US20110192787A1 - Hollow fiber membrane and method for manufacturing the same - Google Patents
Hollow fiber membrane and method for manufacturing the same Download PDFInfo
- Publication number
- US20110192787A1 US20110192787A1 US13/091,361 US201113091361A US2011192787A1 US 20110192787 A1 US20110192787 A1 US 20110192787A1 US 201113091361 A US201113091361 A US 201113091361A US 2011192787 A1 US2011192787 A1 US 2011192787A1
- Authority
- US
- United States
- Prior art keywords
- hollow fiber
- fiber membrane
- sealing part
- membrane
- external
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 141
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 85
- 238000000034 method Methods 0.000 title abstract description 19
- 238000004519 manufacturing process Methods 0.000 title abstract description 14
- 238000007789 sealing Methods 0.000 claims abstract description 80
- 239000000463 material Substances 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 11
- 229920002635 polyurethane Polymers 0.000 claims description 6
- 239000004814 polyurethane Substances 0.000 claims description 6
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 38
- 239000000565 sealant Substances 0.000 description 33
- 239000011247 coating layer Substances 0.000 description 15
- 238000004140 cleaning Methods 0.000 description 13
- 230000008901 benefit Effects 0.000 description 11
- 238000012423 maintenance Methods 0.000 description 8
- 239000004695 Polyether sulfone Substances 0.000 description 7
- 238000005273 aeration Methods 0.000 description 7
- 229920006393 polyether sulfone Polymers 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000002131 composite material Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- -1 e.g. Polymers 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 2
- 238000011001 backwashing Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003816 axenic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
- B01D63/024—Hollow fibre modules with a single potted end
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/04—Specific sealing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/23—Specific membrane protectors, e.g. sleeves or screens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/06—Submerged-type; Immersion type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
- B01D63/027—Twinned or braided type modules
Definitions
- the present invention relates to a hollow fiber membrane and a method for manufacturing the same, and more particularly to a through-one-end water collection type hollow fiber membrane having a free end which is not fixed to a header whereby permitting relatively free movement of the membrane when submerged in feed water to be treated.
- a separation method using a membrane has lots of advantages compared to the method based on a phase inversion or heating. Among the advantages is high reliability of water treatment since the water purity required may be easily and stably satisfied by adjusting the size of the pores of a membrane. Further, a membrane can be used with microorganism which is useful for separation process but may be adversely affected by heat.
- a membrane for separation includes a flat sheet membrane and a hollow fiber membrane.
- a hollow fiber membrane module carries out a separation process using a bundle of hollow fiber membranes.
- a hollow fiber membrane module has been widely used in the field of microfiltration and ultrafiltration for obtaining axenic water, drinking water, super pure water, and so on.
- application of the hollow fiber membrane module is being expanded to include wastewater treatment, solid-liquid separation in a septic tank, removal of suspended solid (SS) from industrial wastewater, filtration of river, filtration of industrial water, and filtration of swimming pool water.
- SS suspended solid
- hollow fiber membrane modules are a submerged hollow fiber membrane module which is submerged into a tank of feed water to be treated. Negative pressure is applied to the internal parts of the hollow fiber membranes such that only fluid passes through the walls of the membranes and solids and sludge are rejected and accumulate in the tank.
- a submerged hollow fiber membrane module is used mainly in the form of a cassette having a plurality of modules combined to a frame.
- a submerged hollow fiber membrane module is advantageous in that the manufacturing cost is relatively low and that the installation and maintenance cost may be reduced since a facility for circulating fluid is not required.
- the solids in the wastewater fouls the membrane causing the permeability of the membrane to be declined as the wastewater is treated.
- the solids may be present in the feed water in a variety of forms which contribute to fouling in different ways. To counter the different types of fouling, many different types of cleaning regimens may be required.
- Such cleaning may be classified into maintenance cleaning and recovery cleaning according to the cleaning purposes.
- the maintenance cleaning is a cleaning performed while the water treatment is carried out by the hollow fiber membrane module or a cleaning performed only for a short time after the water treatment is stopped.
- the main purpose of the maintenance cleaning is to maintain the permeability of the membranes in good status.
- the maintenance cleaning is generally carried out by physical cleaning The most frequently used methods of physical cleaning are backwashing and aeration.
- a submerged hollow fiber membrane module may be classified into a through-both-ends water collection type and a through-one-end water collection type.
- a through-both-ends water collection type the permeate obtained inside each hollow fiber membrane is collected through both ends of the membranes.
- the permeate is collected through only one end of each membrane in a through-one-end water collection type.
- each header has a permeate collecting space therein with which the membrane is in fluid communication.
- upward movement of bubbles from a aeration tube are interrupted by the headers especially when the hollow fiber membrane module is a vertical type.
- An upper header has the effect of displacing the rising bubbles towards the outside of the membrane bundle.
- effective aeration is no longer guaranteed in the upper region of the membrane.
- relatively severe fouling occurs in the upper region of the membrane bundle.
- a method of sealing a hollow fiber membrane at its free end comprises coating the free end with a sealant of same polymer, e.g., polyethersulfone (PES), as that of the membrane, and curing the sealant.
- FIG. 1 shows a cross section of a hollow fiber membrane sealed with this method.
- the sealing part 110 exists only on the external surface of the free end of the hollow fiber membrane 100 .
