screen | |
| EP2982775B1 (fr) | Revêtement à modulation de pression | |
| Totten et al. | H3Illllllllll. If | |
| EP1144710A2 (fr) | Dispositif de depot en phase gazeuse par procede physique a faisceau electronique et panneau de commande associe |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ARCELORMITTAL FRANCE, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SILBERBERG, ERIC;VANHEE, LUC;SCHMITZ, BRUNO;AND OTHERS;SIGNING DATES FROM 20110615 TO 20110620;REEL/FRAME:026695/0244 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |