US20110172331A1 - Reactive monomer-dispersed silica sol and production method thereof, and curable composition and cured article thereof - Google Patents
Reactive monomer-dispersed silica sol and production method thereof, and curable composition and cured article thereof Download PDFInfo
- Publication number
- US20110172331A1 US20110172331A1 US13/064,293 US201113064293A US2011172331A1 US 20110172331 A1 US20110172331 A1 US 20110172331A1 US 201113064293 A US201113064293 A US 201113064293A US 2011172331 A1 US2011172331 A1 US 2011172331A1
- Authority
- US
- United States
- Prior art keywords
- silica sol
- reactive monomer
- dispersed
- colloidal silica
- dispersed silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 title claims abstract description 259
- 239000000203 mixture Substances 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title abstract description 36
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 182
- 239000002245 particle Substances 0.000 claims abstract description 141
- 239000008119 colloidal silica Substances 0.000 claims abstract description 127
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 claims abstract description 41
- -1 silane compound Chemical class 0.000 claims description 106
- 239000000178 monomer Substances 0.000 claims description 96
- 150000001875 compounds Chemical class 0.000 claims description 67
- 239000004593 Epoxy Substances 0.000 claims description 30
- 239000003795 chemical substances by application Substances 0.000 claims description 24
- 229910000077 silane Inorganic materials 0.000 claims description 24
- 239000000377 silicon dioxide Substances 0.000 claims description 20
- 125000005372 silanol group Chemical group 0.000 claims description 14
- 229910001424 calcium ion Inorganic materials 0.000 claims description 10
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical group C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 claims description 9
- 125000003566 oxetanyl group Chemical group 0.000 claims description 8
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 6
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 6
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 abstract description 12
- 239000007787 solid Substances 0.000 abstract description 11
- 230000015556 catabolic process Effects 0.000 abstract description 9
- 238000006731 degradation reaction Methods 0.000 abstract description 9
- 230000006866 deterioration Effects 0.000 abstract description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 77
- 238000000034 method Methods 0.000 description 70
- 239000003960 organic solvent Substances 0.000 description 50
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 42
- 239000000126 substance Substances 0.000 description 41
- 230000008569 process Effects 0.000 description 34
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 32
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 27
- 239000002612 dispersion medium Substances 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 238000003756 stirring Methods 0.000 description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 15
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 14
- 239000010408 film Substances 0.000 description 14
- 230000002378 acidificating effect Effects 0.000 description 12
- 229910052681 coesite Inorganic materials 0.000 description 12
- 229910052906 cristobalite Inorganic materials 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- 229910052682 stishovite Inorganic materials 0.000 description 12
- 229910052905 tridymite Inorganic materials 0.000 description 12
- 239000011521 glass Substances 0.000 description 10
- 239000011369 resultant mixture Substances 0.000 description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 9
- 150000001450 anions Chemical class 0.000 description 9
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 9
- 239000000920 calcium hydroxide Substances 0.000 description 9
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 239000000654 additive Substances 0.000 description 8
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 8
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical group C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 8
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 8
- 238000004438 BET method Methods 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 7
- 238000009835 boiling Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000003505 polymerization initiator Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 150000004756 silanes Chemical class 0.000 description 6
- MUTNCGKQJGXKEM-UHFFFAOYSA-N tamibarotene Chemical compound C=1C=C2C(C)(C)CCC(C)(C)C2=CC=1NC(=O)C1=CC=C(C(O)=O)C=C1 MUTNCGKQJGXKEM-UHFFFAOYSA-N 0.000 description 6
- 150000001342 alkaline earth metals Chemical class 0.000 description 5
- AMJQWGIYCROUQF-UHFFFAOYSA-N calcium;methanolate Chemical compound [Ca+2].[O-]C.[O-]C AMJQWGIYCROUQF-UHFFFAOYSA-N 0.000 description 5
- 238000010538 cationic polymerization reaction Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000007870 radical polymerization initiator Substances 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 3
- 229940044192 2-hydroxyethyl methacrylate Drugs 0.000 description 3
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 3
- YXALYBMHAYZKAP-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-ylmethyl 7-oxabicyclo[4.1.0]heptane-4-carboxylate Chemical compound C1CC2OC2CC1C(=O)OCC1CC2OC2CC1 YXALYBMHAYZKAP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 3
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical class C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 229910001413 alkali metal ion Inorganic materials 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 3
- 239000000347 magnesium hydroxide Substances 0.000 description 3
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- MWZJGRDWJVHRDV-UHFFFAOYSA-N 1,4-bis(ethenoxy)butane Chemical compound C=COCCCCOC=C MWZJGRDWJVHRDV-UHFFFAOYSA-N 0.000 description 2
- UEIPWOFSKAZYJO-UHFFFAOYSA-N 1-(2-ethenoxyethoxy)-2-[2-(2-ethenoxyethoxy)ethoxy]ethane Chemical compound C=COCCOCCOCCOCCOC=C UEIPWOFSKAZYJO-UHFFFAOYSA-N 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- AZUHIVLOSAPWDM-UHFFFAOYSA-N 2-(1h-imidazol-2-yl)-1h-imidazole Chemical class C1=CNC(C=2NC=CN=2)=N1 AZUHIVLOSAPWDM-UHFFFAOYSA-N 0.000 description 2
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 2
- OECTYKWYRCHAKR-UHFFFAOYSA-N 4-vinylcyclohexene dioxide Chemical compound C1OC1C1CC2OC2CC1 OECTYKWYRCHAKR-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229910001422 barium ion Inorganic materials 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- 229910001423 beryllium ion Inorganic materials 0.000 description 2
- PWOSZCQLSAMRQW-UHFFFAOYSA-N beryllium(2+) Chemical compound [Be+2] PWOSZCQLSAMRQW-UHFFFAOYSA-N 0.000 description 2
- TWDMZWAUIOVBSX-UHFFFAOYSA-N calcium methanol methanolate Chemical compound CO.C[O-].[Ca+2].C[O-] TWDMZWAUIOVBSX-UHFFFAOYSA-N 0.000 description 2
- JHRWWRDRBPCWTF-OLQVQODUSA-N captafol Chemical class C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)C(Cl)Cl)C(=O)[C@H]21 JHRWWRDRBPCWTF-OLQVQODUSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- PESYEWKSBIWTAK-UHFFFAOYSA-N cyclopenta-1,3-diene;titanium(2+) Chemical class [Ti+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 PESYEWKSBIWTAK-UHFFFAOYSA-N 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 2
- 150000008049 diazo compounds Chemical class 0.000 description 2
- PKTOVQRKCNPVKY-UHFFFAOYSA-N dimethoxy(methyl)silicon Chemical compound CO[Si](C)OC PKTOVQRKCNPVKY-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 150000002019 disulfides Chemical class 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 229940052303 ethers for general anesthesia Drugs 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 229910001426 radium ion Inorganic materials 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 229910001427 strontium ion Inorganic materials 0.000 description 2
- PWYYWQHXAPXYMF-UHFFFAOYSA-N strontium(2+) Chemical compound [Sr+2] PWYYWQHXAPXYMF-UHFFFAOYSA-N 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 150000003455 sulfinic acids Chemical class 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 2
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 229940042596 viscoat Drugs 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- YUOCJTKDRNYTFJ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)S(=O)(=O)ON1C(=O)CCC1=O YUOCJTKDRNYTFJ-UHFFFAOYSA-N 0.000 description 1
- OKRLWHAZMUFONP-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) trifluoromethanesulfonate Chemical compound FC(F)(F)S(=O)(=O)ON1C(=O)CCC1=O OKRLWHAZMUFONP-UHFFFAOYSA-N 0.000 description 1
- GNYGBUNVQVEWRG-UHFFFAOYSA-N (2-methyl-3-bicyclo[2.2.1]heptanyl)methyl 2-methylprop-2-enoate Chemical compound C1CC2C(COC(=O)C(C)=C)C(C)C1C2 GNYGBUNVQVEWRG-UHFFFAOYSA-N 0.000 description 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- UNMJLQGKEDTEKJ-UHFFFAOYSA-N (3-ethyloxetan-3-yl)methanol Chemical compound CCC1(CO)COC1 UNMJLQGKEDTEKJ-UHFFFAOYSA-N 0.000 description 1
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 1
- VBWOSHCYYMQDDF-UHFFFAOYSA-N (4-methyl-2-propylpentyl) prop-2-enoate Chemical compound CCCC(CC(C)C)COC(=O)C=C VBWOSHCYYMQDDF-UHFFFAOYSA-N 0.000 description 1
- HHYVKZVPYXHHCG-UHFFFAOYSA-M (7,7-dimethyl-3-oxo-4-bicyclo[2.2.1]heptanyl)methanesulfonate;diphenyliodanium Chemical compound C=1C=CC=CC=1[I+]C1=CC=CC=C1.C1CC2(CS([O-])(=O)=O)C(=O)CC1C2(C)C HHYVKZVPYXHHCG-UHFFFAOYSA-M 0.000 description 1
- FJALTVCJBKZXKY-UHFFFAOYSA-M (7,7-dimethyl-3-oxo-4-bicyclo[2.2.1]heptanyl)methanesulfonate;triphenylsulfanium Chemical compound C1CC2(CS([O-])(=O)=O)C(=O)CC1C2(C)C.C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 FJALTVCJBKZXKY-UHFFFAOYSA-M 0.000 description 1
- NQQRXZOPZBKCNF-NSCUHMNNSA-N (e)-but-2-enamide Chemical class C\C=C\C(N)=O NQQRXZOPZBKCNF-NSCUHMNNSA-N 0.000 description 1
- VLLPVDKADBYKLM-UHFFFAOYSA-M 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate;triphenylsulfanium Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F.C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 VLLPVDKADBYKLM-UHFFFAOYSA-M 0.000 description 1
- GPHWXFINOWXMDN-UHFFFAOYSA-N 1,1-bis(ethenoxy)hexane Chemical compound CCCCCC(OC=C)OC=C GPHWXFINOWXMDN-UHFFFAOYSA-N 0.000 description 1
- HIYIGPVBMDKPCR-UHFFFAOYSA-N 1,1-bis(ethenoxymethyl)cyclohexane Chemical compound C=COCC1(COC=C)CCCCC1 HIYIGPVBMDKPCR-UHFFFAOYSA-N 0.000 description 1
- CYIGRWUIQAVBFG-UHFFFAOYSA-N 1,2-bis(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOCCOC=C CYIGRWUIQAVBFG-UHFFFAOYSA-N 0.000 description 1
- ZXHDVRATSGZISC-UHFFFAOYSA-N 1,2-bis(ethenoxy)ethane Chemical compound C=COCCOC=C ZXHDVRATSGZISC-UHFFFAOYSA-N 0.000 description 1
- LFKLPJRVSHJZPL-UHFFFAOYSA-N 1,2:7,8-diepoxyoctane Chemical compound C1OC1CCCCC1CO1 LFKLPJRVSHJZPL-UHFFFAOYSA-N 0.000 description 1
- BPXVHIRIPLPOPT-UHFFFAOYSA-N 1,3,5-tris(2-hydroxyethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound OCCN1C(=O)N(CCO)C(=O)N(CCO)C1=O BPXVHIRIPLPOPT-UHFFFAOYSA-N 0.000 description 1
- OUPZKGBUJRBPGC-UHFFFAOYSA-N 1,3,5-tris(oxiran-2-ylmethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound O=C1N(CC2OC2)C(=O)N(CC2OC2)C(=O)N1CC1CO1 OUPZKGBUJRBPGC-UHFFFAOYSA-N 0.000 description 1
- AITKNDQVEUUYHE-UHFFFAOYSA-N 1,3-bis(ethenoxy)-2,2-dimethylpropane Chemical compound C=COCC(C)(C)COC=C AITKNDQVEUUYHE-UHFFFAOYSA-N 0.000 description 1
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 1
- YQJPWWLJDNCSCN-UHFFFAOYSA-N 1,3-diphenyltetramethyldisiloxane Chemical compound C=1C=CC=CC=1[Si](C)(C)O[Si](C)(C)C1=CC=CC=C1 YQJPWWLJDNCSCN-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- CGHMMUAOPPRRMX-UHFFFAOYSA-N 1,4-bis(ethenoxy)cyclohexane Chemical compound C=COC1CCC(OC=C)CC1 CGHMMUAOPPRRMX-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- DPOPGHCRRJYPMP-UHFFFAOYSA-N 1-[diazo(methylsulfonyl)methyl]sulfonyl-4-methylbenzene Chemical compound CC1=CC=C(S(=O)(=O)C(=[N+]=[N-])S(C)(=O)=O)C=C1 DPOPGHCRRJYPMP-UHFFFAOYSA-N 0.000 description 1
- OESYNCIYSBWEQV-UHFFFAOYSA-N 1-[diazo-(2,4-dimethylphenyl)sulfonylmethyl]sulfonyl-2,4-dimethylbenzene Chemical compound CC1=CC(C)=CC=C1S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C1=CC=C(C)C=C1C OESYNCIYSBWEQV-UHFFFAOYSA-N 0.000 description 1
- GYQQFWWMZYBCIB-UHFFFAOYSA-N 1-[diazo-(4-methylphenyl)sulfonylmethyl]sulfonyl-4-methylbenzene Chemical compound C1=CC(C)=CC=C1S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C1=CC=C(C)C=C1 GYQQFWWMZYBCIB-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- DNJRKFKAFWSXSE-UHFFFAOYSA-N 1-chloro-2-ethenoxyethane Chemical compound ClCCOC=C DNJRKFKAFWSXSE-UHFFFAOYSA-N 0.000 description 1
- CZAVRNDQSIORTH-UHFFFAOYSA-N 1-ethenoxy-2,2-bis(ethenoxymethyl)butane Chemical compound C=COCC(CC)(COC=C)COC=C CZAVRNDQSIORTH-UHFFFAOYSA-N 0.000 description 1
- SAMJGBVVQUEMGC-UHFFFAOYSA-N 1-ethenoxy-2-(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOC=C SAMJGBVVQUEMGC-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- OBNIRVVPHSLTEP-UHFFFAOYSA-N 1-ethoxy-2-(2-hydroxyethoxy)ethanol;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(O)COCCO OBNIRVVPHSLTEP-UHFFFAOYSA-N 0.000 description 1
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- 229940044613 1-propanol Drugs 0.000 description 1
- 229940117900 2,2-bis(4-glycidyloxyphenyl)propane Drugs 0.000 description 1
- SUFSXWBMZQUYOC-UHFFFAOYSA-N 2,2-bis(ethenoxymethyl)propane-1,3-diol Chemical compound C=COCC(CO)(CO)COC=C SUFSXWBMZQUYOC-UHFFFAOYSA-N 0.000 description 1
- FGPFIXISGWXSCE-UHFFFAOYSA-N 2,2-bis(oxiran-2-ylmethoxymethyl)propane-1,3-diol Chemical compound C1OC1COCC(CO)(CO)COCC1CO1 FGPFIXISGWXSCE-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- DEJYALGDDUTZFR-UHFFFAOYSA-N 2,2-dimethylbutyl prop-2-enoate Chemical compound CCC(C)(C)COC(=O)C=C DEJYALGDDUTZFR-UHFFFAOYSA-N 0.000 description 1
- YRTNMMLRBJMGJJ-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;hexanedioic acid Chemical compound OCC(C)(C)CO.OC(=O)CCCCC(O)=O YRTNMMLRBJMGJJ-UHFFFAOYSA-N 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- 125000004215 2,4-difluorophenyl group Chemical group [H]C1=C([H])C(*)=C(F)C([H])=C1F 0.000 description 1
- FTALTLPZDVFJSS-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl prop-2-enoate Chemical compound CCOCCOCCOC(=O)C=C FTALTLPZDVFJSS-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- WVXLLHWEQSZBLW-UHFFFAOYSA-N 2-(4-acetyl-2-methoxyphenoxy)acetic acid Chemical compound COC1=CC(C(C)=O)=CC=C1OCC(O)=O WVXLLHWEQSZBLW-UHFFFAOYSA-N 0.000 description 1
- DVPBWLLOGOINDW-UHFFFAOYSA-N 2-(5-bromo-1h-indol-3-yl)acetamide Chemical compound C1=C(Br)C=C2C(CC(=O)N)=CNC2=C1 DVPBWLLOGOINDW-UHFFFAOYSA-N 0.000 description 1
- GHTVHGGJFHMYBA-UHFFFAOYSA-N 2-(7-oxabicyclo[4.1.0]heptane-4-carbonyloxy)ethyl 7-oxabicyclo[4.1.0]heptane-4-carboxylate Chemical compound C1CC2OC2CC1C(=O)OCCOC(=O)C1CC2OC2CC1 GHTVHGGJFHMYBA-UHFFFAOYSA-N 0.000 description 1
- JJRUAPNVLBABCN-UHFFFAOYSA-N 2-(ethenoxymethyl)oxirane Chemical compound C=COCC1CO1 JJRUAPNVLBABCN-UHFFFAOYSA-N 0.000 description 1
- HTEVGIVEASZMDA-UHFFFAOYSA-N 2-(methoxymethoxy)ethyl prop-2-enoate Chemical compound COCOCCOC(=O)C=C HTEVGIVEASZMDA-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- FDZMLNCJBYFJBH-UHFFFAOYSA-N 2-[(2,3-dibromophenoxy)methyl]oxirane Chemical compound BrC1=CC=CC(OCC2OC2)=C1Br FDZMLNCJBYFJBH-UHFFFAOYSA-N 0.000 description 1
- HHRACYLRBOUBKM-UHFFFAOYSA-N 2-[(4-tert-butylphenoxy)methyl]oxirane Chemical compound C1=CC(C(C)(C)C)=CC=C1OCC1OC1 HHRACYLRBOUBKM-UHFFFAOYSA-N 0.000 description 1
- SYEWHONLFGZGLK-UHFFFAOYSA-N 2-[1,3-bis(oxiran-2-ylmethoxy)propan-2-yloxymethyl]oxirane Chemical compound C1OC1COCC(OCC1OC1)COCC1CO1 SYEWHONLFGZGLK-UHFFFAOYSA-N 0.000 description 1
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 1
- SEFYJVFBMNOLBK-UHFFFAOYSA-N 2-[2-[2-(oxiran-2-ylmethoxy)ethoxy]ethoxymethyl]oxirane Chemical compound C1OC1COCCOCCOCC1CO1 SEFYJVFBMNOLBK-UHFFFAOYSA-N 0.000 description 1
- DXVLAUMXGHQKAV-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-(2-hydroxypropoxy)propoxy]propoxy]propoxy]propoxy]propoxy]propoxy]propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)CO DXVLAUMXGHQKAV-UHFFFAOYSA-N 0.000 description 1
- SHKUUQIDMUMQQK-UHFFFAOYSA-N 2-[4-(oxiran-2-ylmethoxy)butoxymethyl]oxirane Chemical compound C1OC1COCCCCOCC1CO1 SHKUUQIDMUMQQK-UHFFFAOYSA-N 0.000 description 1
- KUAUJXBLDYVELT-UHFFFAOYSA-N 2-[[2,2-dimethyl-3-(oxiran-2-ylmethoxy)propoxy]methyl]oxirane Chemical compound C1OC1COCC(C)(C)COCC1CO1 KUAUJXBLDYVELT-UHFFFAOYSA-N 0.000 description 1
- PPEASEWKOGNDKZ-UHFFFAOYSA-N 2-[[2,6-bis(oxiran-2-ylmethyl)phenoxy]methyl]oxirane Chemical compound C1OC1COC(C(=CC=C1)CC2OC2)=C1CC1CO1 PPEASEWKOGNDKZ-UHFFFAOYSA-N 0.000 description 1
- ZJRAAAWYHORFHN-UHFFFAOYSA-N 2-[[2,6-dibromo-4-[2-[3,5-dibromo-4-(oxiran-2-ylmethoxy)phenyl]propan-2-yl]phenoxy]methyl]oxirane Chemical compound C=1C(Br)=C(OCC2OC2)C(Br)=CC=1C(C)(C)C(C=C1Br)=CC(Br)=C1OCC1CO1 ZJRAAAWYHORFHN-UHFFFAOYSA-N 0.000 description 1
- PLDLPVSQYMQDBL-UHFFFAOYSA-N 2-[[3-(oxiran-2-ylmethoxy)-2,2-bis(oxiran-2-ylmethoxymethyl)propoxy]methyl]oxirane Chemical compound C1OC1COCC(COCC1OC1)(COCC1OC1)COCC1CO1 PLDLPVSQYMQDBL-UHFFFAOYSA-N 0.000 description 1
- AGXAFZNONAXBOS-UHFFFAOYSA-N 2-[[3-(oxiran-2-ylmethyl)phenyl]methyl]oxirane Chemical compound C=1C=CC(CC2OC2)=CC=1CC1CO1 AGXAFZNONAXBOS-UHFFFAOYSA-N 0.000 description 1
- WZKPOAWBXHEIKH-UHFFFAOYSA-N 2-[[4-[1,3-bis[4-(oxiran-2-ylmethoxy)phenyl]propyl]phenoxy]methyl]oxirane Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C=1C=CC(OCC2OC2)=CC=1)CCC(C=C1)=CC=C1OCC1CO1 WZKPOAWBXHEIKH-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- CYMRPDYINXWJFU-UHFFFAOYSA-N 2-carbamoylbenzoic acid Chemical class NC(=O)C1=CC=CC=C1C(O)=O CYMRPDYINXWJFU-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- GTELLNMUWNJXMQ-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(CO)(CO)CO GTELLNMUWNJXMQ-UHFFFAOYSA-N 0.000 description 1
- UUODQIKUTGWMPT-UHFFFAOYSA-N 2-fluoro-5-(trifluoromethyl)pyridine Chemical compound FC1=CC=C(C(F)(F)F)C=N1 UUODQIKUTGWMPT-UHFFFAOYSA-N 0.000 description 1
- DILXLMRYFWFBGR-UHFFFAOYSA-N 2-formylbenzene-1,4-disulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(S(O)(=O)=O)C(C=O)=C1 DILXLMRYFWFBGR-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 1
- HSTOKWSFWGCZMH-UHFFFAOYSA-N 3,3'-diaminobenzidine Chemical group C1=C(N)C(N)=CC=C1C1=CC=C(N)C(N)=C1 HSTOKWSFWGCZMH-UHFFFAOYSA-N 0.000 description 1
- VFYHHERJNPKXIX-UHFFFAOYSA-N 3,3-diethyloxetane Chemical compound CCC1(CC)COC1 VFYHHERJNPKXIX-UHFFFAOYSA-N 0.000 description 1
- 125000005809 3,4,5-trimethoxyphenyl group Chemical group [H]C1=C(OC([H])([H])[H])C(OC([H])([H])[H])=C(OC([H])([H])[H])C([H])=C1* 0.000 description 1
- AGULWIQIYWWFBJ-UHFFFAOYSA-N 3,4-dichlorofuran-2,5-dione Chemical compound ClC1=C(Cl)C(=O)OC1=O AGULWIQIYWWFBJ-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- WVRNUXJQQFPNMN-VAWYXSNFSA-N 3-[(e)-dodec-1-enyl]oxolane-2,5-dione Chemical compound CCCCCCCCCC\C=C\C1CC(=O)OC1=O WVRNUXJQQFPNMN-VAWYXSNFSA-N 0.000 description 1
- DOYKFSOCSXVQAN-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CCO[Si](C)(OCC)CCCOC(=O)C(C)=C DOYKFSOCSXVQAN-UHFFFAOYSA-N 0.000 description 1
