US20110005213A1 - Apparatus for Maintaining a Urea Solution in a Liquid State for Treatment of Diesel Exhaust - Google Patents
Apparatus for Maintaining a Urea Solution in a Liquid State for Treatment of Diesel Exhaust Download PDFInfo
- Publication number
- US20110005213A1 US20110005213A1 US12/499,850 US49985009A US2011005213A1 US 20110005213 A1 US20110005213 A1 US 20110005213A1 US 49985009 A US49985009 A US 49985009A US 2011005213 A1 US2011005213 A1 US 2011005213A1
- Authority
- US
- United States
- Prior art keywords
- solution
- storage tank
- urea
- hot gas
- accordance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion
- F01N3/206—Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/02—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/10—Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
- F01N2610/1406—Storage means for substances, e.g. tanks or reservoirs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
- F01N2610/1466—Means for venting air out of conduits or tanks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to emissions control in compression-ignited internal combustion engines; more particularly, to systems for injecting urea into diesel exhaust to scavenge nitrogen oxides and rejuvenating a diesel particulate filter; and most particularly, to a system for heating and liquefying a storage tank solution of urea at normally sub-freezing urea-solution temperatures.
- urea injection systems are commonly in use in the prior art.
- An aqueous urea solution is injected into the hot exhaust pipe, where urea is hydrolyzed into ammonia ahead of a selective catalytic reduction (SCR) converter.
- SCR selective catalytic reduction
- Ammonia reacts with NOx trapped on the catalyst face to form N 2 , CO 2 , and H 2 O, thereby lowering the level of noxious emissions in the exhaust.
- a serious problem in the prior art is that at temperatures below about ⁇ 11° C., the urea solution can freeze.
- a thermal heating system and method are required to thaw the solid solution into a liquid solution (or to keep the solution from freezing) to permit a pump to draw solution for delivery into an engine emissions abatement system.
- a typical prior art urea supply system comprises a relatively small reservoir tank module from which liquid urea solution is dispensed into a diesel engine exhaust system, and a larger storage tank in which the tank module is immersed.
- the tank module contains a resistance heater that can liquefy suitable quantities of solution in a short time upon engine start-up under cold conditions, as is required to meet government air pollution standards. Solution in the surrounding storage tank then is heated by transfer of heat through the walls of the heated reservoir tank module.
- the storage tank be able to re-supply the reservoir tank module within a short time after starting of the engine.
- meeting this requirement can be difficult because of limited heat flow through the walls of the reservoir tank module, which typically is formed of a plastic polymer having relatively low thermal conductivity.
- U.S. Pat. No. 6,387,336 discloses generally that an electric heating system and/or a heating device that uses waste heat of the engine coolant and/or the exhaust gas can be used to heat the frozen urea.
- a system for keeping a reservoir solution of urea in a liquid state at normally sub-freezing temperatures comprises a reservoir tank module disposed in a storage tank.
- the reservoir tank module preferably includes a level sensing apparatus, inlet and outlet ports for supplying and withdrawing urea solution, and at least one heating element.
- the walls of the reservoir tank module are preferably immersed in urea solution contained in the storage tank, which solution is partially heated by passage of heat through the walls of the reservoir tank module.
- additional heat for melting frozen urea solution is derived from waste heat in engine exhaust gas and is added to the system either by passing a portion of the exhaust gas stream directly through the solution or by passing air heated by the exhaust gas stream directly through the solution.
- the hot gas may be impinged onto an outer surface of the storage tank.
- FIG. 1 is an elevational schematic view of a prior art system for keeping a reservoir solution of urea in a liquid state at normally sub-freezing temperatures;
- FIG. 2 is a schematic drawing of a first embodiment in accordance with the present invention of a system for keeping a reservoir solution of urea in a liquid state at normally sub-freezing temperatures, showing passage of a portion of the engine exhaust gas stream diverted through the storage tank;
- FIG. 3 is a schematic drawing of a second embodiment in accordance with the present invention of a system for keeping a reservoir solution of urea in a liquid state at normally sub-freezing temperatures, showing air heated by the engine exhaust gas stream being diverted through the storage tank.
- a portion of an exemplary prior art system 10 for supplying a solution of urea to a diesel exhaust emissions abatement system 12 for a diesel engine 14 comprises a reservoir tank module 16 disposed within a storage tank 18 for urea solution 20 .
- Solution 20 enters tank module 16 via an inlet 22 and is dispensed via an outlet 24 .
- a heater 26 is disposed within tank module 16 for liquefying solution 20 within module 16 . Excess heat from heater 26 is intended to pass through the walls 28 of tank module 16 and locally liquefy solution 20 in proximity to tank module 16 and inlet 22 to allow gravitational replenishment of solution into tank module 16 .
- walls 28 of reservoir tank module 16 are typically formed of a plastic polymer having relatively low thermal conductivity such that at extreme low temperature conditions insufficient heat is passed into storage tank 18 to maintain an adequate rate of liquefaction and replenishment.
- a portion 130 of the exhaust stream 132 from engine 14 is diverted, preferably following the diesel particulate filter 134 and before the engine muffler 136 and tail pipe 138 .
- Portion 130 is preferably diverted by a porting mechanization 140 attached to the vehicle exhaust pipe, such as an electrically-operated valve assembly.
- a porting mechanization 140 attached to the vehicle exhaust pipe, such as an electrically-operated valve assembly.
- an optional filter 142 may be provided to purify exhaust gas 130 for additional cleanness of the gas into storage tank 118 .
- a delta pressure sensor 144 may be employed across filter 142 to monitor filter condition.
- Another pressure sensor 146 combined with a temperature sensor 148 on the bypass flow line 150 may be employed to enable calculation of the flow rate of exhaust portion 130 .
- the diverted exhaust gas is directed either into or against the outside of urea storage tank 118 .
- a currently preferred arrangement is to direct the exhaust gas 130 onto or through solution 20 within storage tank 118 , whether frozen or liquid, via a sparger 152 , in which arrangement cooled exhaust gas 130 ′ then exits storage tank 118 via a tank vent port 154 .
- a side benefit of first embodiment 110 is that tank vent 154 is readily thawed in the event that it has been frozen shut by internal splash of urea solution or external road spray. This arrangement eliminates a potential failure mode wherein liquid solution cannot not be pumped from reservoir tank module 16 into diesel exhaust emissions control system 12 ( FIG. 1 ) because built up vacuum in storage tank 118 cannot be relieved via a frozen vent 154 .
- a second side benefit of first embodiment 110 is that the top surface of frozen urea solution 20 is heated directly by the impinging gasses. This liquid urea solution will descend to the bottom of the storage tank 118 along the walls of the tank module 16 and become available to replenish the tank module 16 . This function eliminates the condition where an air gap forms around the perimeter of the tank module 16 after the melted urea solution is drawn away from the surroundings of the tank module 16 . This condition would cause the emission abatement system to stop functioning due to lack of supply of liquid urea solution.
- This arrangement can create an exhaust-disposal problem if, for example, system 110 is conveniently located within the engine compartment of a vehicle.
- a second exhaust pipe (not shown) may be required to dispose safely of cooled exhaust gas 130 ′ from vent 154 .
- Second embodiment 210 of an improved system for supplying a solution of urea to a diesel exhaust emissions control system avoids this problem.
- Second embodiment 210 is very similar to first embodiment 110 and employs numerous identical components, so indicated by the same numbers as in FIG. 2 . The difference is that, instead of piping exhaust gas per se into or against storage tank 118 as in first embodiment 110 , heat is abstracted from the engine exhaust system or a component thereof 224 in known fashion, such as by a conventional finned heat exchanger or other hot air collector 226 .
- Hot air 230 rather than hot exhaust gas 130 is then fed into system 210 via a line fan 228 .
- the flow path is substantially the same as for hot exhaust gas 130 in FIG. 2 ; however, a substantial benefit of the slightly greater system complexity (heat collector and fan plus controls) is that only cooled air 230 ′ exits vent 154 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
A system for keeping a reservoir solution of urea in a liquid state at normally sub-freezing temperatures comprising a reservoir tank module disposed in a solution storage tank. Solution in the storage tank is heated partially by passage of heat through the walls of the reservoir tank module. Additional heat is derived from waste heat in engine exhaust gas and is added to the system either by passing a portion of the exhaust gas stream directly onto or through the solution or by passing air heated by the exhaust gas stream directly onto or through the solution. Alternatively, the hot gas may be impinged onto an outer surface of the storage tank.
Description
- The present invention relates to emissions control in compression-ignited internal combustion engines; more particularly, to systems for injecting urea into diesel exhaust to scavenge nitrogen oxides and rejuvenating a diesel particulate filter; and most particularly, to a system for heating and liquefying a storage tank solution of urea at normally sub-freezing urea-solution temperatures.
- To scavenge oxides of nitrogen (NOx) from the exhaust of compression-ignited (CI) engines, and especially diesel engines, urea injection systems are commonly in use in the prior art. An aqueous urea solution is injected into the hot exhaust pipe, where urea is hydrolyzed into ammonia ahead of a selective catalytic reduction (SCR) converter. Ammonia reacts with NOx trapped on the catalyst face to form N2, CO2, and H2O, thereby lowering the level of noxious emissions in the exhaust.
- A serious problem in the prior art is that at temperatures below about −11° C., the urea solution can freeze. Thus, a thermal heating system and method are required to thaw the solid solution into a liquid solution (or to keep the solution from freezing) to permit a pump to draw solution for delivery into an engine emissions abatement system.
- A typical prior art urea supply system comprises a relatively small reservoir tank module from which liquid urea solution is dispensed into a diesel engine exhaust system, and a larger storage tank in which the tank module is immersed. The tank module contains a resistance heater that can liquefy suitable quantities of solution in a short time upon engine start-up under cold conditions, as is required to meet government air pollution standards. Solution in the surrounding storage tank then is heated by transfer of heat through the walls of the heated reservoir tank module.
- It is an important operating requirement that the storage tank be able to re-supply the reservoir tank module within a short time after starting of the engine. In prior art systems when the solution in the storage tank is frozen, meeting this requirement can be difficult because of limited heat flow through the walls of the reservoir tank module, which typically is formed of a plastic polymer having relatively low thermal conductivity.
- U.S. Pat. No. 6,387,336 discloses generally that an electric heating system and/or a heating device that uses waste heat of the engine coolant and/or the exhaust gas can be used to heat the frozen urea.
- Published US Patent Application No. US 2008/0092531 discloses use of hot engine coolant to heat the frozen urea. The specification describes a separate coolant conduit embedded in the urea tank for heating the tank, and a double pipe construction surrounding the urea feed pipe for heating the urea flowing through the feed pipe. The inside of the double pipe arrangement provides a flow path for the urea while a jacketing-surrounding outer pipe carries the heated coolant, which may flow counter to the direction of flow of the urea. Also disclosed is use of heat from a proximate exhaust pipe.
- What is needed in the art is an improved storage system for urea solution wherein frozen urea solution may be liquefied at a rate sufficient to maintain replenishment of the reservoir tank module.
- It is a principal object of the present invention to provide a reliable flow of liquid urea solution at ambient temperatures below the freezing point of the solution.
- Briefly described, a system for keeping a reservoir solution of urea in a liquid state at normally sub-freezing temperatures comprises a reservoir tank module disposed in a storage tank. The reservoir tank module preferably includes a level sensing apparatus, inlet and outlet ports for supplying and withdrawing urea solution, and at least one heating element. The walls of the reservoir tank module are preferably immersed in urea solution contained in the storage tank, which solution is partially heated by passage of heat through the walls of the reservoir tank module.
- In accordance with the present invention, additional heat for melting frozen urea solution is derived from waste heat in engine exhaust gas and is added to the system either by passing a portion of the exhaust gas stream directly through the solution or by passing air heated by the exhaust gas stream directly through the solution. Alternatively, the hot gas may be impinged onto an outer surface of the storage tank.
- The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
-
FIG. 1 is an elevational schematic view of a prior art system for keeping a reservoir solution of urea in a liquid state at normally sub-freezing temperatures; -
FIG. 2 is a schematic drawing of a first embodiment in accordance with the present invention of a system for keeping a reservoir solution of urea in a liquid state at normally sub-freezing temperatures, showing passage of a portion of the engine exhaust gas stream diverted through the storage tank; and -
FIG. 3 is a schematic drawing of a second embodiment in accordance with the present invention of a system for keeping a reservoir solution of urea in a liquid state at normally sub-freezing temperatures, showing air heated by the engine exhaust gas stream being diverted through the storage tank. - The exemplifications set out herein illustrate currently-preferred embodiments of the present invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
- Referring to
FIG. 1 , a portion of an exemplaryprior art system 10 for supplying a solution of urea to a diesel exhaustemissions abatement system 12 for adiesel engine 14 comprises areservoir tank module 16 disposed within astorage tank 18 forurea solution 20.Solution 20 enterstank module 16 via aninlet 22 and is dispensed via anoutlet 24. Aheater 26 is disposed withintank module 16 forliquefying solution 20 withinmodule 16. Excess heat fromheater 26 is intended to pass through thewalls 28 oftank module 16 and locally liquefysolution 20 in proximity totank module 16 andinlet 22 to allow gravitational replenishment of solution intotank module 16. As described above, a problem exists in operation ofprior art systems 10 in thatwalls 28 ofreservoir tank module 16 are typically formed of a plastic polymer having relatively low thermal conductivity such that at extreme low temperature conditions insufficient heat is passed intostorage tank 18 to maintain an adequate rate of liquefaction and replenishment. - In a first method for replenishing the reservoir tank module in accordance with the present invention, (and referring now to
FIG. 2 and afirst embodiment 110 of an improved system for supplying a solution of urea to a diesel exhaust emissions control system) aportion 130 of theexhaust stream 132 fromengine 14 is diverted, preferably following thediesel particulate filter 134 and before the engine muffler 136 andtail pipe 138.Portion 130 is preferably diverted by aporting mechanization 140 attached to the vehicle exhaust pipe, such as an electrically-operated valve assembly. Downstream ofvalve assembly 140, anoptional filter 142 may be provided to purifyexhaust gas 130 for additional cleanness of the gas intostorage tank 118. Adelta pressure sensor 144 may be employed acrossfilter 142 to monitor filter condition. Anotherpressure sensor 146 combined with atemperature sensor 148 on thebypass flow line 150 may be employed to enable calculation of the flow rate ofexhaust portion 130. The diverted exhaust gas is directed either into or against the outside ofurea storage tank 118. A currently preferred arrangement is to direct theexhaust gas 130 onto or throughsolution 20 withinstorage tank 118, whether frozen or liquid, via asparger 152, in which arrangement cooledexhaust gas 130′ then exitsstorage tank 118 via atank vent port 154. - A side benefit of
first embodiment 110 is thattank vent 154 is readily thawed in the event that it has been frozen shut by internal splash of urea solution or external road spray. This arrangement eliminates a potential failure mode wherein liquid solution cannot not be pumped fromreservoir tank module 16 into diesel exhaust emissions control system 12 (FIG. 1 ) because built up vacuum instorage tank 118 cannot be relieved via a frozenvent 154. - A second side benefit of
first embodiment 110 is that the top surface of frozenurea solution 20 is heated directly by the impinging gasses. This liquid urea solution will descend to the bottom of thestorage tank 118 along the walls of thetank module 16 and become available to replenish thetank module 16. This function eliminates the condition where an air gap forms around the perimeter of thetank module 16 after the melted urea solution is drawn away from the surroundings of thetank module 16. This condition would cause the emission abatement system to stop functioning due to lack of supply of liquid urea solution. - This arrangement, whether utilizing hot exhaust gas within
storage tank 118 as shown inFIG. 2 or impinging hot exhaust gas against the outside of storage tank 118 (not shown), can create an exhaust-disposal problem if, for example,system 110 is conveniently located within the engine compartment of a vehicle. A second exhaust pipe (not shown) may be required to dispose safely of cooledexhaust gas 130′ fromvent 154. - Referring now to
FIG. 3 , asecond embodiment 210 of an improved system for supplying a solution of urea to a diesel exhaust emissions control system avoids this problem.Second embodiment 210 is very similar tofirst embodiment 110 and employs numerous identical components, so indicated by the same numbers as inFIG. 2 . The difference is that, instead of piping exhaust gas per se into or againststorage tank 118 as infirst embodiment 110, heat is abstracted from the engine exhaust system or a component thereof 224 in known fashion, such as by a conventional finned heat exchanger or otherhot air collector 226. (Collector 226 may be placed at any point on the engine exhaust system from the exhaust manifold to the tail pipe, location depending upon the amount of heat desired and the packaging constraints of the installation.)Hot air 230 rather thanhot exhaust gas 130 is then fed intosystem 210 via aline fan 228. The flow path is substantially the same as forhot exhaust gas 130 inFIG. 2 ; however, a substantial benefit of the slightly greater system complexity (heat collector and fan plus controls) is that only cooledair 230′ exits vent 154. - While the invention has been described by reference to a specific embodiment, it should be understood that numerous changes may be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the described embodiment, but will have full scope defined by the language of is the following claims.
Claims (12)
1. A system for keeping a solution of urea in a liquid state at normally sub-freezing temperatures or liquefying such solution if frozen, for delivery to an emissions abatement system of an internal combustion engine, comprising:
a) a storage tank for said urea solution;
b) first apparatus for deriving a hot gas from an exhaust system of said engine; and
c) second apparatus for impinging said hot gas against an area of said storage tank to heat said solution of urea therewithin.
2. A system in accordance with claim 1 wherein said second apparatus includes said storage tank, a gas sparger disposed within said storage tank for dispersing said hot gas, and a tank vent for escape of cooled gas from said tank.
3. A system in accordance with claim 1 wherein said second apparatus includes at least one of a filter for filtering said hot gas, a temperature sensor, and a pressure sensor.
4. A system in accordance with claim 1 wherein said first apparatus includes a diverter valve mounted on said exhaust system for diverting a portion of an exhaust gas stream flowing therewithin, and wherein said hot gas is said exhaust gas portion.
5. A system in accordance with claim 1 wherein said first apparatus includes a hot air collector disposed adjacent said exhaust system.
6. A system in accordance with claim 5 wherein said first apparatus further includes a fan configured for passing said hot gas into said second apparatus.
7. A system in accordance with claim 1 wherein said impinged area of said storage tank is selected from the group consisting of within said storage tank and an outer surface of said storage tank.
8. An internal combustion engine comprising a system for keeping a reservoir solution of urea in a liquid state at normally sub-freezing temperatures, or liquefying such solution if frozen, for delivery to an emissions abatement system of an internal combustion engine, wherein said system includes,
a storage tank for said urea solution,
first apparatus for deriving a hot gas from an exhaust system of said engine, and
second apparatus for impinging said hot gas against an area of said storage tank to heat said solution of urea therewithin.
9. A method for keeping a reservoir solution of urea in a liquid state at normally sub-freezing temperatures, or liquefying such solution if frozen, for delivery to an emissions abatement system of an internal combustion engine, comprising the steps of:
a) providing a storage tank for said urea solution;
b) deriving a hot gas from an exhaust system of said engine; and
c) impinging said hot gas against an area of said storage tank to heat said solution of urea therewithin.
10. A method in accordance with claim 9 wherein said hot gas is at least a portion of an exhaust gas stream of said internal combustion engine.
11. A method in accordance with claim 9 wherein said hot gas is heated air.
12. A method in accordance with claim 9 wherein said impinging step is selected from the group consisting of impinging said hot gas within said storage tank and impinging said hot gas against an outer surface of said storage tank.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/499,850 US20110005213A1 (en) | 2009-07-09 | 2009-07-09 | Apparatus for Maintaining a Urea Solution in a Liquid State for Treatment of Diesel Exhaust |
| EP10168398A EP2273082A1 (en) | 2009-07-09 | 2010-07-05 | Apparatus for maintening a urea solution in a liquid state for treatment of diesel exhaust |
| EP10168399A EP2273083A1 (en) | 2009-07-09 | 2010-07-05 | Apparatus for maintening a urea solution in a liquid state for treatment of diesel exhaust |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/499,850 US20110005213A1 (en) | 2009-07-09 | 2009-07-09 | Apparatus for Maintaining a Urea Solution in a Liquid State for Treatment of Diesel Exhaust |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20110005213A1 true US20110005213A1 (en) | 2011-01-13 |
Family
ID=43426396
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/499,850 Abandoned US20110005213A1 (en) | 2009-07-09 | 2009-07-09 | Apparatus for Maintaining a Urea Solution in a Liquid State for Treatment of Diesel Exhaust |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20110005213A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105992864A (en) * | 2013-12-02 | 2016-10-05 | 全耐塑料高级创新研究公司 | Improved liquid additive storage system |
| US20180275351A1 (en) * | 2015-10-12 | 2018-09-27 | Corning Research & Development Corporation | Connector for connecting two bare optical fibers |
| CN109026296A (en) * | 2018-08-27 | 2018-12-18 | 潍柴动力股份有限公司 | A kind of heating device, heating means and the vehicle of urea for vehicle system |
| CN117988954A (en) * | 2024-04-03 | 2024-05-07 | 江西五十铃汽车有限公司 | SCR low-temperature thawing system and method for vehicle-mounted urea |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6110435A (en) * | 1997-05-13 | 2000-08-29 | Daimlerchrysler Ag | Method and device for nitric oxide reduction in exhaust fumes |
| US6363771B1 (en) * | 1999-11-24 | 2002-04-02 | Caterpillar Inc. | Emissions diagnostic system |
| US6387336B2 (en) * | 1997-07-03 | 2002-05-14 | Robert Bosch Gmbh | Method and device for selective catalytic NOx reduction |
| US20080092531A1 (en) * | 2006-10-19 | 2008-04-24 | Denso Corporation | Exhaust purification device of engine |
| US20080251036A1 (en) * | 2005-09-07 | 2008-10-16 | Hannum Mark C | Submerged combustion vaporizer with low nox |
| US20080279732A1 (en) * | 2005-02-16 | 2008-11-13 | Imi Vision Limited | Exhaust as Treatment |
-
2009
- 2009-07-09 US US12/499,850 patent/US20110005213A1/en not_active Abandoned
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6110435A (en) * | 1997-05-13 | 2000-08-29 | Daimlerchrysler Ag | Method and device for nitric oxide reduction in exhaust fumes |
| US6387336B2 (en) * | 1997-07-03 | 2002-05-14 | Robert Bosch Gmbh | Method and device for selective catalytic NOx reduction |
| US6363771B1 (en) * | 1999-11-24 | 2002-04-02 | Caterpillar Inc. | Emissions diagnostic system |
| US20080279732A1 (en) * | 2005-02-16 | 2008-11-13 | Imi Vision Limited | Exhaust as Treatment |
| US20080251036A1 (en) * | 2005-09-07 | 2008-10-16 | Hannum Mark C | Submerged combustion vaporizer with low nox |
| US20080092531A1 (en) * | 2006-10-19 | 2008-04-24 | Denso Corporation | Exhaust purification device of engine |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105992864A (en) * | 2013-12-02 | 2016-10-05 | 全耐塑料高级创新研究公司 | Improved liquid additive storage system |
| US20160369680A1 (en) * | 2013-12-02 | 2016-12-22 | Plastic Omnium Advanced Innovation And Research | Improved system for storing a liquid additive |
| CN105992864B (en) * | 2013-12-02 | 2019-05-28 | 全耐塑料高级创新研究公司 | Improved liquid additive storage system |
| US20180275351A1 (en) * | 2015-10-12 | 2018-09-27 | Corning Research & Development Corporation | Connector for connecting two bare optical fibers |
| CN109026296A (en) * | 2018-08-27 | 2018-12-18 | 潍柴动力股份有限公司 | A kind of heating device, heating means and the vehicle of urea for vehicle system |
| CN117988954A (en) * | 2024-04-03 | 2024-05-07 | 江西五十铃汽车有限公司 | SCR low-temperature thawing system and method for vehicle-mounted urea |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101260083B1 (en) | System for storing an additive and for injecting it into engine exhaust gases | |
| EP1691046B1 (en) | Exhaust emission purification apparatus for an internal combustion engine | |
| CN100529342C (en) | Exhaust emission purifying apparatus for engine | |
| KR102309229B1 (en) | Combustion engine | |
| US8828342B1 (en) | DPF energy conservation | |
| JP4895888B2 (en) | Defrosting determination device for reducing agent addition system and exhaust purification device for engine | |
| WO2005073527A1 (en) | Device for purifying exhaust gas of internal combustion engine | |
| JP2009097479A (en) | Device and method for controlling reducing agent supplying device | |
| US20090249766A1 (en) | Method and system for storing an additive and injecting it into the exhaust gases of an engine | |
| JP5736466B2 (en) | Reagent tank normalization system | |
| WO2008058977A1 (en) | System for storing an additive and injecting it into the exhaust gases of an engine | |
| CN104131871A (en) | Diesel exhaust fluid control system | |
| EP2042697A2 (en) | Secondary-Air Supply System for Internal Combustion Engine | |
| JP2010019134A (en) | Exhaust emission control device of internal-combustion engine | |
| US20110005213A1 (en) | Apparatus for Maintaining a Urea Solution in a Liquid State for Treatment of Diesel Exhaust | |
| EP2273082A1 (en) | Apparatus for maintening a urea solution in a liquid state for treatment of diesel exhaust | |
| US20110005206A1 (en) | Apparatus for Maintaining a Urea Solution in a Liquid State for Treatment of Diesel Exhaust | |
| JP2006516696A (en) | Device for providing a reducing agent to the exhaust gas of an internal combustion engine | |
| WO2005066471A1 (en) | Arrangement for supply of reducing agent | |
| CN112727571B (en) | System and method for heating a reducing agent | |
| KR20160124580A (en) | Pressurized type coolant circulation system for a vehicle | |
| EP2322774A1 (en) | Apparatus for maintaining a urea solution in a liquid state for treatment of diesel exhaust | |
| EP3084160B1 (en) | Urea delivery system for scr system | |
| KR101896554B1 (en) | Urea water solution supply apparatus and method for exhaust gas aftertreatment system | |
| CN107701269A (en) | Diesel engine post-processing system with hot type blue tube road |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: DELPHI TECHNOLOGIES, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, BOB X.;BONADIES, JOSEPH V.;REEL/FRAME:022932/0390 Effective date: 20090611 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |