[go: up one dir, main page]

US20110144393A1 - Production of butanediol by anaerobic microbial fermentation - Google Patents

Production of butanediol by anaerobic microbial fermentation Download PDF

Info

Publication number
US20110144393A1
US20110144393A1 US12/997,063 US99706309A US2011144393A1 US 20110144393 A1 US20110144393 A1 US 20110144393A1 US 99706309 A US99706309 A US 99706309A US 2011144393 A1 US2011144393 A1 US 2011144393A1
Authority
US
United States
Prior art keywords
butanediol
substrate
mmol
fermentation
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/997,063
Inventor
Sean Dennis Simpson
Phuong Loan Tran
Christophe Daniel Mihalcea
Jennifer Mon Yee Fung
Fungmin Liew
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Venture lending and Leasing VI Inc
Lanzatech NZ Inc
Original Assignee
Lanzatech New Zealand Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzatech New Zealand Ltd filed Critical Lanzatech New Zealand Ltd
Priority to US12/997,063 priority Critical patent/US20110144393A1/en
Assigned to LANZATECH NEW ZEALAND LIMITED reassignment LANZATECH NEW ZEALAND LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUNG, JENNIFER MON YEE, LIEW, FUNGMIN, MIHALCEA, CHRISTOPHE DANIEL, SIMPSON, SEAN DENNIS, TRAN, PHUONG LOAN
Publication of US20110144393A1 publication Critical patent/US20110144393A1/en
Assigned to VENTURE LENDING & LEASING VI, INC. reassignment VENTURE LENDING & LEASING VI, INC. SECURITY AGREEMENT Assignors: LANZATECH FREEDOM PINES BIOREFINERY LLC, LANZATECH HONG KONG LIMITED, LANZATECH NEW ZEALAND LIMITED, LANZATECH PRIVATE LIMITED, LANZATECH, INC.
Priority to US13/777,806 priority patent/US8658408B2/en
Assigned to LANZATECH NEW ZEALAND, LANZATECH HONG KONG LIMITED, LANZATECH PRIVATE LIMITED, LANZATECH, INC., LANZATECH FREEDOM PINES BIOREFINERY LLC reassignment LANZATECH NEW ZEALAND RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: VENTURE LENDING & LEASING VI, INC.
Assigned to LANZATECH NZ, INC. reassignment LANZATECH NZ, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: LANZATECH NEW ZEALAND LIMITED
Assigned to VENTURE LENDING & LEASING VI, INC. reassignment VENTURE LENDING & LEASING VI, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE THE U.S. APPLICATION NUMBER 13497,969 PREVIOUSLY RECORD PREVIOUSLY RECORDED AT REEL: 028991 FRAME: 0471. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: LANZATECH PRIVATE LIMITED, LANZATECH FREEDOM PINES BIOREFINERY LLC, LANZATECH HONG KONG LIMITED, LANZATECH NEW ZEALAND LIMITED, LANZATECH, INC.
Assigned to LANZATECH FREEDOM PINES BIOREFINERY LLC, LANZATECH HONG KONG LIMITED, LANZATECH, INC., LANZATECH PRIVATE LIMITED, LANZATECH NEW ZEALAND reassignment LANZATECH FREEDOM PINES BIOREFINERY LLC CORRECTIVE ASSIGNMENT TO CORRECT THE THE APPPLICATION 13467969 PREVIOUSLY RECORDED AT REEL: 042051 FRAME: 0377. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: VENTURE LENDING & LEASING VI, INC.
Assigned to LANZATECH NZ, INC. reassignment LANZATECH NZ, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE U.S. PATENT NUMBER 8,979,228 PREVIOUSLY RECORDED AT REEL: 059911 FRAME: 0400. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: LANZATECH NEW ZEALAND LIMITED
Assigned to LANZATECH NZ INC. reassignment LANZATECH NZ INC. CORRECTIVE ASSIGNMENT TO CORRECT THE THE PATENT NUMBE 9,5348,20 PREVIOUSLY RECORDED AT REEL: 059911 FRAME: 0400. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: LANZATECH NEW ZEALAND LIMITED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to the production of butanediol by microbial fermentation, particularly to production of 2,3-butanediol by microbial fermentation of substrates comprising CO.
  • Biofuels for transportation are attractive replacements for gasoline and are rapidly penetrating fuel markets as low concentration blends.
  • Biofuels derived from natural plant sources, are more environmentally sustainable than those derived from fossil resources (such as gasoline), their use allowing a reduction in the levels of so-called fossil carbon dioxide (CO 2 ) gas that is released into the atmosphere as a result of fuel combustion.
  • CO 2 fossil carbon dioxide
  • biofuels can be produced locally in many geographies, and can act to reduce dependence on imported fossil energy resources.
  • Alcohols suitable for use as biofuels include ethanol, butanol and 2,3-butanediol.
  • Ethanol is rapidly becoming a major hydrogen-rich liquid transport fuel around the world.
  • Worldwide consumption of ethanol in 2002 was an estimated 10.8 billion gallons.
  • the global market for the fuel ethanol industry is also predicted to grow sharply in future, due to an increased interest in ethanol in Europe, Japan, the USA and several developing nations.
  • butanediols including 1,2-butanediol, 1,3-butanediol, 1,4-butanediol and 2,3-butanediol may be considered to have a variety of advantages over ethanol. Like ethanol, butanediols may be used directly as an automotive fuel additive. They may also be relatively easily transformed into a number of other potentially higher value and/or higher energy products. For example, 2,3-butanediol may be readily converted in a two step process into an eight-carbon dimer which can be used as aviation fuel.
  • 2,3-Butanediol derives its versatility from its di-functional backbone, i.e., 2 hydroxyl groups are located at vicinal C-atoms allowing the molecule to be transformed quite easily into substances such as butadiene, butadione, acetoin, methylethyl ketone etc. These chemical compounds are used as base molecules to manufacture a vast range of industrially produced chemicals.
  • 2,3-butanediol may be used as a fuel in an internal combustion engine. It is in several ways more similar to gasoline than it is to ethanol. As the interest in the production and application of environmentally sustainable fuels has strengthened, interest in biological processes to produce 2,3-butanediol (often referred to as bio-butanol) has increased.
  • 2,3-Butanediol can be produced by microbial fermentation of carbohydrate containing feedstock (Syu M J, Appl Microbial Biotechnol 55:10-18 (2001), Qin et al., Chinese J Chem Eng 14(1):132-136 (2006)).
  • 2,3-Butanediol may also be produced by microbial fermentation of biomass from crops such as sugar beet, corn, wheat and sugarcane.
  • crops such as sugar beet, corn, wheat and sugarcane.
  • the cost of these carbohydrate feed stocks is influenced by their value as human food or animal feed and the cultivation of starch or sucrose-producing crops for 2,3-butanediol production is not economically sustainable in all geographies. Therefore, it is of interest to develop technologies to convert lower cost and/or more abundant carbon resources into 2,3-butanediol.
  • Carbon Monoxide is a major by-product of the incomplete combustion of organic materials such as coal or oil and oil derived products. Although the complete combustion of carbon containing precursors yields CO2 and water as the only end products, some industrial processes need elevated temperatures favouring the build up of carbon monoxide over CO2.
  • One example is the steel industry, where high temperatures are needed to generate desired steel qualities. For example, the steel industry in Australia is reported to produce and release into the atmosphere over 500,000 tonnes of CO annually.
  • syngas is also a major component of syngas, where varying amounts of CO and H2 are generated by gasification of a carbon-containing fuel.
  • syngas may be produced by cracking the organic biomass of waste woods and timber to generate precursors for the production of fuels and more complex chemicals.
  • CO is a reactive energy rich molecule, it can be used as a precursor compound for the production of a variety of chemicals. However, this valuable feedstock has not been utilised to produce 2,3-butanediol.
  • the invention provides a method of producing butanediol by microbial fermentation of a substrate comprising carbon monoxide.
  • the invention provides a method of producing butanediol by microbial fermentation, the method including:
  • the butanediol is 2,3-butanediol.
  • the invention provides a method of increasing efficiency of 2,3-butanediol production by fermentation, the method including:
  • a method of producing 2,3-butanediol by microbial fermentation including:
  • the substrate comprises CO.
  • the substrate comprising carbon monoxide is a gaseous substrate comprising carbon monoxide.
  • the gaseous substrate comprising carbon monoxide can be obtained as a by-product of an industrial process.
  • the industrial process is selected from the group consisting of ferrous metal products manufacturing, non-ferrous products manufacturing, petroleum refining processes, gasification of biomass, gasification of coal, electric power production, carbon black production, ammonia production, methanol production and coke manufacturing.
  • the gaseous substrate comprises a gas obtained from a steel mill.
  • the gaseous substrate comprises automobile exhaust fumes.
  • the CO-containing substrate typically contains a major proportion of CO, such as at least about 20% to about 100% CO by volume, from 40% to 95% CO by volume, from 40% to 60% CO by volume, and from 45% to 55% CO by volume.
  • the substrate comprises about 25%, or about 30%, or about 35%, or about 40%, or about 45%, or about 50% CO, or about 55% CO, or about 60% CO by volume.
  • Substrates having lower concentrations of CO, such as 6%, may also be appropriate, particularly when H 2 and CO 2 are also present.
  • the substrate comprising CO is provided at a sufficient level, such that 2,3-butanediol is produced.
  • CO is provided such that a specific uptake rate of at least 0.4 mmol/g/min; or at least 0.5 mmol/g/min; or at least 0.6 mmol/g/min; or at least 0.7 mmol/g/min; or at least 0.8 mmol/g/min; or at least 0.9 mmol/g/min; or at least 1.0 mmol/g/min; or at least 1.2 mmol/g/min; or at least 1.5 mmol/g/min is maintained.
  • the method comprises microbial fermentation using Clostridium autoethanogenum.
  • the invention provides a method of producing 2,3-butanediol by microbial fermentation, the method including:
  • the substrate is one or more carbohydrates such as fructose.
  • the substrate is a substrate comprising carbon monoxide, typically a gaseous substrate comprising carbon monoxide, as herein before described
  • the invention provides a method for producing butanediol by microbial fermentation of a first substrate and a second substrate comprising CO.
  • the butanediol is 2,3-butanediol.
  • the first substrate is a carbohydrate.
  • the first substrate is fructose.
  • the second substrate is a gaseous substrate comprising carbon monoxide, as herein before described.
  • the method includes the steps of:
  • steps (a) and (b) may be conducted at the same time.
  • step (a) may substantially precede or follow step (b).
  • the method may alternate between step (a) and step (b).
  • butanediol preferably 2,3-butanediol, produced by the methods of any of the previous aspects.
  • the invention may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, in any or all combinations of two or more of said parts, elements or features, and where specific integers are mentioned herein which have known equivalents in the art to which the invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth.
  • butanediol refers to all structural isomers of the diol including 1,2-butanediol, 1,3-butanediol, 1,4-butanediol and 2,3-butanediol and stereoisomers thereof.
  • 2,3-butanediol should be interpreted to include all enantiomeric and diastereomeric forms of the compound, including (R,R), (S,S) and meso forms, in racemic, partially stereoisomerically pure and/or substantially stereoisomerically pure forms.
  • bioreactor includes a fermentation device consisting of one or more vessels and/or towers or piping arrangement, which includes the Continuous Stirred Tank Reactor (CSTR), Immobilized Cell Reactor (ICR), Trickle Bed Reactor (TBR), Bubble Column, Gas Lift Fermenter, Static Mixer, or other vessel or other device suitable for gas-liquid contact.
  • CSTR Continuous Stirred Tank Reactor
  • ICR Immobilized Cell Reactor
  • TBR Trickle Bed Reactor
  • Bubble Column Gas Lift Fermenter
  • Static Mixer Static Mixer
  • substrate comprising carbon monoxide and like terms should be understood to include any substrate in which carbon monoxide is available to one or more strains of bacteria for growth and/or fermentation, for example.
  • Gaseous substrates comprising carbon monoxide include any gas which contains a level of carbon monoxide.
  • the gaseous substrate will typically contain a major proportion of CO, preferably at least about 15% to about 95% CO by volume.
  • 2,3-butanediol can be produced by microbial fermentation using Clostridium autoethanogenum . They have found that fermentation products include a variety of alcohols, whereby ethanol and 2,3-butanediol are significant substituents. 2,3-Butanediol has not been previously identified as a fermentation product using Clostridium autoethanogenum . In particular, the inventors have determined that Clostridium autoethanogenum can be used to produce 2,3-butanediol and other products from a substrate comprising carbohydrate. In particular, fructose can be converted into products including acetate, ethanol and 2,3-butanediol.
  • 2,3-butanediol can be produced by Clostridium autoethanogenum from substrates comprising CO, particularly gaseous substrates comprising CO.
  • a gaseous carbon source particularly a source including CO
  • fermentation processes has not previously resulted in the production of 2,3-butanediol.
  • the efficiency of 2,3-butanediol production can be increased by providing the substrate at a sufficient level such that 2,3-butanediol is produced. It has been recognised that increasing the amount of substrate provided to a microbial culture, increases the amount of 2,3-butanediol produced by the culture.
  • the substrate comprising CO is provided at a sufficient level such that 2,3-butanediol is produced. It has been shown that a microbial culture comprising C. autoethanogenum can uptake CO at a rate up to approximately 1.5 to 2 mmol/gram dry weight microbial cells/minute (specific CO uptake). In particular embodiments of the invention, a substrate comprising CO is provided to the microbial culture comprising C.
  • 2,3-butanediol is a significant fermentation product of at least 0.5 g/L; or at least 1 g/L; or at least 2 g/L; or at least 5 g/L. In particular embodiments, 2,3-butanediol is produced at a rate of at least 0.5 g/L/day; or at least 1 g/L/day.
  • apparatus used for conducting methods of the invention enable measurement and/or control of parameters such as CO supply, CO uptake, biomass level, 2,3-butanediol production.
  • parameters such as CO supply, CO uptake, biomass level, 2,3-butanediol production.
  • samples can be taken from a bioreactor to determine one or more of the above parameters and the bioreactor conditions optionally adjusted to improve 2,3-butanediol production.
  • the CO supply can be increased such that 2,3-butanediol is produced.
  • 2,3-butanediol can be produced, particularly where CO is provided such that specific CO uptake rates of at least 0.4 mmol/g/min; or at least 0.5 mmol/g/min; or at least 0.6 mmol/g/min; or at least 0.7 mmol/g/min; or at least 0.8 mmol/g/min; or at least 0.9 mmol/g/min; or at least 1.0 mmol/g/min; or at least 1.2 mmol/g/min; or at least 1.5 mmol/g/min are maintained.
  • C. autoethanogenum a-acetolactate synthase (ALS), ⁇ -acetolactate decarboxylase (ALDC) and 2,3-butanediol dehydrogenase (2,3BDH).
  • ALS a-acetolactate synthase
  • ADC ⁇ -acetolactate decarboxylase
  • 2,3BDH 2,3-butanediol dehydrogenase gene (ORF 1283) of C. autoethanogenum (strain deposited at DSMZ under the accession number 19630) shows strong homology to the 2,3BDH of Clostridium novyi (NT01CX — 0344) with amino acid identities of 73% (262/357) and positives of 84% (300/357).
  • 2,3-butanediol is produced from pyruvate (an intermediate in anabolism produced from acetyl CoA) as follows:
  • 2,3-butanediol dehydrogenase can be upregulated in accordance with the methods of the invention. For example, where CO is supplied at sufficient levels, 2,3-butanediol dehydrogenase is upregulated.
  • the specific CO uptake by the microbial culture is at least 0.4 mmol/g/min; or at least 0.5 mmol/g/min; or at least 0.6 mmol/g/min; or at least 0.7 mmol/g/min; or at least 0.8 mmol/g/min; or at least 0.9 mmol/g/min; or at least 1.0 mmol/g/min; or at least 1.2 mmol/g/min; or at least 1.5 mmol/g/min; 2,3-butanediol dehydrogenase is upregulated.
  • the invention provides a method of producing 2,3-butanediol by microbial fermentation of a substrate by upregulation of 2,3-butanediol dehydrogenase.
  • substrates such as a carbohydrate substrate and a gaseous substrate comprising CO
  • substrates can be switched during microbial production of 2,3-butanediol, without deleterious effect.
  • substrates could be alternated, for example when one substrate is unavailable, and would continue to produce 2,3-butanediol.
  • 2,3-butanediol is produced by microbial fermentation of a substrate comprising carbohydrate.
  • a substrate comprising carbon monoxide preferably a gaseous substrate comprising CO, is converted into various products including 2,3-butanediol, by Clostridium autoethanogenum.
  • a first substrate comprising carbohydrate (preferably fructose) may be used in initial stages of the fermentation reaction and following complete consumption of the substrate, the substrate can be switched to a second substrate comprising CO.
  • carbohydrate preferably fructose
  • the inventors have surprisingly determined that 2,3-butanediol is produced in the initial stages where the first substrate comprising carbohydrate is the sole carbon source and is also produced in the latter stages where the substrate comprising CO is the sole carbon source.
  • 2,3-butanediol is produced under a variety of conditions, including media containing alternative buffer solutions such as acetate buffer and citrate buffer.
  • media containing alternative buffer solutions such as acetate buffer and citrate buffer.
  • the inventors also submit that in embodiments where the pH is uncontrolled and may be variable, 2,3-butanediol is still produced. Examples of media suitable for carrying out the desired fermentation are described in the examples section hereinafter.
  • the inventors contemplate that the 2,3-butanediol produced in such processes may be readily recovered using separation techniques known in the art. Furthermore, the 2,3-butanediol may be readily converted into substances such as butadiene, butadione, acetoin, methylethyl ketone and the like. Such chemical compounds are valuable base molecules used to manufacture a significant percentage of all chemical industry products. Therefore, the inventors contemplate that the 2,3-butanediol produced in the processes disclosed herein may be used in the manufacture of a wide range of well known industrial products.
  • the invention provides a method for the production of butanediol by microbial fermentation.
  • the method comprises at least the step of anaerobically fermenting a substrate comprising CO, preferably a gaseous substrate comprising CO, to obtain 2,3-butanediol.
  • the method includes the steps of:
  • the invention provides a method of increasing efficiency of 2,3-butanediol production by fermentation, the method including:
  • the substrate comprising CO is provided at a level sufficient to produce significant amounts of 2,3-butanediol, such as at least 0.5 g/L of fermentation media, or at least 1 g/L, or at least 2 g/L, or at least 5 g/L.
  • CO is provided at a level sufficient to produce 2,3-butanediol at a rate of at least 0.5 g/L/day; or at least 1 g/L/day.
  • CO is provided such that a specific uptake rate of at least 0.4 mmol/g/min; or at least 0.5 mmol/g/min; or at least 0.6 mmol/g/min; or at least 0.7 mmol/g/min; or at least 0.8 mmol/g/min; or at least 0.9 mmol/g/min; or at least 1.0 mmol/g/min; or at least 1.2 mmol/g/min; or at least 1.5 mmol/g/min is maintained.
  • a specific uptake rate of at least 0.4 mmol/g/min; or at least 0.5 mmol/g/min; or at least 0.6 mmol/g/min; or at least 0.7 mmol/g/min; or at least 0.8 mmol/g/min; or at least 0.9 mmol/g/min; or at least 1.0 mmol/g/min; or at least 1.2 mmol/g/min; or at least 1.5 mmol/g/min is maintained
  • gas hold-up in a fermentation media will increase the amount of CO available for conversion to products by the microbial culture.
  • Gas hold-up can typically be increased by mechanical means, such as increasing agitation in a CSTR.
  • supplying CO at a faster rate or a higher partial pressure will also increase the CO availability in a fermentation broth.
  • the method involves fermentation of a substrate comprising carbohydrate by Clostridium autoethanogenum to produce butanediol, preferably, 2,3-butanediol.
  • the method includes the steps of:
  • the first substrate is carbohydrate and in some embodiments, the substrate is fructose.
  • the second substrate is a gaseous substrate comprising CO.
  • steps (a) and (b) may be conducted at the same time.
  • step (a) may substantially precede or follow step (b).
  • the method may alternate between step (a) and step (b).
  • the method further includes the step of capturing or recovering the 2,3-butanediol produced.
  • the one or more micro-organisms used in the fermentation is Clostridium autoethanogenum .
  • the Clostridium autoethanogenum is a Clostridium autoethanogenum having the identifying characteristics of the strain deposited at the German Resource Centre for Biological Material (DSMZ) under the identifying deposit number 19630.
  • the Clostridium autoethanogenum is a Clostridium autoethanogenum having the identifying characteristics of DSMZ deposit number DSMZ 10061.
  • Culturing of the bacteria used in a method of the invention may be conducted using any number of processes known in the art for culturing and fermenting substrates using anaerobic bacteria. Exemplary techniques are provided in the “Examples” section of this document. By way of further example, those processes generally described in the following articles using gaseous substrates for fermentation may be utilised: K. T. Klasson, M. D. Ackerson, E. C. Clausen and J. L. Gaddy (1991). Bioreactors for synthesis gas fermentations resources. Conservation and Recycling, 5; 145-165; K. T. Klasson, M. D. Ackerson, E. C. Clausen and J. L. Gaddy (1991). Bioreactor design for synthesis gas fermentations. Fuel.
  • 2,3-butanediol is produced by microbial fermentation of a substrate comprising carbohydrate using Clostridium autoethanogenum .
  • suitable substrates may include, but are not limited to, monosaccharides such as glucose and fructose, oligosaccharides such as sucrose or lactose, polysaccharides, such as cellulose or starch.
  • monosaccharides such as glucose and fructose
  • oligosaccharides such as sucrose or lactose
  • polysaccharides such as cellulose or starch.
  • preferred carbohydrate substrates are fructose and sucrose (and mixtures thereof).
  • fermentable sugars may be obtained from cellulosic and lignocellulosic biomass through processes of pre-treatment and saccharification, as described, for example, in US20070031918.
  • Biomass refers to any cellulose or lignocellulosic material and includes materials comprising cellulose, and optionally further comprising hemicellulose, lignin, starch, oligosaccharides and/or monosaccharides.
  • Biomass includes, but is not limited to bioenergy crops, agricultural residues, municipal solid waste, industrial solid waste, sludge from paper manufacture, yard waste, wood and forestry waste. However, in exemplary embodiments of the invention commercially available fructose is used as the carbon and energy source for the fermentation.
  • a substrate comprising carbon monoxide preferably a gaseous substrate comprising carbon monoxide is used in the methods of the invention.
  • the gaseous substrate may be a waste gas obtained as a by-product of an industrial process, or from some other source such as from combustion engine (for example automobile) exhaust fumes.
  • the industrial process is selected from the group consisting of ferrous metal products manufacturing, such as a steel mill, non-ferrous products manufacturing, petroleum refining processes, gasification of coal, electric power production, carbon black production, ammonia production, methanol production and coke manufacturing.
  • the CO-containing gas may be captured from the industrial process before it is emitted into the atmosphere, using any convenient method.
  • the gaseous substrate may also be desirable to treat it to remove any undesired impurities, such as dust particles before introducing it to the fermentation.
  • the gaseous substrate may be filtered or scrubbed using known methods.
  • the gaseous substrate comprising carbon monoxide may be sourced from the gasification of biomass.
  • the process of gasification involves partial combustion of biomass in a restricted supply of air or oxygen.
  • the resultant gas typically comprises mainly CO and H 2 , with minimal volumes of CO 2 , methane, ethylene and ethane.
  • biomass by-products obtained during the extraction and processing of foodstuffs such as sugar from sugarcane, or starch from maize or grains, or non-food biomass waste generated by the forestry industry may be gasified to produce a CO-containing gas suitable for use in the present invention.
  • the CO-containing substrate will typically contain a major proportion of CO, such as at least about 20% to about 100% CO by volume, from 40% to 95% CO by volume, from 40% to 60% CO by volume, and from 45% to 55% CO by volume.
  • the substrate comprises about 25%, or about 30%, or about 35%, or about 40%, or about 45%, or about 50% CO, or about 55% CO, or about 60% CO by volume.
  • Substrates having lower concentrations of CO, such as 6%, may also be appropriate, particularly when H 2 and CO 2 are also present.
  • CO is supplied at a level sufficient for 2,3-butanediol production to occur.
  • CO is provided such that a specific uptake rate of at least 0.4 mmol/g/min; or at least 0.5 mmol/g/min; or at least 0.6 mmol/g/min; or at least 0.7 mmol/g/min; or at least 0.8 mmol/g/min; or at least 0.9 mmol/g/min; or at least 1.0 mmol/g/min; or at least 1.2 mmol/g/min; or at least 1.5 mmol/g/min is maintained.
  • Those skilled in the art will appreciate methods of supplying CO, particularly gaseous CO, such that the required uptake rate is achieved.
  • gas hold-up in a fermentation media will increase the amount of CO available for conversion to products by the microbial culture.
  • gas hold-up is typically increased by mechanical means such as increasing agitation in a CSTR.
  • supplying CO at a faster rate or a higher partial pressure will also increase the CO availability in a fermentation broth.
  • the gaseous substrate may also contain some CO 2 for example, such as about 1% to about 80% by volume, or 1% to about 30% by volume. In one embodiment it contains about 5% to about 10% by volume. In another embodiment the gaseous substrate contains approximately 20% CO 2 by volume.
  • the carbon monoxide will be added to the fermentation reaction in a gaseous state.
  • the invention should not be considered to be limited to addition of the substrate in this state.
  • the carbon monoxide could be provided in a liquid.
  • a liquid may be saturated with a carbon monoxide containing gas and then that liquid added to a bioreactor. This may be achieved using standard methodology.
  • a microbubble dispersion generator Hensirisak et. al. Scale-up of microbubble dispersion generator for aerobic fermentation; Applied Biochemistry and Biotechnology Volume 101, Number 3/October, 2002
  • a microbubble dispersion generator Heensirisak et. al. Scale-up of microbubble dispersion generator for aerobic fermentation; Applied Biochemistry and Biotechnology Volume 101, Number 3/October, 2002
  • 2,3-butanediol can be produced by fermentation of a first substrate and a second substrate.
  • 2,3-butanediol will be produced when a first substrate, for example a carbohydrate such as fructose and a second substrate, preferably a substrate comprising CO, are provided.
  • the inventors have determined that 2,3-butanediol will be produced by a first substrate and on complete consumption, the first substrate may be replaced with a second substrate and the 2,3-butanediol continues to be produced.
  • the first substrate is fructose and on complete consumption of the fructose, a substrate comprising CO can be provided.
  • the inventors have surprisingly found that 2,3-butanediol continues to be produced.
  • the first substrate and second substrate may be alternated if needed. For example if a first substrate is unavailable, an alternative substrate may be used until the availability of the first substrate improves.
  • a suitable nutrient medium will need to be fed to the bioreactor.
  • a nutrient medium will contain components, such as vitamins and minerals, sufficient to permit growth of the micro-organism used.
  • Anaerobic media suitable for the growth of Clostridium autoethanogenum are known in the art, as described for example by Abrini et al (Clostridium autoethanogenum, sp. Nov., An Anaerobic Bacterium That Produces Ethanol From Carbon Monoxide; Arch. Microbiol ., 161: 345-351 (1994)).
  • the “Examples” section herein after provides further examples of suitable media.
  • the fermentation should desirably be carried out under appropriate conditions for the substrate to butanediol fermentation to occur.
  • Reaction conditions that should be considered include temperature, media flow rate, pH, media redox potential, agitation rate (if using a continuous stirred tank reactor), inoculum level, maximum substrate concentrations and rates of introduction of the substrate to the bioreactor to ensure that substrate level does not become limiting, and maximum product concentrations to avoid product inhibition.
  • Examples of fermentation conditions suitable for anaerobic fermentation of a substrate comprising CO are detailed in WO2007/117157, WO2008/115080, WO2009/022925 and WO2009/064200, the disclosure of which are incorporated herein by reference. It is recognised the fermentation conditions reported therein can be readily modified in accordance with the methods of the instant invention.
  • the inventors have determined that, in one embodiment where pH is not controlled, there does not appear to be a deleterious effect on 2,3-butanediol production.
  • the bioreactor may comprise a first, growth reactor in which the micro-organisms are cultured, and a second, fermentation reactor, to which broth from the growth reactor is fed and in which most of the fermentation product (2,3-butanediol, for example) is produced.
  • the fermentation will result in a fermentation broth comprising a desirable product (such as butanediol) and/or one or more by-products (such as ethanol, acetate and butyrate) as well as bacterial cells, in a nutrient medium.
  • a desirable product such as butanediol
  • one or more by-products such as ethanol, acetate and butyrate
  • bacterial cells in a nutrient medium.
  • the fermentation products include 2,3-butanediol.
  • 2,3-butanediol, or a mixed alcohol stream containing 2,3-butanediol and one or more other alcohols may be recovered from the fermentation broth by methods known in the art, such as fractional distillation or evaporation, pervaporation, and extractive fermentation.
  • By-products such as acids including acetate and butyrate may also be recovered from the fermentation broth using methods known in the art.
  • an adsorption system involving an activated charcoal filter or electrodialysis may be used.
  • 2,3-butanediol and by-products are recovered from the fermentation broth by continuously removing a portion of the broth from the bioreactor, separating microbial cells from the broth (conveniently by filtration, for example), and recovering 2,3-butanediol and optionally other alcohols and acids from the broth.
  • Alcohols may conveniently be recovered for example by distillation, and acids may be recovered for example by adsorption on activated charcoal.
  • the separated microbial cells are preferably returned to the fermentation bioreactor.
  • the cell free permeate remaining after the alcohol(s) and acid(s) have been removed is also preferably returned to the fermentation bioreactor. Additional nutrients (such as B vitamins) may be added to the cell free permeate to replenish the nutrient medium before it is returned to the bioreactor.
  • the pH of the broth was adjusted during recovery of 2,3-butanediol and/or by-products, the pH should be re-adjusted to a similar pH to that of the broth in the fermentation bioreactor, before being returned to the bioreactor.
  • Solution A NH 4 Ac 3.083 g KCl 0.15 g MgCl 2 •6H 2 O 0.61 g NaCl (optional) 0.12 g CaCl 2 •2H 2 O 0.294 g Distilled Water Up to 1 L Solution B Biotin 20.0 mg Calcium D-(*)- 50.0 mg pantothenate Folic acid 20.0 mg Vitamin B12 50.0 mg Pyridoxine. HCl 10.0 mg p-Aminobenzoic acid 50.0 mg Thiamine.
  • a 1 L three necked flask was fitted with a gas tight inlet and outlet to allow working under inert gas and subsequent transfer of the desired product into a suitable storage flask.
  • the flask was charged with CrCl 3 .6H 2 O (40 g, 0.15 mol), zinc granules [20 mesh] (18.3 g, 0.28 mol), mercury (13.55 g, 1 mL, 0.0676 mol) and 500 mL of distilled water. Following flushing with N 2 for one hour, the mixture was warmed to about 80° C. to initiate the reaction. Following two hours of stirring under a constant N 2 flow, the mixture was cooled to room temperature and continuously stirred for another 48 hours by which time the reaction mixture had turned to a deep blue solution. The solution was transferred into N 2 purged serum bottles and stored in the fridge for future use.
  • Clostridium autoethanogenum used is that deposited at the German Resource Centre for Biological Material (DSMZ) and allocated the accession number 19630.
  • Media samples were taken from the fermentation reactor (e.g. CSTR or serum bottle) at intervals over the course of the fermentation. Each time the media was sampled care was taken to ensure that no gas was allowed to enter into or escape from the reactor.
  • the fermentation reactor e.g. CSTR or serum bottle
  • Channel 1 was a 10 m Mol-sieve column running at 70° C., 200 kPa argon and a backflush time of 4.2 s
  • channel 2 was a 10 m PPQ column running at 90° C., 150 kPa helium and no backflush.
  • the injector temperature for both channels was 70° C.
  • Runtimes were set to 120 s, but all peaks of interest would usually elute before 100 s.
  • Specific CO uptake was determined by calculating CO consumption per gram of cells (dry weight—see below).
  • Cell density was determined by counting bacterial cells in a defined aliquot of fermentation broth. Alternatively, the absorbance of the samples was measured at 600 nm (spectrophotometer) and the dry weight determined via calculation according to published procedures.
  • the media used for the CSTR experiments were prepared in accordance with the components listed in Table E.
  • the phosphate salt mixture consisted of 0.65 mM Na 2 HPO4 and 15.3 mM NaH 2 PO 4 . All other components such as the phosphoric acid, the ammonium salts and the cysteine-hydrochloride were mixed into 800 ml of water before the buffer salts were added to the solution. Proceeding in this manner ensured that the pH increased above about 6.5 avoiding the precipitation of media components.
  • the solution was diluted to 1 L and made anaerobic by heating to boiling and allowing it to cool to room temperature under a constant flow of N2 gas. Once cool, the solution was adjusted to the final pH of 5.3 and the B vitamins added. Anaerobicity was maintained throughout the experiment. Carbohydrate (5 g/L fructose) was added to the basic media formulation. The media solutions were introduced into the fermenters and optionally sparged with the respective CO containing gases from the start of the experiment, or after a predetermined interval. During these experiments, the pH was controlled to remain at 5.5 by adding an aqueous solution of NaOH. An actively growing Clostridium autoethanogenum culture was inoculated into the reactor at a level of 5% (v/v). The temperature of the reactor was maintained at 37° C. and agitation rate was 400 rpm.
  • the fermentation contained fructose as a substrate, which resulted in the production of acetic acid, ethanol and 2,3-butanediol.
  • fructose was consumed and a gas stream including CO (95% CO, 5% CO2) was sparged through the media.
  • the media was maintained at pH 5.5 (Table 1). It should be noted that even when the carbohydrate had been consumed, the above mentioned products increased in concentration, clearly demonstrating that the CO was used to produce the products including 2,3-butanediol.
  • Total 2,3-butanediol accumulation over 7.5 days was approx 7.5 g/L. It is recognised that 2,3-butanediol is produced at low levels at lower specific CO uptake rates. However, when the gas is supplied such that the CO uptake rate can be maintained over 0.4 mmol/g/min, 2,3-butanediol productivity increase significantly. In this instance, the specific CO uptake is maintained at an average of 0.8 mmol/g/min over several days and 1,3-butanediol is produced at a rate in excess of 1 g/L.
  • Total 2,3-butanediol concentration after 4 days was approximately 3 g/L. While the rates achieved are less than previous fermentations (examples 4 and 5), the substrate stream comprises a substantial portion of hydrogen. The results show that 2,3-butanediol is produced when using a mixed CO/H2 substrate.
  • a five-litre bioreactor was charged with 4.9 L of LM33 media prepared as described above.
  • the gas was switched to CO containing gas (1% H2; 14% N2; 70% CO; 15% CO2) at atmospheric pressure prior to inoculation with 100 ml of a Clostridium autoethanogenum culture.
  • the bioreactor was maintained at 37° C. stirred at 200 rpm at the start of the culture. During the growth phase, the agitation was increased to 400 rpm.
  • the pH was adjusted to 5.5 and maintained by automatic addition of 5 M NaOH. Fresh anaerobic media was continuously added into the bioreactor to maintain a defined biomass and acetate level in the bioreactor. 2,3 butanediol productivity is highlighted in Table 9.
  • the fermenter was operated under CO limited conditions and minimal 2,3-butanediol was produced.
  • gas flow was increased, such that specific CO uptake increased.
  • 2,3-butanediol productivity increased significantly to at least 1.2 g/L/day.
  • the gas flow was reduced such that the specific uptake of the culture decreased to around 0.4 mmol/g/min and the 2,3-butanediol productivity also dropped.
  • 2,3-butanediol productivity remained at least 0.5 g/L/day.
  • Samples were taken from three fermentations to determine gene expression during 2,3-butanediol production.
  • One sample was taken from the batch fermentation described in Example 8 on day 13, wherein products including ethanol and 2,3-butanediol were being produced.
  • the sample is designated R12 in the results hereinafter.
  • the second sample was taken from a batch fermentation producing both ethanol and 2,3-butanediol.
  • the sample is designated R11 in the results.
  • the third sample (R2) was taken from the continuous fermentation operating under similar conditions as Example 7 on days 1-89.
  • the microbial culture was CO limited and the fermentation broth had a stable acetate concentration of approximately 13 g/L, ethanol concentration of less than 1 g/L and insignificant amounts of 2,3-butanediol.
  • Real-Time PCR was used to determine whether genes were upregulated or downregulated relative to R2.
  • Primers for Real-Time PCR were designed using the freeware Primer3 based on LanzaTech's proprietary in-house genome sequence.
  • Real-Time PCR reaction mixtures containing 12.5 ⁇ L 2 ⁇ SYBR Green PCR Master Mix (Biorad), 1.54 of each of 1 ⁇ M primer forward and reverse, 5 ⁇ L of 10 ⁇ diluted cDNA template, and sterile water to a total volume of 25 ⁇ L were assembled. The mixtures were heated to 95° C. for 3 minutes, followed by 40 cycles of 95° C. for 15 seconds, 55° C. for 15 seconds and 72° C. for 30 seconds.
  • RNA polymerase beta chain (rpoB) was selected as reference gene for normalizing gene expression. Relative quantification using the Comparative ⁇ C T method was used to calculate the relative gene expression of 2,3BDH.
  • the acetate-producing culture (R2) was selected as calibrator (reference standard) in all analysis.
  • FIG. 1 shows relative gene expression of 2,3-butanediol dehydrogenase (2,3BDH) in three fermenters (R11, R12 and R2).
  • 2,3-butanediol dehydrogenase is upregulated in microbial cultures that produce 2,3-butanediol.
  • the microbial culture in R2 has a specific CO uptake of approximately 0.3 mmol/g/min, whereas the culture in R12 has a specific uptake of approximately 0.6 mmol/g/min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention provides methods for producing 2,3-butanediol by anaerobic fermentation. According to particular methods of the invention, 2,3-butanediol is produced by anaerobic fermentation of substrates including carbohydrate and carbon monoxide.

Description

    FIELD
  • The present invention relates to the production of butanediol by microbial fermentation, particularly to production of 2,3-butanediol by microbial fermentation of substrates comprising CO.
  • BACKGROUND
  • Biofuels for transportation are attractive replacements for gasoline and are rapidly penetrating fuel markets as low concentration blends. Biofuels, derived from natural plant sources, are more environmentally sustainable than those derived from fossil resources (such as gasoline), their use allowing a reduction in the levels of so-called fossil carbon dioxide (CO2) gas that is released into the atmosphere as a result of fuel combustion. In addition, biofuels can be produced locally in many geographies, and can act to reduce dependence on imported fossil energy resources. Alcohols suitable for use as biofuels include ethanol, butanol and 2,3-butanediol.
  • Ethanol is rapidly becoming a major hydrogen-rich liquid transport fuel around the world. Worldwide consumption of ethanol in 2002 was an estimated 10.8 billion gallons. The global market for the fuel ethanol industry is also predicted to grow sharply in future, due to an increased interest in ethanol in Europe, Japan, the USA and several developing nations.
  • Butanediols including 1,2-butanediol, 1,3-butanediol, 1,4-butanediol and 2,3-butanediol may be considered to have a variety of advantages over ethanol. Like ethanol, butanediols may be used directly as an automotive fuel additive. They may also be relatively easily transformed into a number of other potentially higher value and/or higher energy products. For example, 2,3-butanediol may be readily converted in a two step process into an eight-carbon dimer which can be used as aviation fuel.
  • 2,3-Butanediol derives its versatility from its di-functional backbone, i.e., 2 hydroxyl groups are located at vicinal C-atoms allowing the molecule to be transformed quite easily into substances such as butadiene, butadione, acetoin, methylethyl ketone etc. These chemical compounds are used as base molecules to manufacture a vast range of industrially produced chemicals.
  • In addition, 2,3-butanediol may be used as a fuel in an internal combustion engine. It is in several ways more similar to gasoline than it is to ethanol. As the interest in the production and application of environmentally sustainable fuels has strengthened, interest in biological processes to produce 2,3-butanediol (often referred to as bio-butanol) has increased.
  • 2,3-Butanediol can be produced by microbial fermentation of carbohydrate containing feedstock (Syu M J, Appl Microbial Biotechnol 55:10-18 (2001), Qin et al., Chinese J Chem Eng 14(1):132-136 (2006)). 2,3-Butanediol may also be produced by microbial fermentation of biomass from crops such as sugar beet, corn, wheat and sugarcane. However, the cost of these carbohydrate feed stocks is influenced by their value as human food or animal feed and the cultivation of starch or sucrose-producing crops for 2,3-butanediol production is not economically sustainable in all geographies. Therefore, it is of interest to develop technologies to convert lower cost and/or more abundant carbon resources into 2,3-butanediol.
  • Carbon Monoxide (CO) is a major by-product of the incomplete combustion of organic materials such as coal or oil and oil derived products. Although the complete combustion of carbon containing precursors yields CO2 and water as the only end products, some industrial processes need elevated temperatures favouring the build up of carbon monoxide over CO2. One example is the steel industry, where high temperatures are needed to generate desired steel qualities. For example, the steel industry in Australia is reported to produce and release into the atmosphere over 500,000 tonnes of CO annually.
  • Furthermore, CO is also a major component of syngas, where varying amounts of CO and H2 are generated by gasification of a carbon-containing fuel. For example, syngas may be produced by cracking the organic biomass of waste woods and timber to generate precursors for the production of fuels and more complex chemicals.
  • The release of CO into the atmosphere may have significant environmental impact. In addition, emissions taxes may be required to be paid, increasing costs to industrial plants. Since CO is a reactive energy rich molecule, it can be used as a precursor compound for the production of a variety of chemicals. However, this valuable feedstock has not been utilised to produce 2,3-butanediol.
  • It is an object of the present invention to provide a process that goes at least some way towards overcoming the above disadvantages or at least to provide the public with a useful choice.
  • STATEMENT OF INVENTION
  • In one aspect, the invention provides a method of producing butanediol by microbial fermentation of a substrate comprising carbon monoxide. In particular embodiments, the invention provides a method of producing butanediol by microbial fermentation, the method including:
      • a. providing a substrate comprising CO;
      • b. in a bioreactor containing a culture of one or more micro-organisms, anaerobically fermenting the substrate to produce butanediol.
  • In certain embodiments, the butanediol is 2,3-butanediol.
  • In another aspect, the invention provides a method of increasing efficiency of 2,3-butanediol production by fermentation, the method including:
      • a. providing a substrate comprising CO;
      • b. in a bioreactor containing a culture of one or more micro-organisms, anaerobically fermenting the substrate to produce 2,3-butanediol.
  • In another aspect of the invention, there is provided a method of producing 2,3-butanediol by microbial fermentation, the method including:
      • a. providing a substrate
      • b. in a bioreactor containing a culture of one or more micro-organisms, anaerobically fermenting the substrate, wherein one or more micro-organisms includes one or more 2,3-butanediol dehydrogenase genes;
      • c. upregulating the 2,3-butanediol dehydrogenase gene(s), such that 2,3-butanediol is produced by the micro-organism(s).
  • In particular embodiments, the substrate comprises CO.
  • In particular embodiments of the various aspects, the substrate comprising carbon monoxide is a gaseous substrate comprising carbon monoxide. The gaseous substrate comprising carbon monoxide can be obtained as a by-product of an industrial process. In certain embodiments, the industrial process is selected from the group consisting of ferrous metal products manufacturing, non-ferrous products manufacturing, petroleum refining processes, gasification of biomass, gasification of coal, electric power production, carbon black production, ammonia production, methanol production and coke manufacturing. In one embodiment the gaseous substrate comprises a gas obtained from a steel mill. In another embodiment the gaseous substrate comprises automobile exhaust fumes.
  • In particular embodiments, the CO-containing substrate typically contains a major proportion of CO, such as at least about 20% to about 100% CO by volume, from 40% to 95% CO by volume, from 40% to 60% CO by volume, and from 45% to 55% CO by volume. In particular embodiments, the substrate comprises about 25%, or about 30%, or about 35%, or about 40%, or about 45%, or about 50% CO, or about 55% CO, or about 60% CO by volume. Substrates having lower concentrations of CO, such as 6%, may also be appropriate, particularly when H2 and CO2 are also present.
  • In particular embodiments of the various aspects, the substrate comprising CO is provided at a sufficient level, such that 2,3-butanediol is produced. In particular embodiments, CO is provided such that a specific uptake rate of at least 0.4 mmol/g/min; or at least 0.5 mmol/g/min; or at least 0.6 mmol/g/min; or at least 0.7 mmol/g/min; or at least 0.8 mmol/g/min; or at least 0.9 mmol/g/min; or at least 1.0 mmol/g/min; or at least 1.2 mmol/g/min; or at least 1.5 mmol/g/min is maintained.
  • In certain embodiments of the various aspects, the method comprises microbial fermentation using Clostridium autoethanogenum.
  • In another aspect, the invention provides a method of producing 2,3-butanediol by microbial fermentation, the method including:
      • a. providing a substrate
      • b. in a bioreactor including a culture of Clostridium autoethanogenum, anaerobically fermenting the substrate to produce 2,3-butanediol.
  • In particular embodiments, the substrate is one or more carbohydrates such as fructose.
  • Alternatively the substrate is a substrate comprising carbon monoxide, typically a gaseous substrate comprising carbon monoxide, as herein before described
  • In a further aspect, the invention provides a method for producing butanediol by microbial fermentation of a first substrate and a second substrate comprising CO. Preferably, the butanediol is 2,3-butanediol.
  • In particular embodiments, the first substrate is a carbohydrate. In certain embodiments, the first substrate is fructose. In certain embodiments, the second substrate is a gaseous substrate comprising carbon monoxide, as herein before described.
  • In particular embodiments, the method includes the steps of:
      • (a) microbial fermentation of the first substrate to produce 2,3-butanediol
      • (b) microbial fermentation of the second substrate comprising CO to produce 2,3-butanediol.
  • In certain embodiments, steps (a) and (b) may be conducted at the same time. Alternatively, step (a) may substantially precede or follow step (b). In particular embodiments, the method may alternate between step (a) and step (b).
  • In a further aspect of the invention, there is provided a method according to any of the previous aspects, wherein the fermentation is carried out in a bioreactor.
  • In a further aspect of the invention, there is provided a method according to any of the previous aspects, wherein the method further includes the step of capturing or recovering the butanediol.
  • In a further aspect, there is provided butanediol, preferably 2,3-butanediol, produced by the methods of any of the previous aspects.
  • The invention may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, in any or all combinations of two or more of said parts, elements or features, and where specific integers are mentioned herein which have known equivalents in the art to which the invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The following is a description of the present invention, including preferred embodiments thereof, given in general terms. The invention is further exemplified in the disclosure given under the heading “Examples” herein below, which provides experimental data supporting the invention, specific examples of aspects of the invention, and means of performing the invention.
  • As used herein “butanediol” refers to all structural isomers of the diol including 1,2-butanediol, 1,3-butanediol, 1,4-butanediol and 2,3-butanediol and stereoisomers thereof. The term “2,3-butanediol” should be interpreted to include all enantiomeric and diastereomeric forms of the compound, including (R,R), (S,S) and meso forms, in racemic, partially stereoisomerically pure and/or substantially stereoisomerically pure forms.
  • The term “bioreactor” includes a fermentation device consisting of one or more vessels and/or towers or piping arrangement, which includes the Continuous Stirred Tank Reactor (CSTR), Immobilized Cell Reactor (ICR), Trickle Bed Reactor (TBR), Bubble Column, Gas Lift Fermenter, Static Mixer, or other vessel or other device suitable for gas-liquid contact. As is described herein after, in some embodiments the bioreactor may comprise a first growth reactor and a second fermentation reactor. As such, when referring to the addition of a substrate, for example a substrate comprising carbon monoxide, to the bioreactor or fermentation reaction it should be understood to include addition to either or both of these reactors where appropriate.
  • The term “substrate comprising carbon monoxide” and like terms should be understood to include any substrate in which carbon monoxide is available to one or more strains of bacteria for growth and/or fermentation, for example.
  • “Gaseous substrates comprising carbon monoxide” include any gas which contains a level of carbon monoxide. The gaseous substrate will typically contain a major proportion of CO, preferably at least about 15% to about 95% CO by volume.
  • Unless the context requires otherwise, the phrases “fermenting”, “fermentation process” or “fermentation reaction” and the like, as used herein, are intended to encompass both the growth phase and product biosynthesis phase of the process.
  • The inventors have surprisingly shown that 2,3-butanediol can be produced by microbial fermentation using Clostridium autoethanogenum. They have found that fermentation products include a variety of alcohols, whereby ethanol and 2,3-butanediol are significant substituents. 2,3-Butanediol has not been previously identified as a fermentation product using Clostridium autoethanogenum. In particular, the inventors have determined that Clostridium autoethanogenum can be used to produce 2,3-butanediol and other products from a substrate comprising carbohydrate. In particular, fructose can be converted into products including acetate, ethanol and 2,3-butanediol. It has also been surprisingly demonstrated that 2,3-butanediol can be produced by Clostridium autoethanogenum from substrates comprising CO, particularly gaseous substrates comprising CO. The use of a gaseous carbon source, particularly a source including CO, in fermentation processes has not previously resulted in the production of 2,3-butanediol.
  • In particular embodiments of the invention, the efficiency of 2,3-butanediol production can be increased by providing the substrate at a sufficient level such that 2,3-butanediol is produced. It has been recognised that increasing the amount of substrate provided to a microbial culture, increases the amount of 2,3-butanediol produced by the culture.
  • In particular embodiments of the invention, the substrate comprising CO is provided at a sufficient level such that 2,3-butanediol is produced. It has been shown that a microbial culture comprising C. autoethanogenum can uptake CO at a rate up to approximately 1.5 to 2 mmol/gram dry weight microbial cells/minute (specific CO uptake). In particular embodiments of the invention, a substrate comprising CO is provided to the microbial culture comprising C. autoethanogenum such that a specific uptake is maintained substantially at or at least 0.4 mmol/g/min; or at least 0.5 mmol/g/min; or at least 0.6 mmol/g/min; or at least 0.7 mmol/g/min; or at least 0.8 mmol/g/min; or at least 0.9 mmol/g/min; or at least 1.0 mmol/g/min; or at least 1.2 mmol/g/min; or at least 1.5 mmol/g/min. In such embodiments, 2,3-butanediol is a significant fermentation product of at least 0.5 g/L; or at least 1 g/L; or at least 2 g/L; or at least 5 g/L. In particular embodiments, 2,3-butanediol is produced at a rate of at least 0.5 g/L/day; or at least 1 g/L/day.
  • In particular embodiments of the invention, apparatus used for conducting methods of the invention enable measurement and/or control of parameters such as CO supply, CO uptake, biomass level, 2,3-butanediol production. For example, samples can be taken from a bioreactor to determine one or more of the above parameters and the bioreactor conditions optionally adjusted to improve 2,3-butanediol production. For example, in a bioreactor, wherein the microbial culture is producing no or insignificant amounts of 2,3-butanediol, the CO supply can be increased such that 2,3-butanediol is produced.
  • It is accepted that products such as acetate and ethanol are produced from CO via a combination of the acetyl-CoA cycle and the THF cycle as described in Phillips, J. R, et al, 1994, Applied Biochemistry and Biotechnology, 45/46: 145. However, in accordance with the methods of the invention, it has been surprisingly shown that 2,3-butanediol can be produced, particularly where CO is provided such that specific CO uptake rates of at least 0.4 mmol/g/min; or at least 0.5 mmol/g/min; or at least 0.6 mmol/g/min; or at least 0.7 mmol/g/min; or at least 0.8 mmol/g/min; or at least 0.9 mmol/g/min; or at least 1.0 mmol/g/min; or at least 1.2 mmol/g/min; or at least 1.5 mmol/g/min are maintained. Without wishing to be bound by theory, it is considered that by providing sufficient or elevated levels of CO, higher energy products, such as 2,3-butanediol can be produced during fermentation. It is considered precursors of products, such as 2,3-butanediol act as electron acceptors to relieve the microbial cell of excess reducing power, in the form of NAD(P)H, thus restoring a favourable NAD(P):NAD(P)H equilibrium. It is further considered that carbohydrates fermented by the culture can also be converted into 2,3-butanediol in a similar manner.
  • The following genes have been putatively identified in C. autoethanogenum: a-acetolactate synthase (ALS), α-acetolactate decarboxylase (ALDC) and 2,3-butanediol dehydrogenase (2,3BDH). The putative 2,3-butanediol dehydrogenase gene (ORF 1283) of C. autoethanogenum (strain deposited at DSMZ under the accession number 19630) shows strong homology to the 2,3BDH of Clostridium novyi (NT01CX0344) with amino acid identities of 73% (262/357) and positives of 84% (300/357). ORF 1283 also shows significant homology to the gene YdjL (bdhA) of Bacillus subtilis (47% amino acid identities, 63% positives and E-value of 3e-89. Further evidence that ORF 1283 of LZ1560 is 2,3BDH comes from homology to 2,3BDH(YAL060W) of Saccharomyces cerevisiae (E=2e−53).
  • Without wishing to be bound by theory, it is considered 2,3-butanediol is produced from pyruvate (an intermediate in anabolism produced from acetyl CoA) as follows:
  • Figure US20110144393A1-20110616-C00001
  • Real-Time PCR studies of 2,3-butanediol dehydrogenase in C. autoethanogenum, indicate that it is substantially upregulated in cultures where significant amounts of 2,3-butanediol are produced. Thus, 2,3-butanediol dehydrogenase can be upregulated in accordance with the methods of the invention. For example, where CO is supplied at sufficient levels, 2,3-butanediol dehydrogenase is upregulated. In particular, where CO is supplied such that the specific CO uptake by the microbial culture is at least 0.4 mmol/g/min; or at least 0.5 mmol/g/min; or at least 0.6 mmol/g/min; or at least 0.7 mmol/g/min; or at least 0.8 mmol/g/min; or at least 0.9 mmol/g/min; or at least 1.0 mmol/g/min; or at least 1.2 mmol/g/min; or at least 1.5 mmol/g/min; 2,3-butanediol dehydrogenase is upregulated. As such, the invention provides a method of producing 2,3-butanediol by microbial fermentation of a substrate by upregulation of 2,3-butanediol dehydrogenase.
  • The inventors have further demonstrated that different substrates, such as a carbohydrate substrate and a gaseous substrate comprising CO, can be switched during microbial production of 2,3-butanediol, without deleterious effect. In addition, they contemplate that substrates could be alternated, for example when one substrate is unavailable, and would continue to produce 2,3-butanediol.
  • In accordance with the results obtained, in one embodiment of the invention, 2,3-butanediol is produced by microbial fermentation of a substrate comprising carbohydrate. In another embodiment of the invention, a substrate comprising carbon monoxide, preferably a gaseous substrate comprising CO, is converted into various products including 2,3-butanediol, by Clostridium autoethanogenum.
  • In a further embodiment of the invention, a first substrate comprising carbohydrate (preferably fructose) may be used in initial stages of the fermentation reaction and following complete consumption of the substrate, the substrate can be switched to a second substrate comprising CO. Again, the inventors have surprisingly determined that 2,3-butanediol is produced in the initial stages where the first substrate comprising carbohydrate is the sole carbon source and is also produced in the latter stages where the substrate comprising CO is the sole carbon source.
  • The inventors have shown that 2,3-butanediol is produced under a variety of conditions, including media containing alternative buffer solutions such as acetate buffer and citrate buffer. The inventors also submit that in embodiments where the pH is uncontrolled and may be variable, 2,3-butanediol is still produced. Examples of media suitable for carrying out the desired fermentation are described in the examples section hereinafter.
  • The inventors contemplate that the 2,3-butanediol produced in such processes may be readily recovered using separation techniques known in the art. Furthermore, the 2,3-butanediol may be readily converted into substances such as butadiene, butadione, acetoin, methylethyl ketone and the like. Such chemical compounds are valuable base molecules used to manufacture a significant percentage of all chemical industry products. Therefore, the inventors contemplate that the 2,3-butanediol produced in the processes disclosed herein may be used in the manufacture of a wide range of well known industrial products.
  • The invention is generally described herein in relation to preferred embodiments of the invention which utilise Clostridium autoethanogenum and/or produce 2,3-butanediol. However, it should be appreciated that alternative micro-organisms may be substituted for C. autoethanogenum. Similarly, the methods may be used to produce and recover butanediols other than 2,3-butanediol. Accordingly, unless the context requires otherwise, reference to “2,3-butanediol” may be substituted by the general term “butanediol”.
  • Method
  • In one embodiment, the invention provides a method for the production of butanediol by microbial fermentation. In a preferred embodiment the method comprises at least the step of anaerobically fermenting a substrate comprising CO, preferably a gaseous substrate comprising CO, to obtain 2,3-butanediol.
  • In a particular embodiment of the invention, the method includes the steps of:
      • (a) providing a substrate comprising CO, preferably a gaseous substrate comprising CO;
      • (b) in a bioreactor containing a culture of one or more micro-organisms anaerobically fermenting the substrate to produce 2,3-butanediol.
  • In another embodiment, the invention provides a method of increasing efficiency of 2,3-butanediol production by fermentation, the method including:
      • (a) providing a substrate comprising CO;
      • (b) in a bioreactor containing a culture of one or more micro-organisms, anaerobically fermenting the substrate to produce 2,3-butanediol.
  • In particular embodiments, the substrate comprising CO is provided at a level sufficient to produce significant amounts of 2,3-butanediol, such as at least 0.5 g/L of fermentation media, or at least 1 g/L, or at least 2 g/L, or at least 5 g/L. In certain embodiments, CO is provided at a level sufficient to produce 2,3-butanediol at a rate of at least 0.5 g/L/day; or at least 1 g/L/day. In particular embodiments, CO is provided such that a specific uptake rate of at least 0.4 mmol/g/min; or at least 0.5 mmol/g/min; or at least 0.6 mmol/g/min; or at least 0.7 mmol/g/min; or at least 0.8 mmol/g/min; or at least 0.9 mmol/g/min; or at least 1.0 mmol/g/min; or at least 1.2 mmol/g/min; or at least 1.5 mmol/g/min is maintained. Those skilled in the art will appreciate methods of supplying CO, particularly gaseous CO, such that the required uptake rate is achieved. However, by way of example, factors such as increasing gas hold-up in a fermentation media will increase the amount of CO available for conversion to products by the microbial culture. Gas hold-up can typically be increased by mechanical means, such as increasing agitation in a CSTR. Furthermore, supplying CO at a faster rate or a higher partial pressure will also increase the CO availability in a fermentation broth.
  • In another embodiment, the method involves fermentation of a substrate comprising carbohydrate by Clostridium autoethanogenum to produce butanediol, preferably, 2,3-butanediol.
  • In another embodiment, the method includes the steps of:
      • (a) microbial fermentation of the first substrate to produce 2,3-butanediol
      • (b) microbial fermentation of the second substrate comprising CO to produce 2,3-butanediol.
  • In certain embodiments, the first substrate is carbohydrate and in some embodiments, the substrate is fructose. Preferably, the second substrate is a gaseous substrate comprising CO. In particular embodiments, steps (a) and (b) may be conducted at the same time. Alternatively, step (a) may substantially precede or follow step (b). Preferably, the method may alternate between step (a) and step (b).
  • In certain embodiments of the invention, the method further includes the step of capturing or recovering the 2,3-butanediol produced.
  • Micro-Organisms
  • In embodiments of the invention the one or more micro-organisms used in the fermentation is Clostridium autoethanogenum. In a preferred embodiment the Clostridium autoethanogenum is a Clostridium autoethanogenum having the identifying characteristics of the strain deposited at the German Resource Centre for Biological Material (DSMZ) under the identifying deposit number 19630. In another embodiment the Clostridium autoethanogenum is a Clostridium autoethanogenum having the identifying characteristics of DSMZ deposit number DSMZ 10061.
  • Culturing of the bacteria used in a method of the invention may be conducted using any number of processes known in the art for culturing and fermenting substrates using anaerobic bacteria. Exemplary techniques are provided in the “Examples” section of this document. By way of further example, those processes generally described in the following articles using gaseous substrates for fermentation may be utilised: K. T. Klasson, M. D. Ackerson, E. C. Clausen and J. L. Gaddy (1991). Bioreactors for synthesis gas fermentations resources. Conservation and Recycling, 5; 145-165; K. T. Klasson, M. D. Ackerson, E. C. Clausen and J. L. Gaddy (1991). Bioreactor design for synthesis gas fermentations. Fuel. 70. 605-614; K. T. Klasson, M. D. Ackerson, E. C. Clausen and J. L. Gaddy (1992). Bioconversion of synthesis gas into liquid or gaseous fuels. Enzyme and Microbial Technology. 14; 602-608; J. L. Vega, G. M. Antorrena, E. C. Clausen and J. L. Gaddy (1989). Study of Gaseous Substrate Fermentation: Carbon Monoxide Conversion to Acetate. 2. Continuous Culture. Biotech. Bioeng. 34. 6. 785-793; J. L. Vega, E. C. Clausen and J. L. Gaddy (1989). Study of gaseous substrate fermentations: Carbon monoxide conversion to acetate. 1. Batch culture. Biotechnology and Bioengineering. 34. 6. 774-784; and, J. L. Vega, E. C. Clausen and J. L. Gaddy (1990). Design of Bioreactors for Coal Synthesis Gas Fermentations. Resources, Conservation and Recycling. 3. 149-160. Methods for culturing bacteria on substrates comprising carbohydrates are also well known in the art.
  • Substrates
  • In one embodiment of the invention, 2,3-butanediol is produced by microbial fermentation of a substrate comprising carbohydrate using Clostridium autoethanogenum. It will be appreciated there are many examples of carbohydrates suitable for fermentation known in the art and many examples of the types of processes used to ferment the carbohydrate substrate. By way of example, suitable substrates may include, but are not limited to, monosaccharides such as glucose and fructose, oligosaccharides such as sucrose or lactose, polysaccharides, such as cellulose or starch. Although it is contemplated that any of these carbohydrate substrates (and mixtures thereof) are suitable in the present invention, preferred carbohydrate substrates are fructose and sucrose (and mixtures thereof).
  • Those skilled in the art will appreciate fermentable sugars may be obtained from cellulosic and lignocellulosic biomass through processes of pre-treatment and saccharification, as described, for example, in US20070031918. Biomass refers to any cellulose or lignocellulosic material and includes materials comprising cellulose, and optionally further comprising hemicellulose, lignin, starch, oligosaccharides and/or monosaccharides. Biomass includes, but is not limited to bioenergy crops, agricultural residues, municipal solid waste, industrial solid waste, sludge from paper manufacture, yard waste, wood and forestry waste. However, in exemplary embodiments of the invention commercially available fructose is used as the carbon and energy source for the fermentation.
  • In a particular embodiment, a substrate comprising carbon monoxide, preferably a gaseous substrate comprising carbon monoxide is used in the methods of the invention. The gaseous substrate may be a waste gas obtained as a by-product of an industrial process, or from some other source such as from combustion engine (for example automobile) exhaust fumes. In certain embodiments, the industrial process is selected from the group consisting of ferrous metal products manufacturing, such as a steel mill, non-ferrous products manufacturing, petroleum refining processes, gasification of coal, electric power production, carbon black production, ammonia production, methanol production and coke manufacturing. In these embodiments, the CO-containing gas may be captured from the industrial process before it is emitted into the atmosphere, using any convenient method. Depending on the composition of the gaseous substrate comprising carbon monoxide, it may also be desirable to treat it to remove any undesired impurities, such as dust particles before introducing it to the fermentation. For example, the gaseous substrate may be filtered or scrubbed using known methods.
  • In other embodiments of the invention, the gaseous substrate comprising carbon monoxide may be sourced from the gasification of biomass. The process of gasification involves partial combustion of biomass in a restricted supply of air or oxygen. The resultant gas typically comprises mainly CO and H2, with minimal volumes of CO2, methane, ethylene and ethane. For example, biomass by-products obtained during the extraction and processing of foodstuffs such as sugar from sugarcane, or starch from maize or grains, or non-food biomass waste generated by the forestry industry may be gasified to produce a CO-containing gas suitable for use in the present invention.
  • The CO-containing substrate will typically contain a major proportion of CO, such as at least about 20% to about 100% CO by volume, from 40% to 95% CO by volume, from 40% to 60% CO by volume, and from 45% to 55% CO by volume. In particular embodiments, the substrate comprises about 25%, or about 30%, or about 35%, or about 40%, or about 45%, or about 50% CO, or about 55% CO, or about 60% CO by volume. Substrates having lower concentrations of CO, such as 6%, may also be appropriate, particularly when H2 and CO2 are also present.
  • In particular embodiments, CO is supplied at a level sufficient for 2,3-butanediol production to occur. In particular embodiments, CO is provided such that a specific uptake rate of at least 0.4 mmol/g/min; or at least 0.5 mmol/g/min; or at least 0.6 mmol/g/min; or at least 0.7 mmol/g/min; or at least 0.8 mmol/g/min; or at least 0.9 mmol/g/min; or at least 1.0 mmol/g/min; or at least 1.2 mmol/g/min; or at least 1.5 mmol/g/min is maintained. Those skilled in the art will appreciate methods of supplying CO, particularly gaseous CO, such that the required uptake rate is achieved. However, by way of example, factors such as increasing gas hold-up in a fermentation media will increase the amount of CO available for conversion to products by the microbial culture. Those skilled in the art will appreciate methods of increasing gas hold-up. However, by way of non-limiting example, gas hold-up is typically increased by mechanical means such as increasing agitation in a CSTR. Furthermore, supplying CO at a faster rate or a higher partial pressure will also increase the CO availability in a fermentation broth.
  • It is not necessary for the gaseous substrate to contain any hydrogen, however this is not considered detrimental to 2,3-butanediol production. The gaseous substrate may also contain some CO2 for example, such as about 1% to about 80% by volume, or 1% to about 30% by volume. In one embodiment it contains about 5% to about 10% by volume. In another embodiment the gaseous substrate contains approximately 20% CO2 by volume.
  • Typically, the carbon monoxide will be added to the fermentation reaction in a gaseous state. However, the invention should not be considered to be limited to addition of the substrate in this state. For example, the carbon monoxide could be provided in a liquid. For example, a liquid may be saturated with a carbon monoxide containing gas and then that liquid added to a bioreactor. This may be achieved using standard methodology. By way of example a microbubble dispersion generator (Hensirisak et. al. Scale-up of microbubble dispersion generator for aerobic fermentation; Applied Biochemistry and Biotechnology Volume 101, Number 3/October, 2002) could be used.
  • In one embodiment of the invention, the inventors have determined that 2,3-butanediol can be produced by fermentation of a first substrate and a second substrate. In one particular embodiment of the invention, 2,3-butanediol will be produced when a first substrate, for example a carbohydrate such as fructose and a second substrate, preferably a substrate comprising CO, are provided.
  • In a further embodiment, the inventors have determined that 2,3-butanediol will be produced by a first substrate and on complete consumption, the first substrate may be replaced with a second substrate and the 2,3-butanediol continues to be produced. In a particular embodiment, the first substrate is fructose and on complete consumption of the fructose, a substrate comprising CO can be provided. The inventors have surprisingly found that 2,3-butanediol continues to be produced. The inventors further contemplate that the first substrate and second substrate may be alternated if needed. For example if a first substrate is unavailable, an alternative substrate may be used until the availability of the first substrate improves.
  • Media
  • It will be appreciated that for growth of the bacteria and substrate to butanediol fermentation to occur, in addition to the substrate, a suitable nutrient medium will need to be fed to the bioreactor. A nutrient medium will contain components, such as vitamins and minerals, sufficient to permit growth of the micro-organism used. Anaerobic media suitable for the growth of Clostridium autoethanogenum are known in the art, as described for example by Abrini et al (Clostridium autoethanogenum, sp. Nov., An Anaerobic Bacterium That Produces Ethanol From Carbon Monoxide; Arch. Microbiol., 161: 345-351 (1994)). The “Examples” section herein after provides further examples of suitable media.
  • Fermentation Conditions
  • The fermentation should desirably be carried out under appropriate conditions for the substrate to butanediol fermentation to occur. Reaction conditions that should be considered include temperature, media flow rate, pH, media redox potential, agitation rate (if using a continuous stirred tank reactor), inoculum level, maximum substrate concentrations and rates of introduction of the substrate to the bioreactor to ensure that substrate level does not become limiting, and maximum product concentrations to avoid product inhibition. Examples of fermentation conditions suitable for anaerobic fermentation of a substrate comprising CO are detailed in WO2007/117157, WO2008/115080, WO2009/022925 and WO2009/064200, the disclosure of which are incorporated herein by reference. It is recognised the fermentation conditions reported therein can be readily modified in accordance with the methods of the instant invention.
  • The inventors have determined that, in one embodiment where pH is not controlled, there does not appear to be a deleterious effect on 2,3-butanediol production.
  • Bioreactor
  • Fermentation reactions may be carried out in any suitable bioreactor as described previously herein. In some embodiments of the invention, the bioreactor may comprise a first, growth reactor in which the micro-organisms are cultured, and a second, fermentation reactor, to which broth from the growth reactor is fed and in which most of the fermentation product (2,3-butanediol, for example) is produced.
  • Product Recovery
  • The fermentation will result in a fermentation broth comprising a desirable product (such as butanediol) and/or one or more by-products (such as ethanol, acetate and butyrate) as well as bacterial cells, in a nutrient medium. In a preferred embodiment, the fermentation products include 2,3-butanediol.
  • 2,3-butanediol, or a mixed alcohol stream containing 2,3-butanediol and one or more other alcohols, may be recovered from the fermentation broth by methods known in the art, such as fractional distillation or evaporation, pervaporation, and extractive fermentation. By-products such as acids including acetate and butyrate may also be recovered from the fermentation broth using methods known in the art. For example, an adsorption system involving an activated charcoal filter or electrodialysis may be used.
  • In certain embodiments of the invention, 2,3-butanediol and by-products are recovered from the fermentation broth by continuously removing a portion of the broth from the bioreactor, separating microbial cells from the broth (conveniently by filtration, for example), and recovering 2,3-butanediol and optionally other alcohols and acids from the broth. Alcohols may conveniently be recovered for example by distillation, and acids may be recovered for example by adsorption on activated charcoal. The separated microbial cells are preferably returned to the fermentation bioreactor. The cell free permeate remaining after the alcohol(s) and acid(s) have been removed is also preferably returned to the fermentation bioreactor. Additional nutrients (such as B vitamins) may be added to the cell free permeate to replenish the nutrient medium before it is returned to the bioreactor.
  • Also, if the pH of the broth was adjusted during recovery of 2,3-butanediol and/or by-products, the pH should be re-adjusted to a similar pH to that of the broth in the fermentation bioreactor, before being returned to the bioreactor.
  • The invention will now be described in more detail with reference to the following non-limiting examples.
  • EXAMPLES Materials and Methods
  • Solution A
    NH4Ac 3.083 g KCl 0.15 g
    MgCl2•6H2O 0.61 g NaCl (optional) 0.12 g
    CaCl2•2H2O 0.294 g Distilled Water Up to 1 L
    Solution B
    Biotin 20.0 mg Calcium D-(*)- 50.0 mg
    pantothenate
    Folic acid 20.0 mg Vitamin B12 50.0 mg
    Pyridoxine. HCl 10.0 mg p-Aminobenzoic acid 50.0 mg
    Thiamine. HCl 50.0 mg Thioctic acid 50.0 mg
    Riboflavin 50.0 mg Distilled water To 1 Litre
    Nicotinic acid 50.0 mg
    Solution(s) C
    Component/0.1M Quantity/ml Component/0.1M Quantity/ml
    solution (aq) into 1 L media solution (aq) into 1 L media
    FeCl3 1 ml MnCl2 0.1 ml
    CoCl2 0.5 ml Na2WO4 0.1 ml
    NiCl2 0.5 ml ZnCl2 0.1 ml
    H3BO3 0.1 ml Na2SeO3 0.1 ml
    Na2MoO4 0.1 ml
    Solution D Solution E
    Concentration per Concentration per
    Media Component 1.0 L of Media 1.0 L of Media
    MgCl2•6H2O 0.5 g 0.5 g
    NaCl 0.2 g 0.2 g
    CaCl2 0.2 g 0.2 g
    100 mM sodium 160 mL
    phosphate buffer (pH 6.0)
    NaH2PO4 2.04 g
    NH4Cl 2.5 g 0.6 g
    85% H3PO4 0.5 mL
    KCl 0.15 g 0.15 g
    Solution C 10 mL 10 mL
    Solution E 10 mL 10 mL
    Resazurin (1000 mg/L 2 mL 1 mL
    stock)
    FeCl3 0.01 g 0.0025 g
    Cysteine HCl 0.5 g 0.25 g
    monohydrate
    Agarose (optional) 15 g
    Distilled water To 1 Litre To 1 Litre
    Solution F
    Composite trace metal solution per L of stock
    Nitrilotriacetic Acid 1.5 g
    MgSO4•7H2O 3.0 g
    MnSO4•H2O 0.5 g
    NaCl 1.0 g
    FeSO4•7H2O 0.1 g
    Fe(SO4)2(NH4)2•6H2O 0.8 g
    CoCl2•6H2O 0.2 g
    ZnSO4•7H2O 0.2 g
    CuCl2•2H2O 0.02 g
    AlK(SO4)2•12H2O 0.02 g
    H3BO3 0.30 g
    NaMoO4•2H2O 0.03 g
    Na2SeO3 0.02 g
    NiCl2•6H2O 0.02 g
    Na2WO4•6H2O 0.02 g
    Distilled water To 1 Litre
  • Preparation of Na2Sx
  • A 500 ml flask was charged with Na2S (93.7 g, 0.39 mol) and 200 ml H2O. The solution was stirred until the salt had dissolved and sulfur (25 g, 0.1 mol) was added under constant N2 flow. After 2 hours stirring at room temperature, the “Na2Sx” solution (approx 4M with respect to [Na] and approx 5M with respect to sulfur), now a clear reddish brown liquid, was transferred into N2 purged serum bottles, wrapped in aluminium foil.
  • Preparation of Cr (II) Solution
  • A 1 L three necked flask was fitted with a gas tight inlet and outlet to allow working under inert gas and subsequent transfer of the desired product into a suitable storage flask. The flask was charged with CrCl3.6H2O (40 g, 0.15 mol), zinc granules [20 mesh] (18.3 g, 0.28 mol), mercury (13.55 g, 1 mL, 0.0676 mol) and 500 mL of distilled water. Following flushing with N2 for one hour, the mixture was warmed to about 80° C. to initiate the reaction. Following two hours of stirring under a constant N2 flow, the mixture was cooled to room temperature and continuously stirred for another 48 hours by which time the reaction mixture had turned to a deep blue solution. The solution was transferred into N2 purged serum bottles and stored in the fridge for future use.
  • Bacteria:
  • The Clostridium autoethanogenum used is that deposited at the German Resource Centre for Biological Material (DSMZ) and allocated the accession number 19630.
  • Sampling and Analytical Procedures
  • Media samples were taken from the fermentation reactor (e.g. CSTR or serum bottle) at intervals over the course of the fermentation. Each time the media was sampled care was taken to ensure that no gas was allowed to enter into or escape from the reactor.
  • HPLC:
  • HPLC System Agilent 1100 Series. Mobile Phase: 0.0025N Sulfuric Acid. Flow and pressure: 0.800 mL/min. Column: Alltech IOA; Catalog #9648, 150×6.5 mm, particle size 5 μm. Temperature of column: 60° C. Detector: Refractive Index. Temperature of detector: 45° C.
  • Method for Sample Preparation:
  • 400 μL of sample and 50 μL of 0.15M ZnSO4 and 50 μL of 0.15M Ba(OH)2 are loaded into an Eppendorf tube. The tubes are centrifuged for 10 min. at 12,000 rpm, 4° C. 200 μl of the supernatant are transferred into an HPLC vial, and 54 are injected into the HPLC instrument.
  • Headspace Analysis:
  • Measurements were carried out on a Varian CP-4900 micro GC with two installed channels. Channel 1 was a 10 m Mol-sieve column running at 70° C., 200 kPa argon and a backflush time of 4.2 s, while channel 2 was a 10 m PPQ column running at 90° C., 150 kPa helium and no backflush. The injector temperature for both channels was 70° C. Runtimes were set to 120 s, but all peaks of interest would usually elute before 100 s. Specific CO uptake was determined by calculating CO consumption per gram of cells (dry weight—see below).
  • Cell Density:
  • Cell density was determined by counting bacterial cells in a defined aliquot of fermentation broth. Alternatively, the absorbance of the samples was measured at 600 nm (spectrophotometer) and the dry weight determined via calculation according to published procedures.
  • Metal Sulfide Solution 1:
  • Approximately 950 mL of solution A was transferred into a 1 L fermenter and sparged with nitrogen. H3PO4 (85% solution, 1.5 mL) was added and the pH adjusted to 5.3 using concentrated NH4OH(aq). Resazurin (1 mL of a 2 g/L solution) was added and the solution sparged with N2. Chromium(II)chloride was added until the ORP of the solution decreased to approximately −150 mV. 10×Solution(s) C were added before sodium polysulfide (1.44 mL of a 4.3M or 1 mL of a 6M solution) were added and the solution sparged with N2.
  • Example 1A Production of 2,3-butanediol by fermentation
  • Fermentive conversion of a substrate, using Clostridium autoethanogenum was conducted in a CSTR reactor over a two week period, with periodic monitoring. The media used for the CSTR experiments were prepared in accordance with the components listed in Table E. The phosphate salt mixture consisted of 0.65 mM Na2HPO4 and 15.3 mM NaH2PO4. All other components such as the phosphoric acid, the ammonium salts and the cysteine-hydrochloride were mixed into 800 ml of water before the buffer salts were added to the solution. Proceeding in this manner ensured that the pH increased above about 6.5 avoiding the precipitation of media components. The solution was diluted to 1 L and made anaerobic by heating to boiling and allowing it to cool to room temperature under a constant flow of N2 gas. Once cool, the solution was adjusted to the final pH of 5.3 and the B vitamins added. Anaerobicity was maintained throughout the experiment. Carbohydrate (5 g/L fructose) was added to the basic media formulation. The media solutions were introduced into the fermenters and optionally sparged with the respective CO containing gases from the start of the experiment, or after a predetermined interval. During these experiments, the pH was controlled to remain at 5.5 by adding an aqueous solution of NaOH. An actively growing Clostridium autoethanogenum culture was inoculated into the reactor at a level of 5% (v/v). The temperature of the reactor was maintained at 37° C. and agitation rate was 400 rpm.
  • Results:
  • Initially, the fermentation contained fructose as a substrate, which resulted in the production of acetic acid, ethanol and 2,3-butanediol. Over time, the fructose was consumed and a gas stream including CO (95% CO, 5% CO2) was sparged through the media. The media was maintained at pH 5.5 (Table 1). It should be noted that even when the carbohydrate had been consumed, the above mentioned products increased in concentration, clearly demonstrating that the CO was used to produce the products including 2,3-butanediol.
  • TABLE 1
    Monitoring of production of 2,3-butanediol, ethanol and acetate
    (concentrations in g/L) over time in a CSTR reactor.
    Time\hours Fructose Acetic acid Ethanol 2,3-Butanediol
    0 5 0 0 0
    23 5 0.123 0.018 0
    45 3.8 0.579 0.167 0.05
    110 0 4.753 2.8 1.2
    185 0 7.2 3.8 1.9
    324 0 6.736 4.9 1.91
  • Example 1B Production of 2,3-butanediol by Fermentation
  • In a further experiment, the conversion of a substrate by Clostridium autoethanogenum was conducted in a CSTR reactor over a 10 day period, with periodic monitoring. In this instance the fermenter and media were prepared in accordance with Example 1A, however the substrate was exclusively simulated steel mill gas (70% CO, 1% H2, 14% N2, 15% CO2) sparged continuously and the pH of the media was kept constant at 5.5 (Table 2). Conversion of the substrate again resulted in acetic acid, ethanol and 2,3-butanediol, demonstrating that even in the absence of a carbohydrate substrate at the commencement of the fermentation, acetic acid, ethanol and butanediol are produced.
  • TABLE 2
    Monitoring of production of 2,3-butanediol, ethanol and acetate
    (concentrations in g/L) over time in a CSTR batch reactor.
    Time\days Acetic acid Ethanol 2,3-Butanediol
    0 0 0 0
    6 4.5 0.5 0
    10 5 4 0.5
  • Example 2 Production of 2,3-butanediol by Fermentation
  • In a further experiment, the conversion of a substrate by Clostridium autoethanogenum was conducted in a CSTR reactor over a 3 day period, with periodic monitoring. In this instance, the fermenter and media were prepared in accordance with that described in Example 1A, however the substrate was simulated steel mill gas (70% CO, 1% H2, 14% N2, 15% CO2), sparged continuously and fructose (10 g/L) and the pH of the media was kept constant at 5.5 (Table 3). Conversion of the substrate again resulted in acetic acid, ethanol and 2,3-butanediol.
  • TABLE 3
    Monitoring of production of 2,3-butanediol, ethanol and acetate
    (concentrations in g/L) over time in a CSTR batch reactor.
    Time\hours Fructose Acetic acid Ethanol 2,3-Butanediol
    0 10 0 0 0
    15 9.8 0.8 0.2 0.05
    23 8.87 1.7 0.7 0.2
    39 5.3 3.7 2.3 0.9
    69 1.8 7.3 4 3.1
  • The final concentrations of acetate, ethanol and 2,3-butanediol were also compared between the fermenter experiments outlined in Examples 1A, 1B and 2, at the end of each experiment (note, these results relate to the final concentrations measured in tables 1-3 and are summarised for comparison in Table 4).
  • TABLE 4
    Examples of 2,3-butanediol production using alternative substrates
    in a CSTR reactor, measured on conclusion of each experiment.
    Final Final Final 2,3- Fermentation
    Substrate Acetate Ethanol Butanediol time (days)
    Fructose then Mill 6.7 4.9 1.9 13.5
    gas (Ex 1A)
    Mill gas only (Ex 1B) 5 4 0.5 10
    Fructose and Mill 7.3 4 3.1 2.9
    gas (Ex 2)
    Results are given in g/L.
  • Example 3 Production of 2,3-butanediol by Fermentation
  • In order to ascertain how media conditions may affect the production of 2,3-butanediol, serum bottles containing media comprising a selection of buffers were prepared and the fermentation products analysed at the end of the experiment (Table 5). Incubation was performed in 234 ml sealed serum bottles each containing 50 ml of the above described media (Table E), optionally buffered with either an acetate buffer (0.02M) or a citrate buffer (0.02M) and adjusted to pH 5.3. The 184 ml headspace of each serum bottle was initially N2 and then filled to an overpressure of 30 psi with either 95% CO, 5% CO2, or 70% CO, 15% CO2, 14% N2, 1% H2. Each bottle was inoculated with 2 ml of a Clostridium autoethanogenum culture. A shaking incubator was used and the reaction temperature was maintained at 37° C.
  • Once again, it is clear that 2,3-butanediol is produced irrespective of the buffer used in the experiment. Furthermore, it should also be noted that since the serum bottles were not pH controlled, the product also appeared to be produced with limited (or no) control of pH.
  • TABLE 5
    Examples of 2,3-butanediol production in a variety of media.
    Media used and Final Final Final 2,3-
    system Acetate Ethanol Butanediol
    Serum Bottle 0.02M 5.597 1.1 0.43
    acetate buffer
    Serum Bottle 0.02M 6.547 0.364 0.16
    Citrate buffer
    The media of the serum bottles were analysed after the active growth, i.e., the increase in cell mass levelled out after several days (4 to 7 days). Results are given in g/L.
  • Example 4 Batch Fermentation in CSTR
  • Approximately 1.3 L of solution A was transferred into a 2 L fermenter and sparged with nitrogen. Resazurin (1.35 mL of a 2 g/L solution) was added. H3PO4 (85% solution, 2.025 mL) was added and the pH adjusted to 5.3 using conc. NH4OH(aq). Chromium(II)chloride was added until the ORP of the solution decreased to approximately −150 mV. Sodium polysulfide (6.07 ml of a 4.3M solution) was added and the pH adjusted to 5.5 using concentrated HCl. The solution was sparged with N2 for 1 hour before the addition of metal sulfide solution 1 (150 ml) and Solution B (15 ml). The solution was sparged with N2 then CO containing gas (3% H2; 30% N2; 47% CO; 20% CO2), before inoculation with an actively growing Clostridium autoethanogenum culture at a level of approximately 5% (v/v). Gas flow rate was adjusted to ensure the microbial culture was not limited in CO in order to maintain a high specific CO uptake. Results of the fermentation are shown in Table 6.
  • TABLE 6
    2,3-butanediol productivity in a batch
    culture at varying specific CO uptakes.
    Average specific CO Average 2,3-butanediol
    Day uptake (mmol/g/min) production rate
    1-3 0.8  1.5 g/L/day
    5-6 0.1 0.25 g/L/day
  • Total 2,3-butanediol accumulation over 7.5 days was approx 7.5 g/L. It is recognised that 2,3-butanediol is produced at low levels at lower specific CO uptake rates. However, when the gas is supplied such that the CO uptake rate can be maintained over 0.4 mmol/g/min, 2,3-butanediol productivity increase significantly. In this instance, the specific CO uptake is maintained at an average of 0.8 mmol/g/min over several days and 1,3-butanediol is produced at a rate in excess of 1 g/L.
  • Example 5 Batch fermentation in CSTR
  • Approximately 1.3 L of solution A was transferred into a 2 L fermenter and sparged with nitrogen. H3PO4 (85% solution, 2.025 mL, 30 mM) was added and the pH adjusted to 5.3 using concentrated NH4OH(aq). Solution B (13.5 ml) was added and the solution sparged with N2. Chromium(II)chloride was added until the ORP of the solution decreased to approximately −150 mV. Resazurin (1.35 mL of a 2 g/L solution) was added. Sodium polysulfide (2.85 ml of a 6M solution) was added and the solution sparged with N2 for 12 hours before switching to CO containing gas (1% H2; 14% N2; 70% CO; 15% CO2). The pH was adjusted to 5.5 with concentrated HCl before the addition of metal sulfide solution 1 (150 ml). The solution was sparged with the CO containing gas for a further 30 minutes before inoculation with an actively growing Clostridium autoethanogenum culture at a level of approximately 5% (v/v). Again, gas flow rate was adjusted to ensure the microbial culture was not limited in CO in order to maintain a high specific CO uptake. Results of the fermentation are shown in Table 7.
  • TABLE 7
    2,3-butanediol productivity in a batch
    culture at varying specific CO uptakes.
    Average CO uptake Average 2,3-butanediol
    Day (mmol/g/min) production rate
    1-4 0.85  0.8 g/L/day
    5-6 0.3 0.25 g/L/day
  • Total 2,3-butanediol after approx 6 days was 5 g/L. Once again, elevated specific CO uptake results in significantly higher 2,3-butanediol productivity of at least 0.5 g/L/day.
  • Example 6 Batch Fermentation in CSTR
  • Approximately 1.3 L of solution A was transferred into a 1.5 L fermenter and sparged with nitrogen. H3PO4 (85% solution, 2.25 mL) was added and the pH adjusted to 5.3 using concentrated NH4OH(aq). Solution B (15 ml) was added and the solution sparged with N2. Chromium(II)chloride was added until the ORP of the solution decreased to approximately −150 mV. Resazurin (1.5 mL of a 2 g/L solution) was added. Sodium polysulfide (1.5 ml of a 3M solution) was added and the solution sparged with N2 for 1 hour. 0.1M solutions of FeCl2 (3.75 mL), CoCl2 (1.875 mL), NiCl2 (1.875 mL), H3BO3 (0.375 ml), Na2MoO4 (0.375 ml), MnCl2 (0.375 ml), Na2WO4 (0.375 ml) and ZnCl2 (0.1875 ml) were added and the solution sparged with CO containing gas (50% H2; 32% CO; 4% CO2; 32% CH4). The pH was adjusted to 5.5 with concentrated HCl before the addition of Solution C (150 ml). The solution was sparged with the CO containing gas for a further 30 minutes before inoculation with an actively growing Clostridium autoethanogenum culture at a level of approximately 5% (v/v). Gas flow rate was adjusted to ensure the microbial culture was not limited in CO in order to maintain a high specific CO uptake. Results of the fermentation are shown in Table 8.
  • TABLE 8
    2,3-butanediol productivity in a batch
    culture at varying specific CO uptakes.
    Average CO uptake Average 2,3-butanediol
    Day (mmol/g/min) production rate
    0-4  0.07 0
    5-14 0.15 0.2 g/L/day
  • Total 2,3-butanediol concentration after 4 days was approximately 3 g/L. While the rates achieved are less than previous fermentations (examples 4 and 5), the substrate stream comprises a substantial portion of hydrogen. The results show that 2,3-butanediol is produced when using a mixed CO/H2 substrate.
  • Example 7 Continuous Fermentation in Continuous Stirred Tank Reactor
  • Media was prepared at pH 5.5 as follows. All ingredients in Solution D, with the exception of Cysteine-HCl were mixed in 400 ml distilled water. This solution was made anaerobic by heating to boiling and allowing it to cool to room temperature under a constant flow of 95% CO, 5% CO2 gas. Once cool, the Cysteine-HCl was added and the pH of the solution adjusted to 5.5 before making the volume up to 1000 ml; anaerobicity was maintained throughout the experiments.
  • A five-litre bioreactor was charged with 4.9 L of LM33 media prepared as described above. The gas was switched to CO containing gas (1% H2; 14% N2; 70% CO; 15% CO2) at atmospheric pressure prior to inoculation with 100 ml of a Clostridium autoethanogenum culture. The bioreactor was maintained at 37° C. stirred at 200 rpm at the start of the culture. During the growth phase, the agitation was increased to 400 rpm. The pH was adjusted to 5.5 and maintained by automatic addition of 5 M NaOH. Fresh anaerobic media was continuously added into the bioreactor to maintain a defined biomass and acetate level in the bioreactor. 2,3 butanediol productivity is highlighted in Table 9.
  • TABLE 9
    2,3-butanediol productivity in a continuous culture.
    Average CO uptake Average 2,3-butanediol
    Day (mmol/g/min) production rate
     1-87 0.3 <0.1 g/L/day
    90-92 0.6 1.2 g/L/day
    93-95 0.4 0.87 g/L/day
  • During the first 89 days of continuous operation, the fermenter was operated under CO limited conditions and minimal 2,3-butanediol was produced. However, around day 88, gas flow was increased, such that specific CO uptake increased. At this stage, 2,3-butanediol productivity increased significantly to at least 1.2 g/L/day. Around day 92, the gas flow was reduced such that the specific uptake of the culture decreased to around 0.4 mmol/g/min and the 2,3-butanediol productivity also dropped. However, even at an average specific uptake of approximately 0.4 mmol/g/min, 2,3-butanediol productivity remained at least 0.5 g/L/day.
  • Example 8 Batch Fermentation in CSTR
  • Approximately 1.3 L of solution A was transferred into a 2 L fermenter and sparged with nitrogen. H3PO4 (85% solution, 1.5 ml) was added and the pH adjusted to 5.3 using conc.
  • NH4OH(aq). Solution B (15 ml) was added and the solution sparged with N2. Chromium(II)chloride was added until the ORP of the solution decreased to approximately −150 mV. Sodium polysulfide (1 ml of a 3M solution) was added and the solution sparged with N2 for 12 hours. 0.1M solutions of FeCl2 (3.75 mL), CoCl2 (1.875 mL), NiCl2 (1.875 mL), H3BO3 (0.375 ml), Na2MoO (0.375 ml), MnCl2 (0.375 ml), Na2WO4 (0.375 ml) and ZnCl2 (0.2 ml) were added and the solution sparged with CO containing gas (1% H2; 14% N2; 70% CO; 15% CO2). Resazurin (1 mL of a 2 g/L solution) was added. The pH was adjusted to 5.5 with concentrated HCl and the solution was sparged with the CO containing gas for a further 30 minutes before inoculation with an actively growing Clostridium autoethanogenum culture at a level of approximately 5% (v/v). Table 10 shows the accumulated 2,3-butanediol product in a fermenter after approximately 2 weeks operation. The specific CO uptake rates have been corrected for the culture viability. Culture viability was determined using the methods described in WO2009/022925, which is incorporated herein by reference.
  • TABLE 10
    2,3-butanediol accumulation after 14 days batch fermentation.
    2,3-butanediol
    Specific CO uptake (accumulated
    Day (mmol/g/min) product)
    13 0.6 8.67 g/L
    14 0.5 9.27 g/L
  • Over the 24 hour period from day 13-14, the specific CO uptake was maintained at approximately 0.5 mmol/g/min and 2,3-butanediol productivity was 0.6 g/L/day.
  • Example 9 Gene Regulation of 2,3-Butanediol Production in LZ1560
  • Samples were taken from three fermentations to determine gene expression during 2,3-butanediol production. One sample was taken from the batch fermentation described in Example 8 on day 13, wherein products including ethanol and 2,3-butanediol were being produced. The sample is designated R12 in the results hereinafter. The second sample was taken from a batch fermentation producing both ethanol and 2,3-butanediol. The sample is designated R11 in the results. The third sample (R2) was taken from the continuous fermentation operating under similar conditions as Example 7 on days 1-89. The microbial culture was CO limited and the fermentation broth had a stable acetate concentration of approximately 13 g/L, ethanol concentration of less than 1 g/L and insignificant amounts of 2,3-butanediol. Real-Time PCR was used to determine whether genes were upregulated or downregulated relative to R2.
  • RNA Extraction and cDNA Synthesis Procedure:
  • Total RNA was isolated from approximately 2.5×109 bacterial cells using Aurum Total RNA Fatty and Fibrous Tissue Kit (Biorad). On-column DNase was digested using the RNase-free DNase set (Biorad). Total RNA was quantified using spectrophotometer and its purity (measured by the A260/280 ratio) was determined before cDNA synthesis using iScript Select cDNA synthesis kit (Biorad).
  • Real-Time PCR Procedure:
  • Primers for Real-Time PCR, were designed using the freeware Primer3 based on LanzaTech's proprietary in-house genome sequence. Real-Time PCR reaction mixtures containing 12.5 μL 2×SYBR Green PCR Master Mix (Biorad), 1.54 of each of 1 μM primer forward and reverse, 5 μL of 10× diluted cDNA template, and sterile water to a total volume of 25 μL were assembled. The mixtures were heated to 95° C. for 3 minutes, followed by 40 cycles of 95° C. for 15 seconds, 55° C. for 15 seconds and 72° C. for 30 seconds. For detection of primer dimerisation or other artifacts of amplification, a melting-curve analysis was performed immediately after completion of the real-time PCR (38 cycles of 58° C. to 95° C. at 1° C./seconds). All reactions were performed in triplicate. Quantification of gene expression was performed using a MyiQ Single Colour Real-Time PCR Detection System (Biorad) and real-time data were analyzed using the iQ5 optical system software (Biorad).
  • Results:
  • The raw Ct values, together with the relative gene expression and standard errors, generated from the Real-Time PCR assay are presented in Table 11. RNA polymerase beta chain (rpoB) was selected as reference gene for normalizing gene expression. Relative quantification using the Comparative ΔCT method was used to calculate the relative gene expression of 2,3BDH. The acetate-producing culture (R2) was selected as calibrator (reference standard) in all analysis.
  • TABLE 11
    Derivation of relative gene expression values from raw Ct data.
    Relative expressions were normalized by rpoB and calibrated
    using Reactor 2. SE = standard error
    of the mean. (Any relative expression above 1 shows up regulation)
    Relative
    Relative expression
    Genes Reactor Raw Ct Mean Ct SD Ct expression SE
    rpoB 11 36.36 35.4 0.846 NA NA
    11 35.07
    11 34.77
    12 32.47 32.7 0.258 NA NA
    12 32.65
    12 32.98
    2 31.76 31.76 0.051 NA NA
    2 31.81
    2 31.71
    2,3BDH 11 27.01 26.57 0.422 4.75 1.8
    11 26.53
    11 26.17
    12 23.23 23.18 0.038 7.64 0.8
    12 23.15
    12 23.17
    2 24.81 25.18 0.559 1 0.23
    2 24.91
    2 25.82
  • Real-time PCR data presented in this study shows that 2,3-butanediol gene expression is significantly higher in solventogenic cultures (R11/R12) compared to acetogenic cultures (R2). The microbial culture of R12, which was producing approximately 0.6 g/L/day 2,3-butanediol at the time of cell harvest, shows the highest gene up-regulation (7.64±0.8 fold), relative to R2. This is followed by R11 with 4.75±1.8 fold up-regulation of the gene, which had a total 2,3-butanediol production of 1.53 g/L, when the cells were harvested.
  • FIG. 1 shows relative gene expression of 2,3-butanediol dehydrogenase (2,3BDH) in three fermenters (R11, R12 and R2). Acetate-producing R2 is selected as calibrator and gene expression was normalized using rpoB as reference gene. Error bar=standard error of mean. N=3. Clearly, 2,3-butanediol dehydrogenase is upregulated in microbial cultures that produce 2,3-butanediol. The microbial culture in R2 has a specific CO uptake of approximately 0.3 mmol/g/min, whereas the culture in R12 has a specific uptake of approximately 0.6 mmol/g/min. Increasing the amount of CO provided to the culture results in an increase in CO uptake and a subsequent increase in 2,3-butanediol dehydrogenase gene expression. The increase in 2,3-butanediol dehydrogenase gene expression results in an increase in overall 2,3-butanediol productivity.
  • The invention has been described herein with reference to certain preferred embodiments, in order to enable the reader to practice the invention without undue experimentation. Those skilled in the art will appreciate that the invention is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. Furthermore, titles, headings, or the like are provided to enhance the reader's comprehension of this document, and should not be read as limiting the scope of the present invention.
  • The entire disclosures of all applications, patents and publications, cited above and below, if any, are hereby incorporated by reference.
  • The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that that prior art forms part of the common general knowledge in the United States of America or any country in the world.
  • Throughout this specification and any claims which follow, unless the context requires otherwise, the words “comprise”, “comprising” and the like, are to be construed in an inclusive sense as opposed to an exclusive sense, that is to say, in the sense of “including, but not limited to”.

Claims (21)

1. A method of producing butanediol by microbial fermentation, the method including:
a. providing a substrate;
b. in a bioreactor containing a culture of one or more micro-organisms, anaerobically fermenting the substrate to produce butanediol.
2. A method according to claim 1, wherein the substrate comprises CO.
3. A method according to claim 2, wherein the butanediol is 2,3-butanediol.
4. A method according to claim 3, wherein the substrate comprising CO is provided at a sufficient level, such that 2,3-butanediol is produced.
5. A method according to claim 3, wherein the substrate comprising CO is provided such that a specific rate of CO uptake of at least 0.4 mmol CO/gram dry cells weight of bacteria/minute by the culture is maintained.
6. A method according to claim 5, wherein the substrate is provided such that a specific uptake rate of at least 0.6 mmol CO/g/min is maintained.
7. A method according to claim 5, wherein the substrate is provided such that a specific uptake rate of at least 0.8 mmol CO/g/min is maintained.
8. A method according to claim 5, wherein the substrate is provided such that a specific uptake rate of at least 1.0 mmol CO/g/min is maintained.
9. A method of producing 2,3-butanediol by microbial fermentation, the method including:
a. providing a substrate;
b. in a bioreactor containing a culture of one or more micro-organisms, anaerobically fermenting the substrate, wherein one or more micro-organisms includes one or more 2,3-butanediol dehydrogenase genes;
c. upregulating the 2,3-butanediol dehydrogenase gene(s), such that 2,3-butanediol is produced by the micro-organism(s).
10. A method according to claim 9, wherein the substrate comprises CO.
11. A method according to claim 10, wherein the substrate comprising CO is provided at a sufficient level, such that 2,3-butanediol is produced.
12. A method according to claim 10, wherein the substrate comprising CO is provided such that a specific rate of CO uptake of at least 0.4 mmol CO/gram dry cells weight of bacteria/minute by the culture is maintained.
13. A method according to claim 9, wherein one or more micro-organism(s) is Clostridium autoethanogenum.
14. A method according to claim 2, wherein the substrate comprising CO is gaseous and comprises at least about 15% to about 100% CO by volume.
15. A method according to claim 2, wherein the substrate comprising CO comprises gas obtained as by-product from an industrial process.
16. A method according to claim 15, wherein the substrate comprising CO comprises gas obtained from a steel mill.
17. A method according to claim 1 wherein the butanediol is 2,3-butanediol and the culture includes a culture of Clostridium autoethanogenum.
18. A method according to claim 17, wherein the substrate comprises one or more carbohydrates.
19. A method providing a substrate according to claim 18, wherein the method includes an additional step of providing a substrate comprising CO before, and/or at the same time, and/or after the step of providing a substrate comprising one or more carbohydrates.
20. 2,3-Butanediol produced by the method of claim 3.
21-23. (canceled)
US12/997,063 2008-06-09 2009-06-05 Production of butanediol by anaerobic microbial fermentation Abandoned US20110144393A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/997,063 US20110144393A1 (en) 2008-06-09 2009-06-05 Production of butanediol by anaerobic microbial fermentation
US13/777,806 US8658408B2 (en) 2008-06-09 2013-02-26 Process for production of alcohols by microbial fermentation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US6011308P 2008-06-09 2008-06-09
PCT/NZ2009/000101 WO2009151342A1 (en) 2008-06-09 2009-06-05 Production of butanediol by anaerobic microbial fermentation
US12/997,063 US20110144393A1 (en) 2008-06-09 2009-06-05 Production of butanediol by anaerobic microbial fermentation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/NZ2009/000101 A-371-Of-International WO2009151342A1 (en) 2008-06-09 2009-06-05 Production of butanediol by anaerobic microbial fermentation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/777,806 Continuation-In-Part US8658408B2 (en) 2008-06-09 2013-02-26 Process for production of alcohols by microbial fermentation

Publications (1)

Publication Number Publication Date
US20110144393A1 true US20110144393A1 (en) 2011-06-16

Family

ID=41416908

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/997,063 Abandoned US20110144393A1 (en) 2008-06-09 2009-06-05 Production of butanediol by anaerobic microbial fermentation
US13/777,806 Active US8658408B2 (en) 2008-06-09 2013-02-26 Process for production of alcohols by microbial fermentation

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/777,806 Active US8658408B2 (en) 2008-06-09 2013-02-26 Process for production of alcohols by microbial fermentation

Country Status (14)

Country Link
US (2) US20110144393A1 (en)
EP (1) EP2307556B1 (en)
JP (1) JP5618995B2 (en)
KR (1) KR101643429B1 (en)
CN (1) CN102317463B (en)
AU (1) AU2009258344B2 (en)
BR (1) BRPI0915017B1 (en)
CA (1) CA2727549C (en)
EA (1) EA018720B1 (en)
ES (1) ES2824838T3 (en)
NZ (1) NZ589632A (en)
PT (1) PT2307556T (en)
WO (1) WO2009151342A1 (en)
ZA (1) ZA201008795B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018140790A1 (en) * 2017-01-27 2018-08-02 Cytozyme Animal Nutrition, Inc. Animal nutrition compositions and related methods
CN110699388A (en) * 2019-11-18 2020-01-17 天津城建大学 Method for producing 2, 3-butanediol by using carbohydrate waste
US10674746B2 (en) 2015-10-27 2020-06-09 Cytozyme Animal Nutrition, Inc. Animal nutrition compositions and related methods
CN111793588A (en) * 2020-08-19 2020-10-20 广东工业大学 A kind of anaerobic bacteria culture medium and preparation method thereof
US11297851B2 (en) 2015-10-27 2022-04-12 Cytozyme Laboratories, Inc. Animal nutrition compositions and related methods

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ560757A (en) * 2007-10-28 2010-07-30 Lanzatech New Zealand Ltd Improved carbon capture in microbial fermentation of industrial gases to ethanol
US9879290B2 (en) * 2008-11-06 2018-01-30 Kiverdi, Inc. Industrial fatty acid engineering general system for modifying fatty acids
US20110300593A1 (en) * 2008-12-01 2011-12-08 Lanzatech New Zealand Limited Optimised fermentation media
WO2011038364A1 (en) 2009-09-27 2011-03-31 Opx Biotechnologies, Inc. Method for producing 3-hydroxypropionic acid and other products
CA2788045A1 (en) * 2010-01-27 2011-08-04 Opx Biotechnologies, Inc. Microorganism production of high-valve chemical products, and related compositions, methods and systems
CA2786903C (en) 2010-07-28 2015-01-20 Lanzatech New Zealand Limited Novel bacteria and methods of use thereof for producing ethanol and acetate
WO2012024522A2 (en) * 2010-08-19 2012-02-23 Lanzatech New Zealand Limited A process for producing chemicals using microbial fermentation of substrates comprising carbon monoxide
EP2450449A1 (en) 2010-11-09 2012-05-09 Ineos Commercial Services UK Limited Process and apparatus for the production of alcohols
MY158746A (en) 2010-10-22 2016-11-15 Lanzatech New Zealand Ltd Methods and systems for the production of hydrocarbon products
MY159783A (en) * 2010-10-22 2017-01-31 Lanzatech New Zealand Ltd Methods and systems for the production of alcohols and/or acids
AU2011320544B2 (en) * 2010-10-29 2014-05-01 Lanzatech Nz, Inc. Methods and systems for the production of hydrocarbon products
EP2450450A1 (en) 2010-11-09 2012-05-09 Ineos Commercial Services UK Limited Process and apparatus for producing ethylene via preparation of syngas
US20130252277A1 (en) * 2010-12-03 2013-09-26 Ineos Bio Sa Method of operation of fermentation of carbon monoxide containing gaseous substrate
WO2012074545A1 (en) 2010-12-03 2012-06-07 Ineos Bio Sa Method of operation of fermentation of gaseous substrate comprising hydrogen
EP2646561B1 (en) 2010-12-03 2019-07-24 Jupeng Bio (HK) Limited Method of operation of fermentation of carbon monoxide and hydrogen containing gaseous substrate
DE102011003387A1 (en) 2011-01-31 2012-08-02 Wacker Chemie Ag Process for the fermentative production of 2,3-butanediol
WO2012131627A1 (en) * 2011-03-31 2012-10-04 Lanzatech New Zealand Limited A fermentation process for controlling butanediol production
US20130005010A1 (en) 2011-06-30 2013-01-03 Peter Simpson Bell Bioreactor for syngas fermentation
US10584084B2 (en) 2011-10-14 2020-03-10 Toray Industries, Inc. Process for producing 2,3-butanediol
US12195781B2 (en) 2011-12-12 2025-01-14 Jupeng Bio (Hk) Limited Management of ethanol concentration during syngas fermentation
JP6512825B2 (en) * 2012-01-31 2019-05-15 ランザテク・ニュージーランド・リミテッド Recombinant microorganism and method of using the same
US9193947B2 (en) 2012-05-22 2015-11-24 Ineos Bio Sa Process for culturing microorganisms on a selected substrate
US10100336B2 (en) 2012-05-22 2018-10-16 Ineos Bio S.A. Syngas fermentation process and medium
WO2013177466A1 (en) * 2012-05-23 2013-11-28 Lanzatech New Zealand Limited A fermentation and simulated moving bed process
US20130323820A1 (en) 2012-06-01 2013-12-05 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
EP2859089B1 (en) 2012-06-08 2017-03-22 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
RU2723620C2 (en) * 2012-07-13 2020-06-16 Калиста, Инк. System, methods and compositions for bioprocessing
JP5638041B2 (en) 2012-07-25 2014-12-10 住友ゴム工業株式会社 Rubber composition for tire, tire member, and pneumatic tire
BR112015002940A2 (en) 2012-08-10 2018-04-24 Opx Biotechnologies Inc microorganisms and methods for the production of fatty acids and products derived from fatty acids.
JP5536840B2 (en) 2012-09-07 2014-07-02 住友ゴム工業株式会社 Rubber composition for tire, tire member, and pneumatic tire
US10233478B2 (en) 2012-09-19 2019-03-19 Ineos Bio Sa Process for reducing CO2 emissions and increasing alcohol productivity in syngas fermentation
US9909153B2 (en) 2012-11-09 2018-03-06 Calysta, Inc. Compositions and methods for biological production of fatty acid derivatives
PL2917356T3 (en) 2012-11-12 2019-08-30 Lanzatech New Zealand Limited Pyrolysis and torrefaction of biomass
US10100337B2 (en) * 2013-02-14 2018-10-16 Ineos Bio Sa Process for fermenting co-containing gaseous substrates
US9447438B2 (en) 2013-03-15 2016-09-20 Cargill, Incorporated Acetyl-coA carboxylases
CA2903462C (en) 2013-03-15 2016-11-01 Lanzatech New Zealand Limited A system and method for controlling metabolite production in a microbial fermentation
US20150079650A1 (en) * 2013-06-05 2015-03-19 Lanzatech New Zealand Limited Recombinant microorganisms exhibiting increased flux through a fermentation pathway
US9885063B2 (en) 2013-06-10 2018-02-06 Ineos Bio Sa Process for fermenting co-containing gaseous substrates in a low phosphate medium effective for reducing water usage
US9850503B2 (en) 2013-06-10 2017-12-26 Ineos Bio Sa Control of conductivity in anaerobic fermentation
WO2015010103A2 (en) 2013-07-19 2015-01-22 Opx Biotechnologies, Inc. Microorganisms and methods for the production of fatty acids and fatty acid derived products
US11408013B2 (en) 2013-07-19 2022-08-09 Cargill, Incorporated Microorganisms and methods for the production of fatty acids and fatty acid derived products
JP6175319B2 (en) 2013-09-10 2017-08-02 東レ株式会社 Process for producing 1,3-butadiene and / or 3-buten-2-ol
WO2015037580A1 (en) 2013-09-12 2015-03-19 東レ株式会社 Method for producing butadiene
US20150075062A1 (en) 2013-09-13 2015-03-19 Ineos Bio Sa Alcohol compositions and a process for their production
JP6485009B2 (en) * 2013-11-22 2019-03-20 東レ株式会社 Method for producing 2,3-butanediol
US10072275B2 (en) 2013-11-22 2018-09-11 Toray Industries, Inc. Method of producing 2,3-butanediol
AU2015211015B2 (en) 2014-01-28 2018-11-15 Lanzatech Nz, Inc. Method of producing a recombinant microorganism
FI20140114A7 (en) * 2014-04-16 2015-10-17 Eino Elias Hakalehto Production of hydrogen and other gaseous or liquid products in an accelerated bioprocess
US9701987B2 (en) * 2014-05-21 2017-07-11 Lanzatech New Zealand Limited Fermentation process for the production and control of pyruvate-derived products
KR102273086B1 (en) 2014-07-23 2021-07-05 푼다시온 테크날리아 리서치 앤드 이노베이션 Method for manufacturing 2,3-butanediol
EP2993228B1 (en) 2014-09-02 2019-10-09 Cargill, Incorporated Production of fatty acid esters
WO2016065085A1 (en) 2014-10-22 2016-04-28 Lanzatech New Zealand Limited Gas testing unit and method
CN110066718B (en) 2014-10-22 2022-09-20 朗泽科技新西兰有限公司 Multi-stage system and multi-stage biological process for converting CO to ethanol
KR101631387B1 (en) 2014-11-27 2016-06-16 에스케이이노베이션 주식회사 Amorphous calcium phosphate catalyst used for 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol and preparation method thereof
WO2016109286A1 (en) * 2014-12-31 2016-07-07 Indiana University Research & Technology Corporation Culture conditions that allow zymomonas mobilis to assimilate n2 gas as a nitrogen source during bio-ethanol production
TWI739734B (en) 2015-02-23 2021-09-21 紐西蘭商藍瑟科技紐西蘭有限公司 Recombinant acetogenic bacterium for the conversion of methane to products
JP6905518B2 (en) 2015-10-13 2021-07-21 ランザテク・ニュージーランド・リミテッド Genetically engineered bacteria, including energy-generating fermentation pathways
KR20180127632A (en) 2015-12-03 2018-11-29 란자테크 뉴질랜드 리미티드 Arginine supplementation to improve efficiency in gas fermentation acetogen
US10358661B2 (en) 2015-12-28 2019-07-23 Lanzatech New Zealand Limited Microorganism with modified hydrogenase activity
CN105505849B (en) * 2016-01-22 2019-09-20 南京工业大学 Genetically engineered bacteria co-producing butanol and 2,3-butanediol and its construction method and application
KR20180118651A (en) 2016-02-01 2018-10-31 란자테크 뉴질랜드 리미티드 Integrated fermentation and electrolytic process
EP3420089B1 (en) 2016-02-26 2021-12-29 LanzaTech NZ, Inc. Crispr/cas systems for c-1 fixing bacteria
JP7502029B2 (en) 2016-05-14 2024-06-18 ランザテク,インコーポレイテッド Modified aldehyde:microorganisms with ferredoxin oxidoreductase activity and related methods
KR102467394B1 (en) 2016-05-24 2022-11-15 에스케이이노베이션 주식회사 Method for preparing 1,3-butadiene and methylethylketone from 2,3-Butanediol using an adiabatic reactor
FR3051800B1 (en) 2016-05-31 2018-06-15 IFP Energies Nouvelles PROCESS FOR PRODUCING BTX BY CATALYTIC PYROLYSIS FROM NON-RECYCLED BIOMASS OF OXYGEN COMPOUNDS
FR3051799B1 (en) 2016-05-31 2018-06-15 IFP Energies Nouvelles PROCESS FOR PRODUCING BTX BY CATALYTIC PYROLYSIS FROM BIOMASS WITH INJECTION OF OXYGEN COMPOUNDS
KR101929631B1 (en) 2016-12-20 2018-12-14 서강대학교산학협력단 Method for manufacturing 1,3-butadien using microbial fermentation
CN110494566A (en) 2017-02-02 2019-11-22 嘉吉公司 Generate the genetically modified cell of C6-C10 derivative of fatty acid
AU2018329846B2 (en) 2017-09-08 2024-01-11 Lanzatech, Inc. Processes and systems for metabolite production using hydrogen rich C1-containing substrates
US11555209B2 (en) 2017-12-19 2023-01-17 Lanzatech, Inc. Microorganisms and methods for the biological production of ethylene glycol
AU2019218389B2 (en) 2018-02-12 2024-09-05 Lanzatech, Inc. A process for improving carbon conversion efficiency
AU2019257224B2 (en) 2018-04-20 2024-12-19 Lanzatech, Inc. Intermittent electrolysis streams
US11401496B2 (en) 2018-05-21 2022-08-02 Jupeng Bio, Inc. System and process for increasing protein product yield from bacterial cells
US11807891B2 (en) 2018-08-08 2023-11-07 Jupeng Bio, Inc. Carbon monoxide and carbon dioxide bioconversion process
KR102549843B1 (en) 2018-11-19 2023-06-29 란자테크, 인크. Integration of fermentation and gasification
AU2020215570B2 (en) * 2019-01-29 2023-03-30 Lanzatech, Inc. Production of bio-based liquefied petroleum gas
US11091415B2 (en) 2019-02-08 2021-08-17 Lanzatech, Inc. Process for recovering close boiling products
WO2020188033A1 (en) 2019-03-20 2020-09-24 Global Bioenergies Improved means and methods for producing isobutene from acetyl-coa
KR102023049B1 (en) * 2019-05-24 2019-09-20 한양대학교 산학협력단 Adsorption separation method of 2,3-butanediol isomer
KR20240158377A (en) 2019-07-11 2024-11-04 란자테크, 인크. Methods for optimizing gas utilization
US11932818B2 (en) 2020-03-16 2024-03-19 Lanzatech, Inc. Tail gas of gas fermentation to dry gasification feedstock
BR112022018609A2 (en) 2020-03-18 2022-11-08 Lanzatech Inc MICROORGANISM CAPABLE OF PRODUCING 2-PHENYL ETHANOL, AND METHOD OF PRODUCTION OF 2-PHENYL ETHANOL
MX2022013570A (en) 2020-04-29 2022-11-30 Lanzatech Inc Fermentative production of î²-ketoadipate from gaseous substrates.
MY197253A (en) 2020-06-06 2023-06-08 Lanzatech Inc Microorganism with knock-in at acetolactate decarboxylase gene locus
FR3114596B1 (en) 2020-09-29 2023-11-24 Ifp Energies Now Production of aromatics by reverse gas-to-water conversion, fermentation and recycling to pyrolysis.
FR3114595B1 (en) 2020-09-29 2023-11-24 Ifp Energies Now Production of aromatics by reverse gas-to-water conversion, fermentation and flavoring.
FR3114594B1 (en) 2020-09-29 2023-11-10 Ifp Energies Now Production of aromatics and ethanol by pyrolysis, reverse gas-to-water conversion, and fermentation.
CN116888268A (en) 2020-12-08 2023-10-13 巨鹏生物(香港)有限公司 Methods and compositions for controlling ethanol production
KR102240618B1 (en) 2021-01-28 2021-04-14 부경대학교 산학협력단 2,3-butanediol separation equipment and separation method with high separation efficiency by 2-heptanol extraction
AU2022218205A1 (en) 2021-02-08 2023-05-25 Lanzatech, Inc. Recombinant microorganisms and uses therefor
BR112023019832A2 (en) 2021-04-01 2023-11-07 Synthos Dwory 7 Spolka Z Ograniczona Odpowiedzialnoscia ADIABATICALLY CONDUCTED PROCESS FOR THE PRODUCTION OF 1,3-BUTADIENE FROM MIXTURES OF ETHANOL AND ACETALDEHYDE
WO2022217282A1 (en) 2021-04-09 2022-10-13 Lanzatech, Inc. Process and apparatus for providing a feedstock
JP7669795B2 (en) 2021-05-21 2025-04-30 住友ゴム工業株式会社 Cap tread and passenger car tires
JP7753673B2 (en) 2021-05-21 2025-10-15 住友ゴム工業株式会社 Rubber composition for passenger car tires and passenger car tires
JP7707651B2 (en) 2021-05-21 2025-07-15 住友ゴム工業株式会社 Cap tread and passenger car tires
US12241105B2 (en) 2021-07-20 2025-03-04 Lanzatech, Inc. Recombinant microorganisms and uses therefor
TW202307202A (en) 2021-08-06 2023-02-16 美商朗澤科技有限公司 Microorganisms and methods for improved biological production of ethylene glycol
FR3126993A1 (en) 2021-09-10 2023-03-17 IFP Energies Nouvelles Ethanol production by chemical loop combustion, reverse water gas conversion, and fermentation.
FR3126992A1 (en) 2021-09-10 2023-03-17 IFP Energies Nouvelles Ethanol production by oxy-fuel combustion, reverse water gas conversion, and fermentation.
US12091648B2 (en) 2021-11-03 2024-09-17 Lanzatech, Inc. System and method for generating bubbles in a vessel
US12280331B2 (en) 2022-04-29 2025-04-22 Lanzatech, Inc. Low residence time gas separator
US12077800B2 (en) 2022-06-16 2024-09-03 Lanzatech, Inc. Liquid distributor system and process of liquid distribution
AU2023286621A1 (en) 2022-06-21 2025-01-09 Lanzatech, Inc. Microorganisms and methods for the continuous co-production of tandem repeat proteins and chemical products from c1-substrates
AU2023289395A1 (en) 2022-06-21 2025-01-09 Lanzatech, Inc. Microorganisms and methods for the continuous co-production of high-value, specialized proteins and chemical products from c1-substrates
WO2024036187A1 (en) 2022-08-10 2024-02-15 Lanzatech, Inc. Carbon sequestration in soils with production of chemical products
US20240392328A1 (en) 2023-05-24 2024-11-28 Jupeng Bio (Hk) Limited Comprehensive carbon dioxide and carbon monoxide sequestration process and system
US12281344B2 (en) 2023-06-05 2025-04-22 Lanzatech, Inc. Integrated gas fermentation
US12359224B2 (en) 2023-06-05 2025-07-15 Lanzatech, Inc. Integrated gas fermentation and carbon black processes
US20240417758A1 (en) 2023-06-15 2024-12-19 Jupeng Bio (Hk) Limited Processes for fixation of carbon dioxide
US20250092344A1 (en) * 2023-09-15 2025-03-20 Lanzatech, Inc. Process and system for continuous gas fermentation

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539293A (en) * 1983-05-10 1985-09-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Production of butanol by fermentation in the presence of cocultures of clostridium
US4851344A (en) * 1987-02-19 1989-07-25 Basf Aktiengesellschaft Microbial reduction of monocarboxylic and dicarboxylic acids in the presence of carbon monoxide and/or formates plus mediators
US5173429A (en) * 1990-11-09 1992-12-22 The Board Of Trustees Of The University Of Arkansas Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism
US5593886A (en) * 1992-10-30 1997-01-14 Gaddy; James L. Clostridium stain which produces acetic acid from waste gases
US5807722A (en) * 1992-10-30 1998-09-15 Bioengineering Resources, Inc. Biological production of acetic acid from waste gases with Clostridium ljungdahlii
US5821111A (en) * 1994-03-31 1998-10-13 Bioengineering Resources, Inc. Bioconversion of waste biomass to useful products
US6136577A (en) * 1992-10-30 2000-10-24 Bioengineering Resources, Inc. Biological production of ethanol from waste gases with Clostridium ljungdahlii
USRE37175E1 (en) * 1995-11-28 2001-05-15 Olympus Optical Co., Ltd Image display apparatus
US6236577B1 (en) * 1999-07-02 2001-05-22 Matsushita Electric Industrial Co., Ltd. Power circuit with stable main and auxiliary power outputs
US6340581B1 (en) * 1992-10-30 2002-01-22 Bioengineering Resources, Inc. Biological production of products from waste gases
US6368819B1 (en) * 1998-09-08 2002-04-09 Bioengineering Resources, Inc. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth
US6818426B2 (en) * 2000-10-31 2004-11-16 Daicel Chemical Industries, Ltd. (R)-2,3-butanediol dehydrogenase
US20050003500A1 (en) * 2003-06-06 2005-01-06 Daicel Chemical Industries, Ltd. (2S, 3S) -2,3-butanediol dehydrogenase
US7285402B2 (en) * 2000-07-25 2007-10-23 Emmaus Foundation, Inc. Methods for increasing the production of ethanol from microbial fermentation
US20070275447A1 (en) * 2006-05-25 2007-11-29 Lewis Randy S Indirect or direct fermentation of biomass to fuel alcohol
US20100323417A1 (en) * 2007-10-28 2010-12-23 Lanzatech New Zealand Limited Carbon capture in fermentation

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129412A (en) 1974-08-30 1976-03-12 Kuraray Co Butanjioorurui no seizohoho
JPS5368709A (en) 1976-12-01 1978-06-19 Kuraray Co Ltd Preparation of butanediols
JPS5920238A (en) 1982-07-26 1984-02-01 Daicel Chem Ind Ltd Production of butanediol
FR2564483B1 (en) 1984-05-18 1986-11-21 Charbonnages Ste Chimique PROCESS FOR THE MANUFACTURE OF 2,3 BUTANE DIOL BY AEROBIC FERMENTATION OF A SUBSTRATE BY STRAINS OF BACILLUS POLYMYXA
FR2574784B1 (en) 1984-12-14 1987-01-09 Charbonnages Ste Chimique NEW PROCESS FOR THE EXTRACTION OF BUTANEDIOL 2-3 FROM AQUEOUS SOLUTIONS CONTAINING
DE4017113A1 (en) 1990-05-28 1991-12-05 Biotechnolog Forschung Gmbh Prodn. of butane 2,3-di ol by batch fermentation of molasses - with inhibition of cell growth after complete uptake of carbohydrate
IN190544B (en) 1994-10-05 2003-08-09 Council Scient Ind Res
JPH10234390A (en) 1997-02-25 1998-09-08 Daicel Chem Ind Ltd Production of optically active butanediol using microorganism
CN1087277C (en) 1999-08-27 2002-07-10 清华大学 Quickly solidified doctor blading process for forming electronic ceramic substrate and ceramic sheet devices
JP4630486B2 (en) * 2001-05-28 2011-02-09 ダイセル化学工業株式会社 Novel (R) -2,3-butanediol dehydrogenase, method for producing the same, and method for producing optically active alcohol using the same
CN1246465C (en) 2004-04-29 2006-03-22 清华大学 1,3-propylene glycol and 2,3-butanediol production method using glecerol by microorganism two-step fermentation method
JP5149785B2 (en) 2005-04-12 2013-02-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Treatment of biomass to obtain ethanol
CN100427605C (en) 2005-06-17 2008-10-22 清华大学 A method for producing 1,3-propanediol and 2,3-butanediol from crude starch raw material
NZ546496A (en) * 2006-04-07 2008-09-26 Lanzatech New Zealand Ltd Gas treatment process
US8206970B2 (en) 2006-05-02 2012-06-26 Butamax(Tm) Advanced Biofuels Llc Production of 2-butanol and 2-butanone employing aminobutanol phosphate phospholyase
US7659104B2 (en) * 2006-05-05 2010-02-09 E.I. Du Pont De Nemours And Company Solvent tolerant microorganisms and methods of isolation
CN1884560B (en) 2006-05-31 2011-08-24 华东理工大学 A kind of method of fermentation production 2,3-butanediol
US7704723B2 (en) 2006-08-31 2010-04-27 The Board Of Regents For Oklahoma State University Isolation and characterization of novel clostridial species
GB2441525B (en) 2006-09-07 2011-08-03 Whirlwind Utilities Ltd Pipe cleaning apparatus
AU2008212826A1 (en) * 2007-02-09 2008-08-14 Zeachem Inc. Energy efficient methods to produce products
CA2678325A1 (en) 2007-02-13 2008-08-21 Cv Therapeutics, Inc. Use of ranolazine for the treatment of non-coronary microvascular diseases
NZ553984A (en) 2007-03-19 2009-07-31 Lanzatech New Zealand Ltd Alcohol production process
US20080305540A1 (en) 2007-06-08 2008-12-11 Robert Hickey Membrane supported bioreactor for conversion of syngas components to liquid products
US20090035848A1 (en) 2007-08-03 2009-02-05 Robert Hickey Moving bed biofilm reactor (mbbr) system for conversion of syngas components to liquid products
WO2009022925A1 (en) 2007-08-15 2009-02-19 Lanzatech New Zealand Limited Processes of producing alcohols
EP2217696B1 (en) * 2007-11-13 2015-09-16 Lanzatech New Zealand Limited Novel bacteria and methods of use thereof
CA2712779C (en) * 2008-01-22 2021-03-16 Genomatica, Inc. Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539293A (en) * 1983-05-10 1985-09-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Production of butanol by fermentation in the presence of cocultures of clostridium
US4851344A (en) * 1987-02-19 1989-07-25 Basf Aktiengesellschaft Microbial reduction of monocarboxylic and dicarboxylic acids in the presence of carbon monoxide and/or formates plus mediators
US5173429A (en) * 1990-11-09 1992-12-22 The Board Of Trustees Of The University Of Arkansas Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism
US6136577A (en) * 1992-10-30 2000-10-24 Bioengineering Resources, Inc. Biological production of ethanol from waste gases with Clostridium ljungdahlii
US5807722A (en) * 1992-10-30 1998-09-15 Bioengineering Resources, Inc. Biological production of acetic acid from waste gases with Clostridium ljungdahlii
US5593886A (en) * 1992-10-30 1997-01-14 Gaddy; James L. Clostridium stain which produces acetic acid from waste gases
US6340581B1 (en) * 1992-10-30 2002-01-22 Bioengineering Resources, Inc. Biological production of products from waste gases
US5821111A (en) * 1994-03-31 1998-10-13 Bioengineering Resources, Inc. Bioconversion of waste biomass to useful products
USRE37175E1 (en) * 1995-11-28 2001-05-15 Olympus Optical Co., Ltd Image display apparatus
USRE39175E1 (en) * 1998-09-08 2006-07-11 Bioengineering Resources, Inc. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth
US6368819B1 (en) * 1998-09-08 2002-04-09 Bioengineering Resources, Inc. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth
US6753170B2 (en) * 1998-09-08 2004-06-22 Bioengineering Resources, Inc. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth
US7196218B2 (en) * 1998-09-08 2007-03-27 Celanese International Corporation Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth
US6236577B1 (en) * 1999-07-02 2001-05-22 Matsushita Electric Industrial Co., Ltd. Power circuit with stable main and auxiliary power outputs
US7285402B2 (en) * 2000-07-25 2007-10-23 Emmaus Foundation, Inc. Methods for increasing the production of ethanol from microbial fermentation
US6818426B2 (en) * 2000-10-31 2004-11-16 Daicel Chemical Industries, Ltd. (R)-2,3-butanediol dehydrogenase
US20050003500A1 (en) * 2003-06-06 2005-01-06 Daicel Chemical Industries, Ltd. (2S, 3S) -2,3-butanediol dehydrogenase
US20070275447A1 (en) * 2006-05-25 2007-11-29 Lewis Randy S Indirect or direct fermentation of biomass to fuel alcohol
US20100323417A1 (en) * 2007-10-28 2010-12-23 Lanzatech New Zealand Limited Carbon capture in fermentation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10674746B2 (en) 2015-10-27 2020-06-09 Cytozyme Animal Nutrition, Inc. Animal nutrition compositions and related methods
US11297851B2 (en) 2015-10-27 2022-04-12 Cytozyme Laboratories, Inc. Animal nutrition compositions and related methods
WO2018140790A1 (en) * 2017-01-27 2018-08-02 Cytozyme Animal Nutrition, Inc. Animal nutrition compositions and related methods
CN110699388A (en) * 2019-11-18 2020-01-17 天津城建大学 Method for producing 2, 3-butanediol by using carbohydrate waste
CN111793588A (en) * 2020-08-19 2020-10-20 广东工业大学 A kind of anaerobic bacteria culture medium and preparation method thereof

Also Published As

Publication number Publication date
CA2727549C (en) 2014-08-26
ES2824838T3 (en) 2021-05-13
JP2011522563A (en) 2011-08-04
EP2307556A1 (en) 2011-04-13
AU2009258344B2 (en) 2013-11-07
ZA201008795B (en) 2013-09-25
KR101643429B1 (en) 2016-07-27
AU2009258344A1 (en) 2009-12-17
BRPI0915017B1 (en) 2018-12-26
NZ589632A (en) 2013-03-28
KR20110033193A (en) 2011-03-30
EA201071379A1 (en) 2011-08-30
EP2307556A4 (en) 2012-03-28
CN102317463A (en) 2012-01-11
US8658408B2 (en) 2014-02-25
CN102317463B (en) 2014-12-03
EP2307556B1 (en) 2020-08-05
EA018720B1 (en) 2013-10-30
JP5618995B2 (en) 2014-11-05
CA2727549A1 (en) 2009-12-17
WO2009151342A1 (en) 2009-12-17
PT2307556T (en) 2020-10-23
US20130177955A1 (en) 2013-07-11
BRPI0915017A2 (en) 2015-09-01

Similar Documents

Publication Publication Date Title
AU2009258344B2 (en) Production of butanediol by anaerobic microbial fermentation
US8900836B2 (en) Acid production by fermentation
US8673603B2 (en) Fermentation process for controlling butanediol production
US8222013B2 (en) Bacteria and methods of use thereof
US8293509B2 (en) Alcohol production process
US8119378B2 (en) Microbial alcohol production process
US9624512B2 (en) Alcohol production process
EP3058080B1 (en) Process for carbon capture in gas fermentation
EP3146058B1 (en) Fermentation process for the production and control of pyruvate-derived products
Hild et al. Effect of nutrient limitation on product formation during continuous fermentation of xylose with Thermoanaerobacter ethanolicus JW200 Fe (7)
CN102858986A (en) Alcohol production process
WO2014140335A1 (en) Method for production of n-propanol and other c3-containing products from syngas by symbiotic co-cultures of anaerobic microorganisms
US8852918B2 (en) Bacteria and methods of use thereof
HK1150632B (en) Production of butanediol by anaerobic microbial fermentation
HK1150632A (en) Production of butanediol by anaerobic microbial fermentation
HK1145406B (en) Novel bacteria and methods of use thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: LANZATECH NEW ZEALAND LIMITED, NEW ZEALAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIMPSON, SEAN DENNIS;TRAN, PHUONG LOAN;MIHALCEA, CHRISTOPHE DANIEL;AND OTHERS;SIGNING DATES FROM 20110124 TO 20110228;REEL/FRAME:025908/0385

AS Assignment

Owner name: VENTURE LENDING & LEASING VI, INC., CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNORS:LANZATECH NEW ZEALAND LIMITED;LANZATECH, INC.;LANZATECH FREEDOM PINES BIOREFINERY LLC;AND OTHERS;REEL/FRAME:028991/0471

Effective date: 20120914

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: LANZATECH PRIVATE LIMITED, INDIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:VENTURE LENDING & LEASING VI, INC.;REEL/FRAME:042051/0377

Effective date: 20170320

Owner name: LANZATECH FREEDOM PINES BIOREFINERY LLC, GEORGIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:VENTURE LENDING & LEASING VI, INC.;REEL/FRAME:042051/0377

Effective date: 20170320

Owner name: LANZATECH, INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:VENTURE LENDING & LEASING VI, INC.;REEL/FRAME:042051/0377

Effective date: 20170320

Owner name: LANZATECH HONG KONG LIMITED, HONG KONG

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:VENTURE LENDING & LEASING VI, INC.;REEL/FRAME:042051/0377

Effective date: 20170320

Owner name: LANZATECH NEW ZEALAND, NEW ZEALAND

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:VENTURE LENDING & LEASING VI, INC.;REEL/FRAME:042051/0377

Effective date: 20170320

AS Assignment

Owner name: LANZATECH NZ, INC., ILLINOIS

Free format text: CHANGE OF NAME;ASSIGNOR:LANZATECH NEW ZEALAND LIMITED;REEL/FRAME:059911/0400

Effective date: 20211028

AS Assignment

Owner name: LANZATECH PRIVATE LIMITED, INDIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE APPPLICATION 13467969 PREVIOUSLY RECORDED AT REEL: 042051 FRAME: 0377. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:VENTURE LENDING & LEASING VI, INC.;REEL/FRAME:061053/0481

Effective date: 20170320

Owner name: LANZATECH HONG KONG LIMITED, HONG KONG

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE APPPLICATION 13467969 PREVIOUSLY RECORDED AT REEL: 042051 FRAME: 0377. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:VENTURE LENDING & LEASING VI, INC.;REEL/FRAME:061053/0481

Effective date: 20170320

Owner name: LANZATECH FREEDOM PINES BIOREFINERY LLC, GEORGIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE APPPLICATION 13467969 PREVIOUSLY RECORDED AT REEL: 042051 FRAME: 0377. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:VENTURE LENDING & LEASING VI, INC.;REEL/FRAME:061053/0481

Effective date: 20170320

Owner name: LANZATECH, INC., ILLINOIS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE APPPLICATION 13467969 PREVIOUSLY RECORDED AT REEL: 042051 FRAME: 0377. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:VENTURE LENDING & LEASING VI, INC.;REEL/FRAME:061053/0481

Effective date: 20170320

Owner name: LANZATECH NEW ZEALAND, NEW ZEALAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE APPPLICATION 13467969 PREVIOUSLY RECORDED AT REEL: 042051 FRAME: 0377. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:VENTURE LENDING & LEASING VI, INC.;REEL/FRAME:061053/0481

Effective date: 20170320

Owner name: VENTURE LENDING & LEASING VI, INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE U.S. APPLICATION NUMBER 13497,969 PREVIOUSLY RECORD PREVIOUSLY RECORDED AT REEL: 028991 FRAME: 0471. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:LANZATECH NEW ZEALAND LIMITED;LANZATECH, INC.;LANZATECH FREEDOM PINES BIOREFINERY LLC;AND OTHERS;SIGNING DATES FROM 20120914 TO 20210914;REEL/FRAME:061053/0365

AS Assignment

Owner name: LANZATECH NZ, INC., ILLINOIS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE U.S. PATENT NUMBER 8,979,228 PREVIOUSLY RECORDED AT REEL: 059911 FRAME: 0400. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:LANZATECH NEW ZEALAND LIMITED;REEL/FRAME:061058/0076

Effective date: 20211028

AS Assignment

Owner name: LANZATECH NZ INC., ILLINOIS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE PATENT NUMBE 9,5348,20 PREVIOUSLY RECORDED AT REEL: 059911 FRAME: 0400. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:LANZATECH NEW ZEALAND LIMITED;REEL/FRAME:061084/0646

Effective date: 20211028

Owner name: INC., LANZATECH N, ILLINOIS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE PATENT NUMBE 9,5348,20 PREVIOUSLY RECORDED AT REEL: 059911 FRAME: 0400. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:LANZATECH NEW ZEALAND LIMITED;REEL/FRAME:061084/0646

Effective date: 20211028