- the sealing part 110 is vulnerable and might be easily stripped off from the membrane 100 causing leakage, which requires replacement of the impaired membrane 100 and thus increases the maintenance cost.
- the present invention is directed to a hollow fiber membrane and a method for manufacturing the same that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
- An advantage of the present invention is to provide a hollow fiber membrane used for a through-one-end water collection type hollow fiber membrane module and a method for manufacturing the same, wherein the hollow fiber membrane is provided with a sealing part of improved durability at its free end.
- Another advantage of the present invention is to provide a composite hollow fiber membrane sealed at its free end without impairing the coating layer thereof and a method for manufacturing the same, wherein the sealing part has high durability.
- Another advantage of the present invention is to provide a hollow fiber membrane having a free end surrounded by a sealing part a portion of which is inserted into the hollow part of the membrane in sufficient length, and a method for manufacturing the same.
- Still further another advantage of the present invention is to provide a hollow fiber membrane sealed with a sealant effectively at its free end, and a method for manufacturing the same.
- a hollow fiber membrane comprising an external sealing part surrounding an external surface of a first end of the hollow fiber membrane, and an internal sealing part in a hollow part of the hollow fiber membrane at the first end.
- a method for manufacturing a hollow fiber membrane comprising forming an internal sealing part in a hollow part of the hollow fiber membrane at an end of the hollow fiber membrane, and forming an external sealing part surrounding an external surface of the end of the hollow fiber membrane.
- FIG. 1 is a cross sectional view illustrating a conventional hollow fiber membrane
- FIG. 2 is a perspective view illustrating a through-one-end water collection type hollow fiber membrane module of the present invention
- FIG. 3 is a cross sectional view illustrating a hollow fiber membrane according to the first embodiment of the present invention
- FIG. 4 is a cross sectional view illustrating a hollow fiber membrane according to the second embodiment of the present invention.
- FIG. 5 is a cross sectional view illustrating a hollow fiber membrane according to the third embodiment of the present invention.
- FIG. 6 is a cross sectional view illustrating a hollow fiber membrane according to the fourth embodiment of the present invention.
- FIG. 2 is a perspective view illustrating a through-one-end water collection type hollow fiber membrane module of the present invention.
- a through-one-end water collection type hollow fiber membrane module has a bundle of hollow fiber membranes 100 .
- An end of each membrane 100 is potted into a header 200 inside which a water collecting space 210 is formed.
- the end of the membrane 100 potted into the header 200 is open and thus in fluid communication with the water collecting space 210 .
- the permeate which flows into the hollow part through the membrane 100 can flow to the water collecting space 210 .
- the other end, a free end, of the membrane 100 is not fixed to anywhere and is sealed for the feed water not to be able to flow into the hollow part through the open free end.
- the hollow fiber membrane 100 may be a porous single membrane comprising a polymer such as polyethersulfone(PES), polysulfone(PS), and polyvinylidene difluoride(PVDF) or a composite membrane comprising a tubular braid and a polymer coating layer thereon.
- a polymer such as polyethersulfone(PES), polysulfone(PS), and polyvinylidene difluoride(PVDF)
- PVDF polyvinylidene difluoride
- FIGS. 3 to 5 are cross sectional views illustrating hollow fiber membranes according to the first, second, and third embodiments of the present invention respectively.
- the hollow fiber membrane 100 of the present invention has a free end which is not fixed to anywhere.
- the free end is closed by sealing part 120 a, 120 b , and 120 c.
- the sealing part 120 a, 120 b, and 120 c comprises an external sealing part surrounding the external surface of the free end, and an internal sealing part in the hollow part of the membrane 100 at the free end.
- the internal sealing part supports the external sealing part thereby improving the durability of the whole sealing part 120 a, 120 b, and 120 c.
- the length l 1 of the internal sealing part is 1 to 200% of the length l 2 of the external sealing part.
- the length l 1 and l 2 of the internal and external sealing parts are parallel to a longitudinal direction of the hollow fiber membrane 100 . If the length l 1 of the internal sealing part is less than 1% of the length l 2 of the external sealing part, the internal sealing part can hardly support the external sealing part.
- the length l 1 of the internal sealing part is more than 200% of the length l 2 of the external sealing part, it takes too much time to cure the internal sealing part, too much sealant is consumed, and the durability of the sealing part 120 a, 120 b, and 120 c may be reduced due to the low viscosity of the sealant when the internal and external sealing parts are formed of the same material.
- the length l 1 of the internal sealing part of the embodiment shown in FIG. 3 is shorter than the length l 2 of the external sealing part.
- the length l 1 of the internal sealing part of the embodiment shown in FIG. 4 is longer than the length l 2 of the external sealing part.
- the external and internal sealing parts may be formed of the same sealant substantially simultaneously. That is, the step for forming the internal sealing part in the hollow part of the membrane 100 at the free end and the step for forming the external sealing part surrounding the external surface of the free end may be performed at the same time.
- a method for forming the external and internal sealing parts simultaneously will be illustrated in detail hereinafter.
- the viscosity of the sealant is adjusted such that the sealant might be effectively drawn into the hollow part of the membrane 100 by capillary phenomenon.
- the viscosity of the sealant depends on the temperature of the sealant and the characteristics of the material itself.
- the sealing part 120 a , 120 b, and 120 c is formed of polyurethane.
- polyurethane having viscosity of about 1,000 to 3,000 cps is used at ambient temperature
- the length l 1 of the internal sealing part will be shorter than the length l 2 of the external sealing part.
- polyurethane having viscosity of about 100 to 500 cps is used at a temperature above 30° C.
- the length l 1 of the internal sealing part will be longer than the length l 2 of the external sealing part.
- the hollow fiber membrane 100 is a composite membrane comprising a tubular braid as a reinforcing structure and a polymer coating layer formed thereon, it might be advantageous that the sealing part 120 a, 120 b, and 120 c and the coating layer are formed of materials different from each other for the reason described below.
- the PES solution should have viscosity low enough for the solution to be drawn into the hollow part of the membrane 100 at the free end.
- the PES solution may be prepared by dissolving PES into its good solvent such as DMAc, DMF, NMP, and so on. The amount of the solvent should be increased to lower the viscosity of the PES solution. When the viscosity of the solution becomes too low, however, some problems as follow might occur.
- the solvent of the PES solution may dissolve the PES coating layer as well thereby impairing the membrane 100 .
- the thickness of the sealing part, especially the portion corresponding to the corner of the free end cannot but be reduced due to the low viscosity of the PES solution, and thus the possibility of the impairment of the membrane and leakage at that point increases.
- the sealing part 120 a, 120 b, and 120 c comprises a material, e.g., polyurethane, silicone, heat-cured polymer, or UV-cured epoxy polymer, which is different from that of the coating layer of the membrane 100 .
- a mold having an inside space of a predetermined shape is filled with the viscosity-adjusted sealant.
- the predetermined shape of the inside space of the mold is a streamlined shape, and thus the sealant cured in the mold would also have the streamlined shape and could hardly be pulled out from the mold.
- the mold had better be formed of a material which can be easily removed, e.g., paraffin.
- the cross section of the external sealing part perpendicular to the longitudinal direction of the hollow fiber membrane 100 becomes smaller as farther from the other end of the hollow fiber membrane 100 opposite to the free end.
- the cured sealant of the third embodiment of the present invention can be easily pulled out from the mold and the mold need not be removed. Therefore, the third embodiment of the present invention has an advantage in that there is no limitation on the material forming the mold.
- the free end of the hollow fiber membrane 100 is submerged into the viscosity-adjusted sealant in the mold.
- the length by which the sealant is drawn into the hollow part of the membrane 100 can be adjusted.
- the sealing part 120 a, 120 b , and 120 c is formed by curing the sealant with heat or UV irradiation while the free end of the hollow fiber membrane 100 is submerged in the sealant.
- the molds of the first and second embodiments of the present invention as illustrated in FIG. 3 and FIG. 4 are removed.
- the mold can be removed by applying heat to the mold.
- the sealing part 120 c can be compulsorily pulled out from the mold since the cross section of the sealing part 120 c perpendicular to the longitudinal direction of the hollow fiber membrane 100 becomes smaller as farther from the other end of the hollow fiber membrane 100 opposite to the free end.
- a hollow fiber membrane 100 according to the fourth embodiment of the present invention comprises an internal sealing part 130 in the hollow part of the membrane 100 at the free end and an external sealing part 140 surrounding the external surface of the free end.
- the internal and external sealing parts 130 and 140 are formed of materials different from each other.
- the first sealant is compulsorily injected into the hollow part of the membrane 100 at the free end by means of an injector to form the internal sealing part 130 . Then, the end of the hollow fiber membrane 100 having the first sealant thereinside is submerged into the second sealant to form the external sealing part 140 .
- the first sealant is compulsorily injected into the hollow part to form the internal sealing part 130 , and can be put into the hollow part without contacting with the external surface of the hollow fiber membrane 100 .
- the membrane 100 is a composite membrane, the first sealant does not come into contact with the coating layer of the membrane 100 thereby avoiding the problem that the coating layer dissolves in the solvent of the first sealant even if the material of the coating layer is used for the first sealant.
- the fourth embodiment of the present invention is advantageous in that the internal sealing part 130 can be formed of the same material as that of the coating layer and a sealant of high viscosity can be used as the second sealant since the external sealing part 140 is formed after the internal sealing part 130 is formed.
- the external sealing part 140 may be made of a material different from that of the coating layer of the composite membrane 100 lest the coating layer should dissolve in the solvent of the second sealant.
- the external sealing part 140 comprises polyurethane, silicone, heat-cured polymer, or UV-cured polymer
- the internal sealing part 130 comprises the same material as that of the coating layer, e.g., polyethersulfone(PES), polysulfone(PS), or polyvinylidene difluoride(PVDF).
- PES polyethersulfone
- PS polysulfone
- PVDF polyvinylidene difluoride
- a sealant can be easily put into the hollow part of the through-one-end water collection type hollow fiber membrane at its free end to form the internal sealing part without impairing the coating layer of the membrane, and the internal sealing part supports the external sealing part thereby improving the durability of the whole sealing part.
- the hollow fiber membrane and method for manufacturing the same of the present invention can prevent the impairment of the sealing part that may occur during module operation, thereby guaranteeing more stable water treatment and cutting down the maintenance fee.
- hollow fiber membrane of the present invention is described as one used in the field of the water treatment, it will be apparent to those skilled in the art that it may also be applied to other area where a hollow fiber membrane having at least one end sealed can be used.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
The present invention relates to a through-one-end water collection type hollow fiber membrane and a method for manufacturing the same. According to the present invention, an internal sealing part is formed in the hollow part of the membrane at its free end. The internal sealing part supports an external sealing part surrounding the external surface of the free end such that the durability of the whole sealing part might be improved.
Description
- This application is a divisional application of U.S. application Ser. No. 12/186,686 filed on Aug. 6, 2008. This application claims the benefit of Korean Patent Application No. 10-2007-0078829 filed on Aug. 7, 2007, which is hereby incorporated by reference for all purposes as if fully set forth herein.
- 1. Field of the Invention
- The present invention relates to a hollow fiber membrane and a method for manufacturing the same, and more particularly to a through-one-end water collection type hollow fiber membrane having a free end which is not fixed to a header whereby permitting relatively free movement of the membrane when submerged in feed water to be treated.
- 2. Discussion of the Related Art
- A separation method using a membrane has lots of advantages compared to the method based on a phase inversion or heating. Among the advantages is high reliability of water treatment since the water purity required may be easily and stably satisfied by adjusting the size of the pores of a membrane. Further, a membrane can be used with microorganism which is useful for separation process but may be adversely affected by heat.
- A membrane for separation includes a flat sheet membrane and a hollow fiber membrane.
- A hollow fiber membrane module carries out a separation process using a bundle of hollow fiber membranes. Typically, a hollow fiber membrane module has been widely used in the field of microfiltration and ultrafiltration for obtaining axenic water, drinking water, super pure water, and so on. Recently, however, application of the hollow fiber membrane module is being expanded to include wastewater treatment, solid-liquid separation in a septic tank, removal of suspended solid (SS) from industrial wastewater, filtration of river, filtration of industrial water, and filtration of swimming pool water.
- Among such hollow fiber membrane modules is a submerged hollow fiber membrane module which is submerged into a tank of feed water to be treated. Negative pressure is applied to the internal parts of the hollow fiber membranes such that only fluid passes through the walls of the membranes and solids and sludge are rejected and accumulate in the tank. A submerged hollow fiber membrane module is used mainly in the form of a cassette having a plurality of modules combined to a frame. A submerged hollow fiber membrane module is advantageous in that the manufacturing cost is relatively low and that the installation and maintenance cost may be reduced since a facility for circulating fluid is not required.
- When a submerged hollow fiber membrane module is used to treat wastewater, the solids in the wastewater fouls the membrane causing the permeability of the membrane to be declined as the wastewater is treated. The solids may be present in the feed water in a variety of forms which contribute to fouling in different ways. To counter the different types of fouling, many different types of cleaning regimens may be required.
- Such cleaning may be classified into maintenance cleaning and recovery cleaning according to the cleaning purposes.
- The maintenance cleaning is a cleaning performed while the water treatment is carried out by the hollow fiber membrane module or a cleaning performed only for a short time after the water treatment is stopped. The main purpose of the maintenance cleaning is to maintain the permeability of the membranes in good status. The maintenance cleaning is generally carried out by physical cleaning The most frequently used methods of physical cleaning are backwashing and aeration.
- In backwashing, permeation through the membranes is stopped momentarily. Air or water flows through the membranes in a reverse direction to physically push solids off of the membranes. On the other hand, in aeration, bubbles are produced in the tank water below the membranes. As the bubbles rise, they agitate or scrub the membrane and thereby remove the solids while creating an air lift effect and circulation of the tank water to carry the solids away from the membranes.
- Based on the water collection type, a submerged hollow fiber membrane module may be classified into a through-both-ends water collection type and a through-one-end water collection type. According to a through-both-ends water collection type, the permeate obtained inside each hollow fiber membrane is collected through both ends of the membranes. On the other hand, the permeate is collected through only one end of each membrane in a through-one-end water collection type.
- In case of a through-both-ends water collection type hollow fiber membrane module, two ends of the membrane are fixed to two headers respectively. Each header has a permeate collecting space therein with which the membrane is in fluid communication. When performing maintenance cleaning by means of aeration, upward movement of bubbles from a aeration tube are interrupted by the headers especially when the hollow fiber membrane module is a vertical type. An upper header has the effect of displacing the rising bubbles towards the outside of the membrane bundle. Thus, effective aeration is no longer guaranteed in the upper region of the membrane. As a consequence, relatively severe fouling occurs in the upper region of the membrane bundle.
- On the other hand, in case of a through-one-end water collection type hollow fiber membrane module, only one end of the membrane is fixed to a header and the other end, a free end, is free to move. Thus, interruption of water flow caused by rising bubbles emitted from the aeration tube is remarkably reduced, and thus a vertical hollow fiber membrane of through-one-end water collection type may guarantee more effective aeration over the entire length of the membrane than a vertical hollow fiber membrane of through-both-ends water collection type. For this reason, a hollow fiber membrane of through-one-end water collection type has been actively studied.
- Since the free ends of the membranes in the through-one-end water collection type hollow fiber membrane module are not fixed to a header, every each of the membranes must be sealed at their free ends. Since the durability of sealing part is relatively weak, the durability of the whole hollow fiber membrane depends on how to seal the free ends of the membranes.
- A method of sealing a hollow fiber membrane at its free end comprises coating the free end with a sealant of same polymer, e.g., polyethersulfone (PES), as that of the membrane, and curing the sealant.
FIG. 1 shows a cross section of a hollow fiber membrane sealed with this method. As shown inFIG. 1 , thesealing part 110 exists only on the external surface of the free end of thehollow fiber membrane 100. Thus, the sealingpart 110 is vulnerable and might be easily stripped off from themembrane 100 causing leakage, which requires replacement of theimpaired membrane 100 and thus increases the maintenance cost. - Accordingly, the present invention is directed to a hollow fiber membrane and a method for manufacturing the same that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
- An advantage of the present invention is to provide a hollow fiber membrane used for a through-one-end water collection type hollow fiber membrane module and a method for manufacturing the same, wherein the hollow fiber membrane is provided with a sealing part of improved durability at its free end.
- Another advantage of the present invention is to provide a composite hollow fiber membrane sealed at its free end without impairing the coating layer thereof and a method for manufacturing the same, wherein the sealing part has high durability.
- Further another advantage of the present invention is to provide a hollow fiber membrane having a free end surrounded by a sealing part a portion of which is inserted into the hollow part of the membrane in sufficient length, and a method for manufacturing the same.
- Still further another advantage of the present invention is to provide a hollow fiber membrane sealed with a sealant effectively at its free end, and a method for manufacturing the same.
- Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
- To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, there is provided a hollow fiber membrane comprising an external sealing part surrounding an external surface of a first end of the hollow fiber membrane, and an internal sealing part in a hollow part of the hollow fiber membrane at the first end.
- In another aspect of the present invention, there is provided a method for manufacturing a hollow fiber membrane, the method comprising forming an internal sealing part in a hollow part of the hollow fiber membrane at an end of the hollow fiber membrane, and forming an external sealing part surrounding an external surface of the end of the hollow fiber membrane.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
- The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
- In the drawings:
-
FIG. 1 is a cross sectional view illustrating a conventional hollow fiber membrane; -
FIG. 2 is a perspective view illustrating a through-one-end water collection type hollow fiber membrane module of the present invention; -
FIG. 3 is a cross sectional view illustrating a hollow fiber membrane according to the first embodiment of the present invention; -
FIG. 4 is a cross sectional view illustrating a hollow fiber membrane according to the second embodiment of the present invention; -
FIG. 5 is a cross sectional view illustrating a hollow fiber membrane according to the third embodiment of the present invention; and -
FIG. 6 is a cross sectional view illustrating a hollow fiber membrane according to the fourth embodiment of the present invention. - Reference will now be made in detail to an embodiment of the present invention, example of which is illustrated in the accompanying drawings.
- It will be apparent to those skilled in the art that various modifications and variation can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
-
FIG. 2 is a perspective view illustrating a through-one-end water collection type hollow fiber membrane module of the present invention. - A through-one-end water collection type hollow fiber membrane module, as shown in
FIG. 2 , has a bundle ofhollow fiber membranes 100. An end of eachmembrane 100 is potted into aheader 200 inside which awater collecting space 210 is formed. The end of themembrane 100 potted into theheader 200 is open and thus in fluid communication with thewater collecting space 210. Thus, the permeate which flows into the hollow part through themembrane 100 can flow to thewater collecting space 210. The other end, a free end, of themembrane 100 is not fixed to anywhere and is sealed for the feed water not to be able to flow into the hollow part through the open free end. - The
hollow fiber membrane 100 may be a porous single membrane comprising a polymer such as polyethersulfone(PES), polysulfone(PS), and polyvinylidene difluoride(PVDF) or a composite membrane comprising a tubular braid and a polymer coating layer thereon. -
FIGS. 3 to 5 are cross sectional views illustrating hollow fiber membranes according to the first, second, and third embodiments of the present invention respectively. - As shown in
FIGS. 3 to 5 , thehollow fiber membrane 100 of the present invention has a free end which is not fixed to anywhere. The free end is closed by sealing 120 a, 120 b, and 120 c. The sealingpart 120 a, 120 b, and 120 c comprises an external sealing part surrounding the external surface of the free end, and an internal sealing part in the hollow part of thepart membrane 100 at the free end. The internal sealing part supports the external sealing part thereby improving the durability of the 120 a, 120 b, and 120 c.whole sealing part - According to an illustrative embodiment of the present invention, the length l1 of the internal sealing part is 1 to 200% of the length l2 of the external sealing part. The length l1 and l2 of the internal and external sealing parts are parallel to a longitudinal direction of the
hollow fiber membrane 100. If the length l1 of the internal sealing part is less than 1% of the length l2 of the external sealing part, the internal sealing part can hardly support the external sealing part. On the contrary, if the length l1 of the internal sealing part is more than 200% of the length l2 of the external sealing part, it takes too much time to cure the internal sealing part, too much sealant is consumed, and the durability of the sealing 120 a, 120 b, and 120 c may be reduced due to the low viscosity of the sealant when the internal and external sealing parts are formed of the same material.part - The length l1 of the internal sealing part of the embodiment shown in
FIG. 3 is shorter than the length l2 of the external sealing part. On the other hand, the length l1 of the internal sealing part of the embodiment shown inFIG. 4 is longer than the length l2 of the external sealing part. - In cases of the
hollow fiber membranes 100 according to the first, second, and third embodiments of the present invention respectively shown inFIGS. 3 to 5 , the external and internal sealing parts may be formed of the same sealant substantially simultaneously. That is, the step for forming the internal sealing part in the hollow part of themembrane 100 at the free end and the step for forming the external sealing part surrounding the external surface of the free end may be performed at the same time. A method for forming the external and internal sealing parts simultaneously will be illustrated in detail hereinafter. - First, the viscosity of the sealant is adjusted such that the sealant might be effectively drawn into the hollow part of the
membrane 100 by capillary phenomenon. The viscosity of the sealant depends on the temperature of the sealant and the characteristics of the material itself. According to an illustrative embodiment of the present invention, the sealing 120 a, 120 b, and 120 c is formed of polyurethane. When polyurethane having viscosity of about 1,000 to 3,000 cps is used at ambient temperature, the length l1 of the internal sealing part will be shorter than the length l2 of the external sealing part. On the contrary, when polyurethane having viscosity of about 100 to 500 cps is used at a temperature above 30° C., the length l1 of the internal sealing part will be longer than the length l2 of the external sealing part.part - When the
hollow fiber membrane 100 is a composite membrane comprising a tubular braid as a reinforcing structure and a polymer coating layer formed thereon, it might be advantageous that the sealing 120 a, 120 b, and 120 c and the coating layer are formed of materials different from each other for the reason described below.part - When the
hollow fiber membrane 100 is submerged into a sealant of same polymer, e.g., polyethersulfone (PES), as that of the coating layer of the membrane to form the sealing 120 a, 120 b, and 120 c at the free end, the PES solution should have viscosity low enough for the solution to be drawn into the hollow part of thepart membrane 100 at the free end. The PES solution may be prepared by dissolving PES into its good solvent such as DMAc, DMF, NMP, and so on. The amount of the solvent should be increased to lower the viscosity of the PES solution. When the viscosity of the solution becomes too low, however, some problems as follow might occur. - First, the solvent of the PES solution may dissolve the PES coating layer as well thereby impairing the
membrane 100. Second, the thickness of the sealing part, especially the portion corresponding to the corner of the free end, cannot but be reduced due to the low viscosity of the PES solution, and thus the possibility of the impairment of the membrane and leakage at that point increases. - Hence, it may be advantageous that the sealing
120 a, 120 b, and 120 c comprises a material, e.g., polyurethane, silicone, heat-cured polymer, or UV-cured epoxy polymer, which is different from that of the coating layer of thepart membrane 100. - After the viscosity of the sealant is adjusted, a mold having an inside space of a predetermined shape is filled with the viscosity-adjusted sealant. In cases of the first and second embodiments of the present invention as respectively shown in
FIG. 3 andFIG. 4 , the predetermined shape of the inside space of the mold is a streamlined shape, and thus the sealant cured in the mold would also have the streamlined shape and could hardly be pulled out from the mold. Thus, if having a inside space of a streamlined shape, the mold had better be formed of a material which can be easily removed, e.g., paraffin. - In case of the third embodiment of the present invention as shown in
FIG. 5 , the cross section of the external sealing part perpendicular to the longitudinal direction of thehollow fiber membrane 100 becomes smaller as farther from the other end of thehollow fiber membrane 100 opposite to the free end. Thus, the cured sealant of the third embodiment of the present invention can be easily pulled out from the mold and the mold need not be removed. Therefore, the third embodiment of the present invention has an advantage in that there is no limitation on the material forming the mold. - After the inside space of the mold is filled with the viscosity-adjusted sealant, the free end of the
hollow fiber membrane 100 is submerged into the viscosity-adjusted sealant in the mold. By controlling the submerging time, the length by which the sealant is drawn into the hollow part of themembrane 100 can be adjusted. Subsequently, the sealing 120 a, 120 b, and 120 c is formed by curing the sealant with heat or UV irradiation while the free end of thepart hollow fiber membrane 100 is submerged in the sealant. - After the sealant is cured, as mentioned above, the molds of the first and second embodiments of the present invention as illustrated in
FIG. 3 andFIG. 4 are removed. For example, if the mold is made of paraffin, the mold can be removed by applying heat to the mold. On the other hand, in the third embodiment of the present invention as illustrated inFIG. 5 , the sealingpart 120 c can be compulsorily pulled out from the mold since the cross section of the sealingpart 120 c perpendicular to the longitudinal direction of thehollow fiber membrane 100 becomes smaller as farther from the other end of thehollow fiber membrane 100 opposite to the free end. - Referring to
FIG. 6 , a hollow fiber membrane and a method for manufacturing the same according to the fourth embodiment of the present invention will be described below. - A
hollow fiber membrane 100 according to the fourth embodiment of the present invention comprises aninternal sealing part 130 in the hollow part of themembrane 100 at the free end and anexternal sealing part 140 surrounding the external surface of the free end. The internal and 130 and 140 are formed of materials different from each other.external sealing parts - An exemplary method for manufacturing the
hollow fiber membrane 100 according to the fourth embodiment of the present invention will be described below. - The first sealant is compulsorily injected into the hollow part of the
membrane 100 at the free end by means of an injector to form theinternal sealing part 130. Then, the end of thehollow fiber membrane 100 having the first sealant thereinside is submerged into the second sealant to form theexternal sealing part 140. - Contrary to the first to third embodiments of the present invention in which the sealant is drawn into the hollow part by capillary phenomenon, according to the fourth embodiment of the present invention, the first sealant is compulsorily injected into the hollow part to form the
internal sealing part 130, and can be put into the hollow part without contacting with the external surface of thehollow fiber membrane 100. Thus, when themembrane 100 is a composite membrane, the first sealant does not come into contact with the coating layer of themembrane 100 thereby avoiding the problem that the coating layer dissolves in the solvent of the first sealant even if the material of the coating layer is used for the first sealant. As a consequence, the fourth embodiment of the present invention is advantageous in that theinternal sealing part 130 can be formed of the same material as that of the coating layer and a sealant of high viscosity can be used as the second sealant since theexternal sealing part 140 is formed after theinternal sealing part 130 is formed. - Optionally, the
external sealing part 140 may be made of a material different from that of the coating layer of thecomposite membrane 100 lest the coating layer should dissolve in the solvent of the second sealant. - As an exemplary embodiment of the present invention, the
external sealing part 140 comprises polyurethane, silicone, heat-cured polymer, or UV-cured polymer, and theinternal sealing part 130 comprises the same material as that of the coating layer, e.g., polyethersulfone(PES), polysulfone(PS), or polyvinylidene difluoride(PVDF). - According to the hollow fiber membrane and method for manufacturing the same of the present invention as above, a sealant can be easily put into the hollow part of the through-one-end water collection type hollow fiber membrane at its free end to form the internal sealing part without impairing the coating layer of the membrane, and the internal sealing part supports the external sealing part thereby improving the durability of the whole sealing part.
- Hence, the hollow fiber membrane and method for manufacturing the same of the present invention can prevent the impairment of the sealing part that may occur during module operation, thereby guaranteeing more stable water treatment and cutting down the maintenance fee.
- Although the hollow fiber membrane of the present invention is described as one used in the field of the water treatment, it will be apparent to those skilled in the art that it may also be applied to other area where a hollow fiber membrane having at least one end sealed can be used.
Claims (5)
1. A hollow fiber membrane comprising:
an external sealing part surrounding an external surface of a first end of the hollow fiber membrane; and
an internal sealing part in a hollow part of the hollow fiber membrane at the first end.
2. The hollow fiber membrane of claim 1 , wherein the length of the internal sealing part is 1 to 200% of the length of the external sealing part, the length of the internal and external sealing parts being parallel to a longitudinal direction of the hollow fiber membrane.
3. The hollow fiber membrane of claim 1 , wherein the external and internal sealing parts are formed of a same material.
4. The hollow fiber membrane of claim 3 , wherein the external and internal sealing parts each comprise a polyurethane, a silicone, a heat-cured polymer, or a UV-cured polymer.
5. The hollow fiber membrane of claim 1 , wherein a cross section of the external sealing part perpendicular to the longitudinal direction of the hollow fiber membrane becomes smaller as farther from a second end of the hollow fiber membrane opposite to the first end.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/091,361 US20110192787A1 (en) | 2007-08-07 | 2011-04-21 | Hollow fiber membrane and method for manufacturing the same |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020070078829A KR101352312B1 (en) | 2007-08-07 | 2007-08-07 | Hollow Fiber Membrane and Method for Manufacturing The Same |
| KR10-2007-0078829 | 2007-08-07 | ||
| US12/186,686 US7950528B2 (en) | 2007-08-07 | 2008-08-06 | Hollow fiber membrane and method for manufacturing the same |
| US13/091,361 US20110192787A1 (en) | 2007-08-07 | 2011-04-21 | Hollow fiber membrane and method for manufacturing the same |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/186,686 Division US7950528B2 (en) | 2007-08-07 | 2008-08-06 | Hollow fiber membrane and method for manufacturing the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20110192787A1 true US20110192787A1 (en) | 2011-08-11 |
Family
ID=39877797
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/186,686 Expired - Fee Related US7950528B2 (en) | 2007-08-07 | 2008-08-06 | Hollow fiber membrane and method for manufacturing the same |
| US13/091,361 Abandoned US20110192787A1 (en) | 2007-08-07 | 2011-04-21 | Hollow fiber membrane and method for manufacturing the same |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/186,686 Expired - Fee Related US7950528B2 (en) | 2007-08-07 | 2008-08-06 | Hollow fiber membrane and method for manufacturing the same |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US7950528B2 (en) |
| EP (1) | EP2030672A3 (en) |
| KR (1) | KR101352312B1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017104764A (en) * | 2015-11-20 | 2017-06-15 | ダイセン・メンブレン・システムズ株式会社 | Hollow fiber membrane module and manufacturing method thereof |
| CN110960988A (en) * | 2018-09-28 | 2020-04-07 | 北京铂阳顶荣光伏科技有限公司 | Hollow fiber membrane encapsulation method |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007064123A1 (en) * | 2005-11-29 | 2007-06-07 | Kolon Industries, Inc | A braid-reinforced composite hollow fiber membrane |
| CN102247763B (en) * | 2011-07-11 | 2013-07-10 | 林衍良 | Method and device for manufacturing hollow fiber membrane |
| US9498753B2 (en) | 2012-03-15 | 2016-11-22 | Koch Membrane Systems, Inc. | Method for sealing hollow fiber membranes |
| KR101960051B1 (en) * | 2012-11-23 | 2019-03-20 | 코웨이엔텍 주식회사 | Hollow fiber, and sealing equipment of it |
| KR102179388B1 (en) | 2013-12-27 | 2020-11-16 | 코웨이엔텍 주식회사 | Processing equipment for hollow fiber |
| KR20180060803A (en) * | 2016-11-29 | 2018-06-07 | 경성산업(주) | Manufacturing method for hollow-fiber membrane module and hollow-fiber membrane module |
| JP7116618B2 (en) * | 2018-08-02 | 2022-08-10 | 株式会社クラレ | Hollow fiber membrane module |
| KR102448521B1 (en) * | 2020-11-26 | 2022-09-28 | 고등기술연구원연구조합 | Hollow fiber module of membrane contactor and manufacturing method thereof |
| DE102021128878A1 (en) | 2021-11-05 | 2023-05-11 | membion Gmbh | Hollow fiber membrane and method of sealing same |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050115899A1 (en) * | 2003-10-21 | 2005-06-02 | Minggang Liu | Membrane bioreactor having single header membrane module |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5944884B2 (en) * | 1980-02-26 | 1984-11-01 | 株式会社クラレ | Hollow fiber end sealing method and device |
| JPH05161829A (en) * | 1991-11-19 | 1993-06-29 | Asahi Chem Ind Co Ltd | Method for assembling hollow yarn membrane module |
| JP3121086B2 (en) * | 1991-12-28 | 2000-12-25 | 株式会社クラレ | End sealing method for hollow fiber bundles |
| JP3563516B2 (en) * | 1995-12-01 | 2004-09-08 | 三菱レイヨン株式会社 | Method for manufacturing hollow fiber membrane module |
| JPH11319505A (en) * | 1998-05-14 | 1999-11-24 | Toray Ind Inc | Manufacture of hollow fiber membrane module |
| AUPS300602A0 (en) * | 2002-06-18 | 2002-07-11 | U.S. Filter Wastewater Group, Inc. | Methods of minimising the effect of integrity loss in hollow fibre membrane modules |
-
2007
- 2007-08-07 KR KR1020070078829A patent/KR101352312B1/en not_active Expired - Fee Related
-
2008
- 2008-08-05 EP EP08014011A patent/EP2030672A3/en not_active Withdrawn
- 2008-08-06 US US12/186,686 patent/US7950528B2/en not_active Expired - Fee Related
-
2011
- 2011-04-21 US US13/091,361 patent/US20110192787A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050115899A1 (en) * | 2003-10-21 | 2005-06-02 | Minggang Liu | Membrane bioreactor having single header membrane module |
Non-Patent Citations (2)
| Title |
|---|
| CAE DS - Industrial Casting Design,<> * |
| Draft Angles, a technical article, 2006, vol. 25, #1 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017104764A (en) * | 2015-11-20 | 2017-06-15 | ダイセン・メンブレン・システムズ株式会社 | Hollow fiber membrane module and manufacturing method thereof |
| CN110960988A (en) * | 2018-09-28 | 2020-04-07 | 北京铂阳顶荣光伏科技有限公司 | Hollow fiber membrane encapsulation method |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20090014694A (en) | 2009-02-11 |
| EP2030672A3 (en) | 2009-03-11 |
| EP2030672A2 (en) | 2009-03-04 |
| US20090039012A1 (en) | 2009-02-12 |
| KR101352312B1 (en) | 2014-01-15 |
| US7950528B2 (en) | 2011-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7950528B2 (en) | Hollow fiber membrane and method for manufacturing the same | |
| KR100977323B1 (en) | How to minimize the loss of integrity in hollow fiber membrane modules | |
| US20120103904A1 (en) | Separation membrane module for oil-containing wastewater treatment, oil-containing wastewater treatment method, and oil-containing wastewater treatment apparatus | |
| JP5453711B2 (en) | Cleaning method for external pressure hollow fiber membrane module | |
| JP2010036183A (en) | Separating membrane module for treating wastewater containing oil, and method and device for treating wastewater containing oil | |
| JP2015536825A (en) | Filtration device | |
| JP2014231059A (en) | Hollow fiber membrane for immersion filtration, hollow fiber membrane module for immersion filtration using it, immersion filtration device, and immersion filtration method | |
| KR20170047249A (en) | Hollow fiber membrane module and method for manufacturing hollow fiber membrane module | |
| JPH11128692A (en) | Hollow fiber membrane module | |
| JP5837985B2 (en) | Filtration device | |
| WO2014069300A1 (en) | Operating method for clarifying membrane module | |
| US20090321344A1 (en) | Header for filtering membrane module and filtering membrane module using the same | |
| CN102361681B (en) | Hollow fiber membrane module, filter device using the same, and method of manufacturing the filter device | |
| KR101569529B1 (en) | Hollow fiber membrane module and filtration system including it | |
| JP5721864B2 (en) | Filtration membrane header and filtration membrane module including the same | |
| JP5134195B2 (en) | Temperature-responsive hollow fiber membrane, temperature-responsive hollow fiber membrane module, and filtration device using the same | |
| JP2009018283A (en) | Hollow fiber membrane module and manufacturing method thereof | |
| KR101692689B1 (en) | System and Method for Filtering Using Positive Pressure Type Module | |
| JP3871567B2 (en) | Filter, filter backwash method and power plant | |
| KR20180035130A (en) | Header, Hollow Fiber Membrane Module Comprising The Same, and Filtering Apparatus Comprising The Same | |
| KR101629613B1 (en) | Hollow fiber membrane module and method for repairing the same | |
| CN201400601Y (en) | Tubular membrane elements and integrated membrane bioreactors | |
| KR100931121B1 (en) | Water treatment method | |
| KR20170079917A (en) | Filtration Apparatus and Aeration Unit Therefor | |
| KR101777554B1 (en) | Filtering Apparatus and Hollow Fiber Membrane Module Therefor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |