US20110059164A1 - Encapsulation of oxidatively unstable compounds - Google Patents
Encapsulation of oxidatively unstable compounds Download PDFInfo
- Publication number
- US20110059164A1 US20110059164A1 US12/811,459 US81145909A US2011059164A1 US 20110059164 A1 US20110059164 A1 US 20110059164A1 US 81145909 A US81145909 A US 81145909A US 2011059164 A1 US2011059164 A1 US 2011059164A1
- Authority
- US
- United States
- Prior art keywords
- layer
- encapsulated material
- core
- organelle
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005538 encapsulation Methods 0.000 title description 6
- 150000001875 compounds Chemical class 0.000 title description 4
- 239000000463 material Substances 0.000 claims abstract description 123
- 210000003463 organelle Anatomy 0.000 claims abstract description 51
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000001301 oxygen Substances 0.000 claims abstract description 34
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 34
- 230000003647 oxidation Effects 0.000 claims abstract description 23
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 23
- 230000004888 barrier function Effects 0.000 claims abstract description 22
- 239000000592 Artificial Cell Substances 0.000 claims abstract description 17
- 239000010410 layer Substances 0.000 claims description 148
- 239000000835 fiber Substances 0.000 claims description 75
- -1 metabiotic Substances 0.000 claims description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 54
- 239000000203 mixture Substances 0.000 claims description 49
- 239000003963 antioxidant agent Substances 0.000 claims description 42
- 235000006708 antioxidants Nutrition 0.000 claims description 42
- 239000002245 particle Substances 0.000 claims description 34
- 238000002470 solid-phase micro-extraction Methods 0.000 claims description 32
- 150000003904 phospholipids Chemical class 0.000 claims description 31
- 102000004169 proteins and genes Human genes 0.000 claims description 30
- 108090000623 proteins and genes Proteins 0.000 claims description 30
- 150000001720 carbohydrates Chemical class 0.000 claims description 27
- 235000014633 carbohydrates Nutrition 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 27
- 235000013305 food Nutrition 0.000 claims description 22
- 239000000416 hydrocolloid Substances 0.000 claims description 20
- 101710089395 Oleosin Proteins 0.000 claims description 19
- 239000007787 solid Substances 0.000 claims description 18
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 claims description 17
- 230000003078 antioxidant effect Effects 0.000 claims description 15
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 claims description 15
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical class O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 14
- 229930003799 tocopherol Natural products 0.000 claims description 14
- 239000011732 tocopherol Substances 0.000 claims description 14
- 241000196324 Embryophyta Species 0.000 claims description 13
- 229920000881 Modified starch Polymers 0.000 claims description 13
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 claims description 13
- 235000019426 modified starch Nutrition 0.000 claims description 13
- 240000008042 Zea mays Species 0.000 claims description 12
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 12
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 12
- 235000005822 corn Nutrition 0.000 claims description 12
- 239000004368 Modified starch Substances 0.000 claims description 11
- 235000010384 tocopherol Nutrition 0.000 claims description 11
- 229960001295 tocopherol Drugs 0.000 claims description 11
- 229920002774 Maltodextrin Polymers 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 10
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 claims description 9
- 108010010803 Gelatin Proteins 0.000 claims description 9
- 229920000159 gelatin Polymers 0.000 claims description 9
- 235000019322 gelatine Nutrition 0.000 claims description 9
- 235000011852 gelatine desserts Nutrition 0.000 claims description 9
- 235000010445 lecithin Nutrition 0.000 claims description 9
- 239000000787 lecithin Substances 0.000 claims description 9
- 229940067606 lecithin Drugs 0.000 claims description 8
- 150000002632 lipids Chemical class 0.000 claims description 8
- 235000010469 Glycine max Nutrition 0.000 claims description 7
- UPYKUZBSLRQECL-UKMVMLAPSA-N Lycopene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1C(=C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=C)CCCC2(C)C UPYKUZBSLRQECL-UKMVMLAPSA-N 0.000 claims description 7
- JEVVKJMRZMXFBT-XWDZUXABSA-N Lycophyll Natural products OC/C(=C/CC/C(=C\C=C\C(=C/C=C/C(=C\C=C\C=C(/C=C/C=C(\C=C\C=C(/CC/C=C(/CO)\C)\C)/C)\C)/C)\C)/C)/C JEVVKJMRZMXFBT-XWDZUXABSA-N 0.000 claims description 7
- 239000005913 Maltodextrin Substances 0.000 claims description 7
- 229930182558 Sterol Natural products 0.000 claims description 7
- 239000008273 gelatin Substances 0.000 claims description 7
- 235000012661 lycopene Nutrition 0.000 claims description 7
- 239000001751 lycopene Substances 0.000 claims description 7
- 229960004999 lycopene Drugs 0.000 claims description 7
- OAIJSZIZWZSQBC-GYZMGTAESA-N lycopene Chemical compound CC(C)=CCC\C(C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C(/C)CCC=C(C)C OAIJSZIZWZSQBC-GYZMGTAESA-N 0.000 claims description 7
- 229940035034 maltodextrin Drugs 0.000 claims description 7
- 150000003432 sterols Chemical class 0.000 claims description 7
- 235000003702 sterols Nutrition 0.000 claims description 7
- ZCIHMQAPACOQHT-ZGMPDRQDSA-N trans-isorenieratene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/c1c(C)ccc(C)c1C)C=CC=C(/C)C=Cc2c(C)ccc(C)c2C ZCIHMQAPACOQHT-ZGMPDRQDSA-N 0.000 claims description 7
- 244000068988 Glycine max Species 0.000 claims description 6
- KBPHJBAIARWVSC-XQIHNALSSA-N trans-lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C KBPHJBAIARWVSC-XQIHNALSSA-N 0.000 claims description 6
- 235000021466 carotenoid Nutrition 0.000 claims description 5
- 150000001747 carotenoids Chemical class 0.000 claims description 5
- 235000012680 lutein Nutrition 0.000 claims description 5
- 239000001656 lutein Substances 0.000 claims description 5
- 229960005375 lutein Drugs 0.000 claims description 5
- KBPHJBAIARWVSC-RGZFRNHPSA-N lutein Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)=C[C@H](O)CC1(C)C KBPHJBAIARWVSC-RGZFRNHPSA-N 0.000 claims description 5
- ORAKUVXRZWMARG-WZLJTJAWSA-N lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C ORAKUVXRZWMARG-WZLJTJAWSA-N 0.000 claims description 5
- 229940088594 vitamin Drugs 0.000 claims description 5
- 229930003231 vitamin Natural products 0.000 claims description 5
- 235000013343 vitamin Nutrition 0.000 claims description 5
- 239000011782 vitamin Substances 0.000 claims description 5
- FJHBOVDFOQMZRV-XQIHNALSSA-N xanthophyll Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C=C(C)C(O)CC2(C)C FJHBOVDFOQMZRV-XQIHNALSSA-N 0.000 claims description 5
- 239000002775 capsule Substances 0.000 claims description 4
- 239000003054 catalyst Substances 0.000 claims description 4
- 239000000499 gel Substances 0.000 claims description 4
- 239000011241 protective layer Substances 0.000 claims description 4
- 108090000790 Enzymes Proteins 0.000 claims description 3
- 102000004190 Enzymes Human genes 0.000 claims description 3
- 241001465754 Metazoa Species 0.000 claims description 3
- 159000000007 calcium salts Chemical class 0.000 claims description 3
- 229940079593 drug Drugs 0.000 claims description 3
- 239000003814 drug Substances 0.000 claims description 3
- 239000000796 flavoring agent Substances 0.000 claims description 3
- 235000019634 flavors Nutrition 0.000 claims description 3
- 235000020660 omega-3 fatty acid Nutrition 0.000 claims description 3
- 239000011731 tocotrienol Substances 0.000 claims description 3
- 229930003802 tocotrienol Natural products 0.000 claims description 3
- 235000019148 tocotrienols Nutrition 0.000 claims description 3
- GJJVAFUKOBZPCB-UHFFFAOYSA-N 2-methyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-3,4-dihydrochromen-6-ol Chemical compound OC1=CC=C2OC(CCC=C(C)CCC=C(C)CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-UHFFFAOYSA-N 0.000 claims description 2
- 239000000975 dye Substances 0.000 claims description 2
- 239000003205 fragrance Substances 0.000 claims description 2
- 239000002417 nutraceutical Substances 0.000 claims description 2
- 235000021436 nutraceutical agent Nutrition 0.000 claims description 2
- 235000020665 omega-6 fatty acid Nutrition 0.000 claims description 2
- 150000002894 organic compounds Chemical class 0.000 claims description 2
- 239000000049 pigment Substances 0.000 claims description 2
- 239000006041 probiotic Substances 0.000 claims description 2
- 235000018291 probiotics Nutrition 0.000 claims description 2
- 239000010773 plant oil Substances 0.000 claims 4
- 235000014058 juice drink Nutrition 0.000 claims 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 claims 2
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 claims 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 claims 1
- 150000004696 coordination complex Chemical class 0.000 claims 1
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 claims 1
- 230000000529 probiotic effect Effects 0.000 claims 1
- 229940031439 squalene Drugs 0.000 claims 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 claims 1
- 150000003445 sucroses Chemical class 0.000 claims 1
- 150000003625 trehaloses Chemical class 0.000 claims 1
- 150000003722 vitamin derivatives Chemical class 0.000 claims 1
- 239000004615 ingredient Substances 0.000 abstract description 21
- 230000001681 protective effect Effects 0.000 abstract description 11
- 238000003860 storage Methods 0.000 abstract description 8
- 230000003278 mimic effect Effects 0.000 abstract description 5
- 238000010525 oxidative degradation reaction Methods 0.000 abstract description 4
- 125000003203 triacylglycerol group Chemical group 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 93
- 239000003921 oil Substances 0.000 description 75
- 235000019198 oils Nutrition 0.000 description 75
- 239000011257 shell material Substances 0.000 description 55
- 239000000047 product Substances 0.000 description 37
- 238000002360 preparation method Methods 0.000 description 28
- 235000018102 proteins Nutrition 0.000 description 27
- 239000000243 solution Substances 0.000 description 26
- 235000010443 alginic acid Nutrition 0.000 description 23
- 229920000615 alginic acid Polymers 0.000 description 23
- 235000000346 sugar Nutrition 0.000 description 23
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 18
- 239000000843 powder Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- 239000007921 spray Substances 0.000 description 16
- 241000251468 Actinopterygii Species 0.000 description 15
- 229920002472 Starch Polymers 0.000 description 15
- 235000019688 fish Nutrition 0.000 description 15
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 14
- 229930006000 Sucrose Natural products 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 14
- 235000019698 starch Nutrition 0.000 description 14
- 239000008107 starch Substances 0.000 description 14
- 239000005720 sucrose Substances 0.000 description 14
- 229940072056 alginate Drugs 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 13
- 239000003094 microcapsule Substances 0.000 description 13
- 239000012071 phase Substances 0.000 description 13
- 150000003626 triacylglycerols Chemical class 0.000 description 13
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 12
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 12
- 235000014113 dietary fatty acids Nutrition 0.000 description 12
- 239000000194 fatty acid Substances 0.000 description 12
- 229930195729 fatty acid Natural products 0.000 description 12
- 239000000654 additive Substances 0.000 description 11
- 239000006014 omega-3 oil Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000001590 oxidative effect Effects 0.000 description 10
- 229940068065 phytosterols Drugs 0.000 description 10
- 229920001282 polysaccharide Polymers 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000000839 emulsion Substances 0.000 description 9
- 150000002170 ethers Chemical class 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 235000010413 sodium alginate Nutrition 0.000 description 9
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000001110 calcium chloride Substances 0.000 description 8
- 229910001628 calcium chloride Inorganic materials 0.000 description 8
- 150000004665 fatty acids Chemical class 0.000 description 8
- 239000005017 polysaccharide Substances 0.000 description 8
- 150000004804 polysaccharides Chemical class 0.000 description 8
- 239000000661 sodium alginate Substances 0.000 description 8
- 229940005550 sodium alginate Drugs 0.000 description 8
- 239000003381 stabilizer Substances 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 7
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 7
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 7
- 239000008346 aqueous phase Substances 0.000 description 7
- 239000002738 chelating agent Substances 0.000 description 7
- 235000005687 corn oil Nutrition 0.000 description 7
- 239000002285 corn oil Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 6
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 239000000783 alginic acid Substances 0.000 description 6
- 229960001126 alginic acid Drugs 0.000 description 6
- 150000004781 alginic acids Chemical class 0.000 description 6
- 235000010323 ascorbic acid Nutrition 0.000 description 6
- 239000011668 ascorbic acid Substances 0.000 description 6
- 229960005070 ascorbic acid Drugs 0.000 description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 description 6
- 235000010216 calcium carbonate Nutrition 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 6
- 235000021323 fish oil Nutrition 0.000 description 6
- 235000016709 nutrition Nutrition 0.000 description 6
- 230000035764 nutrition Effects 0.000 description 6
- 229920001277 pectin Polymers 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 150000008163 sugars Chemical class 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 229920001817 Agar Polymers 0.000 description 5
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 229920001202 Inulin Polymers 0.000 description 5
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 5
- 108010046377 Whey Proteins Proteins 0.000 description 5
- 102000007544 Whey Proteins Human genes 0.000 description 5
- 235000010419 agar Nutrition 0.000 description 5
- 235000010208 anthocyanin Nutrition 0.000 description 5
- 239000004410 anthocyanin Substances 0.000 description 5
- 229930002877 anthocyanin Natural products 0.000 description 5
- 150000004636 anthocyanins Chemical class 0.000 description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 5
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000035784 germination Effects 0.000 description 5
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 5
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 5
- 239000008101 lactose Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 235000010987 pectin Nutrition 0.000 description 5
- 239000001814 pectin Substances 0.000 description 5
- 239000010695 polyglycol Substances 0.000 description 5
- 229920000151 polyglycol Polymers 0.000 description 5
- 230000003244 pro-oxidative effect Effects 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- SGNBVLSWZMBQTH-FGAXOLDCSA-N Campesterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]([C@H](CC[C@H](C(C)C)C)C)CC4)CC3)CC=2)CC1 SGNBVLSWZMBQTH-FGAXOLDCSA-N 0.000 description 4
- 102000011632 Caseins Human genes 0.000 description 4
- 108010076119 Caseins Proteins 0.000 description 4
- 241000195493 Cryptophyta Species 0.000 description 4
- 229920001353 Dextrin Polymers 0.000 description 4
- 239000004375 Dextrin Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- BTEISVKTSQLKST-UHFFFAOYSA-N Haliclonasterol Natural products CC(C=CC(C)C(C)(C)C)C1CCC2C3=CC=C4CC(O)CCC4(C)C3CCC12C BTEISVKTSQLKST-UHFFFAOYSA-N 0.000 description 4
- 235000003222 Helianthus annuus Nutrition 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 235000012377 Salvia columbariae var. columbariae Nutrition 0.000 description 4
- 240000005481 Salvia hispanica Species 0.000 description 4
- 235000001498 Salvia hispanica Nutrition 0.000 description 4
- 235000021307 Triticum Nutrition 0.000 description 4
- 241000209140 Triticum Species 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- LGJMUZUPVCAVPU-UHFFFAOYSA-N beta-Sitostanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CC)C(C)C)C1(C)CC2 LGJMUZUPVCAVPU-UHFFFAOYSA-N 0.000 description 4
- NJKOMDUNNDKEAI-UHFFFAOYSA-N beta-sitosterol Natural products CCC(CCC(C)C1CCC2(C)C3CC=C4CC(O)CCC4C3CCC12C)C(C)C NJKOMDUNNDKEAI-UHFFFAOYSA-N 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- SGNBVLSWZMBQTH-PODYLUTMSA-N campesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](C)C(C)C)[C@@]1(C)CC2 SGNBVLSWZMBQTH-PODYLUTMSA-N 0.000 description 4
- 235000000431 campesterol Nutrition 0.000 description 4
- 235000019519 canola oil Nutrition 0.000 description 4
- 239000000828 canola oil Substances 0.000 description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 description 4
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 4
- 229940105329 carboxymethylcellulose Drugs 0.000 description 4
- 235000010980 cellulose Nutrition 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 235000014167 chia Nutrition 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- 239000007771 core particle Substances 0.000 description 4
- 235000019425 dextrin Nutrition 0.000 description 4
- 239000008121 dextrose Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 4
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 235000019895 oat fiber Nutrition 0.000 description 4
- 150000003905 phosphatidylinositols Chemical class 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- KZJWDPNRJALLNS-VJSFXXLFSA-N sitosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](CC)C(C)C)[C@@]1(C)CC2 KZJWDPNRJALLNS-VJSFXXLFSA-N 0.000 description 4
- 229950005143 sitosterol Drugs 0.000 description 4
- NLQLSVXGSXCXFE-UHFFFAOYSA-N sitosterol Natural products CC=C(/CCC(C)C1CC2C3=CCC4C(C)C(O)CCC4(C)C3CCC2(C)C1)C(C)C NLQLSVXGSXCXFE-UHFFFAOYSA-N 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 235000015112 vegetable and seed oil Nutrition 0.000 description 4
- KZJWDPNRJALLNS-VPUBHVLGSA-N (-)-beta-Sitosterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]([C@H](CC[C@@H](C(C)C)CC)C)CC4)CC3)CC=2)CC1 KZJWDPNRJALLNS-VPUBHVLGSA-N 0.000 description 3
- CSVWWLUMXNHWSU-UHFFFAOYSA-N (22E)-(24xi)-24-ethyl-5alpha-cholest-22-en-3beta-ol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(CC)C(C)C)C1(C)CC2 CSVWWLUMXNHWSU-UHFFFAOYSA-N 0.000 description 3
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 3
- KLEXDBGYSOIREE-UHFFFAOYSA-N 24xi-n-propylcholesterol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CCC)C(C)C)C1(C)CC2 KLEXDBGYSOIREE-UHFFFAOYSA-N 0.000 description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 3
- 244000215068 Acacia senegal Species 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- DVICWXUADSCSLL-DDEWRDOISA-N Alloxanthin/Tetradehydrozeaxanthin/(Cynthiaxanthin)/(Pectenoxanthin) Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1C#CC(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)C#CC1=C(C)C[C@@H](O)CC1(C)C DVICWXUADSCSLL-DDEWRDOISA-N 0.000 description 3
- 235000007319 Avena orientalis Nutrition 0.000 description 3
- 244000075850 Avena orientalis Species 0.000 description 3
- 229920001661 Chitosan Polymers 0.000 description 3
- LPZCCMIISIBREI-MTFRKTCUSA-N Citrostadienol Natural products CC=C(CC[C@@H](C)[C@H]1CC[C@H]2C3=CC[C@H]4[C@H](C)[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)C(C)C LPZCCMIISIBREI-MTFRKTCUSA-N 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- ARVGMISWLZPBCH-UHFFFAOYSA-N Dehydro-beta-sitosterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)CCC(CC)C(C)C)CCC33)C)C3=CC=C21 ARVGMISWLZPBCH-UHFFFAOYSA-N 0.000 description 3
- 229930091371 Fructose Natural products 0.000 description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- 241000206672 Gelidium Species 0.000 description 3
- 229920000084 Gum arabic Polymers 0.000 description 3
- 244000020551 Helianthus annuus Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 235000010489 acacia gum Nutrition 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- DVICWXUADSCSLL-GUPSQEAKSA-N all-trans-Alloxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C#CC1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C#CC2=C(C)CC(O)CC2(C)C DVICWXUADSCSLL-GUPSQEAKSA-N 0.000 description 3
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 3
- 229940087168 alpha tocopherol Drugs 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 235000015278 beef Nutrition 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- MJVXAPPOFPTTCA-UHFFFAOYSA-N beta-Sistosterol Natural products CCC(CCC(C)C1CCC2C3CC=C4C(C)C(O)CCC4(C)C3CCC12C)C(C)C MJVXAPPOFPTTCA-UHFFFAOYSA-N 0.000 description 3
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 3
- 235000010410 calcium alginate Nutrition 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000013339 cereals Nutrition 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000001066 destructive effect Effects 0.000 description 3
- 235000013325 dietary fiber Nutrition 0.000 description 3
- 235000013601 eggs Nutrition 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000003925 fat Substances 0.000 description 3
- 235000019197 fats Nutrition 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 3
- 229940029339 inulin Drugs 0.000 description 3
- 210000001161 mammalian embryo Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 3
- 239000008108 microcrystalline cellulose Substances 0.000 description 3
- 229940016286 microcrystalline cellulose Drugs 0.000 description 3
- 239000004005 microsphere Substances 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000036542 oxidative stress Effects 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 235000015500 sitosterol Nutrition 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- 229960000984 tocofersolan Drugs 0.000 description 3
- 125000002640 tocopherol group Chemical class 0.000 description 3
- 235000019149 tocopherols Nutrition 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 235000021119 whey protein Nutrition 0.000 description 3
- 235000004835 α-tocopherol Nutrition 0.000 description 3
- 239000002076 α-tocopherol Substances 0.000 description 3
- MJYQFWSXKFLTAY-OVEQLNGDSA-N (2r,3r)-2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]butane-1,4-diol;(2r,3r,4s,5s,6r)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O.C1=C(O)C(OC)=CC(C[C@@H](CO)[C@H](CO)CC=2C=C(OC)C(O)=CC=2)=C1 MJYQFWSXKFLTAY-OVEQLNGDSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 2
- SKHBJDDIGYYYMJ-UHFFFAOYSA-N 2,6-ditert-butyl-6-methylcyclohexa-1,3-dien-1-ol Chemical compound CC(C)(C)C1=C(O)C(C)(C(C)(C)C)CC=C1 SKHBJDDIGYYYMJ-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical compound CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 2
- MJKVTPMWOKAVMS-UHFFFAOYSA-N 3-hydroxy-1-benzopyran-2-one Chemical compound C1=CC=C2OC(=O)C(O)=CC2=C1 MJKVTPMWOKAVMS-UHFFFAOYSA-N 0.000 description 2
- IJFXRHURBJZNAO-UHFFFAOYSA-N 3-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=CC(O)=C1 IJFXRHURBJZNAO-UHFFFAOYSA-N 0.000 description 2
- TXFPEBPIARQUIG-UHFFFAOYSA-N 4'-hydroxyacetophenone Chemical compound CC(=O)C1=CC=C(O)C=C1 TXFPEBPIARQUIG-UHFFFAOYSA-N 0.000 description 2
- HSHNITRMYYLLCV-UHFFFAOYSA-N 4-methylumbelliferone Chemical compound C1=C(O)C=CC2=C1OC(=O)C=C2C HSHNITRMYYLLCV-UHFFFAOYSA-N 0.000 description 2
- IGABZIVJSNQMPZ-UHFFFAOYSA-N 7',8'-dihydro-epsilon,psi-carotene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC1C(C)=CCCC1(C)C IGABZIVJSNQMPZ-UHFFFAOYSA-N 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 244000144725 Amygdalus communis Species 0.000 description 2
- 241000272517 Anseriformes Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- SLQHGWZKKZPZEK-JKEZLOPUSA-N Citranaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C(=O)C)C=CC=C(/C)C=CC1=C(C)CCCC1(C)C SLQHGWZKKZPZEK-JKEZLOPUSA-N 0.000 description 2
- 241000207199 Citrus Species 0.000 description 2
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 2
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 2
- 229920000569 Gum karaya Polymers 0.000 description 2
- 229920002488 Hemicellulose Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- GFSQDOUEUWXRSL-UHFFFAOYSA-N Lunularic acid Chemical compound OC(=O)C1=C(O)C=CC=C1CCC1=CC=C(O)C=C1 GFSQDOUEUWXRSL-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 2
- 244000046052 Phaseolus vulgaris Species 0.000 description 2
- OOUTWVMJGMVRQF-DOYZGLONSA-N Phoenicoxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)C(=O)C(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)C(=O)CCC2(C)C OOUTWVMJGMVRQF-DOYZGLONSA-N 0.000 description 2
- XACHQDDXHDTRLX-XLVVAOPESA-N Physalien Chemical compound CC1(C)C[C@H](OC(=O)CCCCCCCCCCCCCCC)CC(C)=C1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)C[C@@H](OC(=O)CCCCCCCCCCCCCCC)CC1(C)C XACHQDDXHDTRLX-XLVVAOPESA-N 0.000 description 2
- XACHQDDXHDTRLX-GMPBGBGESA-N Physalien Natural products O=C(O[C@H]1CC(C)(C)C(/C=C/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(/C=C/C=2C(C)(C)C[C@H](OC(=O)CCCCCCCCCCCCCCC)CC=2C)\C)/C)\C)/C)=C(C)C1)CCCCCCCCCCCCCCC XACHQDDXHDTRLX-GMPBGBGESA-N 0.000 description 2
- REFJWTPEDVJJIY-UHFFFAOYSA-N Quercetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 REFJWTPEDVJJIY-UHFFFAOYSA-N 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 244000062793 Sorghum vulgare Species 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- ZVKXPPXCNUMUOR-IKYXTRRCSA-N Trollichrome Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C1OC2(C)CC(O)CC(C)(C)C2=C1)C=CC=C(/C)C=C=C3C(C)(C)CC(O)CC3(C)O ZVKXPPXCNUMUOR-IKYXTRRCSA-N 0.000 description 2
- 244000078534 Vaccinium myrtillus Species 0.000 description 2
- 239000005862 Whey Substances 0.000 description 2
- XACHQDDXHDTRLX-UHFFFAOYSA-N Zeaxanthin-dipalmitat Natural products CC1(C)CC(OC(=O)CCCCCCCCCCCCCCC)CC(C)=C1C=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC1=C(C)CC(OC(=O)CCCCCCCCCCCCCCC)CC1(C)C XACHQDDXHDTRLX-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 235000020224 almond Nutrition 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 229930003362 apo carotenoid Natural products 0.000 description 2
- 125000000135 apo carotenoid group Chemical group 0.000 description 2
- WBEFUVAYFSOUEA-PQMHYQBVSA-N aureusidin Chemical compound O=C1C=2C(O)=CC(O)=CC=2O\C1=C/C1=CC=C(O)C(O)=C1 WBEFUVAYFSOUEA-PQMHYQBVSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- WUADCCWRTIWANL-UHFFFAOYSA-N biochanin A Chemical compound C1=CC(OC)=CC=C1C1=COC2=CC(O)=CC(O)=C2C1=O WUADCCWRTIWANL-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000648 calcium alginate Substances 0.000 description 2
- 229960002681 calcium alginate Drugs 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 2
- FDSDTBUPSURDBL-LOFNIBRQSA-N canthaxanthin Chemical compound CC=1C(=O)CCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)CCC1(C)C FDSDTBUPSURDBL-LOFNIBRQSA-N 0.000 description 2
- YKPUWZUDDOIDPM-SOFGYWHQSA-N capsaicin Chemical compound COC1=CC(CNC(=O)CCCC\C=C\C(C)C)=CC=C1O YKPUWZUDDOIDPM-SOFGYWHQSA-N 0.000 description 2
- 230000005189 cardiac health Effects 0.000 description 2
- 235000010418 carrageenan Nutrition 0.000 description 2
- 229920001525 carrageenan Polymers 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- JMFRWRFFLBVWSI-NSCUHMNNSA-N coniferol Chemical compound COC1=CC(\C=C\CO)=CC=C1O JMFRWRFFLBVWSI-NSCUHMNNSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- VEVZSMAEJFVWIL-UHFFFAOYSA-O cyanidin cation Chemical compound [O+]=1C2=CC(O)=CC(O)=C2C=C(O)C=1C1=CC=C(O)C(O)=C1 VEVZSMAEJFVWIL-UHFFFAOYSA-O 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- ZQSIJRDFPHDXIC-UHFFFAOYSA-N daidzein Chemical compound C1=CC(O)=CC=C1C1=COC2=CC(O)=CC=C2C1=O ZQSIJRDFPHDXIC-UHFFFAOYSA-N 0.000 description 2
- 235000013365 dairy product Nutrition 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- 230000005059 dormancy Effects 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 235000004426 flaxseed Nutrition 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- HKQYGTCOTHHOMP-UHFFFAOYSA-N formononetin Chemical compound C1=CC(OC)=CC=C1C1=COC2=CC(O)=CC=C2C1=O HKQYGTCOTHHOMP-UHFFFAOYSA-N 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 235000010417 guar gum Nutrition 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- 235000004280 healthy diet Nutrition 0.000 description 2
- UFLHIIWVXFIJGU-UHFFFAOYSA-N hex-3-en-1-ol Natural products CCC=CCCO UFLHIIWVXFIJGU-UHFFFAOYSA-N 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- NWVVVBRKAWDGAB-UHFFFAOYSA-N hydroquinone methyl ether Natural products COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- KQPYUDDGWXQXHS-UHFFFAOYSA-N juglone Chemical compound O=C1C=CC(=O)C2=C1C=CC=C2O KQPYUDDGWXQXHS-UHFFFAOYSA-N 0.000 description 2
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 239000000391 magnesium silicate Substances 0.000 description 2
- KZMACGJDUUWFCH-UHFFFAOYSA-O malvidin Chemical compound COC1=C(O)C(OC)=CC(C=2C(=CC=3C(O)=CC(O)=CC=3[O+]=2)O)=C1 KZMACGJDUUWFCH-UHFFFAOYSA-O 0.000 description 2
- AEDDIBAIWPIIBD-ZJKJAXBQSA-N mangiferin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1C1=C(O)C=C(OC=2C(=CC(O)=C(O)C=2)C2=O)C2=C1O AEDDIBAIWPIIBD-ZJKJAXBQSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- BAPROVDXKNPHAM-UHFFFAOYSA-N n-(2-aminoethyl)-3-(3,5-ditert-butyl-4-hydroxyphenyl)propanamide Chemical compound CC(C)(C)C1=CC(CCC(=O)NCCN)=CC(C(C)(C)C)=C1O BAPROVDXKNPHAM-UHFFFAOYSA-N 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 235000015205 orange juice Nutrition 0.000 description 2
- 235000012658 paprika extract Nutrition 0.000 description 2
- 239000001688 paprika extract Substances 0.000 description 2
- VGEREEWJJVICBM-UHFFFAOYSA-N phloretin Chemical compound C1=CC(O)=CC=C1CCC(=O)C1=C(O)C=C(O)C=C1O VGEREEWJJVICBM-UHFFFAOYSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 2
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 239000011772 phylloquinone Substances 0.000 description 2
- 239000000419 plant extract Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 235000015277 pork Nutrition 0.000 description 2
- XFZJEEAOWLFHDH-NFJBMHMQSA-N procyanidin B2 Chemical compound C1([C@@H]2[C@H](O)[C@H](C3=C(O)C=C(O)C=C3O2)C=2C(O)=CC(O)=C3C[C@H]([C@H](OC3=2)C=2C=C(O)C(O)=CC=2)O)=CC=C(O)C(O)=C1 XFZJEEAOWLFHDH-NFJBMHMQSA-N 0.000 description 2
- 239000003531 protein hydrolysate Substances 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 230000014284 seed dormancy process Effects 0.000 description 2