- LTZJEGMQCRHIKJ-UHFFFAOYSA-N 3-bicyclo[2.2.1]heptanylmethyl 2-methylprop-2-enoate Chemical compound C1CC2C(COC(=O)C(=C)C)CC1C2 LTZJEGMQCRHIKJ-UHFFFAOYSA-N 0.000 description 1
- WGKYSFRFMQHMOF-UHFFFAOYSA-N 3-bromo-5-methylpyridine-2-carbonitrile Chemical compound CC1=CN=C(C#N)C(Br)=C1 WGKYSFRFMQHMOF-UHFFFAOYSA-N 0.000 description 1
- BLRZZXLJCJKJII-UHFFFAOYSA-N 3-carbamoylbut-3-enoic acid Chemical class NC(=O)C(=C)CC(O)=O BLRZZXLJCJKJII-UHFFFAOYSA-N 0.000 description 1
- JTWDWVCNOLORBR-UHFFFAOYSA-N 3-chloropropyl-methoxy-dimethylsilane Chemical compound CO[Si](C)(C)CCCCl JTWDWVCNOLORBR-UHFFFAOYSA-N 0.000 description 1
- ILRVMZXWYVQUMN-UHFFFAOYSA-N 3-ethenoxy-2,2-bis(ethenoxymethyl)propan-1-ol Chemical compound C=COCC(CO)(COC=C)COC=C ILRVMZXWYVQUMN-UHFFFAOYSA-N 0.000 description 1
- BIDWUUDRRVHZLQ-UHFFFAOYSA-N 3-ethyl-3-(2-ethylhexoxymethyl)oxetane Chemical compound CCCCC(CC)COCC1(CC)COC1 BIDWUUDRRVHZLQ-UHFFFAOYSA-N 0.000 description 1
- JUXZNIDKDPLYBY-UHFFFAOYSA-N 3-ethyl-3-(phenoxymethyl)oxetane Chemical compound C=1C=CC=CC=1OCC1(CC)COC1 JUXZNIDKDPLYBY-UHFFFAOYSA-N 0.000 description 1
- FNYWFRSQRHGKJT-UHFFFAOYSA-N 3-ethyl-3-[(3-ethyloxetan-3-yl)methoxymethyl]oxetane Chemical compound C1OCC1(CC)COCC1(CC)COC1 FNYWFRSQRHGKJT-UHFFFAOYSA-N 0.000 description 1
- HPINXYMPRYQBGF-UHFFFAOYSA-N 3-ethyl-3-[[3-[(3-ethyloxetan-3-yl)methoxy]-2,2-bis[(3-ethyloxetan-3-yl)methoxymethyl]propoxy]methyl]oxetane Chemical compound C1OCC1(CC)COCC(COCC1(CC)COC1)(COCC1(CC)COC1)COCC1(CC)COC1 HPINXYMPRYQBGF-UHFFFAOYSA-N 0.000 description 1
- LMIOYAVXLAOXJI-UHFFFAOYSA-N 3-ethyl-3-[[4-[(3-ethyloxetan-3-yl)methoxymethyl]phenyl]methoxymethyl]oxetane Chemical compound C=1C=C(COCC2(CC)COC2)C=CC=1COCC1(CC)COC1 LMIOYAVXLAOXJI-UHFFFAOYSA-N 0.000 description 1
- JJZNCUHIYJBAMS-UHFFFAOYSA-N 3-phenyl-2h-1,2-oxazol-5-one Chemical compound N1OC(=O)C=C1C1=CC=CC=C1 JJZNCUHIYJBAMS-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- FAUAZXVRLVIARB-UHFFFAOYSA-N 4-[[4-[bis(oxiran-2-ylmethyl)amino]phenyl]methyl]-n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1CN(C=1C=CC(CC=2C=CC(=CC=2)N(CC2OC2)CC2OC2)=CC=1)CC1CO1 FAUAZXVRLVIARB-UHFFFAOYSA-N 0.000 description 1
- CXXSQMDHHYTRKY-UHFFFAOYSA-N 4-amino-2,3,5-tris(oxiran-2-ylmethyl)phenol Chemical compound C1=C(O)C(CC2OC2)=C(CC2OC2)C(N)=C1CC1CO1 CXXSQMDHHYTRKY-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 1
- ULPDSNLBZMHGPI-UHFFFAOYSA-N 4-methyl-7-oxabicyclo[4.1.0]heptane Chemical compound C1C(C)CCC2OC21 ULPDSNLBZMHGPI-UHFFFAOYSA-N 0.000 description 1
- NYOZFCHGWPIBJO-UHFFFAOYSA-N 5-bicyclo[2.2.1]hept-2-enylmethyl 2-methylprop-2-enoate Chemical compound C1C2C(COC(=O)C(=C)C)CC1C=C2 NYOZFCHGWPIBJO-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- RQZMIFYTHLNEKZ-UHFFFAOYSA-N 6-diazo-2,5-diethoxy-3-(4-methylphenyl)sulfanylcyclohexa-1,3-diene Chemical compound CCOC1=CC(=[N+]=[N-])C(OCC)C=C1SC1=CC=C(C)C=C1 RQZMIFYTHLNEKZ-UHFFFAOYSA-N 0.000 description 1
- HOSGXJWQVBHGLT-UHFFFAOYSA-N 6-hydroxy-3,4-dihydro-1h-quinolin-2-one Chemical group N1C(=O)CCC2=CC(O)=CC=C21 HOSGXJWQVBHGLT-UHFFFAOYSA-N 0.000 description 1
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 description 1
- CUXGDKOCSSIRKK-UHFFFAOYSA-N 7-methyloctyl prop-2-enoate Chemical compound CC(C)CCCCCCOC(=O)C=C CUXGDKOCSSIRKK-UHFFFAOYSA-N 0.000 description 1
- NHJIDZUQMHKGRE-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-yl 2-(7-oxabicyclo[4.1.0]heptan-4-yl)acetate Chemical compound C1CC2OC2CC1OC(=O)CC1CC2OC2CC1 NHJIDZUQMHKGRE-UHFFFAOYSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- ADAHGVUHKDNLEB-UHFFFAOYSA-N Bis(2,3-epoxycyclopentyl)ether Chemical compound C1CC2OC2C1OC1CCC2OC21 ADAHGVUHKDNLEB-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- DQFBYFPFKXHELB-UHFFFAOYSA-N Chalcone Natural products C=1C=CC=CC=1C(=O)C=CC1=CC=CC=C1 DQFBYFPFKXHELB-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- QVHMSMOUDQXMRS-UHFFFAOYSA-N PPG n4 Chemical compound CC(O)COC(C)COC(C)COC(C)CO QVHMSMOUDQXMRS-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- KHMFYFVXTICBEL-UHFFFAOYSA-N [4-(4-fluorophenyl)phenyl]boronic acid Chemical compound C1=CC(B(O)O)=CC=C1C1=CC=C(F)C=C1 KHMFYFVXTICBEL-UHFFFAOYSA-N 0.000 description 1
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 1
- ISMQAUDWMOBRRW-UHFFFAOYSA-N [9-[2,11-dihydroxy-1,12-di(prop-2-enoyloxy)dodecan-4-yl]oxy-2,11-dihydroxy-12-prop-2-enoyloxydodecyl] prop-2-enoate Chemical compound C=CC(=O)OCC(O)CCCCCCC(CC(O)COC(=O)C=C)OC(CC(O)COC(=O)C=C)CCCCCCC(O)COC(=O)C=C ISMQAUDWMOBRRW-UHFFFAOYSA-N 0.000 description 1
- QFKJMDYQKVPGNM-UHFFFAOYSA-N [benzenesulfonyl(diazo)methyl]sulfonylbenzene Chemical compound C=1C=CC=CC=1S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C1=CC=CC=C1 QFKJMDYQKVPGNM-UHFFFAOYSA-N 0.000 description 1
- FDTRPMUFAMGRNM-UHFFFAOYSA-N [diazo(trifluoromethylsulfonyl)methyl]sulfonyl-trifluoromethane Chemical compound FC(F)(F)S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C(F)(F)F FDTRPMUFAMGRNM-UHFFFAOYSA-N 0.000 description 1
- APDDLLVYBXGBRF-UHFFFAOYSA-N [diethyl-(triethylsilylamino)silyl]ethane Chemical compound CC[Si](CC)(CC)N[Si](CC)(CC)CC APDDLLVYBXGBRF-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- AUALQMFGWLZREY-UHFFFAOYSA-N acetonitrile;methanol Chemical compound OC.CC#N AUALQMFGWLZREY-UHFFFAOYSA-N 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- AJTFTYHGFWNENF-UHFFFAOYSA-N azanium;hydroxy sulfate Chemical compound [NH4+].OOS([O-])(=O)=O AJTFTYHGFWNENF-UHFFFAOYSA-N 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- XDFCIPNJCBUZJN-UHFFFAOYSA-N barium(2+) Chemical compound [Ba+2] XDFCIPNJCBUZJN-UHFFFAOYSA-N 0.000 description 1
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical compound C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- KZYBDOUJLUPBEH-UHFFFAOYSA-N bis(4-ethenoxybutyl) benzene-1,3-dicarboxylate Chemical compound C=COCCCCOC(=O)C1=CC=CC(C(=O)OCCCCOC=C)=C1 KZYBDOUJLUPBEH-UHFFFAOYSA-N 0.000 description 1
- HMNFSPVCKZFHGZ-UHFFFAOYSA-N bis(4-ethenoxybutyl) benzene-1,4-dicarboxylate Chemical compound C=COCCCCOC(=O)C1=CC=C(C(=O)OCCCCOC=C)C=C1 HMNFSPVCKZFHGZ-UHFFFAOYSA-N 0.000 description 1
- VGZKCAUAQHHGDK-UHFFFAOYSA-M bis(4-tert-butylphenyl)iodanium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C1=CC(C(C)(C)C)=CC=C1[I+]C1=CC=C(C(C)(C)C)C=C1 VGZKCAUAQHHGDK-UHFFFAOYSA-M 0.000 description 1
- DJUWPHRCMMMSCV-UHFFFAOYSA-N bis(7-oxabicyclo[4.1.0]heptan-4-ylmethyl) hexanedioate Chemical compound C1CC2OC2CC1COC(=O)CCCCC(=O)OCC1CC2OC2CC1 DJUWPHRCMMMSCV-UHFFFAOYSA-N 0.000 description 1
- PIPBVABVQJZSAB-UHFFFAOYSA-N bis(ethenyl) benzene-1,2-dicarboxylate Chemical compound C=COC(=O)C1=CC=CC=C1C(=O)OC=C PIPBVABVQJZSAB-UHFFFAOYSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- SDNBHBGJJPWRJG-UHFFFAOYSA-N bis[[4-(ethenoxymethyl)cyclohexyl]methyl] pentanedioate Chemical compound C1CC(COC=C)CCC1COC(=O)CCCC(=O)OCC1CCC(COC=C)CC1 SDNBHBGJJPWRJG-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- LSURRKWOANERMF-UHFFFAOYSA-N butyl 2-(hydroxymethyl)prop-2-enoate Chemical compound CCCCOC(=O)C(=C)CO LSURRKWOANERMF-UHFFFAOYSA-N 0.000 description 1
- SXPLZNMUBFBFIA-UHFFFAOYSA-N butyl(trimethoxy)silane Chemical compound CCCC[Si](OC)(OC)OC SXPLZNMUBFBFIA-UHFFFAOYSA-N 0.000 description 1
- RYBVCZSZPZFJOK-UHFFFAOYSA-N butyl-[butyl(dimethyl)silyl]oxy-dimethylsilane Chemical compound CCCC[Si](C)(C)O[Si](C)(C)CCCC RYBVCZSZPZFJOK-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229960005069 calcium Drugs 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 1
- 239000001527 calcium lactate Substances 0.000 description 1
- 235000011086 calcium lactate Nutrition 0.000 description 1
- 229960002401 calcium lactate Drugs 0.000 description 1
- UDDPDANCFPHZRI-UHFFFAOYSA-N calcium;1-ethoxypropan-2-olate Chemical compound [Ca+2].CCOCC(C)[O-].CCOCC(C)[O-] UDDPDANCFPHZRI-UHFFFAOYSA-N 0.000 description 1
- QEXDWVMBHZCFJE-UHFFFAOYSA-N calcium;1-methoxypropan-2-olate Chemical compound [Ca+2].COCC(C)[O-].COCC(C)[O-] QEXDWVMBHZCFJE-UHFFFAOYSA-N 0.000 description 1
- OAKHANKSRIPFCE-UHFFFAOYSA-L calcium;2-methylprop-2-enoate Chemical compound [Ca+2].CC(=C)C([O-])=O.CC(=C)C([O-])=O OAKHANKSRIPFCE-UHFFFAOYSA-L 0.000 description 1
- JHLCADGWXYCDQA-UHFFFAOYSA-N calcium;ethanolate Chemical compound [Ca+2].CC[O-].CC[O-] JHLCADGWXYCDQA-UHFFFAOYSA-N 0.000 description 1
- TXTCTCUXLQYGLA-UHFFFAOYSA-L calcium;prop-2-enoate Chemical compound [Ca+2].[O-]C(=O)C=C.[O-]C(=O)C=C TXTCTCUXLQYGLA-UHFFFAOYSA-L 0.000 description 1
- MMLSWLZTJDJYJH-UHFFFAOYSA-N calcium;propan-2-olate Chemical compound [Ca+2].CC(C)[O-].CC(C)[O-] MMLSWLZTJDJYJH-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 235000005513 chalcones Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- YMHQVDAATAEZLO-UHFFFAOYSA-N cyclohexane-1,1-diamine Chemical compound NC1(N)CCCCC1 YMHQVDAATAEZLO-UHFFFAOYSA-N 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- BTQLDZMOTPTCGG-UHFFFAOYSA-N cyclopentyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCC1 BTQLDZMOTPTCGG-UHFFFAOYSA-N 0.000 description 1
- KQAHMVLQCSALSX-UHFFFAOYSA-N decyl(trimethoxy)silane Chemical compound CCCCCCCCCC[Si](OC)(OC)OC KQAHMVLQCSALSX-UHFFFAOYSA-N 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- WQVJKRKRRMJKMC-UHFFFAOYSA-N diethoxy-methyl-octylsilane Chemical compound CCCCCCCC[Si](C)(OCC)OCC WQVJKRKRRMJKMC-UHFFFAOYSA-N 0.000 description 1
- VGWJKDPTLUDSJT-UHFFFAOYSA-N diethyl dimethyl silicate Chemical compound CCO[Si](OC)(OC)OCC VGWJKDPTLUDSJT-UHFFFAOYSA-N 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- AHUXYBVKTIBBJW-UHFFFAOYSA-N dimethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OC)(OC)C1=CC=CC=C1 AHUXYBVKTIBBJW-UHFFFAOYSA-N 0.000 description 1
- CVQVSVBUMVSJES-UHFFFAOYSA-N dimethoxy-methyl-phenylsilane Chemical compound CO[Si](C)(OC)C1=CC=CC=C1 CVQVSVBUMVSJES-UHFFFAOYSA-N 0.000 description 1
- OYWALDPIZVWXIM-UHFFFAOYSA-N dimethyl-[3-(oxiran-2-ylmethoxy)propyl]-trimethylsilyloxysilane Chemical compound C[Si](C)(C)O[Si](C)(C)CCCOCC1CO1 OYWALDPIZVWXIM-UHFFFAOYSA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical compound C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- SBQIJPBUMNWUKN-UHFFFAOYSA-M diphenyliodanium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C=1C=CC=CC=1[I+]C1=CC=CC=C1 SBQIJPBUMNWUKN-UHFFFAOYSA-M 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- BIAWWFZNZAIXRF-UHFFFAOYSA-N ditert-butyl 1-benzoylcyclohexa-3,5-diene-1,3-dicarboperoxoate Chemical compound C1C(C(=O)OOC(C)(C)C)=CC=CC1(C(=O)OOC(C)(C)C)C(=O)C1=CC=CC=C1 BIAWWFZNZAIXRF-UHFFFAOYSA-N 0.000 description 1
- KGGOIDKBHYYNIC-UHFFFAOYSA-N ditert-butyl 4-[3,4-bis(tert-butylperoxycarbonyl)benzoyl]benzene-1,2-dicarboperoxoate Chemical compound C1=C(C(=O)OOC(C)(C)C)C(C(=O)OOC(C)(C)C)=CC=C1C(=O)C1=CC=C(C(=O)OOC(C)(C)C)C(C(=O)OOC(C)(C)C)=C1 KGGOIDKBHYYNIC-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- SCPWMSBAGXEGPW-UHFFFAOYSA-N dodecyl(trimethoxy)silane Chemical compound CCCCCCCCCCCC[Si](OC)(OC)OC SCPWMSBAGXEGPW-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- BITPLIXHRASDQB-UHFFFAOYSA-N ethenyl-[ethenyl(dimethyl)silyl]oxy-dimethylsilane Chemical compound C=C[Si](C)(C)O[Si](C)(C)C=C BITPLIXHRASDQB-UHFFFAOYSA-N 0.000 description 1
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 description 1
- RSIHJDGMBDPTIM-UHFFFAOYSA-N ethoxy(trimethyl)silane Chemical compound CCO[Si](C)(C)C RSIHJDGMBDPTIM-UHFFFAOYSA-N 0.000 description 1
- 125000005448 ethoxyethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- SYGAXBISYRORDR-UHFFFAOYSA-N ethyl 2-(hydroxymethyl)prop-2-enoate Chemical compound CCOC(=O)C(=C)CO SYGAXBISYRORDR-UHFFFAOYSA-N 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- JHYNXXDQQHTCHJ-UHFFFAOYSA-M ethyl(triphenyl)phosphanium;bromide Chemical compound [Br-].C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(CC)C1=CC=CC=C1 JHYNXXDQQHTCHJ-UHFFFAOYSA-M 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- FLBJFXNAEMSXGL-UHFFFAOYSA-N het anhydride Chemical compound O=C1OC(=O)C2C1C1(Cl)C(Cl)=C(Cl)C2(Cl)C1(Cl)Cl FLBJFXNAEMSXGL-UHFFFAOYSA-N 0.000 description 1
- PZDUWXKXFAIFOR-UHFFFAOYSA-N hexadecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)C=C PZDUWXKXFAIFOR-UHFFFAOYSA-N 0.000 description 1
- VBZWSGALLODQNC-UHFFFAOYSA-N hexafluoroacetone Chemical compound FC(F)(F)C(=O)C(F)(F)F VBZWSGALLODQNC-UHFFFAOYSA-N 0.000 description 1
- MUTGBJKUEZFXGO-UHFFFAOYSA-N hexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21 MUTGBJKUEZFXGO-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- RGCGGLHZZPCQJD-UHFFFAOYSA-N magnesium;1-ethoxypropan-2-olate Chemical compound [Mg+2].CCOCC(C)[O-].CCOCC(C)[O-] RGCGGLHZZPCQJD-UHFFFAOYSA-N 0.000 description 1
- YXOSSQSXCRVLJY-UHFFFAOYSA-N magnesium;2-methoxyethanolate Chemical compound COCCO[Mg]OCCOC YXOSSQSXCRVLJY-UHFFFAOYSA-N 0.000 description 1
- DZBOAIYHPIPCBP-UHFFFAOYSA-L magnesium;2-methylprop-2-enoate Chemical compound [Mg+2].CC(=C)C([O-])=O.CC(=C)C([O-])=O DZBOAIYHPIPCBP-UHFFFAOYSA-L 0.000 description 1
- XDKQUSKHRIUJEO-UHFFFAOYSA-N magnesium;ethanolate Chemical compound [Mg+2].CC[O-].CC[O-] XDKQUSKHRIUJEO-UHFFFAOYSA-N 0.000 description 1
- CRGZYKWWYNQGEC-UHFFFAOYSA-N magnesium;methanolate Chemical compound [Mg+2].[O-]C.[O-]C CRGZYKWWYNQGEC-UHFFFAOYSA-N 0.000 description 1
- DWLAVVBOGOXHNH-UHFFFAOYSA-L magnesium;prop-2-enoate Chemical compound [Mg+2].[O-]C(=O)C=C.[O-]C(=O)C=C DWLAVVBOGOXHNH-UHFFFAOYSA-L 0.000 description 1
- ORPJQHHQRCLVIC-UHFFFAOYSA-N magnesium;propan-2-olate Chemical compound CC(C)O[Mg]OC(C)C ORPJQHHQRCLVIC-UHFFFAOYSA-N 0.000 description 1
- FSQQTNAZHBEJLS-UPHRSURJSA-N maleamic acid Chemical class NC(=O)\C=C/C(O)=O FSQQTNAZHBEJLS-UPHRSURJSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical class CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- POPACFLNWGUDSR-UHFFFAOYSA-N methoxy(trimethyl)silane Chemical compound CO[Si](C)(C)C POPACFLNWGUDSR-UHFFFAOYSA-N 0.000 description 1
- REQXNMOSXYEQLM-UHFFFAOYSA-N methoxy-dimethyl-phenylsilane Chemical compound CO[Si](C)(C)C1=CC=CC=C1 REQXNMOSXYEQLM-UHFFFAOYSA-N 0.000 description 1
- RFUCOAQWQVDBEU-UHFFFAOYSA-N methyl 2-(hydroxymethyl)prop-2-enoate Chemical compound COC(=O)C(=C)CO RFUCOAQWQVDBEU-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 description 1
- JUHDUIDUEUEQND-UHFFFAOYSA-N methylium Chemical compound [CH3+] JUHDUIDUEUEQND-UHFFFAOYSA-N 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000000051 modifying effect Effects 0.000 description 1
- OVHHHVAVHBHXAK-UHFFFAOYSA-N n,n-diethylprop-2-enamide Chemical compound CCN(CC)C(=O)C=C OVHHHVAVHBHXAK-UHFFFAOYSA-N 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- NTNWKDHZTDQSST-UHFFFAOYSA-N naphthalene-1,2-diamine Chemical compound C1=CC=CC2=C(N)C(N)=CC=C21 NTNWKDHZTDQSST-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- SLYCYWCVSGPDFR-UHFFFAOYSA-N octadecyltrimethoxysilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OC)(OC)OC SLYCYWCVSGPDFR-UHFFFAOYSA-N 0.000 description 1
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 1
- MSRJTTSHWYDFIU-UHFFFAOYSA-N octyltriethoxysilane Chemical compound CCCCCCCC[Si](OCC)(OCC)OCC MSRJTTSHWYDFIU-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical group C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960004624 perflexane Drugs 0.000 description 1
- ZJIJAJXFLBMLCK-UHFFFAOYSA-N perfluorohexane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ZJIJAJXFLBMLCK-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- IGALFTFNPPBUDN-UHFFFAOYSA-N phenyl-[2,3,4,5-tetrakis(oxiran-2-ylmethyl)phenyl]methanediamine Chemical compound C=1C(CC2OC2)=C(CC2OC2)C(CC2OC2)=C(CC2OC2)C=1C(N)(N)C1=CC=CC=C1 IGALFTFNPPBUDN-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000004714 phosphonium salts Chemical group 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-M phthalate(1-) Chemical compound OC(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-M 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- HDMGAZBPFLDBCX-UHFFFAOYSA-N potassium;sulfooxy hydrogen sulfate Chemical compound [K+].OS(=O)(=O)OOS(O)(=O)=O HDMGAZBPFLDBCX-UHFFFAOYSA-N 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- YYWLHHUMIIIZDH-UHFFFAOYSA-N s-benzoylsulfanyl benzenecarbothioate Chemical compound C=1C=CC=CC=1C(=O)SSC(=O)C1=CC=CC=C1 YYWLHHUMIIIZDH-UHFFFAOYSA-N 0.000 description 1
- RSVDRWTUCMTKBV-UHFFFAOYSA-N sbb057044 Chemical compound C12CC=CC2C2CC(OCCOC(=O)C=C)C1C2 RSVDRWTUCMTKBV-UHFFFAOYSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- AUHHYELHRWCWEZ-UHFFFAOYSA-N tetrachlorophthalic anhydride Chemical compound ClC1=C(Cl)C(Cl)=C2C(=O)OC(=O)C2=C1Cl AUHHYELHRWCWEZ-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical class C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- DQFBYFPFKXHELB-VAWYXSNFSA-N trans-chalcone Chemical compound C=1C=CC=CC=1C(=O)\C=C\C1=CC=CC=C1 DQFBYFPFKXHELB-VAWYXSNFSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- FOQJQXVUMYLJSU-UHFFFAOYSA-N triethoxy(1-triethoxysilylethyl)silane Chemical compound CCO[Si](OCC)(OCC)C(C)[Si](OCC)(OCC)OCC FOQJQXVUMYLJSU-UHFFFAOYSA-N 0.000 description 1
- FZMJEGJVKFTGMU-UHFFFAOYSA-N triethoxy(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OCC)(OCC)OCC FZMJEGJVKFTGMU-UHFFFAOYSA-N 0.000 description 1
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- GYTROFMCUJZKNA-UHFFFAOYSA-N triethyl triethoxysilyl silicate Chemical compound CCO[Si](OCC)(OCC)O[Si](OCC)(OCC)OCC GYTROFMCUJZKNA-UHFFFAOYSA-N 0.000 description 1
- WILBTFWIBAOWLN-UHFFFAOYSA-N triethyl(triethylsilyloxy)silane Chemical compound CC[Si](CC)(CC)O[Si](CC)(CC)CC WILBTFWIBAOWLN-UHFFFAOYSA-N 0.000 description 1
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- PZJJKWKADRNWSW-UHFFFAOYSA-N trimethoxysilicon Chemical compound CO[Si](OC)OC PZJJKWKADRNWSW-UHFFFAOYSA-N 0.000 description 1
- PHPGKIATZDCVHL-UHFFFAOYSA-N trimethyl(propoxy)silane Chemical compound CCCO[Si](C)(C)C PHPGKIATZDCVHL-UHFFFAOYSA-N 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- FAYMLNNRGCYLSR-UHFFFAOYSA-M triphenylsulfonium triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 FAYMLNNRGCYLSR-UHFFFAOYSA-M 0.000 description 1
- MBYLVOKEDDQJDY-UHFFFAOYSA-N tris(2-aminoethyl)amine Chemical compound NCCN(CCN)CCN MBYLVOKEDDQJDY-UHFFFAOYSA-N 0.000 description 1
- XOTMHFNWERTCLG-UHFFFAOYSA-N tris(4-ethenoxybutyl) benzene-1,2,4-tricarboxylate Chemical compound C=COCCCCOC(=O)C1=CC=C(C(=O)OCCCCOC=C)C(C(=O)OCCCCOC=C)=C1 XOTMHFNWERTCLG-UHFFFAOYSA-N 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 229960000834 vinyl ether Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
- C08F2/40—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation using retarding agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0004—Preparation of sols
- B01J13/0008—Sols of inorganic materials in water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0004—Preparation of sols
- B01J13/0026—Preparation of sols containing a liquid organic phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0004—Preparation of sols
- B01J13/0047—Preparation of sols containing a metal oxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/146—After-treatment of sols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
Definitions
- the present invention relates to a reactive monomer-dispersed silica sol and a production method thereof, and a curable composition containing the reactive monomer-dispersed silica sol and a cured article using the composition.
- the reactive monomer-dispersed silica sol of the present invention is a silica sol in which colloidal silica particles are homogeneously dispersed in a polymerizable organic compound monomer cured by the irradiation of activating energy rays such as ultraviolet (UV) rays, electron beams, ⁇ -rays and X rays, heating, the use of catalysts or the use of curing agents, or the like.
- activating energy rays such as ultraviolet (UV) rays, electron beams, ⁇ -rays and X rays, heating, the use of catalysts or the use of curing agents, or the like.
- curing is referred to as the phenomenon of polymerization or crosslinkage.
- a reactive monomer-dispersed silica sol is ultimately converted into a composite material of colloidal silica particles and a polymer by polymerizing the silica sol to which curing catalysts and other additives are added with UV rays or heat, and the composite material is used in applications such as a hard coating for a transparent plastic plate, a lens, a bottle, a film etc., various sealants and synthetic resin-molded articles.
- the colloidal silica particles act as a modifier for the polymer and improve, for example the elasticity modulus, the linear expansion coefficient, the glass transition temperature, the hardness, the flexural strength etc. of the polymer.
- colloidal silica particles when the colloidal silica particles have small particle diameters and are advantageously dispersed in a polymer matrix, the above modifying effects can be obtained without impairing the transparency of the polymer.
- colloidal silica particles having a primary particle diameter of 50 nm or less are homogeneously dispersed in a polymer matrix, a composite material having high transparency in which the optical loss is extremely small can be obtained.
- a reactive monomer-dispersed silica sol is prepared by the method in Patent Document 1, by an action of the solid acidity which the surfaces of the colloidal silica particles have, a polymerization or degradation of the reactive monomer may be caused and the stability of the sol may be impaired.
- the deterioration, degradation, or the like of the polymer may be caused and a discoloration, a crack, or the like may be generated by an action of the solid acidity of colloidal silica particles.
- Colloidal silica particles dispersed in a reactive monomer may cause the polymerization, degradation, or the like of the reactive monomer by an action of the solid acidity of the surfaces of the particles and a monomer may be polymerized during a process for producing a monomer-dispersed silica sol, or a monomer is deteriorated with time, so that a stable silica sol may not be obtained.
- a polymer of a resin formed article etc. obtained by curing a monomer-dispersed silica sol may be deteriorated, degraded, or the like with time by an action of the solid acidity of colloidal silica particles.
- the present invention provides: according to a first aspect, a reactive monomer-dispersed silica sol containing a colloidal silica particle in which an alkaline earth metal ion is bonded to a surface of the colloidal silica particle in a ratio of 0.001 to 0.2 pieces per square nanometer (nm 2 ) of the surface area of the colloidal silica particle;
- the alkaline earth metal ion is a calcium ion and/or a magnesium ion
- the reactive monomer in the reactive monomer-dispersed silica sol is at least one type of compound selected from a group consisting of a polymerizable compound having an ethylenic unsaturated bond, a polymerizable compound having an epoxy ring, a polymerizable compound having an oxetane ring and a polymerizable compound having a vinyl ether structure;
- the surface of the colloidal silica particle is surface-modified by a silane compound capable of forming a covalent bond with a silanol group of the colloidal silica particle;
- a production method of the reactive monomer-dispersed silica sol according to the first aspect including the following (A) and (B):
- the alkaline earth metal compound is an organic acid salt and/or alkoxide of calcium or magnesium;
- the reactive monomer is at least one type of compound selected from a group consisting of a polymerizable compound having an ethylenic unsaturated bond, a polymerizable compound having an epoxy ring, a polymerizable compound having an oxetane ring and a polymerizable compound having a vinyl ether structure;
- the colloidal silica particle is surface-modified by adding a silane compound capable of forming a covalent bond with a silanol group of the colloidal silica particle to an organic solvent-dispersed silica sol before and/or after an alkaline earth metal compound is dissolved in the sol;
- a production method of the reactive monomer-dispersed silica sol as described in the first aspect including the following (A′), (B′) and (C′):
- the alkaline earth metal compound is at least one type of compound selected from a group consisting of calcium hydroxide, magnesium hydroxide, calcium oxide and magnesium oxide;
- the reactive monomer is at least one type of compound selected from a group consisting of a polymerizable compound having an ethylenic unsaturated bond, a polymerizable compound having an epoxy ring, a polymerizable compound having an oxetane ring and a polymerizable compound having a vinyl ether structure;
- the colloidal silica particle is surface-modified, either by adding a silane compound capable of forming a covalent bond with a silanol group of the colloidal silica particle to the aqueous silica sol before and/or after an alkaline earth metal is dissolved in the sol in (A′), or by adding the silane compound to the organic solvent-dispersed silica sol in (B′);
- a production method of the reactive monomer-dispersed silica sol according to the first aspect including the following
- the alkaline earth metal compound is at least one type of compound selected from a group consisting of calcium hydroxide, magnesium hydroxide, calcium oxide and magnesium oxide;
- the reactive monomer is at least one type of compound selected from a group consisting of a polymerizable compound having an ethylenic unsaturated bond, a polymerizable compound having an epoxy ring, a polymerizable compound having an oxetane ring and a polymerizable compound having a vinyl ether structure;
- the colloidal silica particle is surface-modified by adding a silane compound capable of forming a covalent bond with a silanol group of the colloidal silica particle to the aqueous silica sol before and/or after an alkaline earth metal compound is dissolved in the sol;
- a curable composition containing the reactive monomer-dispersed silica sol according to any one of the first to fourth aspects and a monomer curing agent;
- a cured article obtained from the curable composition according to the seventeenth aspect obtained from the curable composition according to the seventeenth aspect.
- the reactive monomer-dispersed silica sol of the present invention an alkaline earth metal ion is bonded to the surface of a colloidal silica particle, so that the solid acidity of the surface of the colloidal silica particle is reduced. Therefore, in the production process of the reactive monomer-dispersed silica sol of the present invention, in comparison with the case where a conventional silica sol in which an alkaline earth metal ion is not bonded to the surface of the colloidal silica particle is used, the polymerization or degradation of a reactive monomer is suppressed and a reactive monomer-dispersed silica sol thus obtained has high dispersion stability and high storage stability. Furthermore, in a cured article using the curable composition of the present invention, the deterioration or degradation of a cured polymer is less likely to occur due to a reduced solid acidity of the surface of the colloidal silica particle.
- the reactive monomer-dispersed silica sol of the present invention is a reactive monomer-dispersed silica sol containing colloidal silica particles in which alkaline earth metal ions are bonded to the surfaces of the colloidal silica particles in a ratio of 0.001 to 0.2 pieces per square nanometer of the surface area of the colloidal silica particle.
- the dispersion medium of the reactive monomer-dispersed silica sol of the present invention may be one type of reactive monomer, a mixture of two or more types of reactive monomers, or a mixture of the reactive monomer(s) and an organic solvent.
- the mass ratio of reactive monomer(s) and organic solvent is in a range of 100:0 to 50:50.
- the silica concentration in the reactive monomer-dispersed silica sol of the present invention is in a range of 5 to 70% by mass.
- the reactive monomer of the present invention is a polymerizable compound having, in the molecule of the monomer, an ethylenic unsaturated bond, a polymerizable compound having an epoxy ring, a polymerizable compound having an oxetane ring, or a polymerizable compound having a vinyl ether structure.
- the reactive monomer of the present invention is preferably a compound that is in a liquid form at 50° C.
- Examples of the polymerizable compound having an ethylenic unsaturated bond include unsaturated carboxylic acid compounds such as acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid and phthalic acid.
- examples of the polymerizable compound also include unsaturated carboxylic acid ester compounds or unsaturated carboxylic acid amide compounds derived from the above unsaturated carboxylic acid compounds and alcohol compounds or amine compounds, such as acrylate ester compounds, methacrylate ester compounds, itaconate ester compounds, crotonate ester compounds, maleate ester compounds, phthalate ester compounds, acrylamide compounds, methacrylamide compounds, itaconic acid amide compounds, crotonic acid amide compounds, maleic acid amide compounds and phthalic acid amide compounds.
- the alcohol compound is not particularly limited, examples thereof include polyol compounds having 2 to 6 hydroxyl groups, such as ethylene glycol, triethylene glycol, tetraethylene glycol, tris(2-hydroxylethyl) isocyanuric acid, triethanolamine and pentaerythritol.
- the amine compound is not particularly limited, examples thereof include polyamine compounds having 2 to 6 primary or secondary amino groups, such as ethylenediamine, diaminocyclohexane, diaminonaphthalene, 1,4-bis(aminomethyl)cyclohexane, 3,3′,4,4′-tetraaminobiphenyl and tris(2-aminoethyl)amine.
- polymerizable compound having an ethylenic unsaturated bond examples include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, nonaethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate, nonapropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 2,2-bis(4-((meth)acryloxydiethoxy)phenyl) propane, 3-phenoxy-2-propanoyl acrylate, 1,6-bis(3-acryloxy-2-hydroxypropyl)-hexyl ether, trimethylolpropane tri(meth)acrylate, glycerol tri(meth)acrylate, tris-(2-hydroxyleth)acryl
- Examples of the polymerizable compound having an ethylenic unsaturated bond in the present invention also include urethane compounds obtained by a reaction between polyvalent isocyanate compounds and hydroxyalkyl unsaturated carboxylic acid ester compounds, compounds obtained by a reaction between polyvalent epoxy compounds and hydroxyalkyl unsaturated carboxylic acid ester compounds, diallyl ester compounds such as diallyl phthalate, and divinyl compounds such as divinyl phthalate.
- the polymerizable compound having an epoxy ring is not particularly limited, compounds having 1 to 6 epoxy ring(s) can be used.
- the polymerizable compound include compounds having two or more glycidyl ether structures or glycidyl ester structures which can be produced from compounds having two or more hydroxyl groups or carboxyl groups, such as diol compounds, triol compounds, dicarboxylic acid compounds and tricarboxylic acid compounds, and glycidyl compounds such as epichlorohydrin.
- polymerizable compound having an epoxy ring examples include 1,4-butanediol diglycidyl ether, 1,2-epoxy-4-(epoxyethyl)cyclohexane, glycerol triglycidyl ether, diethylene glycol diglycidyl ether, 2,6-diglycidyl phenylglycidyl ether, 1,1,3-tris(p-(2,3-epoxypropoxy)phenyl) propane, 1,2-cyclohexane dicarboxylic acid diglycidyl ester, 4,4′-methylene bis(N,N-diglycidyl aniline), 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, trimethylolethane triglycidyl ether, triglycidyl-p-aminophenol, tetraglycidyl methaxylenediamine, tetraglycid
- the polymerizable compound having an oxetane ring is not particularly limited, compounds having 1 to 6 oxetane ring(s) can be used.
- the polymerizable compound include 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3-(phenoxymethyl)oxetane, 3,3-diethyloxetane and 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, 1,4-bis(((3-ethyl-3-oxetanyl)methoxy)methyl)benzene, di((3-ethyl-3-oxetanyl)methyl)ether and pentaerythritol tetrakis((3-ethyl-3-oxetanyl)methyl)ether.
- the polymerizable compound having a vinylether structure is not particularly limited, compounds having 1 to 6 vinylether structure(s) can be used.
- the polymerizable compound include vinyl-2-chloroethyl ether, vinyl-n-butyl ether, 1,4-cyclohexanedimethanol divinyl ether, vinyl glycidyl ether, bis(4-(vinyloxymethyl)cyclohexylmethyl)glutarate, tri(ethylene glycol) divinyl ether, divinyl adipate ester, diethylene glycol divinyl ether, tris(4-(vinyloxy)butyl)trimellitate, bis(4-(vinyloxy)butyl)terephthalate, bis(4-(vinyloxy)butyl)isophthalate, ethylene glycol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether, tetraethylene glycol diviny
- the silica sol as a raw material in the present invention is an aqueous silica sol produced by a known method using a water glass as a raw material, and an organic solvent-dispersed silica sol which is obtained by exchanging water as a dispersion medium in the aqueous silica sol with an organic solvent.
- the aqueous silica sol is a sol in which colloidal silica particles having a specific surface area of 5.5 to 550 m 2 /g are stably dispersed and a particle form of the colloidal silica particles may be any particle forms known in the present technology field.
- the colloidal silica particles have a specific surface area of more preferably 27 to 550 m 2 /g, most preferably 55 to 550 m 2 /g.
- the colloidal silica particles of the present invention have a particle diameter of 5 to 500 nm, more preferably 5 to 100 nm, most preferably 5 to 50 nm.
- the colloidal silica particles have a particle diameter of less than 5 nm, the stability of the aqueous silica sol or the organic solvent-dispersed silica sol is lowered and it is difficult to increase the silica concentration, so that the production efficiency of the reactive monomer-dispersed silica sol is extremely lowered, which is not preferred.
- the colloidal silica particles have a particle diameter more than 500 nm, so that it is difficult to maintain a homogeneous dispersing state of the colloidal silica particles in the aqueous silica sol or the organic solvent-dispersed silica sol and the transparency of the cured article of the present invention is lowered, which is not preferred.
- an acidic silica sol from which alkali metal ions have been removed beforehand is preferred.
- An acidic aqueous silica sol can be prepared, for example by removing cations such as free alkali metal ions from an alkaline aqueous silica sol by a method such as an ion exchange.
- anions when contained in an acidic aqueous silica sol, it is further preferred to use an acidic aqueous silica sol in which most of or all of the anions have been removed.
- the silica concentration of the aqueous silica sol is not particularly limited, it is generally 5 to 70% by mass and an aqueous silica sol having a silica concentration of 10 to 50% by mass is preferably used.
- Examples of the aqueous silica sol used as a raw material include SNOWTEX (registered trademark) OXS (an acidic aqueous silica sol; manufactured by Nissan Chemical Industries, Ltd.), SNOWTEX (registered trademark) OS (an acidic aqueous silica sol; manufactured by Nissan Chemical Industries, Ltd.), SNOWTEX (registered trademark) O (an acidic aqueous silica sol; manufactured by Nissan Chemical Industries, Ltd.), SNOWTEX (registered trademark) O-40 (an acidic aqueous silica sol; manufactured by Nissan Chemical Industries, Ltd.), SNOWTEX (registered trademark) OL (an acidic aqueous silica sol; manufactured by Nissan Chemical Industries, Ltd.) and SNOWTEX (registered trademark) OUP (an acidic aqueous silica sol; manufactured by Nissan Chemical Industries, Ltd.).
- SNOWTEX registered trademark
- OXS an acidic aqueous silica sol; manufactured by Nissan Chemical Industries, Ltd
- the organic solvent-dispersed silica sol as a raw material in the present invention is obtained by exchanging water as the dispersion medium of the above aqueous silica sol with an organic solvent.
- the exchange with an organic solvent can be performed by a publicly-known method such as a distillation exchange method and an ultrafiltration method.
- the dispersion medium of the organic solvent-dispersed silica sol of the present invention there can be used unpolymerizable organic solvents such as alcohols, ethers, esters, ketones and hydrocarbons.
- alcohols examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1 -propanol, 2-butanol, 2-methyl-2-propanol, ethylene glycol, glycerin, propylene glycol, triethylene glycol, polyethylene glycol, benzyl alcohol, 1,5-pentanediol and diacetone alcohol.
- ethers examples include diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, ethylene glycol monopropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether and diethylene glycol monobutyl ether.
- esters examples include ethyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethylene glycol monoethyl ether acetate and ethylene glycol monobutyl ether acetate.
- ketones examples include acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, methyl isobutyl ketone, 2-heptanone and cyclohexanone.
- hydrocarbons examples include n-hexane, cyclohexane, benzene, toluene, xylene, solvent naphtha, dichloromethane and trichloroethylene.
- Examples of the other organic solvent include acetonitrile, acetoamide, N,N-dimethylformamide, dimethyl sulfoxide, N,N-dimethylacetoamide and N-methylpyrrolidone.
- organic solvents may be used individually or in combination of two or more types thereof.
- the organic solvent has an excellent compatibility with the reactive monomer used in the present invention, a low reactivity with the reactive monomer and a boiling point lower than that of the reactive monomer.
- the compatibility of the organic solvent with the reactive monomer is poor, a layer of the organic solvent-dispersed silica sol and a layer of the reactive monomer are separated from each other when the reactive monomer is added to the organic solvent-dispersed silica sol.
- the colloidal silica particles are not transferred to the layer of the reactive monomer while exchanging an organic solvent for the dispersion medium with a reactive monomer.
- a desired reactive monomer-dispersed silica sol may not be obtained.
- the stability of the obtained reactive monomer-dispersed silica sol may become poor, or a curing failure may occur in the cured article obtained by using the reactive monomer-dispersed silica sol.
- the reactive monomer is an epoxy monomer and the dispersion medium of the organic solvent-dispersed silica sol is an alcohol
- a ring opening of the epoxy monomer may be caused by the alcohol, and consequently, a curing failure of the final cured article may occur, which is not preferred.
- the organic solvent has a boiling point higher than that of the reactive monomer, the evaporation of the reactive monomer is preferentially caused while exchanging the organic solvent with the reactive monomer.
- the exchange requires a large amount of the reactive monomer, which is not preferred.
- silica sol used as a raw material in the present invention
- a commercially available silica sol may be used.
- silica sol include: MA-ST-S (a methanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); MT-ST (a methanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); MA-ST-UP (a methanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); MA-ST-MS (a methanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); MA-ST-L (a methanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); IPA-ST-S (an isopropanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); IPA-ST (an isopropanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); IPA-ST (an isopropanol-dispersed
- Examples of the alkaline earth metal ion to be bonded to the colloidal silica particles in the present invention include a beryllium ion (Be 2+ ), a magnesium ion (Mg 2+ ), calcium ion (Ca 2+ ), a strontium ion (Sr 2+ ), a barium ion (Ba 2+ ) and a radium ion (Ra 2+ ).
- a magnesium ion and a calcium ion are preferred in terms of availability and easy handling of compounds thereof.
- the alkaline earth metal compound added to the aqueous silica sol used as a raw material it is possible to use oxides, hydroxides and salts (inorganic acid salts such as nitrates, sulfates, phosphates, hydrochlorides and carbonates, and organic acid salts such as carboxylates) of alkaline earth metals.
- oxides, hydroxides and salts inorganic acid salts such as nitrates, sulfates, phosphates, hydrochlorides and carbonates, and organic acid salts such as carboxylates
- hydroxides and oxides of alkaline earth metals it is preferable to use hydroxides and oxides of alkaline earth metals, and especially preferable to use calcium hydroxide, magnesium hydroxide, calcium oxide and magnesium oxide, because such compounds are easily handled and contain no unnecessary anions.
- the alkaline earth metal compound added to the organic solvent-dispersed silica sol used as a raw material it is possible to use organic acid salts of alkaline earth metals and/or alkaline earth metal alkoxides which are soluble in an organic solvent which is the dispersion medium of the silica sol.
- organic acid salt of alkaline earth metals include calcium methacrylate, magnesium methacrylate, calcium acrylate, magnesium acrylate, calcium acetate, magnesium acetate and calcium lactate.
- alkaline earth metal alkoxide examples include calcium dimethoxide, calcium methoxyethoxide, calcium diethoxide, calcium methoxyisopropoxide, calcium ethoxyisopropoxide, calcium diisopropoxide, magnesium dimethoxide, magnesium methoxyethoxide, magnesium diethoxide, magnesium ethoxyisopropoxide and magnesium diisopropoxide.
- the amount of the alkaline earth metal ion bonded to colloidal silica particles per square nanometer of the surface area of the colloidal silica particle is preferably 0.001 to 0.2 pieces, more preferably 0.01 to 0.1 pieces.
- the amount of the alkaline earth metal ion bonded to colloidal silica particles per square nanometer of the colloidal silica particle is less than 0.001 pieces, a satisfactory effect of reducing the solid acidity cannot be expected.
- the amount of the alkaline earth metal ion bonded to colloidal silica particles per square nanometer of the surface area of the colloidal silica particle is calculated from the specific surface area (m 2 /g) of the colloidal silica particle obtained by the BET method and the additive amount of the alkaline earth metal compound.
- the colloidal silica particles contained in the reactive monomer-dispersed silica sol of the present invention are preferably surface-modified by a silane compound capable of forming a covalent bond by a reaction of the colloidal silica particles with a silanol group existing in the surface of the colloidal silica particles.
- a silane compound capable of forming a covalent bond by a reaction of the colloidal silica particles with a silanol group existing in the surface of the colloidal silica particles.
- silane compound capable of forming a covalent bond by being reacted with a silanol group of the colloidal silica particles examples include silazane, siloxane, or alkoxysilane, and partial hydrolysates of silazane, siloxane, or alkoxysilane, or oligomers such as a polymerized dimmer to pentamer of silazane, siloxane, or alkoxysilane.
- silazane examples include hexamethyldisilazane and hexaethyldisilazane.
- siloxane examples include hexamethyldisiloxane, 1,3-dibutyltetramethyldisiloxane, 1,3-diphenyltetramethyldisiloxane, 1,3-divinyltetramethyldisiloxane, hexaethyldisiloxane and 3-glycidoxypropylpentamethyldisiloxane.
- alkoxysilane examples include trimethylmethoxysilane, trimethylethoxysilane, trimethylpropoxysilane, phenyldimethylmethoxysilane, chloropropyldimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, ethyltrimethoxysilane, dimethyldiethoxysilane, propyltriethoxysilane, n-butyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltriethoxysilane, n-octylmethyldiethoxysilane, n-octadecyltrimethoxysilane, phenyltrimethoxysilane, phenyl
- silane compounds may be used individually or in combination of two or more types thereof.
- silane compounds having functional groups capable of bonding colloidal silica particles with the polymer while curing the curable composition of the present invention can enhance the properties of the cured article, so that such silane compounds are preferred.
- the additive amount of the silane compounds per square meter of the surface of the colloidal silica particles contained in the silica sol is preferably 0.1 to 20 ⁇ mol.
- the additive amount of the silane compounds is less than 0.1 ⁇ mol/m 2 , a satisfactory effect of surface modification cannot be obtained.
- the additive amount is more than 20 ⁇ mol/m 2 , a large amount of the silane compounds that are not bonded to the colloidal silica particles remains, which is not preferred.
- a first method of the production method of the reactive monomer-dispersed silica sol of the present invention includes the following processes (A) and (B):
- the organic solvent-dispersed silica sol is heated to a temperature ranging from the melting point to boiling point of the organic solvent and while stirring the silica sol, added thereto is an alkaline earth metal compound soluble in the organic solvent in a state of a powder, a solution in water or in an organic solvent, or a slurry. After adding the alkaline earth metal compound, the resultant mixture is thoroughly stirred to dissolve thoroughly the alkaline earth metal compound in the organic solvent-dispersed silica sol. In the process (A), an alkaline earth metal ion is bonded to the surface of the colloidal silica particle.
- the amount of the alkaline earth metal ion bonded to colloidal silica particles per square nanometer of the surface area of the colloidal silica particles is preferably 0.001 to 0.2 pieces, more preferably 0.01 to 0.1 pieces.
- the bonded amount of the alkaline earth metal ion per square nanometer of the surface area of the colloidal silica particles is calculated from the specific surface area (m 2 /g) of the colloidal silica particles obtained by the BET method and the additive amount of the alkaline earth metal compound.
- a reactive monomer is added to the organic solvent-dispersed silica sol containing colloidal silica particles to which an alkaline earth metal ion is bonded which is obtained in the process (A), and while stirring the resultant mixture, at least a part of the organic solvent is distilled off at room temperature or under heating, under a reduced pressure or a normal pressure to obtain a reactive monomer-dispersed silica sol.
- the condition for exchanging the organic solvent with a reactive monomer may be a condition under which the organic solvent can be distilled off without causing the polymerization or degradation of the reactive monomer, and the exchange may be performed while appropriately controlling the pressure and the liquid temperature in a container used for the exchange.
- the organic solvent may be distilled off, or while distilling-off the organic solvent in the organic solvent-dispersed silica sol, the exchange may be performed by adding the reactive monomer gradually to the organic solvent-dispersed silica sol.
- the exchange may be performed by adding the reactive monomer gradually to the organic solvent-dispersed silica sol.
- the reactive monomer-dispersed silica sol of the present invention may be prepared by distilling-off most of all of the organic solvent in the organic solvent-dispersed silica sol such that silica particles are dispersed in almost only a reactive monomer, or may be prepared by remaining the organic solvent for the purpose of preventing an increase in the viscosity of the silica sol or the like such that silica particles are dispersed in a mixed dispersion medium of the organic solvent and the reactive monomer.
- the mass ratio between the reactive monomer and the organic solvent in the mixed dispersion medium is preferably in a range of 100:0 to 50:50.
- a second method of the production method of the reactive monomer-dispersed silica sol of the present invention includes the following processes (A′), (B′) and (C′):
- the process (A′) is a process for bonding an alkaline earth metal ion to the surface of the colloidal silica particle contained in an aqueous silica sol in a ratio of 0.001 to 0.2 pieces per square nanometer of the surface area of the colloidal silica particle.
- the liquid temperature of the aqueous silica sol used serving as a raw material is set at 5 to 100° C. and while stirring the silica sol, an alkaline earth metal compound in the state of a powder, an aqueous solution or a slurry as an aqueous dispersion is added to the silica sol. After the alkaline earth metal compound has been added, the resultant mixture is thoroughly stirred to dissolve thoroughly the alkaline earth metal compound in the aqueous silica sol.
- the amount of the alkaline earth metal compound added to the aqueous silica sol is an amount in which a ratio of the alkaline earth metal ion is 0.001 to 0.2 pieces, more preferably 0.01 to 0.1 pieces per square nanometer of the surface area of the colloidal silica particle contained in the sol.
- a ratio of the alkaline earth metal ion is 0.001 to 0.2 pieces, more preferably 0.01 to 0.1 pieces per square nanometer of the surface area of the colloidal silica particle contained in the sol.
- Examples of the method for removing anions include an ion-exchange method and an ultrafiltration method. By reducing anions or removing the anions entirely, the alkaline earth metal ion is stably bonded to the surface of the colloidal silica particle.
- the process (B′) is a process for exchanging water which is a dispersion medium of the aqueous silica sol obtained in the process (A′) containing colloidal silica particles in which the alkaline earth metal ion is bonded to the surface of the colloidal silica particle in a ratio of 0.001 to 0.2 pieces per square nanometer of the surface area of the colloidal silica particle with an organic solvent.
- any method in publicly-known techniques may be used. Examples of the method include a distillation-exchange method and an ultrafiltration method.
- the organic solvent is a hydrophobic organic solvent such as methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate or toluene
- a method can be applied in which the surface of the colloidal silica particle of the aqueous silica sol is subjected to a hydrophobic treatment and then the dispersion medium is exchanged with a desired solvent.
- a method of the hydrophobic treatment the following methods are known: a method for esterifying a silanol group in the surface of the colloidal silica particle by heating an aqueous silica sol in the coexistence of excessive alcohol (Japanese Patent Application Publication No.
- JP-A-57-196717 a method for treating the surface of silica with a silylating agent or a silane coupling agent
- a silylating agent or a silane coupling agent Japanese Patent Application Publication Nos. JP-A-58-145614, JP-A-03-187913 and JP-A-11-43319.
- the process (C′) is a process for exchanging an organic solvent which is a dispersion medium of the organic solvent-dispersed silica sol obtained in the process (B′), with a reactive monomer.
- the method for exchanging an organic solvent with a reactive monomer can be performed in a manner similar to the process (B) in the first method of the production method of the present invention.
- a third method of the production method of the reactive monomer-dispersed silica sol of the present invention includes the following processes (A′) and (C′′):
- the process (A′) is similar to the process (A′) in the second method of the production method of the reactive monomer-dispersed silica sol of the present invention.
- the process (C′′) is a process for exchanging water which is a dispersion medium of the aqueous silica sol obtained in the process (A′) containing colloidal silica particles in which an alkaline earth metal ion is bonded to the surface of the colloidal silica particles in a ratio of 0.001 to 0.2 pieces per square nanometer of the surface area of the colloidal silica particles with a reactive monomer.
- the reactive monomer is a water-soluble monomer such as 2-hydroxyethyl (meth)acrylate
- the aqueous silica sol can be exchanged with a reactive monomer directly without obtaining an organic solvent-dispersed silica sol.
- the reactive monomer-dispersed silica sol can be obtained by adding a reactive monomer to the aqueous silica sol obtained in the process (A′) while stirring and heating the sol at 5 to 100° C. under a reduced pressure to distill off water.
- a fourth method of the production method of the reactive monomer-dispersed silica sol of the present invention is a production method of a reactive monomer-dispersed silica sol for surface-modifying colloidal silica particles by adding a silane compound capable of forming a covalent bond with a silanol group of colloidal silica particles to the organic solvent-dispersed silica sol before and/or after dissolving an alkaline earth metal compound in the process (A) of the first method.
- a fifth method of the production method of the reactive monomer-dispersed silica sol of the present invention is a production method of a reactive monomer-dispersed silica sol for surface-modifying colloidal silica particles by adding a silane compound capable of forming a covalent bond with a silanol group of the colloidal silica particles to the aqueous silica sol before and/or after dissolving an alkaline earth metal compound in the process (A′) of the second method, or by adding the silane compound to the organic solvent-dispersed silica sol in the process (B′) of the second method.
- a sixth method of the production method of the reactive monomer-dispersed silica sol of the present invention is a production method of a reactive monomer-dispersed silica sol for surface-modifying colloidal silica particles by adding a silane compound capable of forming a covalent bond with a silanol group of colloidal silica particles to the aqueous silica sol before and/or after dissolving an alkaline earth metal compound in the process (A′) of the third method.
- the silane compound may be added to an aqueous silica sol or an organic solvent-dispersed silica sol either before or after adding an alkaline earth metal compound to the aqueous silica sol or the organic solvent-dispersed silica sol.
- the addition of silane compound to the silica sol has an effect of suppressing an aggregation of colloidal silica particles by adding an alkaline earth metal ion, it is preferable to add the silane compound before adding the alkaline earth metal compound.
- the aqueous silica sol or the organic solvent-dispersed silica sol is preferably stirred, and the silane compound is preferably added gradually.
- the temperature of the silica sol while adding the silane compound is not particularly limited so long as it is a temperature at which a silanol group of colloidal silica particles and the silane compound can form a covalent bond, the temperature is generally 5° C. to a boiling temperature of the dispersion medium.
- the mixture may be aged for around 1 to 10 hours, for sufficiently effecting the reaction between the silanol group of colloidal silica particles and the silane compound.
- the temperature of the silica sol during the aging is 5° C. to a boiling temperature of the dispersion medium, preferably 20° C. to a boiling temperature of the dispersion medium.
- the colloidal silica particles are surface-modified by the silane compound, the aggregation of the colloidal silica particles by the alkaline earth metal ion can be suppressed when adding an alkaline earth metal compound to the silica sol.
- the surface modification may enhance the dispersibility of the colloidal silica particles in a reactive monomer.
- the curable composition of the present invention is obtained by adding a monomer curing agent to the reactive monomer-dispersed silica sol of the present invention.
- the monomer curing agent in the present invention is a compound generally called as a polymerization initiator, and when the reactive monomer is an epoxy monomer, an epoxy curing agent is also included therein.
- Examples of the polymerization initiator include: a compound capable of causing a radical polymerization of a reactive monomer by generating an active radical by heating or light irradiation, that is, a radical polymerization initiator; and a compound capable of causing a cationic polymerization of a reactive monomer by generating cation species such as a protonic acid and a carbon cation by heating or light irradiation, that is, a cationic polymerization initiator.
- radical polymerization initiator examples include peroxides, azo compounds, disulfides, sulfinic acids, imidazole compounds, diazo compounds, bisimidazole compounds, N-arylglycin compounds, organic azide compounds, titanocene compounds, aluminate compounds, N-alkoxypyridinium salt compounds and thioxanthone compounds.
- peroxide examples include acetyl peroxide, lauroyl peroxide, benzoyl peroxide, cumenehydro peroxide, di-tertbutyl peroxide, potassium peroxosulfate, ammonium peroxosulfate and hydrogen peroxide.
- Examples of the azo compounds include 2,2-azobisisobutylonitrile.
- Examples of the disulfides include tetramethylthiuram disulfide and dibenzoyl disulfide.
- Examples of the sulfinic acids include p-toluene sulfinic acid.
- Examples of the azide compounds include p-azide benzaldehyde, p-azide acetophenone, p-azide benzoate, p-azidebenzalacetophenone, 4,4′-diazide chalcone, 4,4′-diazide diphenyl sulfide and 2,6-bis(4′-azide benzal)-4-methylcyclohexanone.
- diazo compounds examples include 1-diazo-2,5-diethoxy-4-p-tolylmercaptobenzene borofluoride, 1-diazo-4-N,N-dimethylaminobenzene chloride and 1-diazo-4-N,N-diethylaminobenzene borofluoride.
- bisimidazole compounds include 2,2′-bis(o-chlorophenyl)-4,5,4′,5′-tetrakis(3,4,5-trimethoxyphenyl) 1,2′-bisimidazole and 2,2′-bis(o-chlorophenyl)-4,5,4′,5′-tetraphenyl-1,2′-bisimidazole.
- titanocene compounds include dicyclopentadienyl-titanium-dichloride, dicyclopentadienyl-titanium-bisphenyl, dicyclopentadienyl-titanium-bis(2,3,4,5,6-pentafluorophenyl), dicyclopentadienyl-titanium-bis(2,3,5,6-tetrafluorophenyl), dicyclopentadienyl-titanium-bis(2,4,6-trifluorophenyl), dicyclopentadienyl-titanium-bis(2,6-difluorophenyl), dicyclopentadienyl-titanium-bis(2,4-difluorophenyl), bis(methylcyclopentadienyl)-titanium-bis(2,3,4,5,6-pentafluorophenyl), bis(methylcyclopentadienyl)-titanium-t
- radical polymerization initiator examples include 1,3-di(tert-butyldioxycarbonyl)benzophenone, 3,3′,4,4′-tetrakis(tert-butyldioxycarbonyl)benzophenone, 3-phenyl-5-isooxazolone, 2-mercaptobenzimidazole, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone and 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone.
- Examples of the cationic polymerization initiator include hydrogen acids, sulfonate esters, sulfonimide compounds, disulfonyl diazomethane compounds, dialkyl-4-hydroxysulfonium salts, p-nitrobenzyl arylsulfonate ester, silanol-aluminum complexes and ⁇ 6-benzene)( ⁇ 5-cyclopentadienyl) iron (II).
- Examples of the hydrogen acids include hydrochloric acid, phosphoric acid and sulfuric acid.
- sulfonimide compounds include N-(trifluoromethanesulfonyloxy)succinimide, N-(nonafluoro-n-butanesulfonyloxy)succinimide, N-(camphorsulfonyloxy)succinimide and N-(trifluoromethanesulfonyloxy)naphthalimide.
- disulfonyl diazomethane compounds include bis(trifluoromethylsulfonyl)diazomethane, bis(cyclohexylsufonyl)diazomethane, bis(phenylsulfonyl)diazomethane, bis(p-toluenesulfonyl)diazomethane, bis(2,4-dimethylbenzenesulfonyl)diazomethane and methylsulfonyl-p-toluenesulfonyldiazomethane.
- Examples of the cationic polymerization initiator also include 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropane-1-one.
- aromatic iodonium salt compounds aromatic sulfonium salt compounds, aromatic diazonium salt compounds, aromatic phosphonium salt compounds, triazine compounds, iron-arene complex compounds, and the like can be used as both a radical polymerization initiator and a cationic polymerization initiator.
- aromatic iodonium salt compounds include diphenyliodoniumhexafluorophosphate, diphenyliodoniumtrifluoromethanesulfonate, diphenyliodoniumnonafluoro-n-butanesulfonate, diphenyliodoniumperfluoro-n-octanesulfonate, diphenyliodoniumcamphorsulfonate, bis(4-tert-butylphenyl)iodoniumcamphorsulfonate and bis(4-tert-butylphenyl) iodoniumtrifluoromethanesulfonate.
- aromatic sulfonium salt compounds include triphenylsulfoniumhexafluoroantimonate, triphenylsulfoniumnonafluoro-n-butanesulfonate, triphenylsulfoniumcamphorsulfonate and triphenylsulfoniumtrifluoromethanesulfonate.
- the above monomer curing agents may be used individually or in combination of two or more types thereof.
- a monomer curing agent generally called as an epoxy curing agent can be used.
- the epoxy curing agent is a bifunctional compound easily reacted with an epoxy group or a hydroxyl group, and when the agent is reacted with a compound having at least two epoxy groups, a ring opening and a reaction with a hydroxyl group occur, so that a crosslinkage bond is generated and a resin having a three dimensional structure is produced.
- the epoxy curing agent generally used are amines or acid anhydrides, and besides them, phenol resins, urea resins, polyamide resins etc. are also used.
- the amines include diethylenetriamine, isophoronediamine, diaminodiphenylmethane and diaminodiphenylsulfon;
- specific examples of the acid anhydride include methylhexahydrophthalic anhydride, 1,2-cyclohexanedicarboxylic anhydride, bicyclo(2.2.1)hepta-5-en-2,3-dicarboxylic anhydride, phthalic anhydride, pyromellitic dianhydride, hexahydrophthalic anhydride, dodecenylsuccinic anhydride, dichloromaleic anhydride, chlorendic anhydride and tetrachlorophthalic anhydride; and specific examples of the phenolic resin include phenolnovolak resins and cresolnovolak resins
- the additive amount thereof is usually in a range of about 10 ppm to 20% by mass, based on the amount of the reactive monomer.
- the monomer curing agent is an epoxy curing agent used relative to a reactive monomer having an epoxy ring
- usually added is an epoxy curing agent in such an amount that the number of epoxy rings of the epoxy monomer is the same as the number of reactive functional groups of the curing agent.
- curing accelerators examples include: imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole; amines such as 2,4,6-tris(dimethylaminomethyl)phenol and benzyldimethylamine; organophosphorus compounds such as triphenylphosphine and tributylphosphine; and quaternary phosphonium salts such as triphenylmonoalkylphosphonium halides represented by triphenylethylphosphonium bromide or the like.
- the method of adding the agent is not particularly limited. However, it is preferred that the monomer curing agent is added while stirring the silica sol, in order to homogeneously mix the monomer curing agent in the silica sol.
- the dispersion medium of the reactive monomer-dispersed silica sol is a mixed dispersion medium of a reactive monomer and an organic solvent
- the curable composition to be obtained contains the organic solvent.
- a curable composition containing no organic solvent may be produced.
- the cured article of the present invention can be obtained by polymerizing the above curable composition by heating or light irradiation.
- the curable composition contains an organic solvent, it is preferred that the polymerization is performed after the organic solvent is appropriately removed.
- the shape of the cured article takes various forms according to applications, such as a transparent plastic plate, a lens, a bottle, a thin film like a hard coating film such as a film, various sealants and molded articles.
- a methanol-dispersed silica sol (MT-ST; manufactured by Nissan Chemical Industries, Ltd.; particle diameter measured by the BET method: 12 nm, SiO 2 concentration: 30% by mass, methanol: 68% by mass, water content: 2% by mass) was charged into a glass reactor having a content volume of 1 L and equipped with a stirrer, and while stirring the sol, 30.4 g of ⁇ -acryloxypropyltrimethoxysilane (trade name: KBM-5103; manufactured by Shin-Etsu Chemical Co., Ltd.) was added to the sol, followed by retaining the resultant mixture at a liquid temperature of 50° C. for 4 hours.
- MT-ST methanol-dispersed silica sol
- methanol was distilled off by an evaporator to obtain 833 g of a colorless transparent acrylic monomer-dispersed silica sol (SiO 2 concentration: 30% by mass, tetrahydrofurfuryl acrylate: 70% by mass, B-type viscosity at 20° C.: 9.8 mPa ⁇ s, water content: 0.1% by mass, methanol: 0.2% by mass, Ca ions per square nanometer of the surface area of the surface of the colloidal silica particle: 0.019 pieces).
- a part of the sol was encapsulated in a glass container and the container was retained in a warm reservoir at 50° C. for one month. Subsequently, the B-type viscosity of the sol at 20° C. was measured and found to be 9.9 mPa ⁇ s and the sol was stable. In addition, the appearance of the sol remained in colorless and transparent.
- 1,572 g of the sol was charged into a glass reactor having a content volume of 2 L and equipped with a stirrer, a condenser, a thermometer and two inlets. While boiling the sol in the reactor, vapor of methanol generated by another boiler was continuously blown into the silica sol in the reactor to perform the exchange of water with methanol. When the volume of the distillate became 13 L, the exchange was terminated to obtain 1,570 g of a methanol-dispersed calcium-bonded silica sol (SiO 2 concentration: 20% by mass, methanol: 78% by mass, water content: 1.5% by mass).
- methanol was distilled off by an evaporator to obtain 835 g of a colorless transparent acrylic monomer-dispersed silica sol (SiO 2 concentration: 30% by mass, tetrahydrofurfuryl acrylate: 70% by mass, B-type viscosity at 20° C.: 11.0 mPa ⁇ s, water content: 0.1% by mass, methanol: 0.2% by mass, Ca ions per square nanometer of the surface area of the surface of the colloidal silica particle: 0.016 pieces).
- a part of the sol was encapsulated in a glass container and the container was retained in a warm reservoir at 50° C. for one month. Subsequently, the B-type viscosity of the sol at 20° C. was measured and found to be 11.2 mPa ⁇ s and the sol was stable. In addition, the appearance of the sol remained in colorless and transparent.
- a methanol-dispersed silica sol (MT-ST; manufactured by Nissan Chemical Industries, Ltd.; particle diameter measured by the BET method: 12 nm, SiO 2 concentration: 30% by mass, methanol: 68% by mass, water content: 2% by mass) was charged into a glass reactor having a content volume of 1 L and equipped with a stirrer, a condenser, a thermometer and two inlets, and while distilling the silica sol under atmospheric pressure with stirring the silica sol and maintaining the liquid level constant, 592 g of acetonitrile was added to the silica sol to obtain an acetonitrile-methanol mixed solvent sol (SiO 2 concentration: 30% by mass, methanol concentration: 20% by mass, acetonitrile: 49% by mass, water content: 1% by mass).
- MT-ST methanol-dispersed silica sol
- the obtained sol was transferred to a 2 L egg plant-shaped flask and while distilling off the solvent under a reduced pressure of 450 hPa by a rotary evaporator, 1,395 g of acetonitrile was added to the sol to obtain 803 g of an acetonitrile-dispersed calcium-bonded silica sol (SiO 2 concentration: 20.5% by mass, acetonitrile: 79.2% by mass, Ostwald viscosity at 20° C.: 1.2 mPa ⁇ s, water content: 0.1% by mass, methanol concentration: 0.2% by mass, Ca ions per square nanometer of the surface area of the surface of the colloidal silica particle: 0.023 pieces).
- the sol was transferred to an egg plant-shaped flask having a content volume of 1 L, and 138.2 g of 2-hydroxyethylmethacrylate (reagent; manufactured by Kanto Chemical Industry Co., Ltd.) was added to the sol. Subsequently, by condensing the silica sol by an evaporator while heating at a water bath temperature of 50° C.
- a colorless transparent 2-hydroxyethyl methacrylate-dispersed silica sol (SiO 2 concentration: 31% by mass, 2-hydroxyethyl methacrylate: 68% by mass, water content: 1% by mass, B-type viscosity at 20° C.: 28.5 mPa ⁇ s, Ca ions per square nanometer of the surface area of the surface of the colloidal silica particle: 0.015 pieces) was obtained.
- a part of this silica sol was encapsulated in a glass container and the container was retained at 50° C. in a warm reservoir for one month. Then, the B-type viscosity of the silica sol at 20° C. was measured and found to be 28.7 mPa ⁇ s, and the silica sol was stable. In addition, the appearance of the silica sol was remained in colorless and transparent.
- silica sol was performed in a similar manner to the operation in Example 1, except that calcium methoxide was not added. Then, in a process for distilling off methanol by an evaporator after adding an acrylic monomer, the viscosity of the sol rapidly increased and a polymerization of the monomer occurred, so that a stable acrylic monomer-dispersed silica sol was not obtained.
- silica sol was performed in a similar manner to the operation in Example 2, except that calcium hydroxide was not added. Then, in a process for distilling off methanol by an evaporator after adding an acrylic monomer, the viscosity of the sol rapidly increased and a polymerization of the monomer occurred, so that a stable acrylic monomer-dispersed silica sol was not obtained.
- silica sol was performed in a similar manner to the operation in Example 3, except that calcium methoxide was not added. Then, in a process for distilling off acetonitrile by an evaporator after adding an epoxy monomer, the viscosity of the sol rapidly increased and a polymerization of the monomer occurred, so that a stable epoxy monomer-dispersed silica sol was not obtained.
- silica sol The production operation of a silica sol was performed in a similar manner to the operation in Example 4, except that calcium hydroxide was not added. Then, an orange color transparent 2-hydroxylethyl methacrylate-dispersed silica sol (SiO 2 concentration: 31% by mass, 2-hydroxyethyl methacrylate: 68% by mass, water content: 1% by mass, B-type viscosity at 20° C.: 21.4 mPa ⁇ s) was obtained. A part of this sol was encapsulated in a glass container and the container was retained in a warm reservoir at 50° C. for one month. Then, the B-type viscosity of the silica sol at 20° C. was measured and found to be 21.5 mPa ⁇ s, and the silica sol was stable, however, the appearance of the sol was colored in red.
- the tetrahydrofurfuryl acrylate-dispersed silica sol produced in Example 1, and tetrahydrofurfuryl acrylate and ethoxylated trimethylolpropane triacrylate (trade name: V#360; manufactured by Osaka Organic Chemical Industry Ltd.) were mixed, and then a photopolymerization initiator (trade name: Irgacure 184; manufactured by Ciba Specialty Chemicals Inc) was added to the resultant mixture, followed by dissolving the solid of the mixture by thoroughly stirring the mixture to produce colorless transparent curable compositions 1 to 4 having compositions shown in Table 1.
- curable compositions were filtered using a chromatodisc (MILLEX-AP; manufactured by Nihon Millipore K.K.; pore diameter: 2.0 ⁇ m), and then about 1 mL of each of the filtrates was dropped on a glass substrate having a thickness of 0.7 mm on which an indium tin oxide (ITO) film as a transparent conductive film was formed on the entire surface of the substrate by sputtering. Films were formed by rotating the substrate at a rotation speed of 3,000 rpm for 10 seconds after a preliminary rotation at a rotation speed of 100 rpm for 5 seconds using a spin coater (K359SD-270SPINNER; manufactured by Kyowariken Co., Ltd.). By irradiating light to the formed films using a high pressure mercury lamp (H13100A-1; manufactured by Sen Lights Corporation) for 20 minutes, cured coating films were obtained.
- a high pressure mercury lamp H13100A-1; manufactured by Sen Lights Corporation
- the surface hardness was measured according to JIS-K5400 “Pencil hardness test method” (Table 1).
- the obtained cured coating films exhibited high scratch hardness.
- the reactive monomer-dispersed silica sol of the present invention has a low solid acidity of the surface of the colloidal silica particle, can suppress the deterioration, the degradation etc. of a resin in comparison with a silica sol in which an alkaline earth metal ion is not bonded to the surface of the particle, and can be used as a raw material for a microfiller of a hard coating film or a thin film to be formed on the surface of a synthetic resin molded article such as a lens, a bottle, a film and a transparent plastic plate.
- a cured article having high hardness, such as a resin molded article can be obtained from the curable composition of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Polymerisation Methods In General (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A reactive monomer-dispersed silica sol having high stability by reducing the solid acidity of the surfaces of the colloidal silica particles contained in the reactive monomer-dispersed silica sol, and a production method thereof, and a curable composition using the reactive monomer-dispersed silica sol, and a cured article in which the deterioration, the degradation, or the like of the polymer is suppressed. A reactive monomer-dispersed silica sol containing a colloidal silica particle in which an alkaline earth metal ion is bonded to a surface of the colloidal silica particle.
Description
- This is a Continuation of application Ser. No. 12/449,328 filed Aug. 3, 2009, which in turn is a National Stage of PCT/JP2008/051518 filed Jan. 31, 2008, which claims priority to Japanese Patent Application No. 2007-023740 filed Feb. 2, 2007. The disclosure of the prior applications is hereby incorporated by reference herein in their entireties.
- The present invention relates to a reactive monomer-dispersed silica sol and a production method thereof, and a curable composition containing the reactive monomer-dispersed silica sol and a cured article using the composition.
- The reactive monomer-dispersed silica sol of the present invention is a silica sol in which colloidal silica particles are homogeneously dispersed in a polymerizable organic compound monomer cured by the irradiation of activating energy rays such as ultraviolet (UV) rays, electron beams, γ-rays and X rays, heating, the use of catalysts or the use of curing agents, or the like. Here, curing is referred to as the phenomenon of polymerization or crosslinkage.
- A reactive monomer-dispersed silica sol is ultimately converted into a composite material of colloidal silica particles and a polymer by polymerizing the silica sol to which curing catalysts and other additives are added with UV rays or heat, and the composite material is used in applications such as a hard coating for a transparent plastic plate, a lens, a bottle, a film etc., various sealants and synthetic resin-molded articles. At this time, the colloidal silica particles act as a modifier for the polymer and improve, for example the elasticity modulus, the linear expansion coefficient, the glass transition temperature, the hardness, the flexural strength etc. of the polymer. In addition, when the colloidal silica particles have small particle diameters and are advantageously dispersed in a polymer matrix, the above modifying effects can be obtained without impairing the transparency of the polymer. Typically, it is known that when colloidal silica particles having a primary particle diameter of 50 nm or less are homogeneously dispersed in a polymer matrix, a composite material having high transparency in which the optical loss is extremely small can be obtained.
- As a method for obtaining a reactive monomer-dispersed silica sol, there is known a method including mixing an organic solvent-dispersed silica sol etc. with a reactive monomer and removing at least a part of a solvent such as the organic solvent (refer to Patent Document 1).
- When a reactive monomer-dispersed silica sol is prepared by the method in Patent Document 1, by an action of the solid acidity which the surfaces of the colloidal silica particles have, a polymerization or degradation of the reactive monomer may be caused and the stability of the sol may be impaired. In addition, in a cured article of a curable composition using a reactive monomer-dispersed silica sol, the deterioration, degradation, or the like of the polymer may be caused and a discoloration, a crack, or the like may be generated by an action of the solid acidity of colloidal silica particles.
- Examined Japanese Patent Application Publication No. JP-B-7-35407
- Colloidal silica particles dispersed in a reactive monomer may cause the polymerization, degradation, or the like of the reactive monomer by an action of the solid acidity of the surfaces of the particles and a monomer may be polymerized during a process for producing a monomer-dispersed silica sol, or a monomer is deteriorated with time, so that a stable silica sol may not be obtained. In addition, a polymer of a resin formed article etc. obtained by curing a monomer-dispersed silica sol may be deteriorated, degraded, or the like with time by an action of the solid acidity of colloidal silica particles.
- Therefore, it is an object of the present invention to provide a reactive monomer-dispersed silica sol having high stability by reducing the solid acidity of the surfaces of the colloidal silica particles contained in the reactive monomer-dispersed silica sol, and a production method thereof. It is another object of the present invention to provide a curable composition using the reactive monomer-dispersed silica sol, and a cured article in which the deterioration, the degradation, or the like of the polymer is suppressed.
- The present invention provides: according to a first aspect, a reactive monomer-dispersed silica sol containing a colloidal silica particle in which an alkaline earth metal ion is bonded to a surface of the colloidal silica particle in a ratio of 0.001 to 0.2 pieces per square nanometer (nm2) of the surface area of the colloidal silica particle;
- according to a second aspect, in the reactive monomer-dispersed silica sol according to the first aspect, the alkaline earth metal ion is a calcium ion and/or a magnesium ion;
- according to a third aspect, in the reactive monomer-dispersed silica sol according to the first or second aspect, the reactive monomer in the reactive monomer-dispersed silica sol is at least one type of compound selected from a group consisting of a polymerizable compound having an ethylenic unsaturated bond, a polymerizable compound having an epoxy ring, a polymerizable compound having an oxetane ring and a polymerizable compound having a vinyl ether structure;
- according to a fourth aspect, in the reactive monomer-dispersed silica sol according to any one of the first to third aspects, the surface of the colloidal silica particle is surface-modified by a silane compound capable of forming a covalent bond with a silanol group of the colloidal silica particle;
- according to a fifth aspect, a production method of the reactive monomer-dispersed silica sol according to the first aspect including the following (A) and (B):
- (A): dissolving an alkaline earth metal compound in an organic solvent-dispersed silica sol in an amount in which an alkaline earth metal ion is bonded to the surface of the colloidal silica particle contained in the silica sol in a ratio of 0.001 to 0.2 pieces per square nanometer of the surface area of the colloidal silica particle, so as to bond the alkaline earth metal ion to the surface of the colloidal silica particle; and
- (B): exchanging an organic solvent which is a dispersion medium of the organic solvent-dispersed silica sol obtained in (A) with a reactive monomer;
- according to a sixth aspect, in the production method of a reactive monomer-dispersed silica sol according to the fifth aspect, the alkaline earth metal compound is an organic acid salt and/or alkoxide of calcium or magnesium;
- according to a seventh aspect, in the production method of a reactive monomer-dispersed silica sol according to the fifth aspect, the reactive monomer is at least one type of compound selected from a group consisting of a polymerizable compound having an ethylenic unsaturated bond, a polymerizable compound having an epoxy ring, a polymerizable compound having an oxetane ring and a polymerizable compound having a vinyl ether structure;
- according to an eighth aspect, in the production method of a reactive monomer-dispersed silica sol according to the fifth aspect, further in (A), the colloidal silica particle is surface-modified by adding a silane compound capable of forming a covalent bond with a silanol group of the colloidal silica particle to an organic solvent-dispersed silica sol before and/or after an alkaline earth metal compound is dissolved in the sol;
- according to a ninth aspect, a production method of the reactive monomer-dispersed silica sol as described in the first aspect including the following (A′), (B′) and (C′):
- (A′): dissolving an alkaline earth metal compound in an aqueous silica sol in an amount in which an alkaline earth metal ion is bonded to the surface of the colloidal silica particle contained in the silica sol in a ratio of 0.001 to 0.2 pieces per square nanometer of the surface area of the colloidal silica particle, so as to bond the alkaline earth metal ion to the surface of the colloidal silica particle;
- (B′): exchanging water which is a dispersion medium of the aqueous silica sol obtained in (A′) with an organic solvent to obtain an organic solvent-dispersed silica sol; and
- (C′): exchanging an organic solvent which is a dispersion medium of the organic solvent-dispersed silica sol obtained in (B′) with a reactive monomer;
- according to a tenth aspect, in the production method of a reactive monomer-dispersed silica sol according to the ninth aspect, the alkaline earth metal compound is at least one type of compound selected from a group consisting of calcium hydroxide, magnesium hydroxide, calcium oxide and magnesium oxide;
- according to an eleventh aspect, in the production method of a reactive monomer-dispersed silica sol according to the ninth aspect, the reactive monomer is at least one type of compound selected from a group consisting of a polymerizable compound having an ethylenic unsaturated bond, a polymerizable compound having an epoxy ring, a polymerizable compound having an oxetane ring and a polymerizable compound having a vinyl ether structure;
- according to a twelfth aspect, in the production method of a reactive monomer-dispersed silica sol according to the ninth aspect, the colloidal silica particle is surface-modified, either by adding a silane compound capable of forming a covalent bond with a silanol group of the colloidal silica particle to the aqueous silica sol before and/or after an alkaline earth metal is dissolved in the sol in (A′), or by adding the silane compound to the organic solvent-dispersed silica sol in (B′);
- according to a thirteenth aspect, a production method of the reactive monomer-dispersed silica sol according to the first aspect including the following
- (A′) and (C″):
- (A′): dissolving an alkaline earth metal compound in an aqueous silica sol in an amount in which an alkaline earth metal ion is bonded to the surface of the colloidal silica particle contained in the silica sol in a ratio of 0.001 to 0.2 pieces per square nanometer of the surface area of the colloidal silica particle, so as to bond the alkaline earth metal ion to the surface of the colloidal silica particle; and
- (C″): exchanging water which is a dispersion medium of the aqueous silica sol obtained in (A′) with a reactive monomer;
- according to a fourteenth aspect, in the production method of a reactive monomer-dispersed silica sol according to the thirteenth aspect, the alkaline earth metal compound is at least one type of compound selected from a group consisting of calcium hydroxide, magnesium hydroxide, calcium oxide and magnesium oxide;
- according to a fifteenth aspect, in the production method of a reactive monomer-dispersed silica sol according to the thirteenth aspect, the reactive monomer is at least one type of compound selected from a group consisting of a polymerizable compound having an ethylenic unsaturated bond, a polymerizable compound having an epoxy ring, a polymerizable compound having an oxetane ring and a polymerizable compound having a vinyl ether structure;
- according to a sixteenth aspect, in the production method of a reactive monomer-dispersed silica sol according to the thirteenth aspect, further in (A′), the colloidal silica particle is surface-modified by adding a silane compound capable of forming a covalent bond with a silanol group of the colloidal silica particle to the aqueous silica sol before and/or after an alkaline earth metal compound is dissolved in the sol;
- according to a seventeenth aspect, a curable composition containing the reactive monomer-dispersed silica sol according to any one of the first to fourth aspects and a monomer curing agent; and
- according to an eighteenth aspect, a cured article obtained from the curable composition according to the seventeenth aspect.
- In the reactive monomer-dispersed silica sol of the present invention, an alkaline earth metal ion is bonded to the surface of a colloidal silica particle, so that the solid acidity of the surface of the colloidal silica particle is reduced. Therefore, in the production process of the reactive monomer-dispersed silica sol of the present invention, in comparison with the case where a conventional silica sol in which an alkaline earth metal ion is not bonded to the surface of the colloidal silica particle is used, the polymerization or degradation of a reactive monomer is suppressed and a reactive monomer-dispersed silica sol thus obtained has high dispersion stability and high storage stability. Furthermore, in a cured article using the curable composition of the present invention, the deterioration or degradation of a cured polymer is less likely to occur due to a reduced solid acidity of the surface of the colloidal silica particle.
- Hereinafter, the reactive monomer-dispersed silica sol of the present invention will be described in detail. The reactive monomer-dispersed silica sol of the present invention is a reactive monomer-dispersed silica sol containing colloidal silica particles in which alkaline earth metal ions are bonded to the surfaces of the colloidal silica particles in a ratio of 0.001 to 0.2 pieces per square nanometer of the surface area of the colloidal silica particle.
- The dispersion medium of the reactive monomer-dispersed silica sol of the present invention may be one type of reactive monomer, a mixture of two or more types of reactive monomers, or a mixture of the reactive monomer(s) and an organic solvent. When the dispersion medium is a mixture of the reactive monomer(s) and an organic solvent, the mass ratio of reactive monomer(s) and organic solvent is in a range of 100:0 to 50:50.
- In addition, the silica concentration in the reactive monomer-dispersed silica sol of the present invention is in a range of 5 to 70% by mass.
- The reactive monomer of the present invention is a polymerizable compound having, in the molecule of the monomer, an ethylenic unsaturated bond, a polymerizable compound having an epoxy ring, a polymerizable compound having an oxetane ring, or a polymerizable compound having a vinyl ether structure. In addition, the reactive monomer of the present invention is preferably a compound that is in a liquid form at 50° C.
- Examples of the polymerizable compound having an ethylenic unsaturated bond include unsaturated carboxylic acid compounds such as acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid and phthalic acid. In addition, examples of the polymerizable compound also include unsaturated carboxylic acid ester compounds or unsaturated carboxylic acid amide compounds derived from the above unsaturated carboxylic acid compounds and alcohol compounds or amine compounds, such as acrylate ester compounds, methacrylate ester compounds, itaconate ester compounds, crotonate ester compounds, maleate ester compounds, phthalate ester compounds, acrylamide compounds, methacrylamide compounds, itaconic acid amide compounds, crotonic acid amide compounds, maleic acid amide compounds and phthalic acid amide compounds. Though the alcohol compound is not particularly limited, examples thereof include polyol compounds having 2 to 6 hydroxyl groups, such as ethylene glycol, triethylene glycol, tetraethylene glycol, tris(2-hydroxylethyl) isocyanuric acid, triethanolamine and pentaerythritol. Though the amine compound is not particularly limited, examples thereof include polyamine compounds having 2 to 6 primary or secondary amino groups, such as ethylenediamine, diaminocyclohexane, diaminonaphthalene, 1,4-bis(aminomethyl)cyclohexane, 3,3′,4,4′-tetraaminobiphenyl and tris(2-aminoethyl)amine.
- Specific examples of the polymerizable compound having an ethylenic unsaturated bond include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, nonaethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate, nonapropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 2,2-bis(4-((meth)acryloxydiethoxy)phenyl) propane, 3-phenoxy-2-propanoyl acrylate, 1,6-bis(3-acryloxy-2-hydroxypropyl)-hexyl ether, trimethylolpropane tri(meth)acrylate, glycerol tri(meth)acrylate, tris-(2-hydroxylethyl) isocyanurate ester (meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, tripentaerythritol octa(meth)acrylate, tripentaerythritol hepta(meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 2-norbornylmethyl methacrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2,2-dimethylbutyl acrylate, 2-hydroxybutyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, n-hexyl (meth)acrylate, n-pentyl (meth)acrylate, n-octyl (meth)acrylate, 2-methoxylethyl (meth)acrylate, 2-methoxymethoxyethyl acrylate, 3-pentyl (meth)acrylate, 3-methyl-2-norbornylmethyl methacrylate, 3-methoxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 4-methyl-2-propylpentyl acrylate, 5-norbornen-2-yl-methyl methacrylate, isopropyl (meth)acrylate, n-octadecyl (meth)acrylate, n-nonyl (meth)acrylate, sec-butyl (meth)acrylate, t-pentyl (meth)acrylate, ethyl α-hydroxymethylacrylate, butyl α-hydroxymethylacrylate, methyl α-hydroxymethylacrylate, (meth)acrylic acid, n-stearyl acrylate, isooctyl acrylate, isononyl acrylate, isobornyl (meth)acrylate, ethyl (meth)acrylate, ethylcarbitol acrylate, ethoxyethyl (meth)acrylate, ethoxyethoxyethyl (meth)acrylate, ethoxydiethylene glycol acrylate, cyclohexyl (meth)acrylate, cyclohexylmethyl (meth)acrylate, cyclopentyl acrylate, dicyclopentenyloxyethyl acrylate, cetyl acrylate, tetrahydrofurfuryl (meth)acrylate, phenoxyethyl (meth)acrylate, (meth)acryloyloxyethyl hydrogen phthalate, benzyl (meth)acrylate, methyl (meth)acrylate, methoxyethyl (meth)acrylate, methoxyethoxyethyl (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, lauryl (meth)acrylate, 1,3-butanediol di(meth)acrylate, 1,4-butandiol di(meth)acrylate, 1,6-hexandiol di(meth)acrylate, 1,9-nonandiol di(meth)acrylate, allylated cyclohexyl di(meth)acrylate, glycerin di(meth)acrylate, dicyclopentanyl di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, trimethylolpropane di(meth)acrylate, neopentyl glycol adipate di(meth)acrylate, neopentyl glycol di(meth)acrylate, neopentyl glycol hydroxypivalate ester diacrylate, ethoxylated trimethylolpropane tri(meth)acrylate, glycerinpropoxy tri(meth)acrylate, trimethylolpropane polyethoxy tri(meth)acrylate, propionic acid-modified dipentaerythritol tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, propionic acid-modified dipentaerythritol tetra(meth)acrylate, propoxylated pentaerythritol tetra(meth)acrylate, propionic acid-modified dipentaerythritol penta(meth)acrylate, glycidyl methacrylate, N,N-dimethyl acrylamide, N,N-diethyl acrylamide, vinylbenzene, divinylbenzene, vinyltoluene, styrene, α-methylstyrene and p-methylstyrene. Here, for example ethylene glycol di(meth)acrylate means ethylene glycol diacrylate and ethylene glycol dimethacrylate.
- Examples of the polymerizable compound having an ethylenic unsaturated bond in the present invention also include urethane compounds obtained by a reaction between polyvalent isocyanate compounds and hydroxyalkyl unsaturated carboxylic acid ester compounds, compounds obtained by a reaction between polyvalent epoxy compounds and hydroxyalkyl unsaturated carboxylic acid ester compounds, diallyl ester compounds such as diallyl phthalate, and divinyl compounds such as divinyl phthalate.
- Though the polymerizable compound having an epoxy ring is not particularly limited, compounds having 1 to 6 epoxy ring(s) can be used. Examples of the polymerizable compound include compounds having two or more glycidyl ether structures or glycidyl ester structures which can be produced from compounds having two or more hydroxyl groups or carboxyl groups, such as diol compounds, triol compounds, dicarboxylic acid compounds and tricarboxylic acid compounds, and glycidyl compounds such as epichlorohydrin.
- Specific examples of the polymerizable compound having an epoxy ring include 1,4-butanediol diglycidyl ether, 1,2-epoxy-4-(epoxyethyl)cyclohexane, glycerol triglycidyl ether, diethylene glycol diglycidyl ether, 2,6-diglycidyl phenylglycidyl ether, 1,1,3-tris(p-(2,3-epoxypropoxy)phenyl) propane, 1,2-cyclohexane dicarboxylic acid diglycidyl ester, 4,4′-methylene bis(N,N-diglycidyl aniline), 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, trimethylolethane triglycidyl ether, triglycidyl-p-aminophenol, tetraglycidyl methaxylenediamine, tetraglycidyl diaminodiphenylmethane, tetraglycidyl- 1,3-bisaminomethylcyclohexane, bisphenol A diglycidyl ether, bisphenol S diglycidyl ether, pentaerythritol tetraglycidyl ether, resorcinol diglycidyl ether, diglycidyl phthalate ester, neopentyl glycol diglycidyl ether, polypropylene glycol diglycidyl ether, tetrabromobisphenol A diglycidyl ether, bisphenol hexafluoroacetone diglycidyl ether, pentaerythritol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, tris(2,3-epoxypropyl)isocyanurate, 1-(2,3-di(propionyloxy))-3,5-bis(2,3-epoxypropyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, 1,3-bis(2,3-di(propionyloxy))-5-(2,3-epoxypropyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, monoallyl diglycidyl isocyanurate, diglycerol polydiglycidyl ether, pentaerythritol polyglycidyl ether, 1,4-bis(2,3-epoxypropoxyperfluoroisopropyl)cyclohexane, sorbitol polyglycidyl ether, trimethylolpropane polyglycidyl ether, resorcin diglycidyl ether, 1,6-hexnediol diglycidyl ether, polyethyleneglycol diglycidyl ether, phenyl glycidyl ether, p-tertiarybutylphenyl glycidyl ether, adipic acid diglycidyl ether, o-phthalic acid diglycidyl ether, dibromophenyl glycidyl ether, 1,2,7,8-diepoxyoctane, 1,6-dimethylol perfluorohexane diglycidyl ether, 4,4′-bis(2,3-epoxypropoxyperfluoroisopropyl)diphenyl ether, 2,2-bis(4-glycidyloxyphenyl)propane, 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexane carboxylate, 3,4-epoxycyclohexyloxirane, 2-(3,4-epoxycyclohexyl)-3′,4′-epoxy-1,3-dioxane-5-spirocyclohexane, 1,2-ethylenedioxy-bis(3,4-epoxycyclohexylmethane), 4′,5′-epoxy-2′-methylcyclohexylmethyl-4,5-epoxy-2-methylcyclohexane carboxylate, ethylene glycol-bis(3,4-epoxycyclohexane carboxylate), bis(3,4-epoxycyclohexylmethyl) adipate, and bis(2,3-epoxycyclopentyl)ether.
- Though the polymerizable compound having an oxetane ring is not particularly limited, compounds having 1 to 6 oxetane ring(s) can be used. Examples of the polymerizable compound include 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3-(phenoxymethyl)oxetane, 3,3-diethyloxetane and 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, 1,4-bis(((3-ethyl-3-oxetanyl)methoxy)methyl)benzene, di((3-ethyl-3-oxetanyl)methyl)ether and pentaerythritol tetrakis((3-ethyl-3-oxetanyl)methyl)ether.
- Though the polymerizable compound having a vinylether structure is not particularly limited, compounds having 1 to 6 vinylether structure(s) can be used. Examples of the polymerizable compound include vinyl-2-chloroethyl ether, vinyl-n-butyl ether, 1,4-cyclohexanedimethanol divinyl ether, vinyl glycidyl ether, bis(4-(vinyloxymethyl)cyclohexylmethyl)glutarate, tri(ethylene glycol) divinyl ether, divinyl adipate ester, diethylene glycol divinyl ether, tris(4-(vinyloxy)butyl)trimellitate, bis(4-(vinyloxy)butyl)terephthalate, bis(4-(vinyloxy)butyl)isophthalate, ethylene glycol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether, tetraethylene glycol divinyl ether, neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether, trimethylolethane trivinyl ether, hexanediol divinyl ether, 1,4-cyclohexanediol divinyl ether, tetraethylene glycol divinyl ether, pentaerythritol divinyl ether, pentaerythritol trivinyl ether and cyclohexanedimethanol divinyl ether.
- The silica sol as a raw material in the present invention is an aqueous silica sol produced by a known method using a water glass as a raw material, and an organic solvent-dispersed silica sol which is obtained by exchanging water as a dispersion medium in the aqueous silica sol with an organic solvent.
- The aqueous silica sol is a sol in which colloidal silica particles having a specific surface area of 5.5 to 550 m2/g are stably dispersed and a particle form of the colloidal silica particles may be any particle forms known in the present technology field. The colloidal silica particles have a specific surface area of more preferably 27 to 550 m2/g, most preferably 55 to 550 m2/g. The particle diameter (primary particle diameter) of each of the colloidal silica particles is a diameter of the specific surface area calculated using a specific surface area S (m2/g) obtained by a nitrogen adsorption method (BET method) and according to the equation: D(nm)=2720/S. Therefore, the colloidal silica particles of the present invention have a particle diameter of 5 to 500 nm, more preferably 5 to 100 nm, most preferably 5 to 50 nm. When the colloidal silica particles have a particle diameter of less than 5 nm, the stability of the aqueous silica sol or the organic solvent-dispersed silica sol is lowered and it is difficult to increase the silica concentration, so that the production efficiency of the reactive monomer-dispersed silica sol is extremely lowered, which is not preferred. On the other hand, when the colloidal silica particles have a particle diameter more than 500 nm, the sedimentation property of the colloidal silica particles is large, so that it is difficult to maintain a homogeneous dispersing state of the colloidal silica particles in the aqueous silica sol or the organic solvent-dispersed silica sol and the transparency of the cured article of the present invention is lowered, which is not preferred.
- When there exist alkali metal ions liberated in an aqueous silica sol, the stability of a sol in which an alkaline earth metal compound is added to the aqueous silica sol or a sol in which the medium of the aqueous silica sol has been exchanged with an organic solvent, is lowered. Therefore, as the aqueous silica sol, an acidic silica sol from which alkali metal ions have been removed beforehand is preferred. An acidic aqueous silica sol can be prepared, for example by removing cations such as free alkali metal ions from an alkaline aqueous silica sol by a method such as an ion exchange. In addition, when anions are contained in an acidic aqueous silica sol, it is further preferred to use an acidic aqueous silica sol in which most of or all of the anions have been removed.
- Though the silica concentration of the aqueous silica sol is not particularly limited, it is generally 5 to 70% by mass and an aqueous silica sol having a silica concentration of 10 to 50% by mass is preferably used.
- Examples of the aqueous silica sol used as a raw material include SNOWTEX (registered trademark) OXS (an acidic aqueous silica sol; manufactured by Nissan Chemical Industries, Ltd.), SNOWTEX (registered trademark) OS (an acidic aqueous silica sol; manufactured by Nissan Chemical Industries, Ltd.), SNOWTEX (registered trademark) O (an acidic aqueous silica sol; manufactured by Nissan Chemical Industries, Ltd.), SNOWTEX (registered trademark) O-40 (an acidic aqueous silica sol; manufactured by Nissan Chemical Industries, Ltd.), SNOWTEX (registered trademark) OL (an acidic aqueous silica sol; manufactured by Nissan Chemical Industries, Ltd.) and SNOWTEX (registered trademark) OUP (an acidic aqueous silica sol; manufactured by Nissan Chemical Industries, Ltd.).
- The organic solvent-dispersed silica sol as a raw material in the present invention is obtained by exchanging water as the dispersion medium of the above aqueous silica sol with an organic solvent. The exchange with an organic solvent can be performed by a publicly-known method such as a distillation exchange method and an ultrafiltration method.
- As the dispersion medium of the organic solvent-dispersed silica sol of the present invention, there can be used unpolymerizable organic solvents such as alcohols, ethers, esters, ketones and hydrocarbons.
- Examples of the alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1 -propanol, 2-butanol, 2-methyl-2-propanol, ethylene glycol, glycerin, propylene glycol, triethylene glycol, polyethylene glycol, benzyl alcohol, 1,5-pentanediol and diacetone alcohol.
- Examples of the ethers include diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, ethylene glycol monopropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether and diethylene glycol monobutyl ether.
- Examples of the esters include ethyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethylene glycol monoethyl ether acetate and ethylene glycol monobutyl ether acetate.
- Examples of the ketones include acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, methyl isobutyl ketone, 2-heptanone and cyclohexanone.
- Examples of the hydrocarbons include n-hexane, cyclohexane, benzene, toluene, xylene, solvent naphtha, dichloromethane and trichloroethylene.
- Examples of the other organic solvent include acetonitrile, acetoamide, N,N-dimethylformamide, dimethyl sulfoxide, N,N-dimethylacetoamide and N-methylpyrrolidone.
- These organic solvents may be used individually or in combination of two or more types thereof. In addition, it is preferred that the organic solvent has an excellent compatibility with the reactive monomer used in the present invention, a low reactivity with the reactive monomer and a boiling point lower than that of the reactive monomer.
- If the compatibility of the organic solvent with the reactive monomer is poor, a layer of the organic solvent-dispersed silica sol and a layer of the reactive monomer are separated from each other when the reactive monomer is added to the organic solvent-dispersed silica sol. Thus, the colloidal silica particles are not transferred to the layer of the reactive monomer while exchanging an organic solvent for the dispersion medium with a reactive monomer. As a result, a desired reactive monomer-dispersed silica sol may not be obtained.
- When the reactivity between the organic solvent and the reactive monomer is high, the stability of the obtained reactive monomer-dispersed silica sol may become poor, or a curing failure may occur in the cured article obtained by using the reactive monomer-dispersed silica sol. For example, when the reactive monomer is an epoxy monomer and the dispersion medium of the organic solvent-dispersed silica sol is an alcohol, a ring opening of the epoxy monomer may be caused by the alcohol, and consequently, a curing failure of the final cured article may occur, which is not preferred.
- If the organic solvent has a boiling point higher than that of the reactive monomer, the evaporation of the reactive monomer is preferentially caused while exchanging the organic solvent with the reactive monomer. Thus, the exchange requires a large amount of the reactive monomer, which is not preferred.
- As the organic solvent-dispersed silica sol used as a raw material in the present invention, a commercially available silica sol may be used. Examples of such silica sol include: MA-ST-S (a methanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); MT-ST (a methanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); MA-ST-UP (a methanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); MA-ST-MS (a methanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); MA-ST-L (a methanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); IPA-ST-S (an isopropanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); IPA-ST (an isopropanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); IPA-ST-UP (an isopropanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); IPA-ST-MS (an isopropanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); IPA-ST-L (an isopropanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); IPA-ST-ZL (an isopropanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); NPC-ST-30 (a n-propyl cellosolve-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); PGM-ST (a 1-methoxy-2-propanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); DMAC-ST (a dimethylacetoamide-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); XBA-ST (a solvent mixture of xylene and n-butanol-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); EAC-ST (an ethyl acetate-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); PMA-ST (a propylene glycol monomethyl ether acetate-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); MEK-ST (a methyl ethyl ketone-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); MEK-ST-UP (a methyl ethyl ketone-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); MEK-ST-MS (a methyl ethyl ketone-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); MEK-ST-L (a methyl ethyl ketone-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.); and MIBK-ST (a methyl isobutyl ketone-dispersed silica sol; manufactured by Nissan Chemical Industries, Ltd.).
- Examples of the alkaline earth metal ion to be bonded to the colloidal silica particles in the present invention include a beryllium ion (Be2+), a magnesium ion (Mg2+), calcium ion (Ca2+), a strontium ion (Sr2+), a barium ion (Ba2+) and a radium ion (Ra2+). Among them, a magnesium ion and a calcium ion are preferred in terms of availability and easy handling of compounds thereof.
- In the present invention, as the alkaline earth metal compound added to the aqueous silica sol used as a raw material, it is possible to use oxides, hydroxides and salts (inorganic acid salts such as nitrates, sulfates, phosphates, hydrochlorides and carbonates, and organic acid salts such as carboxylates) of alkaline earth metals. Among them, it is preferable to use hydroxides and oxides of alkaline earth metals, and especially preferable to use calcium hydroxide, magnesium hydroxide, calcium oxide and magnesium oxide, because such compounds are easily handled and contain no unnecessary anions.
- In the present invention, as the alkaline earth metal compound added to the organic solvent-dispersed silica sol used as a raw material, it is possible to use organic acid salts of alkaline earth metals and/or alkaline earth metal alkoxides which are soluble in an organic solvent which is the dispersion medium of the silica sol. Examples of the organic acid salt of alkaline earth metals include calcium methacrylate, magnesium methacrylate, calcium acrylate, magnesium acrylate, calcium acetate, magnesium acetate and calcium lactate. Examples of the alkaline earth metal alkoxide include calcium dimethoxide, calcium methoxyethoxide, calcium diethoxide, calcium methoxyisopropoxide, calcium ethoxyisopropoxide, calcium diisopropoxide, magnesium dimethoxide, magnesium methoxyethoxide, magnesium diethoxide, magnesium ethoxyisopropoxide and magnesium diisopropoxide.
- In the present invention, the amount of the alkaline earth metal ion bonded to colloidal silica particles per square nanometer of the surface area of the colloidal silica particle is preferably 0.001 to 0.2 pieces, more preferably 0.01 to 0.1 pieces. When the amount of the alkaline earth metal ion bonded to colloidal silica particles per square nanometer of the colloidal silica particle is less than 0.001 pieces, a satisfactory effect of reducing the solid acidity cannot be expected. On the other hand, when the amount of the alkaline earth metal ion bonded to colloidal silica particles per square nanometer of the surface area of the surface of the colloidal silica particle is more than 0.2 pieces, the stability of the reactive monomer-dispersed silica sol to be obtained is lowered.
- The amount of the alkaline earth metal ion bonded to colloidal silica particles per square nanometer of the surface area of the colloidal silica particle is calculated from the specific surface area (m2/g) of the colloidal silica particle obtained by the BET method and the additive amount of the alkaline earth metal compound.
- In addition, the colloidal silica particles contained in the reactive monomer-dispersed silica sol of the present invention are preferably surface-modified by a silane compound capable of forming a covalent bond by a reaction of the colloidal silica particles with a silanol group existing in the surface of the colloidal silica particles. By surface-modifying the colloidal silica particles with a silane compound, it is possible to suppress the aggregation of the colloidal silica particles by the alkaline earth metal ion when an alkaline earth metal compound is added to the silica sol. In addition, by this surface-modification, the dispersibility of the colloidal silica particles in the reactive monomer may be enhanced.
- Examples of the silane compound capable of forming a covalent bond by being reacted with a silanol group of the colloidal silica particles include silazane, siloxane, or alkoxysilane, and partial hydrolysates of silazane, siloxane, or alkoxysilane, or oligomers such as a polymerized dimmer to pentamer of silazane, siloxane, or alkoxysilane.
- Examples of the silazane include hexamethyldisilazane and hexaethyldisilazane.
- Examples of the siloxane include hexamethyldisiloxane, 1,3-dibutyltetramethyldisiloxane, 1,3-diphenyltetramethyldisiloxane, 1,3-divinyltetramethyldisiloxane, hexaethyldisiloxane and 3-glycidoxypropylpentamethyldisiloxane.
- Examples of the alkoxysilane include trimethylmethoxysilane, trimethylethoxysilane, trimethylpropoxysilane, phenyldimethylmethoxysilane, chloropropyldimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, ethyltrimethoxysilane, dimethyldiethoxysilane, propyltriethoxysilane, n-butyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltriethoxysilane, n-octylmethyldiethoxysilane, n-octadecyltrimethoxysilane, phenyltrimethoxysilane, phenylmethyldimethoxysilane, phenetyltrimethoxysilane, dodecyltrimethoxysilane, n-octadecyltriethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, γ-methacryloxypropyltrimethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-(methacryloxypropyl)methyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, N-β-(aminoethyl) γ-(aminopropyl)methyldimethoxysilane, N-β-(aminoethyl)γ-(aminopropyl)trimethoxysilane, N-β-(aminoethyl)γ-(aminopropyl)triethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, 3-isocyanatepropyltriethoxysilane, trifluoropropyltrimethoxysilane, heptadecatrifluoropropyltrimethoxysilane, n-decyltrimethoxysilane, dimethoxydiethoxysilane, bis(triethoxysilyl)ethane and hexaethoxydisiloxane.
- These silane compounds may be used individually or in combination of two or more types thereof. In addition, silane compounds having functional groups capable of bonding colloidal silica particles with the polymer while curing the curable composition of the present invention can enhance the properties of the cured article, so that such silane compounds are preferred.
- The additive amount of the silane compounds per square meter of the surface of the colloidal silica particles contained in the silica sol is preferably 0.1 to 20 μmol. When the additive amount of the silane compounds is less than 0.1 μmol/m2, a satisfactory effect of surface modification cannot be obtained. On the other hand, when the additive amount is more than 20 μmol/m2, a large amount of the silane compounds that are not bonded to the colloidal silica particles remains, which is not preferred.
- Hereinafter, the production method of the reactive monomer-dispersed silica sol of the present invention will be described in detail.
- A first method of the production method of the reactive monomer-dispersed silica sol of the present invention includes the following processes (A) and (B):
- (A): dissolving an alkaline earth metal compound in an organic solvent-dispersed silica sol in an amount in which an alkaline earth metal ion is bonded to the surface of the colloidal silica particle contained in the silica sol in a ratio of 0.001 to 0.2 pieces per square nanometer of the surface area of the colloidal silica particle, so as to bond the alkaline earth metal ion to the surface of the colloidal silica particle; and
- (B): exchanging an organic solvent which is a dispersion medium of the organic solvent-dispersed silica sol obtained in the process (A) with a reactive monomer.
- In the process (A), the organic solvent-dispersed silica sol is heated to a temperature ranging from the melting point to boiling point of the organic solvent and while stirring the silica sol, added thereto is an alkaline earth metal compound soluble in the organic solvent in a state of a powder, a solution in water or in an organic solvent, or a slurry. After adding the alkaline earth metal compound, the resultant mixture is thoroughly stirred to dissolve thoroughly the alkaline earth metal compound in the organic solvent-dispersed silica sol. In the process (A), an alkaline earth metal ion is bonded to the surface of the colloidal silica particle. The amount of the alkaline earth metal ion bonded to colloidal silica particles per square nanometer of the surface area of the colloidal silica particles is preferably 0.001 to 0.2 pieces, more preferably 0.01 to 0.1 pieces. The bonded amount of the alkaline earth metal ion per square nanometer of the surface area of the colloidal silica particles is calculated from the specific surface area (m2/g) of the colloidal silica particles obtained by the BET method and the additive amount of the alkaline earth metal compound.
- Next, in the process (B), a reactive monomer is added to the organic solvent-dispersed silica sol containing colloidal silica particles to which an alkaline earth metal ion is bonded which is obtained in the process (A), and while stirring the resultant mixture, at least a part of the organic solvent is distilled off at room temperature or under heating, under a reduced pressure or a normal pressure to obtain a reactive monomer-dispersed silica sol. The condition for exchanging the organic solvent with a reactive monomer may be a condition under which the organic solvent can be distilled off without causing the polymerization or degradation of the reactive monomer, and the exchange may be performed while appropriately controlling the pressure and the liquid temperature in a container used for the exchange. While exchanging the organic solvent with a reactive monomer, all of the necessary amount of the reactive monomer is added to the organic solvent-dispersed silica sol and thereafter, the organic solvent may be distilled off, or while distilling-off the organic solvent in the organic solvent-dispersed silica sol, the exchange may be performed by adding the reactive monomer gradually to the organic solvent-dispersed silica sol. When distilling-off the organic solvent, care should be taken to ensure that gelation does not occur due to an excessively high silica concentration in the silica sol.
- The reactive monomer-dispersed silica sol of the present invention may be prepared by distilling-off most of all of the organic solvent in the organic solvent-dispersed silica sol such that silica particles are dispersed in almost only a reactive monomer, or may be prepared by remaining the organic solvent for the purpose of preventing an increase in the viscosity of the silica sol or the like such that silica particles are dispersed in a mixed dispersion medium of the organic solvent and the reactive monomer. The mass ratio between the reactive monomer and the organic solvent in the mixed dispersion medium is preferably in a range of 100:0 to 50:50.
- A second method of the production method of the reactive monomer-dispersed silica sol of the present invention includes the following processes (A′), (B′) and (C′):
- (A′): dissolving an alkaline earth metal compound in an aqueous silica sol in an amount in which an alkaline earth metal ion is bonded to the surface of the colloidal silica particle contained in the silica sol in a ratio of 0.001 to 0.2 pieces per square nanometer of the surface area of the colloidal silica particle, so as to bond the alkaline earth metal ion to the surface of the colloidal silica particle;
- (B′): exchanging water which is a dispersion medium of the aqueous silica sol obtained in the process (A′) with an organic solvent; and
- (C′): exchanging an organic solvent which is a dispersion medium of the organic solvent-dispersed silica sol obtained in the process (B′) with a reactive monomer.
- The process (A′) is a process for bonding an alkaline earth metal ion to the surface of the colloidal silica particle contained in an aqueous silica sol in a ratio of 0.001 to 0.2 pieces per square nanometer of the surface area of the colloidal silica particle. The liquid temperature of the aqueous silica sol used serving as a raw material is set at 5 to 100° C. and while stirring the silica sol, an alkaline earth metal compound in the state of a powder, an aqueous solution or a slurry as an aqueous dispersion is added to the silica sol. After the alkaline earth metal compound has been added, the resultant mixture is thoroughly stirred to dissolve thoroughly the alkaline earth metal compound in the aqueous silica sol.
- The amount of the alkaline earth metal compound added to the aqueous silica sol is an amount in which a ratio of the alkaline earth metal ion is 0.001 to 0.2 pieces, more preferably 0.01 to 0.1 pieces per square nanometer of the surface area of the colloidal silica particle contained in the sol. When anions are contained in the aqueous silica sol in a large amount or when an alkaline earth metal salt is used as the alkaline earth metal compound, the bonding of the alkaline earth metal ion to the surface of the colloidal silica particle is inhibited depending on the type of the anion contained. Therefore, after the alkaline earth metal compound is added, it is preferred that anions are partially or entirely removed. Examples of the method for removing anions include an ion-exchange method and an ultrafiltration method. By reducing anions or removing the anions entirely, the alkaline earth metal ion is stably bonded to the surface of the colloidal silica particle.
- The process (B′) is a process for exchanging water which is a dispersion medium of the aqueous silica sol obtained in the process (A′) containing colloidal silica particles in which the alkaline earth metal ion is bonded to the surface of the colloidal silica particle in a ratio of 0.001 to 0.2 pieces per square nanometer of the surface area of the colloidal silica particle with an organic solvent. For the exchange with an organic solvent in the aqueous silica sol, any method in publicly-known techniques may be used. Examples of the method include a distillation-exchange method and an ultrafiltration method.
- When the organic solvent is a hydrophobic organic solvent such as methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate or toluene, a method can be applied in which the surface of the colloidal silica particle of the aqueous silica sol is subjected to a hydrophobic treatment and then the dispersion medium is exchanged with a desired solvent. As a method of the hydrophobic treatment, the following methods are known: a method for esterifying a silanol group in the surface of the colloidal silica particle by heating an aqueous silica sol in the coexistence of excessive alcohol (Japanese Patent Application Publication No. JP-A-57-196717); and a method for treating the surface of silica with a silylating agent or a silane coupling agent (Japanese Patent Application Publication Nos. JP-A-58-145614, JP-A-03-187913 and JP-A-11-43319).
- The process (C′) is a process for exchanging an organic solvent which is a dispersion medium of the organic solvent-dispersed silica sol obtained in the process (B′), with a reactive monomer. The method for exchanging an organic solvent with a reactive monomer can be performed in a manner similar to the process (B) in the first method of the production method of the present invention.
- A third method of the production method of the reactive monomer-dispersed silica sol of the present invention includes the following processes (A′) and (C″):
- (A′): dissolving an alkaline earth metal compound in an aqueous silica sol in an amount in which an alkaline earth metal ion is bonded to the surface of the colloidal silica particle contained in the silica sol in a ratio of 0.001 to 0.2 pieces per square nanometer of the surface area of the colloidal silica particle, so as to bond the alkaline earth metal ion to the surface of the colloidal silica particle; and
- (C″): exchanging water which is a dispersion medium of the aqueous silica sol obtained in the process (A′) with a reactive monomer.
- The process (A′) is similar to the process (A′) in the second method of the production method of the reactive monomer-dispersed silica sol of the present invention.
- The process (C″) is a process for exchanging water which is a dispersion medium of the aqueous silica sol obtained in the process (A′) containing colloidal silica particles in which an alkaline earth metal ion is bonded to the surface of the colloidal silica particles in a ratio of 0.001 to 0.2 pieces per square nanometer of the surface area of the colloidal silica particles with a reactive monomer. When the reactive monomer is a water-soluble monomer such as 2-hydroxyethyl (meth)acrylate, the aqueous silica sol can be exchanged with a reactive monomer directly without obtaining an organic solvent-dispersed silica sol. The reactive monomer-dispersed silica sol can be obtained by adding a reactive monomer to the aqueous silica sol obtained in the process (A′) while stirring and heating the sol at 5 to 100° C. under a reduced pressure to distill off water.
- A fourth method of the production method of the reactive monomer-dispersed silica sol of the present invention is a production method of a reactive monomer-dispersed silica sol for surface-modifying colloidal silica particles by adding a silane compound capable of forming a covalent bond with a silanol group of colloidal silica particles to the organic solvent-dispersed silica sol before and/or after dissolving an alkaline earth metal compound in the process (A) of the first method.
- A fifth method of the production method of the reactive monomer-dispersed silica sol of the present invention is a production method of a reactive monomer-dispersed silica sol for surface-modifying colloidal silica particles by adding a silane compound capable of forming a covalent bond with a silanol group of the colloidal silica particles to the aqueous silica sol before and/or after dissolving an alkaline earth metal compound in the process (A′) of the second method, or by adding the silane compound to the organic solvent-dispersed silica sol in the process (B′) of the second method.
- A sixth method of the production method of the reactive monomer-dispersed silica sol of the present invention is a production method of a reactive monomer-dispersed silica sol for surface-modifying colloidal silica particles by adding a silane compound capable of forming a covalent bond with a silanol group of colloidal silica particles to the aqueous silica sol before and/or after dissolving an alkaline earth metal compound in the process (A′) of the third method.
- In the fourth to sixth methods, the silane compound may be added to an aqueous silica sol or an organic solvent-dispersed silica sol either before or after adding an alkaline earth metal compound to the aqueous silica sol or the organic solvent-dispersed silica sol. However, because the addition of silane compound to the silica sol has an effect of suppressing an aggregation of colloidal silica particles by adding an alkaline earth metal ion, it is preferable to add the silane compound before adding the alkaline earth metal compound. While adding the silane compound to the aqueous silica sol or the organic solvent-dispersed silica sol, the aqueous silica sol or the organic solvent-dispersed silica sol is preferably stirred, and the silane compound is preferably added gradually. Though the temperature of the silica sol while adding the silane compound is not particularly limited so long as it is a temperature at which a silanol group of colloidal silica particles and the silane compound can form a covalent bond, the temperature is generally 5° C. to a boiling temperature of the dispersion medium. In addition, after adding the silane compound, the mixture may be aged for around 1 to 10 hours, for sufficiently effecting the reaction between the silanol group of colloidal silica particles and the silane compound. The temperature of the silica sol during the aging is 5° C. to a boiling temperature of the dispersion medium, preferably 20° C. to a boiling temperature of the dispersion medium.
- Since the colloidal silica particles are surface-modified by the silane compound, the aggregation of the colloidal silica particles by the alkaline earth metal ion can be suppressed when adding an alkaline earth metal compound to the silica sol. In addition, the surface modification may enhance the dispersibility of the colloidal silica particles in a reactive monomer.
- Hereinafter, the curable composition containing a reactive monomer-dispersed silica sol and a monomer curing agent, and the cured article thereof of the present invention are described in detail.
- The curable composition of the present invention is obtained by adding a monomer curing agent to the reactive monomer-dispersed silica sol of the present invention. The monomer curing agent in the present invention is a compound generally called as a polymerization initiator, and when the reactive monomer is an epoxy monomer, an epoxy curing agent is also included therein. Examples of the polymerization initiator include: a compound capable of causing a radical polymerization of a reactive monomer by generating an active radical by heating or light irradiation, that is, a radical polymerization initiator; and a compound capable of causing a cationic polymerization of a reactive monomer by generating cation species such as a protonic acid and a carbon cation by heating or light irradiation, that is, a cationic polymerization initiator.
- Examples of the radical polymerization initiator include peroxides, azo compounds, disulfides, sulfinic acids, imidazole compounds, diazo compounds, bisimidazole compounds, N-arylglycin compounds, organic azide compounds, titanocene compounds, aluminate compounds, N-alkoxypyridinium salt compounds and thioxanthone compounds. Specific examples of the peroxide include acetyl peroxide, lauroyl peroxide, benzoyl peroxide, cumenehydro peroxide, di-tertbutyl peroxide, potassium peroxosulfate, ammonium peroxosulfate and hydrogen peroxide. Examples of the azo compounds include 2,2-azobisisobutylonitrile. Examples of the disulfides include tetramethylthiuram disulfide and dibenzoyl disulfide. Examples of the sulfinic acids include p-toluene sulfinic acid. Examples of the azide compounds include p-azide benzaldehyde, p-azide acetophenone, p-azide benzoate, p-azidebenzalacetophenone, 4,4′-diazide chalcone, 4,4′-diazide diphenyl sulfide and 2,6-bis(4′-azide benzal)-4-methylcyclohexanone. Examples of the diazo compounds include 1-diazo-2,5-diethoxy-4-p-tolylmercaptobenzene borofluoride, 1-diazo-4-N,N-dimethylaminobenzene chloride and 1-diazo-4-N,N-diethylaminobenzene borofluoride. Examples of the bisimidazole compounds include 2,2′-bis(o-chlorophenyl)-4,5,4′,5′-tetrakis(3,4,5-trimethoxyphenyl) 1,2′-bisimidazole and 2,2′-bis(o-chlorophenyl)-4,5,4′,5′-tetraphenyl-1,2′-bisimidazole. Examples of the titanocene compounds include dicyclopentadienyl-titanium-dichloride, dicyclopentadienyl-titanium-bisphenyl, dicyclopentadienyl-titanium-bis(2,3,4,5,6-pentafluorophenyl), dicyclopentadienyl-titanium-bis(2,3,5,6-tetrafluorophenyl), dicyclopentadienyl-titanium-bis(2,4,6-trifluorophenyl), dicyclopentadienyl-titanium-bis(2,6-difluorophenyl), dicyclopentadienyl-titanium-bis(2,4-difluorophenyl), bis(methylcyclopentadienyl)-titanium-bis(2,3,4,5,6-pentafluorophenyl), bis(methylcyclopentadienyl)-titanium-bis(2,3,5,6-tetrafluorophenyl), bis(methylcyclopentadienyl)-titanium-bis(2,6-difluorophenyl) and dicyclopentadienyl-titanium-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl).
- Examples of the radical polymerization initiator also include 1,3-di(tert-butyldioxycarbonyl)benzophenone, 3,3′,4,4′-tetrakis(tert-butyldioxycarbonyl)benzophenone, 3-phenyl-5-isooxazolone, 2-mercaptobenzimidazole, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone and 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone.
- Examples of the cationic polymerization initiator include hydrogen acids, sulfonate esters, sulfonimide compounds, disulfonyl diazomethane compounds, dialkyl-4-hydroxysulfonium salts, p-nitrobenzyl arylsulfonate ester, silanol-aluminum complexes and η6-benzene)(η5-cyclopentadienyl) iron (II). Examples of the hydrogen acids include hydrochloric acid, phosphoric acid and sulfuric acid. Examples of the sulfonimide compounds include N-(trifluoromethanesulfonyloxy)succinimide, N-(nonafluoro-n-butanesulfonyloxy)succinimide, N-(camphorsulfonyloxy)succinimide and N-(trifluoromethanesulfonyloxy)naphthalimide. Examples of the disulfonyl diazomethane compounds include bis(trifluoromethylsulfonyl)diazomethane, bis(cyclohexylsufonyl)diazomethane, bis(phenylsulfonyl)diazomethane, bis(p-toluenesulfonyl)diazomethane, bis(2,4-dimethylbenzenesulfonyl)diazomethane and methylsulfonyl-p-toluenesulfonyldiazomethane.
- Examples of the cationic polymerization initiator also include 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropane-1-one.
- In addition, aromatic iodonium salt compounds, aromatic sulfonium salt compounds, aromatic diazonium salt compounds, aromatic phosphonium salt compounds, triazine compounds, iron-arene complex compounds, and the like can be used as both a radical polymerization initiator and a cationic polymerization initiator.
- Examples of the aromatic iodonium salt compounds include diphenyliodoniumhexafluorophosphate, diphenyliodoniumtrifluoromethanesulfonate, diphenyliodoniumnonafluoro-n-butanesulfonate, diphenyliodoniumperfluoro-n-octanesulfonate, diphenyliodoniumcamphorsulfonate, bis(4-tert-butylphenyl)iodoniumcamphorsulfonate and bis(4-tert-butylphenyl) iodoniumtrifluoromethanesulfonate. Examples of the aromatic sulfonium salt compounds include triphenylsulfoniumhexafluoroantimonate, triphenylsulfoniumnonafluoro-n-butanesulfonate, triphenylsulfoniumcamphorsulfonate and triphenylsulfoniumtrifluoromethanesulfonate.
- In the present invention, the above monomer curing agents may be used individually or in combination of two or more types thereof.
- In addition, when the reactive monomer is a compound having an epoxy ring, a monomer curing agent generally called as an epoxy curing agent can be used. The epoxy curing agent is a bifunctional compound easily reacted with an epoxy group or a hydroxyl group, and when the agent is reacted with a compound having at least two epoxy groups, a ring opening and a reaction with a hydroxyl group occur, so that a crosslinkage bond is generated and a resin having a three dimensional structure is produced.
- As the epoxy curing agent, generally used are amines or acid anhydrides, and besides them, phenol resins, urea resins, polyamide resins etc. are also used. Specific examples of the amines include diethylenetriamine, isophoronediamine, diaminodiphenylmethane and diaminodiphenylsulfon; specific examples of the acid anhydride include methylhexahydrophthalic anhydride, 1,2-cyclohexanedicarboxylic anhydride, bicyclo(2.2.1)hepta-5-en-2,3-dicarboxylic anhydride, phthalic anhydride, pyromellitic dianhydride, hexahydrophthalic anhydride, dodecenylsuccinic anhydride, dichloromaleic anhydride, chlorendic anhydride and tetrachlorophthalic anhydride; and specific examples of the phenolic resin include phenolnovolak resins and cresolnovolak resins.
- When the monomer curing agent is a polymerization initiator, the additive amount thereof is usually in a range of about 10 ppm to 20% by mass, based on the amount of the reactive monomer. In addition, when the monomer curing agent is an epoxy curing agent used relative to a reactive monomer having an epoxy ring, usually added is an epoxy curing agent in such an amount that the number of epoxy rings of the epoxy monomer is the same as the number of reactive functional groups of the curing agent.
- In the curable composition of the present invention, as other additives, curing accelerators, fillers, colorants, thixotropic agents, and other reactive monomers or oligomers thereof can be added. When the reactive monomer is an epoxy monomer, examples of the curing accelerator include: imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole; amines such as 2,4,6-tris(dimethylaminomethyl)phenol and benzyldimethylamine; organophosphorus compounds such as triphenylphosphine and tributylphosphine; and quaternary phosphonium salts such as triphenylmonoalkylphosphonium halides represented by triphenylethylphosphonium bromide or the like.
- When a monomer curing agent is added to the reactive monomer-dispersed silica sol obtained according to the present invention, the method of adding the agent is not particularly limited. However, it is preferred that the monomer curing agent is added while stirring the silica sol, in order to homogeneously mix the monomer curing agent in the silica sol. When the dispersion medium of the reactive monomer-dispersed silica sol is a mixed dispersion medium of a reactive monomer and an organic solvent, the curable composition to be obtained contains the organic solvent. However, by subjecting this curable composition to a pressure-reducing treatment or a heating treatment to remove the organic solvent, a curable composition containing no organic solvent may be produced. By these methods, the curable composition of the present invention can be obtained.
- The cured article of the present invention can be obtained by polymerizing the above curable composition by heating or light irradiation. When the curable composition contains an organic solvent, it is preferred that the polymerization is performed after the organic solvent is appropriately removed.
- The shape of the cured article takes various forms according to applications, such as a transparent plastic plate, a lens, a bottle, a thin film like a hard coating film such as a film, various sealants and molded articles.
- 800 g of a methanol-dispersed silica sol (MT-ST; manufactured by Nissan Chemical Industries, Ltd.; particle diameter measured by the BET method: 12 nm, SiO2 concentration: 30% by mass, methanol: 68% by mass, water content: 2% by mass) was charged into a glass reactor having a content volume of 1 L and equipped with a stirrer, and while stirring the sol, 30.4 g of γ-acryloxypropyltrimethoxysilane (trade name: KBM-5103; manufactured by Shin-Etsu Chemical Co., Ltd.) was added to the sol, followed by retaining the resultant mixture at a liquid temperature of 50° C. for 4 hours. While stirring the obtained sol at 50° C., 3.40 g of 5.0% by mass calcium methoxide methanol slurry was added to the sol, and by continuing to stir the resultant mixture for 60 minutes, calcium methoxide was thoroughly dissolved to obtain 835 g of a methanol-dispersed calcium-bonded silica sol. Next, the sol was transferred to an egg plant-shaped flask having a content volume of 2 L, and 560 g of an acrylic monomer (substance name: tetrahydrofurfuryl acrylate; trade name: VISCOAT #150; manufactured by Osaka Organic Chemical Industry Ltd.) was added thereto. Subsequently, while heating the reaction mixture at a water bath temperature of 40° C. under a reduced pressure of 40 hPa, methanol was distilled off by an evaporator to obtain 833 g of a colorless transparent acrylic monomer-dispersed silica sol (SiO2 concentration: 30% by mass, tetrahydrofurfuryl acrylate: 70% by mass, B-type viscosity at 20° C.: 9.8 mPa·s, water content: 0.1% by mass, methanol: 0.2% by mass, Ca ions per square nanometer of the surface area of the surface of the colloidal silica particle: 0.019 pieces). A part of the sol was encapsulated in a glass container and the container was retained in a warm reservoir at 50° C. for one month. Subsequently, the B-type viscosity of the sol at 20° C. was measured and found to be 9.9 mPa·s and the sol was stable. In addition, the appearance of the sol remained in colorless and transparent.
- While stirring 2,346 g of an acidic aqueous silica sol (Snowtex (registered trademark) O; manufactured by Nissan Chemical Industries, Ltd.; particle diameter measured by the BET method: 12 nm, SiO2 concentration: 20% by mass, water: 80% by mass, pH: 2.8) using a disperser at a rotation speed of 1,000 rpm in a polyethylene container having a content volume of 3 L, 0.211 g of calcium hydroxide in a powder form was added to the silica sol, and the calcium hydroxide was dissolved in the silica sol by stirring the resultant mixture at 25° C. for 60 minutes to obtain a calcium-bonded aqueous silica sol. 1,572 g of the sol was charged into a glass reactor having a content volume of 2 L and equipped with a stirrer, a condenser, a thermometer and two inlets. While boiling the sol in the reactor, vapor of methanol generated by another boiler was continuously blown into the silica sol in the reactor to perform the exchange of water with methanol. When the volume of the distillate became 13 L, the exchange was terminated to obtain 1,570 g of a methanol-dispersed calcium-bonded silica sol (SiO2 concentration: 20% by mass, methanol: 78% by mass, water content: 1.5% by mass). Next, 1,200 g of the sol was transferred to an egg plant-shaped flask having a content volume of 3 L, and 32.0 g of γ-methacryloxypropyltrimethoxysilane (trade name: KBM-503; manufactured by Shin-Etsu Chemical Co., Ltd.,) was added thereto, followed by retaining the resultant mixture at a liquid temperature of 50° C. for 4 hours while stirring by a magnetic stirrer. Next, to the mixture, 560 g of an acrylic monomer (substance name: tetrahydrofurfuryl acrylate; trade name: VISCOAT #150; manufactured by Osaka Organic Chemical Industry Ltd.) was added, and thereafter, while heating the reaction mixture at a water bath temperature of 40° C. under a reduced pressure of 40 hPa, methanol was distilled off by an evaporator to obtain 835 g of a colorless transparent acrylic monomer-dispersed silica sol (SiO2 concentration: 30% by mass, tetrahydrofurfuryl acrylate: 70% by mass, B-type viscosity at 20° C.: 11.0 mPa·s, water content: 0.1% by mass, methanol: 0.2% by mass, Ca ions per square nanometer of the surface area of the surface of the colloidal silica particle: 0.016 pieces). A part of the sol was encapsulated in a glass container and the container was retained in a warm reservoir at 50° C. for one month. Subsequently, the B-type viscosity of the sol at 20° C. was measured and found to be 11.2 mPa·s and the sol was stable. In addition, the appearance of the sol remained in colorless and transparent.
- 800 g of a methanol-dispersed silica sol (MT-ST; manufactured by Nissan Chemical Industries, Ltd.; particle diameter measured by the BET method: 12 nm, SiO2 concentration: 30% by mass, methanol: 68% by mass, water content: 2% by mass) was charged into a glass reactor having a content volume of 1 L and equipped with a stirrer, a condenser, a thermometer and two inlets, and while distilling the silica sol under atmospheric pressure with stirring the silica sol and maintaining the liquid level constant, 592 g of acetonitrile was added to the silica sol to obtain an acetonitrile-methanol mixed solvent sol (SiO2 concentration: 30% by mass, methanol concentration: 20% by mass, acetonitrile: 49% by mass, water content: 1% by mass). While thoroughly stirring the sol, 4.0 g of hexamethyldisiloxane was added to the sol and the resultant mixture was heated at 55° C. for 2 hours, followed by further adding 400 g of acetonitrile thereto. Next, 4.37 g of a 5.0% by mass calcium methoxide methanol slurry was added to the sol, and the sol was heated at in a range of 50 to 55° C. for two hours to thoroughly dissolve the calcium methoxide. The obtained sol was transferred to a 2 L egg plant-shaped flask and while distilling off the solvent under a reduced pressure of 450 hPa by a rotary evaporator, 1,395 g of acetonitrile was added to the sol to obtain 803 g of an acetonitrile-dispersed calcium-bonded silica sol (SiO2 concentration: 20.5% by mass, acetonitrile: 79.2% by mass, Ostwald viscosity at 20° C.: 1.2 mPa·s, water content: 0.1% by mass, methanol concentration: 0.2% by mass, Ca ions per square nanometer of the surface area of the surface of the colloidal silica particle: 0.023 pieces). 54.6 g of the sol was transferred to an egg plant-shaped flask having a content volume of 300 mL, and 37.3 g of an epoxy monomer (substance name: 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexane carboxylate; trade name: CELLOXIDE 2021P; manufactured by Daicel Chemical Industries, Ltd.) were added to the sol. By condensing the silica sol by an evaporator while heating at a water bath temperature of 50° C. under a reduced pressure of 100 hPa, acetonitrile was distilled off to obtain 48.5 g of a pale yellow transparent epoxy monomer-dispersed silica sol (SiO2 concentration: 22.9% by mass, acetonitrile: 0.9% by mass, 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexane carboxylate: 76% by mass, B-type viscosity at 40° C.: 1,500 mPa·s). A part of this epoxy monomer-dispersed silica sol was encapsulated in a glass container, and the container was preserved at 50° C. for one month. Then, the B-type viscosity of the silica sol at 40° C. was measured and found to be 1,490 mPa·s, and the silica sol was stable. In addition, there was no change in the appearance color of the sol.
- While stirring 300 g of an acidic aqueous silica sol (Snowtex (registered trademark) O; manufactured by Nissan Chemical Industries, Ltd.; particle diameter measured by the BET method: 12 nm, SiO2 concentration: 20% by mass, water: 80% by mass, pH: 2.8) using a disperser at a rotation speed of 1,000 rpm in a polyethylene container having a content volume of 500 mL, 0.026 g of calcium hydroxide in a powder form was added to the silica sol. By stirring the resultant mixture at 25° C. for 60 minutes, the calcium hydroxide was dissolved to obtain a calcium-bonded aqueous silica sol. The sol was transferred to an egg plant-shaped flask having a content volume of 1 L, and 138.2 g of 2-hydroxyethylmethacrylate (reagent; manufactured by Kanto Chemical Industry Co., Ltd.) was added to the sol. Subsequently, by condensing the silica sol by an evaporator while heating at a water bath temperature of 50° C. under a reduced pressure of 20 hPa, a colorless transparent 2-hydroxyethyl methacrylate-dispersed silica sol (SiO2 concentration: 31% by mass, 2-hydroxyethyl methacrylate: 68% by mass, water content: 1% by mass, B-type viscosity at 20° C.: 28.5 mPa·s, Ca ions per square nanometer of the surface area of the surface of the colloidal silica particle: 0.015 pieces) was obtained. A part of this silica sol was encapsulated in a glass container and the container was retained at 50° C. in a warm reservoir for one month. Then, the B-type viscosity of the silica sol at 20° C. was measured and found to be 28.7 mPa·s, and the silica sol was stable. In addition, the appearance of the silica sol was remained in colorless and transparent.
- The production operation of a silica sol was performed in a similar manner to the operation in Example 1, except that calcium methoxide was not added. Then, in a process for distilling off methanol by an evaporator after adding an acrylic monomer, the viscosity of the sol rapidly increased and a polymerization of the monomer occurred, so that a stable acrylic monomer-dispersed silica sol was not obtained.
- The production operation of a silica sol was performed in a similar manner to the operation in Example 2, except that calcium hydroxide was not added. Then, in a process for distilling off methanol by an evaporator after adding an acrylic monomer, the viscosity of the sol rapidly increased and a polymerization of the monomer occurred, so that a stable acrylic monomer-dispersed silica sol was not obtained.
- The production operation of a silica sol was performed in a similar manner to the operation in Example 3, except that calcium methoxide was not added. Then, in a process for distilling off acetonitrile by an evaporator after adding an epoxy monomer, the viscosity of the sol rapidly increased and a polymerization of the monomer occurred, so that a stable epoxy monomer-dispersed silica sol was not obtained.
- The production operation of a silica sol was performed in a similar manner to the operation in Example 4, except that calcium hydroxide was not added. Then, an orange color transparent 2-hydroxylethyl methacrylate-dispersed silica sol (SiO2 concentration: 31% by mass, 2-hydroxyethyl methacrylate: 68% by mass, water content: 1% by mass, B-type viscosity at 20° C.: 21.4 mPa·s) was obtained. A part of this sol was encapsulated in a glass container and the container was retained in a warm reservoir at 50° C. for one month. Then, the B-type viscosity of the silica sol at 20° C. was measured and found to be 21.5 mPa·s, and the silica sol was stable, however, the appearance of the sol was colored in red.
- The tetrahydrofurfuryl acrylate-dispersed silica sol produced in Example 1, and tetrahydrofurfuryl acrylate and ethoxylated trimethylolpropane triacrylate (trade name: V#360; manufactured by Osaka Organic Chemical Industry Ltd.) were mixed, and then a photopolymerization initiator (trade name: Irgacure 184; manufactured by Ciba Specialty Chemicals Inc) was added to the resultant mixture, followed by dissolving the solid of the mixture by thoroughly stirring the mixture to produce colorless transparent curable compositions 1 to 4 having compositions shown in Table 1.
- These curable compositions were filtered using a chromatodisc (MILLEX-AP; manufactured by Nihon Millipore K.K.; pore diameter: 2.0 μm), and then about 1 mL of each of the filtrates was dropped on a glass substrate having a thickness of 0.7 mm on which an indium tin oxide (ITO) film as a transparent conductive film was formed on the entire surface of the substrate by sputtering. Films were formed by rotating the substrate at a rotation speed of 3,000 rpm for 10 seconds after a preliminary rotation at a rotation speed of 100 rpm for 5 seconds using a spin coater (K359SD-270SPINNER; manufactured by Kyowariken Co., Ltd.). By irradiating light to the formed films using a high pressure mercury lamp (H13100A-1; manufactured by Sen Lights Corporation) for 20 minutes, cured coating films were obtained.
- With respect to the obtained cured coating films on the glass substrates coated with ITO films, the surface hardness was measured according to JIS-K5400 “Pencil hardness test method” (Table 1). The obtained cured coating films exhibited high scratch hardness.
-
TABLE 1 Curable Curable Curable Curable compo- compo- compo- compo- sition 1 sition 2 sition 3 sition 4 Silica (parts by mass) 3.0 1.5 0.75 0 Tetrahydrofurfuryl acrylate 7.0 7.0 7.0 7.0 (parts by mass) Trimethylolpropane 3.0 3.0 3.0 3.0 EO-adduct acrylate (parts by mass) Irgacure 184 (parts by mass) 0.5 0.5 0.5 0.5 Scratch hardness of cured >9H >9H 6H 3H coating film (pencil method) - The reactive monomer-dispersed silica sol of the present invention has a low solid acidity of the surface of the colloidal silica particle, can suppress the deterioration, the degradation etc. of a resin in comparison with a silica sol in which an alkaline earth metal ion is not bonded to the surface of the particle, and can be used as a raw material for a microfiller of a hard coating film or a thin film to be formed on the surface of a synthetic resin molded article such as a lens, a bottle, a film and a transparent plastic plate. In addition, from the curable composition of the present invention, a cured article having high hardness, such as a resin molded article can be obtained.
Claims (12)
1. A reactive monomer-dispersed silica sol containing a colloidal silica particles, in which a number of an alkaline earth metal ion bonded to a surface of the colloidal silica particle is 0.001 to 0.2 pieces per square nanometer (nm2) of the surface area of the colloidal silica particle, the colloidal silica particle having a particle diameter of 5 to 150 nm in a colloidal dispersed state.
2. The reactive monomer-dispersed silica sol according to claim 1 , wherein the alkaline earth metal ion is a calcium ion and/or a magnesium ion.
3. The reactive monomer-dispersed silica sol according to claim 1 , wherein the reactive monomer in the reactive monomer-dispersed silica sol is at least one type of compound selected from a group consisting of a polymerizable compound having an ethylenic unsaturated bond, a polymerizable compound having an epoxy ring, a polymerizable compound having an oxetane ring and a polymerizable compound having a vinyl ether structure.
4. The reactive monomer-dispersed silica sol according to claim 1 , wherein the surface of the colloidal silica particle is surface-modified by a silane compound capable of forming a covalent bond with a silanol group of the colloidal silica particle.
5. A curable composition comprising the reactive monomer-dispersed silica sol according to claim 1 and a monomer curing agent.
6. A cured article obtained from the curable composition according to claim 1 .
7. A reactive monomer-dispersed silica sol containing a colloidal silica particle, in which a number of an alkaline earth metal ion bonded to a surface of the colloidal silica particle is 0.001 to 0.2 pieces per square nanometer (nm2) of the surface area of the colloidal silica particle, wherein the colloidal silica particle is not silica obtained by evaporation of sol.
8. The reactive monomer-dispersed silica sol according to claim 7 , wherein the alkaline earth metal ion is a calcium ion and/or a magnesium ion.
9. The reactive monomer-dispersed silica sol according to claim 7 , wherein the reactive monomer in the reactive monomer-dispersed silica sol is at least one type of compound selected from a group consisting of a polymerizable compound having an ethylenic unsaturated bond, a polymerizable compound having an epoxy ring, a polymerizable compound having an oxetane ring and a polymerizable compound having a vinyl ether structure.
10. The reactive monomer-dispersed silica sol according to claim 7 , wherein the surface of the colloidal silica particle is surface-modified by a silane compound capable of forming a covalent bond with a silanol group of the colloidal silica particle.
11. A curable composition comprising the reactive monomer-dispersed silica sol according to claim 7 and a monomer curing agent.
12. A cured article obtained from the curable composition according to claim 7 .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/064,293 US20110172331A1 (en) | 2007-02-02 | 2011-03-16 | Reactive monomer-dispersed silica sol and production method thereof, and curable composition and cured article thereof |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007-023740 | 2007-02-02 | ||
| JP2007023740 | 2007-02-02 | ||
| PCT/JP2008/051518 WO2008093775A1 (en) | 2007-02-02 | 2008-01-31 | Silica sol having reactive monomer dispersed therein, method for producing the silica sol, curing composition, and cured article produced from the curing composition |
| US44932809A | 2009-08-03 | 2009-08-03 | |
| US13/064,293 US20110172331A1 (en) | 2007-02-02 | 2011-03-16 | Reactive monomer-dispersed silica sol and production method thereof, and curable composition and cured article thereof |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2008/051518 Continuation WO2008093775A1 (en) | 2007-02-02 | 2008-01-31 | Silica sol having reactive monomer dispersed therein, method for producing the silica sol, curing composition, and cured article produced from the curing composition |
| US44932809A Continuation | 2007-02-02 | 2009-08-03 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20110172331A1 true US20110172331A1 (en) | 2011-07-14 |
Family
ID=39674081
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/449,328 Active 2028-04-07 US7999026B2 (en) | 2007-02-02 | 2008-01-31 | Reactive monomer-dispersed silica sol and production method thereof, and curable composition and cured article thereof |
| US13/064,293 Abandoned US20110172331A1 (en) | 2007-02-02 | 2011-03-16 | Reactive monomer-dispersed silica sol and production method thereof, and curable composition and cured article thereof |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/449,328 Active 2028-04-07 US7999026B2 (en) | 2007-02-02 | 2008-01-31 | Reactive monomer-dispersed silica sol and production method thereof, and curable composition and cured article thereof |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US7999026B2 (en) |
| EP (1) | EP2119731A4 (en) |
| JP (1) | JP5376124B2 (en) |
| KR (1) | KR101429318B1 (en) |
| CN (1) | CN101600738B (en) |
| TW (1) | TWI464116B (en) |
| WO (1) | WO2008093775A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10160884B2 (en) | 2015-03-23 | 2018-12-25 | Versum Materials Us, Llc | Metal compound chemically anchored colloidal particles and methods of production and use thereof |
| US11177050B2 (en) | 2016-07-01 | 2021-11-16 | Nissan Chemical Corporation | Method for inhibiting occurrence of creeping electrical discharge |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110281974A1 (en) * | 2008-11-18 | 2011-11-17 | Nissan Chemical Industries, Ltd. | Process for producing composition of polymerizable organic compound containing silica particles |
| JP5484100B2 (en) * | 2009-03-31 | 2014-05-07 | 株式会社アドマテックス | Colloidal silica and method for producing the same |
| JP5916399B2 (en) * | 2012-01-27 | 2016-05-11 | 株式会社タムラ製作所 | UV curable transparent resin composition |
| EP2832690A1 (en) * | 2013-08-02 | 2015-02-04 | EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt | Method for making an aerogel material |
| CN108854871B (en) * | 2017-05-11 | 2021-06-25 | 中国科学院化学研究所 | A kind of cyclic colloid and preparation method thereof |
| CN113247910A (en) * | 2021-06-02 | 2021-08-13 | 厦门宜宏盛硅胶制品有限公司 | Water-resistant aging-resistant silica gel key and preparation process thereof |
| KR102871087B1 (en) * | 2023-11-29 | 2025-10-14 | 닛산 가가쿠 가부시키가이샤 | Silica sol and insulating resin composition dispersed in a nitrogen-containing organic solvent containing an organic acid |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3328339A (en) * | 1963-08-28 | 1967-06-27 | Monsanto Co | Reinforced plastics containing base treated, calcined particulate fillers and organosilane coupling agents |
| US4772660A (en) * | 1985-10-18 | 1988-09-20 | Sumitomo Chemical Company, Limited | Oxide sol using reactive monomer as dispersion medium |
| US5221497A (en) * | 1988-03-16 | 1993-06-22 | Nissan Chemical Industries, Ltd. | Elongated-shaped silica sol and method for preparing the same |
| US6632489B1 (en) * | 1998-09-10 | 2003-10-14 | Nissan Chemical Industries, Ltd. | Moniliform silica sol, process for producing the same, and ink-jet recording medium |
| US20070032560A1 (en) * | 2005-08-02 | 2007-02-08 | Nissan Chemical Industries, Ltd. | Organosol of silica and process for producing same |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS57196717A (en) | 1981-05-25 | 1982-12-02 | Shokubai Kasei Kogyo Kk | Powdered silica dispersible homogeneously in organic solvent and its manufacture |
| JPS58145614A (en) | 1982-02-23 | 1983-08-30 | Shokubai Kasei Kogyo Kk | Powdery silica dispersible uniformly into organic solvent and its preparation |
| JP2803134B2 (en) * | 1988-03-16 | 1998-09-24 | 日産化学工業株式会社 | Elongated silica sol and method for producing the same |
| NO300125B1 (en) * | 1988-03-16 | 1997-04-14 | Nissan Chemical Ind Ltd | Stable liquid silica sol, as well as process for its preparation |
| JPH0764544B2 (en) | 1989-12-15 | 1995-07-12 | 信越化学工業株式会社 | Method for producing silica powder |
| JPH0735407A (en) * | 1993-07-22 | 1995-02-07 | Janome Sewing Mach Co Ltd | Bath warm insulation purifier |
| JP4032503B2 (en) | 1997-05-26 | 2008-01-16 | 日産化学工業株式会社 | Method for producing hydrophobic organosilica sol |
| JP4228578B2 (en) | 2002-02-14 | 2009-02-25 | Dic株式会社 | Purification method of raw materials for liquid crystal display elements |
| JP5270092B2 (en) * | 2004-09-27 | 2013-08-21 | 日本化薬株式会社 | Epoxy resin composition and article |
-
2008
- 2008-01-31 EP EP08704265A patent/EP2119731A4/en not_active Withdrawn
- 2008-01-31 WO PCT/JP2008/051518 patent/WO2008093775A1/en not_active Ceased
- 2008-01-31 US US12/449,328 patent/US7999026B2/en active Active
- 2008-01-31 CN CN2008800033934A patent/CN101600738B/en active Active
- 2008-01-31 KR KR1020097017406A patent/KR101429318B1/en active Active
- 2008-01-31 JP JP2008556172A patent/JP5376124B2/en active Active
- 2008-02-01 TW TW097103980A patent/TWI464116B/en active
-
2011
- 2011-03-16 US US13/064,293 patent/US20110172331A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3328339A (en) * | 1963-08-28 | 1967-06-27 | Monsanto Co | Reinforced plastics containing base treated, calcined particulate fillers and organosilane coupling agents |
| US4772660A (en) * | 1985-10-18 | 1988-09-20 | Sumitomo Chemical Company, Limited | Oxide sol using reactive monomer as dispersion medium |
| US5221497A (en) * | 1988-03-16 | 1993-06-22 | Nissan Chemical Industries, Ltd. | Elongated-shaped silica sol and method for preparing the same |
| US6632489B1 (en) * | 1998-09-10 | 2003-10-14 | Nissan Chemical Industries, Ltd. | Moniliform silica sol, process for producing the same, and ink-jet recording medium |
| US20070032560A1 (en) * | 2005-08-02 | 2007-02-08 | Nissan Chemical Industries, Ltd. | Organosol of silica and process for producing same |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10160884B2 (en) | 2015-03-23 | 2018-12-25 | Versum Materials Us, Llc | Metal compound chemically anchored colloidal particles and methods of production and use thereof |
| US11177050B2 (en) | 2016-07-01 | 2021-11-16 | Nissan Chemical Corporation | Method for inhibiting occurrence of creeping electrical discharge |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2008093775A1 (en) | 2010-05-20 |
| WO2008093775A1 (en) | 2008-08-07 |
| EP2119731A1 (en) | 2009-11-18 |
| KR20090116752A (en) | 2009-11-11 |
| JP5376124B2 (en) | 2013-12-25 |
| CN101600738B (en) | 2012-11-14 |
| CN101600738A (en) | 2009-12-09 |
| TWI464116B (en) | 2014-12-11 |
| US20100029845A1 (en) | 2010-02-04 |
| TW200904751A (en) | 2009-02-01 |
| US7999026B2 (en) | 2011-08-16 |
| KR101429318B1 (en) | 2014-08-11 |
| EP2119731A4 (en) | 2010-03-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7999026B2 (en) | Reactive monomer-dispersed silica sol and production method thereof, and curable composition and cured article thereof | |
| CN105263860B (en) | Ludox and silica containing composition epoxy resin | |
| JP5574111B2 (en) | Process for producing composition of polymerizable organic compound containing silica particles | |
| TWI492899B (en) | A method for producing a silica-alumina alumina sol, a silica-alumina sol, a transparent coating film containing the sol, and a substrate coated with a transparent film | |
| CN106164190B (en) | Coating liquid for forming transparent film and method for producing same, organic resin dispersion sol, substrate with transparent film and method for producing same | |
| US8344039B2 (en) | Three-dimensional pattern forming material | |
| US20100305237A1 (en) | Silica-containing epoxy curing agent and cured epoxy resin product | |
| JP5700903B2 (en) | Base material with hard coat film and coating liquid for forming hard coat film | |
| KR20170030533A (en) | Zirconium oxide, zirconium oxide dispersion liquid, zirconium oxide-containing composition, coating film and display device | |
| WO2012161157A1 (en) | Silica sol dispersed in organic solvent | |
| KR100953667B1 (en) | Polycarbonate resin composition for plastic substrates and polycarbonate film using the same | |
| CN102822731A (en) | Cationic curing liquid crystal sealant and liquid crystal display element | |
| JP6450531B2 (en) | Manufacturing method of substrate with antireflection film | |
| KR20180132366A (en) | Solventless photocurable organic-inorganic hybrid insulation materials |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |