US20110233067A1 - Electrochemical processing of fluids - Google Patents
Electrochemical processing of fluids Download PDFInfo
- Publication number
- US20110233067A1 US20110233067A1 US12/890,659 US89065910A US2011233067A1 US 20110233067 A1 US20110233067 A1 US 20110233067A1 US 89065910 A US89065910 A US 89065910A US 2011233067 A1 US2011233067 A1 US 2011233067A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- heating
- pipe
- feedstock
- electrochemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 179
- 238000012545 processing Methods 0.000 title claims description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 118
- 238000000034 method Methods 0.000 claims abstract description 40
- 230000008569 process Effects 0.000 claims abstract description 35
- 239000004020 conductor Substances 0.000 claims abstract description 15
- 230000008859 change Effects 0.000 claims abstract description 8
- 230000005684 electric field Effects 0.000 claims description 17
- 241000195493 Cryptophyta Species 0.000 claims description 15
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 9
- 239000003077 lignite Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000003245 coal Substances 0.000 claims description 7
- 239000000446 fuel Substances 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- 238000003487 electrochemical reaction Methods 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims description 5
- 239000002028 Biomass Substances 0.000 claims description 4
- 239000006072 paste Substances 0.000 claims description 4
- 210000002381 plasma Anatomy 0.000 claims description 4
- 229930182558 Sterol Natural products 0.000 claims description 3
- 125000005907 alkyl ester group Chemical group 0.000 claims description 3
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 claims description 3
- 239000003830 anthracite Substances 0.000 claims description 3
- 229940111121 antirheumatic drug quinolines Drugs 0.000 claims description 3
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 3
- 229930195729 fatty acid Natural products 0.000 claims description 3
- 239000000194 fatty acid Substances 0.000 claims description 3
- 150000004665 fatty acids Chemical class 0.000 claims description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- 239000011707 mineral Substances 0.000 claims description 3
- 150000003248 quinolines Chemical class 0.000 claims description 3
- 150000003432 sterols Chemical class 0.000 claims description 3
- 235000003702 sterols Nutrition 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 150000003626 triacylglycerols Chemical class 0.000 claims description 3
- 239000002699 waste material Substances 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 239000002956 ash Substances 0.000 claims description 2
- 238000013021 overheating Methods 0.000 claims description 2
- 230000001737 promoting effect Effects 0.000 claims description 2
- 230000009257 reactivity Effects 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000000047 product Substances 0.000 claims 4
- 239000003250 coal slurry Substances 0.000 claims 2
- 239000000839 emulsion Substances 0.000 claims 2
- 239000002803 fossil fuel Substances 0.000 claims 2
- 239000013535 sea water Substances 0.000 claims 2
- 239000006227 byproduct Substances 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 claims 1
- 230000002269 spontaneous effect Effects 0.000 claims 1
- 150000007513 acids Chemical class 0.000 description 32
- 239000012212 insulator Substances 0.000 description 32
- 238000002156 mixing Methods 0.000 description 17
- 239000000919 ceramic Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 238000011144 upstream manufacturing Methods 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- -1 for example Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- 244000207740 Lemna minor Species 0.000 description 4
- 235000006439 Lemna minor Nutrition 0.000 description 4
- 235000001855 Portulaca oleracea Nutrition 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000615 nonconductor Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229920005479 Lucite® Polymers 0.000 description 1
- 244000046146 Pueraria lobata Species 0.000 description 1
- 235000010575 Pueraria lobata Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002916 wood waste Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G15/00—Cracking of hydrocarbon oils by electric means, electromagnetic or mechanical vibrations, by particle radiation or with gases superheated in electric arcs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2415—Tubular reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/008—Processes carried out under supercritical conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/0005—Catalytic processes under superatmospheric pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1836—Heating and cooling the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/20—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/32—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
- B01D53/326—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00026—Controlling or regulating the heat exchange system
- B01J2208/00035—Controlling or regulating the heat exchange system involving measured parameters
- B01J2208/00044—Temperature measurement
- B01J2208/00061—Temperature measurement of the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00389—Controlling the temperature using electric heating or cooling elements
- B01J2208/00398—Controlling the temperature using electric heating or cooling elements inside the reactor bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00433—Controlling the temperature using electromagnetic heating
- B01J2208/00442—Microwaves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00433—Controlling the temperature using electromagnetic heating
- B01J2208/00469—Radiofrequency
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00823—Mixing elements
- B01J2208/00831—Stationary elements
- B01J2208/0084—Stationary elements inside the bed, e.g. baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00132—Controlling the temperature using electric heating or cooling elements
- B01J2219/00135—Electric resistance heaters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00139—Controlling the temperature using electromagnetic heating
- B01J2219/00141—Microwaves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00139—Controlling the temperature using electromagnetic heating
- B01J2219/00148—Radiofrequency
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00761—Details of the reactor
- B01J2219/00763—Baffles
- B01J2219/00765—Baffles attached to the reactor wall
- B01J2219/00768—Baffles attached to the reactor wall vertical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00761—Details of the reactor
- B01J2219/00763—Baffles
- B01J2219/00765—Baffles attached to the reactor wall
- B01J2219/00777—Baffles attached to the reactor wall horizontal
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
Definitions
- High-temperature and high pressure chemical processes such as those involving supercritical water in a continuous flow reactor, require that the pipes through which the fluid flows have thick walls to withstand the high pressures and temperatures.
- the fluid being processed is heated by heating the exterior of the pipe, so it is difficult to control the fluid temperature because of the thick pipe wall. It is especially difficult to control the temperature for larger throughputs, which require larger diameter pipes with larger wall thicknesses. Larger throughputs also require rapid heat transfer from the pipe wall to the fluid, which in turn require that the interior of the pipe wall be at a temperature much larger than the required process temperature.
- the end result is that a high quality product is difficult to maintain and in some cases an over-reacted product can foul the reactor, necessitating shut down and expensive repair and cleaning.
- it is desired to directly heat the fluid so that its temperature could be precisely and quickly controlled.
- the present invention enables the controlled electric heating of electrically conductive fluids, for example, liquids in a pipe.
- the heating occurs by direct interaction of applied electric fields with the fluid.
- the invention can be used for chemical processing of a variety of liquids and other fluids at very high temperatures and pressures, such as supercritical water.
- One exemplary embodiment of the present invention comprises a fluid processing device comprising at least one reactor having an interior reactor surface and an exterior reactor surface, at least one applicator comprising at least one power source and at least one electrode and at least one additional conductive material for direct heating of a feedstock and for producing electrochemical changes in the feedstock, wherein the direct heating causes at least one property change of the feedstock.
- Another exemplary embodiment of the present invention comprises an electrochemical processing system consisting of one or more power sources, one or more electrodes and at least one additional conductive material in contact with an electrically conductive fluid to be processed, wherein the fluid is contained within a closed containment vessel for batch processing or in a pipe for continuous flow-through processing, the vessel or pipe being made of materials able to withstand supercritical temperatures and pressures wherein the electric field passes between the electrode and the additional conductive material throughout the fluid to heat the fluid to temperatures as high as supercritical to enhance the reactivity of the process.
- Another exemplary embodiment of the present invention comprises an electrochemical process for promoting reactions in a fluid by applying an electric field to the fluid that causes direct and uniform heating of the fluid to any desired temperature and pressure, even up to and beyond supercritical domain, as well as causing electrochemical reactions to produce the sought after property changes of the fluid, wherein the temperature, power, frequency, time and flowrate may be varied.
- Another exemplary embodiment of the present invention comprises a process for heating a fluid to any desired temperature and pressure up to and beyond supercritical domain by applying an electric field through which the current of the electric field causes direct heating of the fluid to change properties of the fluid.
- Another exemplary embodiment of the present invention comprises a process for heating a fluid by applying an electric field through which the current of the electric field causes direct heating of the fluid to change properties of the fluid and the heating causes physical and chemical reactions to take place such that products are produced that did not exist in the fluid prior to heating.
- FIG. 1 illustrates a cross sectional view of an exemplary embodiment heating device 100 of the present invention
- FIG. 2 illustrates a perspective view of several basic parts that can be used in heating device 100 of the present invention
- FIG. 3 illustrates a perspective view of basic parts to illustrate how they could be arranged to fit into heating device 100 ;
- FIG. 4 illustrates a cross sectional view of a heating device 110 to illustrate how parts can be added to improve the uniformity of heating
- FIG. 5 illustrates a cross sectional view of a heating device 120 to illustrate how different kinds of parts can be combined to improve the uniformity of heating
- FIG. 6 illustrates a cross sectional view of a heating device 130 to illustrate how different kinds of parts can be combined along the length of the pipe to improve the uniformity and utility of heating;
- FIG. 7 illustrates an exemplary embodiment with fluid circulation path without circulating pump based on changes in fluid densities
- FIGS. 8A and 8B illustrate exemplary embodiment RF reactors
- FIG. 9 illustrates an exemplary continuous flow fluid heater system with central electrode as the heating element with ceramic spacers for electrical insulation
- FIG. 10 illustrates a schematic drawing of a coaxial applicator used in an exemplary embodiment
- FIG. 11 illustrates an exemplary embodiment of high pressure reactor
- FIG. 12 illustrates exploded view of high pressure reactor
- FIG. 13 illustrates an assembled cross-sectional view of an exemplary embodiment rotating high pressure reactor with cooling attachment in place
- FIG. 14 illustrates an exemplary embodiment high pressure reactor in vertical and rotated positions.
- FIG. 1 illustrates a cross sectional view of an exemplary embodiment heating device 100 of the present invention.
- FIG. 2 illustrates a perspective view of several basic parts that can be used in heating device 100 of the present invention.
- FIG. 3 illustrates a perspective view of basic parts to illustrate how they could be arranged to fit into heating device 100 .
- FIG. 4 illustrates a cross sectional view of a heating device 110 to illustrate how parts can be added to improve the uniformity of heating.
- FIG. 5 illustrates a cross sectional view of a heating device 120 to illustrate how different kinds of parts can be combined to improve the uniformity of heating.
- FIG. 6 illustrates a cross sectional view of a heating device 130 to illustrate how different kinds of parts can be combined along the length of the pipe to improve the uniformity and utility of heating.
- FIG. 1 illustrates a cross sectional view of an exemplary embodiment heating device 100 of the present invention.
- FIG. 2 illustrates a perspective view of several basic parts that can be used in heating device 100 of the present invention.
- FIG. 7 illustrates an exemplary embodiment with fluid circulation path without circulating pump based on changes in fluid densities.
- FIGS. 8A and 8B illustrate exemplary embodiment RF reactors.
- FIG. 9 illustrates an exemplary continuous flow fluid heater system with central electrode as the heating element with ceramic spacers for electrical insulation.
- FIG. 10 illustrates a schematic drawing of a coaxial applicator used in an exemplary embodiment.
- FIG. 11 illustrates an exemplary embodiment of high pressure reactor.
- FIG. 12 illustrates exploded view of high pressure reactor.
- FIG. 13 illustrates an assembled cross-sectional view of an exemplary embodiment rotating high pressure reactor with cooling attachment in place.
- FIG. 14 illustrates an exemplary embodiment high pressure reactor in vertical and rotated positions.
- the present invention enables controlled heating of electrically conductive fluids e.g. gases, pastes, suspensions, plasmas, slurries and liquids, as we let such a fluid flow (or rest) in a pipe/reservoir/chamber/reactor, or similar vessel.
- electrically conductive fluids e.g. gases, pastes, suspensions, plasmas, slurries and liquids
- pipe may be used interchangeably with any of the terms discussed above as the particular device/embodiment requires.
- a Multi-Frequency (MF) heating concept may be applied for power to one or more elements of the system that is electrically insulated from other elements that are electrically grounded.
- the applied power can be direct current (DC) or alternating current (AC) and/or electromagnetic frequencies making use of any and all frequencies that are permitted and available including, but not limited to, those in the RF range.
- Insulators, seals, and mechanical supports may be required to hold the device together and in alignment under high fluid pressure. Dimensional changes in materials caused by increasing or decreasing temperatures can be taken into account using standard methods that are known to those skilled in the art.
- the power source causes electric current to flow through the fluid and heat it to high temperatures.
- the heating occurs by the direct interaction of applied electric fields with the fluid.
- the frequency is selected to match the conductivity and/or dielectric property of the fluid.
- the optimum power for the source depends on the diameter of the pipe, shape and dimensions of the electric conductors and insulators, and the dielectric properties of the fluid among other factors.
- the power required for the source also depends on the specific heat of the fluid, its flow rate, the thermal insulation used around the pipes and the desired temperature of the fluid.
- FIG. 1 illustrates an exemplary embodiment of the present invention for a power source/electric source/heating element or standalone system device 100 that is installed collinear with the pipe whose contained fluid 4 is to be heated.
- the device is connected to the pipe by means of two flanges 7 .
- Fluid 4 to be heated flows through two pipes 1 a , 1 b , single pipe 2 and two electric insulators 3 .
- Seals 5 prevent leakage of enclosed fluid 4 .
- the raw fluid i.e., pretreated and/or preheated
- the post treatment fluid is referred to as product.
- Electrical power source 8 may be connected between central pipe 2 and two pipes 1 a and 1 b .
- thermocouple 6 is located at the downstream end to monitor fluid 4 's temperature. The output of the thermocouple is connected to a controller 11 to control the output of electrical power source 8 to maintain the desired temperature. Not shown in FIG. 1 are the detailed nature of insulators 3 , seals 5 , nor the mechanical supports required to hold the device together that may have to operate under high fluid pressure and accommodate dimensional changes caused by changing temperatures; these are standard methods that are known to those skilled in the art.
- the diameter and wall thickness of pipes 1 a , 1 b , 2 are chosen to match those of the system into which it is installed.
- Electric insulators 3 electrically isolate center pipe 2 from the adjacent pipes 1 a , 1 b .
- the material used for electric insulators 3 is chosen to withstand the temperatures and pressures of fluid 4 being heated, such as materials including, but not limited to, high temperature polymers and ceramics.
- the length of electric insulators 3 is adjusted to alter the heating pattern over the cross section of pipe 1 a , 1 b , 2 . Shorter insulators 3 cause greater heating near pipe 1 a , 1 b , 2 walls and longer insulators 3 cause the heating to extend more towards the center of pipe 1 a , 1 b , 2 to provide more uniform heating of fluid 4 .
- Seals 5 can be made of ceramics, high temperature polymers or high temperature polymer composites incorporating inorganic fibers to add strength, as well as other materials, and are chosen so that they may not be easily corroded by fluid 4 .
- Seals 5 can be any shape, such as washer-shaped or toroidal-shaped. They can be at the ends of insulators 3 , on the outer surface of insulators 3 or on the inner surface of insulators 3 depending on whether insulators 3 are in line with the pipe, inside the pipe outside the pipe.
- Region 50 R is before upstream insulator 3 .
- Region 60 R is at upstream insulator 3 .
- Region 70 R is between upstream and downstream insulators 3 .
- Region 80 R is at downstream insulator 3 .
- Region 90 R is after downstream insulator 3 .
- Electric source 8 causes electric current to flow through fluid 4 between regions 50 R and 70 R and also between regions 70 R and 90 R. This electric current heats fluid 4 directly because of fluid 4 's electrical conductivity or equivalently its dielectric loss properties.
- the specifications for electric source 8 depend upon the type of fluid 4 being heated, its flow rate and the temperature to which it is to be heated as well as other factors.
- a low frequency alternating current source can be used for highly conductive fluids, such as salt water. Less conductive fluids require higher frequency alternating current sources.
- the optimum frequency depends on various factors including, but not limited to, the dielectric properties of fluid 4 .
- a number of commercial power sources are available that can be used.
- the optimum voltage for electric source 8 depends on the diameter of pipe 1 a , 1 b , 2 , length of electric insulators 3 as well as the dielectric properties of fluid 4 .
- the power required for electric source 8 depends on the specific heat of fluid 4 , its flow rate, the thermal insulation used around pipes 1 a , 1 b , 2 , and the desired fluid 4 temperatures. If the power required exceeds the power levels of any single commercially available electric source, two or more heating devices 100 and their associated electric power sources can be installed along the pipe to achieve the required power level.
- Thermocouple 6 allows measurement of fluid 4 's temperature immediately after it has been heated. Fluid 4 temperature may be kept at the desired value by using this measured temperature to control the power level of electric source 8 using standard commercially-available controllers 11 .
- FIG. 2 shows various exemplary basic parts that can be used in various embodiments, including heating device 100 , of the present invention to alter the electric current flow pattern to bring more electric current flow to the center of the pipe and/or to cause mixing of fluid 4 to promote more uniform heating of fluid 4 .
- These parts could be fastened inside the pipes by welding or other means.
- Basic part 140 consists of two flat metal plates intersecting at right angles about their center lines.
- the size of the part may be such that it may snuggly fit into pipes 1 a , 1 b , 2 and be held in place by welds or other means although the size, configuration, and positioning of the parts may be varied to other arrangements.
- This basic part can be modified by making the front and/or rear ends different shapes, such as, for example, sharp points, blunt points, or rounded curves for the purpose of altering the electric field pattern.
- Basic parts similar to part 140 having three or more intersection plates can also be used to improve the electric current pattern.
- the length, placement and angular orientation of part 140 along pipes 1 a , 1 b , 2 may be chosen to provide the best uniformity of heating.
- Basic part 141 is may be described as two intersecting flat metal plates that have been deformed so that their outer edges form four helices.
- the helices shown in FIG. 2 have an 80 degree right hand twist, but greater and lesser degrees of twist can be used. Right and left handed helices can be used.
- the front and rear ends can have a variety of different shapes, such as points or smooth curves.
- the height, width, length, placement and orientation of part 141 along pipes 1 a , 1 b , 2 may be chosen to provide the best uniformity of heating and fluid mixing. When the part stands alone with no other support, its height and width may be such that it fills the interior of pipe 1 a , 1 b , 2 and is held in place by welds or other means.
- Part 141 has the same electrical function as part 140 , but it also promotes physical mixing of the heated fluid 4 to provide more uniform heating.
- Part 141 can have more than two intersecting plates, such as three, four or more.
- Basic part 142 consists of parallel metal plates; seven are shown, but other numbers can be used. The planes of the plates are parallel to the axis of pipe 1 a , 1 b , 2 so fluid 4 's flow is not disturbed.
- This basic part can be modified by making the front and/or rear ends different shapes, such as sharp points, blunt points, or rounded curves for the purpose of altering the electric field pattern.
- the length, placement and orientation of part 142 along pipes 1 a , 1 b , 2 are chosen to provide the best uniformity of heating.
- Basic part 143 is similar to part 142 except that the metal plates are not parallel to the axis of pipe 1 a , 1 b , 2 .
- the reason for their not being parallel to the axis of pipe 1 a , 1 b , 2 is to alter the direction of fluid 4 flow to cause physical mixing of fluid 4 and thereby improve uniformity of heating.
- the sketch of basic part 143 shown in FIG. 2 shows all plates parallel to one another, but this need not be the case.
- the plates can also be curved to promote mixing.
- This basic part can be modified by making the front and/or rear ends different shapes, such as sharp points, blunt points, or rounded curves for the purpose of altering the electric field pattern.
- the plates can be of different lengths along pipe 1 a , 1 b , 2 and different angles to the axis of pipe 1 a , 1 b , 2 to increase physical mixing.
- the length, placement and orientation of part 143 along pipes 1 a , 1 b , 2 are chosen to provide the best uniformity of heating and fluid mixing.
- Basic part 144 is similar to parts 142 and 143 , except that it incorporates intersecting metal plates.
- Basic parts 145 and 146 may be described as auger-shaped metal disks. Part 145 is right handed and part 146 is left handed. The pitch of the auger can be selected for best physical mixing of fluid 4 . In addition to providing mixing, parts 145 and 146 may function to bring the electric current flow from pipe 1 a , 1 b , 2 walls to the center of pipes 1 a , 1 b , 2 . The diameter, pitch, handedness placement and orientation of parts 145 and 146 along pipes 1 a , 1 b , 2 may be chosen to provide the best uniformity of heating and fluid mixing. When parts 145 , 146 stand alone with no other support, their diameters may be chosen to fill the interior of pipe 1 a , 1 b , 2 so they can be held in place by welds or other means.
- Part 147 is a metal cylinder that could be placed along the axis, or other location, of pipes, 1 a , 1 b , 2 and held in place in a variety of means.
- the cylinder may be combined with one of the above-mentioned parts by welding or other means.
- cylinder part 147 could be combined with either part 140 or 141 with the cylinder axis along the intersection of the metal plates forming parts 140 or 141 .
- Another exemplary combination is to combine cylinder part 147 with one or more auger-shaped parts 145 or 146 .
- cylinder part 147 could run through the center of one or more of parts 145 or 146 .
- the ends of cylinder part 147 could be of any suitable configuration and geometry including, but not limited to, flat, pointed or curved. Its purpose is to improve uniformity of heating as well as promote physical mixing of fluid 4 .
- Basic part 148 may be shaped as the frustum of a conical cone similar to part 147 . As with part 147 , part 148 may be held in place by combining it with other basic parts.
- the ends of cylinder part 148 could be of any suitable configuration and geometry including, but not limited to, flat, pointed or curved. Its purpose is to improve uniformity of heating as well as promote physical mixing of fluid 4 .
- FIG. 3 shows several of the parts shown in FIG. 2 arranged in an exemplary configuration to be placed in heating device 100 shown in FIG. 1 .
- Parts made from basic part 140 are shown at the top of FIG. 3 .
- this basic part 140 can be modified by making the front and/or rear ends different shapes, as shown in this example.
- corners have been removed on one end.
- Part 140 - 2 corners have been removed on both ends.
- Part 140 - 1 may be placed in region 50 R
- Part 140 - 2 may be placed in region 70 R
- part 140 - 3 may be placed in region 90 R.
- Part 142 - 1 may be placed in region 50 R
- Part 142 - 2 may be placed in region 70 R
- part 142 - 3 may be placed in region 90 R.
- Part 145 / 6 - 1 may be made of both parts 145 and 146 and may be placed in region 50 R.
- part 145 / 6 - 2 may be made of both parts 145 and 146 and may be placed in region 70 R.
- Part 145 / 6 - 1 may be made of both parts 145 and 146 and may be placed in region 90 R. While not shown for parts 145 and 146 , in some embodiments, the parts may be used in combination with basic cylinder part 147 , which could run through the center of the parts to add support and stability.
- FIGS. 4 , 5 and 6 illustrate how this may be configured.
- This figure illustrates how several of the basic parts shown in FIG. 2 may be incorporated into heating device 100 . Different basic parts can be combined into one part and different disconnected basic parts can be placed in the same region or different regions.
- heating device 110 may have several features in common with heating device 100 except that it also incorporates internal parts (which may be comprised of any suitable materials including, but not limited to, metal) similar to basic part 142 , which are labeled 142 - 1 , 142 - 2 and 142 - 3 , as in the top of FIG. 3 .
- this basic part 142 has been be modified for this embodiment.
- the purpose of parts 142 - 1 , 142 - 2 and 142 - 3 is to cause the electric current flow that normally flows across insulators 3 in regions 60 R and 80 R close to the pipe wall, to be moved nearer to the center of the pipe so the heating is more uniform.
- the electric current flow pattern can be altered by changing the angle and size of the corners removed, by rounding the resulting angular corners and by rotating the electrodes so that the plates in neighboring electrodes do not lie in the same plane and by other modifications.
- the electric current flow pattern can be further altered by changing the number of plates, having an unequal number of plates in adjacent parts 142 - 1 , 142 - 2 and 142 - 3 and by changing the distance between adjacent parts 142 - 1 , 142 - 2 and 142 - 3 .
- Part 142 - 1 may be electrically connected to pipe 2 in region 50 R
- part 142 - 2 may be electrically connected to pipe 3 in region 70 R
- part 142 - 3 may be electrically connected to pipe 2 in region 90 R.
- FIG. 5 shows an exemplary embodiment heating device 120 having several features of heating device 100 , except that it further incorporates internal parts (which may be comprised of any suitable materials including, but not limited to, metal) such as basic parts 142 and 147 , which are labeled 142 - 4 and 147 - 1 .
- Basic part 142 consists of parallel plates.
- part 142 - 4 supports cylindrical part 147 - 1 with the axis of the cylinder along the center line of pipe 1 a , 1 b , 2 .
- Cylindrical part 147 - 1 has rounded ends, but they could be other shapes, such as bulbous, to alter fluid 4 flow or increase current flow to the center of the pipe.
- the combined parts 142 - 4 and 147 - 1 are electrically connected to pipe 2 in region 70 R.
- Cylinder part 147 - 1 extends upstream through region 60 R into region 50 R.
- Cylinder part 147 - 1 also extends downstream through region 80 R into region 90 R.
- the diameter and length of cylinder part 47 - 1 can be chosen to achieve uniform heating of fluids 4 in laminar flow by concentrating the current paths near the axis of the pipe where the flow is normally largest for laminar flow.
- the presence of the cylinder at the center of the pipe also slows the flow at the axis of the pipe to further achieve uniform heating over the entire cross section of pipe 1 a , 1 b , 2 .
- FIG. 6 shows an exemplary embodiment heating device 130 that may be an expanded version of heating device 120 shown in FIG. 5 . It may comprise two heating devices 120 separated by a section of pipe 1 c . Cylindrical part 147 - 2 runs through this section of pipe 1 c . The interior of pipe 1 c constitutes region 90 R of the upstream device and constitutes region 50 R of the downstream device, so it is labeled region 90 / 50 R. As in heating device 120 , electric current flow occurs between pipe 2 walls and cylindrical part 147 - 2 in regions 50 R and 90 R. In heating device 130 , additional currents flow between the pipe 1 c walls and cylindrical part 147 - 2 in region 90 / 50 R. Pipe 1 c can be made very long to increase the length over which heating occurs.
- Heating device 130 may be useful for fluids 4 that have small electrical conductivity because the long region 50 / 90 R over which electric current flows may reduce the electrical resistance presented to electric current source 8 so that lower voltages can be used to deliver the required amount of power.
- either 142 - 4 or 142 - 5 may be free to slide along pipe 2 wall.
- a continuously circulating heating system was constructed to demonstrate the ability of a coaxial electromagnetic heating apparatus (“heating elements”), including, but not limited to, one or more RF heaters, to efficiently heat a fluid contained in a pipe/piping system.
- heating elements including, but not limited to, one or more RF heaters.
- the system may operate with or without a circulating pump.
- FIG. 7 illustrates an exemplary embodiment without a circulating pump, wherein the fluid may be circulated by using thermal density gradients to circulate the fluid.
- the vertical system circuit orientation was designed to demonstrate the ability of RF field to heat a fluid to super critical temperatures yet safely and efficiently contain the fluids at increased temperatures and pressures.
- the basic principle of operation of this embodiment is based on the change in density of fluids with temperature, i.e., the fluid density decreases when it is heated and the fluid density increases as it cools.
- FIG. 8A illustrates an exemplary apparatus illustrating a continuously feed through system 200 with reactor 202 , power source 204 , and electrode(s) 206 such that fluid may flow continuously, though not circulating.
- FIG. 8B illustrates an exemplary apparatus illustrating a continuously circulating system 200 with reactor 202 , power source 204 , electrode(s) 206 , sampling valves 208 , pressure relief valve 210 , reservoir and ballast 212 , and sample fill valve 214 .
- the equipment comprises additionally an expansion tank to compensate for the effect caused by the water density decrease as the temperature rises toward the supercritical condition. The incompressibility of water at all density necessitated an expansion chamber to prevent system rupture of the laboratory apparatus.
- a pressure vent may be included as a safety device to allow excess pressure to be safely released. It may further be advantageous to include one or more temperature and/or pressure gauges along the flow path as well as a sampling system. Note that in the illustrated embodiment, the RF generator to the electrode may pass through the ceramic tube insulator. A ground connection may be made to the stainless steel circulating system.
- the RF electrode(s) may be supported on the ceramic tube that carries the electrical wire to the electrode.
- a fill valve At the top of the expansion tank is a fill valve that may be used to add fluids to the reactor.
- an RF generator was attached with the positive connection made to the electrode, which is electrically isolated from ground by the ceramic tube, and the ground attachment may be made to the reactor.
- algae circulated through the system under the influence of one or more RF generators i.e., heating
- the fluid such as algae and water mixtures, could be heated successfully to supercritical conditions wherein the algae could be degraded to methylene chloride and water soluble products.
- various algae slurries were heated to supercritical or near supercritical temperatures and the algae slurries were degraded. Further tests were conducted on the products produced including testing by HPLC, GC, and GC-mass spectrometry.
- various embodiments of the present invention may further include one or more pumps to aid in circulating the fluid(s).
- Such pumps may be present in various locations along the flow path. Such pumps may allow for increased flowrates over embodiments without circulating pumps.
- additional reservoirs may be a incorporated to the system to accommodate the influence of such circulating pumps.
- a flow through heating system was constructed to demonstrate the ability of a coaxial heating apparatus (“heating elements”), including, but not limited to, one or more MF heaters, to efficiently heat a fluid continuously flowing through a pipe/piping system.
- heating elements including, but not limited to, one or more MF heaters
- the system is modular with one (or more) heating element(s) and is designed to operate at power levels up to 15 KW though other embodiments may have higher or lower power levels.
- Illustrated is an exemplary continuous flow reactor 300 with reactor 302 , chamber 304 , electrode 306 , ceramic insulator 308 , fittings 310 , conductor to power 312 , spacer 314 , and spacer leg 316 .
- the design illustrated utilizes Swagelok SS seals and features Techlok sealing flanges. This system may utilize ceramic electrical insulators and ceramic spacers to maintain the position of the MF electrode.
- the system may also have a back flush feature to allow for clearing of any plugging or needed cleaning which is a convenient feature for high production volumes.
- the heating element is designed with high strength corrosion resistant alloys located in the center of the process fluid flow. This configuration does not rely on heat transfer through thick walls that are required to contain the high pressure required for the processing conditions and makes it possible to completely and separately control the heating of each heating element. Further, its modular design allows replications of this basic heating unit to provide scalability to generate any desired throughput production rate with in-line maintenance or replacement of heating elements or power generators without system shutdown.
- the illustrated system uses a ceramic tube to provide electrical insulation of the heating element
- other embodiments may use existing electrical pass-through technology and feature a corrosion resistant alloy as a protective shroud around the ceramic electrical insulator. This configuration may eliminate pressure and other physical damage problems which could develop and will require only one metal to metal seal for the electrical connection and metal.
- the other seals may be Techlok sealing flanges, or other suitable flanges. Copper gaskets may be used to connect the heater to the reactor.
- the illustrated system may also use other pipe sizes and appropriate flanges.
- the outside of the system may use electric resistance heat tracing and be covered with a high temperature insulation material around the heating elements and components.
- the system heater can be replicated based on the production rate sought and the capacity of the MF power supplied.
- the heating units in the illustrated embodiment are approximately 3 ft long and Techlok flanges are used to connect the units. Each heating unit has its own power supply to provide redundancy and control during operations.
- the ceramic insulator may be clad with stainless steel. Some embodiments of the insulator may also have graded seals between the stainless steel cladding and the ceramic insulator and between the ceramic insulator and the copper conductor.
- the power pass-through may be connected with Techlok flanges to the heating element. This exemplary unit is designed to contain 5000 psi at 400° C.
- FIG. 10 illustrates another view of a portion of an exemplary embodiment of the present invention showing a schematic view of a coaxial electrode applicator embodiment 400 which is electrically insulated from the piping system, placed in the center of the pipe, and connected to the “hot” side of an MF generator. Illustrated are conductor to power 402 , electrode 404 , pipe wall 406 , and fluid flow 408 .
- the piping system that is electrically insulated for the coaxial electrode is attached to ground.
- Such an exemplary embodiment may employ one or more coaxial applicators.
- Each applicator has two electrodes and the electric current that passes from one electrode to the other electrode directly heats the fluid between them.
- One electrode is the wall of the pipe that conveys the fluid to be heated.
- the other electrode is cylindrical and lies on the central axis.
- the inner radius of the pipe, R, the radius of the of the central coaxial electrode, r, and its length, L, along with the electrical properties of the fluid determine the electrical impedance of the applicator, which must be within certain ranges to obtain good coupling of power from the RF generator or AC power line to the applicator.
- Electrical matching networks for RF can provide some compensation, but by careful design, using optimum dimensions, efficient coupling of power can be achieved. Optimum dimensions are different for 13.56 MHz RF and 60 Hz AC power input.
- FIGS. 11-12 a small reactor heating system was constructed to demonstrate the ability of a coaxial heating apparatus (“heating elements”), including, but not limited to, one or more MF heaters, to efficiently heat a fluid in a high pressure reactor.
- the reactor used free convection to cause fluid flow and to impede settling of solids from the fluid.
- Any suitable frequency including, but not limited to RF, may be utilized.
- a frequency of approximately 60 Hz was utilized to heat a fluid in a reactor.
- FIG. 11 illustrates a high pressure reactor 500 , with reactor 502 , insulator 504 , reactor wall 506 , chimney 508 , chimney spacers 510 , and fittings 512 .
- FIG. 12 illustrates an embodiment with high pressure reactor 600 having reactor 602 , chimney 604 , insulator 606 , electrode 608 , and fittings 610 .
- the reactor comprised of a vertical circular cylindrical chamber with a coaxial cylindrical electrode near the bottom of the chamber.
- the chamber also contained a coaxial cylindrical tube that surrounded the electrode, which did not go the full height of the chamber. It is like a chimney, in that heated fluid rises upward in it. Its purpose was to provide a passage for the fluid that was heated inside the tube, at the electrode, to rise upward because of its lower density.
- the hot fluid got to the top of the tube, it would cool by contact with the cooler chamber wall.
- the fluid density increased as it cooled, causing it to flow downward between the outer wall of the tube and the inner wall of the chamber, where it would cool even more.
- the free convection flow of the fluid could be observed, though in some embodiments it was not fast enough to prevent settling of solids from some fluids.
- FIGS. 13-14 mechanical stirring was incorporated into a reactor to prevent settling of solids; the stirring could also return previously settled solids into the fluid.
- This embodiment is similar to the embodiment discussed above, but the chimney is eliminated and high pressure batch reactor 700 has reactor 702 , insulator 704 , electrode 706 , cooling jacket 708 , fittings 710 and conductor to power 712 .
- the stirring is caused/augmented by rotating the reactor about 100 degrees so that the “bottom” of the chamber is slightly above the “top”. At that time it is released and allowed to swing like a pendulum, but when it gets to the bottom of its swing, it is stopped by allowing it to collide with a soft material; felt was used in an exemplary embodiment to determine if this would work. If it swung freely like a pendulum, the already-settled and packed solids at the bottom were reluctant to mix into the fluid.
- the rotation of the reactor was limited to angles less than about 100 degrees, because larger rotations caused the fluid to get into the gas sampling lines. While his may not have been harmful, in some embodiments it was found that angles of approximately 100 degrees was all that was necessary to obtain the desired mixing.
- the reactor could hold 40 mL of fluid, while some of the free-convection exemplary embodiments could hold 90 mL of fluid.
- the reason for the decrease in volume is it that when the chimney was not required, the diameter of the chamber could be made smaller. This is an advantage because the chamber wall can be made thinner to handle the same pressure and the heat-up time can be significantly reduced, which is desirable for studying small reaction times. If larger volumes are required, only one part (the pipe section) needs to be constructed.
- Several embodiments incorporate a means for cooling the outer wall of the reactor so that the effects of RF and/or 60 Hz can be determined independently of temperature effects at low temperatures.
- the outer wall of the reactor can be heated using an electrical band or barrel heater to study thermal heating effects independent of RF and 60 Hz effects at high temperature.
- the location of the heating/power area(s) can be controlled by changing the dimensions, configuration and location of the heating/power elements.
- the fluid temperature may be kept at the desired value by using the measured temperature to control the power level of the electric source using standard commercially-available controllers.
- the power When the power is applied to the fluid/feedstock, it may cause one or more property changes to the fluid.
- property changes may be physical or chemical.
- Exemplary property changes include, but are not limited to, temperature, pressure, viscosity, and pH.
- the original fluid In applying the above described process to certain fluids, the original fluid may be degraded or otherwise changed such that the output product (i.e., after the electrochemical processes described herein), is different than the original fluid/feedstock.
- application of the power resulted not only in raising the temperature and/or pressure of the fluid, but produced products. In most embodiments, the products did not exist in the feedstock/fluid.
- Fluids that may be used in various embodiments of the present invention include, but are not limited to, gases, pastes, suspensions, plasmas, slurries, liquids, and any combinations thereof and such fluids may be stationary or moving. Fluids may have any conductivity level and be utilized in various embodiments of the present invention. If a fluid has a low conductivity (or any undesired conductivity level), the conductivity may be adjusted/varied by the introduction of other fluids (or materials) which have other (higher or lower) conductivities. These additional fluids or materials may be referred to as amendments, additives, or catalysts.
- feedstock have included lignite and algae.
- Lignite powder 500 mesh was used as the feedstock and the product was thick oily fluid whose hydrocarbon content was greatly increased over the feedstock, making the product suitable for liquid fuels after refining. It was noted that combining a small amount of algae with the lignite increased the product yield by 20 to 30%. Subsequent experiments were conducted using duckweed algae alone. These two feedstocks are representative of feedstocks that could be processed using this invention.
- feedstocks include, but are not limited to, coals, such as brown, lignite, sub-bituminous, bituminous, anthracite, waste coals and pond coal fines, woody crops, herbaceous crops, the seeds of oil crops, residues resulting from the harvesting of agricultural crops and nuisance vegetation such as kudzu.
- feedstocks which are suitable for the herein described processes and devices include, but are not limited to, biomass, such biomass including, but not limited to, renewable sources of energy obtained from living or recently living plants, such as trees, or wood waste, algae, yard clippings, corn (for ethanol), etc.
- Useful products of the herein described processes and devices include fuels, sulfur, ash, fuel oil, hydrogen gas, phenolic liquids, sugars, amino acids, and other minerals.
- products produced as a result of one or more of the above described processes included one or more of the following: Hydrogen, Hydrocarbons (C1-C6), Alkyl Esters, Triglycerides, Quinolines, Ketones, Sterols, Fatty Acids, high grade coal, and other minerals.
- the products produced in various embodiments contained more hydrogen than was in the original feedstock.
- the added hydrogen was assumed to be produced by electrolysis at the electrodes, but calculations indicated that more hydrogen was produced than was produced at the electrodes.
- a bench top apparatus was constructed, which could not operate at high temperatures and pressures, but it allowed a visual observation of the gas bubbles produced by electrochemistry. It consisted of a Lucite plate containing a grooved channel with electrodes at opposite ends. The channel was filled with saltwater and a direct current source was connected to the electrodes. As expected, bubbles occurred at both electrodes, chlorine at one end and hydrogen at the other. No bubbles occurred in the bulk of the saltwater. The saltwater heated because of ohmic heating.
- an applicator is defined as having one or more power sources, one or more electrodes and one or more additional conductive materials.
- the applicator is thus able to heat the fluid as the power is able to be conducted from the electrode, through the fluid, to the other conductive material(s).
- Some embodiments may be comprised of a single applicator, whereas other embodiments may have additional applicators.
- the applicators may be in series, while in others they may be in parallel.
- the chemical and/or physical reactions taking place in the fluid may be monitored and controlled through manipulation/control of the power and frequencies being applied at that time and location.
- Some embodiments may be utilized in various systems including, but not limited to, batch systems, continuous systems, and continuous-batch systems.
- the transport vehicles/holding chambers of the present invention may be any suitable vehicle including, but not limited to, pipe/piping, chambers, reactors, reservoirs, open cell, and closed cell.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/890,659 US20110233067A1 (en) | 2009-09-25 | 2010-09-25 | Electrochemical processing of fluids |
| PCT/US2010/050320 WO2011038307A1 (fr) | 2009-09-25 | 2010-09-25 | Traitement électrochimique de fluides |
| US14/908,744 US20160168729A1 (en) | 2010-09-25 | 2014-07-29 | Electrochemical and thermal digestion of organic molecules |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US24608609P | 2009-09-25 | 2009-09-25 | |
| US24608409P | 2009-09-25 | 2009-09-25 | |
| US32814810P | 2010-04-26 | 2010-04-26 | |
| US34687410P | 2010-05-20 | 2010-05-20 | |
| US35815610P | 2010-06-24 | 2010-06-24 | |
| US12/890,659 US20110233067A1 (en) | 2009-09-25 | 2010-09-25 | Electrochemical processing of fluids |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20110233067A1 true US20110233067A1 (en) | 2011-09-29 |
Family
ID=43796247
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/890,659 Abandoned US20110233067A1 (en) | 2009-09-25 | 2010-09-25 | Electrochemical processing of fluids |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US20110233067A1 (fr) |
| WO (1) | WO2011038307A1 (fr) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015017415A3 (fr) * | 2013-07-29 | 2015-11-05 | Rf Advanced Technology Group, Llc | Digestion électrochimique et thermique de molécules organiques |
| US10000709B2 (en) * | 2011-08-12 | 2018-06-19 | Harris Corporation | Hydrocarbon resource processing device including radio frequency applicator and related methods |
| US11737460B2 (en) | 2015-09-04 | 2023-08-29 | Ecolab Usa Inc. | Performic acid on-site generator and formulator |
| FR3143626A1 (fr) * | 2022-12-19 | 2024-06-21 | Totalenergies Onetech | Procede de liquefaction hydrothermale d’une charge organique |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9322723B2 (en) | 2012-07-10 | 2016-04-26 | General Electric Company | Energy harvesting survey apparatus and method of detecting thermal energy |
Citations (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4199025A (en) * | 1974-04-19 | 1980-04-22 | Electroflood Company | Method and apparatus for tertiary recovery of oil |
| US4424805A (en) * | 1978-04-10 | 1984-01-10 | Neary Michael P | Solar energy system and method of use |
| US4446041A (en) * | 1978-04-10 | 1984-05-01 | Neary Michael P | Solar energy system |
| US4505805A (en) * | 1981-06-04 | 1985-03-19 | Ngk Insulators, Ltd. | Oxygen concentration detector |
| US4505804A (en) * | 1981-06-04 | 1985-03-19 | Ngk Insulators, Ltd. | Oxygen concentration detector |
| US4652318A (en) * | 1982-09-07 | 1987-03-24 | Ngk Spark Plug Co., Ltd. | Method of making an electric field device |
| US4778579A (en) * | 1983-06-03 | 1988-10-18 | United Technologies Corporation | Method and apparatus for operating a fuel cell in combination with an electrochemical cell to produce a chemical product |
| US4797186A (en) * | 1983-06-03 | 1989-01-10 | United Technologies Corporation | Method and apparatus for operating a fuel cell in combination with an electrochemical cell to produce a chemical product |
| US4891116A (en) * | 1987-11-14 | 1990-01-02 | Deutsche Gesellschaft Fur Wiederaufarbeitung Von Kernbrennstoffen Gmbh | Method and apparatus for electrochemically decomposing inorganic materials contained in an aqueous radioactive waste solution |
| US5217063A (en) * | 1992-05-21 | 1993-06-08 | Mainstream Engineering Corporation | Thermal storage heat pipe |
| US5534232A (en) * | 1994-08-11 | 1996-07-09 | Wisconsin Alumini Research Foundation | Apparatus for reactions in dense-medium plasmas |
| US5565067A (en) * | 1994-03-31 | 1996-10-15 | Chaffin, Iii; John H. | Evaporation of water using high frequency electric fields |
| US5882502A (en) * | 1992-04-01 | 1999-03-16 | Rmg Services Pty Ltd. | Electrochemical system and method |
| US6039783A (en) * | 1996-12-03 | 2000-03-21 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Process and equipment for nitrogen oxide waste conversion to fertilizer |
| US20020100836A1 (en) * | 2001-01-31 | 2002-08-01 | Hunt Robert Daniel | Hydrogen and oxygen battery, or hudrogen and oxygen to fire a combustion engine and/or for commerce. |
| US6432568B1 (en) * | 2000-08-03 | 2002-08-13 | General Motors Corporation | Water management system for electrochemical engine |
| US6489049B1 (en) * | 2000-07-03 | 2002-12-03 | Johnson Electro Mechanical Systems, Llc | Electrochemical conversion system |
| US6524737B1 (en) * | 1998-09-28 | 2003-02-25 | Mitsubishi Heavy Industries, Ltd. | Method for crushing cell |
| US6641638B1 (en) * | 1996-12-03 | 2003-11-04 | The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration | Process for nitrogen oxide waste conversion to fertilizer |
| US20040060815A1 (en) * | 1999-08-06 | 2004-04-01 | Sterilox Medical (Europe) Limited | Electrochemical treatment of an aqueous solution |
| US20040219079A1 (en) * | 2003-01-22 | 2004-11-04 | Hagen David L | Trifluid reactor |
| US20050095168A1 (en) * | 2002-06-12 | 2005-05-05 | Steris Inc. | Method for vaporizing a fluid using an electromagnetically responsive heating apparatus |
| US20050120621A1 (en) * | 2003-11-12 | 2005-06-09 | Lawson J. A. | Chemical synthesis method comprising electro-catalytic reaction and apparatus therefor |
| US20050129580A1 (en) * | 2003-02-26 | 2005-06-16 | Swinehart Philip R. | Microfluidic chemical reactor for the manufacture of chemically-produced nanoparticles |
| US20050164376A1 (en) * | 2004-01-16 | 2005-07-28 | California Institute Of Technology | Microfluidic chemostat |
| US20050160667A1 (en) * | 2003-12-12 | 2005-07-28 | Weinberg Jerry L. | Pre-burning, dry process methodology and systems for enhancing solid fuel properties |
| US20050224338A1 (en) * | 2004-04-08 | 2005-10-13 | Industrial Technology Research Institute | Water treatment reactor for simultaneous electrocoagulation and advanced oxidation processes |
| US20050260482A1 (en) * | 2003-09-22 | 2005-11-24 | David Frank | Flow field plate arrangement |
| US7201841B2 (en) * | 2003-02-05 | 2007-04-10 | Water Visions International, Inc. | Composite materials for fluid treatment |
| US7229710B2 (en) * | 2001-11-20 | 2007-06-12 | Celltech Power, Inc. | Electrochemical system and methods for control thereof |
| US7311986B2 (en) * | 2000-10-30 | 2007-12-25 | Ztek Corporation | Multi-function energy system operable as a fuel cell, reformer, or thermal plant |
| US20070295590A1 (en) * | 2006-03-31 | 2007-12-27 | Weinberg Jerry L | Methods and systems for enhancing solid fuel properties |
| US20080085604A1 (en) * | 2004-07-07 | 2008-04-10 | Showa Denko K.K. | Plasma Treatment Method and Plasma Etching Method |
| US20080184915A1 (en) * | 2007-02-02 | 2008-08-07 | Anna Lee Tonkovich | Process for making unsaturated hydrocarbons using microchannel process technology |
| US20090119981A1 (en) * | 2006-03-31 | 2009-05-14 | Drozd J Michael | Methods and systems for briquetting solid fuel |
| US20090230038A1 (en) * | 2005-10-11 | 2009-09-17 | K2R Co., Ltd. | Apparatus for producing photocatalytic reaction water |
| US20100258429A1 (en) * | 2007-11-16 | 2010-10-14 | Nicolas Ugolin | Method using solar energy, microwaves and plasmas to produce a liquid fuel and hydrogen from biomass or fossil coal |
| US20110147231A1 (en) * | 2009-12-23 | 2011-06-23 | Cavitation Technologies, Inc. | High-throughput cavitation and electrocoagulation apparatus |
| US20120211367A1 (en) * | 2011-01-25 | 2012-08-23 | President And Fellows Of Harvard College | Electrochemical carbon nanotube filter and method |
| US20120234694A1 (en) * | 2011-01-25 | 2012-09-20 | President And Fellows Of Harvard College | Electrochemical carbon nanotube filter and method |
| US20120286522A1 (en) * | 2009-06-29 | 2012-11-15 | Lightsail Energy, Inc. | Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange |
| US20120317993A1 (en) * | 2011-06-17 | 2012-12-20 | Advanced Ion Beam Technology, Inc. | Apparatus and method for controlling workpiece temperature |
| US20130298769A1 (en) * | 2011-01-31 | 2013-11-14 | Advanced Technology Materials, Inc. | Carbon pyrolyzate adsorbent having utility for co2 capture and methods of making and using the same |
| US20140072836A1 (en) * | 2011-04-05 | 2014-03-13 | Blacklight Power, Inc. | H2o-based electrochemical hydrogen-catalyst power system |
| US20150353389A1 (en) * | 2012-12-26 | 2015-12-10 | Koninklijke Philips N.V. | Ph adjustor, apparatus including the ph adjustor and method for adjusting ph |
| US20160031731A1 (en) * | 2013-03-06 | 2016-02-04 | Wilsa Holdings, LLC | Method and apparatus for conditioning fluids |
| US20160168729A1 (en) * | 2010-09-25 | 2016-06-16 | Rf Advanced Technology Group Llc | Electrochemical and thermal digestion of organic molecules |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080292912A1 (en) * | 2006-05-02 | 2008-11-27 | The Penn State Research Foundation | Electrodes and methods for microbial fuel cells |
-
2010
- 2010-09-25 US US12/890,659 patent/US20110233067A1/en not_active Abandoned
- 2010-09-25 WO PCT/US2010/050320 patent/WO2011038307A1/fr not_active Ceased
Patent Citations (49)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4199025A (en) * | 1974-04-19 | 1980-04-22 | Electroflood Company | Method and apparatus for tertiary recovery of oil |
| US4424805A (en) * | 1978-04-10 | 1984-01-10 | Neary Michael P | Solar energy system and method of use |
| US4446041A (en) * | 1978-04-10 | 1984-05-01 | Neary Michael P | Solar energy system |
| US4505805A (en) * | 1981-06-04 | 1985-03-19 | Ngk Insulators, Ltd. | Oxygen concentration detector |
| US4505804A (en) * | 1981-06-04 | 1985-03-19 | Ngk Insulators, Ltd. | Oxygen concentration detector |
| US4652318A (en) * | 1982-09-07 | 1987-03-24 | Ngk Spark Plug Co., Ltd. | Method of making an electric field device |
| US4778579A (en) * | 1983-06-03 | 1988-10-18 | United Technologies Corporation | Method and apparatus for operating a fuel cell in combination with an electrochemical cell to produce a chemical product |
| US4797186A (en) * | 1983-06-03 | 1989-01-10 | United Technologies Corporation | Method and apparatus for operating a fuel cell in combination with an electrochemical cell to produce a chemical product |
| US4891116A (en) * | 1987-11-14 | 1990-01-02 | Deutsche Gesellschaft Fur Wiederaufarbeitung Von Kernbrennstoffen Gmbh | Method and apparatus for electrochemically decomposing inorganic materials contained in an aqueous radioactive waste solution |
| US5882502A (en) * | 1992-04-01 | 1999-03-16 | Rmg Services Pty Ltd. | Electrochemical system and method |
| US5217063A (en) * | 1992-05-21 | 1993-06-08 | Mainstream Engineering Corporation | Thermal storage heat pipe |
| US5565067A (en) * | 1994-03-31 | 1996-10-15 | Chaffin, Iii; John H. | Evaporation of water using high frequency electric fields |
| US5534232A (en) * | 1994-08-11 | 1996-07-09 | Wisconsin Alumini Research Foundation | Apparatus for reactions in dense-medium plasmas |
| US6039783A (en) * | 1996-12-03 | 2000-03-21 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Process and equipment for nitrogen oxide waste conversion to fertilizer |
| US6641638B1 (en) * | 1996-12-03 | 2003-11-04 | The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration | Process for nitrogen oxide waste conversion to fertilizer |
| US6524737B1 (en) * | 1998-09-28 | 2003-02-25 | Mitsubishi Heavy Industries, Ltd. | Method for crushing cell |
| US20040060815A1 (en) * | 1999-08-06 | 2004-04-01 | Sterilox Medical (Europe) Limited | Electrochemical treatment of an aqueous solution |
| US6489049B1 (en) * | 2000-07-03 | 2002-12-03 | Johnson Electro Mechanical Systems, Llc | Electrochemical conversion system |
| US6432568B1 (en) * | 2000-08-03 | 2002-08-13 | General Motors Corporation | Water management system for electrochemical engine |
| US7311986B2 (en) * | 2000-10-30 | 2007-12-25 | Ztek Corporation | Multi-function energy system operable as a fuel cell, reformer, or thermal plant |
| US20020100836A1 (en) * | 2001-01-31 | 2002-08-01 | Hunt Robert Daniel | Hydrogen and oxygen battery, or hudrogen and oxygen to fire a combustion engine and/or for commerce. |
| US7229710B2 (en) * | 2001-11-20 | 2007-06-12 | Celltech Power, Inc. | Electrochemical system and methods for control thereof |
| US20050095168A1 (en) * | 2002-06-12 | 2005-05-05 | Steris Inc. | Method for vaporizing a fluid using an electromagnetically responsive heating apparatus |
| US20040219079A1 (en) * | 2003-01-22 | 2004-11-04 | Hagen David L | Trifluid reactor |
| US20090180939A1 (en) * | 2003-01-22 | 2009-07-16 | Hagen David L | Trifluid reactor |
| US7201841B2 (en) * | 2003-02-05 | 2007-04-10 | Water Visions International, Inc. | Composite materials for fluid treatment |
| US20050129580A1 (en) * | 2003-02-26 | 2005-06-16 | Swinehart Philip R. | Microfluidic chemical reactor for the manufacture of chemically-produced nanoparticles |
| US20050260482A1 (en) * | 2003-09-22 | 2005-11-24 | David Frank | Flow field plate arrangement |
| US20050120621A1 (en) * | 2003-11-12 | 2005-06-09 | Lawson J. A. | Chemical synthesis method comprising electro-catalytic reaction and apparatus therefor |
| US7722755B2 (en) * | 2003-11-12 | 2010-05-25 | Ecr Technologies, Inc. | Method of electro-catalytic reaction to produce mono alkyl esters for renewable biodiesel |
| US20050160667A1 (en) * | 2003-12-12 | 2005-07-28 | Weinberg Jerry L. | Pre-burning, dry process methodology and systems for enhancing solid fuel properties |
| US20050164376A1 (en) * | 2004-01-16 | 2005-07-28 | California Institute Of Technology | Microfluidic chemostat |
| US20050224338A1 (en) * | 2004-04-08 | 2005-10-13 | Industrial Technology Research Institute | Water treatment reactor for simultaneous electrocoagulation and advanced oxidation processes |
| US20080085604A1 (en) * | 2004-07-07 | 2008-04-10 | Showa Denko K.K. | Plasma Treatment Method and Plasma Etching Method |
| US20090230038A1 (en) * | 2005-10-11 | 2009-09-17 | K2R Co., Ltd. | Apparatus for producing photocatalytic reaction water |
| US20090119981A1 (en) * | 2006-03-31 | 2009-05-14 | Drozd J Michael | Methods and systems for briquetting solid fuel |
| US20070295590A1 (en) * | 2006-03-31 | 2007-12-27 | Weinberg Jerry L | Methods and systems for enhancing solid fuel properties |
| US20080184915A1 (en) * | 2007-02-02 | 2008-08-07 | Anna Lee Tonkovich | Process for making unsaturated hydrocarbons using microchannel process technology |
| US20100258429A1 (en) * | 2007-11-16 | 2010-10-14 | Nicolas Ugolin | Method using solar energy, microwaves and plasmas to produce a liquid fuel and hydrogen from biomass or fossil coal |
| US20120286522A1 (en) * | 2009-06-29 | 2012-11-15 | Lightsail Energy, Inc. | Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange |
| US20110147231A1 (en) * | 2009-12-23 | 2011-06-23 | Cavitation Technologies, Inc. | High-throughput cavitation and electrocoagulation apparatus |
| US20160168729A1 (en) * | 2010-09-25 | 2016-06-16 | Rf Advanced Technology Group Llc | Electrochemical and thermal digestion of organic molecules |
| US20120211367A1 (en) * | 2011-01-25 | 2012-08-23 | President And Fellows Of Harvard College | Electrochemical carbon nanotube filter and method |
| US20120234694A1 (en) * | 2011-01-25 | 2012-09-20 | President And Fellows Of Harvard College | Electrochemical carbon nanotube filter and method |
| US20130298769A1 (en) * | 2011-01-31 | 2013-11-14 | Advanced Technology Materials, Inc. | Carbon pyrolyzate adsorbent having utility for co2 capture and methods of making and using the same |
| US20140072836A1 (en) * | 2011-04-05 | 2014-03-13 | Blacklight Power, Inc. | H2o-based electrochemical hydrogen-catalyst power system |
| US20120317993A1 (en) * | 2011-06-17 | 2012-12-20 | Advanced Ion Beam Technology, Inc. | Apparatus and method for controlling workpiece temperature |
| US20150353389A1 (en) * | 2012-12-26 | 2015-12-10 | Koninklijke Philips N.V. | Ph adjustor, apparatus including the ph adjustor and method for adjusting ph |
| US20160031731A1 (en) * | 2013-03-06 | 2016-02-04 | Wilsa Holdings, LLC | Method and apparatus for conditioning fluids |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10000709B2 (en) * | 2011-08-12 | 2018-06-19 | Harris Corporation | Hydrocarbon resource processing device including radio frequency applicator and related methods |
| WO2015017415A3 (fr) * | 2013-07-29 | 2015-11-05 | Rf Advanced Technology Group, Llc | Digestion électrochimique et thermique de molécules organiques |
| US20190136393A1 (en) * | 2013-07-29 | 2019-05-09 | Rf Advanced Technology Group Llc | Electrochemical and thermal digestion of organic molecules |
| US11737460B2 (en) | 2015-09-04 | 2023-08-29 | Ecolab Usa Inc. | Performic acid on-site generator and formulator |
| EP3344601B1 (fr) * | 2015-09-04 | 2024-01-10 | Ecolab Usa Inc. | Générateur sur site d'acide performique |
| US12268210B2 (en) | 2015-09-04 | 2025-04-08 | Ecolab Usa Inc. | Performic acid on-site generator and formulator |
| FR3143626A1 (fr) * | 2022-12-19 | 2024-06-21 | Totalenergies Onetech | Procede de liquefaction hydrothermale d’une charge organique |
| WO2024134091A1 (fr) * | 2022-12-19 | 2024-06-27 | Totalenergies Onetech | Procede de liquefaction hydrothermale d'une charge organique |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2011038307A1 (fr) | 2011-03-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20110233067A1 (en) | Electrochemical processing of fluids | |
| US20190136393A1 (en) | Electrochemical and thermal digestion of organic molecules | |
| US20130213487A1 (en) | Pipeline heating technology | |
| Palaniappan et al. | Electrical conductivity of selected juices: influences of temperature, solids content, applied voltage, and particle size 1 | |
| US5440667A (en) | OHMIC heater including electrodes arranged along a flow axis to reduce leakage current | |
| US20080202982A1 (en) | Process for Cracking of Waste Oil by Microwave | |
| DE102008050817A1 (de) | Abgasfreie allotherme Dampfreformierung | |
| SA517381539B1 (ar) | عملية تحسين النفط الثقيل في مفاعل ثنائي الجدار | |
| Cousins et al. | Development of a bench-scale high-pressure fluidized bed reactor and its sequential modification for studying diverse aspects of pyrolysis and gasification of coal and biomass | |
| Fu et al. | Hydrothermal hydrolysis pretreatment of microalgae slurries in a continuous reactor under subcritical conditions for large–scale application | |
| Macák et al. | In-situ electrochemical impedance measurements of corroding stainless steel in high subcritical and supercritical water | |
| Yoshida et al. | Reactor development for supercritical water gasification of 4.9 wt% glucose solution at 673 K by using computational fluid dynamics | |
| Zhao et al. | Structure effect on heating performance of microwave inductive waste lubricating oil pyrolysis | |
| Hammerschmidt et al. | Conversion of yeast by hydrothermal treatment under reducing conditions | |
| US20160168729A1 (en) | Electrochemical and thermal digestion of organic molecules | |
| CN104624077A (zh) | 一种新型保温配料罐 | |
| Ezenwa et al. | Design and Construction of a Continous Stirring Hydrothermal Liquefaction Batch Reactor | |
| JP6146789B2 (ja) | 加水燃料の製造方法及び製造装置 | |
| CN102086405A (zh) | 一种原油电脱盐动态试验模拟系统装置 | |
| CA2932812A1 (fr) | Appareil et procede de chauffage par effet joule | |
| Anthony | Hydrothermal liquefaction of municipal sludge and biosolids | |
| DE102013220501A1 (de) | Verfahren und Vorrichtung zur Kohle-Pyrolyse | |
| US9410452B2 (en) | Fuel generation using high-voltage electric fields methods | |
| BR102018004672A2 (pt) | Reator tubular e sistema reacional de hidroprocessamento de hidrocarbonetos assistido por micro-ondas | |
| Suryanto et al. | Application of induction heating in the biodiesel production process using oscillatory flow reactor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CONYERS TECHNOLOGY GROUP, LLC, GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ATEN, JED;ATEN, WILLIAM;LIND, ARTHUR C.;AND OTHERS;SIGNING DATES FROM 20110722 TO 20130619;REEL/FRAME:032229/0481 |
|
| AS | Assignment |
Owner name: RF ADVANCED TECHNOLOGY GROUP, LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONYERS TECHNOLOGY GROUP, LLC;REEL/FRAME:032235/0093 Effective date: 20130619 |
|
| AS | Assignment |
Owner name: CONYERS TECHNOLOGY GROUP, LLC, GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ATEN, JED, MR.;ATEN, WILLIAM R, MR.;LIND, ARTHUR C, DR.;AND OTHERS;SIGNING DATES FROM 20110722 TO 20130619;REEL/FRAME:032317/0027 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |