US20110003002A1 - Sustained release formulation comprising octreotide and three linear polylactide-co-glycolide polymers - Google Patents
Sustained release formulation comprising octreotide and three linear polylactide-co-glycolide polymers Download PDFInfo
- Publication number
- US20110003002A1 US20110003002A1 US12/865,145 US86514509A US2011003002A1 US 20110003002 A1 US20110003002 A1 US 20110003002A1 US 86514509 A US86514509 A US 86514509A US 2011003002 A1 US2011003002 A1 US 2011003002A1
- Authority
- US
- United States
- Prior art keywords
- pharmaceutical composition
- microparticles
- composition according
- plgas
- octreotide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 32
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 title claims abstract description 19
- 108010016076 Octreotide Proteins 0.000 title claims abstract description 19
- 229960002700 octreotide Drugs 0.000 title claims abstract description 19
- 238000013268 sustained release Methods 0.000 title claims abstract description 8
- 239000012730 sustained-release form Substances 0.000 title claims abstract description 8
- 239000000203 mixture Substances 0.000 title abstract description 33
- 238000009472 formulation Methods 0.000 title abstract description 17
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims abstract description 17
- 150000003839 salts Chemical class 0.000 claims abstract description 15
- 239000004480 active ingredient Substances 0.000 claims abstract description 14
- 239000011859 microparticle Substances 0.000 claims description 63
- 239000008194 pharmaceutical composition Substances 0.000 claims description 32
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 claims description 19
- 239000003795 chemical substances by application Substances 0.000 claims description 17
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 16
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 13
- 229940088679 drug related substance Drugs 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000007943 implant Substances 0.000 claims description 8
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical group OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 7
- 229930195725 Mannitol Natural products 0.000 claims description 7
- 239000000839 emulsion Substances 0.000 claims description 7
- 239000000594 mannitol Substances 0.000 claims description 7
- 235000010355 mannitol Nutrition 0.000 claims description 7
- 206010028980 Neoplasm Diseases 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 239000008346 aqueous phase Substances 0.000 claims description 4
- 239000012074 organic phase Substances 0.000 claims description 4
- 239000003791 organic solvent mixture Substances 0.000 claims description 4
- 229920002959 polymer blend Polymers 0.000 claims description 4
- 208000009311 VIPoma Diseases 0.000 claims description 3
- 102000055135 Vasoactive Intestinal Peptide Human genes 0.000 claims description 3
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 claims description 3
- 208000019493 atypical carcinoid tumor Diseases 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000011010 flushing procedure Methods 0.000 claims description 3
- VBUWHHLIZKOSMS-RIWXPGAOSA-N invicorp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)C)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-RIWXPGAOSA-N 0.000 claims description 3
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 claims description 3
- 230000007774 longterm Effects 0.000 claims description 3
- 238000009115 maintenance therapy Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000000178 monomer Substances 0.000 claims description 3
- 229940071643 prefilled syringe Drugs 0.000 claims description 3
- 208000026775 severe diarrhea Diseases 0.000 claims description 3
- 238000000935 solvent evaporation Methods 0.000 claims description 3
- 238000000638 solvent extraction Methods 0.000 claims description 3
- 239000003381 stabilizer Substances 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 239000003708 ampul Substances 0.000 claims description 2
- 238000004945 emulsification Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 238000007873 sieving Methods 0.000 claims description 2
- 239000000725 suspension Substances 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- -1 Hydroxy, carboxy Chemical group 0.000 description 12
- 239000000243 solution Substances 0.000 description 10
- 239000003981 vehicle Substances 0.000 description 10
- 229920001244 Poly(D,L-lactide) Polymers 0.000 description 9
- 229920000136 polysorbate Polymers 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000036470 plasma concentration Effects 0.000 description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 102000007327 Protamines Human genes 0.000 description 3
- 108010007568 Protamines Proteins 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 238000004108 freeze drying Methods 0.000 description 3
- 229940048914 protamine Drugs 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- KFWJVABDRRDUHY-XJQYZYIXSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C1=CC=C2C(CC=3C4=CC=CC=C4C=C(C=3O)C(=O)O)=C(O)C(C(O)=O)=CC2=C1.C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 KFWJVABDRRDUHY-XJQYZYIXSA-N 0.000 description 2
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 2
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- HQPMKSGTIOYHJT-UHFFFAOYSA-N ethane-1,2-diol;propane-1,2-diol Chemical compound OCCO.CC(O)CO HQPMKSGTIOYHJT-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 229940124531 pharmaceutical excipient Drugs 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 229920001993 poloxamer 188 Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 229920002449 FKM Polymers 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 239000000337 buffer salt Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical class C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 235000011044 succinic acid Nutrition 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1682—Processes
- A61K9/1694—Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/31—Somatostatins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1641—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
- A61K9/1647—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/12—Antidiarrhoeals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/14—Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/06—Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH
- A61P5/08—Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH for decreasing, blocking or antagonising the activity of the anterior pituitary hormones
Definitions
- the present invention relates to sustained release formulations comprising as active ingredient octreotide or a pharmaceutically-acceptable salt thereof and three different linear polylactide-co-glycolide polymers (PLGAs).
- PLGAs linear polylactide-co-glycolide polymers
- compositions according to the present invention are indicated for inter alia long-term maintenance therapy in acromegalic patients, and treatment of severe diarrhea and flushing associated with malignant carcinoid tumors and vasoactive intestinal peptide tumors (vipoma tumors).
- Peptide drugs are usually administerd systemically, e.g. parenterally.
- parenteral administration may be painful and cause discomfort, especially for repeated daily administrations.
- the drug substance should be administered as a depot formulation.
- a common drawback with injectable depot formulations is the fluctuation in plasma levels such as high peak levels together with plasma levels close to zero during the entire release periode.
- Sustained release formulations comprising as active ingredient octreotide or a pharmaceutically acceptable salt thereof and two or more different polylactide-co-glycolide polymers (PLGAs) have, for instance, been also disclosed in WO2007/071395.
- PLGAs polylactide-co-glycolide polymers
- the present invention discloses a sustained release formulation comprising as active ingredient (drug substance) octreotide or a pharmaceutically-acceptable salt thereof.
- octreotide is a somatostatin analog having the following formula:
- the active ingredient may be in the form of a pharmaceutically acceptable salt of octreotide, such as an acid addition salt with e.g. inorganic acid, polymeric acid or organic acid, for example with hydrochloric acid, acetic acid, lactic acid, citric acid, fumaric acid, malonic acid, maleic acid, tartaric acid, aspartic acid, benzoic acid, succinic acid or pamoic (embonic) acid.
- Acid addition salts may exist as mono- or divalent salts, e.g. depending whether 1 or 2 acid equivalents are added. Preferred is the pamoate monosalt of octreotide.
- the particle size distribution of the drug substance influences the release profile of the drug from the depot form.
- the drug substance which is used to prepare the depot formulation is crystalline or in the form of an amorphous powder.
- an amorphous powder which has a particle of a size of about 0.1 microns to about 15 microns (99%>0.1 microns, 99% ⁇ 15 microns), preferably from 1 to less than about 10 microns (90%>1 microns, 90% ⁇ 10 microns).
- the drug substance preferentially undergoes a micronization process to present the required particle size distribution.
- the present invention further provides a sustained release pharmaceutical composition (depot) comprising as active ingredient octreotide or a pharmaceutically-acceptable salt thereof incorporated in blends or mixtures of poly(lactide-co-glycolide)s (PLGAs), for instance in form of microparticles, implants or semisolid formulations.
- a sustained release pharmaceutical composition comprising as active ingredient octreotide or a pharmaceutically-acceptable salt thereof incorporated in blends or mixtures of poly(lactide-co-glycolide)s (PLGAs), for instance in form of microparticles, implants or semisolid formulations.
- PLGAs poly(lactide-co-glycolide)s
- the pharmaceutical composition comprises a mixture of PLGA polymers containing the active ingredient; i.e. the active ingredient may be incorporated into one or more PLGAs in form of microparticles, implants or semisolid formulations and is then mixed with another microparticle or implant or semisolid formulation also comprising the active ingredient and one or more PLGAs.
- the pharmaceutical composition according to the present invention allows a sustained release of the active ingredient over a period of more than three month, preferentially between three and six months.
- the plasma levels of octreotide are within the therapeutic range. It is understood that the exact dose of octreotide will depend on a number of factors, including the condition to be treated, the severity of the condition to be treated, the weight of the subject and the duration of therapy.
- the drug substance is incorporated into a biodegradable polymer matrix consisting of three different linear polylactide-co-glycolide polymers (PLGAs).
- the PLGAs have a lactide: glycolide monomer ratio of 100:0 to 40:60, preferably 90:10 to 40:60, more preferably 85:15 to 65:35.
- the PLGAs according to the present invention have a molecular weight (Mw) ranging from 1,000 to 500,000 Da, preferably from 5,000 to 100,000 Da.
- Mw molecular weight
- the architecture of the polymers is linear.
- the inherent viscosity (IV) of the PLGAs according to the present invention is below 0.9 dl/g in CHCl 3 , preferentially below 0.8 dl/g in CHCl 3 .
- the inherent viscosities can be measured by the conventional methods of flow time measurement, as described for example in “Pharmacopoée Eurotigenne”, 1997, pages 17-18 (capillary tube method). Unless stated otherwise, these viscosities have been measured in chloroform at a concentration of 0.5% at 25° C. or in hexaisofluoropropanol at a concentration of 0.5% at 30° C.
- End groups of the PLGAs according to the present invention can be but are not limited to Hydroxy, carboxy, ester or the like.
- the drug substance content of the depot formulation (the loading) is in a range of 1% to 30%, preferred 10% to 25%, more preferred 15% to 20%.
- the loading is defined as the weight ratio of drug substance as free base to the total mass of the PLGA formulation.
- Suitable polymers are commonly known but not limited to those commercially available as RESOMER® by Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany, LACTEL® by Absorbable Polymers International (API), Pelham, Ala., USA, MEDISORB® by Alkermes, Inc., Cambridge, Mass., USA, PURASORB® by PURAC biochem By, Gorinchem, The Netherlands. Examples of suitable polymers are listed in Table 1.
- Plasma levels with low variability can be achieved over a time period of more then three month, preferentially between three and six month, only with pharmaceutical compositions according to the present invention, not with formulations containing only one single polymer from the table above.
- the pharmaceutical composition according to the present invention can be manufactured aseptically or non-aseptically and sterilized terminally by gamma irradiation.
- Preferred is terminal sterilization by gamma irradiation, resulting in a product with the highest sterility assurance possible.
- the pharmaceutical composition according to the present invention may also contain one or more pharmaceutical excipients modulating the release behavior in an amount of 0.1% to 50%.
- pharmaceutical excipients modulating the release behavior in an amount of 0.1% to 50%.
- examples of such agents are: Poly(vinylpyrrolidone), carboxymethyl cellulose sodium (CMC-Na), dextrin, poly(ethyleneglycol), suitable surfactants such as poloxamers, also known as poly(oxyethylene-block-oxypropylene), Poly(oxyethylene)-sorbitan-fatty acid esters known and commercially available under the trade name TWEEN® (e.g. Tween 20, Tween 40, Tween 60, Tween 80, Tween 65 Tween 85, Tween 21, Tween 61, Tween 81), Sorbitan fatty acid esters e.g.
- SPAN Lecithins
- inorganic salts such as zinc carbonate, magnesium hydroxide, magnesium carbonate, or protamine, e.g. human protamine or salmon protamine, or natural or synthetic polymers bearing amine-residues such as polylysine.
- the pharmaceutical composition according to the present invention can be a depot mixture or a polymer blend of different polymers in terms of compositions, molecular weight and/or polymer architectures.
- a polymer blend is defined herein as a solid solution or suspension of three different linear polymers in one implant or microparticle.
- a mixture of depots in contrast is defined herein as a mixture of two or more depots like implants or microparticles or semisolid formulations of different composition with one or more PLGAs in each depot.
- Preferred is a pharmaceutical composition wherein the three PLGAs are present as polymer blend.
- the pharmaceutical composition according to the present invention can be in the form of implants, semisolids (gels), liquid solutions or suspensions which solidify in situ once they are injected or microparticles.
- Preferred are microparticles.
- Preparation of microparticles comprising octreotide or a pharmaceutically-acceptable salt thereof is know; and for instance disclosed in U.S. Pat. No. 5,445,832 or U.S. Pat. No. 5,538,739.
- the microparticles according to the present invention may have a diameter from a few submicrons to a few millimeters, e.g. from about 0.01 microns to about 2 mm, e.g. from about 0.1 microns to about 500 microns.
- the microparticles according to the present invention may be mixed or coated with an anti-agglomerating agent or covered by a layer of an anti-agglomerating agent, e.g. in a prefilled syringe or vial.
- Suitable anti-agglomerating agents include, e.g. mannitol, glucose, dextrose, sucrose, sodium chloride, or water soluble polymers such as polyvinylpyrrolidone or polyethylene glycol, e.g. with the properties described above.
- an anti-agglomerating agent is present in an amount of about 0.1 to about 10%, preferentially about 3% to 5%, e.g. about 4% by weight of the microparticles.
- a preferred anti-agglomerating agent in this respect is mannitol.
- an anti-agglomerating agent can be applied to the microparticles during their manufacturing process.
- the microparticles at the step of filtering/washing the microparticles they can be additionally rinsed with an aqueous solution of an anti-agglomerating agent.
- a layer of the anti-agglomerating agent is formed on the surface of the microparticles.
- the anti-agglomerating agent is present in the microparticles at an amount of less than 10%, more preferred less than 2%, most preferred less than 0.5% by weight of the microparticles.
- a preferred anti-agglomerating agent in this respect is mannitol.
- microparticles may be manufactured by several processes known in the art, e.g., coacervation or phase separation, spray drying, water-in-oil (W/O) or water-in-oil-in-water (W/O/W) or solids-in-oil-in-water (S/O/W) emulsion/suspension methods followed by solvent extraction or solvent evaporation.
- W/O water-in-oil
- W/O/W water-in-oil-in-water
- S/O/W solids-in-oil-in-water
- the emulsion/suspension method is a preferred process, which comprises the following steps:
- Suitable organic solvents for the polymers include e.g. ethyl acetate, acetone, THF, acetonitrile, or halogenated hydrocarbons, e.g. methylene chloride, chloroform or hexafluoroisopropanol.
- Suitable examples of a stabilizer for step (iib) include Poly(vinylalcohol) (PVA), in an amount of 0.1 to 5%, Hydroxyethyl cellulose (HEC) and/or hydroxypropyl cellulose (HPC), in a total amount of 0.01 to 5%, Poly(vinyl pyrolidone), Gelatin, preferably porcine or fish gelatin.
- PVA Poly(vinylalcohol)
- HEC Hydroxyethyl cellulose
- HPC hydroxypropyl cellulose
- Gelatin preferably porcine or fish gelatin.
- the dry microparticles composition can be terminally sterilized by gamma irradiation (overkill sterilization), optionally in bulk or after filling in the final container resulting in the highest sterility assurance possible.
- the bulk sterilized microparticles can be resuspended in a suitable vehicle and filled as a suspension into a suitable device such as double chamber syringe with subsequent freeze drying.
- composition according to the present invention containing microparticles may also contain a vehicle to facilitate reconstitution.
- the microparticles Prior to administration, the microparticles are suspended in a suitable vehicle for injection.
- said vehicle is water based containing pharmaceutical excipients such as mannitol, sodium chloride, glucose, dextrose, sucrose, or glycerins, non-ionic surfactants (e.g. poloxamers, poly(oxyethylene)-sorbitan-fatty acid esters, carboxymethyl cellulose sodium (CMC-Na), sorbitol, poly(vinylpyrrolidone), or aluminium monostearate in order to ensure isotonicity and to improve the wettability and sedimentation properties of the microparticles.
- the wetting and viscosity enhancing agents may be present in an amount of 0.01 to 1%; the isotonicity agents are added in a suitable amount to ensure an isotonic injectable suspension.
- the invention further provides the use of a pharmaceutical composition according to the present invention for inter alia long-term maintenance therapy in acromegalic patients, and treatment of severe diarrhea and flushing associated with malignant carcinoid tumors and vasoactive intestinal peptide tumors (vipoma tumors).
- compositions according to the present invention can be shown in standard clinical or animal studies.
- the invention further provides a kit comprising the depot formulation in a vial, optionally equipped with a transfer set, together with a water-based vehicle in an ampoule, vial or prefilled syringe or as microparticles and vehicle separated in a double chamber syringe.
- PLGA polymers An appropriate amount of the PLGA polymers is dissolved in an appropriate amount of dichloromethane to give an appropriate polymer concentration as stated in column “PLGA conc.” in Table 2.
- An appropriate amount of drug substance is weight into a glass beaker and the polymer solution is poured over the drug substance so that the resulting microparticles have a drug load as stated in column “drug load”.
- the suspension is homogenized with an Ultra-Turrax rotor-stator mixer with 20′000 rpm for 1 min under cooling with an ice/water mixture. This suspension is referred to as S/O suspension.
- the S/O suspension is mixed with the 0.5% PVA18-88 solution by pumping the S/O suspension with the help of a flexible tube pump (Perpex, Viton tube) at a rate of 10 ml/min into a turbine and by pumping the aqueous solution with a gear pump (Ismatec MV-Z/B with pumping head P140) at a rate of 200 ml/min into the same turbine.
- the two solutions are mixed in the turbine at 4′500 rpm.
- the homogenized S/O/W emulsion is collected into a 2 L glass beaker which is prefilled with 200 ml of the buffered PVA solution.
- the S/O/W emulsion is then heated up to 52° C. in 5 h. The temperature of 52° C. is hold for further 30 min, before the batch is cooled to room temperature again. During this process escaping dichloromethane is removed by vacuum and the batch is stirred by a 4 blade-propeller-stirrer at 250 rpm.
- microparticles are formed out of the S/O/W emulsion.
- the microparticles are collected by filtration (5 ⁇ m). They are washed 5 times with 200 ml water and dried for 36 h at 20° C. and 0.030 mbar. The dried microparticles are sieved through 140 ⁇ m and filled under nitrogen into glass vials. Prepared in that way, the microparticles are sterilized by gamma-irradiation with a dose of 30 kGy.
- the particle size of the microparticles is measured by laser light diffraction.
- the microparticles are resuspended in white spirit using ultra sound.
- Table 2 gives the diameter x 90 (90% of all particles are smaller than this value) after 120 seconds of ultra sound treatment.
- the assay of the microparticles is determined by HPLC after dissolving the microparticles with ultra sound in a 3:2 mixture of acetonitrile and methanol and further 1:1 dilution with a sodium acetate buffer (pH 4). The solution is cleared from residual particulate matter by centrifugation.
- Example 1-1 octreotide pamoate microparticles prepared by blend of three linear PLGAs Drug PLGA Pro- Assay Ex. Load conc. cess Particle size Batch ( % ) ( % ) A B C info x 90 ( ⁇ m) ( % ) 1-1 20 20 33 34 33 7/38 68.4 19.6 A: PLGA 65:35 ester 0.6 dL/g ( % ) B: PLGA 75:25 ester 0.4 dL/g ( % ) C: PLGA 85:15 ester 0.6 dL/g ( % )
- Process Info Further Process Information
- CMC-Na, Mannitol and Pluronic F68 in an amount as given in Table 3 are dissolved in about 15 ml hot deionized water of a temperature of about 90° C. under strong stirring with a magnetic stirrer.
- the resulting clear solution is cooled to 20° C. and filled up with deionized water to 20.0 ml.
- Example 1-1 180 mg of microparticles of example 1-1 are suspended in 1.0 ml of a vehicle of composition D (Table 3) in a 6 R vials.
- the suspensions are homogenized by shaking for about 30 seconds by hand.
- the reconstituted suspension may be injected without any issues using a 20 Gauge needle.
- microparticles of example 1-1 are reconstituted in 1 ml of the vehicle composition F (Table 3), homogenized by stirring for 1 to 12 hours and then freeze-dried in a lyophilisator. Reconstitution of the lyophilized microparticles with 1 ml pure water (aqua ad injectabilia) resulted in fast and good wetting of the microparticles that may be injected without any issues using a 20 Gauge needle.
- Microparticles containing octreotide are suspended in 1 ml of a suitable aqueous vehicle and the resulting suspension is injected intramusculary (i.m.) into male New Zealand White bastard rabbits in a dose of 12 mg/kg.
- a suitable aqueous vehicle for each dosage form (test group) 4 animals are used. After defined time periods (indicated in the table 4) plasma samples are taken and analyzed for octreotide concentration.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dermatology (AREA)
- Endocrinology (AREA)
- Zoology (AREA)
- Dispersion Chemistry (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Diabetes (AREA)
- Nutrition Science (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
The present invention relates to sustained release formulations comprising as active ingredient octreotide or a pharmaceutically-acceptable salt thereof and three different linear polylactide-co-glycolide polymers (PLGAs).
Description
- The present invention relates to sustained release formulations comprising as active ingredient octreotide or a pharmaceutically-acceptable salt thereof and three different linear polylactide-co-glycolide polymers (PLGAs).
- These pharmaceutical compositions according to the present invention are indicated for inter alia long-term maintenance therapy in acromegalic patients, and treatment of severe diarrhea and flushing associated with malignant carcinoid tumors and vasoactive intestinal peptide tumors (vipoma tumors).
- Peptide drugs are usually administerd systemically, e.g. parenterally. However, parenteral administration may be painful and cause discomfort, especially for repeated daily administrations. In order to minimize the number of injections to a patient, the drug substance should be administered as a depot formulation. A common drawback with injectable depot formulations is the fluctuation in plasma levels such as high peak levels together with plasma levels close to zero during the entire release periode.
- Sustained release formulations comprising as active ingredient octreotide or a pharmaceutically acceptable salt thereof and two or more different polylactide-co-glycolide polymers (PLGAs) have, for instance, been also disclosed in WO2007/071395.
- The present invention discloses a sustained release formulation comprising as active ingredient (drug substance) octreotide or a pharmaceutically-acceptable salt thereof. Octreotide is a somatostatin analog having the following formula:
- The active ingredient may be in the form of a pharmaceutically acceptable salt of octreotide, such as an acid addition salt with e.g. inorganic acid, polymeric acid or organic acid, for example with hydrochloric acid, acetic acid, lactic acid, citric acid, fumaric acid, malonic acid, maleic acid, tartaric acid, aspartic acid, benzoic acid, succinic acid or pamoic (embonic) acid. Acid addition salts may exist as mono- or divalent salts, e.g. depending whether 1 or 2 acid equivalents are added. Preferred is the pamoate monosalt of octreotide.
- The particle size distribution of the drug substance influences the release profile of the drug from the depot form. The drug substance which is used to prepare the depot formulation is crystalline or in the form of an amorphous powder. Preferred is an amorphous powder which has a particle of a size of about 0.1 microns to about 15 microns (99%>0.1 microns, 99%<15 microns), preferably from 1 to less than about 10 microns (90%>1 microns, 90%<10 microns). The drug substance preferentially undergoes a micronization process to present the required particle size distribution.
- The present invention further provides a sustained release pharmaceutical composition (depot) comprising as active ingredient octreotide or a pharmaceutically-acceptable salt thereof incorporated in blends or mixtures of poly(lactide-co-glycolide)s (PLGAs), for instance in form of microparticles, implants or semisolid formulations.
- Alternatively to blends of PLGAs, in another aspect of the present invention the pharmaceutical composition comprises a mixture of PLGA polymers containing the active ingredient; i.e. the active ingredient may be incorporated into one or more PLGAs in form of microparticles, implants or semisolid formulations and is then mixed with another microparticle or implant or semisolid formulation also comprising the active ingredient and one or more PLGAs.
- The pharmaceutical composition according to the present invention allows a sustained release of the active ingredient over a period of more than three month, preferentially between three and six months. During the release of the active ingredient the plasma levels of octreotide are within the therapeutic range. It is understood that the exact dose of octreotide will depend on a number of factors, including the condition to be treated, the severity of the condition to be treated, the weight of the subject and the duration of therapy.
- Surprisingly fluctuations in plasma levels can significantly be reduced by using a suitable combination of three different linear PLGAs in the pharmaceutical composition according to the present invention.
- The drug substance is incorporated into a biodegradable polymer matrix consisting of three different linear polylactide-co-glycolide polymers (PLGAs). The PLGAs have a lactide: glycolide monomer ratio of 100:0 to 40:60, preferably 90:10 to 40:60, more preferably 85:15 to 65:35.
- The PLGAs according to the present invention have a molecular weight (Mw) ranging from 1,000 to 500,000 Da, preferably from 5,000 to 100,000 Da. The architecture of the polymers is linear.
- The inherent viscosity (IV) of the PLGAs according to the present invention is below 0.9 dl/g in CHCl3, preferentially below 0.8 dl/g in CHCl3. The inherent viscosities can be measured by the conventional methods of flow time measurement, as described for example in “Pharmacopoée Européenne”, 1997, pages 17-18 (capillary tube method). Unless stated otherwise, these viscosities have been measured in chloroform at a concentration of 0.5% at 25° C. or in hexaisofluoropropanol at a concentration of 0.5% at 30° C.
- End groups of the PLGAs according to the present invention can be but are not limited to Hydroxy, carboxy, ester or the like.
- The drug substance content of the depot formulation (the loading) is in a range of 1% to 30%, preferred 10% to 25%, more preferred 15% to 20%. The loading is defined as the weight ratio of drug substance as free base to the total mass of the PLGA formulation.
- Suitable polymers are commonly known but not limited to those commercially available as RESOMER® by Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany, LACTEL® by Absorbable Polymers International (API), Pelham, Ala., USA, MEDISORB® by Alkermes, Inc., Cambridge, Mass., USA, PURASORB® by PURAC biochem By, Gorinchem, The Netherlands. Examples of suitable polymers are listed in Table 1.
-
TABLE 1 Examples of suitable polymers Inherent Producer No Product name Polymer viscosity [dL/g] Supplier 1 Resomer ® R 202 H Linear Poly(D,L-lactide) 0.16-0.241) Boehringer free carboxylic acid end group 2 Resomer ® R 202 S Linear Poly(D,L-lactide) 0.16-0.241) Boehringer 3 Resomer ® R 203 S Linear Poly(D,L-lactide) 0.25-0.351) Boehringer 4 Resomer ® RG 752 H Linear Poly(D,L-lactide-co- 0.14-0.221) Boehringer glycolide) 75:25 free carboxylic acid end group 5 Resomer ® RG 752 S Linear Poly(D,L-lactide-co- 0.16-0.241) Boehringer glycolide) 75:25 6 Resomer ® CR RG Linear Poly(D,L-lactide-co- 0.32-0.441) Boehringer 75:25 or Resomer ® glycolide) 75:25 RG Type 75:25 S/ Resomer ® RG 753 S 7 Lactel ® 100D020A Linear Poly(D,L-lactide) 0.15-0.252) API/Durect free carboxylic acid end group 8 Lactel ® 100D040A Linear Poly(D,L-lactide) 0.26-0.542) API/Durect free carboxylic acid end group 9 Lactel ® 100D040 Linear Poly(D,L-lactide) 0.26-0.542) API/Durect 10 Lactel ® 100D065 Linear Poly(D,L-lactide) 0.55-0.752) API/Durect 11 Lactel ® 85DG040 Linear Poly(D,L-lactide-co- 0.26-0.542) API/Durect glycolide) 85:15 12 Lactel ® 85DG065 Linear Poly(D,L-lactide-co- 0.55-0.752) API/Durect glycolide) 85:15 13 Lactel ® 75DG065 Linear Poly(D,L-lactide-co- 0.55-0.752) API/Durect glycolide) 75:25 14 Lactel ® 65DG065 Linear Poly(D,L-lactide-co- 0.55-0.753) API/Durect glycolide) 65:35 15 Lactel ® 50DG065 Linear Poly(D,L-lactide-co- 0.55-0.753) API/Durect glycolide) 50:50 16 Medisorb ® Linear Poly(D,L-lactide) 0.66-0.80 Alkermes 100 DL HIGH IV 17 Medisorb ® Linear Poly(D,L-lactide) 0.50-0.65 Alkermes 100 DL LOW IV 18 Medisorb ® Linear Poly(D,L-lactide-co- 0.66-0.80 Alkermes 8515 DL HIGH IV glycolide) 85:15 19 Medisorb ® Linear Poly(D,L-lactide-co- 0.50-0.65 Alkermes 8515 DL LOW IV glycolide)85:15 20 Medisorb ® Linear Poly(D,L-lactide-co- 0.66-0.80 Alkermes 7525 DL HIGH IV glycolide) 75:25 21 Medisorb ® Linear Poly(D,L-lactide-co- 0.50-0.65 Alkermes 7525 DL LOW IV glycolide) 75:25 22 Medisorb ® Linear Poly(D,L-lactide-co- 0.66-0.80 Alkermes 6535 DL HIGH IV glycolide) 65:35 23 Medisorb ® Linear Poly(D,L-lactide-co- 0.50-0.65 Alkermes 6535 DL LOW IV glycolide) 65:35 24 Medisorb ® Linear Poly(D,L-lactide-co- 0.66-0.80 Alkermes 5050 DL HIGH IV glycolide) 50:50 25 Medisorb ® Linear Poly(D,L-lactide-co- 0.50-0.65 Alkermes 5050 DL LOW IV glycolide) 50:50 1)IV has been determined in chloroform at a concentration of 0.1% at 25° C. 2)IV has been determined in chloroform at a concentration of 0.5 g/dL at 30° C. 3)IV has been determined in Hexafluoroisopropanol at a concentration of 0.5 g/dL at 30° C. - Plasma levels with low variability can be achieved over a time period of more then three month, preferentially between three and six month, only with pharmaceutical compositions according to the present invention, not with formulations containing only one single polymer from the table above.
- In addition, the pharmaceutical composition according to the present invention can be manufactured aseptically or non-aseptically and sterilized terminally by gamma irradiation. Preferred is terminal sterilization by gamma irradiation, resulting in a product with the highest sterility assurance possible.
- The pharmaceutical composition according to the present invention may also contain one or more pharmaceutical excipients modulating the release behavior in an amount of 0.1% to 50%. Examples of such agents are: Poly(vinylpyrrolidone), carboxymethyl cellulose sodium (CMC-Na), dextrin, poly(ethyleneglycol), suitable surfactants such as poloxamers, also known as poly(oxyethylene-block-oxypropylene), Poly(oxyethylene)-sorbitan-fatty acid esters known and commercially available under the trade name TWEEN® (e.g. Tween 20, Tween 40, Tween 60, Tween 80, Tween 65 Tween 85, Tween 21, Tween 61, Tween 81), Sorbitan fatty acid esters e.g. of the type known and commercially available under the trade name SPAN, Lecithins, inorganic salts such as zinc carbonate, magnesium hydroxide, magnesium carbonate, or protamine, e.g. human protamine or salmon protamine, or natural or synthetic polymers bearing amine-residues such as polylysine.
- The pharmaceutical composition according to the present invention can be a depot mixture or a polymer blend of different polymers in terms of compositions, molecular weight and/or polymer architectures. A polymer blend is defined herein as a solid solution or suspension of three different linear polymers in one implant or microparticle. A mixture of depots in contrast is defined herein as a mixture of two or more depots like implants or microparticles or semisolid formulations of different composition with one or more PLGAs in each depot. Preferred is a pharmaceutical composition wherein the three PLGAs are present as polymer blend.
- The pharmaceutical composition according to the present invention can be in the form of implants, semisolids (gels), liquid solutions or suspensions which solidify in situ once they are injected or microparticles. Preferred are microparticles. Preparation of microparticles comprising octreotide or a pharmaceutically-acceptable salt thereof is know; and for instance disclosed in U.S. Pat. No. 5,445,832 or U.S. Pat. No. 5,538,739.
- The following part of the invention is focused on polymer microparticles although the descriptions are applicable for implants, semisolids and liquids as well.
- The microparticles according to the present invention may have a diameter from a few submicrons to a few millimeters, e.g. from about 0.01 microns to about 2 mm, e.g. from about 0.1 microns to about 500 microns. For pharmaceutical microparticles, diameters of at most about 250 microns, e.g. 10 to 200 microns, preferably 10 to 130 microns, more preferably 10 to 90 microns.
- The microparticles according to the present invention may be mixed or coated with an anti-agglomerating agent or covered by a layer of an anti-agglomerating agent, e.g. in a prefilled syringe or vial. Suitable anti-agglomerating agents include, e.g. mannitol, glucose, dextrose, sucrose, sodium chloride, or water soluble polymers such as polyvinylpyrrolidone or polyethylene glycol, e.g. with the properties described above. For microparticles according to the present invention in dry state preferably an anti-agglomerating agent is present in an amount of about 0.1 to about 10%, preferentially about 3% to 5%, e.g. about 4% by weight of the microparticles. A preferred anti-agglomerating agent in this respect is mannitol.
- Alternatively, an anti-agglomerating agent can be applied to the microparticles during their manufacturing process. For example, at the step of filtering/washing the microparticles they can be additionally rinsed with an aqueous solution of an anti-agglomerating agent. Thus, a layer of the anti-agglomerating agent is formed on the surface of the microparticles. Preferably, the anti-agglomerating agent is present in the microparticles at an amount of less than 10%, more preferred less than 2%, most preferred less than 0.5% by weight of the microparticles. A preferred anti-agglomerating agent in this respect is mannitol.
- The manufacturing process for the depot formulation of the current invention is described in detail for microparticles:
- The microparticles may be manufactured by several processes known in the art, e.g., coacervation or phase separation, spray drying, water-in-oil (W/O) or water-in-oil-in-water (W/O/W) or solids-in-oil-in-water (S/O/W) emulsion/suspension methods followed by solvent extraction or solvent evaporation. The emulsion/suspension method is a preferred process, which comprises the following steps:
- (i) preparation of an internal organic phase comprising
- (ia) dissolving the polymer or polymers in a suitable organic solvent or solvent mixture; optionally dissolving/dispersing suitable additives;
- (ib) dissolving/suspending/emulsification of the drug substance in the polymer solution obtained in step (ia);
- (ii) preparation of an external aqueous phase containing stabilizers and optionally but preferably buffer salts;
- (iii) mixing the internal organic phase with the external aqueous phase e.g. with a device creating high shear forces, e.g. with a turbine or static mixer, to form an emulsion; and
- (iv) hardening the microparticles by solvent evaporation or solvent extraction, washing the microparticles, e.g. with water, collecting and drying the microparticles, e.g. freeze-drying or drying under vacuum, and sieving the microparticles through 140 μm.
- Suitable organic solvents for the polymers include e.g. ethyl acetate, acetone, THF, acetonitrile, or halogenated hydrocarbons, e.g. methylene chloride, chloroform or hexafluoroisopropanol.
- Suitable examples of a stabilizer for step (iib) include Poly(vinylalcohol) (PVA), in an amount of 0.1 to 5%, Hydroxyethyl cellulose (HEC) and/or hydroxypropyl cellulose (HPC), in a total amount of 0.01 to 5%, Poly(vinyl pyrolidone), Gelatin, preferably porcine or fish gelatin.
- The dry microparticles composition can be terminally sterilized by gamma irradiation (overkill sterilization), optionally in bulk or after filling in the final container resulting in the highest sterility assurance possible. Alternatively the bulk sterilized microparticles can be resuspended in a suitable vehicle and filled as a suspension into a suitable device such as double chamber syringe with subsequent freeze drying.
- The pharmaceutical composition according to the present invention containing microparticles may also contain a vehicle to facilitate reconstitution.
- Prior to administration, the microparticles are suspended in a suitable vehicle for injection. Preferably, said vehicle is water based containing pharmaceutical excipients such as mannitol, sodium chloride, glucose, dextrose, sucrose, or glycerins, non-ionic surfactants (e.g. poloxamers, poly(oxyethylene)-sorbitan-fatty acid esters, carboxymethyl cellulose sodium (CMC-Na), sorbitol, poly(vinylpyrrolidone), or aluminium monostearate in order to ensure isotonicity and to improve the wettability and sedimentation properties of the microparticles. The wetting and viscosity enhancing agents may be present in an amount of 0.01 to 1%; the isotonicity agents are added in a suitable amount to ensure an isotonic injectable suspension.
- The invention further provides the use of a pharmaceutical composition according to the present invention for inter alia long-term maintenance therapy in acromegalic patients, and treatment of severe diarrhea and flushing associated with malignant carcinoid tumors and vasoactive intestinal peptide tumors (vipoma tumors).
- The utility of the pharmaceutical compositions according to the present invention can be shown in standard clinical or animal studies.
- The invention further provides a kit comprising the depot formulation in a vial, optionally equipped with a transfer set, together with a water-based vehicle in an ampoule, vial or prefilled syringe or as microparticles and vehicle separated in a double chamber syringe.
- The following examples are illustrative, but do not serve to limit the scope of the invention described herein. The examples are meant only to suggest a method of practicing the present invention.
- An appropriate amount of the PLGA polymers is dissolved in an appropriate amount of dichloromethane to give an appropriate polymer concentration as stated in column “PLGA conc.” in Table 2. An appropriate amount of drug substance is weight into a glass beaker and the polymer solution is poured over the drug substance so that the resulting microparticles have a drug load as stated in column “drug load”.
- E.g. for microparticles with a drug load of 20% and a polymer concentration of 20% the numbers are as the following: 3.547 g of the PLGA polymers are dissolved into 17.7 ml dichloromethane to give a 20% (w/v) polymer solution. 1.453 g of octreotide pamoate (corresponding to 1.00 g=20% octreotide free base) is weight into a glass beaker and the polymer solution is poured over the drug substance.
- The suspension is homogenized with an Ultra-Turrax rotor-stator mixer with 20′000 rpm for 1 min under cooling with an ice/water mixture. This suspension is referred to as S/O suspension.
- 10.00 g of Polyvinylalcohol PVA 18-88, 3.62 g KH2PO4 and 15.14 g Na2HPO4 are dissolved in 2.00 L deionized water to form a 0.5% PVA 18-88 solution buffered to pH 7.4.
- The S/O suspension is mixed with the 0.5% PVA18-88 solution by pumping the S/O suspension with the help of a flexible tube pump (Perpex, Viton tube) at a rate of 10 ml/min into a turbine and by pumping the aqueous solution with a gear pump (Ismatec MV-Z/B with pumping head P140) at a rate of 200 ml/min into the same turbine. The two solutions are mixed in the turbine at 4′500 rpm. The homogenized S/O/W emulsion is collected into a 2 L glass beaker which is prefilled with 200 ml of the buffered PVA solution.
- The S/O/W emulsion is then heated up to 52° C. in 5 h. The temperature of 52° C. is hold for further 30 min, before the batch is cooled to room temperature again. During this process escaping dichloromethane is removed by vacuum and the batch is stirred by a 4 blade-propeller-stirrer at 250 rpm.
- As a result, microparticles are formed out of the S/O/W emulsion. The microparticles are collected by filtration (5 μm). They are washed 5 times with 200 ml water and dried for 36 h at 20° C. and 0.030 mbar. The dried microparticles are sieved through 140 μm and filled under nitrogen into glass vials. Prepared in that way, the microparticles are sterilized by gamma-irradiation with a dose of 30 kGy.
- The particle size of the microparticles is measured by laser light diffraction. The microparticles are resuspended in white spirit using ultra sound. Table 2 gives the diameter x90 (90% of all particles are smaller than this value) after 120 seconds of ultra sound treatment.
- The assay of the microparticles is determined by HPLC after dissolving the microparticles with ultra sound in a 3:2 mixture of acetonitrile and methanol and further 1:1 dilution with a sodium acetate buffer (pH 4). The solution is cleared from residual particulate matter by centrifugation.
-
TABLE 2 Example 1-1: octreotide pamoate microparticles prepared by blend of three linear PLGAs Drug PLGA Pro- Assay Ex. Load conc. cess Particle size Batch ( % ) ( % ) A B C info x90 (μm) ( % ) 1-1 20 20 33 34 33 7/38 68.4 19.6 A: PLGA 65:35 ester 0.6 dL/g ( % ) B: PLGA 75:25 ester 0.4 dL/g ( % ) C: PLGA 85:15 ester 0.6 dL/g ( % ) - Process Info=Further Process Information:
- 38: Turbine speed 3800 rpm instead of 4500 rpm
- CMC-Na, Mannitol and Pluronic F68 in an amount as given in Table 3 are dissolved in about 15 ml hot deionized water of a temperature of about 90° C. under strong stirring with a magnetic stirrer. The resulting clear solution is cooled to 20° C. and filled up with deionized water to 20.0 ml.
-
TABLE 3 Suitable vehicles for the microparticles (Amounts given in g) A B C D E F G CMC-Na 0 0 0.05 0.14 0.28 0.35 0.40 Mannitol 0 1.04 0.99 0.90 0.76 0.74 0.68 Pluronic F68 0.04 0.04 0.04 0.04 0.04 0.04 0.04 - 180 mg of microparticles of example 1-1 are suspended in 1.0 ml of a vehicle of composition D (Table 3) in a 6 R vials. The suspensions are homogenized by shaking for about 30 seconds by hand. The reconstituted suspension may be injected without any issues using a 20 Gauge needle.
- 180 mg of microparticles of example 1-1 are reconstituted in 1 ml of the vehicle composition F (Table 3), homogenized by stirring for 1 to 12 hours and then freeze-dried in a lyophilisator. Reconstitution of the lyophilized microparticles with 1 ml pure water (aqua ad injectabilia) resulted in fast and good wetting of the microparticles that may be injected without any issues using a 20 Gauge needle.
- Microparticles containing octreotide are suspended in 1 ml of a suitable aqueous vehicle and the resulting suspension is injected intramusculary (i.m.) into male New Zealand White bastard rabbits in a dose of 12 mg/kg. For each dosage form (test group) 4 animals are used. After defined time periods (indicated in the table 4) plasma samples are taken and analyzed for octreotide concentration.
-
TABLE 4 Plasma levels (dose corrected values); concentration in ng/ml Ex. Time after Administration (days) Batch 0.021 0.042 0.083 0.167 0.250 1 2 3 5 8 12 1-1 20.250 18.621 7.534 2.320 0.966 0.159 0.303 0.799 1.235 1.534 1.999 Ex. Time after Administration (days) Batch 19 27 33 40 47 54 61 68 75 82 89 96 1-1 1.557 1.404 0.947 0.903 1.224 3.204 2.381 1.887 2.142 1.511 0.512 0.284
Claims (20)
1. A sustained release pharmaceutical composition comprising as active ingredient octreotide or a pharmaceutically-acceptable salt thereof and three different linear polylactide-co-glycolide polymers (PLGAs).
2. The pharmaceutical composition according to claim 1 wherein the PLGAs are present as polymer blend.
3. The pharmaceutical composition according to claim 1 wherein the PLGAs have a lactide:glycolide monomer ratio of 90:10 to 40:60.
4. The pharmaceutical composition according to claim 3 wherein the PLGAs have a lactide:glycolide monomer ratio of 85:15 to 65:35.
5. The pharmaceutical composition according to claim 1 wherein the inherent viscosity of the PLGAs is below 0.9 dl/g in CHCl3.
6. The pharmaceutical composition according to claim 5 wherein the inherent viscosity of the PLGAs is below 0.8 dl/g in CHCl3.
7. The pharmaceutical composition according to claim 1 comprising the pamoate salt of octreotide.
8. The pharmaceutical composition according to claim 1 wherein the release of the active ingredient is three or more months.
9. The pharmaceutical composition according to claim 8 wherein the release of the active ingredient is between three and six months.
10. The pharmaceutical composition according to claim 1 in form of microparticles, a semisolid or an implant.
11. The pharmaceutical composition according to claim 10 in form of microparticles.
12. The pharmaceutical composition according to claim 11 wherein the microparticles have a diameter between 10 μm and 90 μm.
13. The pharmaceutical composition according to claim 11 wherein the microparticles are additionally covered or coated with an anti-agglomerating agent.
14. The pharmaceutical composition according to claim 13 wherein the microparticles are coated with an anti-agglomerating agent and the anti-agglomerating agent is present in an amount of less than 2% by weight of the microparticles.
15. The pharmaceutical composition according to claim 13 wherein the anti-agglomerating agent is mannitol.
16. The pharmaceutical composition according to claim 1 sterilized by gamma irradiation.
17. (canceled)
18. A method of administering octreotide or a pharmaceutically-acceptable salt thereof for long-term maintenance therapy in acromegalic patients, and treatment of severe diarrhea and flushing associated with malignant carcinoid tumors and vasoactive intestinal peptide tumors (vipoma tumors), said method comprising administering to a patient in need of octreotide or a pharmaceutically-acceptable salt thereof a pharmaceutical composition according to claim 1 .
19. A process of manufacturing microparticles according to claim 11 comprising
(i) preparation of an internal organic phase comprising
(ia) dissolving the polymer or polymers in a suitable organic solvent or solvent mixture;
(ib) dissolving/suspending/emulsification of the drug substance in the polymer solution obtained in step (ia);
(ii) preparation of an external aqueous phase containing stabilizers;
(iii) mixing the internal organic phase with the external aqueous phase to form an emulsion; and
(iv) hardening the microparticles by solvent evaporation or solvent extraction, washing the microparticles, drying the microparticles and sieving the microparticles through 140 μm.
20. An administration kit comprising the pharmaceutical composition according to claim 1 in a vial, together with a water-based vehicle in an ampoule, vial or prefilled syringe or as microparticles and vehicle separated in a double chamber syringe.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP08150826.9 | 2008-01-30 | ||
| EP08150826 | 2008-01-30 | ||
| PCT/EP2009/051026 WO2009095450A1 (en) | 2008-01-30 | 2009-01-29 | Sustained release formulation comprising octreotide and three linear polylactide-co-glycolide polymers |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2009/051026 A-371-Of-International WO2009095450A1 (en) | 2008-01-30 | 2009-01-29 | Sustained release formulation comprising octreotide and three linear polylactide-co-glycolide polymers |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/472,219 Continuation US8999390B2 (en) | 2008-01-30 | 2012-05-15 | Sustained release formulation comprising octreotide and three linear polylactide-co-glycolide polymers |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20110003002A1 true US20110003002A1 (en) | 2011-01-06 |
Family
ID=39577789
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/865,145 Abandoned US20110003002A1 (en) | 2008-01-30 | 2009-01-29 | Sustained release formulation comprising octreotide and three linear polylactide-co-glycolide polymers |
| US13/472,219 Active 2029-08-18 US8999390B2 (en) | 2008-01-30 | 2012-05-15 | Sustained release formulation comprising octreotide and three linear polylactide-co-glycolide polymers |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/472,219 Active 2029-08-18 US8999390B2 (en) | 2008-01-30 | 2012-05-15 | Sustained release formulation comprising octreotide and three linear polylactide-co-glycolide polymers |
Country Status (14)
| Country | Link |
|---|---|
| US (2) | US20110003002A1 (en) |
| EP (1) | EP2247282B1 (en) |
| JP (2) | JP5791278B2 (en) |
| KR (2) | KR101921800B1 (en) |
| CN (2) | CN104127367A (en) |
| AU (1) | AU2009209594A1 (en) |
| BR (1) | BRPI0907011A8 (en) |
| CA (1) | CA2713339C (en) |
| ES (1) | ES2522342T3 (en) |
| MX (1) | MX2010008365A (en) |
| PL (1) | PL2247282T3 (en) |
| PT (1) | PT2247282E (en) |
| RU (1) | RU2541104C2 (en) |
| WO (1) | WO2009095450A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150087655A1 (en) * | 2012-04-23 | 2015-03-26 | Otsuka Pharmaceutical Co., Ltd. | Dihydrate of benzothiophene compound or of a salt thereof, and process for producing the same |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102526700B (en) * | 2011-12-31 | 2014-08-06 | 江苏奥赛康药业股份有限公司 | Octreotide acetate freeze-dried combination for injection and preparation method thereof |
| EP2823808A1 (en) * | 2013-07-09 | 2015-01-14 | Ipsen Pharma S.A.S. | Pharmaceutical composition for a sustained release of lanreotide |
| CN106727358A (en) * | 2017-01-24 | 2017-05-31 | 广州帝奇医药技术有限公司 | The slow releasing composition of Aripiprazole and its derivative and the preparation method of the slow releasing composition |
| WO2021056020A1 (en) | 2019-09-16 | 2021-03-25 | Amgen Inc. | Method for external sterilization of drug delivery device |
| EP4329734A4 (en) * | 2021-04-26 | 2025-04-02 | Celanese EVA Performance Polymers LLC | IMPLANTABLE DEVICE FOR THE SUSTAINED RELEASE OF A MACROMOLECULAR DRUG COMPOUND |
| WO2023016565A1 (en) * | 2021-08-13 | 2023-02-16 | 江西济民可信集团有限公司 | Microsphere suspension, microparticle formulation, and preparation method therefor |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5876761A (en) * | 1989-07-07 | 1999-03-02 | Novartis Ag | Sustained release formulations of water soluble peptides |
| US6217893B1 (en) * | 1997-04-18 | 2001-04-17 | Pharma Biotech | Sustained-release compositions and method for preparing same |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2316052C (en) | 1989-07-07 | 2008-09-02 | David Bodmer | Sustained release formulations of water soluble peptides |
| US5538739A (en) | 1989-07-07 | 1996-07-23 | Sandoz Ltd. | Sustained release formulations of water soluble peptides |
| HU221294B1 (en) | 1989-07-07 | 2002-09-28 | Novartis Ag | Process for producing retarde compositions containing the active ingredient in a polymeric carrier |
| CN101057824A (en) * | 2002-07-31 | 2007-10-24 | 阿尔萨公司 | Injectable multimodal polymer depot compositions and uses thereof |
| NZ539810A (en) * | 2002-11-06 | 2008-03-28 | Alza Corp | Controlled release injectable depot formulations |
| KR100466637B1 (en) * | 2003-06-26 | 2005-01-13 | 주식회사 펩트론 | Method for preparing a mixed formulation of sustained release microspheres by continuous one-step process |
| WO2005009357A2 (en) | 2003-07-23 | 2005-02-03 | Pr Pharmaceuticals, Inc. | Controlled release compositions |
| MY158342A (en) * | 2003-11-14 | 2016-09-30 | Novartis Ag | Pharmaceutical composition |
| KR101245919B1 (en) * | 2005-12-22 | 2013-03-20 | 노파르티스 아게 | Sustained release formulation comprising octreotide and two or more polylactide-co-glycolide polymers |
-
2009
- 2009-01-29 CN CN201410317482.3A patent/CN104127367A/en active Pending
- 2009-01-29 ES ES09705454.8T patent/ES2522342T3/en active Active
- 2009-01-29 US US12/865,145 patent/US20110003002A1/en not_active Abandoned
- 2009-01-29 KR KR1020167010517A patent/KR101921800B1/en active Active
- 2009-01-29 RU RU2010135629/15A patent/RU2541104C2/en active
- 2009-01-29 AU AU2009209594A patent/AU2009209594A1/en not_active Abandoned
- 2009-01-29 MX MX2010008365A patent/MX2010008365A/en active IP Right Grant
- 2009-01-29 JP JP2010544702A patent/JP5791278B2/en active Active
- 2009-01-29 PT PT97054548T patent/PT2247282E/en unknown
- 2009-01-29 CN CN2009801025770A patent/CN101917969A/en active Pending
- 2009-01-29 CA CA2713339A patent/CA2713339C/en not_active Expired - Fee Related
- 2009-01-29 WO PCT/EP2009/051026 patent/WO2009095450A1/en not_active Ceased
- 2009-01-29 EP EP09705454.8A patent/EP2247282B1/en active Active
- 2009-01-29 KR KR1020107017006A patent/KR20100110848A/en not_active Ceased
- 2009-01-29 PL PL09705454T patent/PL2247282T3/en unknown
- 2009-01-29 BR BRPI0907011A patent/BRPI0907011A8/en active Search and Examination
-
2012
- 2012-05-15 US US13/472,219 patent/US8999390B2/en active Active
-
2014
- 2014-12-26 JP JP2014265878A patent/JP2015107985A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5876761A (en) * | 1989-07-07 | 1999-03-02 | Novartis Ag | Sustained release formulations of water soluble peptides |
| US6217893B1 (en) * | 1997-04-18 | 2001-04-17 | Pharma Biotech | Sustained-release compositions and method for preparing same |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150087655A1 (en) * | 2012-04-23 | 2015-03-26 | Otsuka Pharmaceutical Co., Ltd. | Dihydrate of benzothiophene compound or of a salt thereof, and process for producing the same |
| US9499525B2 (en) * | 2012-04-23 | 2016-11-22 | Otsuka Pharmaceutical Co., Ltd. | Dihydrate of benzothiophene compound or of a salt thereof, and process for producing the same |
| US10407415B2 (en) | 2012-04-23 | 2019-09-10 | Otsuka Pharmaceutical Co., Ltd. | Dihydrate of benzothiophene compound or of a salt thereof, and process for producing the same |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2011510951A (en) | 2011-04-07 |
| RU2541104C2 (en) | 2015-02-10 |
| CN104127367A (en) | 2014-11-05 |
| MX2010008365A (en) | 2010-08-23 |
| JP2015107985A (en) | 2015-06-11 |
| RU2010135629A (en) | 2012-03-10 |
| EP2247282A1 (en) | 2010-11-10 |
| US8999390B2 (en) | 2015-04-07 |
| PL2247282T3 (en) | 2015-03-31 |
| EP2247282B1 (en) | 2014-08-20 |
| CN101917969A (en) | 2010-12-15 |
| KR20160052756A (en) | 2016-05-12 |
| BRPI0907011A8 (en) | 2015-09-29 |
| ES2522342T3 (en) | 2014-11-14 |
| KR20100110848A (en) | 2010-10-13 |
| CA2713339C (en) | 2017-01-17 |
| PT2247282E (en) | 2014-11-11 |
| CA2713339A1 (en) | 2009-08-06 |
| JP5791278B2 (en) | 2015-10-07 |
| BRPI0907011A2 (en) | 2015-07-07 |
| US20120226224A1 (en) | 2012-09-06 |
| AU2009209594A1 (en) | 2009-08-06 |
| KR101921800B1 (en) | 2018-11-23 |
| WO2009095450A1 (en) | 2009-08-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20250082718A1 (en) | Sustained release formulation comprising octreotide and two or more polylactide-co-glycolide polymers | |
| US20250205147A1 (en) | Octreotide Depot Formulation with Constantly High Exposure Levels | |
| US8999390B2 (en) | Sustained release formulation comprising octreotide and three linear polylactide-co-glycolide polymers | |
| US20100266704A1 (en) | Octreotide depot formulation with constantly high exposure levels | |
| AU2013201877B2 (en) | Sustained release formulation comprising octreotide and three linear polylactide-co-glycolide polymers | |
| HK1159505B (en) | Octreotide depot formulation with constantly high release rates |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NOVARTIS AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PETERSEN, HOLGER;AHLHEIM, MARKUS;SIGNING DATES FROM 20090109 TO 20090115;REEL/FRAME:024931/0344 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |