US20110002297A1 - Gateway association - Google Patents
Gateway association Download PDFInfo
- Publication number
- US20110002297A1 US20110002297A1 US12/633,515 US63351509A US2011002297A1 US 20110002297 A1 US20110002297 A1 US 20110002297A1 US 63351509 A US63351509 A US 63351509A US 2011002297 A1 US2011002297 A1 US 2011002297A1
- Authority
- US
- United States
- Prior art keywords
- network gateway
- network
- base station
- gateways
- gateway
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004891 communication Methods 0.000 claims abstract description 83
- 230000004044 response Effects 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 38
- 230000011664 signaling Effects 0.000 claims description 36
- 238000005457 optimization Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 22
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 7
- 230000001960 triggered effect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/12—Reselecting a serving backbone network switching or routing node
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/66—Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/06—Reselecting a communication resource in the serving access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/34—Reselection control
- H04W36/38—Reselection control by fixed network equipment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/17—Selecting a data network PoA [Point of Attachment]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/06—TPC algorithms
- H04W52/10—Open loop power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
- H04W84/045—Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/16—Gateway arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- Embodiments herein relate to the field of communication networks, and, more specifically, to network gateway selection and load distribution in broadband wireless access communication networks.
- WiMAX Worldwide Interoperability for Microwave Access
- IEEE 802.16 standards associated with the Institute for Electrical and Electronic Engineers (IEEE) 802.16 standards (e.g., IEEE 802.16-2009, approved May 13, 2009).
- a subscriber station will attach to a base station (BS) during initial network entry (INE).
- the BS may select a default network gateway, such as an access service network gateway (ASN-GW), to serve the subscriber station.
- ASN-GW access service network gateway
- the default ASN-GW may be assigned based upon various criteria, for example, the manufacturer of the ASN-GW. The static assignment of an ASN-GW to a subscriber station may lead to inefficient deployment, use, and control of a network.
- the new BS may select another network gateway.
- This new network gateway may communicate with the originally selected network gateway, which acts as an anchor, to retrieve service flow, among other things.
- This intra-network gateway communication, or R4 signaling relies on a hierarchical structure that may also diminish efficiency and bandwidth.
- FIG. 1 illustrates a block diagram of a network in accordance with various embodiments
- FIG. 2 illustrates a block diagram of an apparatus in accordance with various embodiments
- FIG. 3 illustrates a signaling diagram in accordance with various embodiments
- FIG. 4 illustrates a signaling diagram in accordance with various embodiments
- FIG. 5 illustrates a signaling diagram in accordance with various embodiments
- FIG. 6 illustrates a signaling diagram in accordance with various embodiments
- FIG. 7 illustrates a signaling diagram in accordance with various embodiments.
- FIG. 8 illustrates another signaling diagram in accordance with various embodiments of the present disclosure.
- Coupled may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
- a phrase in the form “NB” or in the form “A and/or B” means (A), (B), or (A and B).
- a phrase in the form “at least one of A, B, and C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C).
- a phrase in the form “(A)B” means (B) or (AB) that is, A is an optional element.
- methods, apparatuses, and systems for efficient network gateway selection, load balancing, and data path optimization in communication networks are disclosed.
- communications are disclosed which may enable creative network deployment, efficient network gateway load balancing, and overload control.
- the disclosure may reduce network design complexity and promote multi-vendor interoperability.
- a computing system may be endowed with one or more components of the disclosed apparatuses and/or systems and may be employed to perform one or more methods as disclosed herein.
- Embodiments herein enable dynamic selection and association of a network gateway with a subscriber station.
- an access point such as a base station
- ASN-GW access service network gateway
- the base station may determine and/or receive a selection of an appropriate network gateway to service the subscriber station. Determination of the appropriate network gateway may be through one or more optimizing algorithms that may be executed by a network gateway, or alternatively, by the base station.
- the network gateway may be assigned to a subscriber station upon entry into a cell associated with the base station, upon the subscriber station leaving the cell, or upon a need for load balancing.
- Embodiments herein may also enable data path optimization between one or more components of the communication network.
- one possible data path may be generally described as a serving base station communicating with a serving network gateway that in turn communicates with an anchor network gateway.
- the anchor network gateway may have been assigned to the subscriber station by a previous serving base station, and the serving network gateway assigned by a current serving base station.
- the communication link between the serving network gateway and the anchor network gateway may be a redundant communication link, and in various embodiments, may be obviated by having the current serving base station communicate directly with the anchor network gateway.
- This data path optimization may be triggered by the anchor network gateway, the serving network gateway, the serving base station, or various other components within the communication system as will be described in more detail herein. This interoperability may reduce the need for intra-network gateway communication.
- the communication network 100 may be a WiMAX network, however, those of ordinary skill in the art will readily understand that the teachings of the disclosure may be applied to other communication networks as well.
- Communication network 100 may include clusters 102 and 104 , network access points, for example base stations 108 a - d , network gateways 106 a - d , and a subscriber station 110 .
- the communication network 100 may include other components in addition to those illustrated without deviating from the scope of this disclosure.
- the communication network 100 includes clusters 102 and 104 . While two clusters are illustrated, this disclosure may be applicable to a communication network with more or fewer clusters.
- a cluster in accordance with various embodiments, may be one or more components, for example one or more network gateways, that belong to a domain of a particular deployment scenario. The cluster may be either an overlapping or non-overlapping cluster depending on a network configuration and may be based on a paging group, authentication domain, mobility domain, or other network characteristic.
- cluster 102 may include one or more network gateways 106 a - b .
- Cluster 104 may include one or more network gateways 106 c - d .
- Clusters 102 and 104 may include more or fewer network gateways without deviating from the scope of this disclosure. Additionally, in various embodiments, network gateways 106 a - d may be ASN-GWs; however the disclosure is not to be limited in this manner.
- clusters 102 and 104 may also include one or more network access points, such as base stations 108 a - d .
- the base stations 108 a - d may be allocated to a particular cluster.
- base stations 108 a - b may be associated with cluster 102
- base station 108 d may be associated with cluster 104
- base station 108 c may be associated with both clusters 102 and 104 .
- any base station 108 a - d may communicate with any network gateway 106 a - d within its cluster.
- base stations 108 a - b may communicate with network gateways 106 a or 106 b
- base station 108 d may communicate with network gateways 106 c or 106 d
- base station 108 c may communicate with any of the network gateways 106 a - d.
- Communications 112 between base stations 108 a - d and network gateways 106 a - d may include R6 signaling.
- Other signaling may also be utilized within the communication network, without deviating from the scope of the disclosure. This may include, but is not limited to, R1 signaling between a subscriber station and a base station, R2 signaling between a subscriber station and a connectivity service network (CSN), R3 signaling between an access service network (ASN) and a CSN, R4 signaling between two network gateways, R5 signaling between two CSNs, R7 signaling between a data and control plane in a network gateway, and R8 signaling between two base stations.
- Other communications may be transmitted throughout the communication network 100 without deviating from the scope of the disclosure.
- subscriber station 110 may communicate with base station 108 a , for example, when the subscriber station 110 is within the cell range of base station 108 a .
- subscriber station 110 may be either a mobile subscriber station 110 , such as a laptop computer, pda, nettop, netbook, smartphone, or other wireless device that is capable of movement in and out of various cell ranges.
- subscriber station 110 may be a stationary subscriber, such as a desktop computer or other communication device that remains predominantly in a fixed position. The disclosure is not to be limited in this manner.
- the subscriber station 110 may communicate with base stations 108 a - d using any communication protocol known in the art.
- subscriber station 110 may communicate with base station 108 a utilizing orthogonal frequency division multiplexing (OFDM) and orthogonal frequency division multiple access (OFDMA).
- OFDM is a multi-carrier transmission technique that uses multiple frequencies to simultaneously transmit multiple signals in parallel. The signals may be processed so that they are orthogonal to each other such that there is no inter-carrier interference (IFI).
- a subscriber station 110 may communicate with a base station 108 a and a network gateway 106 a to connect to an internet protocol (IP) network such as the Internet.
- IP internet protocol
- the apparatus may be included in a network gateway 106 a - d , or alternatively, may be a separate device operatively and/or communicatively coupled to a network gateway 106 a - d .
- the apparatus may include a communication block 202 having at least a first interface 208 and a second interface 210 , an identifier 204 , and a relocation handler 206 .
- the apparatus 106 may include more or fewer components without deviating from the scope of the disclosure.
- the communication block 202 may include more or fewer interfaces without deviating from the scope of the disclosure.
- the interfaces 208 , 210 may be utilized to communicate with various components of the communications network 100 .
- the interfaces 208 , 210 may be interfaces configured to communicate via any of the signaling types mentioned above, for example R1-R8 signaling. Additionally, while illustrated as separate interfaces, interface 208 and interface 210 , may alternatively, be a single interface capable of communication with various components of the network 100 .
- the interface 208 may be an R6 interface configured to communicate with one or more base stations 108 a - d within a cluster 102 , 104 .
- the R6 signaling may implement intra-ASN tunnels and be used for control plane signaling.
- interface 210 may be an R4 interface and configured to communicate with one or more network gateways, for example network gateways 106 a - d .
- R4 signaling may facilitate mobility of the subscriber station 110 across the various network gateways of the communication network 100 .
- the communication block 202 may be configured to receive a network gateway selection request from an access point of a communication network cluster 102 , 104 and load information from one or more network gateways of a plurality of network gateways of a communication network cluster.
- the communication block 202 of network gatway 106 a may receive a network gateway selection request from base station 108 a via a first interface 208 , and load information from network gateway 106 b via a second interface 210 .
- the communication block 202 may be configured to transmit a network gateway selection response to an access point of the communication network cluster in response to the network gateway selection request.
- the network gateway selection response may include an indication of the network gateway to be used to service a subscriber station 110 .
- the communication block 202 of network gateway 106 a may be configured to transmit the network gateway selection response to an access point such as base station 108 a .
- the apparatus of FIG. 2 may also include an identifier 204 .
- the identifier 204 may be coupled to the communication block 202 and configured to identify a desired network gateway, e.g., network gateway 106 a , from one or more network gateways 106 a - b of a plurality of network gateways 106 a - d based on load information.
- the identifier 204 may identify network gateway 106 a as the desired network gateway based on the network gateway 106 a having a relatively small load as compared to other network gateways within the cluster 102 . Identifying network gateway 106 a as the desired network gateway in response to a network gateway selection request may prevent other network gateways of the cluster 102 from becoming overloaded and more evenly distribute broadband traffic across the communication network 100 .
- the apparatus may also include a relocation handler 206 , in accordance with various embodiments.
- the relocation handler 206 may be coupled to the identifier 204 and configured to trigger a network gateway relocation.
- a network gateway relocation associates another network gateway, e.g., network gateway 106 b , of the plurality of network gateways 106 a - b , with the access point.
- the network gateway relocation may be triggered by one of the network gateways or access points determining that a new network gateway (not shown) has entered the communication network cluster, determining that a network gateway currently being used is overloaded, or receiving a relocation request from an access point, for example, a base station 108 a - d .
- the relocation handler 206 may ensure proper allocation of network resources after the initial network entry of a subscriber station 110 .
- access points such as base stations 108 a - d may also include generally similar components to that of apparatus 106 .
- a base station 108 a may include a communications block having one or more interfaces to communicate with other components of a communication network 100 , an identifier configured to identify one or more network gateways 106 a - b from a plurality of network gateways to serve the subscriber station 110 , and a relocation handler.
- the base station 108 a - d may utilize one or more optimizing algorithms to determine an efficient network gateway distribution for various subscriber stations 110 .
- the signal diagrams illustrate various signals transmitted between components of a communications network, such as the communication network 100 illustrated in FIG. 1 .
- the signals may facilitate efficient network gateway selection, load balancing, and relocation of various resources and may be expressed in terms of a method or process, for example, a subscriber station transmitting a signal.
- the underlying method or process may be implemented as machine-accessible instructions utilizing any of many different programming codes stored on any combination of machine accessible media such as a volatile or nonvolatile memory or other mass storage device.
- the machine-accessible instructions may be embodied in a machine-accessible medium such as a programmable gate array, an application specific integrated circuit (ASIC), an erasable programmable read only memory (EPROM), a read only memory (ROM), a random access memory (RAM), a magnetic media, an optical media, and/or any other suitable type of medium.
- a machine-accessible medium such as a programmable gate array, an application specific integrated circuit (ASIC), an erasable programmable read only memory (EPROM), a read only memory (ROM), a random access memory (RAM), a magnetic media, an optical media, and/or any other suitable type of medium.
- FIG. 3 a signaling diagram is illustrated, in accordance with various embodiments.
- the signaling diagram illustrates various communications between the components of communication network, for example communication network 100 .
- FIG. 3 may illustrate network gateway selection for the subscriber station upon initial network entry, for example, when the subscriber station does initial network entry to a WiMAX network.
- the subscriber station may attach to an access point, such as a base station 108 a .
- the base station 108 a may then select a network gateway, such as network gateway 106 a.
- the subscriber station may perform initial communication 301 , 302 with a base station.
- initial communication 301 , 302 may include downlink channel acquisition, Media Access Control (MAC) synchronization, obtaining uplink channel parameters, performing initial ranging and/or physical (PHY) layer adjustments.
- MAC Media Access Control
- PHY physical
- the subscriber station may transmit a subscriber station basic capability request (SBC-REQ) message to a base station to negotiate a basic capability of the subscriber station.
- the communication 303 which may be a MAC message, may include information on a modulation and coding scheme supported by the subscriber station.
- the base station may transmit a subscriber station basic capability response (SBC-RSP) message, also indicated as 303 , to the subscriber station.
- SBC-RSP subscriber station basic capability response
- the SBC-RSP 303 may be transmitted by the base station after checking the modulation and coding scheme supported by the subscriber station.
- the base station may communicate with a network gateway, such as ASN-GW.
- the communications 304 may include a network gateway selection request 303 a and a network gateway selection response 303 b . These communications 304 may enable efficient network gateway selection.
- a base station 108 a that is associated with subscriber station 110 may transmit a network gateway selection request 303 a to a network gateway 106 a of a plurality of network gateways 106 a - b within cluster 102 .
- the network gateway selection request 303 a may include a request to select one network gateway, either 106 a or 106 b , from the plurality of network gateways 106 a - b within cluster 102 to serve subscriber station 110 .
- the network gateway selection request 303 a may be transmitted to a default network gateway of the plurality of network gateways.
- the default network gateway may be identified by its internet (IP) address.
- the network gateway selection request 303 a may be transmitted to a virtual internet protocol (IP) address of the plurality of network gateways 106 a - b .
- the virtual IP address may be mapped to a master network gateway of the plurality of network gateways 106 a - b.
- the base station may receive a network gateway selection response 303 b .
- the network gateway selection response 303 b may include information associated with at least one network gateway of the plurality of network gateways within a cluster that is to serve the subscriber station 110 .
- the base station 108 a may include identifiers, for example IP addresses, of all network gateways 106 a - b within a cluster 102 .
- the base station 108 a may transmit a network gateway selection request 303 a to one of the plurality of network gateways 106 a - b within the cluster 102 .
- the one network gateway may be a default network gateway selected in one of more manners.
- the base station 108 a may receive a network gateway selection response 303 b from the default network gateway 106 a .
- the network gateway selection response 303 b may include load information associated with the default network gateway 106 a .
- the network gateway selection response 303 b may include load information for every network gateway 106 b within the cluster 102 . Based on this load information, the base station 108 a may utilize an algorithm or other process to select the one network gateway of the plurality of network gateways 106 a - b to serve the subscriber station 110 .
- the base station 108 a may also cache this load information, and update the cached load information based on receipt of other network gateway selection responses. This may enable the base station 108 a to select another network gateway of the plurality of network gateways 106 a - b for additional subscriber stations as they enter the base station's 108 a cell area without further communication with the default network gateway or other network gateways 106 a - b.
- the base station 108 a may transmit a network gateway selection request 303 a to a virtual IP address of the plurality of network gateways 106 a - b .
- the virtual IP address of the plurality of network gateways 106 a - b may map to a master network gateway. Consequently, the base station may be unaware of which network gateway is acting as a master network gateway, and consequently, the master network gateway may periodically change without affecting the base station.
- the base station 108 a may receive a network gateway selection response 303 b from the master network gateway that includes an identification of the network gateway of the plurality of network gateways 106 a - b that is to serve the subscriber station 110 .
- the indication may be an internet protocol (IP) address of the network gateway.
- IP internet protocol
- the master network gateway may determine and select among the various network gateways 106 a - b the most efficient network gateway to serve the subscriber station 110 .
- the master network gateway may receive information, such as load information, from the various network gateways 106 a - b of the cluster 102 and utilize an optimizing algorithm to determine a network gateway selection.
- context initialization of the subscriber station 110 may occur at 303 c .
- an extensible authentication protocol EAP may facilitate generation and exchange of various keys including a master session key (MSK) at 305 , followed thereafter, by extensible authentication protocol (EAP) success at 306 .
- MSK master session key
- EAP extensible authentication protocol
- the subscriber station 110 and the network gateway may generate and transmit 307 an authentication key.
- the subscriber station 110 and the base station 108 a may generate and transfer security association (SA) information, such as cryptographic suites and security information 308 .
- SA security association
- the base station 108 a may also generate and transmit a Transport Encryption Key (TEK) in order to facilitate data encryption.
- the TEK may be generated by the base station 108 a randomly.
- the subscriber station 110 may perform IEEE 802.16e registration 309 a with the base station 108 a . Additionally, the base station 108 a may register with the network gateway 309 b . After registration, the subscriber station 110 may establish connection with the base station 108 a via a dynamic service addition request (DSA-REQ), response, and acknowledgement 310 a . Additionally, the base station 108 a may establish a data path with the network gateway 106 a via R6 signaling 310 b .
- This signaling diagram is merely meant to serve as an illustration of one possible network gateway selection process. Those of ordinary skill in the art will understand that more or fewer signals may also be utilized without deviating from the scope of the disclosure.
- FIGS. 4 and 5 a signaling diagram of base station relocation is illustrated, in accordance with various embodiments.
- the signaling of FIG. 4 may be associated with a handover preparation phase
- the signaling of FIG. 5 may be associated with a handover action phase.
- Communication 401 may be transmitted from a subscriber station to a serving base station (SBS).
- the serving base station may receive a handover request 401 , such as a mobile station handover request (MOB-MSHO-REQ) message.
- the handover request 401 may include information about one or more recommended neighbor base stations.
- the serving base station may send a handoff request 402 that a target base station (TBS) may receive.
- TBS target base station
- the handoff request 402 may be an R8 signal and may contain an identifier of the network gateway that is associated with the serving base station.
- the identified anchor network gateway may be one of a plurality of network gateways of a communication network cluster.
- the handoff request 402 may also include an identifier of another network gateway, such as a network gateway that acts as an authenticator network gateway.
- the target base station may initiate context retrieval operation 403 with a network gateway such as an authenticator network gateway.
- this communication 403 may instigate a context retrieval procedure from the authenticator network gateway.
- the authenticator network gateway may then be required to communicate with the originally serving network gateway, which may be referred to as an anchor network gateway, to retrieve service flow context.
- the target base station may communicate directly with the anchor network gateway.
- the identifier in various embodiments, may be an IP address of the anchor network gateway, or any other identifier known in the art.
- the target base station and the anchor network gateway may utilize R6 signaling for pre-registration and context retrieval 404 .
- the target base station may transmit a handoff response 405 to the serving base station.
- the handoff response 405 may be via R8 signaling.
- the serving base station may send a mobile station handover response 406 to the subscriber station and a handoff acknowledgement 407 to the target base station.
- the subscriber station may transmit a mobile handoff indication (MOB_HO-IND) to a serving base station.
- the serving base station may transmit a handover confirmation (HO-CNF) 502 to the target base station.
- the HO-CNF 502 may include an identifier or indication of the anchor network gateway and/or the authenticator network gateway, such as an IP address.
- HO-CNF 502 may be done through an R8 interface.
- the target base station 108 b may transmit a handover acknowledgement 503 to the serving base station 108 a.
- the target base station may perform a context retrieval procedure 504 with the authenticator network gateway if this was not performed during the handover preparation phase described previously with respect to FIG. 4 .
- the target base station may perform a data path pre-registration procedure 505 with the anchor network gateway, if this was also not previously performed during the handover preparation phase of FIG. 4 .
- the subscriber station may perform ranging and network entry 506 with the target base station.
- the target base station may then perform registration and context retrieval 507 directly with the anchor network gateway 106 a to register the target base station with the anchor network gateway.
- the target base station may signal the anchor network gateway via an R6 interface to perform the registration and context retrieval 507 .
- the target base station may perform a key update procedure 508 to update various keys.
- the target base station may update keys with both the authenticator network gateway and the anchor network gateway.
- the anchor network gateway and the serving base station may de-register from each other 509 .
- the handover process may be complete when the target base station transmits a handover complete (HO-Complete) message 510 to the serving base station 108 a and receives an acknowledgment 511 .
- HO-Complete handover complete
- a serving base station may provide an IP address of an anchor network gateway to the target base station during subscriber station handover. If the target base station is in the same cluster as the serving base station, the target base station may either establish a direct communication link with the anchor network gateway, or alternatively, establish a data path with anchor network gateway via a serving network gateway. In this manner, the serving network gateway may act as a relay, such as an R4 data path.
- the signal diagrams may illustrate various embodiments of network gateway relocation.
- Network gateway relocation may be triggered by either a base station or a network gateway, and may occur in response to various events including, but not limited to, a network gateway becoming overloaded, a subscriber station crossing a cluster boundary, an operator-initiated load-balancing, or a new network gateway entering the network.
- Network gateway relocation may, in various embodiments, facilitate a more efficient network as there is no longer a need for a new network gateway to constantly communicate with the serving network gateway via an R4 tunnel.
- the relocation of context to a target base station may enable the subscriber station to cease communication with an overloaded or inefficient network gateway.
- the signaling diagram illustrates various signals transmitted and received among a serving base station, e.g., base station, a source network gateway, e.g., network gateway, and a target network gateway, e.g., network gateway.
- a serving base station e.g., base station
- a source network gateway e.g., network gateway
- a target network gateway e.g., network gateway.
- Other components may also participate in the relocation; however, for the sake of clarity, they have not been included.
- the network gateway relocation may begin by a base station that is currently serving a subscriber station transmitting a network gateway selection request 601 to the source network gateway of a plurality of network gateways within a cluster.
- the network gateway selection request 601 may include a request for a new network gateway, e.g., the target network gateway, to succeed the currently used network gateway.
- the network gateway selection request 601 may be transmitted to the target network gateway of the plurality of network gateways based at least on a network condition. For example, a base station may determine the target network gateway utilizing an algorithm and load information previously received from a network gateway. In various embodiments, the load information may have been recently updated at the base station.
- the target network gateway may respond with a network gateway selection response 602 .
- the network gateway selection response 602 may include an identifier of a target network gateway of the plurality of network gateways that is to succeed in serving the subscriber station.
- the serving base station and the target network gateway may exchange communications 603 via an R6 interface for registration purposes.
- the serving network gateway may engage in a context transfer exchange 604 with the target network gateway to transfer a context to the target network gateway, and the serving base station may engage in deregister communications 605 with the serving network gateway to deregister with the serving network gateway.
- the network gateway may be a master network gateway for a cluster.
- the master network gateway may periodically receive load information from the various network gateways within the cluster and utilize one or more algorithms to determine if a network gateway relocation is warranted.
- the NGT network gateway relocation may begin by a serving network gateway engaging a target network gateway in a context transfer 701 to transfer a context to the target network gateway.
- the serving network gateway may transmit a network gateway update command 702 to the serving base station.
- the network gateway update command 702 may include an identifier of the target network gateway, for example an IP address of the target network gateway.
- the serving base station may transmit an acknowledgment 703 to the serving network gateway.
- the serving base station may perform register operation 704 with the target network gateway, and finally may perform de-register operation 705 with the serving network gateway. This may complete the network gateway triggered network gateway relocation.
- Data path modification may be utilized to modify the data path between a subscriber station's anchor network gateway and the serving base station to improve (e.g., optimize) one or characteristics of the data path. This may, for example, remove a serving network gateway from the data path, thus establishing a direct data path between the anchor network gateway and the serving base station.
- the data path modification procedure may be triggered by a serving base station, the anchor network gateway, or by serving network gateway.
- the data path 801 from the subscriber station's anchor network gateway to the serving base station is relayed to the serving network gateway. Due to the communication link between the serving network gateway and the anchor network gateway, the anchor network gateway may trigger a data path modification procedure 802 . As discussed earlier, various other communication devices may also trigger the data path modification procedure.
- the anchor network gateway may establish a direct data path 806 with the serving base station using data path registration transactions 803 - 805 .
- the transactions 803 - 805 may include data path registration requests, data path registration responses, and data path registration acknowledgments.
- the serving base station may perform deregister operations 807 - 809 with serving network gateway to deregister its data path with serving network gateway.
- deregister operations 807 - 809 may include transmission and/or receipt of path deregistration requests, path deregistration responses, and path deregistration acknowledgments.
- the serving gateway may deregister 810 - 812 its data path with the anchor network gateway.
- deregistering 810 - 812 may include path deregistration requests, path deregistration responses, and path deregistration acknowledgements.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
- The present application claims priority to U.S. Provisional Patent Application No. 61/223,360, filed Jul. 6, 2009, titled “Advanced Wireless Communication Systems and Techniques,” the entire specification of which is hereby incorporated by reference except for those sections, if any, that are inconsistent with this specification.
- Embodiments herein relate to the field of communication networks, and, more specifically, to network gateway selection and load distribution in broadband wireless access communication networks.
- Broadband wireless networks include a continuum of coexisting, overlapping technologies that enable wireless high-speed communications. One technology, Worldwide Interoperability for Microwave Access (WiMAX), has been developed to provide long-range wireless networking capabilities. WiMAX may be a general name given to represent standards associated with the Institute for Electrical and Electronic Engineers (IEEE) 802.16 standards (e.g., IEEE 802.16-2009, approved May 13, 2009).
- Typically, in WiMAX networks, a subscriber station will attach to a base station (BS) during initial network entry (INE). After attachment, the BS may select a default network gateway, such as an access service network gateway (ASN-GW), to serve the subscriber station. The default ASN-GW may be assigned based upon various criteria, for example, the manufacturer of the ASN-GW. The static assignment of an ASN-GW to a subscriber station may lead to inefficient deployment, use, and control of a network.
- Additionally, when a subscriber station moves from a cell associated with one BS to another, the new BS may select another network gateway. This new network gateway may communicate with the originally selected network gateway, which acts as an anchor, to retrieve service flow, among other things. This intra-network gateway communication, or R4 signaling, relies on a hierarchical structure that may also diminish efficiency and bandwidth.
- Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
-
FIG. 1 illustrates a block diagram of a network in accordance with various embodiments; -
FIG. 2 illustrates a block diagram of an apparatus in accordance with various embodiments; -
FIG. 3 illustrates a signaling diagram in accordance with various embodiments; -
FIG. 4 illustrates a signaling diagram in accordance with various embodiments; -
FIG. 5 illustrates a signaling diagram in accordance with various embodiments; -
FIG. 6 illustrates a signaling diagram in accordance with various embodiments; -
FIG. 7 illustrates a signaling diagram in accordance with various embodiments; and -
FIG. 8 illustrates another signaling diagram in accordance with various embodiments of the present disclosure. - In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of illustration embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims and their equivalents.
- Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments; however, the order of description should not be construed to imply that these operations are order dependent or that all described operations are necessary for the embodiments.
- The terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
- For the purposes of the description, a phrase in the form “NB” or in the form “A and/or B” means (A), (B), or (A and B). For the purposes of the description, a phrase in the form “at least one of A, B, and C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C). For the purposes of the description, a phrase in the form “(A)B” means (B) or (AB) that is, A is an optional element.
- The description may use the terms “embodiment” or “embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments, are synonymous.
- In various embodiments, methods, apparatuses, and systems for efficient network gateway selection, load balancing, and data path optimization in communication networks are disclosed. In various embodiments, communications are disclosed which may enable creative network deployment, efficient network gateway load balancing, and overload control. The disclosure may reduce network design complexity and promote multi-vendor interoperability. In example embodiments, a computing system may be endowed with one or more components of the disclosed apparatuses and/or systems and may be employed to perform one or more methods as disclosed herein.
- Embodiments herein enable dynamic selection and association of a network gateway with a subscriber station. In various embodiments, an access point, such as a base station, may communicate with one or more network gateways, such as an access service network gateway (ASN-GW) within an associated cluster. Based on the communication, the base station may determine and/or receive a selection of an appropriate network gateway to service the subscriber station. Determination of the appropriate network gateway may be through one or more optimizing algorithms that may be executed by a network gateway, or alternatively, by the base station. In various embodiments, the network gateway may be assigned to a subscriber station upon entry into a cell associated with the base station, upon the subscriber station leaving the cell, or upon a need for load balancing.
- Embodiments herein may also enable data path optimization between one or more components of the communication network. For example, one possible data path may be generally described as a serving base station communicating with a serving network gateway that in turn communicates with an anchor network gateway. The anchor network gateway may have been assigned to the subscriber station by a previous serving base station, and the serving network gateway assigned by a current serving base station. Such a scenario may arise in the case of a handover. The communication link between the serving network gateway and the anchor network gateway may be a redundant communication link, and in various embodiments, may be obviated by having the current serving base station communicate directly with the anchor network gateway. This data path optimization may be triggered by the anchor network gateway, the serving network gateway, the serving base station, or various other components within the communication system as will be described in more detail herein. This interoperability may reduce the need for intra-network gateway communication.
- Referring to
FIG. 1 , a block diagram of a communication network is illustrated, in accordance with various embodiments. Thecommunication network 100 may be a WiMAX network, however, those of ordinary skill in the art will readily understand that the teachings of the disclosure may be applied to other communication networks as well.Communication network 100 may include 102 and 104, network access points, for example base stations 108 a-d, network gateways 106 a-d, and aclusters subscriber station 110. Thecommunication network 100 may include other components in addition to those illustrated without deviating from the scope of this disclosure. - The
communication network 100 includes 102 and 104. While two clusters are illustrated, this disclosure may be applicable to a communication network with more or fewer clusters. A cluster, in accordance with various embodiments, may be one or more components, for example one or more network gateways, that belong to a domain of a particular deployment scenario. The cluster may be either an overlapping or non-overlapping cluster depending on a network configuration and may be based on a paging group, authentication domain, mobility domain, or other network characteristic. As illustrated,clusters cluster 102 may include one or more network gateways 106 a-b.Cluster 104 may include one ormore network gateways 106 c-d. 102 and 104 may include more or fewer network gateways without deviating from the scope of this disclosure. Additionally, in various embodiments, network gateways 106 a-d may be ASN-GWs; however the disclosure is not to be limited in this manner.Clusters - In various embodiments,
102 and 104 may also include one or more network access points, such as base stations 108 a-d. The base stations 108 a-d may be allocated to a particular cluster. For example, base stations 108 a-b may be associated withclusters cluster 102,base station 108 d may be associated withcluster 104, andbase station 108 c may be associated with both 102 and 104. In various embodiments, any base station 108 a-d may communicate with any network gateway 106 a-d within its cluster. In the illustrated embodiment, base stations 108 a-b may communicate withclusters 106 a or 106 b,network gateways base station 108 d may communicate with 106 c or 106 d, and becausenetwork gateways base station 108 c may be associated with both clusters,base station 108 c may communicate with any of the network gateways 106 a-d. -
Communications 112, between base stations 108 a-d and network gateways 106 a-d may include R6 signaling. Other signaling, while not illustrated, may also be utilized within the communication network, without deviating from the scope of the disclosure. This may include, but is not limited to, R1 signaling between a subscriber station and a base station, R2 signaling between a subscriber station and a connectivity service network (CSN), R3 signaling between an access service network (ASN) and a CSN, R4 signaling between two network gateways, R5 signaling between two CSNs, R7 signaling between a data and control plane in a network gateway, and R8 signaling between two base stations. Other communications may be transmitted throughout thecommunication network 100 without deviating from the scope of the disclosure. - Referring back to
FIG. 1 ,subscriber station 110 may communicate withbase station 108 a, for example, when thesubscriber station 110 is within the cell range ofbase station 108 a. In various embodiments,subscriber station 110 may be either amobile subscriber station 110, such as a laptop computer, pda, nettop, netbook, smartphone, or other wireless device that is capable of movement in and out of various cell ranges. Alternatively,subscriber station 110 may be a stationary subscriber, such as a desktop computer or other communication device that remains predominantly in a fixed position. The disclosure is not to be limited in this manner. - The
subscriber station 110 may communicate with base stations 108 a-d using any communication protocol known in the art. For example, in one embodiment,subscriber station 110 may communicate withbase station 108 a utilizing orthogonal frequency division multiplexing (OFDM) and orthogonal frequency division multiple access (OFDMA). OFDM is a multi-carrier transmission technique that uses multiple frequencies to simultaneously transmit multiple signals in parallel. The signals may be processed so that they are orthogonal to each other such that there is no inter-carrier interference (IFI). In various embodiments, asubscriber station 110 may communicate with abase station 108 a and anetwork gateway 106 a to connect to an internet protocol (IP) network such as the Internet. - Referring now to
FIG. 2 , a block diagram of an apparatus is illustrated, in accordance with various embodiments. The apparatus may be included in a network gateway 106 a-d, or alternatively, may be a separate device operatively and/or communicatively coupled to a network gateway 106 a-d. The apparatus may include acommunication block 202 having at least afirst interface 208 and asecond interface 210, anidentifier 204, and arelocation handler 206. The apparatus 106 may include more or fewer components without deviating from the scope of the disclosure. - While the
communication block 202 is shown with thefirst interface 208 and thesecond interface 210, thecommunication block 202 may include more or fewer interfaces without deviating from the scope of the disclosure. In various embodiments, the 208, 210 may be utilized to communicate with various components of theinterfaces communications network 100. The 208, 210 may be interfaces configured to communicate via any of the signaling types mentioned above, for example R1-R8 signaling. Additionally, while illustrated as separate interfaces,interfaces interface 208 andinterface 210, may alternatively, be a single interface capable of communication with various components of thenetwork 100. - In various embodiments, the
interface 208 may be an R6 interface configured to communicate with one or more base stations 108 a-d within a 102, 104. The R6 signaling may implement intra-ASN tunnels and be used for control plane signaling. Additionally,cluster interface 210 may be an R4 interface and configured to communicate with one or more network gateways, for example network gateways 106 a-d. R4 signaling may facilitate mobility of thesubscriber station 110 across the various network gateways of thecommunication network 100. - In various embodiments, the
communication block 202 may be configured to receive a network gateway selection request from an access point of a 102, 104 and load information from one or more network gateways of a plurality of network gateways of a communication network cluster. For example, thecommunication network cluster communication block 202 ofnetwork gatway 106 a may receive a network gateway selection request frombase station 108 a via afirst interface 208, and load information fromnetwork gateway 106 b via asecond interface 210. - Additionally, in various embodiments, the
communication block 202 may be configured to transmit a network gateway selection response to an access point of the communication network cluster in response to the network gateway selection request. The network gateway selection response may include an indication of the network gateway to be used to service asubscriber station 110. Continuing with our above example, thecommunication block 202 ofnetwork gateway 106 a may be configured to transmit the network gateway selection response to an access point such asbase station 108 a. The signaling between various components will be discussed further herein with reference to one or more signal diagrams. - In various embodiments, the apparatus of
FIG. 2 may also include anidentifier 204. Theidentifier 204 may be coupled to thecommunication block 202 and configured to identify a desired network gateway, e.g.,network gateway 106 a, from one or more network gateways 106 a-b of a plurality of network gateways 106 a-d based on load information. In one embodiment, theidentifier 204 may identifynetwork gateway 106 a as the desired network gateway based on thenetwork gateway 106 a having a relatively small load as compared to other network gateways within thecluster 102. Identifyingnetwork gateway 106 a as the desired network gateway in response to a network gateway selection request may prevent other network gateways of thecluster 102 from becoming overloaded and more evenly distribute broadband traffic across thecommunication network 100. - Still referring to
FIG. 2 , the apparatus may also include arelocation handler 206, in accordance with various embodiments. Therelocation handler 206 may be coupled to theidentifier 204 and configured to trigger a network gateway relocation. A network gateway relocation associates another network gateway, e.g.,network gateway 106 b, of the plurality of network gateways 106 a-b, with the access point. The network gateway relocation may be triggered by one of the network gateways or access points determining that a new network gateway (not shown) has entered the communication network cluster, determining that a network gateway currently being used is overloaded, or receiving a relocation request from an access point, for example, a base station 108 a-d. In various embodiments therelocation handler 206 may ensure proper allocation of network resources after the initial network entry of asubscriber station 110. - In various embodiments, access points such as base stations 108 a-d may also include generally similar components to that of apparatus 106. For example, a
base station 108 a may include a communications block having one or more interfaces to communicate with other components of acommunication network 100, an identifier configured to identify one or more network gateways 106 a-b from a plurality of network gateways to serve thesubscriber station 110, and a relocation handler. The base station 108 a-d may utilize one or more optimizing algorithms to determine an efficient network gateway distribution forvarious subscriber stations 110. - Referring to
FIGS. 3-8 , signaling diagrams are illustrated, in accordance with various embodiments. The signal diagrams illustrate various signals transmitted between components of a communications network, such as thecommunication network 100 illustrated inFIG. 1 . The signals may facilitate efficient network gateway selection, load balancing, and relocation of various resources and may be expressed in terms of a method or process, for example, a subscriber station transmitting a signal. In various embodiments, the underlying method or process may be implemented as machine-accessible instructions utilizing any of many different programming codes stored on any combination of machine accessible media such as a volatile or nonvolatile memory or other mass storage device. For example, the machine-accessible instructions may be embodied in a machine-accessible medium such as a programmable gate array, an application specific integrated circuit (ASIC), an erasable programmable read only memory (EPROM), a read only memory (ROM), a random access memory (RAM), a magnetic media, an optical media, and/or any other suitable type of medium. - Referring to
FIG. 3 , a signaling diagram is illustrated, in accordance with various embodiments. The signaling diagram illustrates various communications between the components of communication network, forexample communication network 100. In various embodiments,FIG. 3 may illustrate network gateway selection for the subscriber station upon initial network entry, for example, when the subscriber station does initial network entry to a WiMAX network. During such an entry, the subscriber station may attach to an access point, such as abase station 108 a. In various embodiments, thebase station 108 a may then select a network gateway, such asnetwork gateway 106 a. - In various embodiments, the subscriber station may perform
301, 302 with a base station. In various embodiments,initial communication 301, 302 may include downlink channel acquisition, Media Access Control (MAC) synchronization, obtaining uplink channel parameters, performing initial ranging and/or physical (PHY) layer adjustments. Other communication may also be included without deviating from the scope of the disclosure.initial communication - At
communication 303, the subscriber station may transmit a subscriber station basic capability request (SBC-REQ) message to a base station to negotiate a basic capability of the subscriber station. Thecommunication 303, which may be a MAC message, may include information on a modulation and coding scheme supported by the subscriber station. Upon receiving the SBC-REQ message from the subscriber station, the base station may transmit a subscriber station basic capability response (SBC-RSP) message, also indicated as 303, to the subscriber station. The SBC-RSP 303 may be transmitted by the base station after checking the modulation and coding scheme supported by the subscriber station. - In various embodiments, the base station may communicate with a network gateway, such as ASN-GW. The
communications 304 may include a networkgateway selection request 303 a and a networkgateway selection response 303 b. Thesecommunications 304 may enable efficient network gateway selection. For example, abase station 108 a that is associated withsubscriber station 110 may transmit a networkgateway selection request 303 a to anetwork gateway 106 a of a plurality of network gateways 106 a-b withincluster 102. The networkgateway selection request 303 a may include a request to select one network gateway, either 106 a or 106 b, from the plurality of network gateways 106 a-b withincluster 102 to servesubscriber station 110. In one embodiment, the networkgateway selection request 303 a may be transmitted to a default network gateway of the plurality of network gateways. The default network gateway may be identified by its internet (IP) address. Alternatively, the networkgateway selection request 303 a may be transmitted to a virtual internet protocol (IP) address of the plurality of network gateways 106 a-b. In various embodiments, the virtual IP address may be mapped to a master network gateway of the plurality of network gateways 106 a-b. - In response to the
network gateway request 303 a, the base station may receive a networkgateway selection response 303 b. The networkgateway selection response 303 b may include information associated with at least one network gateway of the plurality of network gateways within a cluster that is to serve thesubscriber station 110. - For example, in one embodiment, the
base station 108 a may include identifiers, for example IP addresses, of all network gateways 106 a-b within acluster 102. Thebase station 108 a may transmit a networkgateway selection request 303 a to one of the plurality of network gateways 106 a-b within thecluster 102. The one network gateway may be a default network gateway selected in one of more manners. In response, thebase station 108 a may receive a networkgateway selection response 303 b from thedefault network gateway 106 a. The networkgateway selection response 303 b may include load information associated with thedefault network gateway 106 a. In various embodiments, the networkgateway selection response 303 b may include load information for everynetwork gateway 106 b within thecluster 102. Based on this load information, thebase station 108 a may utilize an algorithm or other process to select the one network gateway of the plurality of network gateways 106 a-b to serve thesubscriber station 110. - In various embodiments, the
base station 108 a may also cache this load information, and update the cached load information based on receipt of other network gateway selection responses. This may enable thebase station 108 a to select another network gateway of the plurality of network gateways 106 a-b for additional subscriber stations as they enter the base station's 108 a cell area without further communication with the default network gateway or other network gateways 106 a-b. - In another example embodiment, the
base station 108 a may transmit a networkgateway selection request 303 a to a virtual IP address of the plurality of network gateways 106 a-b. The virtual IP address of the plurality of network gateways 106 a-b may map to a master network gateway. Consequently, the base station may be unaware of which network gateway is acting as a master network gateway, and consequently, the master network gateway may periodically change without affecting the base station. - In response to transmitting the network
gateway selection request 303 a, thebase station 108 a may receive a networkgateway selection response 303 b from the master network gateway that includes an identification of the network gateway of the plurality of network gateways 106 a-b that is to serve thesubscriber station 110. The indication may be an internet protocol (IP) address of the network gateway. In this manner, the master network gateway may determine and select among the various network gateways 106 a-b the most efficient network gateway to serve thesubscriber station 110. In various embodiments, the master network gateway may receive information, such as load information, from the various network gateways 106 a-b of thecluster 102 and utilize an optimizing algorithm to determine a network gateway selection. - Referring again to
FIG. 3 , followingcommunications 304, context initialization of thesubscriber station 110 may occur at 303 c. After context initialization 303 c, an extensible authentication protocol (EAP) may facilitate generation and exchange of various keys including a master session key (MSK) at 305, followed thereafter, by extensible authentication protocol (EAP) success at 306. - After EAP success at 306, the
subscriber station 110 and the network gateway may generate and transmit 307 an authentication key. After exchange of the authentication key, thesubscriber station 110 and thebase station 108 a may generate and transfer security association (SA) information, such as cryptographic suites andsecurity information 308. Thebase station 108 a may also generate and transmit a Transport Encryption Key (TEK) in order to facilitate data encryption. The TEK may be generated by thebase station 108 a randomly. - After generation and transfer of the SA and TEK at 308, the
subscriber station 110 may perform IEEE 802.16e registration 309 a with thebase station 108 a. Additionally, thebase station 108 a may register with thenetwork gateway 309 b. After registration, thesubscriber station 110 may establish connection with thebase station 108 a via a dynamic service addition request (DSA-REQ), response, andacknowledgement 310 a. Additionally, thebase station 108 a may establish a data path with thenetwork gateway 106 a via R6 signaling 310 b. This signaling diagram is merely meant to serve as an illustration of one possible network gateway selection process. Those of ordinary skill in the art will understand that more or fewer signals may also be utilized without deviating from the scope of the disclosure. - Referring now to
FIGS. 4 and 5 , a signaling diagram of base station relocation is illustrated, in accordance with various embodiments. The signaling ofFIG. 4 may be associated with a handover preparation phase, and the signaling ofFIG. 5 may be associated with a handover action phase. -
Communication 401 may be transmitted from a subscriber station to a serving base station (SBS). In various embodiments, the serving base station may receive ahandover request 401, such as a mobile station handover request (MOB-MSHO-REQ) message. In various embodiments, thehandover request 401 may include information about one or more recommended neighbor base stations. - After receiving the mobile station
handover request message 401, the serving base station may send ahandoff request 402 that a target base station (TBS) may receive. In various embodiments, thehandoff request 402 may be an R8 signal and may contain an identifier of the network gateway that is associated with the serving base station. The identified anchor network gateway may be one of a plurality of network gateways of a communication network cluster. In various embodiments, thehandoff request 402 may also include an identifier of another network gateway, such as a network gateway that acts as an authenticator network gateway. - Upon receipt of the
handoff request 402, the target base station may initiatecontext retrieval operation 403 with a network gateway such as an authenticator network gateway. In various embodiments, thiscommunication 403 may instigate a context retrieval procedure from the authenticator network gateway. In this embodiment, the authenticator network gateway may then be required to communicate with the originally serving network gateway, which may be referred to as an anchor network gateway, to retrieve service flow context. - Alternatively, because an indication of the anchor network gateway was included in the
handoff request 402 and the anchor network gateway is within the same cluster as the target base station, the target base station may communicate directly with the anchor network gateway. The identifier, in various embodiments, may be an IP address of the anchor network gateway, or any other identifier known in the art. After the target base station receives thehandoff request 402 from the serving base station that includes an indication of the anchor network gateway, the target base station and the anchor network gateway may utilize R6 signaling for pre-registration andcontext retrieval 404. - In various embodiments, after the target base station retrieves the context from either the authenticator network gateway or the anchor network gateway, the target base station may transmit a
handoff response 405 to the serving base station. In various embodiments, thehandoff response 405 may be via R8 signaling. In response, the serving base station may send a mobilestation handover response 406 to the subscriber station and ahandoff acknowledgement 407 to the target base station. - Referring to
FIG. 5 , a signaling diagram of the base station relocation handover action phase is illustrated, in accordance with various embodiments. Atcommunication 501, the subscriber station may transmit a mobile handoff indication (MOB_HO-IND) to a serving base station. In response tocommunication 501, the serving base station may transmit a handover confirmation (HO-CNF) 502 to the target base station. In various embodiments, the HO-CNF 502 may include an identifier or indication of the anchor network gateway and/or the authenticator network gateway, such as an IP address. HO-CNF 502 may be done through an R8 interface. In response, thetarget base station 108 b may transmit ahandover acknowledgement 503 to the servingbase station 108 a. - After the target base station acknowledges the handover by the
handover acknowledgement 503, the target base station may perform acontext retrieval procedure 504 with the authenticator network gateway if this was not performed during the handover preparation phase described previously with respect toFIG. 4 . Alternatively, rather than utilizing thecontext retrieval procedure 504, the target base station may perform a datapath pre-registration procedure 505 with the anchor network gateway, if this was also not previously performed during the handover preparation phase ofFIG. 4 . - After completion of
504 or 505, if they are needed, the subscriber station may perform ranging andcommunications network entry 506 with the target base station. The target base station may then perform registration andcontext retrieval 507 directly with theanchor network gateway 106 a to register the target base station with the anchor network gateway. - In various embodiments, the target base station may signal the anchor network gateway via an R6 interface to perform the registration and
context retrieval 507. After the registration andcontext retrieval 507, the target base station may perform akey update procedure 508 to update various keys. In various embodiments, the target base station may update keys with both the authenticator network gateway and the anchor network gateway. Additionally, the anchor network gateway and the serving base station may de-register from each other 509. The handover process may be complete when the target base station transmits a handover complete (HO-Complete)message 510 to the servingbase station 108 a and receives anacknowledgment 511. - Handoff signal diagrams of
FIGS. 4 and 5 are, again, not meant to be limiting. Those of ordinary skill in the art will understand that more or fewer signals, or modifications of signals may be utilized without departing from the scope of the disclosure. As described, a serving base station may provide an IP address of an anchor network gateway to the target base station during subscriber station handover. If the target base station is in the same cluster as the serving base station, the target base station may either establish a direct communication link with the anchor network gateway, or alternatively, establish a data path with anchor network gateway via a serving network gateway. In this manner, the serving network gateway may act as a relay, such as an R4 data path. - Referring to
FIGS. 6 and 7 , signal diagrams are illustrated, in accordance with various embodiments. The signal diagrams may illustrate various embodiments of network gateway relocation. Network gateway relocation may be triggered by either a base station or a network gateway, and may occur in response to various events including, but not limited to, a network gateway becoming overloaded, a subscriber station crossing a cluster boundary, an operator-initiated load-balancing, or a new network gateway entering the network. Network gateway relocation may, in various embodiments, facilitate a more efficient network as there is no longer a need for a new network gateway to constantly communicate with the serving network gateway via an R4 tunnel. The relocation of context to a target base station may enable the subscriber station to cease communication with an overloaded or inefficient network gateway. - With reference to
FIG. 6 , an embodiment of a base station triggered network gateway relocation is illustrated. The signaling diagram illustrates various signals transmitted and received among a serving base station, e.g., base station, a source network gateway, e.g., network gateway, and a target network gateway, e.g., network gateway. Other components may also participate in the relocation; however, for the sake of clarity, they have not been included. - The network gateway relocation may begin by a base station that is currently serving a subscriber station transmitting a network
gateway selection request 601 to the source network gateway of a plurality of network gateways within a cluster. The networkgateway selection request 601 may include a request for a new network gateway, e.g., the target network gateway, to succeed the currently used network gateway. In various embodiments, the networkgateway selection request 601 may be transmitted to the target network gateway of the plurality of network gateways based at least on a network condition. For example, a base station may determine the target network gateway utilizing an algorithm and load information previously received from a network gateway. In various embodiments, the load information may have been recently updated at the base station. - After receiving the network
gateway selection request 601, the target network gateway may respond with a networkgateway selection response 602. In various embodiments, the networkgateway selection response 602 may include an identifier of a target network gateway of the plurality of network gateways that is to succeed in serving the subscriber station. - After receipt of the network
gateway selection response 602, the serving base station and the target network gateway may exchangecommunications 603 via an R6 interface for registration purposes. After registration, the serving network gateway may engage in acontext transfer exchange 604 with the target network gateway to transfer a context to the target network gateway, and the serving base station may engage inderegister communications 605 with the serving network gateway to deregister with the serving network gateway. - Referring now to
FIG. 7 , an embodiment of a network gateway triggered (NGT) network gateway relocation is illustrated. In various embodiments, the network gateway may be a master network gateway for a cluster. The master network gateway may periodically receive load information from the various network gateways within the cluster and utilize one or more algorithms to determine if a network gateway relocation is warranted. - The NGT network gateway relocation may begin by a serving network gateway engaging a target network gateway in a
context transfer 701 to transfer a context to the target network gateway. After thecontext transfer 701, the serving network gateway may transmit a networkgateway update command 702 to the serving base station. In various embodiments, the networkgateway update command 702 may include an identifier of the target network gateway, for example an IP address of the target network gateway. After receiving the networkgateway update command 702, the serving base station may transmit anacknowledgment 703 to the serving network gateway. - After transmission of the
acknowledgement 703, the serving base station may performregister operation 704 with the target network gateway, and finally may performde-register operation 705 with the serving network gateway. This may complete the network gateway triggered network gateway relocation. - Referring now to
FIG. 8 , an embodiment of a data path modification procedure is illustrated. Data path modification may be utilized to modify the data path between a subscriber station's anchor network gateway and the serving base station to improve (e.g., optimize) one or characteristics of the data path. This may, for example, remove a serving network gateway from the data path, thus establishing a direct data path between the anchor network gateway and the serving base station. In various embodiments, the data path modification procedure may be triggered by a serving base station, the anchor network gateway, or by serving network gateway. - In various embodiments, before the data path modification procedure is initiated, the
data path 801 from the subscriber station's anchor network gateway to the serving base station is relayed to the serving network gateway. Due to the communication link between the serving network gateway and the anchor network gateway, the anchor network gateway may trigger a datapath modification procedure 802. As discussed earlier, various other communication devices may also trigger the data path modification procedure. - After instigation of the data
path modification procedure 802, the anchor network gateway may establish adirect data path 806 with the serving base station using data path registration transactions 803-805. In various embodiments, the transactions 803-805 may include data path registration requests, data path registration responses, and data path registration acknowledgments. - After establishment of a data path between the serving base station and the anchor network gateway, the serving base station may perform deregister operations 807-809 with serving network gateway to deregister its data path with serving network gateway. In various embodiments, deregister operations 807-809 may include transmission and/or receipt of path deregistration requests, path deregistration responses, and path deregistration acknowledgments. Subsequently or concurrently, the serving gateway may deregister 810-812 its data path with the anchor network gateway. In various embodiments, deregistering 810-812 may include path deregistration requests, path deregistration responses, and path deregistration acknowledgements. Upon completion of the optimization procedure, there is no longer a need for an R4 data path between the serving network gateway and the anchor network gateway.
- Although certain embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope. Those with skill in the art will readily appreciate that embodiments may be implemented in a very wide variety of ways. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments be limited only by the claims and the equivalents thereof.
Claims (20)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/633,515 US8913586B2 (en) | 2009-07-06 | 2009-12-08 | Gateway association |
| PCT/US2010/040883 WO2011005676A2 (en) | 2009-07-06 | 2010-07-02 | Gateway association |
| JP2012519616A JP5676601B2 (en) | 2009-07-06 | 2010-07-02 | Gateway association |
| KR1020127003084A KR101376919B1 (en) | 2009-07-06 | 2010-07-02 | Gateway association |
| CN201080031223.4A CN102484829B (en) | 2009-07-06 | 2010-07-02 | Gateway association |
| EP10797664.9A EP2452472A4 (en) | 2009-07-06 | 2010-07-02 | Gateway association |
| TW099122011A TWI433511B (en) | 2009-07-06 | 2010-07-05 | Network gateway and method for data path optimization |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US22336009P | 2009-07-06 | 2009-07-06 | |
| US12/633,515 US8913586B2 (en) | 2009-07-06 | 2009-12-08 | Gateway association |
| PCT/US2010/040883 WO2011005676A2 (en) | 2009-07-06 | 2010-07-02 | Gateway association |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20110002297A1 true US20110002297A1 (en) | 2011-01-06 |
| US8913586B2 US8913586B2 (en) | 2014-12-16 |
Family
ID=46940055
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/633,515 Expired - Fee Related US8913586B2 (en) | 2009-07-06 | 2009-12-08 | Gateway association |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US8913586B2 (en) |
| EP (1) | EP2452472A4 (en) |
| JP (1) | JP5676601B2 (en) |
| KR (1) | KR101376919B1 (en) |
| CN (1) | CN102484829B (en) |
| TW (1) | TWI433511B (en) |
| WO (1) | WO2011005676A2 (en) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110110329A1 (en) * | 2009-11-06 | 2011-05-12 | Xiangying Yang | Security update procedure for zone switching in mixed-mode wimax network |
| US20110199966A1 (en) * | 2010-02-16 | 2011-08-18 | Carlos Cordeiro | CLUSTERING MANAGEMENT IN mmWAVE WIRELESS SYSTEMS |
| US20120264437A1 (en) * | 2009-12-09 | 2012-10-18 | Telefonaktiebolaget L M Ericsson (Publ) | Call Switching in Packet-Based Communication Networks |
| US20130044741A1 (en) * | 2010-02-12 | 2013-02-21 | Notava Oy | Redirecting of data traffic between wan and lan |
| US8619654B2 (en) | 2010-08-13 | 2013-12-31 | Intel Corporation | Base station selection method for heterogeneous overlay networks |
| US20140169330A1 (en) * | 2012-12-14 | 2014-06-19 | Telefonaktiebolaget L M Ericsson (Publ) | Network Gateway Selection at Multipath Communication |
| US20150049747A1 (en) * | 2012-03-08 | 2015-02-19 | China Academy Of Telecommunications Technology | Method, apparatus and system for transmitting gateway address |
| US20150065130A1 (en) * | 2012-03-16 | 2015-03-05 | Kyocera Corporation | Communication control method, gateway device, and home base station |
| US20150078168A1 (en) * | 2013-09-13 | 2015-03-19 | Samsung Electronics Co., Ltd. | Method and apparatus for traffic load balancing in mobile communication system |
| US9001767B1 (en) | 2013-03-06 | 2015-04-07 | Sprint Communications Company L.P. | Selection of wireless backhaul links based on uptime factors |
| US20160165565A1 (en) * | 2009-05-06 | 2016-06-09 | Telefonaktiebolaget L M Ericsson (Publ) | Dedicated gateway for mobile broadband devices |
| US9526036B1 (en) * | 2013-09-23 | 2016-12-20 | Sprint Communications Company L.P. | Dynamic packet gateway selection based on long term evolution network loading |
| US9667338B2 (en) | 2014-10-17 | 2017-05-30 | The Boeing Company | Multiband wireless data transmission between aircraft and ground systems |
| US9847796B2 (en) * | 2014-10-17 | 2017-12-19 | The Boeing Company | Multiband wireless data transmission between aircraft and ground systems based on availability of the ground systems |
| US20180213390A1 (en) * | 2015-07-21 | 2018-07-26 | Nokia Technologies Oy | Localized routing in mobile networks |
| WO2025090068A1 (en) * | 2023-10-27 | 2025-05-01 | Viasat, Inc. | Handover procedure for a mobile station between base stations in a satellite communications system |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| PL3018850T3 (en) * | 2013-01-30 | 2017-10-31 | Ericsson Telefon Ab L M | Security key generation for dual connectivity |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010055285A1 (en) * | 2000-06-21 | 2001-12-27 | Nec Corporation | Mobile communication system and gateway selecting method thereof |
| US20060099950A1 (en) * | 2004-11-08 | 2006-05-11 | Klein Thierry E | Method and apparatus for activating an inactive mobile unit in a distributed network |
| US20070192495A1 (en) * | 2006-02-16 | 2007-08-16 | Softwired Ag | Gateway for wireless mobile clients |
| US20070202871A1 (en) * | 2006-02-27 | 2007-08-30 | Alvarion Ltd. | Method of paging a mobile terminal |
| US20080192713A1 (en) * | 2005-02-01 | 2008-08-14 | Farhad Mighani | Hierarchical Mesh Network for Wireless Access |
| US20080253342A1 (en) * | 2007-04-10 | 2008-10-16 | Zte (Usa) Inc. | Signaling in convergence sublayer in WiMAX |
| US20080311911A1 (en) * | 2007-06-15 | 2008-12-18 | Nokia Siemens Networks Oy | Handover trigger for an inter-access-gateway interface |
| US20090252133A1 (en) * | 2008-04-07 | 2009-10-08 | Hitachi Communication Technologies, Ltd. | Mobile communication system and access gateway having plural user plane agws |
| US20100234025A1 (en) * | 2009-03-11 | 2010-09-16 | Futurewei Technologies, Inc. | System and Method for Initial Gateway Selection |
| US20110051682A1 (en) * | 2007-12-20 | 2011-03-03 | Dirk Kampmann | Assignment and Handover in a Radio Communication Network |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2235688A1 (en) * | 1997-06-24 | 1998-12-24 | Lucent Technologies Inc. | Method for handoff type selection by a target base station in a wireless telecommunications system |
| US6091732A (en) * | 1997-11-20 | 2000-07-18 | Cisco Systems, Inc. | Method for configuring distributed internet protocol gateways with lan emulation |
| FI20001877A7 (en) | 2000-08-25 | 2002-02-26 | Nokia Networks Oy | Changing joint responsibility in a wireless communication system |
| JP2005027192A (en) * | 2003-07-04 | 2005-01-27 | Fujitsu Ltd | Network address assignment device |
| CN100366012C (en) | 2004-12-27 | 2008-01-30 | 华为技术有限公司 | A method for a user terminal to access a core network via a wireless access network |
| JP4519720B2 (en) * | 2005-06-13 | 2010-08-04 | 三菱電機株式会社 | Handover method |
| WO2008001447A1 (en) | 2006-06-29 | 2008-01-03 | Fujitsu Limited | Mobile communication method and mobile communication device |
| JP4890175B2 (en) * | 2006-09-20 | 2012-03-07 | 三菱電機株式会社 | Gateway apparatus and communication method |
| KR20080033735A (en) * | 2006-10-13 | 2008-04-17 | 삼성전자주식회사 | IP address configuration system, method, mobile station and gateway in communication system |
| US8699327B2 (en) * | 2007-01-31 | 2014-04-15 | Alcatel Lucent | Multipath virtual router redundancy |
| WO2008139842A1 (en) | 2007-04-27 | 2008-11-20 | Sharp Kabushiki Kaisha | Communication control device, mobile station device, mobile communication system, and mobile communication method |
| US8780856B2 (en) | 2007-09-18 | 2014-07-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Inter-system handoffs in multi-access environments |
-
2009
- 2009-12-08 US US12/633,515 patent/US8913586B2/en not_active Expired - Fee Related
-
2010
- 2010-07-02 EP EP10797664.9A patent/EP2452472A4/en not_active Withdrawn
- 2010-07-02 CN CN201080031223.4A patent/CN102484829B/en not_active Expired - Fee Related
- 2010-07-02 WO PCT/US2010/040883 patent/WO2011005676A2/en not_active Ceased
- 2010-07-02 JP JP2012519616A patent/JP5676601B2/en not_active Expired - Fee Related
- 2010-07-02 KR KR1020127003084A patent/KR101376919B1/en not_active Expired - Fee Related
- 2010-07-05 TW TW099122011A patent/TWI433511B/en not_active IP Right Cessation
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010055285A1 (en) * | 2000-06-21 | 2001-12-27 | Nec Corporation | Mobile communication system and gateway selecting method thereof |
| US20060099950A1 (en) * | 2004-11-08 | 2006-05-11 | Klein Thierry E | Method and apparatus for activating an inactive mobile unit in a distributed network |
| US20080192713A1 (en) * | 2005-02-01 | 2008-08-14 | Farhad Mighani | Hierarchical Mesh Network for Wireless Access |
| US20070192495A1 (en) * | 2006-02-16 | 2007-08-16 | Softwired Ag | Gateway for wireless mobile clients |
| US20070202871A1 (en) * | 2006-02-27 | 2007-08-30 | Alvarion Ltd. | Method of paging a mobile terminal |
| US20080253342A1 (en) * | 2007-04-10 | 2008-10-16 | Zte (Usa) Inc. | Signaling in convergence sublayer in WiMAX |
| US20080311911A1 (en) * | 2007-06-15 | 2008-12-18 | Nokia Siemens Networks Oy | Handover trigger for an inter-access-gateway interface |
| US20110051682A1 (en) * | 2007-12-20 | 2011-03-03 | Dirk Kampmann | Assignment and Handover in a Radio Communication Network |
| US20090252133A1 (en) * | 2008-04-07 | 2009-10-08 | Hitachi Communication Technologies, Ltd. | Mobile communication system and access gateway having plural user plane agws |
| US20100234025A1 (en) * | 2009-03-11 | 2010-09-16 | Futurewei Technologies, Inc. | System and Method for Initial Gateway Selection |
Cited By (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9730177B2 (en) * | 2009-05-06 | 2017-08-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Dedicated gateway for mobile broadband devices |
| US20160165565A1 (en) * | 2009-05-06 | 2016-06-09 | Telefonaktiebolaget L M Ericsson (Publ) | Dedicated gateway for mobile broadband devices |
| US20110110329A1 (en) * | 2009-11-06 | 2011-05-12 | Xiangying Yang | Security update procedure for zone switching in mixed-mode wimax network |
| US8630245B2 (en) | 2009-11-06 | 2014-01-14 | Intel Corporation | Enhancing fragmentation and defragmentation procedures in broadband wireless networks |
| US8451799B2 (en) | 2009-11-06 | 2013-05-28 | Intel Corporation | Security update procedure for zone switching in mixed-mode WiMAX network |
| US20120264437A1 (en) * | 2009-12-09 | 2012-10-18 | Telefonaktiebolaget L M Ericsson (Publ) | Call Switching in Packet-Based Communication Networks |
| US8626174B2 (en) * | 2009-12-09 | 2014-01-07 | Telefonaktiebolaget L M Ericsson (Publ) | Call switching in packet-based communication networks |
| US20130044741A1 (en) * | 2010-02-12 | 2013-02-21 | Notava Oy | Redirecting of data traffic between wan and lan |
| US8913550B2 (en) * | 2010-02-16 | 2014-12-16 | Intel Corporation | Clustering management in mmWave wireless systems |
| US20110199966A1 (en) * | 2010-02-16 | 2011-08-18 | Carlos Cordeiro | CLUSTERING MANAGEMENT IN mmWAVE WIRELESS SYSTEMS |
| US9949141B2 (en) | 2010-02-16 | 2018-04-17 | Intel Corporation | Clustering management in mmWave wireless systems |
| US8619654B2 (en) | 2010-08-13 | 2013-12-31 | Intel Corporation | Base station selection method for heterogeneous overlay networks |
| US20150049747A1 (en) * | 2012-03-08 | 2015-02-19 | China Academy Of Telecommunications Technology | Method, apparatus and system for transmitting gateway address |
| US9609578B2 (en) * | 2012-03-08 | 2017-03-28 | China Academy Of Telecommunications Technology | Method, apparatus and system for transmitting gateway address |
| US20150065130A1 (en) * | 2012-03-16 | 2015-03-05 | Kyocera Corporation | Communication control method, gateway device, and home base station |
| US9288782B2 (en) * | 2012-03-16 | 2016-03-15 | Kyocera Corporation | Communication control method, gateway device, and home base station |
| US20140169330A1 (en) * | 2012-12-14 | 2014-06-19 | Telefonaktiebolaget L M Ericsson (Publ) | Network Gateway Selection at Multipath Communication |
| US9001767B1 (en) | 2013-03-06 | 2015-04-07 | Sprint Communications Company L.P. | Selection of wireless backhaul links based on uptime factors |
| US20150078168A1 (en) * | 2013-09-13 | 2015-03-19 | Samsung Electronics Co., Ltd. | Method and apparatus for traffic load balancing in mobile communication system |
| US10271242B2 (en) * | 2013-09-13 | 2019-04-23 | Samsung Electronics Co., Ltd | Method and apparatus for traffic load balancing in mobile communication system |
| US9526036B1 (en) * | 2013-09-23 | 2016-12-20 | Sprint Communications Company L.P. | Dynamic packet gateway selection based on long term evolution network loading |
| US9667338B2 (en) | 2014-10-17 | 2017-05-30 | The Boeing Company | Multiband wireless data transmission between aircraft and ground systems |
| US9847796B2 (en) * | 2014-10-17 | 2017-12-19 | The Boeing Company | Multiband wireless data transmission between aircraft and ground systems based on availability of the ground systems |
| US20180213390A1 (en) * | 2015-07-21 | 2018-07-26 | Nokia Technologies Oy | Localized routing in mobile networks |
| US10993102B2 (en) * | 2015-07-21 | 2021-04-27 | Nokia Technologies Oy | Localized routing in mobile networks |
| WO2025090068A1 (en) * | 2023-10-27 | 2025-05-01 | Viasat, Inc. | Handover procedure for a mobile station between base stations in a satellite communications system |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2011005676A3 (en) | 2011-05-05 |
| JP2012532566A (en) | 2012-12-13 |
| CN102484829A (en) | 2012-05-30 |
| TWI433511B (en) | 2014-04-01 |
| JP5676601B2 (en) | 2015-02-25 |
| WO2011005676A2 (en) | 2011-01-13 |
| EP2452472A2 (en) | 2012-05-16 |
| TW201123788A (en) | 2011-07-01 |
| EP2452472A4 (en) | 2016-07-13 |
| KR20120042924A (en) | 2012-05-03 |
| US8913586B2 (en) | 2014-12-16 |
| KR101376919B1 (en) | 2014-03-20 |
| CN102484829B (en) | 2016-10-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8913586B2 (en) | Gateway association | |
| US8027304B2 (en) | Secure session keys context | |
| US8838109B2 (en) | Expedited handoff | |
| JP6240273B2 (en) | Authentication using DHCP service in mesh networks | |
| US20190036908A1 (en) | Techniques for managing secure content transmissions in a content delivery network | |
| US8848610B2 (en) | Lightweight data transmission mechanism | |
| US20130305332A1 (en) | System and Method for Providing Data Link Layer and Network Layer Mobility Using Leveled Security Keys | |
| CN105359561A (en) | Apparatus, system and method of selectively providing internet protocol (IP) session continuity | |
| EP2038609A2 (en) | Ap-local dynamic switching | |
| US9084111B2 (en) | System and method for determining leveled security key holder | |
| JP5715706B2 (en) | UL power control method in broadband wireless access system | |
| CN102958052A (en) | Secure data transmission method and related device | |
| Marques et al. | Simulation of 802.21 handovers using ns‐2 | |
| KR100710530B1 (en) | Method for configuration and registration of internet protocol address in a wireless mobile communication system with a connection oriented radio link | |
| US11778467B2 (en) | Precaching precursor keys within a roaming domain of client devices | |
| US8665825B2 (en) | Method and apparatus for supporting idle mode handover in heterogeneous wireless communication | |
| KR102216884B1 (en) | Tunnel server supporting wireless local area network-based asymmetric communcation and operation method of tunnel server | |
| Mathi et al. | Integrating dynamic architecture with distributed mobility management to optimize route in next generation internet protocol mobility | |
| Sarikaya et al. | Capwap handover protocol | |
| He et al. | Achieving seamless handoffs via backhaul support in Wireless Mesh Networks | |
| Huang et al. | An IEEE 802.11 Fast Reassociation and Pairwise Transient Key establishment Based on the Dynamic Cluster Method | |
| KR20050121607A (en) | Authentication method of handover in a wireless communication system | |
| KR20080073023A (en) | Apparatus and method for home address recognition in mobile communication system | |
| Akhila | A Survey on Delay in Vertical Handoff in Heterogeneous Wireless Networks |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: INTEL CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JAIN, PUNEET K.;VENKATACHALAM, MUTHAIAH;TAAGHOL, POUYA;SIGNING DATES FROM 20091204 TO 20091207;REEL/FRAME:023622/0756 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20181216 |