- PCMORTLOPMLEFB-ONEGZZNKSA-N sinapic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC(OC)=C1O PCMORTLOPMLEFB-ONEGZZNKSA-N 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- CNHDIAIOKMXOLK-UHFFFAOYSA-N toluquinol Chemical compound CC1=CC(O)=CC=C1O CNHDIAIOKMXOLK-UHFFFAOYSA-N 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 239000011728 vitamin K2 Substances 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- 235000020234 walnut Nutrition 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 2
- ZJSJQWDXAYNLNS-UHFFFAOYSA-N (+) pinoresinol-4,4'-di-O-beta-D-glucopyranoside Natural products COC1=CC(C2C3C(C(OC3)C=3C=C(OC)C(OC4C(C(O)C(O)C(CO)O4)O)=CC=3)CO2)=CC=C1OC1OC(CO)C(O)C(O)C1O ZJSJQWDXAYNLNS-UHFFFAOYSA-N 0.000 description 1
- HGXBRUKMWQGOIE-AFHBHXEDSA-N (+)-Pinoresinol Natural products C1=C(O)C(OC)=CC([C@@H]2[C@@H]3[C@@H]([C@H](OC3)C=3C=C(OC)C(O)=CC=3)CO2)=C1 HGXBRUKMWQGOIE-AFHBHXEDSA-N 0.000 description 1
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-catechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 description 1
- PFTAWBLQPZVEMU-ZFWWWQNUSA-N (+)-epicatechin Natural products C1([C@@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-ZFWWWQNUSA-N 0.000 description 1
- PFTAWBLQPZVEMU-UKRRQHHQSA-N (-)-epicatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-UKRRQHHQSA-N 0.000 description 1
- HGXBRUKMWQGOIE-NSMLZSOPSA-N (-)-pinoresinol Chemical compound C1=C(O)C(OC)=CC([C@H]2[C@H]3[C@H]([C@@H](OC3)C=3C=C(OC)C(O)=CC=3)CO2)=C1 HGXBRUKMWQGOIE-NSMLZSOPSA-N 0.000 description 1
- ODGGKCNQKSEQNL-CWBMHJDKSA-N (1r)-4-[(1e,3z,5e,7e,9e,11e,13e,15e,17e)-3-(hydroxymethyl)-18-[(1r,4r)-4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl]-7,12,16-trimethyloctadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethylcyclohex-3-en-1-ol Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1\C=C\C(\CO)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)=C[C@H](O)CC1(C)C ODGGKCNQKSEQNL-CWBMHJDKSA-N 0.000 description 1
- HJIAMFHSAAEUKR-UHFFFAOYSA-N (2-hydroxyphenyl)-phenylmethanone Chemical class OC1=CC=CC=C1C(=O)C1=CC=CC=C1 HJIAMFHSAAEUKR-UHFFFAOYSA-N 0.000 description 1
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 1
- HZYHMHHBBBSGHB-UHFFFAOYSA-N (2E,6E)-2,6-Nonadienal Natural products CCC=CCCC=CC=O HZYHMHHBBBSGHB-UHFFFAOYSA-N 0.000 description 1
- XFZJEEAOWLFHDH-UHFFFAOYSA-N (2R,2'R,3R,3'R,4R)-3,3',4',5,7-Pentahydroxyflavan(48)-3,3',4',5,7-pentahydroxyflavan Natural products C=12OC(C=3C=C(O)C(O)=CC=3)C(O)CC2=C(O)C=C(O)C=1C(C1=C(O)C=C(O)C=C1O1)C(O)C1C1=CC=C(O)C(O)=C1 XFZJEEAOWLFHDH-UHFFFAOYSA-N 0.000 description 1
- IAEFJGPZEPGPGJ-HMHVFHPLSA-N (2e,4e,6e,8e,10e,12e,14e,16e,18e,20e,22e,24e)-2,6,10,14,19,23-hexamethyl-25-(2,6,6-trimethylcyclohexen-1-yl)pentacosa-2,4,6,8,10,12,14,16,18,20,22,24-dodecaenal Chemical compound O=CC(/C)=C/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(\C)/C=C/C=C(\C)/C=C/C1=C(C)CCCC1(C)C IAEFJGPZEPGPGJ-HMHVFHPLSA-N 0.000 description 1
- HZYHMHHBBBSGHB-DYWGDJMRSA-N (2e,6e)-nona-2,6-dienal Chemical compound CC\C=C\CC\C=C\C=O HZYHMHHBBBSGHB-DYWGDJMRSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- JKQXZKUSFCKOGQ-JLGXGRJMSA-N (3R,3'R)-beta,beta-carotene-3,3'-diol Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C[C@@H](O)CC1(C)C JKQXZKUSFCKOGQ-JLGXGRJMSA-N 0.000 description 1
- VYIRVAXUEZSDNC-TXDLOWMYSA-N (3R,3'S,5'R)-3,3'-dihydroxy-beta-kappa-caroten-6'-one Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC(=O)[C@]1(C)C[C@@H](O)CC1(C)C VYIRVAXUEZSDNC-TXDLOWMYSA-N 0.000 description 1
- GVOIABOMXKDDGU-XRODXAHISA-N (3S,3'S,5R,5'R)-3,3'-dihydroxy-kappa,kappa-carotene-6,6'-dione Chemical compound O=C([C@@]1(C)C(C[C@H](O)C1)(C)C)/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC(=O)[C@]1(C)C[C@@H](O)CC1(C)C GVOIABOMXKDDGU-XRODXAHISA-N 0.000 description 1
- GVOIABOMXKDDGU-LOFNIBRQSA-N (3S,3'S,5R,5'R)-3,3'-dihydroxy-kappa,kappa-carotene-6,6'-dione Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C(=O)C1(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC(=O)C2(C)CC(O)CC2(C)C GVOIABOMXKDDGU-LOFNIBRQSA-N 0.000 description 1
- BHCRLQHBUDRLQM-BDPUVYQTSA-N (3S,4R,3'S,4'R)-Crustaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)C(O)C(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)C(O)C(O)CC2(C)C BHCRLQHBUDRLQM-BDPUVYQTSA-N 0.000 description 1
- YNNRPBRNWWIQPQ-APKWKYNESA-N (3S,5R,6S,3'S,5'R,8'Xi)-5,6;5',8'-diepoxy-5,6,5',8'-tetrahydro-beta,beta-carotene-3,3'-diol Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C1OC2(C)CC(O)CC(C)(C)C2=C1)C=CC=C(/C)C=CC34OC3(C)CC(O)CC4(C)C YNNRPBRNWWIQPQ-APKWKYNESA-N 0.000 description 1
- SUCKEYMKNGZJHK-ZARIWKGHSA-N (3e,5e,7e,9e,11e,13e,15e,17e)-3-(hydroxymethyl)-18-[(1r,4r)-4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl]-1-[(4r)-4-hydroxy-2,6,6-trimethylcyclohexen-1-yl]-7,12,16-trimethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1CC(=O)C(\CO)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)=C[C@H](O)CC1(C)C SUCKEYMKNGZJHK-ZARIWKGHSA-N 0.000 description 1
- GDALYDGIVMUXTI-AKBIDAKBSA-N (4z)-4-[(2e,4e,6e,8e,10e,12e,14e,16e,18z)-18-[(4s)-4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-ylidene]-3,7,12,16-tetramethyloctadeca-2,4,6,8,10,12,14,16-octaenylidene]-3,5,5-trimethylcyclohex-2-en-1-one Chemical compound C([C@H](O)C=C/1C)C(C)(C)C\1=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C1/C(C)=CC(=O)CC1(C)C GDALYDGIVMUXTI-AKBIDAKBSA-N 0.000 description 1
- ANEICJWUPVGZBQ-HEBVJZCOSA-N (6s)-6-hydroxy-3-[(1e,3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohexen-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-ynyl]-2,4,4-trimethylcyclohex-2-en-1-one Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1C#CC(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)C(=O)[C@@H](O)CC1(C)C ANEICJWUPVGZBQ-HEBVJZCOSA-N 0.000 description 1
- WWUKNXCHIOGECP-APKWKYNESA-N (8'R)-latochrom= (3S,5R,6R,3'S,5'R,8'R)-5',8'-epoxy-5,6,5',8'-tetrahydro-beta,beta-carotin-3,5,6,3'-tetrol Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C1OC2(C)CC(O)CC(C)(C)C2=C1)C=CC=C(/C)C=CC3(O)C(C)(C)CC(O)CC3(C)O WWUKNXCHIOGECP-APKWKYNESA-N 0.000 description 1
- DSSJLYAIYPLGLX-QQGJMDNJSA-N (8E,10E,12E,14E,16E,18E,20E,22E,24E)-25-(4-hydroxy-2,6,6-trimethylcyclohexen-1-yl)-6,6,10,14,19,23-hexamethylpentacosa-8,10,12,14,16,18,20,22,24-nonaene-2,7-dione Chemical compound CC(=O)CCCC(C)(C)C(=O)\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CC(O)CC1(C)C DSSJLYAIYPLGLX-QQGJMDNJSA-N 0.000 description 1
- ZWTDXYUDJYDHJR-UHFFFAOYSA-N (E)-1-(2,4-dihydroxyphenyl)-3-(2,4-dihydroxyphenyl)-2-propen-1-one Natural products OC1=CC(O)=CC=C1C=CC(=O)C1=CC=C(O)C=C1O ZWTDXYUDJYDHJR-UHFFFAOYSA-N 0.000 description 1
- KSEBMYQBYZTDHS-HWKANZROSA-M (E)-Ferulic acid Natural products COC1=CC(\C=C\C([O-])=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-M 0.000 description 1
- CDICDSOGTRCHMG-ONEGZZNKSA-N (E)-sinapaldehyde Chemical compound COC1=CC(\C=C\C=O)=CC(OC)=C1O CDICDSOGTRCHMG-ONEGZZNKSA-N 0.000 description 1
- FTVWIRXFELQLPI-ZDUSSCGKSA-N (S)-naringenin Chemical compound C1=CC(O)=CC=C1[C@H]1OC2=CC(O)=CC(O)=C2C(=O)C1 FTVWIRXFELQLPI-ZDUSSCGKSA-N 0.000 description 1
- ZXEPHOYZDSLBJV-UHFFFAOYSA-N (all-E)-4,8,13,17,21,25-hexamethyl-hexacosa-2,4,6,8,10,12,14,16,18,20,24-undecaenal Natural products CC(C)=CCCC(C)=CC=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC=O ZXEPHOYZDSLBJV-UHFFFAOYSA-N 0.000 description 1
- ZXEPHOYZDSLBJV-CQOAVJQGSA-N (all-E)-6'-Apo-y-caroten-6'-al Chemical compound CC(C)=CCC\C(C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=O ZXEPHOYZDSLBJV-CQOAVJQGSA-N 0.000 description 1
- GJJVAFUKOBZPCB-ZGRPYONQSA-N (r)-3,4-dihydro-2-methyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2h-1-benzopyran-6-ol Chemical class OC1=CC=C2OC(CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-ZGRPYONQSA-N 0.000 description 1
- HKWJHKSHEWVOSS-OMDJCSNQSA-N 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1D-myo-inositol-3,4-bisphosphate) Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCC)COP(O)(=O)O[C@H]1[C@H](O)[C@@H](O)[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H]1O HKWJHKSHEWVOSS-OMDJCSNQSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- GPMCZKILFBRNNY-UHFFFAOYSA-N 2,3-bis(2-methylbutan-2-yl)benzene-1,4-diol Chemical compound CCC(C)(C)C1=C(O)C=CC(O)=C1C(C)(C)CC GPMCZKILFBRNNY-UHFFFAOYSA-N 0.000 description 1
- ZRXISZZQHKYPQA-GMKWGACXSA-N 2,4,4-trimethyl-3-[(1e,3e,5e,7e,9e,11e,13e,15e,17e)-3,7,12,16-tetramethyl-18-[(1r)-2,6,6-trimethylcyclohex-2-en-1-yl]octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]cyclohex-2-en-1-one Chemical compound CC=1C(=O)CCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)=CCCC1(C)C ZRXISZZQHKYPQA-GMKWGACXSA-N 0.000 description 1
- JZODKRWQWUWGCD-UHFFFAOYSA-N 2,5-di-tert-butylbenzene-1,4-diol Chemical compound CC(C)(C)C1=CC(O)=C(C(C)(C)C)C=C1O JZODKRWQWUWGCD-UHFFFAOYSA-N 0.000 description 1
- SBHXYTNGIZCORC-UHFFFAOYSA-N 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2H-1-benzopyran-4-one Chemical compound O1C2=CC(O)=CC(O)=C2C(=O)CC1C1=CC=C(O)C(O)=C1 SBHXYTNGIZCORC-UHFFFAOYSA-N 0.000 description 1
- RRBZUCWNYQUCTR-UHFFFAOYSA-N 2-(aminoazaniumyl)acetate Chemical class NNCC(O)=O RRBZUCWNYQUCTR-UHFFFAOYSA-N 0.000 description 1
- ZYYNEJWFGGVJQZ-YDDLGYPNSA-N 2-[(4e,6e,8e,10e,12e,14e,16e,18e,20e,22e,24e,26e,28e)-2,31-dihydroxy-2,6,10,14,19,23,27,31-octamethyl-30-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxydotriaconta-4,6,8,10,12,14,16,18,20,22,24,26,28-tridecaen-3-yl]oxy-6-methyloxane-3,4,5-triol Chemical compound OC1C(O)C(O)C(C)OC1OC(C(C)(C)O)\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C(C(C)(C)O)OC1C(O)C(O)C(O)C(C)O1 ZYYNEJWFGGVJQZ-YDDLGYPNSA-N 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical class NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- KQMCGGGTJKNIMC-UHFFFAOYSA-N 2-hydroxy-3-propyl-2h-furan-5-one Chemical compound CCCC1=CC(=O)OC1O KQMCGGGTJKNIMC-UHFFFAOYSA-N 0.000 description 1
- HYPYXGZDOYTYDR-HAJWAVTHSA-N 2-methyl-3-[(2e,6e,10e,14e)-3,7,11,15,19-pentamethylicosa-2,6,10,14,18-pentaenyl]naphthalene-1,4-dione Chemical compound C1=CC=C2C(=O)C(C/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)=C(C)C(=O)C2=C1 HYPYXGZDOYTYDR-HAJWAVTHSA-N 0.000 description 1
- MQWCQFCZUNBTCM-UHFFFAOYSA-N 2-tert-butyl-6-(3-tert-butyl-2-hydroxy-5-methylphenyl)sulfanyl-4-methylphenol Chemical compound CC(C)(C)C1=CC(C)=CC(SC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O MQWCQFCZUNBTCM-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- BHCRLQHBUDRLQM-QISQUURKSA-N 4-[(1e,3e,5e,7e,9e,11e,13e,15e,17e)-18-(3,4-dihydroxy-2,6,6-trimethylcyclohexen-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethylcyclohex-3-ene-1,2-diol Chemical compound CC=1C(O)C(O)CC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)C(O)C(O)CC1(C)C BHCRLQHBUDRLQM-QISQUURKSA-N 0.000 description 1
- BCFOOQRXUXKJCL-UHFFFAOYSA-N 4-amino-4-oxo-2-sulfobutanoic acid Chemical class NC(=O)CC(C(O)=O)S(O)(=O)=O BCFOOQRXUXKJCL-UHFFFAOYSA-N 0.000 description 1
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- VMRIVYANZGSGRV-UHFFFAOYSA-N 4-phenyl-2h-triazin-5-one Chemical class OC1=CN=NN=C1C1=CC=CC=C1 VMRIVYANZGSGRV-UHFFFAOYSA-N 0.000 description 1
- ATEFPOUAMCWAQS-UHFFFAOYSA-N 7,8-dihydroxycoumarin Chemical compound C1=CC(=O)OC2=C(O)C(O)=CC=C21 ATEFPOUAMCWAQS-UHFFFAOYSA-N 0.000 description 1
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N Alanine Chemical class CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 241000282979 Alces alces Species 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 235000009328 Amaranthus caudatus Nutrition 0.000 description 1
- 240000001592 Amaranthus caudatus Species 0.000 description 1
- 235000010585 Ammi visnaga Nutrition 0.000 description 1
- 244000153158 Ammi visnaga Species 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 235000011514 Anogeissus latifolia Nutrition 0.000 description 1
- 244000106483 Anogeissus latifolia Species 0.000 description 1
- 240000007087 Apium graveolens Species 0.000 description 1
- 235000015849 Apium graveolens Dulce Group Nutrition 0.000 description 1
- 235000010591 Appio Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 241001061264 Astragalus Species 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 235000007558 Avena sp Nutrition 0.000 description 1
- 235000000832 Ayote Nutrition 0.000 description 1
- IZEAIVHGGJUWLL-BNCSUXQNSA-N Azafrinaldehyde Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1(O)C(C)(C)CCCC1(C)O)C=CC=O IZEAIVHGGJUWLL-BNCSUXQNSA-N 0.000 description 1
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- RAFGELQLHMBRHD-VFYVRILKSA-N Bixin Natural products COC(=O)C=CC(=C/C=C/C(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C(=O)O)/C)C RAFGELQLHMBRHD-VFYVRILKSA-N 0.000 description 1
- 239000004135 Bone phosphate Substances 0.000 description 1
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 240000000385 Brassica napus var. napus Species 0.000 description 1
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 1
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- OILXMJHPFNGGTO-NRHJOKMGSA-N Brassicasterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@](C)([C@H]([C@@H](/C=C/[C@H](C(C)C)C)C)CC4)CC3)CC=2)CC1 OILXMJHPFNGGTO-NRHJOKMGSA-N 0.000 description 1
- 241000273930 Brevoortia tyrannus Species 0.000 description 1
- 241000030939 Bubalus bubalis Species 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- VYIRVAXUEZSDNC-LOFNIBRQSA-N Capsanthyn Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC(=O)C2(C)CC(O)CC2(C)C VYIRVAXUEZSDNC-LOFNIBRQSA-N 0.000 description 1
- GVOIABOMXKDDGU-SUKXYCKUSA-N Capsorubin Natural products O=C(/C=C/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(/C=C/C(=O)[C@@]1(C)C(C)(C)C[C@H](O)C1)\C)/C)\C)/C)[C@@]1(C)C(C)(C)C[C@H](O)C1 GVOIABOMXKDDGU-SUKXYCKUSA-N 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 235000014036 Castanea Nutrition 0.000 description 1
- 241001070941 Castanea Species 0.000 description 1
- VWDXGKUTGQJJHJ-UHFFFAOYSA-N Catenarin Natural products C1=C(O)C=C2C(=O)C3=C(O)C(C)=CC(O)=C3C(=O)C2=C1O VWDXGKUTGQJJHJ-UHFFFAOYSA-N 0.000 description 1
- 102000009193 Caveolin Human genes 0.000 description 1
- 108050000084 Caveolin Proteins 0.000 description 1
- 241000238366 Cephalopoda Species 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- 229940123150 Chelating agent Drugs 0.000 description 1
- 240000006162 Chenopodium quinoa Species 0.000 description 1
- IFYMEZNJCAQUME-APKWKYNESA-N Chrysanthemaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C1OC2(C)CC(O)CC(C)(C)C2=C1)C=CC=C(/C)C=CC3=C(C)CC(O)CC3(C)C IFYMEZNJCAQUME-APKWKYNESA-N 0.000 description 1
- 239000004217 Citranaxanthin Substances 0.000 description 1
- 241000252203 Clupea harengus Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- ACTIUHUUMQJHFO-UHFFFAOYSA-N Coenzym Q10 Natural products COC1=C(OC)C(=O)C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000723382 Corylus Species 0.000 description 1
- 235000007466 Corylus avellana Nutrition 0.000 description 1
- PANKHBYNKQNAHN-JTBLXSOISA-N Crocetin Natural products OC(=O)C(\C)=C/C=C/C(/C)=C\C=C\C=C(\C)/C=C/C=C(/C)C(O)=O PANKHBYNKQNAHN-JTBLXSOISA-N 0.000 description 1
- SEBIKDIMAPSUBY-ARYZWOCPSA-N Crocin Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H](O)[C@@H]1O)O)OC(=O)C(C)=CC=CC(C)=C\C=C\C=C(/C)\C=C\C=C(C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1)O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SEBIKDIMAPSUBY-ARYZWOCPSA-N 0.000 description 1
- SEBIKDIMAPSUBY-JAUCNNNOSA-N Crocin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C(=O)OC1OC(COC2OC(CO)C(O)C(O)C2O)C(O)C(O)C1O)C=CC=C(/C)C(=O)OC3OC(COC4OC(CO)C(O)C(O)C4O)C(O)C(O)C3O SEBIKDIMAPSUBY-JAUCNNNOSA-N 0.000 description 1
- ITZNDVRDABSNRE-VUWSZMCHSA-N Cryptocapsin Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C(=O)[C@]1(C)C[C@@H](O)CC1(C)C ITZNDVRDABSNRE-VUWSZMCHSA-N 0.000 description 1
- ITZNDVRDABSNRE-WZLJTJAWSA-N Cryptocapsin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC(=O)C2(C)CC(O)CC2(C)C ITZNDVRDABSNRE-WZLJTJAWSA-N 0.000 description 1
- 241000219122 Cucurbita Species 0.000 description 1
- 235000009854 Cucurbita moschata Nutrition 0.000 description 1
- 235000009804 Cucurbita pepo subsp pepo Nutrition 0.000 description 1
- 241000219130 Cucurbita pepo subsp. pepo Species 0.000 description 1
- 235000003954 Cucurbita pepo var melopepo Nutrition 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical class OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- FMUTWECJHLYSSS-XUYZKQIISA-N Decaprenoxanthin Chemical compound CC1(C)[C@@H](C\C=C(CO)/C)CC=C(C)[C@H]1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)(C)[C@@H](C\C=C(/C)CO)CC=C1C FMUTWECJHLYSSS-XUYZKQIISA-N 0.000 description 1
- TVDRORHNCXFEQK-UHFFFAOYSA-N Decaprenoxanthin Natural products CC(=CCC1CCC(=C(C=CC(=CC=CC(=CC=CC=C(/C)C=CC=C(/C)C=CC2=C(C)CCC(CC(=C(CO)CO)C)C2(C)C)C)C)C1(C)C)C)C TVDRORHNCXFEQK-UHFFFAOYSA-N 0.000 description 1
- GCPYCNBGGPHOBD-UHFFFAOYSA-N Delphinidin Natural products OC1=Cc2c(O)cc(O)cc2OC1=C3C=C(O)C(=O)C(=C3)O GCPYCNBGGPHOBD-UHFFFAOYSA-N 0.000 description 1
- OGHZCSINIMWCSB-GHIQLMQGSA-N Diadinoxanthin Chemical compound C(\[C@]12[C@@](O1)(C)C[C@@H](O)CC2(C)C)=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(\C)/C=C/C=C(\C)C#CC1=C(C)C[C@@H](O)CC1(C)C OGHZCSINIMWCSB-GHIQLMQGSA-N 0.000 description 1
- GHKOFFNLGXMVNJ-UHFFFAOYSA-N Didodecyl thiobispropanoate Chemical compound CCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCC GHKOFFNLGXMVNJ-UHFFFAOYSA-N 0.000 description 1
- 239000003508 Dilauryl thiodipropionate Substances 0.000 description 1
- 241000271571 Dromaius novaehollandiae Species 0.000 description 1
- AFSDNFLWKVMVRB-UHFFFAOYSA-N Ellagic acid Chemical compound OC1=C(O)C(OC2=O)=C3C4=C2C=C(O)C(O)=C4OC(=O)C3=C1 AFSDNFLWKVMVRB-UHFFFAOYSA-N 0.000 description 1
- ATJXMQHAMYVHRX-CPCISQLKSA-N Ellagic acid Natural products OC1=C(O)[C@H]2OC(=O)c3cc(O)c(O)c4OC(=O)C(=C1)[C@H]2c34 ATJXMQHAMYVHRX-CPCISQLKSA-N 0.000 description 1
- 229920002079 Ellagic acid Polymers 0.000 description 1
- 239000010282 Emodin Substances 0.000 description 1
- RBLJKYCRSCQLRP-UHFFFAOYSA-N Emodin-dianthron Natural products O=C1C2=CC(C)=CC(O)=C2C(=O)C2=C1CC(=O)C=C2O RBLJKYCRSCQLRP-UHFFFAOYSA-N 0.000 description 1
- 241000848296 Endopleura Species 0.000 description 1
- DHHWDJUUTBWANN-WUEUEEBUSA-N Eschscholtzxanthin Chemical compound C([C@H](O)C=C\1C)C(C)(C)C/1=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C1\C(C)=C[C@@H](O)CC1(C)C DHHWDJUUTBWANN-WUEUEEBUSA-N 0.000 description 1
- DHHWDJUUTBWANN-JCFHCUBBSA-N Eschscholtzxanthin Natural products CC(=C/C=C/C(=C/C=C/1C(=CC(O)CC1(C)C)C)/C)C=CC=CC(=CC=CC(=CC=C2/C(=CC(O)CC2(C)C)C)C)C DHHWDJUUTBWANN-JCFHCUBBSA-N 0.000 description 1
- GDALYDGIVMUXTI-IVCGDARKSA-N Eschscholtzxanthone Natural products O=C1C=C(C)/C(=C\C=C(/C=C/C=C(\C=C\C=C\C(=C/C=C/C(=C\C=C\2/C(C)=C[C@@H](O)CC/2(C)C)/C)\C)/C)\C)/C(C)(C)C1 GDALYDGIVMUXTI-IVCGDARKSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 1
- 240000008620 Fagopyrum esculentum Species 0.000 description 1
- LLKMUZAISVDKFO-REPGOVCFSA-N Flexixanthin Natural products CC(=C/C=C/C(=C/C=C/C(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)C(=O)C(O)CC1(C)C)/C)/C)C=CCC(C)(C)O LLKMUZAISVDKFO-REPGOVCFSA-N 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 229920000926 Galactomannan Polymers 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- ABTRFGSPYXCGMR-HMCYGDQPSA-N Gazaniaxanthin Natural products CC(=CCCC(=C/C=C/C(=C/C=C/C(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)/C)/C)C)C ABTRFGSPYXCGMR-HMCYGDQPSA-N 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 108060003393 Granulin Proteins 0.000 description 1
- 239000001922 Gum ghatti Substances 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 241000208818 Helianthus Species 0.000 description 1
- YOOXNSPYGCZLAX-UHFFFAOYSA-N Helminthosporin Natural products C1=CC(O)=C2C(=O)C3=CC(C)=CC(O)=C3C(=O)C2=C1O YOOXNSPYGCZLAX-UHFFFAOYSA-N 0.000 description 1
- 235000005206 Hibiscus Nutrition 0.000 description 1
- 235000007185 Hibiscus lunariifolius Nutrition 0.000 description 1
- 244000284380 Hibiscus rosa sinensis Species 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- IKLYRWVZKLKGBM-UHFFFAOYSA-N Isofucoxanthin Natural products CC1(O)CC(OC(=O)C)CC(C)(C)C1=C=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C(=O)C=C1C(O)(C)CC(O)CC1(C)C IKLYRWVZKLKGBM-UHFFFAOYSA-N 0.000 description 1
- 241000758791 Juglandaceae Species 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 235000013628 Lantana involucrata Nutrition 0.000 description 1
- 240000005183 Lantana involucrata Species 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 229930184725 Lipoxin Natural products 0.000 description 1
- SJIHBBFQZMANOC-BNWQYAEJSA-N Loroxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(CO)/C=C/C1=C(C)CC(O)CC1(C)C)CO SJIHBBFQZMANOC-BNWQYAEJSA-N 0.000 description 1
- 241000219745 Lupinus Species 0.000 description 1
- BGVXBZXEFXMRGJ-UHFFFAOYSA-N Lycopersene Natural products CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C BGVXBZXEFXMRGJ-UHFFFAOYSA-N 0.000 description 1
- IFTRFNLCKUZSNG-ZZAFTVETSA-N Lycoxanthin Natural products OC/C(=C\CC/C(=C\C=C\C(=C/C=C/C(=C\C=C\C=C(/C=C/C=C(\C=C\C=C(/CC/C=C(\C)/C)\C)/C)\C)/C)\C)/C)/C IFTRFNLCKUZSNG-ZZAFTVETSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- YWQSXCGKJDUYTL-UHFFFAOYSA-N Mangiferin Natural products CC(CCC=C(C)C)C1CC(C)C2C3CCC4C(C)(C)CCCC45CC35CCC12C YWQSXCGKJDUYTL-UHFFFAOYSA-N 0.000 description 1
- ABSPRNADVQNDOU-UHFFFAOYSA-N Menaquinone 1 Natural products C1=CC=C2C(=O)C(CC=C(C)C)=C(C)C(=O)C2=C1 ABSPRNADVQNDOU-UHFFFAOYSA-N 0.000 description 1
- SLFLEAITCHGGJK-CTSCWFAYSA-N Methyl apo-6'-lycopenoate Natural products O=C(OC)/C=C/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(/C=C/C=C(\CC/C=C(\C)/C)/C)\C)/C)\C)/C SLFLEAITCHGGJK-CTSCWFAYSA-N 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- 235000006677 Monarda citriodora ssp. austromontana Nutrition 0.000 description 1
- 229920000715 Mucilage Polymers 0.000 description 1
- GFPJSSAOISEBQL-FZKBJVJCSA-N Mutatochrome Chemical compound O1C2(C)CCCC(C)(C)C2=CC1C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C GFPJSSAOISEBQL-FZKBJVJCSA-N 0.000 description 1
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- YQHMWTPYORBCMF-UHFFFAOYSA-N Naringenin chalcone Natural products C1=CC(O)=CC=C1C=CC(=O)C1=C(O)C=C(O)C=C1O YQHMWTPYORBCMF-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- LQGLGUACFVYWGB-UHFFFAOYSA-N Nonaprenoxanthin Natural products CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CC=CC=C(C)C=CC=C(C)C=CC1C(C)=CCC(CC=C(C)CO)C1(C)C LQGLGUACFVYWGB-UHFFFAOYSA-N 0.000 description 1
- FSQZIFSGNDUYRQ-TYKRLFMMSA-N Okenone Chemical compound COC(C)(C)CCC(=O)C(\C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=CC=C(C)C(C)=C1C FSQZIFSGNDUYRQ-TYKRLFMMSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- ZYYNEJWFGGVJQZ-UHFFFAOYSA-N Oscillaxanthin Natural products OC1C(O)C(O)C(C)OC1OC(C(C)(C)O)C=CC(C)=CC=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC=C(C)C=CC(C(C)(C)O)OC1C(O)C(O)C(O)C(C)O1 ZYYNEJWFGGVJQZ-UHFFFAOYSA-N 0.000 description 1
- 229920002201 Oxidized cellulose Polymers 0.000 description 1
- UBXIJOJXUFYNRG-RJKBCLGNSA-N PIP[3'](17:0/20:4(5Z,8Z,11Z,14Z)) Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)O[C@H](COC(=O)CCCCCCCCCCCCCCCC)COP(O)(=O)O[C@H]1C(O)C(O)C(O)[C@@H](OP(O)(O)=O)C1O UBXIJOJXUFYNRG-RJKBCLGNSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- DBFXUHLRCRLMIU-QQNAYIDOSA-N Paracentrone Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C(=O)C)C=CC=C(/C)C=C=C1C(C)(C)CC(O)CC1(C)O DBFXUHLRCRLMIU-QQNAYIDOSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- ANEICJWUPVGZBQ-MXUKGGRISA-N Pectenolone Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C#CC1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)C(=O)C(O)CC2(C)C ANEICJWUPVGZBQ-MXUKGGRISA-N 0.000 description 1
- 229920002230 Pectic acid Polymers 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- RSHFXVVRRRVVNQ-YOJQQDEFSA-N Phleixanthophyll Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC=C(/C)C=CC(O)C(C)(C)OC2OC(CO)C(O)C(O)C2O RSHFXVVRRRVVNQ-YOJQQDEFSA-N 0.000 description 1
- OOUTWVMJGMVRQF-NWYYEFBESA-N Phoenicoxanthin Chemical compound C([C@H](O)C(=O)C=1C)C(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)C(=O)CCC1(C)C OOUTWVMJGMVRQF-NWYYEFBESA-N 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 244000134552 Plantago ovata Species 0.000 description 1
- 235000003421 Plantago ovata Nutrition 0.000 description 1
- FKUYMLZIRPABFK-UHFFFAOYSA-N Plastoquinone 9 Natural products CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCC1=CC(=O)C(C)=C(C)C1=O FKUYMLZIRPABFK-UHFFFAOYSA-N 0.000 description 1
- 241000269980 Pleuronectidae Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920002350 Procyanidin B2 Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 240000008296 Prunus serotina Species 0.000 description 1
- 235000005625 Prunus virginiana var virginiana Nutrition 0.000 description 1
- 239000009223 Psyllium Substances 0.000 description 1
- ZVOLCUVKHLEPEV-UHFFFAOYSA-N Quercetagetin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=C(O)C(O)=C(O)C=C2O1 ZVOLCUVKHLEPEV-UHFFFAOYSA-N 0.000 description 1
- NTGIIKCGBNGQAR-UHFFFAOYSA-N Rheoemodin Natural products C1=C(O)C=C2C(=O)C3=CC(O)=CC(O)=C3C(=O)C2=C1O NTGIIKCGBNGQAR-UHFFFAOYSA-N 0.000 description 1
- GOJQFVQXKNNAAY-XQHLYSSHSA-N Rhodopinal Chemical compound CC(C)=CCC\C(C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(\C=O)/C=C/C=C(\C)/C=C/C=C(\C)CCCC(C)(C)O GOJQFVQXKNNAAY-XQHLYSSHSA-N 0.000 description 1
- XMXRPRQNVZIVTC-YUCFDPGTSA-N Rhodopinol Natural products CC(=CCCC(=CC=CC(=CC=CC(=CC=CC=C(CO)/C=C/C=C(C)/C=C/C=C(C)/CCCC(C)(C)O)C)C)C)C XMXRPRQNVZIVTC-YUCFDPGTSA-N 0.000 description 1
- CGEVWQFVGBQXOA-WQMGISBJSA-N Rhodovibrin Chemical compound COC(C)(C)C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C(/C)CCCC(C)(C)O CGEVWQFVGBQXOA-WQMGISBJSA-N 0.000 description 1
- CGEVWQFVGBQXOA-CXMXVKIHSA-N Rhodovibrin Natural products COC(C)(C)CC=C/C(=C/C=C/C(=C/C=C/C(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C=C(C)/CCCC(C)(C)O)/C)/C)/C CGEVWQFVGBQXOA-CXMXVKIHSA-N 0.000 description 1
- 239000004216 Rhodoxanthin Substances 0.000 description 1
- VWXMLZQUDPCJPL-ZDHAIZATSA-N Rhodoxanthin Chemical compound CC\1=CC(=O)CC(C)(C)C/1=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C1\C(C)=CC(=O)CC1(C)C VWXMLZQUDPCJPL-ZDHAIZATSA-N 0.000 description 1
- VWXMLZQUDPCJPL-XPZLFLLQSA-N Rhodoxanthin Natural products O=C1C=C(C)/C(=C\C=C(/C=C/C=C(\C=C\C=C\C(=C/C=C/C(=C\C=C\2/C(C)=CC(=O)CC/2(C)C)/C)\C)/C)\C)/C(C)(C)C1 VWXMLZQUDPCJPL-XPZLFLLQSA-N 0.000 description 1
- HWTZYBCRDDUBJY-UHFFFAOYSA-N Rhynchosin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=CC(O)=C(O)C=C2O1 HWTZYBCRDDUBJY-UHFFFAOYSA-N 0.000 description 1
- 235000016954 Ribes hudsonianum Nutrition 0.000 description 1
- 240000001890 Ribes hudsonianum Species 0.000 description 1
- 235000001466 Ribes nigrum Nutrition 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 244000178231 Rosmarinus officinalis Species 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 235000018734 Sambucus australis Nutrition 0.000 description 1
- 244000180577 Sambucus australis Species 0.000 description 1
- 235000018735 Sambucus canadensis Nutrition 0.000 description 1
- 244000151637 Sambucus canadensis Species 0.000 description 1
- FOUGFFVPRFFMLC-LEMFVTKFSA-N Saproxanthin Natural products CC(=C/C=C/C(=C/C=C/C(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)/C)/C)C=CCC(C)(C)O FOUGFFVPRFFMLC-LEMFVTKFSA-N 0.000 description 1
- 241000269821 Scombridae Species 0.000 description 1
- 235000007238 Secale cereale Nutrition 0.000 description 1
- 244000082988 Secale cereale Species 0.000 description 1
- OPGDFUSKKYCZKS-HLLMEWEMSA-N Semi-alpha-carotenone Natural products O=C(C(CCCC(=O)C)(C)C)/C=C/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(/C=C/[C@H]1C(C)=CCCC1(C)C)\C)/C)\C)/C OPGDFUSKKYCZKS-HLLMEWEMSA-N 0.000 description 1
- PDBIWYOLPQXSTF-VYAWBVGESA-N Semi-beta-carotenone Natural products O=C(C(CCCC(=O)C)(C)C)/C=C/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(/C=C/C=1C(C)(C)CCCC=1C)\C)/C)\C)/C PDBIWYOLPQXSTF-VYAWBVGESA-N 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000040738 Sesamum orientale Species 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- OOFWCWCUKUVTKD-UHFFFAOYSA-N Sinapaldehyde Natural products COC1=CC(C=CC(C)=O)=CC(OC)=C1O OOFWCWCUKUVTKD-UHFFFAOYSA-N 0.000 description 1
- SLQHGWZKKZPZEK-RWWSCCLFSA-N Sintaxanthin Natural products O=C(/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(/C=C/C=1C(C)(C)CCCC=1C)\C)/C)\C)/C)C SLQHGWZKKZPZEK-RWWSCCLFSA-N 0.000 description 1
- HKQXGRCDKWFDBE-CZJSGJJBSA-N Siphonaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C(=O)CC1=C(C)CC(O)CC1(C)CO)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C HKQXGRCDKWFDBE-CZJSGJJBSA-N 0.000 description 1
- ORDPNTZUYVBDPG-UHFFFAOYSA-N Siphonaxanthinmonolaurat Natural products CCCCCCCCCCCC(=O)OCC1(C)CC(O)CC(=C1CC(=O)C(=CC=CC(=CC=CC=C(/C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C)C)C)C ORDPNTZUYVBDPG-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 241001291279 Solanum galapagense Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 241000272534 Struthio camelus Species 0.000 description 1
- 235000021536 Sugar beet Nutrition 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- KQBKJSVYIBRYNQ-KKMFPEKASA-N Tangeraxanthin Chemical compound CC(=O)\C=C\C=C(/C)\C=C\C=C(/C)\C=C/C=C/C(/C)=C/C=C/C(/C)=C\C=C1/C(C)=CC(O)CC1(C)C KQBKJSVYIBRYNQ-KKMFPEKASA-N 0.000 description 1
- BGNXCDMCOKJUMV-UHFFFAOYSA-N Tert-Butylhydroquinone Chemical compound CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 1
- 235000006468 Thea sinensis Nutrition 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- DSSJLYAIYPLGLX-ZRDTYXODSA-N Triphasiaxanthin Natural products O=C(C(CCCC(=O)C)(C)C)/C=C/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(/C=C/C=1C(C)(C)C[C@@H](O)CC=1C)\C)/C)\C)/C DSSJLYAIYPLGLX-ZRDTYXODSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- OILXMJHPFNGGTO-ZRUUVFCLSA-N UNPD197407 Natural products C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)C=C[C@H](C)C(C)C)[C@@]1(C)CC2 OILXMJHPFNGGTO-ZRUUVFCLSA-N 0.000 description 1
- 235000003095 Vaccinium corymbosum Nutrition 0.000 description 1
- 240000001717 Vaccinium macrocarpon Species 0.000 description 1
- 235000017537 Vaccinium myrtillus Nutrition 0.000 description 1
- BHCPEZOMVCSXGM-IKIGYVJFSA-N Vaucheriaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(CO)/C=C/C12OC1CC(O)CC2(C)C)C=CC=C(/C)C=C=C3C(C)(C)CC(O)CC3(C)O BHCPEZOMVCSXGM-IKIGYVJFSA-N 0.000 description 1
- SZCBXWMUOPQSOX-LOFNIBRQSA-N Violaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C12OC1(C)CC(O)CC2(C)C)C=CC=C(/C)C=CC34OC3(C)CC(O)CC4(C)C SZCBXWMUOPQSOX-LOFNIBRQSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 241001593968 Vitis palmata Species 0.000 description 1
- 235000019498 Walnut oil Nutrition 0.000 description 1
- JKQXZKUSFCKOGQ-LQFQNGICSA-N Z-zeaxanthin Natural products C([C@H](O)CC=1C)C(C)(C)C=1C=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC1=C(C)C[C@@H](O)CC1(C)C JKQXZKUSFCKOGQ-LQFQNGICSA-N 0.000 description 1
- QOPRSMDTRDMBNK-RNUUUQFGSA-N Zeaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCC(O)C1(C)C)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C QOPRSMDTRDMBNK-RNUUUQFGSA-N 0.000 description 1
- 241000746966 Zizania Species 0.000 description 1
- 235000002636 Zizania aquatica Nutrition 0.000 description 1
- UYRDHEJRPVSJFM-VSWVFQEASA-N [(1s,3r)-3-hydroxy-4-[(3e,5e,7e,9e,11z)-11-[4-[(e)-2-[(1r,3s,6s)-3-hydroxy-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-6-yl]ethenyl]-5-oxofuran-2-ylidene]-3,10-dimethylundeca-1,3,5,7,9-pentaenylidene]-3,5,5-trimethylcyclohexyl] acetate Chemical compound C[C@@]1(O)C[C@@H](OC(=O)C)CC(C)(C)C1=C=C\C(C)=C\C=C\C=C\C=C(/C)\C=C/1C=C(\C=C\[C@]23[C@@](O2)(C)C[C@@H](O)CC3(C)C)C(=O)O\1 UYRDHEJRPVSJFM-VSWVFQEASA-N 0.000 description 1
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 1
- NHSUWMKUPCDXGS-CHSCTOIBSA-N [4-[(1e,3e,5e,7e,9e,11e,13e,15e,17e)-18-(4-hexadecanoyloxy-2,6,6-trimethyl-3-oxocyclohexa-1,4-dien-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,3,5-trimethyl-6-oxocyclohexa-1,4-dien-1-yl] hexadecanoate Chemical compound O=C1C(OC(=O)CCCCCCCCCCCCCCC)=CC(C)(C)C(\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=2C(C=C(OC(=O)CCCCCCCCCCCCCCC)C(=O)C=2C)(C)C)=C1C NHSUWMKUPCDXGS-CHSCTOIBSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- QNHQEUFMIKRNTB-UHFFFAOYSA-N aesculetin Natural products C1CC(=O)OC2=C1C=C(O)C(O)=C2 QNHQEUFMIKRNTB-UHFFFAOYSA-N 0.000 description 1
- GUAFOGOEJLSQBT-UHFFFAOYSA-N aesculetin dimethyl ether Natural products C1=CC(=O)OC2=C1C=C(OC)C(OC)=C2 GUAFOGOEJLSQBT-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- FSQZIFSGNDUYRQ-UHFFFAOYSA-N all-trans okenone Natural products COC(C)(C)CCC(=O)C(C)=CC=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC1=CC=C(C)C(C)=C1C FSQZIFSGNDUYRQ-UHFFFAOYSA-N 0.000 description 1
- VWXMLZQUDPCJPL-JCFHCUBBSA-N all-trans-Rhodoxanthin Natural products CC(=C/C=C/C(=C/C=C/1C(=CC(=O)CC1(C)C)C)/C)C=CC=CC(=CC=CC(=CC=C2/C(=CC(=O)CC2(C)C)C)C)C VWXMLZQUDPCJPL-JCFHCUBBSA-N 0.000 description 1
- JKQXZKUSFCKOGQ-LOFNIBRQSA-N all-trans-Zeaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C JKQXZKUSFCKOGQ-LOFNIBRQSA-N 0.000 description 1
- IUUXWKRRZDDNQG-UHFFFAOYSA-N all-trans-spheroidene Natural products COC(C)(C)CCCC(C)=CC=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)CCC=C(C)CCC=C(C)C IUUXWKRRZDDNQG-UHFFFAOYSA-N 0.000 description 1
- DVICWXUADSCSLL-PJQROKOUSA-N alloxanthin Chemical compound CC=1CC(O)CC(C)(C)C=1C#CC(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)C#CC1=C(C)CC(O)CC1(C)C DVICWXUADSCSLL-PJQROKOUSA-N 0.000 description 1
- UFRRRMXNFIGHPC-CPZJCIGYSA-N alloxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C#CC1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC#CC2=C(C)CC(O)CC2(C)C UFRRRMXNFIGHPC-CPZJCIGYSA-N 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- NBZANZVJRKXVBH-GYDPHNCVSA-N alpha-Cryptoxanthin Natural products O[C@H]1CC(C)(C)C(/C=C/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(/C=C/[C@H]2C(C)=CCCC2(C)C)\C)/C)\C)/C)=C(C)C1 NBZANZVJRKXVBH-GYDPHNCVSA-N 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- RAFGELQLHMBRHD-UHFFFAOYSA-N alpha-Fuc-(1-2)-beta-Gal-(1-3)-(beta-GlcNAc-(1-6))-GalNAc-ol Natural products COC(=O)C=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC(O)=O RAFGELQLHMBRHD-UHFFFAOYSA-N 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical class O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000012735 amaranth Nutrition 0.000 description 1
- 239000004178 amaranth Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000001670 anatto Substances 0.000 description 1
- 235000021120 animal protein Nutrition 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 235000012665 annatto Nutrition 0.000 description 1
- KZNIFHPLKGYRTM-UHFFFAOYSA-N apigenin Chemical compound C1=CC(O)=CC=C1C1=CC(=O)C2=C(O)C=C(O)C=C2O1 KZNIFHPLKGYRTM-UHFFFAOYSA-N 0.000 description 1
- XADJWCRESPGUTB-UHFFFAOYSA-N apigenin Natural products C1=CC(O)=CC=C1C1=CC(=O)C2=CC(O)=C(O)C=C2O1 XADJWCRESPGUTB-UHFFFAOYSA-N 0.000 description 1
- 235000008714 apigenin Nutrition 0.000 description 1
- 229940117893 apigenin Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 150000004832 aryl thioethers Chemical class 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 235000006533 astragalus Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 125000003354 benzotriazolyl group Chemical class N1N=NC2=C1C=CC=C2* 0.000 description 1
- 229940076810 beta sitosterol Drugs 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- VYTBDSUNRJYVHL-UHFFFAOYSA-N beta-Hydrojuglone Natural products O=C1CCC(=O)C2=C1C=CC=C2O VYTBDSUNRJYVHL-UHFFFAOYSA-N 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- RAFGELQLHMBRHD-SLEZCNMESA-N bixin Chemical compound COC(=O)\C=C\C(\C)=C/C=C/C(/C)=C/C=C/C=C(\C)/C=C/C=C(\C)/C=C/C(O)=O RAFGELQLHMBRHD-SLEZCNMESA-N 0.000 description 1
- 235000020279 black tea Nutrition 0.000 description 1
- 235000021029 blackberry Nutrition 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 235000007123 blue elder Nutrition 0.000 description 1
- 235000021014 blueberries Nutrition 0.000 description 1
- 235000019347 bone phosphate Nutrition 0.000 description 1
- 230000036995 brain health Effects 0.000 description 1
- OILXMJHPFNGGTO-ZAUYPBDWSA-N brassicasterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)/C=C/[C@H](C)C(C)C)[C@@]1(C)CC2 OILXMJHPFNGGTO-ZAUYPBDWSA-N 0.000 description 1
- 235000004420 brassicasterol Nutrition 0.000 description 1
- 235000020113 brazil nut Nutrition 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000404 calcium aluminium silicate Substances 0.000 description 1
- 235000012215 calcium aluminium silicate Nutrition 0.000 description 1
- WNCYAPRTYDMSFP-UHFFFAOYSA-N calcium aluminosilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O WNCYAPRTYDMSFP-UHFFFAOYSA-N 0.000 description 1
- 229940078583 calcium aluminosilicate Drugs 0.000 description 1
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- 239000000279 calcium ferrocyanide Substances 0.000 description 1
- 235000012251 calcium ferrocyanide Nutrition 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 235000012682 canthaxanthin Nutrition 0.000 description 1
- 239000001659 canthaxanthin Substances 0.000 description 1
- 229940008033 canthaxanthin Drugs 0.000 description 1
- 235000017663 capsaicin Nutrition 0.000 description 1
- 229960002504 capsaicin Drugs 0.000 description 1
- 235000018889 capsanthin Nutrition 0.000 description 1
- WRANYHFEXGNSND-LOFNIBRQSA-N capsanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC(=O)C2(C)CCC(O)C2(C)C WRANYHFEXGNSND-LOFNIBRQSA-N 0.000 description 1
- 235000009132 capsorubin Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- PANKHBYNKQNAHN-JUMCEFIXSA-N carotenoid dicarboxylic acid Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C(=O)O)C=CC=C(/C)C(=O)O PANKHBYNKQNAHN-JUMCEFIXSA-N 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 229940071162 caseinate Drugs 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 description 1
- 235000005487 catechin Nutrition 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 150000004777 chromones Chemical class 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229950001002 cianidanol Drugs 0.000 description 1
- 235000019247 citranaxanthin Nutrition 0.000 description 1
- PRDJTOVRIHGKNU-ZWERVMMHSA-N citranaxanthin Chemical compound CC(=O)\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C PRDJTOVRIHGKNU-ZWERVMMHSA-N 0.000 description 1
- PRDJTOVRIHGKNU-UHFFFAOYSA-N citranaxanthine Natural products CC(=O)C=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C PRDJTOVRIHGKNU-UHFFFAOYSA-N 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000012716 cod liver oil Nutrition 0.000 description 1
- 239000003026 cod liver oil Substances 0.000 description 1
- 235000017471 coenzyme Q10 Nutrition 0.000 description 1
- 229940110767 coenzyme Q10 Drugs 0.000 description 1
- ACTIUHUUMQJHFO-UPTCCGCDSA-N coenzyme Q10 Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UPTCCGCDSA-N 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 229920002770 condensed tannin Polymers 0.000 description 1
- 229940119526 coniferyl alcohol Drugs 0.000 description 1
- DKZBBWMURDFHNE-NSCUHMNNSA-N coniferyl aldehyde Chemical compound COC1=CC(\C=C\C=O)=CC=C1O DKZBBWMURDFHNE-NSCUHMNNSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 235000021019 cranberries Nutrition 0.000 description 1
- PANKHBYNKQNAHN-MQQNZMFNSA-N crocetin Chemical compound OC(=O)C(/C)=C/C=C/C(/C)=C/C=C/C=C(\C)/C=C/C=C(\C)C(O)=O PANKHBYNKQNAHN-MQQNZMFNSA-N 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 235000007336 cyanidin Nutrition 0.000 description 1
- 235000007240 daidzein Nutrition 0.000 description 1
- YBGKGTOOPNQOKH-UHFFFAOYSA-N daphnetin Natural products OC1=CC=CC2=C1OC(=O)C=C2O YBGKGTOOPNQOKH-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 235000007242 delphinidin Nutrition 0.000 description 1
- FFNDMZIBVDSQFI-UHFFFAOYSA-N delphinidin chloride Chemical compound [Cl-].[O+]=1C2=CC(O)=CC(O)=C2C=C(O)C=1C1=CC(O)=C(O)C(O)=C1 FFNDMZIBVDSQFI-UHFFFAOYSA-N 0.000 description 1
- 229930186770 diadinoxanthin Natural products 0.000 description 1
- OGHZCSINIMWCSB-WEWHBREISA-N diadinoxanthin A Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C#CC1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC23OC2(C)CC(O)CC3(C)C OGHZCSINIMWCSB-WEWHBREISA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 235000019304 dilauryl thiodipropionate Nutrition 0.000 description 1
- GXGAKHNRMVGRPK-UHFFFAOYSA-N dimagnesium;dioxido-bis[[oxido(oxo)silyl]oxy]silane Chemical compound [Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O GXGAKHNRMVGRPK-UHFFFAOYSA-N 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- ZGSPNIOCEDOHGS-UHFFFAOYSA-L disodium [3-[2,3-di(octadeca-9,12-dienoyloxy)propoxy-oxidophosphoryl]oxy-2-hydroxypropyl] 2,3-di(octadeca-9,12-dienoyloxy)propyl phosphate Chemical compound [Na+].[Na+].CCCCCC=CCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COP([O-])(=O)OCC(O)COP([O-])(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COC(=O)CCCCCCCC=CCC=CCCCCC ZGSPNIOCEDOHGS-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 244000013123 dwarf bean Species 0.000 description 1
- 150000002066 eicosanoids Chemical class 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 235000007124 elderberry Nutrition 0.000 description 1
- 229960002852 ellagic acid Drugs 0.000 description 1
- 235000004132 ellagic acid Nutrition 0.000 description 1
- RHMXXJGYXNZAPX-UHFFFAOYSA-N emodin Chemical compound C1=C(O)C=C2C(=O)C3=CC(C)=CC(O)=C3C(=O)C2=C1O RHMXXJGYXNZAPX-UHFFFAOYSA-N 0.000 description 1
- VASFLQKDXBAWEL-UHFFFAOYSA-N emodin Natural products OC1=C(OC2=C(C=CC(=C2C1=O)O)O)C1=CC=C(C=C1)O VASFLQKDXBAWEL-UHFFFAOYSA-N 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- LPTRNLNOHUVQMS-UHFFFAOYSA-N epicatechin Natural products Cc1cc(O)cc2OC(C(O)Cc12)c1ccc(O)c(O)c1 LPTRNLNOHUVQMS-UHFFFAOYSA-N 0.000 description 1
- 235000012734 epicatechin Nutrition 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- ILEDWLMCKZNDJK-UHFFFAOYSA-N esculetin Chemical compound C1=CC(=O)OC2=C1C=C(O)C(O)=C2 ILEDWLMCKZNDJK-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 235000008995 european elder Nutrition 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- KSEBMYQBYZTDHS-HWKANZROSA-N ferulic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-N 0.000 description 1
- 235000001785 ferulic acid Nutrition 0.000 description 1
- 229940114124 ferulic acid Drugs 0.000 description 1
- KSEBMYQBYZTDHS-UHFFFAOYSA-N ferulic acid Natural products COC1=CC(C=CC(O)=O)=CC=C1O KSEBMYQBYZTDHS-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229930003935 flavonoid Natural products 0.000 description 1
- 150000002215 flavonoids Chemical class 0.000 description 1
- 235000017173 flavonoids Nutrition 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- RIKPNWPEMPODJD-UHFFFAOYSA-N formononetin Natural products C1=CC(OC)=CC=C1C1=COC2=CC=CC=C2C1=O RIKPNWPEMPODJD-UHFFFAOYSA-N 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- SJWWTRQNNRNTPU-ABBNZJFMSA-N fucoxanthin Chemical compound C[C@@]1(O)C[C@@H](OC(=O)C)CC(C)(C)C1=C=C\C(C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)C(=O)C[C@]1(C(C[C@H](O)C2)(C)C)[C@]2(C)O1 SJWWTRQNNRNTPU-ABBNZJFMSA-N 0.000 description 1
- AQLRNQCFQNNMJA-UHFFFAOYSA-N fucoxanthin Natural products CC(=O)OC1CC(C)(C)C(=C=CC(=CC=CC(=CC=CC=C(/C)C=CC=C(/C)C(=O)CC23OC2(C)CC(O)CC3(C)C)C)CO)C(C)(O)C1 AQLRNQCFQNNMJA-UHFFFAOYSA-N 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- HRQKOYFGHJYEFS-RZWPOVEWSA-N gamma-carotene Natural products C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(/C=C/C=1C(C)(C)CCCC=1C)\C)/C)\C)(\C=C\C=C(/CC/C=C(\C)/C)\C)/C HRQKOYFGHJYEFS-RZWPOVEWSA-N 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000005095 gastrointestinal system Anatomy 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- NLDDIKRKFXEWBK-AWEZNQCLSA-N gingerol Chemical compound CCCCC[C@H](O)CC(=O)CCC1=CC=C(O)C(OC)=C1 NLDDIKRKFXEWBK-AWEZNQCLSA-N 0.000 description 1
- 235000002780 gingerol Nutrition 0.000 description 1
- JZLXEKNVCWMYHI-UHFFFAOYSA-N gingerol Natural products CCCCC(O)CC(=O)CCC1=CC=C(O)C(OC)=C1 JZLXEKNVCWMYHI-UHFFFAOYSA-N 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 150000002327 glycerophospholipids Chemical class 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 235000011868 grain product Nutrition 0.000 description 1
- 229940087559 grape seed Drugs 0.000 description 1
- 239000008169 grapeseed oil Substances 0.000 description 1
- 235000021331 green beans Nutrition 0.000 description 1
- 235000009569 green tea Nutrition 0.000 description 1
- 235000019314 gum ghatti Nutrition 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 235000019514 herring Nutrition 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 229920001461 hydrolysable tannin Polymers 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000006289 hydroxybenzyl group Chemical group 0.000 description 1
- 229930005346 hydroxycinnamic acid Natural products 0.000 description 1
- DEDGUGJNLNLJSR-UHFFFAOYSA-N hydroxycinnamic acid group Chemical class OC(C(=O)O)=CC1=CC=CC=C1 DEDGUGJNLNLJSR-UHFFFAOYSA-N 0.000 description 1
- 235000010359 hydroxycinnamic acids Nutrition 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229930013032 isoflavonoid Natural products 0.000 description 1
- 150000003817 isoflavonoid derivatives Chemical class 0.000 description 1
- 235000012891 isoflavonoids Nutrition 0.000 description 1
- OSELKOCHBMDKEJ-WGMIZEQOSA-N isofucosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC/C(=C/C)C(C)C)[C@@]1(C)CC2 OSELKOCHBMDKEJ-WGMIZEQOSA-N 0.000 description 1
- 150000002535 isoprostanes Chemical class 0.000 description 1
- IYRMWMYZSQPJKC-UHFFFAOYSA-N kaempferol Chemical compound C1=CC(O)=CC=C1C1=C(O)C(=O)C2=C(O)C=C(O)C=C2O1 IYRMWMYZSQPJKC-UHFFFAOYSA-N 0.000 description 1
- 235000010494 karaya gum Nutrition 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 150000002617 leukotrienes Chemical class 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229930013686 lignan Natural products 0.000 description 1
- 150000005692 lignans Chemical class 0.000 description 1
- 235000009408 lignans Nutrition 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 150000002639 lipoxins Chemical class 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- IQPNAANSBPBGFQ-UHFFFAOYSA-N luteolin Chemical compound C=1C(O)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(O)C(O)=C1 IQPNAANSBPBGFQ-UHFFFAOYSA-N 0.000 description 1
- LRDGATPGVJTWLJ-UHFFFAOYSA-N luteolin Natural products OC1=CC(O)=CC(C=2OC3=CC(O)=CC(O)=C3C(=O)C=2)=C1 LRDGATPGVJTWLJ-UHFFFAOYSA-N 0.000 description 1
- 235000009498 luteolin Nutrition 0.000 description 1
- YNNRPBRNWWIQPQ-OMSIYMKDSA-N luteoxanthin Chemical compound O1C2(C)CC(O)CC(C)(C)C2=CC1C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1(C(CC(O)C2)(C)C)C2(C)O1 YNNRPBRNWWIQPQ-OMSIYMKDSA-N 0.000 description 1
- DJVRYOCMCZRSAC-GWOVRDTHSA-N luteoxanthin Natural products CC(=C/C=C/C(=C/C=C/C=C(C)/C=C/C=C(C)/C1OC2(C)CC(O)CC(C)(C)C2=C1)/C)CCC34OC3(C)CC(O)CC4(C)C DJVRYOCMCZRSAC-GWOVRDTHSA-N 0.000 description 1
- BGVXBZXEFXMRGJ-DPOFWPLISA-N lycopaoctaene Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C BGVXBZXEFXMRGJ-DPOFWPLISA-N 0.000 description 1
- IFTRFNLCKUZSNG-UHFFFAOYSA-N lycoxanthin Chemical compound CC(C)=CCCC(C)=CC=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC=C(C)CCC=C(C)CO IFTRFNLCKUZSNG-UHFFFAOYSA-N 0.000 description 1
- 235000008699 lycoxanthin Nutrition 0.000 description 1
- 235000020640 mackerel Nutrition 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 235000012245 magnesium oxide Nutrition 0.000 description 1
- 235000012243 magnesium silicates Nutrition 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical class [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 235000009584 malvidin Nutrition 0.000 description 1
- 229940043357 mangiferin Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- DKHGMERMDICWDU-GHDNBGIDSA-N menaquinone-4 Chemical compound C1=CC=C2C(=O)C(C/C=C(C)/CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)=C(C)C(=O)C2=C1 DKHGMERMDICWDU-GHDNBGIDSA-N 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- FAARLWTXUUQFSN-UHFFFAOYSA-N methylellagic acid Natural products O1C(=O)C2=CC(O)=C(O)C3=C2C2=C1C(OC)=C(O)C=C2C(=O)O3 FAARLWTXUUQFSN-UHFFFAOYSA-N 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 235000019713 millet Nutrition 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- RZOLZVCUZPBJJZ-CZJSGJJBSA-N mutatoxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C1CC2CC(O)CC(C)(C)C2=C1)C=CC=C(/C)C=CC3=C(C)CC(O)CC3(C)C RZOLZVCUZPBJJZ-CZJSGJJBSA-N 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- 235000007625 naringenin Nutrition 0.000 description 1
- WGEYAGZBLYNDFV-UHFFFAOYSA-N naringenin Natural products C1(=O)C2=C(O)C=C(O)C=C2OC(C1)C1=CC=C(CC1)O WGEYAGZBLYNDFV-UHFFFAOYSA-N 0.000 description 1
- 229940117954 naringenin Drugs 0.000 description 1
- ZVKXPPXCNUMUOR-CBRRPZDLSA-N neochrome Natural products CC(=CC=CC=C(C)C=CC=C(C)[C@@H]1O[C@]2(C)C[C@@H](O)CC(C)(C)C2=C1)C=CC=C(C)C=C=C3C(C)(C)C[C@@H](O)C[C@]3(C)O ZVKXPPXCNUMUOR-CBRRPZDLSA-N 0.000 description 1
- 229930182783 neolignan Natural products 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000002414 normal-phase solid-phase extraction Methods 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- 235000020986 nuts and seeds Nutrition 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000004533 oil dispersion Substances 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000008601 oleoresin Substances 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 229940107304 oxidized cellulose Drugs 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- HKUHOPQRJKPJCJ-UHFFFAOYSA-N pelargonidin Natural products OC1=Cc2c(O)cc(O)cc2OC1c1ccc(O)cc1 HKUHOPQRJKPJCJ-UHFFFAOYSA-N 0.000 description 1
- 235000006251 pelargonidin Nutrition 0.000 description 1
- YPVZJXMTXCOTJN-UHFFFAOYSA-N pelargonidin chloride Chemical compound [Cl-].C1=CC(O)=CC=C1C(C(=C1)O)=[O+]C2=C1C(O)=CC(O)=C2 YPVZJXMTXCOTJN-UHFFFAOYSA-N 0.000 description 1
- 229930015721 peonidin Natural products 0.000 description 1
- 235000006404 peonidin Nutrition 0.000 description 1
- OGBSHLKSHNAPEW-UHFFFAOYSA-N peonidin chloride Chemical compound [Cl-].C1=C(O)C(OC)=CC(C=2C(=CC=3C(O)=CC(O)=CC=3[O+]=2)O)=C1 OGBSHLKSHNAPEW-UHFFFAOYSA-N 0.000 description 1
- UTIQDNPUHSAVDN-UHFFFAOYSA-N peridinin Natural products CC(=O)OC1CC(C)(C)C(=C=CC(=CC=CC=CC=C2/OC(=O)C(=C2)C=CC34OC3(C)CC(O)CC4(C)C)C)C(C)(O)C1 UTIQDNPUHSAVDN-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229930015717 petunidin Natural products 0.000 description 1
- 235000006384 petunidin Nutrition 0.000 description 1
- QULMBDNPZCFSPR-UHFFFAOYSA-N petunidin chloride Chemical compound [Cl-].OC1=C(O)C(OC)=CC(C=2C(=CC=3C(O)=CC(O)=CC=3[O+]=2)O)=C1 QULMBDNPZCFSPR-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 150000007965 phenolic acids Chemical class 0.000 description 1
- 235000009048 phenolic acids Nutrition 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical class OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- 229930015698 phenylpropene Natural products 0.000 description 1
- QROGIFZRVHSFLM-UHFFFAOYSA-N phenylpropene group Chemical class C1(=CC=CC=C1)C=CC QROGIFZRVHSFLM-UHFFFAOYSA-N 0.000 description 1
- XRBCRPZXSCBRTK-UHFFFAOYSA-N phosphonous acid Chemical class OPO XRBCRPZXSCBRTK-UHFFFAOYSA-N 0.000 description 1
- MBWXNTAXLNYFJB-LKUDQCMESA-N phylloquinone Chemical compound C1=CC=C2C(=O)C(C/C=C(C)/CCCC(C)CCCC(C)CCCC(C)C)=C(C)C(=O)C2=C1 MBWXNTAXLNYFJB-LKUDQCMESA-N 0.000 description 1
- MBWXNTAXLNYFJB-NKFFZRIASA-N phylloquinone Chemical compound C1=CC=C2C(=O)C(C/C=C(C)/CCC[C@H](C)CCC[C@H](C)CCCC(C)C)=C(C)C(=O)C2=C1 MBWXNTAXLNYFJB-NKFFZRIASA-N 0.000 description 1
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 1
- 235000019175 phylloquinone Nutrition 0.000 description 1
- PKUBGLYEOAJPEG-UHFFFAOYSA-N physcion Natural products C1=C(C)C=C2C(=O)C3=CC(C)=CC(O)=C3C(=O)C2=C1O PKUBGLYEOAJPEG-UHFFFAOYSA-N 0.000 description 1
- 229960001898 phytomenadione Drugs 0.000 description 1
- FKUYMLZIRPABFK-IQSNHBBHSA-N plastoquinone-9 Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC1=CC(=O)C(C)=C(C)C1=O FKUYMLZIRPABFK-IQSNHBBHSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001522 polyglycol ester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000000441 potassium aluminium silicate Substances 0.000 description 1
- 235000012219 potassium aluminium silicate Nutrition 0.000 description 1
- 239000000276 potassium ferrocyanide Substances 0.000 description 1
- 244000062645 predators Species 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 150000003815 prostacyclins Chemical class 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 229940070687 psyllium Drugs 0.000 description 1
- 235000015136 pumpkin Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 235000005875 quercetin Nutrition 0.000 description 1
- 229960001285 quercetin Drugs 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 235000020095 red wine Nutrition 0.000 description 1
- NPCOQXAVBJJZBQ-UHFFFAOYSA-N reduced coenzyme Q9 Natural products COC1=C(O)C(C)=C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)C(O)=C1OC NPCOQXAVBJJZBQ-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 229960003471 retinol Drugs 0.000 description 1
- 235000020944 retinol Nutrition 0.000 description 1
- 239000011607 retinol Substances 0.000 description 1
- CNYVJTJLUKKCGM-MCBZMHSTSA-N rhodopin Natural products OC(CCC/C(=C\C=C\C(=C/C=C/C(=C\C=C\C=C(/C=C/C=C(\C=C\C=C(/CC/C=C(\C)/C)\C)/C)\C)/C)\C)/C)(C)C CNYVJTJLUKKCGM-MCBZMHSTSA-N 0.000 description 1
- CNYVJTJLUKKCGM-RGGGOQHISA-N rhodopin Chemical compound CC(C)=CCC\C(C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C(/C)CCCC(C)(C)O CNYVJTJLUKKCGM-RGGGOQHISA-N 0.000 description 1
- XMXRPRQNVZIVTC-WDTDMKEPSA-N rhodopinol Chemical compound CC(C)=CCCC(C)=CC=CC(C)=CC=CC(C)=CC=CC=C(CO)\C=C\C=C(/C)\C=C\C=C(C)CCCC(C)(C)O XMXRPRQNVZIVTC-WDTDMKEPSA-N 0.000 description 1
- 235000007273 rhodopinol Nutrition 0.000 description 1
- 235000019246 rhodoxanthin Nutrition 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 150000003336 secondary aromatic amines Chemical class 0.000 description 1
- 230000007226 seed germination Effects 0.000 description 1
- 230000035040 seed growth Effects 0.000 description 1
- PDBIWYOLPQXSTF-JLTXGRSLSA-N semi-beta-carotenone Chemical compound CC(=O)CCCC(C)(C)C(=O)\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C PDBIWYOLPQXSTF-JLTXGRSLSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- PCMORTLOPMLEFB-UHFFFAOYSA-N sinapinic acid Natural products COC1=CC(C=CC(O)=O)=CC(OC)=C1O PCMORTLOPMLEFB-UHFFFAOYSA-N 0.000 description 1
- SLQHGWZKKZPZEK-ZQFWBWLTSA-N sintaxanthin Chemical compound CC(=O)C(\C)=C\C=C\C(\C)=C\C=C/C=C(\C)/C=C/C=C(/C)\C=C\C1=C(C)CCCC1(C)C SLQHGWZKKZPZEK-ZQFWBWLTSA-N 0.000 description 1
- UERRVASYDCUNEJ-ALOUHAEOSA-N siphonein Natural products CCCCCCCCCC=CC(=O)OCC(=C/C=C/C(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1C(=CC(O)CC1(C)C)C)/C)C(=O)CC2=C(C)CC(O)CC2(C)C UERRVASYDCUNEJ-ALOUHAEOSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000000429 sodium aluminium silicate Substances 0.000 description 1
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229940080237 sodium caseinate Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- CBHOWTTXCQAOID-UHFFFAOYSA-L sodium ethane formaldehyde mercury(2+) molecular iodine 2-sulfidobenzoate Chemical compound [Na+].[Hg++].C[CH2-].II.C=O.[O-]C(=O)c1ccccc1[S-] CBHOWTTXCQAOID-UHFFFAOYSA-L 0.000 description 1
- GTSHREYGKSITGK-UHFFFAOYSA-N sodium ferrocyanide Chemical compound [Na+].[Na+].[Na+].[Na+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] GTSHREYGKSITGK-UHFFFAOYSA-N 0.000 description 1
- 239000000264 sodium ferrocyanide Substances 0.000 description 1
- 235000012247 sodium ferrocyanide Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 235000019794 sodium silicate Nutrition 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229940001941 soy protein Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- FJOCMTHZSURUFA-AXYGSFPTSA-N spheroidene Chemical compound COC(C)(C)C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)CC\C=C(/C)CCC=C(C)C FJOCMTHZSURUFA-AXYGSFPTSA-N 0.000 description 1
- QCZWKLBJYRVKPW-LYWCOASQSA-N spheroidene Natural products COC(C)(C)CC=CC(=CC=CC(=CC=CC(=CC=CC=CC(C)C=C/C=C(C)/CCC=C(/C)CC=C(C)C)C)C)C QCZWKLBJYRVKPW-LYWCOASQSA-N 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 150000003421 squalenes Chemical class 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 150000001629 stilbenes Chemical class 0.000 description 1
- 235000021012 strawberries Nutrition 0.000 description 1
- 238000009662 stress testing Methods 0.000 description 1
- 230000035322 succinylation Effects 0.000 description 1
- 238000010613 succinylation reaction Methods 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 235000019605 sweet taste sensations Nutrition 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 210000004233 talus Anatomy 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- 239000004250 tert-Butylhydroquinone Substances 0.000 description 1
- 235000019281 tert-butylhydroquinone Nutrition 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- LVEOKSIILWWVEO-UHFFFAOYSA-N tetradecyl 3-(3-oxo-3-tetradecoxypropyl)sulfanylpropanoate Chemical compound CCCCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCCCC LVEOKSIILWWVEO-UHFFFAOYSA-N 0.000 description 1
- XOGGUFAVLNCTRS-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] XOGGUFAVLNCTRS-UHFFFAOYSA-N 0.000 description 1
- 150000003595 thromboxanes Chemical class 0.000 description 1
- 229940068778 tocotrienols Drugs 0.000 description 1
- IAEFJGPZEPGPGJ-FTOKITACSA-N torularhodinaldehyde Natural products CC(=C/C=C/C(=C/C=C/C(=C/C=C/C(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)/C)/C)/C)C=O IAEFJGPZEPGPGJ-FTOKITACSA-N 0.000 description 1
- AIBOHNYYKWYQMM-MXBSLTGDSA-N torulene Chemical compound CC(C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C AIBOHNYYKWYQMM-MXBSLTGDSA-N 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 235000021404 traditional food Nutrition 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M trans-cinnamate Chemical class [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- DKZBBWMURDFHNE-UHFFFAOYSA-N trans-coniferylaldehyde Natural products COC1=CC(C=CC=O)=CC=C1O DKZBBWMURDFHNE-UHFFFAOYSA-N 0.000 description 1
- QURCVMIEKCOAJU-UHFFFAOYSA-N trans-isoferulic acid Natural products COC1=CC=C(C=CC(O)=O)C=C1O QURCVMIEKCOAJU-UHFFFAOYSA-N 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- WGKLOLBTFWFKOD-UHFFFAOYSA-N tris(2-nonylphenyl) phosphite Chemical compound CCCCCCCCCC1=CC=CC=C1OP(OC=1C(=CC=CC=1)CCCCCCCCC)OC1=CC=CC=C1CCCCCCCCC WGKLOLBTFWFKOD-UHFFFAOYSA-N 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229940040064 ubiquinol Drugs 0.000 description 1
- QNTNKSLOFHEFPK-UPTCCGCDSA-N ubiquinol-10 Chemical compound COC1=C(O)C(C)=C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)C(O)=C1OC QNTNKSLOFHEFPK-UPTCCGCDSA-N 0.000 description 1
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 1
- HFTAFOQKODTIJY-UHFFFAOYSA-N umbelliferone Natural products Cc1cc2C=CC(=O)Oc2cc1OCC=CC(C)(C)O HFTAFOQKODTIJY-UHFFFAOYSA-N 0.000 description 1
- 210000002438 upper gastrointestinal tract Anatomy 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 235000019143 vitamin K2 Nutrition 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 229940041603 vitamin k 3 Drugs 0.000 description 1
- 239000008170 walnut oil Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 235000020334 white tea Nutrition 0.000 description 1
- 235000020985 whole grains Nutrition 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 150000007964 xanthones Chemical class 0.000 description 1
- 235000010930 zeaxanthin Nutrition 0.000 description 1
- 239000001775 zeaxanthin Substances 0.000 description 1
- 229940043269 zeaxanthin Drugs 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- SQOXTAJBVHQIOO-UHFFFAOYSA-L zinc;dicarbamothioate Chemical class [Zn+2].NC([O-])=S.NC([O-])=S SQOXTAJBVHQIOO-UHFFFAOYSA-L 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
- 235000019145 α-tocotrienol Nutrition 0.000 description 1
- 150000003773 α-tocotrienols Chemical class 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
- 235000019151 β-tocotrienol Nutrition 0.000 description 1
- 150000003782 β-tocotrienols Chemical class 0.000 description 1
- 235000019150 γ-tocotrienol Nutrition 0.000 description 1
- 150000003786 γ-tocotrienols Chemical class 0.000 description 1
- 235000019144 δ-tocotrienol Nutrition 0.000 description 1
- 150000003790 δ-tocotrienols Chemical class 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/385—Concentrates of non-alcoholic beverages
- A23L2/39—Dry compositions
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/52—Adding ingredients
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/70—Fixation, conservation, or encapsulation of flavouring agents
- A23L27/72—Encapsulation
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/105—Plant extracts, their artificial duplicates or their derivatives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/115—Fatty acids or derivatives thereof; Fats or oils
- A23L33/12—Fatty acids or derivatives thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/16—Inorganic salts, minerals or trace elements
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23P—SHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
- A23P10/00—Shaping or working of foodstuffs characterised by the products
- A23P10/30—Encapsulation of particles, e.g. foodstuff additives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5015—Organic compounds, e.g. fats, sugars
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5073—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
- A61P39/06—Free radical scavengers or antioxidants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5036—Polysaccharides, e.g. gums, alginate; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5063—Compounds of unknown constitution, e.g. material from plants or animals
Definitions
- This invention relates to encapsulation of materials that are sensitive to oxidation.
- a healthy diet may include components such as soluble and insoluble fiber for promoting gastrointestinal health, phytosterols for lowering cholesterol levels and promoting heart health, antioxidants for discouraging cancer and other inflammatory diseases, and omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) for promoting heart and brain health.
- PUFAs omega-3 and omega-6 polyunsaturated fatty acids
- TAGs triacylglycerols
- antioxidants or natural colors such as anthocyanins
- anthocyanins in a dried powder faun is one of the biggest challenges for food processors, see e.g., Lawson, Harry, Food Oils and Fats, Technology, Utilization, and Nutrition , New York; Chapman & Hall, pp 18-22 (1995) and Gunstone, Frank D. and Padley, Fred B., Lipid Technologies and Applications , New York; Marcel Dekker, Inc., pp 169-199 (1997).
- oxidatively unstable materials may be provided with a synthetic, seed-like oxygen-resistant protective barrier and rendered less susceptible to oxidative degradation.
- An oxidation-susceptible material in the form, for example of a core per se or an already-encapsulated core
- This pseudo oil-seed capsule may be provided with additional functional or protective ingredients or shell layers to form a complex multi-component or multi-layered protective system for oxidation-sensitive cores.
- One such additional layer may be an oxidation barrier layer containing a “pseudo-peri-carp” or PPC layer made using a fiber-, carbohydrate- or protein-containing film-forming material.
- Another such additional layer may be a hydrocolloid or HC layer made using a natural or chemically-modified hydrocolloid material, e.g., an alginate.
- the resulting microcapsules include an oxidatively unstable core and dried synthetic organelle shell (which may be described as an Oil Body Shell or OBS).
- OBS Oil Body Shell
- the microcapsules may be further modified, e.g., by adding the materials for a PPC layer or HC layer (as components of the OBS or as separate layers), antioxidants, chelating agents, deodorized oils or other dissolved, suspended or dispersed ingredients to one or more of the core or shell layer(s) to provide unique structures for stable oil or powder delivery in pharmaceutical, dietary, cosmetic, agricultural and other commercial uses.
- the disclosed encapsulated materials and methods are especially useful for imparting improved oxidation protection to difficult to protect core materials such as unsaturated and polyunsaturated oils and acids.
- the present invention accordingly provides, in one aspect, an encapsulated material comprising an oxidation-sensitive core covered by at least one shell comprising a dried synthetic organelle layer.
- the invention provides, in another aspect, a method for protecting an oxidatively unstable material, which method comprises providing or forming a particle or droplet of the oxidatively unstable material and forming a dried synthetic organelle layer surrounding the particle or droplet.
- the disclosed encapsulated materials and methods may artificially mimic the natural method of oil storage in oil seeds to provide processed oils and other oxidatively unstable materials with enhanced oxidative stability and in an effectively dry powder faun.
- FIG. 1 is a schematic cross-sectional view of a representative seed structure
- FIG. 2 is a partial cross-sectional view of a representative organelle structure
- FIG. 3 through FIG. 6 are schematic cross-sectional views of various encapsulated materials.
- microcapsule that contains “a” shell may include “one or more” shells.
- deliveryable when used with respect to an encapsulated substance means that the substance is at least partially surrounded by an additional substance that imparts one or more altered properties to the encapsulated substance, e.g., altered transport, altered flowability, altered resistance to oxidation or moisture, altered abrasion resistance, or altered performance in a commercial application (e.g., a food application).
- the term “dried” does not necessarily refer to a process of manufacture, but rather to the available water content in an article or component (e.g., a layer) thereof.
- available water does not include water of hydration.
- encapsulated material and “microcapsule” mean particles (often but not always spherical in shape, and often but not always having a diameter of about 10 nanometers to about 5 mm) which contain at least one liquid, gel or solid core surrounded by at least one continuous membrane or shell.
- oral means capable of and safe for oral administration.
- microsphere means a microcapsule material whose particles contain two or more cores distributed in and surrounded by at least one continuous membrane or shell.
- pill means a finely divided dry powder material.
- the term “synthetic” when used with respect to an organelle layer means that the layer is not part of a naturally encapsulated object such as a seed, but is instead part of a manufactured encapsulated object made by combining a core and the organelle layer.
- the organelle layer in such an encapsulated object may be formed by combining one or more oleosins and one or more phospholipids, or may be formed from extracted or otherwise isolated organelle layers obtained from seeds or other naturally encapsulated objects.
- the recitation of a numerical range using endpoints includes all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, etc.).
- the recitation of sets of upper and lower endpoints e.g., at least 1, at least 2, at least 3, and less than 10, less than 5 and less than 4) includes all ranges that may be formed from such endpoints (e.g., 1 to 10, 1 to 5, 2 to 10, 2 to 5, etc.).
- FIG. 1 shows a representative seed structure 100 including an outer surrounding pericarp or seed coat 102 composed of an outer episperm 104 and underlying endopleura 106 which provide a protective and water vapor transmission-resistant shell structure, an endosperm 108 for food storage, and a germ or embryo 110 which in a leafy plant may include cotyledons 112 , 114 which form seed leaves and a connective hypocotyl 116 .
- oil may be found throughout the entire seed, the majority is located in the germ or embryo 110 as a source for energy during germination and seedling growth. The oil is located intracellularly in structures called organelles.
- Organelles or oil seed bodies are a form of liposome typically found in plant cells and normally (but not exclusively) having about 0.5-2 micrometers average diameter.
- an organelle 200 may include a TAG or other oxidatively unstable core 202 surrounded by a layer 204 containing phospholipids 206 whose location and orientation in layer 204 may be stabilized by oleosins 208 formed from short chain alkaline structural proteins. The oleosin protein may act as a locking mechanism in phospholipid-containing layer 204 .
- a typical oleosin protein contains about 120-170 amino acids with three distinct structural domains, namely an N-terminal amphiphathic ⁇ -helical domain, a central hydrophobic domain, and a C-terminal amphiphathic ⁇ -helical domain.
- the hydrophobic central region extends into the TAG core 202 providing an anchor for oleosin 208 with the two amphiphathic sections extending outward over at least part of layer 204 .
- the resulting arrangement of phospholipids 206 and oleosins 208 may provide a structurally stable vessel and a degree of oxidation protection for the TAG. However, this may represent only a part of the oxidation protection provided by a natural oil seed structure.
- the pericarp or seed coat 102 as shown in FIG. 1 may provide additional oxidation protection for the TAG.
- Seed germination, and conversely seed dormancy may be affected by many factors including water, light, temperature and oxygen. In many cases, the exclusion of these factors or the presence of inhibitors to water, light or oxygen can limit germination or extend seed dormancy. Under proper storage conditions some seeds can survive in dormant form for years and then germinate very quickly.
- Arctic tundra lupine represents one extreme example, with seed viability having been found after a 10,000 year dormancy period. While the control of light and water is important to seed stability and dormancy, we are most concerned here with the effects of or the control of oxygen in seed structures.
- the embryo or cotyledon In order for a seed to germinate the embryo or cotyledon must be exposed to oxygen. Yet over exposure to oxygen or continuous exposure to oxygen can result in loss of viability and degradation of critical components in the seed such as the TAGs. Seeds appear to limit oxygen exposure until other germination conditions are met using mechanisms including oxygen barriers in the pericarp and other layers immediately associated with the TAG organelle, and oxygen inhibitors such as antioxidants (e.g., phenols, sterols, anthocyanins and lycopene) in the pericarp or other portions of an oil seed body.
- a typical pericarp includes fiber, antioxidants, and proteins in multiple layers of cells.
- Germination occurs when the seed pericarp has been punctured (e.g., by animals), abraded (e.g., when scarified by man to promote germination) or when water activity and temperature are sufficient to allow water and oxygen to reach the cotyledon or to allow water to leach away antioxidants (e.g., phenolic structured antioxidants such as anthocyanins) which might otherwise inhibit seed growth.
- antioxidants e.g., phenolic structured antioxidants such as anthocyanins
- oxidatively unstable materials may be provided with a synthetic, seed-like oxygen-resistant protective barrier and rendered less susceptible to oxidative degradation.
- One additional factor may be considered when forming synthetic or artificial TAG encapsulation systems.
- TAGs of interest for encapsulation may not previously have been handled in a manner consistent with the TAGs in seeds.
- prooxidants such as metals (e.g., iron and copper), TAG oxidation products (e.g., ketones, peroxides and aldehydes), oxidase enzymes, and dissolved oxygen may all affect extracted or otherwise isolated TAGs.
- TAGs in oil seed bodies are shielded or otherwise protected from or completely shielded from the above prooxidants, but upon extraction from oil seeds, algae, or fish the TAGs may be completely exposed to oxidase enzymes (e.g., lipase) from other parts of the plant or to dissolved metal ions from extraction and processing steps. Producing a new microcapsule that mimics a seed and organelle will be furthered improved if these issues are addressed as well.
- oxidase enzymes e.g., lipase
- the disclosed encapsulated materials include at least an oxidation sensitive core and at least one shell layer containing a dried synthetic organelle layer over the core.
- the organelle layer is immediately adjacent the core layer, but intermediate or additional shells may surround the core, the organelle layer, or both the core and organelle layer.
- the above-mentioned HC layer may facilitate upper gastrointestinal (UGI) tract bypass when the disclosed encapsulated materials are orally administered to mammalian subjects.
- UMI upper gastrointestinal
- a particularly useful layer, especially over the organelle layer is the above-mentioned PPC layer.
- a PPC layer is intended to mimic the functionality of the pericarp layer in a natural seed with respect to providing oxidation reduction or other protection for the core.
- Exemplary PPC layers may be formed from at least one of dietary fiber (e.g., food grade fiber), a simple carbohydrate (e.g., a monosaccharide or disaccharide such as a sugar), or a protein, and may also include at least one antioxidant.
- PPC layers containing one or more of fiber, carbohydrate and protein may also be referred to as fiber/carbohydrate/protein layers or FCP layers, with the “/” symbol signifying that any of fiber, carbohydrate and protein or combinations thereof may be present in the FCP shell (FCPS).
- FCPS FCP shell
- ingredients capable of forming one and optionally several layers are combined into the continuous phase of an emulsion containing droplets or particles of the core material.
- the emulsion may be processed (e.g., spray dried) to convert the emulsion into microcapsules having at least one dried shell layer.
- the various additional layer ingredients may arrange themselves into separate layers around the core droplets or particles (for example due to reasons such as stereochemistry, surface energy, oleophilicity, oleophobicity, hydrophilicity or hydrophobicity), or may form a matrix of ingredients from the continuous phase in a single shell layer surrounding the core droplets or particles.
- the resulting encapsulated materials have a locked-in protective structure in the form of one or more shell layers surrounding an oxidatively-sensitive core, and may provide better protection against oxidation than that provided by the undried emulsion.
- the encapsulated materials may also employ a multi-tiered defensive approach involving oxygen barriers, lipophilic antioxidants and hydrophilic antioxidants.
- FIG. 3 shows an exemplary deliverable encapsulated material 300 including an oxidatively unstable core 302 surrounded by an outer dried synthetic organelle layer 304 .
- Layer 304 provides a protective and water vapor transmission-resistant shell over core 302 .
- Core 302 may optionally contain dispersed solid particles 306 which may alter the properties of core 302 or layer 304 , or may provide other features to encapsulated material 300 .
- Core 302 may be formed for example from liquid, gelled or solid particles of an oxidatively unstable material, e.g., a phytosterol, PUFA, TAG, antioxidant, natural color or mixture thereof.
- Synthetic organelle layer 304 may be formed for example by isolating, purifying and mixing oleosins and phospholipids to provide a shell layer mixture mimicking or resembling that surrounding a TAG in a natural oil seed body.
- Particles 306 may be formed for example from solids including calcium salts, alginic acid and salts thereof including sodium or calcium alginate, chelating agents including citric acid, or antioxidants including ascorbic acid.
- FIG. 4 shows another exemplary deliverable encapsulated material 400 including oxidatively unstable core 302 surrounded by dried synthetic organelle layer 304 and containing solid particles 306 .
- Shell 304 is surrounded by an intermediate hydrocolloid shell 406 made for example from alginate, an intermediate fiber/carbohydrate shell 408 made for example from a mixture of maltodextrin, sucrose, trehalose and starch, and an outer protective layer 410 made for example from a mixture of lipid, fiber and protein.
- the various layers shown in FIG. 4 are merely exemplary and may be rearranged, combined into fewer layers, augmented with additional layers or made from other ingredients or mixtures of ingredients. Doing so may facilitate formation of encapsulated materials which maintain, preserve or protect the core inside the encapsulated material and keep oxygen and if desired one or both of water or light away from the core.
- FIG. 5 shows another exemplary deliverable encapsulated material in the form of a microsphere 500 including a plurality of oxidatively unstable core particles 300 similar to those shown in FIG. 3 surrounded by intermediate hydrocolloid shells 506 made for example from alginate.
- the particles 300 and their shells 506 are dispersed in a protective matrix 512 made for example from a mixture of maltodextrin, sucrose, starch, ascorbic acid and oat fiber.
- FIG. 6 shows another exemplary deliverable encapsulated material in the form of a microsphere 600 including a plurality of oxidatively unstable core particles 300 and surrounding intermediate hydrocolloid shells 506 dispersed in a protective matrix 512 , and surrounded by a protective wax-containing shell 620 .
- Shell 620 may include a variety of other ingredients, e.g., soluble fibers, lipid soluble materials including tocopherols, and dispersed water-soluble particulates including ascorbic acid and citric acid.
- oxidation-sensitive core substances include liquid or solid materials, e.g., acidulants, animal products, antioxidants, carotenoids, catalysts, drugs, dyes, enzymes, flavors, fragrances, lutein, lycopene, metal complexes, natural colors, nutraceuticals, pigments, polyphenolics, processed plant materials, metabiotics, probiotics, proteins, PUFAs, squalenes, sterols including phytosterols, tocopherol, tocotrienol, TAGs, vitamins, unsaturated organic compounds (e.g., unsaturated rubbers and unsaturated oils) and mixtures thereof.
- liquid or solid materials e.g., acidulants, animal products, antioxidants, carotenoids, catalysts, drugs, dyes, enzymes, flavors, fragrances, lutein, lycopene, metal complexes, natural colors, nutraceuticals, pigments, polyphenolics, processed plant materials, metabiotics, probiotics, proteins, PUFAs,
- Antioxidants are of particular interest. Antioxidants may, for example, suppress, reduce, intercept, or eliminate destructive radicals or chemical species that promote the formation of destructive radicals which would otherwise lead to more rapid oxidative degradation of the encapsulated material or components thereof.
- antioxidants include menaquinone (vitamin K 2 ), plastoquinone, phylloquinone (vitamin K 1 ), retinol (vitamin A), tocopherols (e.g., ⁇ , ⁇ , ⁇ and ⁇ -tocotrienols, ubiquinol, and ubiquione (Coenzyme Q10)); and cyclic or polycyclic compounds including acetophenones, anthroquinones, benzoquiones, biflavonoids, catechol melanins, chromones, condensed tannins, coumarins, flavonoids, hydrolyzable tannins, hydroxycinnamic acids, hydroxybenzyl compounds, isoflavonoids, lignans, naphthoquinones, neolignans, phenolic acids, phenols (including bisphenols and other sterically hindered phenols, aminophenols and thiobisphenols), phenylacetic acids, phenyl
- Additional cyclic or polycyclic antioxidant compounds include apigenin, auresin, aureusidin, Biochanin A, capsaicin, catechin, coniferyl alcohol, coniferyl aldehyde, cyanidin, daidzein, daphnetin, delphinidin, emodin, epicatechin, eriodicytol, esculetin, ferulic acid, formononetin, chordistein, gingerol, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 3-hydroxycoumarin, juglone, kaemferol, lunularic acid, luteolin, malvidin, mangiferin, 4-methylumbelliferone, mycertin, naringenin, pelargonidin, peonidin, petunidin, phloretin, p-hydroxyacetophenone, (+)-pinoresinol, procyanidin B-2, quercetin, resorcino
- Antioxidants may also be obtained from plant extracts, e.g., from blackberries, blueberries, black carrots, chokecherries, cranberries, black currants, elderberries, red grapes and their juice, hibiscus, oregano, purple sweet potato, red wine, rosemary, strawberries, tea (e.g., black, green or white tea), and from various plant ingredients as ellagic acid.
- plant extracts e.g., from blackberries, blueberries, black carrots, chokecherries, cranberries, black currants, elderberries, red grapes and their juice, hibiscus, oregano, purple sweet potato, red wine, rosemary, strawberries, tea (e.g., black, green or white tea), and from various plant ingredients as ellagic acid.
- Additional exemplary antioxidants include carotenoids including hydrocarbons such as hexahydrolycopene, lycopersene, phtyofluene, torulene and ⁇ -zeacarotene; alcohols such as alloxanthin, cynthiaxanthin, cryptomonaxanthin, crustaxanthin, gazaniaxanthin, loroxanthin, lycoxanthin, pectenoxanthin, rhodopin, rhodopinol and saproxanthin; glycosides such as oscillaxanthin and phleixanthophyll; ethers such as rhodovibrin and spheroidene; epoxides such as citroxanthin, diadinoxanthin, foliachrome, luteoxanthin, mutatoxanthin, neochrome, trollichrome, vaucheriaxanthin and zeaxanthin;
- antioxidants include butylated hydroxyanisole (BHA), 2,6-di-t-butyl cresol (BHT), 2,2′-methylene bis(6-t-butyl-4-methyl phenol) (available as VULKANOXTM BKF from Bayer Inc., Canada), 2,2′-thio bis(6-t-butyl-4-methyl phenol), tert-butyl hydroquinone, di-tert-butyl hydroquinone, di-tert-amyl hydroquinone, methyl hydroquinone, p-methoxy phenol, tetrakis[methylene-3-(3′,5′-di-tert-butyl-4′-hydroxyphenyl)propionate]methane, N-(2-aminoethyl)-3-[3,5-bis(tert-butyl)-4-hydroxyphenyl]propanamide, 5,7-di-tert-butyl-3-(3,4,-dimethylpheny
- the antioxidants 2,2′-methylene bis(6-t-butyl-4-methyl phenol) and N-(2-aminoethyl)-3-[3,5-bis(tert-butyl)-4-hydroxyphenyl]propanamide may be preferred for some applications, with the latter antioxidant being especially desirable because it includes a reactive amino group which may enable covalent incorporation into a suitably reactive core or shell.
- Exemplary PUFAs include those found in fish and various grain products, e.g., fish oil, halibut, herring, mackerel, menhaden, salmon, algae, chia, flaxseed and soybeans.
- Exemplary sterols include cholesterol, phytosterols (e.g. campesterol, stigasterol, ⁇ -sitosterol, ⁇ 5-avenosterol, ⁇ 7-stigasterol, ⁇ 7-avenosterol and brassicasterol), steroidal hormones such as testosterone, vitamins such as D vitamins, eicosanoids (e.g., hydroxyeicostetraones, prostacyclins, prostaglandins and thromboxanes, leukotrienes; lipoxins, resolvins, isoprostanes and jasmonates.
- phytosterols e.g. campesterol, stigasterol, ⁇ -sitosterol, ⁇ 5-avenosterol, ⁇ 7-stigasterol, ⁇ 7-avenosterol and brassicasterol
- steroidal hormones such as testosterone
- vitamins such as D vitamins
- eicosanoids e.g., hydroxyeico
- Exemplary TAGs include those found in algae oil, almond oil, beef tallow, butterfat, canola oil, chia oil, cocoa butter, coconut oil, cod liver oil, corn oil, cottonseed oil, flaxseed oil, grape seed oil, lard, olive oil, palm oil, peanut oil, safflower oil, sesame oil, soybean oil, sunflower oil, and walnut oil.
- the core may include additional ingredients having limited or no susceptibility to oxidation, e.g., caveolins, phospholipids, micelle stabilizers, and mixtures thereof.
- phospholipids include those discussed below.
- exemplary micelle stabilizers include cardolipin, digalactosyldiacylglycerols, monogalactosyldiacylglycerols, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and sphingolipids and mixtures thereof.
- core materials that normally are liquids at room temperature (25° C.)
- core materials based on oils may be gelled as described in U.S. Pat. No. 6,858,666 B2 wherein an oxidation-sensitive oil or composition is heated in the presence of a suitable gelation agent to melt and dissolve the gelation agent in the continuous oil phase.
- the resultant solution may then be atomized and cooled to form particles.
- Exemplary gelled core particles may for example have particle diameters from about 0.1 to about 5,000 micrometers.
- the amount of gelation agent(s) may for example range from about 1 to about 90 wt. % of the core weight.
- Additional exemplary gelled core particles based on PUFAs may be formed by combining a PUFA with a sterol, e.g., to form triglyceride-recrystallized phytosterols as in U.S. Pat. Nos. 6,638,547 B2 and 7,144,595 B2.
- Some antioxidants e.g., Vitamin E, may also help convert a liquid core material to a gel.
- the core may for example represent at least about 5 wt. %, at least about 20 wt. % or at least about 30 wt. % of the disclosed encapsulated materials. Desirably the core is greater than 30 wt. % of the encapsulated material, e.g., at least about 40 wt. % or at least about 50 wt. %.
- the disclosed dried synthetic organelle layer includes at least oleosin and phospholipid, and may comprise, consist of or consist essentially of oleosin and phospholipid. Either or both of the oleosin and phospholipid may be chemically modified. Oleosins may conveniently be obtained from high oil content plant parts. For example, oleosins have been found on oil bodies of seeds, tapetum cells, and pollen but not fruits. In pollen, oleosins are thought to be involved in water-uptake by pollen on stigma.
- Oleosins may help to pin the phospholipid in place within the organelle shell, and may make the organelle sufficiently robust to permit the organelle to be isolated using techniques such as extraction centrifugation, pressing, and the like. Oleosins may also contribute to one or more properties such as oxidation stability (viz., limiting oxygen diffusion into the core), structural stability (viz., keeping the core inside the shell), or steric stability (viz., increasing the shell strength). Oleoresins may conveniently be obtained via extraction techniques such as those described in Tzen, J. T. C. and Huang, A. H. C., Surface Structure and Properties of Plant Seed Oil Bodies , J. Cell Bio, 117; 327-335 (1992); Millichip, M., Tatham, A.
- a variety of phospholipids may be used to form the disclosed organelle layer.
- Exemplary phospholipids include natural or chemically modified phospholipids, e.g., alkylphosphocholines (viz., synthesized phospholipid-like molecules), cardiolipin, dipalmitoylphosphatidylcholine, glycerophospholipid, lecithin, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol 3-phosphate, phosphatidylinositol (3,4)-bisphosphate, phosphatidylinositol (3,5)-biphosphate, phosphatidylinositol (3,4,5)-triphosphate, phosphatidylmyo-inositol mannosides, phosphatidylserine, sphingomyelin, sphingosyl phosphatide and mixtures thereof.
- the organelle layer or other layers may contain one or more antioxidants.
- antioxidants include those discussed above in connection with the core.
- Some antioxidants may be used as core stabilizers and as shell stabilizers.
- Additional ingredients e.g., phytosterols
- the dried synthetic organelle layer may for example contain less than 8%, less than 6%, less than 5%, less than 4%, less than 3%, less than 2% or less than 1% of available water.
- the desired dryness level may be reached by removing water (e.g., if the organelle layer is formed using an aqueous carrier or solvent) or by adding water (e.g., if the organelle layer is formed using an organic carrier or solvent) after or during formation of the disclosed encapsulated material.
- the organelle layer may be in direct contact with a surface of the core, or may be in direct contact with an intermediate protective layer located between a surface of the core and the organelle layer.
- the latter configuration may however have a reduced core content or core loading for a given particle size.
- the organelle layer may as discussed above be covered by one or more additional layers, for example a water-dispersible oxygen-barrier layer, hydrocolloid layer, lipophilic layer or any combination thereof.
- microencapsulating materials may be used in the disclosed encapsulated materials to form additional shell(s), sometimes also referred to as coatings or membranes, surrounding the core(s), or as additives in the organelle layer.
- additional shell(s) sometimes also referred to as coatings or membranes, surrounding the core(s), or as additives in the organelle layer.
- Exemplary such materials may comprise, consist of or consist essentially of natural, semisynthetic (viz., chemically modified natural materials) or synthetic materials.
- Exemplary natural materials include gum arabic, agar agar, agarose, maltodextrins, alginic acid and salts thereof including sodium or calcium alginate, fats and fatty acids, cetyl alcohol, collagen, chitosan, lecithins, gelatin, albumin, shellac, polysaccharides including starch or dextran, polypeptides, protein hydrolyzates, sucrose and waxes.
- Exemplary semisynthetic materials include chemically modified celluloses including cellulose esters and ethers (for example cellulose acetate, ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose and carboxymethyl cellulose) and chemically modified starches including starch ethers and esters (for example, CAPSULTM modified starch from National Starch).
- Exemplary synthetic materials include polymers (for example, polyacrylates, polyamides, polyvinyl alcohol, polyvinyl pyrrolidone, polyureas and polyurethanes).
- Exemplary commercial microcapsule products include Hallcrest Microcapsules (gelatin, gum arabic), Coletica THALASPHERESTTM (maritime collagen), Lipotec MILLICAPSELNTM (alginic acid, agar agar), Induchem UNISPHERESTM (lactose, microcrystalline cellulose, hydroxypropylmethyl cellulose), Unicerin C30 (lactose, microcrystalline cellulose, hydroxypropylmethyl cellulose), Kobo GLYCOSPHERESTM (modified starch, fatty acid esters), SOFTSPHERESTM (modified agar agar) and Kuhs Probiol NANOSPHERESTM.
- Hallcrest Microcapsules gelatin, gum arabic
- Coletica THALASPHERESTTM maritime collagen
- Lipotec MILLICAPSELNTM alginic acid, agar agar
- Induchem UNISPHERESTM lactose, microcrystalline cellulose, hydroxypropylmethyl cellulose
- Unicerin C30
- Fiber or “roughage” is a component of food that remains undigested as it passes through the gastrointestinal system, and which does not necessarily have a fibrous structure.
- the vast majority of dietary fiber consists of complex carbohydrates (e.g., polysaccharides) of plant origin, for example the cellulosic wall that surrounds plant cells. Fibers may be further classified into insoluble fibers such as the classic cellulosic materials, and soluble fibers such as water-soluble polysaccharides that are not digested by human or carnivore digestive systems. Both types of fiber bind considerable water and, thus, have a softening effect on the stool.
- Soluble fiber may, depending on the precise polysaccharides involved, also be metabolized or partially metabolized directly by bacteria in the colon, and may promote growth of beneficial bacteria. Both insoluble and soluble fibers tend to increase motility within the gastrointestinal tract thus speeding transit time of wastes and lowering the risk of acute and chronic medical problems. This generally has a positive effect as the beneficial bacteria may also tend to lubricate the stool and prevent the growth of other bacteria which may release toxins (see e.g., Leon Prosky, J. of AOAC Intl 82:223-35 (1999)). Insoluble fibers may be obtained from a wide variety of sources.
- Exemplary insoluble fibers include almond fiber, cellulose, chia fiber, citrus fiber, coconut fiber, corn fiber, cottonseed fiber, flaxseed fiber, grape seed fiber, hemicelluloses, lignin, oat fiber, rice hulls, safflower fiber, sesame fiber, soybean fiber, sunflower fiber, and walnut fiber.
- Sources include whole grain foods, nuts and seeds, vegetables such as green beans, cauliflower, celery and zucchini, and the skins of some fruits (e.g. tomatoes).
- Soluble fibers may be obtained from a wide range of plant sources, including water-soluble plant pectins and pectic materials, galactomannans, arabanogalactans and water-soluble hemicellulose.
- psyllium, guar, oat (beta glucans), astragalus (gum traganth), gum ghatti, gum karaya (Sterculia gum); and gum acacia also provide soluble fiber.
- Partially hydrolyzed guar gums may also provide soluble fiber, and may for example be prepared as described in U.S. Pat. No. 5,260,279.
- Algal polysaccharides such as agar or carrageenan (which as discussed below may also be used in an HC layer) behave as soluble fiber as do other digestible carbohydrates, such as maltodextrins or dextrins, produced by chemical or enzymatic digestion (e.g., partial hydrolysis) of starch, gums and other carbohydrate polymers.
- Dextrins or maltodextrins may for example be prepared by controlled hydrolysis of vegetable starches (e.g., potato or corn) as is described in U.S. Pat. No. 5,620,873 to Ohkuma et al.
- Soluble cellulosic ethers and other cellulose derivatives behave as soluble fiber as do digestible carbohydrate polymers artificially prepared using bacterial enzymes.
- Storage carbohydrates such as lower molecular weight grades of inulin (see for example U.S. Pat. No. 5,968,365 to Laurenzo, et al.) are also important soluble fibers.
- Anionic chitosan derivatives for example carboxylation and above all succinylation products of chitosan may also be used as soluble fibers.
- a number of companies now provide an entire range of soluble fiber materials. For example, TIC Gums of Belcamp, Md., Novartis Nutrition of Minneapolis, Minn.
- soluble fibers are available in the United States as BENEFIBERTM from Novartis Nutrition of Minneapolis, Minn. or in other countries as SUN-FIBERTM from Taiyo of Japan. It is peimissible and often advantageous to blend an assortment of different soluble fibers to create any particular fiber-water mixture. In fact the disclosed method may facilitate or dictate the selection of suitable fibers and their quantity or mode of delivery. Many of the various soluble fibers may have essentially identical properties when it comes to providing bulk and hydration to stools. However, selected soluble fibers may provide desirably altered solution clarity, lipid absorption, sugar absorption or other factors of interest.
- dextrins, inulins and partially hydrolyzed guar gum appear to provide aqueous solutions having the greatest degree of clarity.
- many dextrins and inulins contain a small amount of a metabolizable component and have a slight sweet taste.
- combinations with clear soluble fibers can yield a solution which is both high in fiber and clarity and low in sweetness or other taste.
- Other soluble fibers can be combined to realize the advantages of fiber mixtures.
- a variety of natural or chemically modified carbohydrates may be used to make FCP layers or as additives in the core, organelle layer or other layers.
- Exemplary such carbohydrates include monosaccharides, disaccharides, trisaccharides and oligosaccharides such as dextrose, fructose, dextrose, galactose, glucose, lactose, mannose, ribose, sucrose, trehalose and xylose, as well as sugars contained in sources such as corn products, molasses, spent sulfite liquors, sugar beets, and their respective hydrolysates. Reducing sugars and non-reducing sugars may be employed. Reducing sugars may also be used to promote a Maillard reaction with proteins as discussed in more detail below.
- proteins may be used to make FCP layers or as additives in the core, organelle layer or other layers.
- dairy proteins e.g., casein, caseinate, milk protein concentrate (MPC), whey, whey protein concentrate (WPC) and whey protein isolate (WPI); processed proteins, e.g., albumin, albumen, collagen, gelatins (e.g., beef, fish or pork gelatin), soy protein concentrate (SPC) and wheat gluten; vegetarian proteins from nuts (e.g., almonds, beechnuts, brazil nuts, chestnuts, hazelnuts or walnuts) or from seeds (e.g., amaranth, barley, beans, buckwheat, canola, chia, corn, flax, hemp, millet, oats, peanuts, peas, pumpkins, quinoa, rice, rye, sorghum, soybeans, sunflowers, wheat and wild rice; miscellaneous protein sources,
- dairy proteins e.g., case
- hydrocolloid shell A variety of natural or chemically modified hydrocolloids may be used to make hydrocolloid shell (HCS) layers or as additives in the core, organelle layer or other layers.
- exemplary hydrocolloids include alginates and other algal polysaccharides such as agar; carrageenans; gelatins; hyaluronates; modified starches; pectins; sulfated dextrans; xanthan gums; cellulose derivatives such as carboxymethyl cellulose, oxidized cellulose and microcrystalline cellulose; and mixtures thereof.
- Alginic acid, its salts and complete and partial neutralization products thereof may also be employed.
- Alginic acid is a mixture of carboxyl-containing polysaccharides with an idealized monomeric unit, and a weight average molecular weight of about 18,000 to about 120,000.
- Exemplary salts of alginic acid and complete and partial neutralization products thereof include alkali metal salts such as sodium alginate (“algin”), and ammonium and alkaline earth metal salts.
- algin alkali metal salts
- alginate sodium alginate
- Ammonium and alkaline earth metal salts alkali metal salts
- Mixed alginates for example sodium/magnesium or sodium/calcium alginates, may also be employed.
- Hydrocolloids may also be crosslinked, as discussed in more detail below.
- the disclosed encapsulated materials may contain a variety of adjuvants, including chelating agents, surfactants, UV absorbers and other ingredients or additives that will be familiar to persons having ordinary skill in the microencapsulation art.
- chelating agents include citric acid and ethylenediaminetetraacetic acid (EDTA).
- EDTA ethylenediaminetetraacetic acid
- surfactants include anionic, nonionic, cationic and amphoteric (zwitterionic) surfactants.
- Exemplary anionic surfactants include soaps, alkyl benzenesulfonates, alkanesulfonates, olefin sulfonates, alkylether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfofatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, fatty acid ether sulfates, hydroxy mixed ether sulfates, monolyceride (ether) sulfates, fatty acid amide (ether) sulfates, mono- and dialkyl sulfosuccinates, mono- and dialkyl sulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and salts thereof, fatty acid isethionates, fatty acid sarcosinates,
- nonionic surfactants include fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers and mixed formals, optionally partly oxidized alk(en)yl oligoglycosides or glucuronic acid derivatives, fatty acid-N-alkyl glucamides, protein hydrolyzates (e.g., wheat-based vegetable products), polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
- fatty alcohol polyglycol ethers alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers and mixed formal
- Cationic or nonionic surfactants containing polyglycol ether chains may have a conventional homolog distribution, but preferably have a narrow-range homolog distribution.
- Exemplary cationic surfactants include quaternary ammonium compounds, for example dimethyl distearyl ammonium chloride, and esterquats, more particularly quaternized fatty acid trialkanolamine ester salts.
- Exemplary amphoteric or zwitterionic surfactants include alkylbetaines, alkylamidobetaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. Further details concerning these and other exemplary surfactants may be found for example in J.
- Falbe “Surfactants in Consumer Products”, Springer Verlag, Berlin, 1987, pages 54 to 124 or J. Falbe (ed.), “Katalysatoren, Tenside and Mineraloladditive (Catalysts, Surfactants and Mineral Oil Additives)”, Thieme Verlag, Stuttgart, 1978, pages 123-217.
- UV absorbers act as stabilizers to protect the microcapsule by absorbing radiation in the range of about 270-500 nanometers and subsequently releasing the energy into the environment through non-destructive means.
- exemplary UV absorbers include hindered amine light stabilizers (HALS), cinnamate esters, hydroxybenzophenones, benzotriazoles, substituted acrylates, salicylates, oxanilides, hydroxyphenyltriazines, nanoparticle titania, nanoparticle zinc oxide, and the like.
- the disclosed encapsulated materials may also include absorbents, dehydrators, flow aids and other agents that may assist in pouring, storing or dispensing the encapsulated materials or in mixing them with other materials.
- the agent may in some embodiments form a coating over an outer layer, in effect representing an additional shell, and may in other embodiments be an additive included in an outer layer.
- the agent may change the surface energy of the encapsulated material, absorb excess oil, or serve other functions.
- agents include inorganic or organic materials such as activated carbon, alumina, aluminum phosphates, aluminium silicates, bentonite, bone phosphate, calcium aluminosilicate, calcium carbonate, calcium ferrocyanide, calcium silicate, magnesium oxides, magnesium silicates, magnesium trisilicate, oat or other fibers, Polydimethylsiloxane, potassium aluminium silicate, potassium ferrocyanide, powdered phytosterols, silicas (e.g., fumed or precipitated silicas), sodium aluminosilicate, sodium bicarbonate, silicon dioxide, sodium ferrocyanide, sodium silicate, stearic acid, talc, sodium phosphate, tricalcium phosphate, zeolites, and mixtures thereof.
- the agent may for example represent about 0.5 to about 5 wt. % of the encapsulated material.
- the disclosed encapsulated materials may be prepared using a variety of encapsulation methods.
- a solid particle of the core material may be formed and a synthetic organelle layer may be deposited and dried on the solid particle while the particle is suspended or dispersed or in a trajectory.
- a droplet of the core material may instead be suspended or dispersed in a fluid environment containing an organelle composition.
- a droplet of the core material may also be spray dried or prilled in combination with materials forming the organelle layer, optionally together with additional materials which may become incorporated into the organelle layer or may form an additional layer or layers between the core and organelle layer or surrounding the organelle layer.
- the materials forming the organelle layer may if desired be in fluid form at an elevated temperature (e.g., at above 30° C.) and in solid form when cooled to a lower temperature.
- the various applied layers may be reacted with a variety of materials to alter some or all of the layer characteristics. This may be carried out using a variety of reaction schemes, materials and other measures.
- a Maillard reaction between proteins and reducing sugars may be used to alter a layer containing protein or a layer containing a reducing sugar by exposing such layers to reducing sugar or protein, respectively, in the presence of sufficient heat to promote a browning reaction.
- Hydrocolloid e.g., alginate layers
- MLMC multilayer microcapsule
- An MLMC may for example be made using an oxidation-sensitive liquid core (e.g., a TAG or PUFA core) to which has been added an antioxidant (e.g., tocopherol, lycopene or tocotrienols), chelating agents, or dispersed calcium carbonate or calcium sulfate.
- an oxidation-sensitive liquid core e.g., a TAG or PUFA core
- an antioxidant e.g., tocopherol, lycopene or tocotrienols
- chelating agents e.g., dispersed calcium carbonate or calcium sulfate.
- the core may be formed by mixing or providing a portion of the active core ingredients at an appropriate temperature of, for example 70-80° C., then cooling and atomizing the mixture in a spray-drying or “prilling” column to form beads.
- the beads may be coated with a synthetic organelle shell or OBS which may be made from a variety of materials (e.g., lecithin or other phospholipid-containing materials and oleosins, and other optional ingredients).
- the thus-coated beads may be dried and a melt process may next be used to form one or more layers with antioxidant properties over the OBS, e.g. by mixing the OBS-coated cores into a film-forming composition into which antioxidants have been dissolved, dispersed or suspended.
- HC shell (HCS) layers may be formed, for example from an aqueous sodium alginate hydrocolloid solution to which a variety of other materials may also be added.
- FCPS layers may be formed, for example by adding fibers such as insoluble fiber or carboxymethyl cellulose (CMC) fibers and optional additives to a solution containing water-soluble antioxidants and reducible sugars. The resulting mixture may be formed into encapsulated materials, e.g., by adding the OBS-coated cores to the solution and spray drying to form FCP-coated particles.
- the resulting spray dried product is added to a melt for prilling or otherwise converted in order to form an outer lipophilic shell or LPS over an HC or FCP-coated core or OBS. Separation of microcapsules by centrifugation or filtration and drying to a dry state may also or instead be used to form various layers.
- AI and “AO” in Table 1 respectively refer to an “active ingredient” and an “antioxidant”, functions which in some cases may be performed by the same material.
- an AI or AO will be carried and protected by the core, OBS, HCS, FCPS or other MLMC layer until such time as the AI or AO may be delivered to an intended host or site for a subsequent designed use.
- Other abbreviations are identified in the footnotes to Table 1.
- the first row for each new structural component includes the structural component label, and subsequent rows showing other materials for use in or as such structural component do not explicitly show the structural component label but are deemed to have been so labeled.
- 2 AI is active ingredient.
- 3 AO is antioxidant.
- 4 BHT is 2,6-di-t-butyl cresol.
- 5 HCS is hydrocolloid shell.
- 6 EDTA is ethylenediaminetetraacetic acid.
- 7 UGI is upper gastrointestinal tract.
- 8 CMC is carboxymethylcellulose.
- HPMC is hydroxypropylmethylcellulose.
- 10 WPC is whey protein concentrate.
- the core:shell weight ratio may for example range from about 10:1 to about 1:10, about 8:1 to about 1:1, or about 2:1 to about 2:3.
- the core may for example represent about 5 to about 70, about 5 to about 60 or about 10 to about 40 wt. % of the total encapsulated material weight.
- Table 2 Set out below in Table 2 are exemplary MLMC constructions showing core and layer amounts (expressed in parts by weight) for a variety of encapsulated materials containing OBS-coated cores, alginate shells, FCP shells and lipophilic shells, together with the approximate core weight percent.
- the data in Table 2 show encapsulated materials with four shell layers containing about 5-60 wt. % core content.
- encapsulated materials having a variety of properties can be formed. For example, if the lipophilic shell is eliminated and a fiber/carbohydrate/protein shell containing mainly a soluble fiber such as pectin or alginate is employed, a taste-masked MLMC with UGI bypass characteristics may be prepared. If a phytosterol-containing lipophilic shell is employed, a high temperature encapsulated material with an AO shell may be prepared for use in baked products and baking applications.
- Encapsulated materials whose cores or lipophilic shells contain organogels, and encapsulated materials with lipophilic shells containing hydrogenated oils crystallized in the beta form, may provide oxygen barrier or zero order (viz., concentration-independent) release characteristics.
- Oxidative stability may be evaluated using a variety of tests. Simple but sensitive subjective tests such as olfactory tests or taste tests will suffice for many applications. A variety of objective may also be employed, including accelerated oxidative stress tests such as solid phase micro extraction (SPME) at an elevated temperature, e.g., 50° C. in an oxidizing atmosphere such as pure oxygen. Aging at 50° C. in pure oxygen represents a fairly severe test regime, and materials which provide low SPME values (or little change in the SPME value compared to the initial SPME value) when so aged may provide very good protection under less stringent (e.g., room temperature) storage conditions. The SPME value after 48 hours at 50° C.
- SPME solid phase micro extraction
- An SPME measurement for omega-3 oil may for example be carried out as follows:
- Omega-3 oil samples are prepared by accurately weighing (to 0.1 mg) about 0.5 g of oil into a 5 cc serum bottle (Wheaton #223685), and adding a weighed portion of an internal standard made using 400 micrograms of dodecane per gram of mineral oil. Sufficient internal standard is normally employed to provide about 8 ppm dodecane in the sample.
- the bottle is sealed with a polytetrafluoroethylene-faced silicon septa and an aluminum crimp seal.
- two additional portions are sealed after flushing for 15 seconds with pure oxygen. These portions are held in an oven until evaluation (typically 24 hours or 48 hours at 50° C.).
- the bottle to be evaluated is thermostated for 30 minutes at 60° C.
- the bottle headspace is then extracted for 30 minutes with a 50/30 ⁇ solid phase extraction fiber made from divinyl benzene/CarboxenTM fiber/polydimethylsiloxane/STABILFLEXTM fiber.
- the fiber is desorbed in the injection port of a gas chromatograph at 230° C. for 30 minutes. Typically, the next sample is thermostated at 60° C. during this 30 minute period. Chromatography is accomplished on a 20 meter RTX-CLP1 column with an ID of 0.18 mm and a 0.18 ⁇ m film thickness. The initial temperature is 45° C.
- the column is allowed to cool such that the total cycle time is 60 minutes.
- the flow rate is set to a constant velocity of 23 cm/second.
- a flame ionization detector (FID) set to maximum sensitivity is employed.
- the disclosed encapsulated materials may be used in a variety of products and applications including foods, food additives, food supplements, prepared (e.g., baked, frozen or precooked) foods, neutraceuticals, medicines, catalysts, inks and coatings.
- a starch solution was prepared by blending together 150 g of M200 maltodextrin (from Grain Processing Corp.), 30 g of CAPSULTM modified starch (from National Starch) and 20 g of sucrose (from Rainbow Foods) and then adding the resulting blended powder mixture to 300 g of 80° C. deionized (DI) water. The solution was agitated as the temperature was increased to 85° C., then cooled in an ice bath before refrigerating overnight. The following day the solution was allowed to reach room temperature (about 25° C.) before adding an oil phase made from 50 g of omega-3 oil (from Hormel Foods Corp.) containing 2,000 ppm tocopherol.
- DI deionized
- the oil was emulsified into the starch solution using a SILVERSONTM L2R high shear mixer (from Silverson Machines) operated at maximum speed for 3 minutes to create an oil-in-water emulsion.
- the emulsion was spray dried using a NIROTM Mobile Minor lab dryer (from Niro Equipment Corp.) operated using an inlet temperature of 225° C. and an outlet temperature of 75° C.
- the product had an SPME value of 43,765 after 48 hours at 50° C. (see Table 3).
- An encapsulated product was prepared using the method of Comparative Example 4 but employing a starch solution made from 130 g of M100 maltodextrin (from Grain Processing Corp.), 30 g of CAPSUL modified starch and 40 g of sucrose (from Rainbow Foods) and then adding the resulting blended powder mixture to 300 g of 80° C. deionized (DI) water.
- the product had an SPME value of 39,985 after 48 hours at 50° C. (see Table 3).
- An encapsulated product was prepared using the method of Comparative Example 4 but employing a starch solution made from 110 g of M100 maltodextrin, 15 g of CAPSUL modified starch, 75 g of sucrose and 300 g of DI water, and an oil phase made from 50 g of omega-3 oil containing 2,000 ppm tocopherol.
- the resulting encapsulated product had an SPME value of 38,840 after 48 hours at 50° C. (see Table 3).
- a starch solution was prepared by blending together 600 g of M200 maltodextrin, 120 g of CAPSUL modified starch, 4.0 g of ascorbic acid and 80 g of sucrose and then adding the resulting blended powder mixture to 1,200 g of 80° C. DI water. The solution was agitated as the temperature was increased to 85° C., then cooled in an ice bath before refrigerating overnight. The following day 40.0 g of ULTRALEC FTM lecithin (from Archer Daniels Midland Co.) was added to 796 g of omega-3 oil (from Hormel Foods Corp.) containing 2,000 ppm tocopherol. The oil phase was heated to approximately 80° C.
- Corn oil and corn oil bodies were extracted by adding 500 g of methylene chloride to 250 g of corn germ.
- the corn germ in methylene chloride was refrigerated and allowed to soak overnight in a sealed glass container before blending on low speed for 30 seconds using a WARINGTM 2 quart lab blender (from Hamilton Beach Brands, Inc.). After soaking while refrigerated overnight, the blend was poured into a sheet of four layers of cheesecloth and squeezed in order to remove most of the liquid.
- the permeate was placed in a shallow glass pan and the methylene chloride was allowed to evaporate in a fume hood for over 24 hours.
- the resulting oil-solids mixture weighed 40 g and had an apparent corn-like odor.
- the solids contained phospholipids and the proteins (including oleosins) associated with oil bodies in addition to other solids.
- An aqueous phase was prepared by first adding 1.20 g of sodium alginate to 1184 g of DI water, next adding 1.20 g of calcium chloride to 296 g of DI water, combining the two solutions with stirring, and then adding 40.0 g of ULTRALEC F deoiled lecithin, 720 g of CAPSUL modified starch, 80 g of trehalose (from Hayashibara, Co.), 4.0 g of ascorbic acid and 8.0 g of citric acid.
- the resulting aqueous phase was cooled in an ice bath and refrigerated overnight, followed by addition of 40 g of the oil-solids mixture.
- An oil phase was prepared by adding 23.9 g of ARBORISTM AS-2 phytosterol (from Arboris, LLC) to 756 g of omega-3 oil containing 2,000 ppm tocopherol and heating to 50° C.
- the warm oil phase was poured into the cooled aqueous phase and emulsified using a SILVERSON LT-1 high shear mixer (from Silverson Machines) operated at maximum speed for 15 minutes, thereby providing a coarse emulsion.
- An ice bath was used to cool the emulsion to approximately 30° C.
- An encapsulated product was prepared using the method of Example 1 but employing 103 g (rather than 40 g) of the oil-solids mixture in the aqueous phase.
- the total yield of product collected in bottles from the cyclone was 791 g.
- An additional 488 g of product was scraped from the dryer.
- the product had an SPME value of 3,562 after 48 hours at 50° C. (see Table 3), thus demonstrating improved oxidative stability over the Comparative Examples.
- Corn oil and corn oil bodies were extracted from dried corn germ. First, 262.7 g of dried, cold corn germ were removed from a ⁇ 28° C. freezer, placed in a WARING 2 quart lab blender and ground on the low setting for 1.25 minutes, with a halt each 15 seconds to scrape down the sides. The ground corn germ was then placed in a 0.95 L bottle to which 500 g of water was added. The bottle was placed on a lab shaker for 60 minutes on low speed, stored at room temperature overnight, returned to the lab shaker for 5 hours on low speed and then stored in a refrigerator for 4 days. The mixture was centrifuged in 45 ml portions at 6000 rpm for 30 minutes.
- a 450 g portion of dry calcium chloride was added to 1350 g of ROUNDY'STM canola oil (from Creative Products, Inc. of Rossville) and lightly ground using a Silverson LT-1 high shear mixer operated at maximum speed for 20 minutes.
- the resulting calcium chloride dispersion was transferred to a BUHLERTM PML2 laboratory media mill (from Buhler Technology Group) and kept gently suspended, then bead milled for 150 minutes using 0.4 mm YTZ (yttria-stabilized zirconia) media, a rotor speed of 3,500 rpm and a 40% recirculating pump rate. This reduced the size of the calcium chloride particles to about 1.16 ⁇ m and provided a 25 wt.
- % calcium chloride suspension in canola oil The aqueous phase was made by heating 1480 g of DI water to 40° C. and then adding 40.0 g of ULTRALEC F lecithin with stirring. After twenty minutes of stirring the temperature was increased to 80° C. and then 720 g of CAPSUL modified starch, 80 g of trehalose, 4.0 g of ascorbic acid, 8.0 g of citric acid, 1.2 g MANUGELTM LBA sodium alginate (from Nutrasweet Kelco), and 15.0 g oat fiber were added. The solution was cooled via an ice bath before refrigerating overnight. The following day, 133.7 g of the corn oil bodies were added directly to the aqueous phase.
- Example 3 To a 98.00 g portion of the spray dried encapsulated powder from Example 3 was added 2.00 g of SYLOPOLTM 952 precipitated silica gel (from Grace Davison) in a 0.95 L bottle and then shaken by hand for about 10 minutes to obtain a uniform mixture.
- the product had an SPME value of 2,047 after 48 hours at 50° C. (see Table 3), thus demonstrating improved oxidative stability over the Comparative Examples.
- Example 3 To a 95.00 g portion of the spray dried encapsulated powder from Example 3 was added 5.00 g of finely ground oat fiber in a 0.95 L bottle and then shaken by hand for about 10 minutes to obtain a uniform mixture.
- the product had an SPME value of 2,651 after 48 hours at 50° C. (see Table 3), thus demonstrating improved oxidative stability over the Comparative Examples.
- Example 1 50 2975 3345 1.12 Slight burnt sugar note, slight fish, plant extract/leafy odor
- Example 2 50 3443 3562 1.03 Low odor, leafy odor
- Example 3 50 5010 2720 0.54 Slight burnt, leafy, very slight fish
- Example 4 50 1220 2047 1.68 very low overall odor, slight dairy
- Example 5 50 5946 2651 0.45 Slight burnt, leafy, very slight fish
- a 2.1 g portion of MEG-3TM omega-3 fish oil coated with fish gelatin was mixed with 11 g of TANGTM drink mix powder (from Kraft Foods, Inc.) and then added to 237 cm 3 of water.
- the coated omega-3 oil did not disperse to form a uniform drink. Instead, the coated omega-3 oil formed clumps which settled to the bottom of the drink.
- Example 6 A 2.51 g portion of the spray dried encapsulated material from Example 1 was mixed with 11 g of TANG powder and then added to 237 cm 3 of water. The encapsulated material and TANG powder dispersed to form a uniform drink (Example 6). Similar results were obtained when a 4.11 g portion of the spray dried encapsulated material from Example 3 was mixed with 16.79 g of TANG powder and then added to 355 cm 3 of water. The encapsulated material and TANG powder dispersed to form a uniform drink (Example 7).
- Example 8 A 0.85 g portion of the spray dried encapsulated material from Example 1 was mixed into a 1.9 L container of TROPICANATM Pure Premium orange juice (from Tropicana Manufacturing Company, Inc.). The encapsulated material dispersed in the orange juice to form a uniform drink (Example 8).
- a 2.51 g portion of the spray dried encapsulated material from Example 1 was mixed with 454 g of BETTY CROCKER® Pound Cake Mix (from General Mills Sales, Inc.) followed by the addition of 177 ml of water and 2 eggs.
- the ingredients were mixed at low speed using a KITCHENAIDTM mixer (from KitchenAid, U.S.A.) for 30 seconds, followed by mixing at medium speed for 3 minutes.
- the mixture was poured into a 23 cm ⁇ 13 cm loaf pan, placed in a preheated 177° C. oven and baked for 50 minutes until a toothpick inserted in the center of cake came out clean.
- the cake was cooled for 10 minutes in the pan, then removed and cooled to room temperature on a wire rack.
- the encapsulated material appeared to be well dispersed in the pound cake and baked without any apparent fishy smell during baking. There was no fishy smell or taste in the finished pound cake (Example 9). Similar results were obtained when a 4.01 g portion of the spray dried encapsulated material from Example 15 was mixed with 454 g of Pound Cake Mix, 177 ml of water and 2 eggs and baked as described above. The encapsulated product appeared to be well dispersed in the pound cake and baked without any apparent fishy smell during baking. There was no fishy smell or taste in the finished pound cake (Example 10).
- oil bodies may be physically isolated from a total homogenate of mature soybean seeds using flotation and centrifugation. Soy seeds may be soaked in cold mM Tris-HCl buffer, pH 8.6, overnight at 4° C., or 6 hr at ambient temperature.
- Soaked beans (100 g) may be homogenized in 200 mL Buffer A (3 mM MgCl 2 and 100 mM tris(hydroxymethyl)aminomethane whose pH is adjusted to 8.6 using HCl (Tris-HCl)) using a commercial Waring blender for 20 sec on low and then 40 sec on high.
- the soybeans may be further homogenized with a Virtishear homogenizer at 10,000 rpm for 1 min at 20 sec intervals.
- the homogenate may be filtered though 4 layers of cheesecloth and centrifuged at 100,000 ⁇ g for 20 min or 20,000 ⁇ g for 45 min. Oil pads may be collected and resuspended in Buffer A by vortexing briefly and centrifuged again.
- the recovered oil pads may be resuspended in Buffer B (Buffer A containing 0.5 M NaCl) and centrifuged again.
- the thus-recovered oil pads may be resuspended in Buffer C (0.1 M Na 2 CO 3 ) and incubated on ice for 30 min before centrifuging. This step may be repeated until no visual material is spun out.
- the recovered oil pads may be washed twice in Buffer D (3 mM MgCl 2 , 100 mM KCl, and 2 mM N-2-Hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES), pH7.5) to lower the pH of the oil body suspension to pH 8.
- Buffer D 3 mM MgCl 2 , 100 mM KCl, and 2 mM N-2-Hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES), pH7.5
- a final wash may be done in Buffer E (Buffer D containing 2 mM dithiothreitol (DTT)).
- the resulting oil body suspension may be stored at 4° C. for up to 2 weeks or at ⁇ 80° C. for long term. Typical yields would be approximately 3-3.5 g (wet weight) of purified oil bodies from 35 g of dry seeds.
- Oleosin proteins may be purified from the Preparation 1 oil bodies by solvent extraction. Oil bodies stored at ⁇ 80° C. may be thawed on ice and then centrifuged at 100,000 ⁇ g at 4° C. for 20 min to recover the oil pad. The oil pad may be resuspended in cold acetone, mixed by vortexing and incubated at ⁇ 20° C. overnight. A precipitated oleosin and phospholipids membrane may be recovered by centrifugation. The solid centrifugate may be extracted with diethyl ether and the phospholipid may be extracted with 30 mL water:methanol:chloroform (1:2:2 v/v/v).
- a synthetic organelle solution may be made from oleosins and phospholipids.
- a suspension may be prepared by placing 135 pig phospholipid (PL) dissolved in chloroform at the bottom of a 1.5 mL Eppendorf tube, and allowing the chloroform to evaporate under nitrogen.
- a 16 ⁇ L (15 mg) quantity of TAG may be added to the tube, followed by addition of a sonicated suspension containing 210 ⁇ g of the Preparation 2 oleosin proteins in 100 ⁇ L water.
- sucrose, 50 mM Bis-Tris, pH 7.2 and sufficient water may be added to make a final volume of 1 mL.
- the mixture may be vortexed, and then sonicated with a 4 mm-diameter probe in a Braun-Sonic 2000 ultrasonic generator at a digital meter reading of 50 for 20 sec.
- the sample may be cooled in an ice bucket for 5 min, then sonicated at a digital meter reading of 200 for 20 sec.
- Oil Cores may be made by a number of methods including emulsification and organogel particle formation.
- One such example could employ 500 grams of refined fish oil mixed with 5 grams of ground calcium carbonate (particle size less than 5 micrometers), 50 grams of phytosterols such as a mixture of campesterol and sitosterol, and at least one antioxidant such as 0.5 g of ⁇ -tocopherol.
- the mixture may be heated in the absence of oxygen to melt and dissolve the phytosterols (140-170° C.) and the resulting solution may be atomized in a cold chamber to produce solid particles of the mixture (Preparation 4).
- Oil cores or droplets may also be made by emulsification methods wherein the same components as described in Preparation 4 would be mixed and added to 1000 grams of water.
- the two non-miscible liquids may be vigorously mixed with ultrasonic mixers, high pressure homogenizers, or high speed mixers.
- the resultant mixtures would include a plurality of oil droplets or cores.
- One such example could employ 500 grams of refined fish oil mixed with 5 grams of ground calcium carbonate (particle size less than 5 micrometers), 50 grams of phytosterol such as a mixture of campesterol and sitosterol, and at least one antioxidant such as 0.5 g of ⁇ -tocopherol.
- This oil phase would be mixed into 1000 grams of water in a nitrogen-purged vessel equipped with a high shear Cowles mixing blade.
- the mixer would be turned on to its maximum rpm setting to produce oil droplets or cores suspended in a continuous water matrix (Preparation 5).
- Stabilization of the oil cores prepared in Preparations 4 or 5 may be done through the formation of an organelle structure which includes an oil core with a stabilizing layer of phospholipid and oleosin protein.
- a suspension of 15 L water containing 0.25 M sucrose, 50 mM Bis-Tris, pH7.2 and the oil cores from either Preparation 4 or 5 may be prepared in a stirred nitrogen-purged 50 L vessel.
- To this mixture may be added 18 L of an aqueous solution containing 0.25 M sucrose, 50 mM Tris, pH7.2, 4.5 g PL and 7 g oleosin protein. The mixture may be stirred for 3 hours to form the organelle structures (Preparations 6 and 7).
- Oil cores may also be prepared in situ with formation of an organelle structure.
- One such example for direct preparation of the organelle could employ a 33 L suspension containing 0.25 M sucrose, 50 mM Bis-Tris, pH7.2, and a refined fish oil dispersion containing 500 g fish oil, 5 grams of ground calcium carbonate (particle size less than 5 micrometers), 50 grams of phytosterol such as a mixture of campesterol and sitosterol, and at least one antioxidant such as 0.5 g of ⁇ -tocopherol, phospholipid (PL) (4.5 g) and oleosin proteins (7 g) in a 50 L nitrogen purged vessel.
- the mixture could be mixed with a high speed Cowles dissolver (Preparation 8).
- the hydrocolloid layer may include a variety of crosslinkable solidifiable hydrocolloids such as alginates, pectates, carageenates, pectin, gelatin/acacia, and others.
- This layer will provide an added layer of stability for the organelle, the ability to add fiber for a hard shell coating and oxidation protection, and the ability to add water-soluble antioxidants to help protect the oxidatively unstable oil core.
- One such example could be made by slowly adding to any of the slurries prepared in Preparations 4 through 8, with stirring, 5 L of 5 wt % sodium alginate aqueous solution.
- the alginate solution may contain other additives such as insoluble cellulosic fiber, soluble fiber such as inulin, or antioxidants.
- the alginate solution may contain 100 grams of dispersed ethyl cellulose and 5 grams of anthocyanin antioxidant. The mixture may be allowed to stir for 3 hours to complete the reaction of the calcium ions from the dispersed calcium carbonate in the oil phase with the alginate in solution to form an alginate/fiber/antioxidant layer (Preparations 9 through 13).
- the materials from Preparations 4 through 13 may be spray dried as follows:
- the solutions described above may be fed to a Niro Lab Dryer at 10 mL/min with the inlet temperature of the dryer set at 120° C.
- the organelle structure may be dried to a particle size of 5-100 micrometers with a moisture content of 3-8 wt % (Preparations 14 through 21).
- an aqueous solution may be added containing 50 grams of sodium caseinate, 50 grams of trehalose, 50 grams of citrus fiber (from Fiberstar) and 500 g water, and fed to a Niro Mobile Minor lab dryer as in Example 1.
- the resulting MLMC structure may be dried to a particle size of 5-100 micrometers with a moisture content of 3-8 wt % (Preparations 22 through 29).
- the Preparation 14 through 29 dry powders may be added to melted waxes or phytosterols and prilled as described in U.S. Pat. No. 7,237,679 B1 to form fat or lipid encapsulated particles.
- One such example could employ 500 grams of the Preparation 14 powder in 700 grams of molten DRITEXTM C-41V hydrogenated vegetable oil (from ACH Food & Nutrition) at 75° C.
- the molten melt would be prilled or atomized to form particles with a particle size of 300-600 micrometers.
- compositions, ingredients, temperatures and proportions have been disclosed in various aspects of the present invention, those disclosures are intended to be exemplary of species within a generic invention.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Nutrition Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Mycology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Botany (AREA)
- Inorganic Chemistry (AREA)
- Biochemistry (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicinal Preparation (AREA)
- Cosmetics (AREA)
Abstract
An encapsulated material containing an oxidation-sensitive core is covered by at least a dried synthetic organelle layer and optional additional ingredients in the organelle layer or additional layers. By using microencapsulation to mimic or otherwise adapt the storage concepts used by seeds to protect triacylglycerol cores, oxidatively unstable materials may be provided with a synthetic, seed-like oxygen-resistant protective barrier and rendered less susceptible to oxidative degradation.
Description
- This application claims priority from U.S. Provisional patent application Ser. No. 61/010,073 filed Jan. 4, 2008.
- This invention relates to encapsulation of materials that are sensitive to oxidation.
- In the past thirty years much new information on the benefits of a healthy diet has emerged. In addition to the traditional food pyramid, vitamins and minerals, a healthy diet may include components such as soluble and insoluble fiber for promoting gastrointestinal health, phytosterols for lowering cholesterol levels and promoting heart health, antioxidants for discouraging cancer and other inflammatory diseases, and omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) for promoting heart and brain health. There has been considerable commercial interest in providing deliverable forms of such components even though in many cases the component may be oxidatively unstable. For example, companies which have introduced or announced PUFA-containing products or materials include BASF SE, Blue Pacific Flavors, GAT Food Essentials GmbH, Kerry Group PLC, Martek Biosciences Corp. and Ocean Nutrition Canada. Some of these products or materials are said to employ prilling, spray drying or encapsulation to limit premature PUFA oxidation.
- The ability to store refined or extracted triacylglycerols (TAGs), antioxidants or natural colors such as anthocyanins in a dried powder faun is one of the biggest challenges for food processors, see e.g., Lawson, Harry, Food Oils and Fats, Technology, Utilization, and Nutrition, New York; Chapman & Hall, pp 18-22 (1995) and Gunstone, Frank D. and Padley, Fred B., Lipid Technologies and Applications, New York; Marcel Dekker, Inc., pp 169-199 (1997).
- There is at present an ongoing and unmet need for improved methods and systems for packaging, storing or delivering phytosterols, PUFAs, TAGs, antioxidants, natural colors and other oxidatively unstable materials.
- Although a variety of commercial attempts have been made to store oxidatively unstable materials, nature has already solved the problem in oil seeds. TAGs inside seeds may remain stable for years without loss of function or oxidation. By using microencapsulation to mimic or otherwise adapt the storage concepts used by seeds to protect oxidatively unstable cores, oxidatively unstable materials may be provided with a synthetic, seed-like oxygen-resistant protective barrier and rendered less susceptible to oxidative degradation. An oxidation-susceptible material (in the form, for example of a core per se or an already-encapsulated core) may be encapsulated or further encapsulated in at least a dried synthetic organelle layer to form a pseudo “oil-seed” capsule. This pseudo oil-seed capsule may be provided with additional functional or protective ingredients or shell layers to form a complex multi-component or multi-layered protective system for oxidation-sensitive cores. One such additional layer may be an oxidation barrier layer containing a “pseudo-peri-carp” or PPC layer made using a fiber-, carbohydrate- or protein-containing film-forming material. Another such additional layer may be a hydrocolloid or HC layer made using a natural or chemically-modified hydrocolloid material, e.g., an alginate.
- The resulting microcapsules include an oxidatively unstable core and dried synthetic organelle shell (which may be described as an Oil Body Shell or OBS). The microcapsules may be further modified, e.g., by adding the materials for a PPC layer or HC layer (as components of the OBS or as separate layers), antioxidants, chelating agents, deodorized oils or other dissolved, suspended or dispersed ingredients to one or more of the core or shell layer(s) to provide unique structures for stable oil or powder delivery in pharmaceutical, dietary, cosmetic, agricultural and other commercial uses. The disclosed encapsulated materials and methods are especially useful for imparting improved oxidation protection to difficult to protect core materials such as unsaturated and polyunsaturated oils and acids.
- The present invention accordingly provides, in one aspect, an encapsulated material comprising an oxidation-sensitive core covered by at least one shell comprising a dried synthetic organelle layer. The invention provides, in another aspect, a method for protecting an oxidatively unstable material, which method comprises providing or forming a particle or droplet of the oxidatively unstable material and forming a dried synthetic organelle layer surrounding the particle or droplet.
- The disclosed encapsulated materials and methods may artificially mimic the natural method of oil storage in oil seeds to provide processed oils and other oxidatively unstable materials with enhanced oxidative stability and in an effectively dry powder faun.
-
FIG. 1 is a schematic cross-sectional view of a representative seed structure; -
FIG. 2 is a partial cross-sectional view of a representative organelle structure; and -
FIG. 3 throughFIG. 6 are schematic cross-sectional views of various encapsulated materials. - Unless the context indicates otherwise the following terms shall have the following meaning and shall be applicable to the singular and plural:
- The terms “a,” “an,” “the,” “at least one,” and “one or more” are used interchangeably. Thus a microcapsule that contains “a” shell may include “one or more” shells.
- The term “deliverable” when used with respect to an encapsulated substance means that the substance is at least partially surrounded by an additional substance that imparts one or more altered properties to the encapsulated substance, e.g., altered transport, altered flowability, altered resistance to oxidation or moisture, altered abrasion resistance, or altered performance in a commercial application (e.g., a food application).
- The term “dried” does not necessarily refer to a process of manufacture, but rather to the available water content in an article or component (e.g., a layer) thereof. The term “available water” does not include water of hydration.
- The terms “encapsulated material” and “microcapsule” mean particles (often but not always spherical in shape, and often but not always having a diameter of about 10 nanometers to about 5 mm) which contain at least one liquid, gel or solid core surrounded by at least one continuous membrane or shell.
- The term “ingestible” means capable of and safe for oral administration.
- The term “microsphere” means a microcapsule material whose particles contain two or more cores distributed in and surrounded by at least one continuous membrane or shell.
- The term “particulate” means a finely divided dry powder material.
- The terms “preferred” and “preferably” refer to embodiments of the invention that may afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the invention.
- The term “synthetic” when used with respect to an organelle layer means that the layer is not part of a naturally encapsulated object such as a seed, but is instead part of a manufactured encapsulated object made by combining a core and the organelle layer. The organelle layer in such an encapsulated object may be formed by combining one or more oleosins and one or more phospholipids, or may be formed from extracted or otherwise isolated organelle layers obtained from seeds or other naturally encapsulated objects.
- The recitation of a numerical range using endpoints includes all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, etc.). The recitation of sets of upper and lower endpoints (e.g., at least 1, at least 2, at least 3, and less than 10, less than 5 and less than 4) includes all ranges that may be formed from such endpoints (e.g., 1 to 10, 1 to 5, 2 to 10, 2 to 5, etc.).
-
FIG. 1 shows arepresentative seed structure 100 including an outer surrounding pericarp orseed coat 102 composed of anouter episperm 104 and underlyingendopleura 106 which provide a protective and water vapor transmission-resistant shell structure, anendosperm 108 for food storage, and a germ orembryo 110 which in a leafy plant may include 112, 114 which form seed leaves and acotyledons connective hypocotyl 116. Although oil may be found throughout the entire seed, the majority is located in the germ orembryo 110 as a source for energy during germination and seedling growth. The oil is located intracellularly in structures called organelles. Organelles or oil seed bodies are a form of liposome typically found in plant cells and normally (but not exclusively) having about 0.5-2 micrometers average diameter. As shown in partial view inFIG. 2 , anorganelle 200 may include a TAG or other oxidativelyunstable core 202 surrounded by alayer 204 containingphospholipids 206 whose location and orientation inlayer 204 may be stabilized byoleosins 208 formed from short chain alkaline structural proteins. The oleosin protein may act as a locking mechanism in phospholipid-containinglayer 204. A typical oleosin protein contains about 120-170 amino acids with three distinct structural domains, namely an N-terminal amphiphathic α-helical domain, a central hydrophobic domain, and a C-terminal amphiphathic α-helical domain. The hydrophobic central region extends into theTAG core 202 providing an anchor foroleosin 208 with the two amphiphathic sections extending outward over at least part oflayer 204. The resulting arrangement ofphospholipids 206 andoleosins 208 may provide a structurally stable vessel and a degree of oxidation protection for the TAG. However, this may represent only a part of the oxidation protection provided by a natural oil seed structure. - The pericarp or
seed coat 102 as shown inFIG. 1 may provide additional oxidation protection for the TAG. Seed germination, and conversely seed dormancy, may be affected by many factors including water, light, temperature and oxygen. In many cases, the exclusion of these factors or the presence of inhibitors to water, light or oxygen can limit germination or extend seed dormancy. Under proper storage conditions some seeds can survive in dormant form for years and then germinate very quickly. Arctic tundra lupine represents one extreme example, with seed viability having been found after a 10,000 year dormancy period. While the control of light and water is important to seed stability and dormancy, we are most concerned here with the effects of or the control of oxygen in seed structures. In order for a seed to germinate the embryo or cotyledon must be exposed to oxygen. Yet over exposure to oxygen or continuous exposure to oxygen can result in loss of viability and degradation of critical components in the seed such as the TAGs. Seeds appear to limit oxygen exposure until other germination conditions are met using mechanisms including oxygen barriers in the pericarp and other layers immediately associated with the TAG organelle, and oxygen inhibitors such as antioxidants (e.g., phenols, sterols, anthocyanins and lycopene) in the pericarp or other portions of an oil seed body. A typical pericarp includes fiber, antioxidants, and proteins in multiple layers of cells. Germination occurs when the seed pericarp has been punctured (e.g., by animals), abraded (e.g., when scarified by man to promote germination) or when water activity and temperature are sufficient to allow water and oxygen to reach the cotyledon or to allow water to leach away antioxidants (e.g., phenolic structured antioxidants such as anthocyanins) which might otherwise inhibit seed growth. - By using microencapsulation to mimic or otherwise adapt storage concepts used by seeds to protect TAG cores, oxidatively unstable materials may be provided with a synthetic, seed-like oxygen-resistant protective barrier and rendered less susceptible to oxidative degradation. One additional factor may be considered when forming synthetic or artificial TAG encapsulation systems. Various TAGs of interest for encapsulation may not previously have been handled in a manner consistent with the TAGs in seeds. For example, prooxidants such as metals (e.g., iron and copper), TAG oxidation products (e.g., ketones, peroxides and aldehydes), oxidase enzymes, and dissolved oxygen may all affect extracted or otherwise isolated TAGs. In vivo TAGs in oil seed bodies are shielded or otherwise protected from or completely shielded from the above prooxidants, but upon extraction from oil seeds, algae, or fish the TAGs may be completely exposed to oxidase enzymes (e.g., lipase) from other parts of the plant or to dissolved metal ions from extraction and processing steps. Producing a new microcapsule that mimics a seed and organelle will be furthered improved if these issues are addressed as well.
- The disclosed encapsulated materials include at least an oxidation sensitive core and at least one shell layer containing a dried synthetic organelle layer over the core. Preferably the organelle layer is immediately adjacent the core layer, but intermediate or additional shells may surround the core, the organelle layer, or both the core and organelle layer. For example, the above-mentioned HC layer may facilitate upper gastrointestinal (UGI) tract bypass when the disclosed encapsulated materials are orally administered to mammalian subjects. A particularly useful layer, especially over the organelle layer, is the above-mentioned PPC layer. A PPC layer is intended to mimic the functionality of the pericarp layer in a natural seed with respect to providing oxidation reduction or other protection for the core. Exemplary PPC layers may be formed from at least one of dietary fiber (e.g., food grade fiber), a simple carbohydrate (e.g., a monosaccharide or disaccharide such as a sugar), or a protein, and may also include at least one antioxidant. PPC layers containing one or more of fiber, carbohydrate and protein may also be referred to as fiber/carbohydrate/protein layers or FCP layers, with the “/” symbol signifying that any of fiber, carbohydrate and protein or combinations thereof may be present in the FCP shell (FCPS). If the encapsulated material is not required to be ingestible, then the outer and if desired inner layers may be ingestible or not as desired, whereas for ingestible encapsulated materials at least the outermost layer is ingestible.
- The various additional layer ingredients discussed above may also or instead be incorporated into the organelle layer. In some embodiments ingredients capable of forming one and optionally several layers are combined into the continuous phase of an emulsion containing droplets or particles of the core material. The emulsion may be processed (e.g., spray dried) to convert the emulsion into microcapsules having at least one dried shell layer. The various additional layer ingredients may arrange themselves into separate layers around the core droplets or particles (for example due to reasons such as stereochemistry, surface energy, oleophilicity, oleophobicity, hydrophilicity or hydrophobicity), or may form a matrix of ingredients from the continuous phase in a single shell layer surrounding the core droplets or particles.
- The resulting encapsulated materials have a locked-in protective structure in the form of one or more shell layers surrounding an oxidatively-sensitive core, and may provide better protection against oxidation than that provided by the undried emulsion. The encapsulated materials may also employ a multi-tiered defensive approach involving oxygen barriers, lipophilic antioxidants and hydrophilic antioxidants.
-
FIG. 3 shows an exemplary deliverable encapsulatedmaterial 300 including an oxidativelyunstable core 302 surrounded by an outer driedsynthetic organelle layer 304.Layer 304 provides a protective and water vapor transmission-resistant shell overcore 302.Core 302 may optionally contain dispersedsolid particles 306 which may alter the properties ofcore 302 orlayer 304, or may provide other features to encapsulatedmaterial 300.Core 302 may be formed for example from liquid, gelled or solid particles of an oxidatively unstable material, e.g., a phytosterol, PUFA, TAG, antioxidant, natural color or mixture thereof.Synthetic organelle layer 304 may be formed for example by isolating, purifying and mixing oleosins and phospholipids to provide a shell layer mixture mimicking or resembling that surrounding a TAG in a natural oil seed body.Particles 306 may be formed for example from solids including calcium salts, alginic acid and salts thereof including sodium or calcium alginate, chelating agents including citric acid, or antioxidants including ascorbic acid. -
FIG. 4 shows another exemplary deliverable encapsulatedmaterial 400 including oxidativelyunstable core 302 surrounded by driedsynthetic organelle layer 304 and containingsolid particles 306.Shell 304 is surrounded by anintermediate hydrocolloid shell 406 made for example from alginate, an intermediate fiber/carbohydrate shell 408 made for example from a mixture of maltodextrin, sucrose, trehalose and starch, and an outerprotective layer 410 made for example from a mixture of lipid, fiber and protein. The various layers shown inFIG. 4 are merely exemplary and may be rearranged, combined into fewer layers, augmented with additional layers or made from other ingredients or mixtures of ingredients. Doing so may facilitate formation of encapsulated materials which maintain, preserve or protect the core inside the encapsulated material and keep oxygen and if desired one or both of water or light away from the core. -
FIG. 5 shows another exemplary deliverable encapsulated material in the form of amicrosphere 500 including a plurality of oxidativelyunstable core particles 300 similar to those shown inFIG. 3 surrounded byintermediate hydrocolloid shells 506 made for example from alginate. Theparticles 300 and theirshells 506 are dispersed in aprotective matrix 512 made for example from a mixture of maltodextrin, sucrose, starch, ascorbic acid and oat fiber. -
FIG. 6 shows another exemplary deliverable encapsulated material in the form of amicrosphere 600 including a plurality of oxidativelyunstable core particles 300 and surroundingintermediate hydrocolloid shells 506 dispersed in aprotective matrix 512, and surrounded by a protective wax-containingshell 620.Shell 620 may include a variety of other ingredients, e.g., soluble fibers, lipid soluble materials including tocopherols, and dispersed water-soluble particulates including ascorbic acid and citric acid. - A variety of core substances may be used in the disclosed encapsulated materials. Exemplary oxidation-sensitive core substances include liquid or solid materials, e.g., acidulants, animal products, antioxidants, carotenoids, catalysts, drugs, dyes, enzymes, flavors, fragrances, lutein, lycopene, metal complexes, natural colors, nutraceuticals, pigments, polyphenolics, processed plant materials, metabiotics, probiotics, proteins, PUFAs, squalenes, sterols including phytosterols, tocopherol, tocotrienol, TAGs, vitamins, unsaturated organic compounds (e.g., unsaturated rubbers and unsaturated oils) and mixtures thereof. Antioxidants, PUFAs, sterols and TAGS are of particular interest. Antioxidants may, for example, suppress, reduce, intercept, or eliminate destructive radicals or chemical species that promote the formation of destructive radicals which would otherwise lead to more rapid oxidative degradation of the encapsulated material or components thereof. Exemplary antioxidants include menaquinone (vitamin K2), plastoquinone, phylloquinone (vitamin K1), retinol (vitamin A), tocopherols (e.g., α, β, γ and δ-tocotrienols, ubiquinol, and ubiquione (Coenzyme Q10)); and cyclic or polycyclic compounds including acetophenones, anthroquinones, benzoquiones, biflavonoids, catechol melanins, chromones, condensed tannins, coumarins, flavonoids, hydrolyzable tannins, hydroxycinnamic acids, hydroxybenzyl compounds, isoflavonoids, lignans, naphthoquinones, neolignans, phenolic acids, phenols (including bisphenols and other sterically hindered phenols, aminophenols and thiobisphenols), phenylacetic acids, phenylpropenes, stilbenes and xanthones. Additional cyclic or polycyclic antioxidant compounds include apigenin, auresin, aureusidin, Biochanin A, capsaicin, catechin, coniferyl alcohol, coniferyl aldehyde, cyanidin, daidzein, daphnetin, delphinidin, emodin, epicatechin, eriodicytol, esculetin, ferulic acid, formononetin, gernistein, gingerol, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 3-hydroxycoumarin, juglone, kaemferol, lunularic acid, luteolin, malvidin, mangiferin, 4-methylumbelliferone, mycertin, naringenin, pelargonidin, peonidin, petunidin, phloretin, p-hydroxyacetophenone, (+)-pinoresinol, procyanidin B-2, quercetin, resorcinol, rosmaric acid, salicylic acid, scopolein, sinapic acid, sinapoyl-(S)-maleate, sinapyl aldehyde, syrginyl alcohol, telligrandin II, umbelliferone and vanillin. Antioxidants may also be obtained from plant extracts, e.g., from blackberries, blueberries, black carrots, chokecherries, cranberries, black currants, elderberries, red grapes and their juice, hibiscus, oregano, purple sweet potato, red wine, rosemary, strawberries, tea (e.g., black, green or white tea), and from various plant ingredients as ellagic acid. Additional exemplary antioxidants include carotenoids including hydrocarbons such as hexahydrolycopene, lycopersene, phtyofluene, torulene and α-zeacarotene; alcohols such as alloxanthin, cynthiaxanthin, cryptomonaxanthin, crustaxanthin, gazaniaxanthin, loroxanthin, lycoxanthin, pectenoxanthin, rhodopin, rhodopinol and saproxanthin; glycosides such as oscillaxanthin and phleixanthophyll; ethers such as rhodovibrin and spheroidene; epoxides such as citroxanthin, diadinoxanthin, foliachrome, luteoxanthin, mutatoxanthin, neochrome, trollichrome, vaucheriaxanthin and zeaxanthin; aldehydes such as rhodopinal, torularhodinaldehyde and wamingone; ketones such as canthaxanthin, capsanthin, capsorubin, cryptocapsin, flexixanthin, hydroxyspheriodenone, okenone, pectenolone, phoeniconone, phoenicopterone, phoenicoxanthin, rubixanthone and siphonaxanthin; esters such as astacein, fucoxanthin, isofucoxanthin, physalien, siphonein and zeaxanthin dipalmitate; apo carotenoids such as β-apo-2′-cartoenal, apo-2-lycopenal, apo-6′-lycopenal, azafrinaldehyde, bixin, citranaxanthin, crocetin, crocetinsemialdehyde, crocin, hopkinsiaxanthin, methyl apo-6′-lycopenoate, paracentrone and sintaxanthin; nor and seco carotenoids such as actinioerythrin, β-carotene, peridinin, pyrrhoxanthininol, semi-α-carotenone, semi-β-carotenone and triphasiaxanthin; retro and retro apo carotenoids such as eschscholtzxanthin, eschscholtzxanthone, rhodoxanthin and tangeraxanthin; higher carotenoids such as decaprenoxanthin and nonaprenoxanthin; secondary aromatic amines; alkyl and arylthioethers; phosphates and phosphonites; zinc-thiocarbamates; benzofuranone lactone-based antioxidants; nickel quenchers; metal deactivators or complexing agents; and the like. Commercially available antioxidants include butylated hydroxyanisole (BHA), 2,6-di-t-butyl cresol (BHT), 2,2′-methylene bis(6-t-butyl-4-methyl phenol) (available as VULKANOX™ BKF from Bayer Inc., Canada), 2,2′-thio bis(6-t-butyl-4-methyl phenol), tert-butyl hydroquinone, di-tert-butyl hydroquinone, di-tert-amyl hydroquinone, methyl hydroquinone, p-methoxy phenol, tetrakis[methylene-3-(3′,5′-di-tert-butyl-4′-hydroxyphenyl)propionate]methane, N-(2-aminoethyl)-3-[3,5-bis(tert-butyl)-4-hydroxyphenyl]propanamide, 5,7-di-tert-butyl-3-(3,4,-dimethylphenyl)-3H-benzofuran-2-one, dilauryl thiodipropionate, dimyristyl thiodipropionate, tris(nonylphenyl) phosphite, and the like, and mixtures thereof. The antioxidants 2,2′-methylene bis(6-t-butyl-4-methyl phenol) and N-(2-aminoethyl)-3-[3,5-bis(tert-butyl)-4-hydroxyphenyl]propanamide may be preferred for some applications, with the latter antioxidant being especially desirable because it includes a reactive amino group which may enable covalent incorporation into a suitably reactive core or shell.
- Exemplary PUFAs include those found in fish and various grain products, e.g., fish oil, halibut, herring, mackerel, menhaden, salmon, algae, chia, flaxseed and soybeans.
- Exemplary sterols include cholesterol, phytosterols (e.g. campesterol, stigasterol, β-sitosterol, Δ5-avenosterol, Δ7-stigasterol, Δ7-avenosterol and brassicasterol), steroidal hormones such as testosterone, vitamins such as D vitamins, eicosanoids (e.g., hydroxyeicostetraones, prostacyclins, prostaglandins and thromboxanes, leukotrienes; lipoxins, resolvins, isoprostanes and jasmonates. Exemplary TAGs include those found in algae oil, almond oil, beef tallow, butterfat, canola oil, chia oil, cocoa butter, coconut oil, cod liver oil, corn oil, cottonseed oil, flaxseed oil, grape seed oil, lard, olive oil, palm oil, peanut oil, safflower oil, sesame oil, soybean oil, sunflower oil, and walnut oil.
- The core may include additional ingredients having limited or no susceptibility to oxidation, e.g., caveolins, phospholipids, micelle stabilizers, and mixtures thereof. Exemplary phospholipids include those discussed below. Exemplary micelle stabilizers (some of which are phospholipids, discussed below) include cardolipin, digalactosyldiacylglycerols, monogalactosyldiacylglycerols, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and sphingolipids and mixtures thereof. For core materials that normally are liquids at room temperature (25° C.), it will be desirable in some embodiments to gel the core. For example, core materials based on oils may be gelled as described in U.S. Pat. No. 6,858,666 B2 wherein an oxidation-sensitive oil or composition is heated in the presence of a suitable gelation agent to melt and dissolve the gelation agent in the continuous oil phase. The resultant solution may then be atomized and cooled to form particles. Exemplary gelled core particles may for example have particle diameters from about 0.1 to about 5,000 micrometers. The amount of gelation agent(s) may for example range from about 1 to about 90 wt. % of the core weight. Other additives including various salts, soluble or insoluble fibers, or additional oils may be added to the mixture. Additional exemplary gelled core particles based on PUFAs may be formed by combining a PUFA with a sterol, e.g., to form triglyceride-recrystallized phytosterols as in U.S. Pat. Nos. 6,638,547 B2 and 7,144,595 B2. Some antioxidants, e.g., Vitamin E, may also help convert a liquid core material to a gel.
- The core may for example represent at least about 5 wt. %, at least about 20 wt. % or at least about 30 wt. % of the disclosed encapsulated materials. Desirably the core is greater than 30 wt. % of the encapsulated material, e.g., at least about 40 wt. % or at least about 50 wt. %.
- The disclosed dried synthetic organelle layer includes at least oleosin and phospholipid, and may comprise, consist of or consist essentially of oleosin and phospholipid. Either or both of the oleosin and phospholipid may be chemically modified. Oleosins may conveniently be obtained from high oil content plant parts. For example, oleosins have been found on oil bodies of seeds, tapetum cells, and pollen but not fruits. In pollen, oleosins are thought to be involved in water-uptake by pollen on stigma. Oleosins may help to pin the phospholipid in place within the organelle shell, and may make the organelle sufficiently robust to permit the organelle to be isolated using techniques such as extraction centrifugation, pressing, and the like. Oleosins may also contribute to one or more properties such as oxidation stability (viz., limiting oxygen diffusion into the core), structural stability (viz., keeping the core inside the shell), or steric stability (viz., increasing the shell strength). Oleoresins may conveniently be obtained via extraction techniques such as those described in Tzen, J. T. C. and Huang, A. H. C., Surface Structure and Properties of Plant Seed Oil Bodies, J. Cell Bio, 117; 327-335 (1992); Millichip, M., Tatham, A. S., Jackson, F., Griffiths, G., Shewry, P. R., and Stobart, A. K., Purification and Characterization of Oil-Bodies (oleosomes) and Oil-Body Boundary Proteins (oleosins) for the Developing Cotyledons of Sunflower (Helianthus annus L.), Biochem. J., 314; 333-337 (1996); Huang, A. H. C., Oleosins and Oil Bodies in Seed and Other Organs, Plant Physiol., 110; 1055-1061 (1996); and Ting, J. T. L., Balsamo, R. A., Ratnayake, C., Huang, A. H. C., Oleosin of Plant Seed Oil Bodies is Correctly Targeted to the Lipid Bodies in Transformed Yeast, J. Bio. Chem. 272; 3699-3706 (1997).
- A variety of phospholipids may be used to form the disclosed organelle layer.
- Exemplary phospholipids include natural or chemically modified phospholipids, e.g., alkylphosphocholines (viz., synthesized phospholipid-like molecules), cardiolipin, dipalmitoylphosphatidylcholine, glycerophospholipid, lecithin, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol 3-phosphate, phosphatidylinositol (3,4)-bisphosphate, phosphatidylinositol (3,5)-biphosphate, phosphatidylinositol (3,4,5)-triphosphate, phosphatidylmyo-inositol mannosides, phosphatidylserine, sphingomyelin, sphingosyl phosphatide and mixtures thereof. An exemplary commercially available phospholipid is ULTRALEC F™ deoiled lecithin from Archer Daniels Midland Co. (Decatur, Ill.).
- In some embodiments the organelle layer or other layers may contain one or more antioxidants. Exemplary such antioxidants include those discussed above in connection with the core. Some antioxidants may be used as core stabilizers and as shell stabilizers. Additional ingredients (e.g., phytosterols) may be employed in some embodiments to improve the physical stability or barrier properties (e.g., oxygen or water barrier properties) of the organelle layer or other layers.
- The dried synthetic organelle layer may for example contain less than 8%, less than 6%, less than 5%, less than 4%, less than 3%, less than 2% or less than 1% of available water. The desired dryness level may be reached by removing water (e.g., if the organelle layer is formed using an aqueous carrier or solvent) or by adding water (e.g., if the organelle layer is formed using an organic carrier or solvent) after or during formation of the disclosed encapsulated material.
- The organelle layer may be in direct contact with a surface of the core, or may be in direct contact with an intermediate protective layer located between a surface of the core and the organelle layer. The latter configuration may however have a reduced core content or core loading for a given particle size. The organelle layer may as discussed above be covered by one or more additional layers, for example a water-dispersible oxygen-barrier layer, hydrocolloid layer, lipophilic layer or any combination thereof.
- A variety of microencapsulating materials may be used in the disclosed encapsulated materials to form additional shell(s), sometimes also referred to as coatings or membranes, surrounding the core(s), or as additives in the organelle layer. Exemplary such materials may comprise, consist of or consist essentially of natural, semisynthetic (viz., chemically modified natural materials) or synthetic materials. Exemplary natural materials include gum arabic, agar agar, agarose, maltodextrins, alginic acid and salts thereof including sodium or calcium alginate, fats and fatty acids, cetyl alcohol, collagen, chitosan, lecithins, gelatin, albumin, shellac, polysaccharides including starch or dextran, polypeptides, protein hydrolyzates, sucrose and waxes. Exemplary semisynthetic materials include chemically modified celluloses including cellulose esters and ethers (for example cellulose acetate, ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose and carboxymethyl cellulose) and chemically modified starches including starch ethers and esters (for example, CAPSUL™ modified starch from National Starch). Exemplary synthetic materials include polymers (for example, polyacrylates, polyamides, polyvinyl alcohol, polyvinyl pyrrolidone, polyureas and polyurethanes). Exemplary commercial microcapsule products (the shell materials for which are shown in parentheses) include Hallcrest Microcapsules (gelatin, gum arabic), Coletica THALASPHEREST™ (maritime collagen), Lipotec MILLICAPSELN™ (alginic acid, agar agar), Induchem UNISPHERES™ (lactose, microcrystalline cellulose, hydroxypropylmethyl cellulose), Unicerin C30 (lactose, microcrystalline cellulose, hydroxypropylmethyl cellulose), Kobo GLYCOSPHERES™ (modified starch, fatty acid esters), SOFTSPHERES™ (modified agar agar) and Kuhs Probiol NANOSPHERES™.
- A variety of natural or chemically modified fiber materials may be used to make FCP layers or as additives in the core, organelle layer or other layers. Fiber or “roughage” is a component of food that remains undigested as it passes through the gastrointestinal system, and which does not necessarily have a fibrous structure. The vast majority of dietary fiber consists of complex carbohydrates (e.g., polysaccharides) of plant origin, for example the cellulosic wall that surrounds plant cells. Fibers may be further classified into insoluble fibers such as the classic cellulosic materials, and soluble fibers such as water-soluble polysaccharides that are not digested by human or carnivore digestive systems. Both types of fiber bind considerable water and, thus, have a softening effect on the stool. Soluble fiber may, depending on the precise polysaccharides involved, also be metabolized or partially metabolized directly by bacteria in the colon, and may promote growth of beneficial bacteria. Both insoluble and soluble fibers tend to increase motility within the gastrointestinal tract thus speeding transit time of wastes and lowering the risk of acute and chronic medical problems. This generally has a positive effect as the beneficial bacteria may also tend to lubricate the stool and prevent the growth of other bacteria which may release toxins (see e.g., Leon Prosky, J. of AOAC Intl 82:223-35 (1999)). Insoluble fibers may be obtained from a wide variety of sources. Exemplary insoluble fibers include almond fiber, cellulose, chia fiber, citrus fiber, coconut fiber, corn fiber, cottonseed fiber, flaxseed fiber, grape seed fiber, hemicelluloses, lignin, oat fiber, rice hulls, safflower fiber, sesame fiber, soybean fiber, sunflower fiber, and walnut fiber. Sources include whole grain foods, nuts and seeds, vegetables such as green beans, cauliflower, celery and zucchini, and the skins of some fruits (e.g. tomatoes). Soluble fibers may be obtained from a wide range of plant sources, including water-soluble plant pectins and pectic materials, galactomannans, arabanogalactans and water-soluble hemicellulose. Many plant “mucilages,” gums, and soluble polysaccharides found in grains, seeds, or stems such as psyllium, guar, oat (beta glucans), astragalus (gum traganth), gum ghatti, gum karaya (Sterculia gum); and gum acacia also provide soluble fiber. Partially hydrolyzed guar gums may also provide soluble fiber, and may for example be prepared as described in U.S. Pat. No. 5,260,279. Algal polysaccharides such as agar or carrageenan (which as discussed below may also be used in an HC layer) behave as soluble fiber as do other digestible carbohydrates, such as maltodextrins or dextrins, produced by chemical or enzymatic digestion (e.g., partial hydrolysis) of starch, gums and other carbohydrate polymers. Dextrins or maltodextrins may for example be prepared by controlled hydrolysis of vegetable starches (e.g., potato or corn) as is described in U.S. Pat. No. 5,620,873 to Ohkuma et al. Soluble cellulosic ethers and other cellulose derivatives (e.g., carboxymethyl cellulose) behave as soluble fiber as do digestible carbohydrate polymers artificially prepared using bacterial enzymes. Storage carbohydrates such as lower molecular weight grades of inulin (see for example U.S. Pat. No. 5,968,365 to Laurenzo, et al.) are also important soluble fibers. Anionic chitosan derivatives, for example carboxylation and above all succinylation products of chitosan may also be used as soluble fibers. A number of companies now provide an entire range of soluble fiber materials. For example, TIC Gums of Belcamp, Md., Novartis Nutrition of Minneapolis, Minn. and Imperial Sensus of Sugar Land, Tex. provide food grade soluble fiber compounds. Additional soluble fibers are available in the United States as BENEFIBER™ from Novartis Nutrition of Minneapolis, Minn. or in other countries as SUN-FIBER™ from Taiyo of Japan. It is peimissible and often advantageous to blend an assortment of different soluble fibers to create any particular fiber-water mixture. In fact the disclosed method may facilitate or dictate the selection of suitable fibers and their quantity or mode of delivery. Many of the various soluble fibers may have essentially identical properties when it comes to providing bulk and hydration to stools. However, selected soluble fibers may provide desirably altered solution clarity, lipid absorption, sugar absorption or other factors of interest. For example, among presently available soluble fibers, dextrins, inulins and partially hydrolyzed guar gum appear to provide aqueous solutions having the greatest degree of clarity. However, many dextrins and inulins contain a small amount of a metabolizable component and have a slight sweet taste. For some applications it will be advantageous to provide a portion of the soluble fiber in the form of hydrolyzed guar gum or some other flavorless and non-metabolizable compound, together with a second portion in the form of a metabolizable fiber such as an inulin. Even though some fibers may produce solutions having lower clarity, combinations with clear soluble fibers can yield a solution which is both high in fiber and clarity and low in sweetness or other taste. Other soluble fibers can be combined to realize the advantages of fiber mixtures.
- A variety of natural or chemically modified carbohydrates may be used to make FCP layers or as additives in the core, organelle layer or other layers. Exemplary such carbohydrates include monosaccharides, disaccharides, trisaccharides and oligosaccharides such as dextrose, fructose, dextrose, galactose, glucose, lactose, mannose, ribose, sucrose, trehalose and xylose, as well as sugars contained in sources such as corn products, molasses, spent sulfite liquors, sugar beets, and their respective hydrolysates. Reducing sugars and non-reducing sugars may be employed. Reducing sugars may also be used to promote a Maillard reaction with proteins as discussed in more detail below.
- A variety of natural or chemically modified proteins may be used to make FCP layers or as additives in the core, organelle layer or other layers. Exemplary such proteins include dairy proteins, e.g., casein, caseinate, milk protein concentrate (MPC), whey, whey protein concentrate (WPC) and whey protein isolate (WPI); processed proteins, e.g., albumin, albumen, collagen, gelatins (e.g., beef, fish or pork gelatin), soy protein concentrate (SPC) and wheat gluten; vegetarian proteins from nuts (e.g., almonds, beechnuts, brazil nuts, chestnuts, hazelnuts or walnuts) or from seeds (e.g., amaranth, barley, beans, buckwheat, canola, chia, corn, flax, hemp, millet, oats, peanuts, peas, pumpkins, quinoa, rice, rye, sorghum, soybeans, sunflowers, wheat and wild rice; miscellaneous protein sources, e.g., algae, eggs and yeast; and animal protein sources, e.g., meat or blood portions of beef, buffalo, cephalopods, chicken, deer, ducks, eel, elk, emu, fish, geese, goat, ostrich, pork, rabbits, rodentia, sheep, shellfish, turkeys, water buffalo and yaks.
- A variety of natural or chemically modified hydrocolloids may be used to make hydrocolloid shell (HCS) layers or as additives in the core, organelle layer or other layers. Exemplary hydrocolloids include alginates and other algal polysaccharides such as agar; carrageenans; gelatins; hyaluronates; modified starches; pectins; sulfated dextrans; xanthan gums; cellulose derivatives such as carboxymethyl cellulose, oxidized cellulose and microcrystalline cellulose; and mixtures thereof. Alginic acid, its salts and complete and partial neutralization products thereof may also be employed. Alginic acid is a mixture of carboxyl-containing polysaccharides with an idealized monomeric unit, and a weight average molecular weight of about 18,000 to about 120,000. Exemplary salts of alginic acid and complete and partial neutralization products thereof include alkali metal salts such as sodium alginate (“algin”), and ammonium and alkaline earth metal salts. Mixed alginates, for example sodium/magnesium or sodium/calcium alginates, may also be employed. Hydrocolloids may also be crosslinked, as discussed in more detail below.
- The disclosed encapsulated materials may contain a variety of adjuvants, including chelating agents, surfactants, UV absorbers and other ingredients or additives that will be familiar to persons having ordinary skill in the microencapsulation art. Exemplary chelating agents include citric acid and ethylenediaminetetraacetic acid (EDTA). Exemplary surfactants include anionic, nonionic, cationic and amphoteric (zwitterionic) surfactants. Exemplary anionic surfactants include soaps, alkyl benzenesulfonates, alkanesulfonates, olefin sulfonates, alkylether sulfonates, glycerol ether sulfonates, α-methyl ester sulfonates, sulfofatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, fatty acid ether sulfates, hydroxy mixed ether sulfates, monolyceride (ether) sulfates, fatty acid amide (ether) sulfates, mono- and dialkyl sulfosuccinates, mono- and dialkyl sulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and salts thereof, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, N-acylamino acids, for example acyl lactylates, acyl tartrates, acyl glutamates and acyl aspartates, alkyl oligoglucoside sulfates, protein fatty acid condensates (e.g., wheat-based vegetable products) and alkyl (ether) phosphates. Exemplary nonionic surfactants include fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers and mixed formals, optionally partly oxidized alk(en)yl oligoglycosides or glucuronic acid derivatives, fatty acid-N-alkyl glucamides, protein hydrolyzates (e.g., wheat-based vegetable products), polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides. Cationic or nonionic surfactants containing polyglycol ether chains may have a conventional homolog distribution, but preferably have a narrow-range homolog distribution. Exemplary cationic surfactants include quaternary ammonium compounds, for example dimethyl distearyl ammonium chloride, and esterquats, more particularly quaternized fatty acid trialkanolamine ester salts. Exemplary amphoteric or zwitterionic surfactants include alkylbetaines, alkylamidobetaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. Further details concerning these and other exemplary surfactants may be found for example in J. Falbe (ed.), “Surfactants in Consumer Products”, Springer Verlag, Berlin, 1987, pages 54 to 124 or J. Falbe (ed.), “Katalysatoren, Tenside and Mineraloladditive (Catalysts, Surfactants and Mineral Oil Additives)”, Thieme Verlag, Stuttgart, 1978, pages 123-217.
- UV absorbers act as stabilizers to protect the microcapsule by absorbing radiation in the range of about 270-500 nanometers and subsequently releasing the energy into the environment through non-destructive means. Exemplary UV absorbers include hindered amine light stabilizers (HALS), cinnamate esters, hydroxybenzophenones, benzotriazoles, substituted acrylates, salicylates, oxanilides, hydroxyphenyltriazines, nanoparticle titania, nanoparticle zinc oxide, and the like.
- The disclosed encapsulated materials may also include absorbents, dehydrators, flow aids and other agents that may assist in pouring, storing or dispensing the encapsulated materials or in mixing them with other materials. The agent may in some embodiments form a coating over an outer layer, in effect representing an additional shell, and may in other embodiments be an additive included in an outer layer. The agent may change the surface energy of the encapsulated material, absorb excess oil, or serve other functions. Exemplary such agents include inorganic or organic materials such as activated carbon, alumina, aluminum phosphates, aluminium silicates, bentonite, bone phosphate, calcium aluminosilicate, calcium carbonate, calcium ferrocyanide, calcium silicate, magnesium oxides, magnesium silicates, magnesium trisilicate, oat or other fibers, Polydimethylsiloxane, potassium aluminium silicate, potassium ferrocyanide, powdered phytosterols, silicas (e.g., fumed or precipitated silicas), sodium aluminosilicate, sodium bicarbonate, silicon dioxide, sodium ferrocyanide, sodium silicate, stearic acid, talc, sodium phosphate, tricalcium phosphate, zeolites, and mixtures thereof. The agent may for example represent about 0.5 to about 5 wt. % of the encapsulated material.
- The disclosed encapsulated materials may be prepared using a variety of encapsulation methods. For example, a solid particle of the core material may be formed and a synthetic organelle layer may be deposited and dried on the solid particle while the particle is suspended or dispersed or in a trajectory. A droplet of the core material may instead be suspended or dispersed in a fluid environment containing an organelle composition. A droplet of the core material may also be spray dried or prilled in combination with materials forming the organelle layer, optionally together with additional materials which may become incorporated into the organelle layer or may form an additional layer or layers between the core and organelle layer or surrounding the organelle layer. The materials forming the organelle layer may if desired be in fluid form at an elevated temperature (e.g., at above 30° C.) and in solid form when cooled to a lower temperature.
- The various applied layers may be reacted with a variety of materials to alter some or all of the layer characteristics. This may be carried out using a variety of reaction schemes, materials and other measures. For example, a Maillard reaction between proteins and reducing sugars may be used to alter a layer containing protein or a layer containing a reducing sugar by exposing such layers to reducing sugar or protein, respectively, in the presence of sufficient heat to promote a browning reaction. Hydrocolloid (e.g., alginate layers) may be crosslinked, e.g., by inclusion of a suitable calcium salt source in the hydrocolloid layer, in an adjacent layer or in the core.
- A variety of exemplary structures and methods may be used to form the disclosed encapsulated materials. When the microcapsules include additional layers other than the OBS, (e.g., a PPC layer or HC layer), the resulting encapsulated material may be referred to as a multilayer microcapsule or MLMC. An MLMC may for example be made using an oxidation-sensitive liquid core (e.g., a TAG or PUFA core) to which has been added an antioxidant (e.g., tocopherol, lycopene or tocotrienols), chelating agents, or dispersed calcium carbonate or calcium sulfate. The core may be formed by mixing or providing a portion of the active core ingredients at an appropriate temperature of, for example 70-80° C., then cooling and atomizing the mixture in a spray-drying or “prilling” column to form beads. The beads may be coated with a synthetic organelle shell or OBS which may be made from a variety of materials (e.g., lecithin or other phospholipid-containing materials and oleosins, and other optional ingredients). The thus-coated beads may be dried and a melt process may next be used to form one or more layers with antioxidant properties over the OBS, e.g. by mixing the OBS-coated cores into a film-forming composition into which antioxidants have been dissolved, dispersed or suspended. This last step may be repeated several (e.g., one to four) times. HC shell (HCS) layers may be formed, for example from an aqueous sodium alginate hydrocolloid solution to which a variety of other materials may also be added. FCPS layers may be formed, for example by adding fibers such as insoluble fiber or carboxymethyl cellulose (CMC) fibers and optional additives to a solution containing water-soluble antioxidants and reducible sugars. The resulting mixture may be formed into encapsulated materials, e.g., by adding the OBS-coated cores to the solution and spray drying to form FCP-coated particles. In a preferred process the resulting spray dried product is added to a melt for prilling or otherwise converted in order to form an outer lipophilic shell or LPS over an HC or FCP-coated core or OBS. Separation of microcapsules by centrifugation or filtration and drying to a dry state may also or instead be used to form various layers.
- Using these various general processes for manufacture, a variety of different materials, layers and constructions can be used to provide a variety of encapsulated materials including OBS-coated cores, MLMCs and MLMCs including an LPS. Set out below in Table 1 are several non-limiting exemplary structural components, ingredients and functions for use in such processes. The terms “AI” and “AO” in Table 1 respectively refer to an “active ingredient” and an “antioxidant”, functions which in some cases may be performed by the same material. Typically an AI or AO will be carried and protected by the core, OBS, HCS, FCPS or other MLMC layer until such time as the AI or AO may be delivered to an intended host or site for a subsequent designed use. Other abbreviations are identified in the footnotes to Table 1. To simplify the table appearance, the first row for each new structural component (e.g., Core, OBS, etc.) includes the structural component label, and subsequent rows showing other materials for use in or as such structural component do not explicitly show the structural component label but are deemed to have been so labeled.
-
TABLE 1 Structural Component Ingredient Function Core PUFA1 AI2 Vegetable Oil AI or AO3 Lycopene AI or AO Lutein AI or AO Tocopherol AI or AO Phytosterol AI, organogellation agent or AO BHT4 AI or AO Calcium Compound Crosslinking agent for HCS5 Citric Acid Metal chelating agent for prooxidants or AI EDTA6 Salt Metal chelating agent for prooxidants Oil Body Shell Phospholipid Liposome shell, core stabilizer and AO Oleosin Liposome shell stabilizer Phytosterol Liposome shell stabilizer or AO Hydrocolloid Shell Alginate Shell Matrix, UGI7 bypass and oxygen barrier CMC8 Shell, oxygen barrier Insoluble Fiber Shell, oxygen barrier HPMC9 Shell, oxygen barrier Anthocyanin AO BHT AO Lutein AO Lycopene AO Tocopherol AO Carbohydrate AI Dextrose Reducible sugar for Maillard reaction and carbohydrate Fructose Reducible sugar for Maillard reaction and carbohydrate Lactose Reducible sugar for Maillard reaction and carbohydrate Sucrose Nonreducible sugar and carbohydrate Trehalose Nonreducible sugar and carbohydrate Casein Protein for Maillard reaction WPC10 Protein for Maillard reaction Phytosterol Oxygen barrier or AO Fiber/Carbohydrate/ Pectin Soluble fiber for UGI bypass Protein Shell Insoluble Fiber Oxygen barrier Alginate Matrix, soluble fiber, oxygen barrier Starch Matrix, soluble fiber, oxygen barrier Dextrose Reducible sugar for Maillard reaction and carbohydrate Fructose Reducible sugar for Maillard reaction and carbohydrate Lactose Reducible sugar for Maillard reaction and carbohydrate Sucrose Nonreducible sugar and carbohydrate Trehalose Nonreducible sugar and carbohydrate Casein Protein for Maillard reaction Gelatin Matrix protein for Maillard reaction, oxygen barrier WPC Protein for Maillard reaction Whey Reducible sugar and protein for Maillard reaction Phytosterol Oxygen barrier or AO Lycopene AO Lutein AO Tocopherol AO BHT AO Lipophilic Shell Hydrogenated Oil Oxygen barrier, AO Phytosterol Oxygen barrier or AO 1PUFA is polyunsaturated fatty acid. 2AI is active ingredient. 3AO is antioxidant. 4BHT is 2,6-di-t-butyl cresol. 5HCS is hydrocolloid shell. 6EDTA is ethylenediaminetetraacetic acid. 7UGI is upper gastrointestinal tract. 8CMC is carboxymethylcellulose. 9HPMC is hydroxypropylmethylcellulose. 10WPC is whey protein concentrate. - For encapsulated materials having a core surrounded by a single OBS layer, the core:shell weight ratio may for example range from about 10:1 to about 1:10, about 8:1 to about 1:1, or about 2:1 to about 2:3. For encapsulated materials having a core surrounded by four shell layers (e.g., an MLMC having OBS, HCS, FCPS and LPS layers), the core may for example represent about 5 to about 70, about 5 to about 60 or about 10 to about 40 wt. % of the total encapsulated material weight. Set out below in Table 2 are exemplary MLMC constructions showing core and layer amounts (expressed in parts by weight) for a variety of encapsulated materials containing OBS-coated cores, alginate shells, FCP shells and lipophilic shells, together with the approximate core weight percent.
-
TABLE 2 Example Layer A B C D E F Core 80 80 80 80 80 80 Oil Body Shell 20 20 20 20 15 20 Alginate Shell 20 20 20 20 20 20 Fiber/Carbo- 120 80 40 120 20 120 hydrate/ Protein Shell Lipophilic 240 240 240 0 0 1400 Shell Percent Core 16% 18% 20% 33% 60% 5% - The data in Table 2 show encapsulated materials with four shell layers containing about 5-60 wt. % core content. By varying the presence or absence of the various layer and their ingredients and relative amounts, encapsulated materials having a variety of properties can be formed. For example, if the lipophilic shell is eliminated and a fiber/carbohydrate/protein shell containing mainly a soluble fiber such as pectin or alginate is employed, a taste-masked MLMC with UGI bypass characteristics may be prepared. If a phytosterol-containing lipophilic shell is employed, a high temperature encapsulated material with an AO shell may be prepared for use in baked products and baking applications. Encapsulated materials whose cores or lipophilic shells contain organogels, and encapsulated materials with lipophilic shells containing hydrogenated oils crystallized in the beta form, may provide oxygen barrier or zero order (viz., concentration-independent) release characteristics.
- Oxidative stability may be evaluated using a variety of tests. Simple but sensitive subjective tests such as olfactory tests or taste tests will suffice for many applications. A variety of objective may also be employed, including accelerated oxidative stress tests such as solid phase micro extraction (SPME) at an elevated temperature, e.g., 50° C. in an oxidizing atmosphere such as pure oxygen. Aging at 50° C. in pure oxygen represents a fairly severe test regime, and materials which provide low SPME values (or little change in the SPME value compared to the initial SPME value) when so aged may provide very good protection under less stringent (e.g., room temperature) storage conditions. The SPME value after 48 hours at 50° C. in pure oxygen may for example be less than 8,000, less than 5,000 or less than 4,000. The ratio of SPME after 48 hours at 50° C. to initial SPME may also be evaluated, and may for example be less than 8, less than 4, less than 2, less than 1.7 or less than 1.3. An SPME measurement for omega-3 oil may for example be carried out as follows:
- Omega-3 oil samples are prepared by accurately weighing (to 0.1 mg) about 0.5 g of oil into a 5 cc serum bottle (Wheaton #223685), and adding a weighed portion of an internal standard made using 400 micrograms of dodecane per gram of mineral oil. Sufficient internal standard is normally employed to provide about 8 ppm dodecane in the sample. The bottle is sealed with a polytetrafluoroethylene-faced silicon septa and an aluminum crimp seal. For oxidative stress testing, two additional portions are sealed after flushing for 15 seconds with pure oxygen. These portions are held in an oven until evaluation (typically 24 hours or 48 hours at 50° C.). The bottle to be evaluated is thermostated for 30 minutes at 60° C. using a Pierce REACTITHERM™ heating bloc. The bottle headspace is then extracted for 30 minutes with a 50/30μ solid phase extraction fiber made from divinyl benzene/Carboxen™ fiber/polydimethylsiloxane/STABILFLEX™ fiber. The fiber is desorbed in the injection port of a gas chromatograph at 230° C. for 30 minutes. Typically, the next sample is thermostated at 60° C. during this 30 minute period. Chromatography is accomplished on a 20 meter RTX-CLP1 column with an ID of 0.18 mm and a 0.18 μm film thickness. The initial temperature is 45° C. for one minute, followed by heating at 3° C./minute to 60° C., then 2° C./minute to 140° C., and then finally 20° C./minute to 210° C. with a one minute hold at 210° C. to clear the column. The column is allowed to cool such that the total cycle time is 60 minutes. The flow rate is set to a constant velocity of 23 cm/second. A flame ionization detector (FID) set to maximum sensitivity is employed. Its response is calibrated using an SPME extraction of an approximate 25 milligram portion of a mineral oil standard containing 660 ppm 2-methyl 2-butene, 428 ppm ethyl benzene, 154 ppm hexane, 440 ppm 3-hexene-1-ol, 386 ppm 4-heptanal, 482 ppm 2,6-nonadienal and 404 ppm dodecane.
- The disclosed encapsulated materials may be used in a variety of products and applications including foods, food additives, food supplements, prepared (e.g., baked, frozen or precooked) foods, neutraceuticals, medicines, catalysts, inks and coatings.
- The invention is further described in the following Examples, in which all parts and percentages are by weight unless otherwise indicated.
- Three samples of omega-3 oil (from Hormel Foods Corp.) containing 2,000 ppm tocopherols were evaluated for oxidative stability using SPME. An average SPME value of 28,663 was obtained after 48 hours at 50° C. (see Table 3).
- A starch solution was prepared by blending together 150 g of M200 maltodextrin (from Grain Processing Corp.), 30 g of CAPSUL™ modified starch (from National Starch) and 20 g of sucrose (from Rainbow Foods) and then adding the resulting blended powder mixture to 300 g of 80° C. deionized (DI) water. The solution was agitated as the temperature was increased to 85° C., then cooled in an ice bath before refrigerating overnight. The following day the solution was allowed to reach room temperature (about 25° C.) before adding an oil phase made from 50 g of omega-3 oil (from Hormel Foods Corp.) containing 2,000 ppm tocopherol. The oil was emulsified into the starch solution using a SILVERSON™ L2R high shear mixer (from Silverson Machines) operated at maximum speed for 3 minutes to create an oil-in-water emulsion. The emulsion was spray dried using a NIRO™ Mobile Minor lab dryer (from Niro Equipment Corp.) operated using an inlet temperature of 225° C. and an outlet temperature of 75° C. The product had an SPME value of 43,765 after 48 hours at 50° C. (see Table 3).
- An encapsulated product was prepared using the method of Comparative Example 4 but employing a starch solution made from 130 g of M100 maltodextrin (from Grain Processing Corp.), 30 g of CAPSUL modified starch and 40 g of sucrose (from Rainbow Foods) and then adding the resulting blended powder mixture to 300 g of 80° C. deionized (DI) water. The product had an SPME value of 39,985 after 48 hours at 50° C. (see Table 3).
- An encapsulated product was prepared using the method of Comparative Example 4 but employing a starch solution made from 110 g of M100 maltodextrin, 15 g of CAPSUL modified starch, 75 g of sucrose and 300 g of DI water, and an oil phase made from 50 g of omega-3 oil containing 2,000 ppm tocopherol. The resulting encapsulated product had an SPME value of 38,840 after 48 hours at 50° C. (see Table 3).
- A starch solution was prepared by blending together 600 g of M200 maltodextrin, 120 g of CAPSUL modified starch, 4.0 g of ascorbic acid and 80 g of sucrose and then adding the resulting blended powder mixture to 1,200 g of 80° C. DI water. The solution was agitated as the temperature was increased to 85° C., then cooled in an ice bath before refrigerating overnight. The following day 40.0 g of ULTRALEC F™ lecithin (from Archer Daniels Midland Co.) was added to 796 g of omega-3 oil (from Hormel Foods Corp.) containing 2,000 ppm tocopherol. The oil phase was heated to approximately 80° C. and allowed to cool, then emulsified into the starch solution using a SILVERSON L2R high shear mixer operated at maximum speed for 20 minutes followed by a single pass through a MICROFLUIDICS™ M110Y microfluidizer (from MFIC Corp.) operated at 103 MPa. The resulting emulsion was spray dried using a NIRO Mobile Minor lab dryer operated using an inlet temperature of 225° C. and an outlet temperature of 75° C. The total yield of product collected in bottles from the cyclone was 784 g. An additional 508 g of product was scraped from the spray drier after it cooled to room temperature. The product had an SPME value of 10,355 after 48 hours at 50° C. (see Table 3).
- Corn oil and corn oil bodies were extracted by adding 500 g of methylene chloride to 250 g of corn germ. The corn germ in methylene chloride was refrigerated and allowed to soak overnight in a sealed glass container before blending on low speed for 30 seconds using a WARING™ 2 quart lab blender (from Hamilton Beach Brands, Inc.). After soaking while refrigerated overnight, the blend was poured into a sheet of four layers of cheesecloth and squeezed in order to remove most of the liquid. The permeate was placed in a shallow glass pan and the methylene chloride was allowed to evaporate in a fume hood for over 24 hours. The resulting oil-solids mixture weighed 40 g and had an apparent corn-like odor. The solids contained phospholipids and the proteins (including oleosins) associated with oil bodies in addition to other solids. An aqueous phase was prepared by first adding 1.20 g of sodium alginate to 1184 g of DI water, next adding 1.20 g of calcium chloride to 296 g of DI water, combining the two solutions with stirring, and then adding 40.0 g of ULTRALEC F deoiled lecithin, 720 g of CAPSUL modified starch, 80 g of trehalose (from Hayashibara, Co.), 4.0 g of ascorbic acid and 8.0 g of citric acid. The resulting aqueous phase was cooled in an ice bath and refrigerated overnight, followed by addition of 40 g of the oil-solids mixture. An oil phase was prepared by adding 23.9 g of ARBORIS™ AS-2 phytosterol (from Arboris, LLC) to 756 g of omega-3 oil containing 2,000 ppm tocopherol and heating to 50° C. The warm oil phase was poured into the cooled aqueous phase and emulsified using a SILVERSON LT-1 high shear mixer (from Silverson Machines) operated at maximum speed for 15 minutes, thereby providing a coarse emulsion. An ice bath was used to cool the emulsion to approximately 30° C. before passing it through a MICROFLUIDICS M110Y microfluidizer operated at 110 MPa. The emulsion was spray dried using a NIRO Mobile Minor lab dryer operated using an inlet temperature of 225° C. and an outlet temperature of 90° C. The total yield of product collected in bottles from the cyclone was 588 g. An additional 398 g of product was scraped from the dryer. The product had an SPME value of 3,345 after 48 hours at 50° C. (see Table 3), thus demonstrating improved oxidative stability over the Comparative Examples.
- An encapsulated product was prepared using the method of Example 1 but employing 103 g (rather than 40 g) of the oil-solids mixture in the aqueous phase. The total yield of product collected in bottles from the cyclone was 791 g. An additional 488 g of product was scraped from the dryer. The product had an SPME value of 3,562 after 48 hours at 50° C. (see Table 3), thus demonstrating improved oxidative stability over the Comparative Examples.
- Corn oil and corn oil bodies were extracted from dried corn germ. First, 262.7 g of dried, cold corn germ were removed from a −28° C. freezer, placed in a WARING 2 quart lab blender and ground on the low setting for 1.25 minutes, with a halt each 15 seconds to scrape down the sides. The ground corn germ was then placed in a 0.95 L bottle to which 500 g of water was added. The bottle was placed on a lab shaker for 60 minutes on low speed, stored at room temperature overnight, returned to the lab shaker for 5 hours on low speed and then stored in a refrigerator for 4 days. The mixture was centrifuged in 45 ml portions at 6000 rpm for 30 minutes. All of the liquid and floating material from the centrifuge tubes was collected and combined and then 15 ml of water was added to the tubes to float any remaining oil containing material. A total of 448 g of corn homogenate was collected. Next, 27 g of CaCl2 was dissolved in 50 g of water and cooled to room temperature. The Ca solution was added to the bottle of corn homogenate. The bottle was placed on a lab shaker for 1 hour on low speed. The bottle contents were transferred to a separatory funnel and stored in a refrigerator overnight. The funnel contents separated and the CaCl2/water layer was removed. A 519 g portion of water was added to the separatory funnel and the separatory funnel was shaken gently and returned to the refrigerator for 2 hours. The water layer was removed by separation and the water washing and separation steps were repeated 3 more times. A corn oil body layer weighing 133.7 g was collected.
- A 450 g portion of dry calcium chloride was added to 1350 g of ROUNDY'S™ canola oil (from Creative Products, Inc. of Rossville) and lightly ground using a Silverson LT-1 high shear mixer operated at maximum speed for 20 minutes. The resulting calcium chloride dispersion was transferred to a BUHLER™ PML2 laboratory media mill (from Buhler Technology Group) and kept gently suspended, then bead milled for 150 minutes using 0.4 mm YTZ (yttria-stabilized zirconia) media, a rotor speed of 3,500 rpm and a 40% recirculating pump rate. This reduced the size of the calcium chloride particles to about 1.16 μm and provided a 25 wt. % calcium chloride suspension in canola oil. The aqueous phase was made by heating 1480 g of DI water to 40° C. and then adding 40.0 g of ULTRALEC F lecithin with stirring. After twenty minutes of stirring the temperature was increased to 80° C. and then 720 g of CAPSUL modified starch, 80 g of trehalose, 4.0 g of ascorbic acid, 8.0 g of citric acid, 1.2 g MANUGEL™ LBA sodium alginate (from Nutrasweet Kelco), and 15.0 g oat fiber were added. The solution was cooled via an ice bath before refrigerating overnight. The following day, 133.7 g of the corn oil bodies were added directly to the aqueous phase. For the oil phase, 2.0 g of the 25 wt. % suspension of calcium chloride in canola oil was added to 662.3 g of omega-3 oil containing 2,000 ppm tocopherol and heated to 50° C., followed by the dissolution of 23.9 ARBORIS AS-2 phytosterol in the 50° C. oil phase and cooling to room temperature. The cooled oil phase was poured into the aqueous phase and emulsified and spray dried as in Example 1 but without use of the microfluidizer. The total yield of product collected in bottles from the cyclone was 983 g. An additional 371 g of product was scraped from the dryer. The product had an SPME value of 2,720 after 48 hours at 50° C. (see Table 3), thus demonstrating improved oxidative stability over the Comparative Examples.
- To a 98.00 g portion of the spray dried encapsulated powder from Example 3 was added 2.00 g of SYLOPOL™ 952 precipitated silica gel (from Grace Davison) in a 0.95 L bottle and then shaken by hand for about 10 minutes to obtain a uniform mixture. The product had an SPME value of 2,047 after 48 hours at 50° C. (see Table 3), thus demonstrating improved oxidative stability over the Comparative Examples.
- To a 95.00 g portion of the spray dried encapsulated powder from Example 3 was added 5.00 g of finely ground oat fiber in a 0.95 L bottle and then shaken by hand for about 10 minutes to obtain a uniform mixture. The product had an SPME value of 2,651 after 48 hours at 50° C. (see Table 3), thus demonstrating improved oxidative stability over the Comparative Examples.
- The 48 Hour SPME results mentioned above are shown below in Table 3, along with the calculated oil load, initial SPME value, ratio of the 48 hour SPME value to initial SPME value, and a subjective evaluation of the odor for the unencapsulated oil or dry powder after 48 hours at 50° C. The encapsulated materials in Examples 1 and 2 exhibited significantly improved oxidative stability over the Comparative Examples.
-
TABLE 3 Ratio Oil 48 Hr./ Load, Initial 48 Hr. Initial Example No. % SPME SPME SPME Initial Odor Comp. Ex. 1 100 1565 29000 18.53 Slight fish Comp. Ex. 2 100 456 19085 41.85 Very slight fish Comp. Ex. 3 100 3506 37904 10.81 Slight fish Comp. Ex. 4 20 1952 36544 18.72 Slight fresh fish Comp. Ex. 5 20 2796 39985 14.30 Slight fresh fish Comp. Ex. 6 20 1424 38840 27.28 Slight fresh fish Comp. Ex. 7 50 4970 10355 2.08 Low odor, very slight fish/lecithin Example 1 50 2975 3345 1.12 Slight burnt sugar note, slight fish, plant extract/leafy odor Example 2 50 3443 3562 1.03 Low odor, leafy odor Example 3 50 5010 2720 0.54 Slight burnt, leafy, very slight fish Example 4 50 1220 2047 1.68 very low overall odor, slight dairy Example 5 50 5946 2651 0.45 Slight burnt, leafy, very slight fish - A 2.1 g portion of MEG-3™ omega-3 fish oil coated with fish gelatin (from Ocean Nutrition) was mixed with 11 g of TANG™ drink mix powder (from Kraft Foods, Inc.) and then added to 237 cm3 of water. The coated omega-3 oil did not disperse to form a uniform drink. Instead, the coated omega-3 oil formed clumps which settled to the bottom of the drink.
- A 2.51 g portion of the spray dried encapsulated material from Example 1 was mixed with 11 g of TANG powder and then added to 237 cm3 of water. The encapsulated material and TANG powder dispersed to form a uniform drink (Example 6). Similar results were obtained when a 4.11 g portion of the spray dried encapsulated material from Example 3 was mixed with 16.79 g of TANG powder and then added to 355 cm3 of water. The encapsulated material and TANG powder dispersed to form a uniform drink (Example 7).
- A 0.85 g portion of the spray dried encapsulated material from Example 1 was mixed into a 1.9 L container of TROPICANA™ Pure Premium orange juice (from Tropicana Manufacturing Company, Inc.). The encapsulated material dispersed in the orange juice to form a uniform drink (Example 8).
- A 2.51 g portion of the spray dried encapsulated material from Example 1 was mixed with 454 g of BETTY CROCKER® Pound Cake Mix (from General Mills Sales, Inc.) followed by the addition of 177 ml of water and 2 eggs. The ingredients were mixed at low speed using a KITCHENAID™ mixer (from KitchenAid, U.S.A.) for 30 seconds, followed by mixing at medium speed for 3 minutes. The mixture was poured into a 23 cm×13 cm loaf pan, placed in a preheated 177° C. oven and baked for 50 minutes until a toothpick inserted in the center of cake came out clean. The cake was cooled for 10 minutes in the pan, then removed and cooled to room temperature on a wire rack. The encapsulated material appeared to be well dispersed in the pound cake and baked without any apparent fishy smell during baking. There was no fishy smell or taste in the finished pound cake (Example 9). Similar results were obtained when a 4.01 g portion of the spray dried encapsulated material from Example 15 was mixed with 454 g of Pound Cake Mix, 177 ml of water and 2 eggs and baked as described above. The encapsulated product appeared to be well dispersed in the pound cake and baked without any apparent fishy smell during baking. There was no fishy smell or taste in the finished pound cake (Example 10).
- Using techniques adapted from Wang, L., Properties of Soybean Oil Bodies and Oleosin Proteins as Edible Films and Coatings, Ph.D. Thesis, Purdue University, UMI Microfilm 3150845, oil bodies may be physically isolated from a total homogenate of mature soybean seeds using flotation and centrifugation. Soy seeds may be soaked in cold mM Tris-HCl buffer, pH 8.6, overnight at 4° C., or 6 hr at ambient temperature. Soaked beans (100 g) may be homogenized in 200 mL Buffer A (3 mM MgCl2 and 100 mM tris(hydroxymethyl)aminomethane whose pH is adjusted to 8.6 using HCl (Tris-HCl)) using a commercial Waring blender for 20 sec on low and then 40 sec on high. The soybeans may be further homogenized with a Virtishear homogenizer at 10,000 rpm for 1 min at 20 sec intervals. The homogenate may be filtered though 4 layers of cheesecloth and centrifuged at 100,000×g for 20 min or 20,000×g for 45 min. Oil pads may be collected and resuspended in Buffer A by vortexing briefly and centrifuged again. The recovered oil pads may be resuspended in Buffer B (Buffer A containing 0.5 M NaCl) and centrifuged again. The thus-recovered oil pads may be resuspended in Buffer C (0.1 M Na2CO3) and incubated on ice for 30 min before centrifuging. This step may be repeated until no visual material is spun out. The recovered oil pads may be washed twice in Buffer D (3 mM MgCl2, 100 mM KCl, and 2 mM N-2-Hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES), pH7.5) to lower the pH of the oil body suspension to pH 8. A final wash may be done in Buffer E (Buffer D containing 2 mM dithiothreitol (DTT)). The resulting oil body suspension may be stored at 4° C. for up to 2 weeks or at −80° C. for long term. Typical yields would be approximately 3-3.5 g (wet weight) of purified oil bodies from 35 g of dry seeds.
- Oleosin proteins may be purified from the Preparation 1 oil bodies by solvent extraction. Oil bodies stored at −80° C. may be thawed on ice and then centrifuged at 100,000×g at 4° C. for 20 min to recover the oil pad. The oil pad may be resuspended in cold acetone, mixed by vortexing and incubated at −20° C. overnight. A precipitated oleosin and phospholipids membrane may be recovered by centrifugation. The solid centrifugate may be extracted with diethyl ether and the phospholipid may be extracted with 30 mL water:methanol:chloroform (1:2:2 v/v/v).
- Using techniques adapted from Tzen, J. T. C. and Huang, A. H. C., Surface Structure and Properties of Plant Seed Oil Bodies, J. Cell Bio, 117; 327-335 (1992)), a synthetic organelle solution may be made from oleosins and phospholipids. A suspension may be prepared by placing 135 pig phospholipid (PL) dissolved in chloroform at the bottom of a 1.5 mL Eppendorf tube, and allowing the chloroform to evaporate under nitrogen. A 16 μL (15 mg) quantity of TAG may be added to the tube, followed by addition of a sonicated suspension containing 210 μg of the Preparation 2 oleosin proteins in 100 μL water. Finally, 0.25 M sucrose, 50 mM Bis-Tris, pH 7.2 and sufficient water may be added to make a final volume of 1 mL. The mixture may be vortexed, and then sonicated with a 4 mm-diameter probe in a Braun-Sonic 2000 ultrasonic generator at a digital meter reading of 50 for 20 sec. The sample may be cooled in an ice bucket for 5 min, then sonicated at a digital meter reading of 200 for 20 sec.
- A nitrogen blanket over freshly distilled oil can result in appreciable oxidation of the oil if even as little as 1% oxygen is present in the nitrogen blanket. All handling of oil to be encapsulated desirably would be done using purified nitrogen. Also, to insure metallic prooxidants would be minimized, glass lined vessels may be used after distillation. Oil Cores may be made by a number of methods including emulsification and organogel particle formation. One such example could employ 500 grams of refined fish oil mixed with 5 grams of ground calcium carbonate (particle size less than 5 micrometers), 50 grams of phytosterols such as a mixture of campesterol and sitosterol, and at least one antioxidant such as 0.5 g of α-tocopherol. The mixture may be heated in the absence of oxygen to melt and dissolve the phytosterols (140-170° C.) and the resulting solution may be atomized in a cold chamber to produce solid particles of the mixture (Preparation 4).
- Oil cores or droplets may also be made by emulsification methods wherein the same components as described in Preparation 4 would be mixed and added to 1000 grams of water. The two non-miscible liquids may be vigorously mixed with ultrasonic mixers, high pressure homogenizers, or high speed mixers. The resultant mixtures would include a plurality of oil droplets or cores. One such example could employ 500 grams of refined fish oil mixed with 5 grams of ground calcium carbonate (particle size less than 5 micrometers), 50 grams of phytosterol such as a mixture of campesterol and sitosterol, and at least one antioxidant such as 0.5 g of α-tocopherol. This oil phase would be mixed into 1000 grams of water in a nitrogen-purged vessel equipped with a high shear Cowles mixing blade. The mixer would be turned on to its maximum rpm setting to produce oil droplets or cores suspended in a continuous water matrix (Preparation 5).
- Stabilization of the oil cores prepared in Preparations 4 or 5 may be done through the formation of an organelle structure which includes an oil core with a stabilizing layer of phospholipid and oleosin protein. A suspension of 15 L water containing 0.25 M sucrose, 50 mM Bis-Tris, pH7.2 and the oil cores from either Preparation 4 or 5 may be prepared in a stirred nitrogen-purged 50 L vessel. To this mixture may be added 18 L of an aqueous solution containing 0.25 M sucrose, 50 mM Tris, pH7.2, 4.5 g PL and 7 g oleosin protein. The mixture may be stirred for 3 hours to form the organelle structures (Preparations 6 and 7).
- Oil cores may also be prepared in situ with formation of an organelle structure. One such example for direct preparation of the organelle could employ a 33 L suspension containing 0.25 M sucrose, 50 mM Bis-Tris, pH7.2, and a refined fish oil dispersion containing 500 g fish oil, 5 grams of ground calcium carbonate (particle size less than 5 micrometers), 50 grams of phytosterol such as a mixture of campesterol and sitosterol, and at least one antioxidant such as 0.5 g of α-tocopherol, phospholipid (PL) (4.5 g) and oleosin proteins (7 g) in a 50 L nitrogen purged vessel. The mixture could be mixed with a high speed Cowles dissolver (Preparation 8).
- The hydrocolloid layer may include a variety of crosslinkable solidifiable hydrocolloids such as alginates, pectates, carageenates, pectin, gelatin/acacia, and others. This layer will provide an added layer of stability for the organelle, the ability to add fiber for a hard shell coating and oxidation protection, and the ability to add water-soluble antioxidants to help protect the oxidatively unstable oil core. One such example could be made by slowly adding to any of the slurries prepared in Preparations 4 through 8, with stirring, 5 L of 5 wt % sodium alginate aqueous solution. The alginate solution may contain other additives such as insoluble cellulosic fiber, soluble fiber such as inulin, or antioxidants. For example, in addition to the sodium alginate, the alginate solution may contain 100 grams of dispersed ethyl cellulose and 5 grams of anthocyanin antioxidant. The mixture may be allowed to stir for 3 hours to complete the reaction of the calcium ions from the dispersed calcium carbonate in the oil phase with the alginate in solution to form an alginate/fiber/antioxidant layer (Preparations 9 through 13).
- To form a stable, dry powder the materials from Preparations 4 through 13 may be spray dried as follows: The solutions described above may be fed to a Niro Lab Dryer at 10 mL/min with the inlet temperature of the dryer set at 120° C. The organelle structure may be dried to a particle size of 5-100 micrometers with a moisture content of 3-8 wt % (Preparations 14 through 21). Alternatively, to any of the solutions described in Preparations 4 through 13 an aqueous solution may be added containing 50 grams of sodium caseinate, 50 grams of trehalose, 50 grams of citrus fiber (from Fiberstar) and 500 g water, and fed to a Niro Mobile Minor lab dryer as in Example 1. The resulting MLMC structure may be dried to a particle size of 5-100 micrometers with a moisture content of 3-8 wt % (Preparations 22 through 29).
- The Preparation 14 through 29 dry powders may be added to melted waxes or phytosterols and prilled as described in U.S. Pat. No. 7,237,679 B1 to form fat or lipid encapsulated particles. One such example could employ 500 grams of the Preparation 14 powder in 700 grams of molten DRITEX™ C-41V hydrogenated vegetable oil (from ACH Food & Nutrition) at 75° C. The molten melt would be prilled or atomized to form particles with a particle size of 300-600 micrometers.
- Although specific examples, compositions, ingredients, temperatures and proportions have been disclosed in various aspects of the present invention, those disclosures are intended to be exemplary of species within a generic invention.
Claims (34)
1. An encapsulated material comprising an oxidation-sensitive core covered by at least one shell comprising a dried synthetic organelle layer.
2. The encapsulated material of claim 1 wherein the core is a gel or solid at room temperature.
3. The encapsulated material of claim 1 wherein the core is a liquid at room temperature.
4. The encapsulated material of claim 1 wherein the core comprises an antioxidant, polyunsaturated fatty acid, sterol or triacylglycerol.
5. The encapsulated material of claim 1 wherein the core comprises an omega-3 or omega-6 polyunsaturated fatty acid
6-8. (canceled)
9. The encapsulated material of claim 1 wherein the core comprises an acidulant, animal product, carotenoid, catalyst, drug, dye, enzyme, flavor, fragrance, lutein, lycopene, metal complex, natural color, nutraceutical, pigment, polyphenolic, processed plant material, metabiotic, probiotic, protein, squalene, tocopherol, tocotrienol, vitamin, unsaturated organic compound, or mixture thereof.
10. (canceled)
11. The encapsulated material of claim 1 wherein the core is greater than 30 wt.
12. The encapsulated material of claim 1 wherein the organelle layer contains 8 wt. % or less of available water.
13. The encapsulated material of claim 1 wherein the organelle layer comprises lecithin or chemically modified lecithin.
14. The encapsulated material of claim 1 wherein the organelle layer comprises natural or chemically modified phospholipid, natural or chemically modified oleosin and natural or chemically modified starch.
15. The encapsulated material of claim 14 wherein the oleosin is contained in plant oil bodies or extracted plant oil bodies or a mixture thereof.
16. The encapsulated material of claim 15 wherein the plant oil bodies or extracted plant oil bodies are from corn or soybeans.
17. The encapsulated material of claim 1 wherein the organelle layer comprises natural or chemically modified phospholipid, natural or chemically modified oleosin, natural or chemically modified starch and at least one further carbohydrate.
18. The encapsulated material of claim 17 wherein the further carbohydrate comprises natural or chemically modified maltodextrin, natural or chemically modified sucrose, or natural or chemically modified trehalose.
19. The encapsulated material of claim 1 comprising a layer containing natural or chemically modified carbohydrate, natural or chemically modified starch, natural or chemically modified alginate, insoluble or soluble fiber, protein or a lipid.
20-23. (canceled)
24. The encapsulated material of claim 19 wherein the protein comprises gelatin.
25. (canceled)
26. The encapsulated material of claim 1 comprising a layer containing a phytosterol.
27. The encapsulated material of claim 1 comprising a hydrocolloid-containing layer which is crosslinked by a calcium salt source in the core or in an adjacent layer.
28. (canceled)
29. The encapsulated material of claim 1 having a solid phase micro extraction value after 48 hours at 50° C. that is less than 8,000, and a ratio of solid phase micro extraction value after 48 hours at 50° C. to initial solid phase micro extraction value that is less than 8.
30-32. (canceled)
33. A food product comprising the encapsulated material of claim 1 .
34. The food product of claim 33 wherein the food is a baked food product, dry juice drink or liquid juice drink.
35-36. (canceled)
37. A method for protecting an oxidatively unstable material, which method comprises providing or forming a particle or droplet of the oxidatively unstable material and forming a dried synthetic organelle layer surrounding the particle or droplet.
38-41. (canceled)
42. The method of claim 37 wherein forming the dried synthetic organelle layer surrounding the oxidatively unstable material produces solid particle seed capsules and further comprising forming at least one additional protective layer on the solid particle seed capsules.
43. The method of claim 42 comprising forming at least one additional protective layer selected from a water-dispersible oxygen barrier layer, a hydrocolloid layer and a lipophilic layer.
44. The method of claim 37 wherein the oxidatively unstable material comprises an antioxidant, polyunsaturated fatty acid, sterol or triacylglycerol.
45-65. (canceled)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/811,459 US20110059164A1 (en) | 2008-01-04 | 2009-01-02 | Encapsulation of oxidatively unstable compounds |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US1007308P | 2008-01-04 | 2008-01-04 | |
| PCT/US2009/030052 WO2009089115A1 (en) | 2008-01-04 | 2009-01-02 | Encapsulation of oxidatively unstable compounds |
| US12/811,459 US20110059164A1 (en) | 2008-01-04 | 2009-01-02 | Encapsulation of oxidatively unstable compounds |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20110059164A1 true US20110059164A1 (en) | 2011-03-10 |
Family
ID=40853421
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/811,479 Expired - Fee Related US8741337B2 (en) | 2008-01-04 | 2009-01-02 | Encapsulation of oxidatively unstable compounds |
| US12/811,459 Abandoned US20110059164A1 (en) | 2008-01-04 | 2009-01-02 | Encapsulation of oxidatively unstable compounds |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/811,479 Expired - Fee Related US8741337B2 (en) | 2008-01-04 | 2009-01-02 | Encapsulation of oxidatively unstable compounds |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US8741337B2 (en) |
| WO (2) | WO2009089115A1 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110052680A1 (en) * | 2008-01-04 | 2011-03-03 | AVERA, Inc. | Encapsulation of oxidatively unstable compounds |
| WO2012075575A1 (en) * | 2010-12-10 | 2012-06-14 | The Governors Of The University Of Alberta | Barley protein microcapsules |
| WO2014169315A1 (en) * | 2013-04-19 | 2014-10-23 | Commonwealth Scientific And Industrial Research Organisation | Encapsulation method |
| WO2017181250A1 (en) * | 2016-04-19 | 2017-10-26 | Sion Nanotec Ltda. | Controlled-release coated non-protein nitrogen food composition and process for preparation thereof |
| CN107668755A (en) * | 2017-09-25 | 2018-02-09 | 常州市天宁区鑫发织造有限公司 | A kind of preparation method of anti-oxidant microencapsulation material |
| WO2020106234A1 (en) * | 2018-11-22 | 2020-05-28 | Oercen Arda | Use of probiotic yeast cells producing recombinant parathormone for therapeutic purposes |
| WO2025221702A1 (en) * | 2024-04-14 | 2025-10-23 | Nulixir Inc. | Particles for delivery of substances |
Families Citing this family (64)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IL199781A0 (en) | 2009-07-09 | 2010-05-17 | Yohai Zorea | Heat resistant probiotic compositions and healthy food comprising them |
| US20130034599A1 (en) | 2010-01-19 | 2013-02-07 | Northwestern University | Synthetic nanostructures including nucleic acids and/or other entities |
| WO2012077038A1 (en) | 2010-12-06 | 2012-06-14 | Degama Berrier Ltd. | Composition and method for improving stability and extending shelf life of probiotic bacteria and food products thereof |
| FR2969907B1 (en) * | 2010-12-31 | 2014-03-07 | Capsum | SERIES OF CAPSULES COMPRISING AT LEAST ONE INTERNAL PHASE DROP IN AN INTERMEDIATE PHASE DROP AND METHOD OF MANUFACTURING THE SAME |
| KR20140049502A (en) * | 2011-02-07 | 2014-04-25 | 코몬웰스 싸이언티픽 엔드 인더스트리얼 리서치 오가니제이션 | Artificial oil bodies |
| WO2012106777A1 (en) | 2011-02-11 | 2012-08-16 | Clover Corporation Limited | Nutritional compositions and uses thereof |
| GB201102557D0 (en) * | 2011-02-14 | 2011-03-30 | Univ Nottingham | Oil bodies |
| DE102011004965A1 (en) * | 2011-03-02 | 2012-09-06 | Sucrest Gmbh | Spherical product, useful in food formulation e.g. ice-cream and jams, comprises a shell made of a solid hydrophobic material and a core of a hydrophilic material, where the shell has a specified range of external diameter |
| AU2012265842A1 (en) * | 2011-06-07 | 2014-01-23 | SPAI Group Ltd. | Compositions and methods for improving stability and extending shelf life of sensitive food additives and food products thereof |
| EP2816904A2 (en) * | 2011-11-11 | 2014-12-31 | Keepcool Ltd. | Layering and microencapsulation of thermal sensitive biologically active material using heat absorbing material layers having increasing melting points |
| EP2793596A4 (en) * | 2011-12-19 | 2015-08-05 | Spai Group Ltd | COMPOSITIONS AND METHODS FOR ENHANCING STABILITY AND EXTENDING THE PERIOD OF STORAGE OF FLAVORING AGENTS |
| FR2986165B1 (en) * | 2012-01-31 | 2015-07-24 | Capsum | PROCESS FOR PREPARING RIGIDIFIED CAPSULES |
| US20140199439A1 (en) * | 2013-01-14 | 2014-07-17 | Sunny Delight Beverages Company | Coated calcium particulates for use in beverage products |
| US10543175B1 (en) | 2013-05-17 | 2020-01-28 | Degama Berrier Ltd. | Film composition and methods for producing the same |
| WO2015013673A1 (en) | 2013-07-25 | 2015-01-29 | Aurasense Therapeutics, Llc | Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use |
| US10568898B2 (en) | 2013-08-13 | 2020-02-25 | Northwestern University | Lipophilic nanoparticles for drug delivery |
| CN104544135B (en) * | 2013-10-25 | 2021-12-24 | 丰益(上海)生物技术研发中心有限公司 | Modified algae oil body, method for stabilizing algae oil body and method for enhancing oxidation resistance of algae oil body |
| MX389323B (en) | 2013-12-03 | 2025-03-20 | Univ Northwestern | LIPOSOMAL PARTICLES, METHODS FOR PRODUCTION AND THEIR USES. |
| CN103750562B (en) * | 2014-01-15 | 2015-08-05 | 中国烟草总公司广东省公司 | The preparation method of squalene and beta carotene composition multivesicular liposome and fall base harm reduction and apply |
| US10413565B2 (en) | 2014-04-30 | 2019-09-17 | Northwestern University | Nanostructures for modulating intercellular communication and uses thereof |
| US10434064B2 (en) | 2014-06-04 | 2019-10-08 | Exicure, Inc. | Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications |
| JP6741673B2 (en) | 2014-10-06 | 2020-08-19 | イグジキュア, インコーポレーテッドExicure, Inc. | Anti-TNF compound |
| US10078092B2 (en) | 2015-03-18 | 2018-09-18 | Northwestern University | Assays for measuring binding kinetics and binding capacity of acceptors for lipophilic or amphiphilic molecules |
| PT3393276T (en) | 2015-12-22 | 2022-10-14 | Mccormick & Co Inc | High integrity encapsulation product |
| WO2017144435A1 (en) * | 2016-02-26 | 2017-08-31 | Dsm Ip Assets B.V. | Novel coating system (ii) |
| BR112018067634B1 (en) | 2016-03-01 | 2022-06-14 | Kraft Foods Group Brands Llc | PELLETIZED COLORING FOR A FOOD PRODUCT, COMPOSITION OF DRY GELATIN POWDER THAT CAN BE RECONSTITUTED AND METHOD FOR PREPARING THE COMPOSITION OF GELATIN POWDER |
| EP3426316B1 (en) * | 2016-03-08 | 2023-10-25 | Northwestern University | Delivery of nitric oxide-releasing phospholipids, liposomes, and high density lipoprotein-like nanoparticles (hdl nps) by drug eluting stents and intra-arterial injection |
| IT201600129738A1 (en) * | 2016-12-22 | 2018-06-22 | Perprin S R L | PROTECTIVE AGENT FOR FOOD AND SIMILAR PRODUCTS AND FOR SEASONING AND STORAGE ENVIRONMENTS |
| KR20200028997A (en) | 2017-07-13 | 2020-03-17 | 노오쓰웨스턴 유니버시티 | General and direct method of preparing oligonucleotide-functionalized metal-organic framework nanoparticles |
| US20190070078A1 (en) * | 2017-09-05 | 2019-03-07 | Robb Akridge | Truffle configured cosmetic article |
| CN108420043A (en) * | 2018-01-29 | 2018-08-21 | 湖北工业大学 | Sodium alginate improves natural oil body dispersibility and its application in salad juice |
| CR20200383A (en) * | 2018-03-01 | 2020-12-14 | 463Ip Partners Llc | Microencapsulated products, clear solutions thereof, and methods of making |
| US11344502B1 (en) * | 2018-03-29 | 2022-05-31 | Trucapsol Llc | Vitamin delivery particle |
| EP3809876A1 (en) * | 2018-06-19 | 2021-04-28 | Perprin S.R.L. | Protective agent for food products and the like and for curing and/or storage rooms of the same |
| CN109231400B (en) * | 2018-10-08 | 2021-09-21 | 华南理工大学 | Suspended lignin microcapsule for treating water eutrophication and preparation method thereof |
| US10966506B2 (en) | 2018-10-30 | 2021-04-06 | Rea Innovations, Inc. | Dual-piston appliance for processing of cosmetic formulations |
| US11794161B1 (en) | 2018-11-21 | 2023-10-24 | Trucapsol, Llc | Reduced permeability microcapsules |
| US11571674B1 (en) | 2019-03-28 | 2023-02-07 | Trucapsol Llc | Environmentally biodegradable microcapsules |
| US11542392B1 (en) | 2019-04-18 | 2023-01-03 | Trucapsol Llc | Multifunctional particle additive for enhancement of toughness and degradation in biodegradable polymers |
| WO2020219700A1 (en) * | 2019-04-23 | 2020-10-29 | The Regents Of The University Of California | Spray drying methods for encapsulation of oxygen labile cargo in cross-linked polymer microcapsules |
| US12319711B2 (en) | 2019-09-20 | 2025-06-03 | Northwestern University | Spherical nucleic acids with tailored and active protein coronae |
| US11660578B2 (en) | 2019-10-15 | 2023-05-30 | Rea Innovations, Inc. | Systems and methods for blending solid-shell cosmetic ingredient capsules and blendable cosmetic ingredient capsules |
| US11497692B2 (en) | 2019-10-15 | 2022-11-15 | Rea Innovations, Inc. | Systems and methods for blending solid-shell cosmetic ingredient capsules and blendable cosmetic ingredient capsules |
| US12378560B2 (en) | 2019-10-29 | 2025-08-05 | Northwestern University | Sequence multiplicity within spherical nucleic acids |
| FR3102932B1 (en) * | 2019-11-07 | 2023-04-21 | Huddle Corp | Food or food supplement for livestock |
| FR3102933B1 (en) * | 2019-11-07 | 2023-06-02 | Huddle Corp | Food or food supplement for livestock |
| FR3102913B1 (en) * | 2019-11-07 | 2024-08-02 | Huddle Corp | Food or feed supplement for livestock |
| US11484857B2 (en) | 2020-01-30 | 2022-11-01 | Trucapsol Llc | Environmentally biodegradable microcapsules |
| US20230091169A1 (en) * | 2020-02-18 | 2023-03-23 | Basf Se | Stable fat-soluble vitamin powders |
| USD986498S1 (en) | 2020-03-04 | 2023-05-16 | Rea Innovations, Inc. | Cosmetic appliance |
| GB2600169A (en) * | 2020-10-26 | 2022-04-27 | Wright Lee | Grindable culinary beads for flavouring food |
| US12302933B2 (en) | 2021-06-25 | 2025-05-20 | Trucapsol Llc | Flavor delivery system |
| CN113429818A (en) * | 2021-06-28 | 2021-09-24 | 广东希贵光固化材料有限公司 | EB (Epstein-Barr) curing iodine-resistant paint |
| US12187829B2 (en) | 2021-08-12 | 2025-01-07 | Trucapsol Llc | Environmentally biodegradable microcapsules |
| US20250032368A1 (en) * | 2021-12-16 | 2025-01-30 | Dynabio Biomed Technology Co., Ltd. | Plant oil preparation and preparation method therefor |
| US11878280B2 (en) | 2022-04-19 | 2024-01-23 | Trucapsol Llc | Microcapsules comprising natural materials |
| CN115104650A (en) * | 2022-05-04 | 2022-09-27 | 江西维尔宝食品生物有限公司 | Special powdered oil for crisp-opening stuffing and preparation method thereof |
| CN115990271B (en) * | 2022-11-18 | 2024-12-06 | 沈阳农业大学 | Liposome-gum arabic nanocomposite particles for targeted synergistic lipid-lowering using blueberry anthocyanins, and preparation method and application thereof |
| US11904288B1 (en) | 2023-02-13 | 2024-02-20 | Trucapsol Llc | Environmentally biodegradable microcapsules |
| US11969491B1 (en) | 2023-02-22 | 2024-04-30 | Trucapsol Llc | pH triggered release particle |
| CN117442654A (en) * | 2023-06-01 | 2024-01-26 | 威海天原生物科技有限公司 | Application of vegetable oil preparations in the preparation of hypolipidemic drugs and pharmaceutical preparations for preventing hyperlipidemia |
| CN117384537B (en) * | 2023-12-13 | 2024-02-27 | 山东康展新能源有限公司 | Road surface anti-skid coating and preparation method thereof |
| GB2640121A (en) * | 2024-01-24 | 2025-10-15 | Javelin Nutrabiotech Ltd | Lipid encapsulated compositions |
| CN119587675A (en) * | 2024-11-28 | 2025-03-11 | 大连深蓝肽科技研发有限公司 | Natto peptide sea cucumber polysaccharide liposomes for synergistically improving cardiovascular health and preparation method and application thereof |
Citations (49)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2809895A (en) * | 1955-07-05 | 1957-10-15 | Sunkist Growers Inc | Solid flavoring composition and method of preparing the same |
| US4765996A (en) * | 1983-11-30 | 1988-08-23 | Takeda Chemical Industries, Ltd. | Enriched rye and barley and its production |
| US5260279A (en) * | 1990-10-24 | 1993-11-09 | Sandoz Ltd. | Enteral nutrition and medical foods having soluble fiber |
| US5418010A (en) * | 1990-10-05 | 1995-05-23 | Griffith Laboratories Worldwide, Inc. | Microencapsulation process |
| US5620873A (en) * | 1988-10-07 | 1997-04-15 | Matsutani Chemical Industries Co., Ltd. | Process for preparing dextrin containing food fiber |
| US5780056A (en) * | 1996-05-10 | 1998-07-14 | Lion Corporation | Microcapsules of the multi-core structure containing natural carotenoid |
| US5968365A (en) * | 1996-02-05 | 1999-10-19 | Mcneil-Ppc, Inc. | Preparation of inulin products |
| US6087353A (en) * | 1998-05-15 | 2000-07-11 | Forbes Medi-Tech Inc. | Phytosterol compositions and use thereof in foods, beverages, pharmaceuticals, nutraceuticals and the like |
| US6113972A (en) * | 1998-12-03 | 2000-09-05 | Monsanto Co. | Phytosterol protein complex |
| US6146645A (en) * | 1997-05-27 | 2000-11-14 | Sembiosys Genetics Inc. | Uses of oil bodies |
| US6183762B1 (en) * | 1997-05-27 | 2001-02-06 | Sembiosys Genetics Inc. | Oil body based personal care products |
| US6248363B1 (en) * | 1999-11-23 | 2001-06-19 | Lipocine, Inc. | Solid carriers for improved delivery of active ingredients in pharmaceutical compositions |
| US6281375B1 (en) * | 1998-08-03 | 2001-08-28 | Cargill, Incorporated | Biodegradable high oxidative stability oils |
| US20020037303A1 (en) * | 1997-05-27 | 2002-03-28 | Deckers Harm M. | Thioredoxin and thioredoxin reductase containing oil body based products |
| US6372234B1 (en) * | 1997-05-27 | 2002-04-16 | Sembiosys Genetics Inc. | Products for topical applications comprising oil bodies |
| US20020048606A1 (en) * | 1999-02-03 | 2002-04-25 | Jerzy Zawistowski | Method of preparing microparticles of one or more phytosterols, phytostanols or mixtures of both |
| US6599513B2 (en) * | 1997-05-27 | 2003-07-29 | Sembiosys Genetics Inc. | Products for topical applications comprising oil bodies |
| US20030180352A1 (en) * | 1999-11-23 | 2003-09-25 | Patel Mahesh V. | Solid carriers for improved delivery of active ingredients in pharmaceutical compositions |
| US20030193102A1 (en) * | 2002-04-11 | 2003-10-16 | Nianxi Yan | Encapsulated agglomeration of microcapsules and method for the preparation thereof |
| US6638557B2 (en) * | 2001-08-14 | 2003-10-28 | Cerestar Holding B.V. | Dry, edible oil and starch composition |
| US6638547B2 (en) * | 2001-11-16 | 2003-10-28 | Brandeis University | Prepared foods containing triglyceride-recrystallized non-esterified phytosterols |
| US20040067260A1 (en) * | 2002-01-03 | 2004-04-08 | Milley Christopher J. | Stable aqueous suspension |
| US6761914B2 (en) * | 1997-05-27 | 2004-07-13 | Sembiosys Genetics Inc. | Immunogenic formulations comprising oil bodies |
| US20040156887A1 (en) * | 2001-06-08 | 2004-08-12 | Nicolas Auriou | Stabilized dispersion of phytosterol in oil |
| US6818296B1 (en) * | 1999-07-02 | 2004-11-16 | Cognis Iberia S.L. | Microcapsules |
| US20050032757A1 (en) * | 2003-08-06 | 2005-02-10 | Cho Suk H. | Nutritional supplements |
| US6858666B2 (en) * | 2002-03-04 | 2005-02-22 | Aveka, Inc. | Organogel particles |
| US20050106157A1 (en) * | 1997-05-27 | 2005-05-19 | Deckers Harm M. | Immunogenic formulations comprising oil bodies |
| US6924363B1 (en) * | 1996-12-16 | 2005-08-02 | Sembiosys Genetics Inc. | Oil bodies and associated proteins as affinity matrices |
| US20050181019A1 (en) * | 2003-07-03 | 2005-08-18 | Slim-Fast Foods Company, Division Of Conopco, Inc. | Nutrition bar |
| US20050214346A1 (en) * | 2002-04-18 | 2005-09-29 | Bringe Neal A | Oil body associated protein compositions and methods of use thereof for reducing the risk of cardiovascular disease |
| US20050249952A1 (en) * | 2002-09-04 | 2005-11-10 | Southwest Research Institute | Microencapsulation of oxygen or water sensitive materials |
| US6969530B1 (en) * | 2005-01-21 | 2005-11-29 | Ocean Nutrition Canada Ltd. | Microcapsules and emulsions containing low bloom gelatin and methods of making and using thereof |
| US6979467B1 (en) * | 1999-07-02 | 2005-12-27 | Cognis Iberia S.L. | Microcapsules IV |
| US20060034937A1 (en) * | 1999-11-23 | 2006-02-16 | Mahesh Patel | Solid carriers for improved delivery of active ingredients in pharmaceutical compositions |
| US20060233862A1 (en) * | 2001-01-11 | 2006-10-19 | Karlshamns Ab | Process for the preparation of a fat composition containing sterol esters a product obtained by said process and the use thereof |
| US7126042B1 (en) * | 1999-11-18 | 2006-10-24 | Nestec S.A. | Recombinant oleosins from cacao and their use as flavoring or emulsifying agents |
| US20060251790A1 (en) * | 2001-11-16 | 2006-11-09 | Brandeis University | Prepared foods containing triglyceride-recrystallized non-esterified phytosterols |
| US7179480B2 (en) * | 2002-04-24 | 2007-02-20 | 3M Innovative Properties Company | Sustained release microcapsules |
| US20070077308A1 (en) * | 2003-12-18 | 2007-04-05 | Giner Victor C | Continuous multi-microencapsulation process for improving the stability and storage life of biologically active ingredients |
| US20070098854A1 (en) * | 2005-10-31 | 2007-05-03 | Van Lengerich Bernhard H | Encapsulation of readily oxidizable components |
| US20070122397A1 (en) * | 2003-10-01 | 2007-05-31 | Commonwealth Scientific & Industrial Research Orga | Probiotic storage and delivery |
| US7237679B1 (en) * | 2001-09-04 | 2007-07-03 | Aveka, Inc. | Process for sizing particles and producing particles separated into size distributions |
| US20070196914A1 (en) * | 2003-10-02 | 2007-08-23 | Sembiosys Genetics Inc. | Methods for preparing oil bodies comprising active ingredients |
| US20070212475A1 (en) * | 2004-04-28 | 2007-09-13 | Commonwealth Scientific & Industrial Research Organisation | Starch Treatment Process |
| US20070218125A1 (en) * | 2003-11-21 | 2007-09-20 | Commonwealth Scientific & Industrial Research Organisation | Gi Track Delivery Systems |
| US7279121B2 (en) * | 2003-12-11 | 2007-10-09 | Daicel Chemical Industries, Ltd. | Process for producing electrophoretic microcapsules |
| US20080026108A1 (en) * | 2006-06-22 | 2008-01-31 | Martek Biosciences Corporation | Encapsulated Labile Compound Compositions and Methods of Making the Same |
| US7374788B2 (en) * | 2000-04-04 | 2008-05-20 | Commonwealth Scientific & Industrial Science Centre | Encapsulation of food ingredients |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3619137B2 (en) | 2000-09-28 | 2005-02-09 | 日本水産株式会社 | Oil body-like or shell-shaped nanocapsules and method for producing the same |
| JP4091908B2 (en) * | 2003-12-18 | 2008-05-28 | 株式会社エヌ・ティ・ティ・ドコモ | COMMUNICATION SYSTEM, COMMUNICATION TERMINAL DEVICE AND INFORMATION STORAGE MODULE |
| US8741337B2 (en) * | 2008-01-04 | 2014-06-03 | Aveka, Inc. | Encapsulation of oxidatively unstable compounds |
-
2009
- 2009-01-02 US US12/811,479 patent/US8741337B2/en not_active Expired - Fee Related
- 2009-01-02 WO PCT/US2009/030052 patent/WO2009089115A1/en not_active Ceased
- 2009-01-02 US US12/811,459 patent/US20110059164A1/en not_active Abandoned
- 2009-01-02 WO PCT/US2009/030054 patent/WO2009089117A1/en not_active Ceased
Patent Citations (54)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2809895A (en) * | 1955-07-05 | 1957-10-15 | Sunkist Growers Inc | Solid flavoring composition and method of preparing the same |
| US4765996A (en) * | 1983-11-30 | 1988-08-23 | Takeda Chemical Industries, Ltd. | Enriched rye and barley and its production |
| US5620873A (en) * | 1988-10-07 | 1997-04-15 | Matsutani Chemical Industries Co., Ltd. | Process for preparing dextrin containing food fiber |
| US5418010A (en) * | 1990-10-05 | 1995-05-23 | Griffith Laboratories Worldwide, Inc. | Microencapsulation process |
| US5260279A (en) * | 1990-10-24 | 1993-11-09 | Sandoz Ltd. | Enteral nutrition and medical foods having soluble fiber |
| US5260279B1 (en) * | 1990-10-24 | 1997-05-20 | Sandoz Ltd | Nutritional composition comprising hydrolyzed guar gum |
| US5968365A (en) * | 1996-02-05 | 1999-10-19 | Mcneil-Ppc, Inc. | Preparation of inulin products |
| US5780056A (en) * | 1996-05-10 | 1998-07-14 | Lion Corporation | Microcapsules of the multi-core structure containing natural carotenoid |
| US6924363B1 (en) * | 1996-12-16 | 2005-08-02 | Sembiosys Genetics Inc. | Oil bodies and associated proteins as affinity matrices |
| US6210742B1 (en) * | 1997-05-27 | 2001-04-03 | Sembiosys Genetics Inc. | Uses of oil bodies |
| US6599513B2 (en) * | 1997-05-27 | 2003-07-29 | Sembiosys Genetics Inc. | Products for topical applications comprising oil bodies |
| US6183762B1 (en) * | 1997-05-27 | 2001-02-06 | Sembiosys Genetics Inc. | Oil body based personal care products |
| US6761914B2 (en) * | 1997-05-27 | 2004-07-13 | Sembiosys Genetics Inc. | Immunogenic formulations comprising oil bodies |
| US20050106157A1 (en) * | 1997-05-27 | 2005-05-19 | Deckers Harm M. | Immunogenic formulations comprising oil bodies |
| US6146645A (en) * | 1997-05-27 | 2000-11-14 | Sembiosys Genetics Inc. | Uses of oil bodies |
| US20020037303A1 (en) * | 1997-05-27 | 2002-03-28 | Deckers Harm M. | Thioredoxin and thioredoxin reductase containing oil body based products |
| US6372234B1 (en) * | 1997-05-27 | 2002-04-16 | Sembiosys Genetics Inc. | Products for topical applications comprising oil bodies |
| US6582710B2 (en) * | 1997-05-27 | 2003-06-24 | Sembiosys Genetics Inc. | Products for topical applications comprising oil bodies |
| US6596287B2 (en) * | 1997-05-27 | 2003-07-22 | Semibiosys Genetics Inc. | Products for topical applications comprising oil bodies |
| US6087353A (en) * | 1998-05-15 | 2000-07-11 | Forbes Medi-Tech Inc. | Phytosterol compositions and use thereof in foods, beverages, pharmaceuticals, nutraceuticals and the like |
| US6281375B1 (en) * | 1998-08-03 | 2001-08-28 | Cargill, Incorporated | Biodegradable high oxidative stability oils |
| US6113972A (en) * | 1998-12-03 | 2000-09-05 | Monsanto Co. | Phytosterol protein complex |
| US20020048606A1 (en) * | 1999-02-03 | 2002-04-25 | Jerzy Zawistowski | Method of preparing microparticles of one or more phytosterols, phytostanols or mixtures of both |
| US6979467B1 (en) * | 1999-07-02 | 2005-12-27 | Cognis Iberia S.L. | Microcapsules IV |
| US6818296B1 (en) * | 1999-07-02 | 2004-11-16 | Cognis Iberia S.L. | Microcapsules |
| US7126042B1 (en) * | 1999-11-18 | 2006-10-24 | Nestec S.A. | Recombinant oleosins from cacao and their use as flavoring or emulsifying agents |
| US20060034937A1 (en) * | 1999-11-23 | 2006-02-16 | Mahesh Patel | Solid carriers for improved delivery of active ingredients in pharmaceutical compositions |
| US6248363B1 (en) * | 1999-11-23 | 2001-06-19 | Lipocine, Inc. | Solid carriers for improved delivery of active ingredients in pharmaceutical compositions |
| US20030180352A1 (en) * | 1999-11-23 | 2003-09-25 | Patel Mahesh V. | Solid carriers for improved delivery of active ingredients in pharmaceutical compositions |
| US7374788B2 (en) * | 2000-04-04 | 2008-05-20 | Commonwealth Scientific & Industrial Science Centre | Encapsulation of food ingredients |
| US20060233862A1 (en) * | 2001-01-11 | 2006-10-19 | Karlshamns Ab | Process for the preparation of a fat composition containing sterol esters a product obtained by said process and the use thereof |
| US20040156887A1 (en) * | 2001-06-08 | 2004-08-12 | Nicolas Auriou | Stabilized dispersion of phytosterol in oil |
| US6638557B2 (en) * | 2001-08-14 | 2003-10-28 | Cerestar Holding B.V. | Dry, edible oil and starch composition |
| US7237679B1 (en) * | 2001-09-04 | 2007-07-03 | Aveka, Inc. | Process for sizing particles and producing particles separated into size distributions |
| US6638547B2 (en) * | 2001-11-16 | 2003-10-28 | Brandeis University | Prepared foods containing triglyceride-recrystallized non-esterified phytosterols |
| US20060251790A1 (en) * | 2001-11-16 | 2006-11-09 | Brandeis University | Prepared foods containing triglyceride-recrystallized non-esterified phytosterols |
| US7144595B2 (en) * | 2001-11-16 | 2006-12-05 | Brandeis University | Prepared foods containing triglyceride-recrystallized non-esterified phytosterols |
| US20040067260A1 (en) * | 2002-01-03 | 2004-04-08 | Milley Christopher J. | Stable aqueous suspension |
| US6858666B2 (en) * | 2002-03-04 | 2005-02-22 | Aveka, Inc. | Organogel particles |
| US20030193102A1 (en) * | 2002-04-11 | 2003-10-16 | Nianxi Yan | Encapsulated agglomeration of microcapsules and method for the preparation thereof |
| US20050214346A1 (en) * | 2002-04-18 | 2005-09-29 | Bringe Neal A | Oil body associated protein compositions and methods of use thereof for reducing the risk of cardiovascular disease |
| US7179480B2 (en) * | 2002-04-24 | 2007-02-20 | 3M Innovative Properties Company | Sustained release microcapsules |
| US20050249952A1 (en) * | 2002-09-04 | 2005-11-10 | Southwest Research Institute | Microencapsulation of oxygen or water sensitive materials |
| US20050181019A1 (en) * | 2003-07-03 | 2005-08-18 | Slim-Fast Foods Company, Division Of Conopco, Inc. | Nutrition bar |
| US20050032757A1 (en) * | 2003-08-06 | 2005-02-10 | Cho Suk H. | Nutritional supplements |
| US20070122397A1 (en) * | 2003-10-01 | 2007-05-31 | Commonwealth Scientific & Industrial Research Orga | Probiotic storage and delivery |
| US20070196914A1 (en) * | 2003-10-02 | 2007-08-23 | Sembiosys Genetics Inc. | Methods for preparing oil bodies comprising active ingredients |
| US20070218125A1 (en) * | 2003-11-21 | 2007-09-20 | Commonwealth Scientific & Industrial Research Organisation | Gi Track Delivery Systems |
| US7279121B2 (en) * | 2003-12-11 | 2007-10-09 | Daicel Chemical Industries, Ltd. | Process for producing electrophoretic microcapsules |
| US20070077308A1 (en) * | 2003-12-18 | 2007-04-05 | Giner Victor C | Continuous multi-microencapsulation process for improving the stability and storage life of biologically active ingredients |
| US20070212475A1 (en) * | 2004-04-28 | 2007-09-13 | Commonwealth Scientific & Industrial Research Organisation | Starch Treatment Process |
| US6969530B1 (en) * | 2005-01-21 | 2005-11-29 | Ocean Nutrition Canada Ltd. | Microcapsules and emulsions containing low bloom gelatin and methods of making and using thereof |
| US20070098854A1 (en) * | 2005-10-31 | 2007-05-03 | Van Lengerich Bernhard H | Encapsulation of readily oxidizable components |
| US20080026108A1 (en) * | 2006-06-22 | 2008-01-31 | Martek Biosciences Corporation | Encapsulated Labile Compound Compositions and Methods of Making the Same |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110052680A1 (en) * | 2008-01-04 | 2011-03-03 | AVERA, Inc. | Encapsulation of oxidatively unstable compounds |
| US8741337B2 (en) * | 2008-01-04 | 2014-06-03 | Aveka, Inc. | Encapsulation of oxidatively unstable compounds |
| WO2012075575A1 (en) * | 2010-12-10 | 2012-06-14 | The Governors Of The University Of Alberta | Barley protein microcapsules |
| WO2014169315A1 (en) * | 2013-04-19 | 2014-10-23 | Commonwealth Scientific And Industrial Research Organisation | Encapsulation method |
| CN105142416A (en) * | 2013-04-19 | 2015-12-09 | 联邦科学和工业研究组织 | Encapsulation method |
| US10785991B2 (en) | 2013-04-19 | 2020-09-29 | Commonwealth Scientific And Industrial Research Organisation | Encapsulation method |
| WO2017181250A1 (en) * | 2016-04-19 | 2017-10-26 | Sion Nanotec Ltda. | Controlled-release coated non-protein nitrogen food composition and process for preparation thereof |
| CN107668755A (en) * | 2017-09-25 | 2018-02-09 | 常州市天宁区鑫发织造有限公司 | A kind of preparation method of anti-oxidant microencapsulation material |
| WO2020106234A1 (en) * | 2018-11-22 | 2020-05-28 | Oercen Arda | Use of probiotic yeast cells producing recombinant parathormone for therapeutic purposes |
| US12194069B2 (en) | 2018-11-22 | 2025-01-14 | Nanomik Biyoteknoloji Anonim Sirketi | Use of probiotic yeast cells producing recombinant parathormone for therapeutic purposes |
| WO2025221702A1 (en) * | 2024-04-14 | 2025-10-23 | Nulixir Inc. | Particles for delivery of substances |
Also Published As
| Publication number | Publication date |
|---|---|
| US20110052680A1 (en) | 2011-03-03 |
| US8741337B2 (en) | 2014-06-03 |
| WO2009089115A1 (en) | 2009-07-16 |
| WO2009089117A1 (en) | 2009-07-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20110059164A1 (en) | Encapsulation of oxidatively unstable compounds | |
| Wilson et al. | Microencapsulation of vitamins | |
| Altin et al. | Chitosan coated liposome dispersions loaded with cacao hull waste extract: Effect of spray drying on physico-chemical stability and in vitro bioaccessibility | |
| US20110020519A1 (en) | Encapsulation of oxidatively unstable compounds | |
| Li et al. | Preparation and characterization of phytosterol-loaded microcapsules based on the complex coacervation | |
| AU2002324321B2 (en) | Stable coated microcapsules | |
| Celli et al. | Bioactive encapsulated powders for functional foods—a review of methods and current limitations | |
| EP1492417B1 (en) | Encapsulated agglomeration of microcapsules and method for the preparation thereof | |
| Gan et al. | Evaluation of microbial transglutaminase and ribose cross-linked soy protein isolate-based microcapsules containing fish oil | |
| Zhu et al. | Ultrasonic microencapsulation of oil-soluble vitamins by hen egg white and green tea for fortification of food | |
| BR112017002301B1 (en) | COMPOSITION COMPRISING HYDROPHOBIC DROPLETS, METHOD OF PREPARING A COMPOSITION, AND, CONSUMABLES PRODUCT | |
| EP3212159A1 (en) | Bioactive delivery vehicles | |
| Drozińska et al. | Microencapsulation of sea buckthorn oil with β-glucan from barley as coating material | |
| WO2017137496A1 (en) | Multilayer probiotic microcapsules | |
| Nickerson et al. | Protection and masking of omega-3 and-6 oils via microencapsulation | |
| AU2018259160A1 (en) | Encapsulated nutritional and pharmaceutical compositions | |
| Trilokia et al. | Microencapsulation for food: An overview | |
| Jara-Quijada et al. | An overview focusing on food liposomes and their stability to electric fields | |
| Quek et al. | Microencapsulation of food ingredients for functional foods | |
| Gilles et al. | Nano-microencapsulation and controlled release of linoleic acid in biopolymer matrices: effects of the physical state, water activity, and quercetin on oxidative stability | |
| Jin et al. | Microencapsulation of marine lipids as a vehicle for functional food delivery | |
| Rani et al. | Encapsulation methods in the food industry: Mechanisms and applications | |
| Estevinho et al. | Microencapsulation in Food Biotechnology by a Spray‐Drying Process | |
| Drvenica et al. | Sinigrin encapsulation in liposomes: influence on In Vitro digestion and antioxidant potential | |
| Guerrero et al. | Freeze drying optimization of Canola Oil with Phytosterols using Alginate and Maltodextrin |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: AVEKA, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HENDRICKSON, WILLIAM A.;FINNEY, JOHN M.;MOBERG, OLAF C.;AND OTHERS;SIGNING DATES FROM 20100714 TO 20100917;REEL/FRAME:025400/0697 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |