US20100260931A1 - Method and apparatus for using a vertical furnace to infuse carbon nanotubes to fiber - Google Patents
Method and apparatus for using a vertical furnace to infuse carbon nanotubes to fiber Download PDFInfo
- Publication number
- US20100260931A1 US20100260931A1 US12/757,907 US75790710A US2010260931A1 US 20100260931 A1 US20100260931 A1 US 20100260931A1 US 75790710 A US75790710 A US 75790710A US 2010260931 A1 US2010260931 A1 US 2010260931A1
- Authority
- US
- United States
- Prior art keywords
- cnt
- substrate
- catalyst
- fiber
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 52
- 239000000835 fiber Substances 0.000 title claims description 52
- 239000002041 carbon nanotube Substances 0.000 title description 102
- 229910021393 carbon nanotube Inorganic materials 0.000 title description 10
- 239000000758 substrate Substances 0.000 claims abstract description 154
- 239000003054 catalyst Substances 0.000 claims abstract description 116
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 65
- 239000007789 gas Substances 0.000 claims abstract description 44
- 239000012159 carrier gas Substances 0.000 claims abstract description 39
- 239000002105 nanoparticle Substances 0.000 claims abstract description 39
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 35
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 29
- 238000001816 cooling Methods 0.000 claims abstract description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 29
- 239000002131 composite material Substances 0.000 claims description 24
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 23
- 239000004917 carbon fiber Substances 0.000 claims description 21
- 238000001802 infusion Methods 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 20
- 239000006185 dispersion Substances 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 239000000919 ceramic Substances 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 9
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 9
- 239000003365 glass fiber Substances 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 8
- 239000011347 resin Substances 0.000 claims description 8
- 229910052723 transition metal Inorganic materials 0.000 claims description 8
- 125000000524 functional group Chemical group 0.000 claims description 7
- 150000003624 transition metals Chemical class 0.000 claims description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 4
- 229920006231 aramid fiber Polymers 0.000 claims description 4
- 239000004568 cement Substances 0.000 claims description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 3
- 125000003277 amino group Chemical group 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 claims description 3
- 229920001187 thermosetting polymer Polymers 0.000 claims description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- 239000003345 natural gas Substances 0.000 claims description 2
- 239000001294 propane Substances 0.000 claims description 2
- 229920005992 thermoplastic resin Polymers 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000000243 solution Substances 0.000 description 38
- 238000004513 sizing Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 21
- 239000000203 mixture Substances 0.000 description 19
- 239000002245 particle Substances 0.000 description 18
- 150000001723 carbon free-radicals Chemical class 0.000 description 10
- 238000000576 coating method Methods 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000007306 functionalization reaction Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- -1 magnetite) Chemical compound 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 150000003839 salts Chemical group 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000010494 dissociation reaction Methods 0.000 description 4
- 230000005593 dissociations Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000006199 nebulizer Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229920000271 Kevlar® Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001722 carbon compounds Chemical class 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000004761 kevlar Substances 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000004375 physisorption Methods 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical class [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000000678 plasma activation Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000012744 reinforcing agent Substances 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910021524 transition metal nanoparticle Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910000677 High-carbon steel Inorganic materials 0.000 description 1
- 229910000502 Li-aluminosilicate Inorganic materials 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 229910026551 ZrC Inorganic materials 0.000 description 1
- QHYFLXAJBXOYIF-UHFFFAOYSA-J [Ni+2].[Ba+2].[O-]C([O-])=O.[O-]C([O-])=O Chemical compound [Ni+2].[Ba+2].[O-]C([O-])=O.[O-]C([O-])=O QHYFLXAJBXOYIF-UHFFFAOYSA-J 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910021387 carbon allotrope Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- GVEHJMMRQRRJPM-UHFFFAOYSA-N chromium(2+);methanidylidynechromium Chemical compound [Cr+2].[Cr]#[C-].[Cr]#[C-] GVEHJMMRQRRJPM-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 150000001913 cyanates Chemical class 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- HZGFMPXURINDAW-UHFFFAOYSA-N iron zirconium Chemical compound [Fe].[Zr].[Zr] HZGFMPXURINDAW-UHFFFAOYSA-N 0.000 description 1
- PVFSDGKDKFSOTB-UHFFFAOYSA-K iron(3+);triacetate Chemical compound [Fe+3].CC([O-])=O.CC([O-])=O.CC([O-])=O PVFSDGKDKFSOTB-UHFFFAOYSA-K 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 150000004819 silanols Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/73—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
- D06M11/74—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/73—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/164—Preparation involving continuous processes
Definitions
- the present invention relates in general to a system, method and apparatus for the continuous synthesis of carbon nanotubes.
- Carbon nanotubes exhibit impressive physical properties such as exhibiting roughly eighty times the strength, six times the stiffness (i.e., Young's Modulus), and one-sixth the density of high carbon steel. CNTs can be useful when integrated into certain fibrous materials such as composite materials. Hence, developing CNTs within composite materials having these desirable properties is of significant interest.
- a composite material is a heterogeneous combination of two or more constituents that differ in form or composition on a macroscopic scale.
- Two constituents of a composite include a reinforcing agent and a resin matrix.
- the fibers act as a reinforcing agent.
- the resin matrix keeps the fibers in a desired location and orientation and also serves as a load-transfer medium between fibers within the composite. Due to their exceptional mechanical properties, CNTs are used to further reinforce the fiber in composite materials.
- E-glass fibers can experience losses in strength of up to about 50%. These losses can propagate and cause further problems down the process line as deteriorated fibers can fray and break under tension and in low-radius turns. Other fibers including carbon fibers can experience similar problems. Alternative methods and systems for providing low temperature in-line CNT synthesis are desired.
- a method for forming a CNT infused substrate comprises exposing a catalyst nanoparticle, a carbon feedstock gas, and a carrier gas to a CNT synthesis temperature, allowing a CNT to form on the catalyst nanoparticle, cooling the CNT, and exposing the cooled CNT to a surface of a substrate to form a CNT infused substrate.
- the substrate can be functionalized prior to exposing the substrate to the CNT.
- the CNT infused substrate can also be functionalized.
- the method also comprises providing a catalyst solution comprising a catalyst and a solvent, and atomizing the catalyst solution and allowing the solvent to evaporate leaving the catalyst nanoparticle.
- a system comprises a carrier gas source that provides a carrier gas; a catalyst source that provides a catalyst nanoparticle; a carbon feedstock source that provides a carbon feedstock; a substrate source that provides a substrate; and a CNT growth reactor comprising an inlet device that receives the carrier gas, the catalyst nanoparticle, and the carbon feedstock and introduces the carrier gas, the catalyst nanoparticle, and the carbon feedstock into a CNT growth zone; a heating element that heats the carrier gas, the catalyst nanoparticle, and the carbon feedstock to a CNT synthesis temperature within the CNT growth zone to allow a CNT to synthesize on the catalyst and form a synthesized CNT; a dispersion hood that receives the synthesized CNT and cools the synthesized CNT; and a CNT infusion chamber that receives the synthesized CNT and the substrate and exposes the substrate to the cooled synthesized CNT to produce a CNT infused substrate.
- the substrate is functionalized.
- a method comprises providing a catalyst nanoparticle, a carbon feedstock gas, and a carrier gas; heating the catalyst nanoparticle, the carbon feedstock gas, and the carrier gas to a CNT synthesis temperature; allowing a CNT to form on the catalyst nanoparticle; cooling the CNT; providing a substrate; exposing the substrate to the cooled CNT to form a CNT infused substrate; and forming a composite material, wherein the composite material comprises the CNT infused substrate.
- the substrate is functionalized, and in some embodiments, the CNT infused substrate is functionalized prior to forming a composite material.
- the substrate is provided on a dynamic basis.
- FIG. 1 depicts a reactor configuration for the production of carbon nanotubes in accordance with some embodiments of the invention.
- FIG. 2 depicts a method for providing a CNT infused substrate suitable for use in a composite material according to some embodiments of the invention.
- the present invention relates in general to a system, method and apparatus for the continuous synthesis of CNTs and infusion on a substrate.
- the invention provides at least some separation between the high-temperature synthesis of carbon nanotubes and their application to a substrate.
- CNTs can be advantageously synthesized in a high temperature reactor and subsequently infused on a variety of substrates to produce carbon nanotube-infused (“CNT-infused”) substrates.
- the process is particularly advantageous for use with temperature sensitive substrates or substrates with temperature sensitive sizings.
- the disposition of CNTs on a substrate can serve many functions including, for example, as a sizing agent to protect against damage from moisture, oxidation, abrasion, and compression.
- a CNT-based sizing can also serve as an interface between the substrate and a matrix material in a composite.
- the CNTs can also serve as one of several sizing agents coating the substrate.
- CNTs infused on a substrate can alter various properties of the substrate, such as thermal and/or electrical conductivity, and/or tensile strength, for example.
- the processes employed to make CNT-infused substrates can provide CNTs with substantially uniform length and distribution to impart their useful properties uniformly over the substrate that is being modified. Furthermore, the processes disclosed herein can generate CNT-infused substrates of spoolable dimensions.
- the system and method disclosed herein also make it possible to use various sizing and substrates such as polyaramid fibers including Kevlar, which cannot withstand high operating temperatures utilized in some conventional carbon nanotube synthesis processes.
- the system and the method of this invention can allow a temperature sensitive substrate to be used for the formation of a composite material infused with CNTs due at least in part to the relatively low temperature at which the CNTs contact and are infused onto the substrate.
- a further advantage of the present system and method is that continuous synthesis of CNTs can be obtained, facilitating mass production of composite materials with CNTs.
- the continuous synthesis process can be carried out on a dynamic substrate, e.g., a substrate entering a reactor through an inlet, traversing through the reactor and exiting from an outlet of the reactor.
- the processes described herein can allow for the continuous production of CNTs of uniform length and distribution along spoolable lengths of tow, tapes, fabrics and other 3D woven structures. While various mats, woven and non-woven fabrics and the like can be functionalized by processes of the invention, it is also possible to generate such higher ordered structures from the parent tow, yarn or the like after CNT functionalization of these parent materials. For example, a CNT-infused woven fabric can be generated from a CNT-infused fiber tow.
- substrate is intended to include any material upon which CNTs can be synthesized and can include, but is not limited to, a carbon fiber, a graphite fiber, a cellulosic fiber, a glass fiber, a metal fiber (e.g., steel, aluminum, etc.), a ceramic fiber, a metallic-ceramic fiber, cellulosic fiber, an aramid fiber (e.g., Kevlar), thermoplastics, or any substrate comprising a combination thereof.
- the substrate can include fibers or filaments arranged, for example, in a fiber tow (typically having about 1000 to about 12000 fibers) as well as planar substrates such as fabrics, tapes, ribbons, graphene sheets, silicon wafers, or other fiber broadgoods, and materials upon which CNTs can be synthesized.
- a fiber tow typically having about 1000 to about 12000 fibers
- planar substrates such as fabrics, tapes, ribbons, graphene sheets, silicon wafers, or other fiber broadgoods, and materials upon which CNTs can be synthesized.
- spoolable dimensions refers to substrates having at least one dimension that is not limited in length, allowing for the material to be stored on a spool or mandrel. Substrates of “spoolable dimensions” have at least one dimension that indicates the use of either batch or continuous processing for CNT infusion as described herein.
- Commercial carbon fiber tow in particular, can be obtained in 5, 10, 20, 50, and 100 lb. (for spools having high weight, usually a 3 k/12K tow) spools, for example, although larger spools may require special order.
- CNT carbon nanotube
- SWNT single-walled CNTs
- DWNT double-walled CNTs
- MWNTs multi-walled CNTs
- uniform in length refers to length of CNTs grown in a reactor. “Uniform length” means that the CNTs have lengths with tolerances of plus or minus about 20% of the total CNT length or less, for CNT lengths varying from between about 1 micron to about 500 microns. At very short lengths, such as 1-4 microns, this error can be in a range from between about plus or minus 20% of the total CNT length up to about plus or minus 1 micron, that is, somewhat more than about 20% of the total CNT length.
- uniform in distribution refers to the consistency of density of CNTs on a substrate. “Uniform distribution” means that the CNTs have a density on the substrate with tolerances of plus or minus about 10% coverage defined as the percentage of the surface area of the substrate covered by CNTs. This is equivalent to ⁇ 1500 CNTs/ ⁇ m 2 for an 8 nm diameter CNT with 5 walls. Such a value assumes the space inside the CNTs as fillable.
- the term “infused” means bonded and “infusion” means the process of bonding. Such bonding can involve direct covalent bonding, ionic bonding, pi-pi, and/or Van der Waals force-mediated physisorption.
- the CNTs can be directly bonded (e.g., covalently or through a pi-pi bond) to the substrate, for example, at a point at which the substrate has been functionalized. Bonding can be indirect, such as the CNT infusion to the substrate via a coating disposed between the CNTs and substrate.
- the CNTs can be indirectly bonded (e.g., through physisorption) to the substrate without any intervening materials and/or functionalization.
- the CNTs can be “infused” to the substrate directly or indirectly. The particular manner in which a CNT is “infused” to a substrates can be referred to as a “bonding motif.”
- transition metal refers to any element or alloy of elements in the d-block of the periodic table.
- the tetin “transition metal” also includes salt forms of the base transition metal element such as oxides, carbides, chlorides, chlorates, acetates, sulfides, sulfates, nitrides, nitrates and the like.
- nanoparticle or NP (plural NPs), or grammatical equivalents thereof refers to particles sized between about 0.1 to about 100 nanometers in equivalent spherical diameter, although the NPs need not be spherical in shape. Transition metal NPs, in particular, serve as catalysts for CNT synthesis within the reactor.
- carbon feedstock refers to any carbon compound gas, solid, or liquid that can be volatilized, nebulized, atomized, or otherwise fluidized and is capable of dissociating or cracking at high temperatures into at least some free carbon radicals and which, in the presence of a catalyst, can form CNTs.
- free carbon radicals refers to any reactive carbon species capable of adding to the growth of a CNT. Without intending to be limited by theory, it is believed that a free carbon radical adds to the growth of a CNT by associating with a CNT catalyst to form a CNT or increase the length of an existing CNT.
- sizing agent refers collectively to materials used in the manufacture of some substrates (e.g., carbon fibers) as a coating to protect the integrity of substrate, provide enhanced interfacial interactions between a substrate and a matrix material in a composite, and/or alter and/or enhance particular physical properties of a substrate.
- CNTs infused to substrates can behave as a sizing agent.
- the term “material residence time” refers to the amount of time a discrete point along a substrate of spoolable dimensions is exposed to synthesized CNTs within the reactor during the CNT infusion processes described herein. This definition includes the residence time when employing multiple CNT growth chambers.
- linespeed refers to the speed at which a substrate of spoolable dimensions can be fed through the CNT infusion processes described herein, where linespeed is a velocity determined by dividing CNT chamber(s) length by the material residence time.
- FIG. 1 there is illustrated a schematic diagram of a reactor 100 for synthesis of a CNT infused substrate.
- catalyst source 104 carbon feedstock source 106 , and carrier gas source 102 are introduced at the top of the CNT growth zone 112 through an inlet device 108 .
- a heating element 110 can be used to raise the temperature of the mixture to promote the formation of CNTs.
- the synthesized CNTs can infuse to substrate 118 to produce a CNT infused substrate before passing out of the reactor 100 for further processing.
- catalyst source 104 provides a catalyst for initiating the synthesis of CNTs.
- a catalyst can take the form of nano-sized particles of a catalyst.
- the catalyst employed can be a transition metal nanoparticle which can be any d-block transition metal as described above.
- the nanoparticles (NPs) can include alloys and non-alloy mixtures of d-block metals in elemental form or in salt form, and any mixtures thereof.
- Such salt forms include, without limitation, oxides, carbides, chlorides, chlorates, acetates, sulfides, sulfates, nitrides, nitrates and mixtures thereof.
- Non-limiting exemplary transition metal NPs include Ni, Fe, Co, Mo, Cu, Pt, Au, and Ag and salts thereof. Many of these transition metal catalysts are commercially available from a variety of suppliers, including, for example, Ferrotec Corporation (Bedford, N.H.).
- the catalyst can be in a colloidal solution or a metal salt solution.
- Other catalyst solutions can also be used.
- commercial dispersions of CNT-forming transition metal nanoparticle catalyst are available and are used without dilution.
- commercial dispersions of catalyst can be diluted. Whether to dilute such solutions can depend on the conditions within the reactor and the relative flow rates of the catalyst, the carrier gas, and the carbon feedstock.
- Catalyst solutions can comprise a solvent that allows the catalyst to be uniformly dispersed throughout the catalyst solution.
- Such solvents can include, without limitation, water, acetone, hexane, isopropyl alcohol, toluene, ethanol, methanol, tetrahydrofuran (THF), cyclohexane or any other solvent with controlled polarity to create an appropriate dispersion of the CNT-forming catalyst nanoparticles or salt solutions.
- Concentrations of CNT-forming catalyst can be in a range from about 1:1 to about 1:10000 of catalyst to solvent in the catalyst solution.
- carbon feedstock source 106 is in fluid communication with the top of the CNT growth zone 112 through an inlet device 108 .
- gases from carbon feedstock source 106 and carrier gas source 102 are mixed before the gas mixture is supplied to the CNT growth zone 112 through an inlet device 108 .
- the carbon feedstock can be any carbon compound gas, solid, or liquid that can be volatilized, nebulized, atomized, or otherwise fluidized and is capable of dissociating or cracking at high temperatures into at least some free carbon radicals.
- the free carbon radicals can then form CNTs in the presence of a catalyst.
- the carbon feedstock can comprise acetylene, ethylene, methanol, methane, propane, benzene, natural gas, or any combination thereof.
- a carbon feedstock comprising acetylene is heated to a temperature between about 450° C. and about 1000° C.
- CNT growth zone 112 At least a portion of the acetylene dissociates into carbon and hydrogen in the presence of a catalyst nanoparticle.
- the temperature of the CNT growth zone facilitates rapid dissociation of acetylene but could adversely impact the physical and chemical properties of the substrate and/or any sizing materials present.
- the use of a carbon feedstock such as acetylene can reduce the need for a separate process of introducing hydrogen into CNT growth zone 112 , which can be used to reduce a catalyst containing an oxide.
- the dissociation of a carbon feedstock may provide hydrogen, which can reduce the catalyst particles to pure particles (e.g., in a pure elemental form) or at least to an acceptable oxide level.
- the stability of an oxide used as a catalyst can affect the reactivity of the catalyst particles. As the stability of the oxide increases, the catalyst particles generally become less reactive. Reduction (e.g., through contact with hydrogen) to a more unstable oxide or a pure metal can increase the reactivity of the catalyst.
- the catalyst comprises iron oxide (e.g., magnetite)
- iron oxide e.g., magnetite
- such an iron oxide particle is not conducive to the synthesis of CNTs due to the stability of the iron oxide. Reduction to a less stable oxidation state or pure iron can increase the reactivity of the catalyst particle.
- the hydrogen from acetylene can remove the oxide from the catalyst particles or reduce the oxide to a less stable oxide form.
- a carrier gas can be used to control the bulk flow of catalyst and carbon feedstock through the CNT growth zone 112 in addition to removing oxygen, which can be detrimental to the growth of CNTs from CNT growth zone 112 . If oxygen is present in CNT growth zone 112 , the carbon radicals formed from the carbon feedstock tend to react with the oxygen to form carbon dioxide and/or carbon monoxide, instead of forming CNTs using the catalyst nanoparticles as seed structures. In addition, the formation of a CNT in the presence of oxygen can result in the oxidative decomposition of the CNT.
- the carrier gas can comprise any inert gas that does not detrimentally impact the CNT growth process.
- the carrier gas can include, but is not limited to, nitrogen, helium, argon, or any combination thereof.
- the carrier gas can comprise a gas that allows for control of the process parameters.
- a gas can include, but is not limited to, water vapor and/or hydrogen.
- the carbon feedstock can be provided in a range between about 0% to about 15% of the total gas mixture.
- the catalyst from catalyst source 104 , the gases from carbon feedstock source 106 , and the gases from carrier gas source 102 can be supplied to the CNT growth zone 112 through an inlet device 108 .
- the inlet device can comprise one or more devices for introducing the gases and the catalyst together or separately.
- inlet device 108 comprises an atomizer and the catalyst is introduced to the reactor as a catalyst solution in an atomized form. This can be achieved via a nebulizer, atomization nozzle, or other techniques.
- Industrial atomizer or misting nozzle designs can be based on the use of high pressure fluid (e.g., a liquid) or a gas assist nozzle design.
- the catalyst solution pressure can be used to accelerate the fluid through small orifices and create shear forces inside nozzle passages that break down the catalyst solution into micron size droplets.
- the shear energy is supplied by the catalyst solution, which can be at high-pressure.
- the inertial force created by supersonic gas jets e.g., the carbon feedstock, carrier gas, or a combination of the two shears the catalyst solution while inside the atomizer nozzle and upon exiting the atomizer nozzle, breaks the catalyst solution into micron size droplets.
- the catalyst solution is passed through a nebulizer to produce the catalyst solution in an atomized form.
- a nebulizer may operate through the introduction of a high pressure gas (e.g., the carbon feedstock, the carrier gas, or a combination of the two) through a reservoir containing the catalyst solution. The action of the gas passing through the solution can entrain a portion of the catalyst solution to produce an atomized carrier solution. Alternatively, a membrane oscillating at a high frequency and in contact with the carrier solution can be used to produce an atomized catalyst solution. A gas can then pass over the atomized catalyst solution to carry the atomized catalyst solution through inlet device 108 into the CNT growth zone 112 .
- a high pressure gas e.g., the carbon feedstock, the carrier gas, or a combination of the two
- the gas can comprise the carrier gas, the carbon feedstock, or any mixture thereof.
- a high-pressure liquid nozzle is used to atomize the catalyst solution and the carrier gas and the carbon feedstock are introduced through inlet device 108 separate from the catalyst solution, either individually or as a combined gas mixture. As the catalyst solution passes through inlet device 108 , the catalyst solution can vaporize and leave a catalyst nanoparticle.
- the catalyst can be in a colloidal solution so that the fluid portion of the solution vaporizes leaving a catalyst nanoparticle, or the catalyst can be a salt dissolved in a solvent so that the evaporation of the solvent results in the crystallization of a catalyst nanoparticle.
- heating element 110 can be used to raise the temperature of the components entering the CNT growth zone 112 to promote the formation of CNTs.
- the heating element can comprise any type of heating element capable of raising the temperature of the CNT growth zone, the catalyst nanoparticles, the carbon feedstock, or any combination thereof to the appropriate reaction temperature.
- heating element 110 can comprise a plurality of individual heating elements capable of producing a desired temperature and/or a desired temperature profile within the CNT growth zone.
- heating element 110 can include, but is not limited to, infrared or resistive heaters disposed adjacent to or within the growth zone.
- Heating element 110 heats the catalyst and gases to a CNT synthesis temperature, which is typically in the range of about 450° C. to about 1000° C. At these temperatures, at least a portion of the carbon feedstock can dissociate or crack into at least some free carbon radicals. The catalyst nanoparticles can then react with the free carbon radicals to synthesize CNTs. In some embodiments, hydrogen is also produced by the dissociation of the carbon feedstock, which can then reduce the catalyst to a pure metal particle.
- the synthesized CNTs can comprise agglomerates of synthesized CNTs and one or more catalyst particles.
- the length of the CNTs is affected by several factors including, but not limited to, the carbon feedstock concentration, the temperature, the catalyst composition, the carrier gas flowrate, and the residence time of the catalyst particles and synthesizing CNTs in the CNT growth zone, which may be a function of the length of the CNT growth zone and the gas flow characteristics (e.g., velocity, etc.).
- heating element 110 and/or CNT growth zone 112 can be constructed of metal, (e.g., stainless steel, a high nickel steel alloy, etc.). This use of metal, and stainless steel in particular, can lead to carbon deposition (i.e., soot and by-product formation). Once carbon deposits to a monolayer on the walls of the device, carbon will readily deposit over itself.
- the metal can be coated to prevent or reduce carbon deposits. Suitable coating can include, but are not limited to, silica, alumina, magnesium oxide, and any combination thereof. When carbon deposits occur, periodic cleaning and maintenance can be employed to prevent any carbon deposition from obstructing the flow of the gases, the catalyst particles, the CNTs, or any combination thereof.
- the CNTs pass to a dispersion hood 114 after passing out of the CNT growth zone 112 where the synthesized CNTs can cool prior to entering the infusion chamber 116 containing a substrate 118 .
- the dispersion hood 114 can provide a buffer region where the gas mixture (e.g., any remaining carbon feedstock gas, dissociation products, and/or carrier gas) and synthesized CNTs can be cooled before reaching the substrate.
- the dispersion hood can comprise one or more cooling devices such as a heat transfer arrangement for cooling the outside of the dispersion hood or otherwise removing heat from the gas mixture containing the synthesized CNTs.
- the dispersion hood is designed so that the temperature of the synthesized CNTs is lowered to a temperature ranging from about 25° C. to about 450° C.
- the substrate is not exposed to the high temperatures that are required for CNT synthesis.
- the degradation of the substrate and/or removal of the sizing that would otherwise compromise the substrate properties can be avoided.
- the synthesized CNTs can infuse to substrate 118 to produce a CNT infused substrate before passing out of the reactor 100 for further processing.
- the substrate can include any of those materials listed above as being suitable for use as a substrate.
- the substrate can comprise E-glass fibers coated with a sizing material.
- the substrate can include other fibers, such as inexpensive glass fibers and carbon fibers.
- the substrate can be an aramid fiber such as Kevlar. Fibers can be supplied in bundles, known as “tows.” A tow can have between about 1000 to about 12000 fiber filaments.
- a fiber filament can have a diameter of about 10 microns, although fiber filaments having other diameters can be used.
- Fibers can also include a carbon yarn, a carbon tape, a unidirectional carbon tape, a carbon fiber-braid, a woven carbon fabric, a non-woven carbon fiber mat, a carbon fiber ply, a 3D woven structure and the like.
- the substrate can be coated with a sizing.
- Sizing can vary widely in type and function and can include, but is not limited to, surfactants, anti-static agents, lubricants, siloxanes, alkoxysilanes, aminosilanes, silanes, silanols, polyvinyl alcohol, starch, and mixtures thereof.
- Such sizing can be used to protect the CNTs themselves or provide further properties to the fiber not imparted by the presence of the infused CNTs.
- any sizing can be removed prior to the substrate entering reactor 100 .
- a coating such as silica, alumina, magnesium oxide, silane, siloxane, or other type coating can be coated on the substrate to aid in bonding the CNTs to the substrate. Without intending to be limited by theory, it is believed that the bonding of the CNTs to the substrate with this type of coating is more mechanical and depends on physisorption and/or mechanical interlocking.
- the substrate can be functionalized to promote the infusion of the synthesized CNTs to the substrate.
- Functionalization generally involves the creation of polar functional groups on the surface of the substrate. Suitable functional groups can include, but are not limited to, amine groups, carbonyl groups, carboxyl groups, fluorine-based groups, silane groups, siloxane groups, and any combination thereof.
- the polar groups can take place in the infusion of the synthesized CNTs to the substrate through the interaction of the polar group and the carbon atoms in the CNTs.
- the substrate can be functionalized using any technique known to one of ordinary skill in the art. Suitable techniques can include, but are not limited to, sputtering, plasma functionalization, and passing the substrate through one or more suitable chemical solutions.
- the CNTs can infuse to substrate 118 to produce a CNT infused substrate before passing out of the reactor 100 for further processing.
- substrate 118 can be supplied to reactor on a dynamic basis.
- the synthesized CNTs can comprise one or more carbon radicals (e.g., dangling carbons) due to disorder along the CNT walls or carbon radicals at an end of the CNT that are not capped during the CNT synthesis process.
- these radicals can form a bond with a functionalized substrate.
- the resulting infused substrate may have the synthesized CNTs bonded at their ends to the substrate surface, creating a comb like pattern on the substrate surface.
- the radicals can be present along the walls of the CNTs and can bond to a substrate at these points along the walls.
- the synthesized CNTs may be infused to the surface of a substrate based on associative forces that are weaker than covalent bonds. Thus, a variety of bonding motifs are also possible, which can result in a variety of CNT infused substrate structures.
- the resulting infused substrate can then pass out of reactor 100 for further processing.
- the CNT-infused substrates can include a substrate such as a carbon filament, a carbon fiber yarn, a carbon fiber tow, a carbon tape, a carbon fiber-braid, a woven carbon fabric, a non-woven carbon fiber mat, a carbon fiber ply, and other 3D woven structures.
- Filaments include high aspect ratio fibers having diameters ranging in size from between about 1 micron to about 100 microns. Fiber tows are generally compactly associated bundles of filaments and are usually twisted together to give yarns
- controllers can form a controller system that can be adapted to independently sense, monitor and control system parameters including one or more of substrate feed rate, the carrier gas flow rate and pressure, the catalyst flowrate and pressure, the carbon feedstock flowrate and pressure, the heating element, and the temperature within the CNT growth zone.
- a controller system can be an integrated, automated computerized system controller system that receives parameter data and performs various automated adjustments of control parameters or a manual control arrangement, as is understood by one of ordinary skill in the art.
- a post functionalization process for functionalizing the carbon nanotubes can be performed to promote adhesion of the carbon nanotubes to a resin matrix.
- Functionalization generally involves the creation of polar functional groups on the surface of the CNT.
- Suitable functional groups for can include, but are not limited to, amine groups, carbonyl groups, carboxyl groups, fluorine-based groups, silane groups, siloxane groups, and any combination thereof.
- Suitable techniques can include, but are not limited to, sputtering, plasma functionalization, and passing the substrate through one or more suitable chemical solutions.
- FIG. 1 illustrates a generally vertical reactor design
- the reactor system is not limited to the design shown in FIG. 1 .
- the reactor including the CNT growth zone, can be oriented in a non-vertical arrangement.
- the flow of gases through the CNT growth zone can generally entrain the catalyst particles and any synthesized CNTs along with the bulk gas flow.
- the catalyst particles may pass through a CNT growth zone in a generally horizontal direction before passing to a dispersion hood outside the CNT growth zone.
- the orientation of the reactor can vary.
- FIG. 2 illustrates a flow chart of a method for synthesizing CNTs.
- an atomized catalyst solution is provided in step 202 along with a carbon feedstock gas in step 204 and carrier gas in step 206 .
- the catalyst solution, the carbon feedstock, and/or the carrier gas are combined prior to atomization and heating of the solution.
- the catalyst solution, the carbon feedstock gas, and the carrier gas are then heated to CNT synthesis temperatures in step 208 .
- the CNT synthesis temperature can range from about 450° C. to about 1000° C.
- the mixture is maintained in a CNT growth zone at the CNT synthesis temperatures for an amount of time sufficient to synthesize CNTs of a desired length and size.
- the synthesized CNTs then pass along with the carrier gas and are cooled in step 210 .
- the mixture may pass through a device such as a dispersion hood to cool to a temperature ranging from about 25° C. to about 450° C.
- the cooling can avoid the degradation of a temperature sensitive substrate and/or the removal of the sizing that can otherwise compromise the substrate properties.
- the synthesized CNTs can then be exposed to a substrate.
- a substrate can be optionally functionalized at step 211 before being exposed to the synthesized CNTs.
- the substrate can be exposed to the synthesized CNTs that pass through the cooling zone in step 212 .
- the substrate can be introduced on a dynamic basis.
- the synthesized CNTs can bond with the substrate to produce a CNT infused substrate.
- the CNT infused substrate can then pass out of the reactor for further use or processing.
- the CNT infused substrate can be optionally functionalized to improve the adhesion of the CNT infused substrate with a resin matrix.
- FIG. 3 depicts an E-Glass fiber with CNTs infused on its surface via a vertical furnace growth chamber in accordance with some embodiments of the invention.
- Higher density and shorter CNTs can be useful for improving mechanical properties, while longer CNTs with lower density are useful for improving thermal and electrical properties, although increased density is still favorable.
- a lower density can result when longer CNTs are grown. This can be the result of the higher temperatures and more rapid growth causing lower catalyst particle yields.
- the CNT infused substrate can be used to form a composite material.
- Such composite materials can comprise a matrix material to form a composite with the CNT-infused substrate.
- Matrix materials useful in the present invention can include, but are not limited to, resins (polymers), both thermosetting and thermoplastic, metals, ceramics, and cements.
- Thermosetting resins useful as matrix materials include phthalic/maelic type polyesters, vinyl esters, epoxies, phenolics, cyanates, bismaleimides, and nadic end-capped polyimides (e.g., PMR-15).
- Thermoplastic resins include polysulfones, polyamides, polycarbonates, polyphenylene oxides, polysulfides, polyether ether ketones, polyether sulfones, polyamide-imides, polyetherimides, polyimides, polyarylates, and liquid crystalline polyester.
- Metals useful as matrix materials include alloys of aluminum such as aluminum 6061, 2024, and 713 aluminum braze. Ceramics useful as matrix materials include carbon ceramics, such as lithium aluminosilicate, oxides such as alumina and mullite, nitrides such as silicon nitride, and carbides such as silicon carbide.
- Cements useful as matrix materials include carbide-base cermets (tungsten carbide, chromium carbide, and titanium carbide), refractory cements (tungsten-thoria and barium-carbonate-nickel), chromium-alumina, nickel-magnesia iron-zirconium carbide. Any of the above-described matrix materials can be used alone or in combination.
- This prophetic example shows how a carbon fiber material can be infused with CNTs in a continuous process utilizing an embodiment of the vertical furnace.
- FIG. 1 depicts system 100 for producing CNT-infused fiber in accordance with the illustrative embodiment of the present invention.
- System 100 includes a catalyst source 104 , carbon feedstock source 106 , and carrier gas source 102 , CNT growth zone 112 , gas/vapor inlet device 108 , a heating element 110 , a dispersion hood 114 , an infusion chamber 116 , a plasma system (not illustrated), and a carbon fiber substrate 118 .
- Carrier gas source 102 provides a flow of nitrogen gas at a rate of about 60 liters/minute, which mixes with acetylene gas from the carbon feedstock source 106 supplied at a rate of about 1.2 liters/minute.
- the nitrogen/acetylene gas mixture is used as the atomizing gas in a nebulizer spray system, gas/vapor inlet device 108 , where a 1% mass iron acetate solution in isopropyl alcohol is used as the catalyst source 104 .
- the atomized catalyst/carrier/feedstock gas mixture is introduced to an about 2.5 cm diameter, 92 cm long CNT growth zone 112 .
- CNT growth zone 112 is heated by two independently controlled heating elements 110 .
- the heating elements are stacked one on top of the other, each of a length of about 46 cm long.
- the first heating element is used to preheat the gas/vapor mixture to CNT growth temperatures.
- the second heating element is used to maintain growth temperature for the necessary growth residence time for the proper length CNT.
- the gas/vapor residence time is about 30 seconds which allows for a uniform CNT length of about 20 microns.
- Vapor phase CNTs are gravity assisted to dispersion hood 114 where the size of the zone increases from about 2.5 cm to an about 2.5 ⁇ 7.5 cm rectangular cross section.
- the dispersion hood spreads out falling vapor phase CNTs for a more uniform application to fibers passing by beneath the hood in CNT infusion chamber 116 .
- Carbon fiber substrate 118 is exposed to a plasma system where controlled oxygen treatment is used to functionalize the fiber surface.
- An argon based plasma is used with a mixture of about 1% oxygen by volume to apply carbonyl and carboxyl functional groups on the surface of carbon fiber substrate 118 .
- Functionalized carbon fiber substrate 118 is pulled through CNT infusion chamber 116 where vapor phase CNTs pass through dispersion hood 114 and applied to the carbon fiber surface.
- Carbonyl and carboxyl functional groups act as infusion points for CNTs, where dangling carbon bonds at the CNT ends or at disorder on the CNT walls provide the bonding point.
- Fibers are pulled through the infusion chamber at a linespeed of about 150 cm/minute. By varying the linespeed, the density of CNT infusion can be controlled. At the rate described in this example, a density of between about 2000 to about 4000 CNT/ ⁇ m 2 is achieved.
- CNT infused carbon fiber passes out of CNT infusion chamber 116 and is wound on a spool for packaging and storage. Additional functionalization steps can occur after the CNT infusion process to enhance future CNT to matrix interfacial properties, but this is beyond the scope of this example.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/757,907 US20100260931A1 (en) | 2009-04-10 | 2010-04-09 | Method and apparatus for using a vertical furnace to infuse carbon nanotubes to fiber |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16852609P | 2009-04-10 | 2009-04-10 | |
| US12/757,907 US20100260931A1 (en) | 2009-04-10 | 2010-04-09 | Method and apparatus for using a vertical furnace to infuse carbon nanotubes to fiber |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20100260931A1 true US20100260931A1 (en) | 2010-10-14 |
Family
ID=42934602
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/757,907 Abandoned US20100260931A1 (en) | 2009-04-10 | 2010-04-09 | Method and apparatus for using a vertical furnace to infuse carbon nanotubes to fiber |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US20100260931A1 (fr) |
| EP (1) | EP2417288A4 (fr) |
| JP (1) | JP5604506B2 (fr) |
| KR (1) | KR20120002980A (fr) |
| CN (1) | CN102388172B (fr) |
| AU (1) | AU2010233113A1 (fr) |
| BR (1) | BRPI1014162A2 (fr) |
| CA (1) | CA2757474A1 (fr) |
| WO (1) | WO2010118381A1 (fr) |
| ZA (1) | ZA201106734B (fr) |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8580342B2 (en) | 2009-02-27 | 2013-11-12 | Applied Nanostructured Solutions, Llc | Low temperature CNT growth using gas-preheat method |
| US20140186547A1 (en) * | 2012-12-29 | 2014-07-03 | Hon Hai Precision Industry Co., Ltd. | Reactor and method for growing carbon nanotube using the same |
| US8784937B2 (en) | 2010-09-14 | 2014-07-22 | Applied Nanostructured Solutions, Llc | Glass substrates having carbon nanotubes grown thereon and methods for production thereof |
| US8815341B2 (en) | 2010-09-22 | 2014-08-26 | Applied Nanostructured Solutions, Llc | Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof |
| US8951631B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
| US8951632B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
| US8969225B2 (en) | 2009-08-03 | 2015-03-03 | Applied Nano Structured Soultions, LLC | Incorporation of nanoparticles in composite fibers |
| US9005755B2 (en) | 2007-01-03 | 2015-04-14 | Applied Nanostructured Solutions, Llc | CNS-infused carbon nanomaterials and process therefor |
| US9260646B2 (en) | 2012-05-09 | 2016-02-16 | Laird Technologies, Inc. | Polymer matrices functionalized with carbon-containing species for enhanced thermal conductivity |
| WO2016087857A1 (fr) * | 2014-12-05 | 2016-06-09 | Q-Flo Limited | Procédé |
| CN105908491A (zh) * | 2016-05-31 | 2016-08-31 | 哈尔滨工业大学 | 制备表面生长有碳纳米管的连续碳纤维的装置和方法 |
| US9506194B2 (en) | 2012-09-04 | 2016-11-29 | Ocv Intellectual Capital, Llc | Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media |
| WO2018034625A1 (fr) * | 2016-08-16 | 2018-02-22 | Istanbul Teknik Universitesi | Nanotubes de carbone à répartition aléatoire et/ou croissance verticale/horizontale sur des nanofibres polymères et leurs composites |
| US9987608B2 (en) | 2014-09-19 | 2018-06-05 | NanoSynthesis Plus, Ltd. | Methods and apparatuses for producing dispersed nanostructures |
| US10138128B2 (en) | 2009-03-03 | 2018-11-27 | Applied Nanostructured Solutions, Llc | System and method for surface treatment and barrier coating of fibers for in situ CNT growth |
| WO2020071655A1 (fr) * | 2018-10-04 | 2020-04-09 | Awexomeray | Procédé de préparation d'un fil comprenant des nanotubes de carbone et fil ainsi préparé |
| US10643816B1 (en) | 2019-04-04 | 2020-05-05 | aweXomeRay Co., Ltd. | X-ray emitting device comprising a focusing electrode composed of a ceramic-based material |
| US20210187788A1 (en) * | 2018-05-31 | 2021-06-24 | Lintec Corporation | Method of producing carbon-resin composite material, and composite structure for producing carbon-resin composite material |
| US11195684B2 (en) | 2019-07-26 | 2021-12-07 | Awexome Ray, Inc. | Field emission apparatus with superior structural stability and X-ray tube comprising the same |
| EP3810547A4 (fr) * | 2018-06-22 | 2022-04-06 | The Government of the United States of America, as represented by the Secretary of the Navy | Appareil et procédé de croissance de structures de carbone sp2 cylindriques ultralongues distinctes |
| US11453591B2 (en) | 2018-11-30 | 2022-09-27 | Awexome Ray, Inc. | Process for preparing a carbon nanotube sheet comprising a uniaxially aligned yarn and carbon nanotube sheet prepared thereby |
| US11600462B2 (en) | 2019-01-24 | 2023-03-07 | Awexome Ray, Inc. | Emitter with excellent structural stability and enhanced efficiency of electron emission and X-ray tube comprising the same |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106395791A (zh) * | 2016-08-26 | 2017-02-15 | 宁波埃飞化工科技有限公司 | 一种碳纳米管的喷雾式窑炉及其生产方法 |
| CN112974010A (zh) * | 2019-12-13 | 2021-06-18 | 南京源昌新材料有限公司 | 一种用于碳纳米管原料雾化的专用雾化装置 |
| CN116060279B (zh) * | 2022-12-15 | 2024-06-07 | 深圳稀光新材料有限公司 | 油性油墨喷涂方法 |
Citations (97)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3304855A (en) * | 1963-05-15 | 1967-02-21 | H G Molenaar & Company Proprie | Extractor means for extracting liquid from a liquids containing mass |
| US4566969A (en) * | 1981-09-29 | 1986-01-28 | Crane & Co., Inc. | Rolling filter apparatus |
| US4797378A (en) * | 1986-02-18 | 1989-01-10 | Minnesota Mining And Manufacturing Company | Internally modified ceramic fiber |
| US5093155A (en) * | 1988-11-29 | 1992-03-03 | Tonen Corporation | Process for sizing reinforcing fiber by applying sulfone compounds containing sulfonyl groups and sized reinforcing fibers obtained thereby |
| US5595750A (en) * | 1991-08-09 | 1997-01-21 | E. I. Du Pont De Nemours And Company | Antimicrobial particles of silver and barium sulfate or zinc oxide |
| US5714089A (en) * | 1984-10-31 | 1998-02-03 | Igen International, Inc. | Luminescent metal chelatte labels and means for detection |
| US6184280B1 (en) * | 1995-10-23 | 2001-02-06 | Mitsubishi Materials Corporation | Electrically conductive polymer composition |
| US6221154B1 (en) * | 1999-02-18 | 2001-04-24 | City University Of Hong Kong | Method for growing beta-silicon carbide nanorods, and preparation of patterned field-emitters by chemical vapor depositon (CVD) |
| US20020035170A1 (en) * | 1999-02-12 | 2002-03-21 | Paul Glatkowski | Electromagnetic shielding composite comprising nanotubes |
| US6361861B2 (en) * | 1999-06-14 | 2002-03-26 | Battelle Memorial Institute | Carbon nanotubes on a substrate |
| US20030024884A1 (en) * | 2001-04-02 | 2003-02-06 | Petrik Viktor Ivanovich | Method for removing oil, petroleum products and/or chemical, pollutants from liquid and/or gas and/or surface |
| US6528572B1 (en) * | 2001-09-14 | 2003-03-04 | General Electric Company | Conductive polymer compositions and methods of manufacture thereof |
| US20030068432A1 (en) * | 1998-08-14 | 2003-04-10 | The Board Of Trustees Of The Leland Stanford Junior University | Carbon nanotube devices |
| US6673392B2 (en) * | 2000-03-15 | 2004-01-06 | Samsung Sdi Co., Ltd. | Method of vertically aligning carbon nanotubes on substrates at low pressure using thermal chemical vapor deposition with DC bias |
| US20040007955A1 (en) * | 2002-07-09 | 2004-01-15 | Zvi Yaniv | Nanotriode utilizing carbon nanotubes and fibers |
| US20040009115A1 (en) * | 2002-06-13 | 2004-01-15 | Wee Thye Shen Andrew | Selective area growth of aligned carbon nanotubes on a modified catalytic surface |
| US20040026234A1 (en) * | 2000-08-23 | 2004-02-12 | Pierre Vanden Brande | Method and device for continuous cold plasma deposition of metal coatings |
| US6692717B1 (en) * | 1999-09-17 | 2004-02-17 | William Marsh Rice University | Catalytic growth of single-wall carbon nanotubes from metal particles |
| US20040037767A1 (en) * | 2002-08-21 | 2004-02-26 | First Nano, Inc. | Method and apparatus of carbon nanotube fabrication |
| US20040079278A1 (en) * | 2002-10-28 | 2004-04-29 | Kamins Theodore I. | Method of forming three-dimensional nanocrystal array |
| US20040082247A1 (en) * | 2002-03-21 | 2004-04-29 | Shahyaan Desai | Fibrous micro-composite material |
| US6837928B1 (en) * | 2001-08-30 | 2005-01-04 | The Board Of Trustees Of The Leland Stanford Junior University | Electric field orientation of carbon nanotubes |
| US20050009694A1 (en) * | 2003-06-30 | 2005-01-13 | Watts Daniel J. | Catalysts and methods for making same |
| US20050026778A1 (en) * | 2002-02-25 | 2005-02-03 | Axtell Holly C. | Multi-functional protective fiber and methods for use |
| US6852410B2 (en) * | 2002-07-01 | 2005-02-08 | Georgia Tech Research Corporation | Macroscopic fiber comprising single-wall carbon nanotubes and acrylonitrile-based polymer and process for making the same |
| US6863942B2 (en) * | 1998-06-19 | 2005-03-08 | The Research Foundation Of State University Of New York | Free-standing and aligned carbon nanotubes and synthesis thereof |
| US20050090176A1 (en) * | 2001-08-29 | 2005-04-28 | Dean Kenneth A. | Field emission display and methods of forming a field emission display |
| US20060002844A1 (en) * | 2004-07-02 | 2006-01-05 | Kabushiki Kaisha Toshiba | Manufacturing methods of catalysts for carbon fiber composition and carbon material compound, manufacturing methods of carbon fiber and catalyst material for fuel cell, and catalyst material for fuel cell |
| US6986877B2 (en) * | 2002-01-08 | 2006-01-17 | Futaba Corporation | Method for preparing nano-carbon fiber and nano-carbon fiber |
| US6986853B2 (en) * | 2001-03-26 | 2006-01-17 | Eikos, Inc. | Carbon nanotube fiber-reinforced composite structures for EM and lightning strike protection |
| US6994907B2 (en) * | 1999-06-02 | 2006-02-07 | The Board Of Regents Of The University Of Oklahoma | Carbon nanotube product comprising single-walled carbon nanotubes |
| US20060052509A1 (en) * | 2002-11-01 | 2006-03-09 | Mitsubishi Rayon Co., Ltd. | Composition containing carbon nanotubes having coating thereof and process for producing them |
| US7011760B2 (en) * | 2001-12-21 | 2006-03-14 | Battelle Memorial Institute | Carbon nanotube-containing structures, methods of making, and processes using same |
| US20060062944A1 (en) * | 2004-09-20 | 2006-03-23 | Gardner Slade H | Ballistic fabrics with improved antiballistic properties |
| US7018600B2 (en) * | 2001-03-21 | 2006-03-28 | Gsi Creos Corporation | Expanded carbon fiber product and composite using the same |
| US20060067871A1 (en) * | 2004-05-26 | 2006-03-30 | Massachusetts Institute Of Technology | Methods and devices for growth and/or assembly of nanostructures |
| US7022776B2 (en) * | 2001-11-07 | 2006-04-04 | General Electric | Conductive polyphenylene ether-polyamide composition, method of manufacture thereof, and article derived therefrom |
| US20060083927A1 (en) * | 2004-10-15 | 2006-04-20 | Zyvex Corporation | Thermal interface incorporating nanotubes |
| US20060083674A1 (en) * | 2003-02-14 | 2006-04-20 | Shigeo Maruyama | Method for forming catalyst metal particles for production of single-walled carbon nanotube |
| US7157068B2 (en) * | 2001-05-21 | 2007-01-02 | The Trustees Of Boston College | Varied morphology carbon nanotubes and method for their manufacture |
| US7160532B2 (en) * | 2003-03-19 | 2007-01-09 | Tsinghua University | Carbon nanotube array and method for forming same |
| US7160531B1 (en) * | 2001-05-08 | 2007-01-09 | University Of Kentucky Research Foundation | Process for the continuous production of aligned carbon nanotubes |
| US20070009421A1 (en) * | 2004-12-01 | 2007-01-11 | William Marsh Rice University | Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip |
| US20070020167A1 (en) * | 2004-06-22 | 2007-01-25 | Han In-Taek | Method of preparing catalyst for manufacturing carbon nanotubes |
| US20070035226A1 (en) * | 2002-02-11 | 2007-02-15 | Rensselaer Polytechnic Institute | Carbon nanotube hybrid structures |
| US20070048521A1 (en) * | 2005-08-25 | 2007-03-01 | Rudyard Istvan | Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers |
| US20070053824A1 (en) * | 2005-08-12 | 2007-03-08 | Samsung Electronics Co., Ltd. | Method of forming carbon nanotubes |
| US20070054105A1 (en) * | 2005-09-05 | 2007-03-08 | Hon Hai Precision Industry Co., Ltd. | Thermal interface material and method for making same |
| US20070090489A1 (en) * | 2005-10-25 | 2007-04-26 | Hart Anastasios J | Shape controlled growth of nanostructured films and objects |
| US20070092431A1 (en) * | 2005-06-28 | 2007-04-26 | Resasco Daniel E | Methods for growing and harvesting carbon nanotubes |
| US20070189953A1 (en) * | 2004-01-30 | 2007-08-16 | Centre National De La Recherche Scientifique (Cnrs) | Method for obtaining carbon nanotubes on supports and composites comprising same |
| US20080014431A1 (en) * | 2004-01-15 | 2008-01-17 | Nanocomp Technologies, Inc. | Systems and methods of synthesis of extended length nanostructures |
| US20080020193A1 (en) * | 2006-07-24 | 2008-01-24 | Jang Bor Z | Hybrid fiber tows containning both nano-fillers and continuous fibers, hybrid composites, and their production processes |
| US20080017845A1 (en) * | 2004-05-25 | 2008-01-24 | The Trustees Of The University Of Pennsylvania | Nanostructure Assemblies, Methods And Devices Thereof |
| US20080023396A1 (en) * | 2004-05-13 | 2008-01-31 | Hokkaido Technology Licensing Office Co., Ltd. | Fine Carbon Dispesion |
| US7329698B2 (en) * | 2001-08-06 | 2008-02-12 | Showa Denko K.K. | Conductive curable resin composition and separator for fuel cell |
| US20080048364A1 (en) * | 2004-07-22 | 2008-02-28 | William Marsh Rice University | Polymer / Carbon-Nanotube Interpenetrating Networks and Process for Making Same |
| US7338684B1 (en) * | 2004-02-12 | 2008-03-04 | Performance Polymer Solutions, Inc. | Vapor grown carbon fiber reinforced composite materials and methods of making and using same |
| US20080053922A1 (en) * | 2006-09-01 | 2008-03-06 | Honsinger Charles P Jr | Nanostructured materials comprising support fibers coated with metal containing compounds and methods of using the same |
| US20080069760A1 (en) * | 2004-06-04 | 2008-03-20 | The Trustees Of Columbia University In The City Of New York | Methods For Preparing Single -Walled Carbon Nanoturbes |
| US20080075954A1 (en) * | 2006-05-19 | 2008-03-27 | Massachusetts Institute Of Technology | Nanostructure-reinforced composite articles and methods |
| US7354881B2 (en) * | 1999-06-02 | 2008-04-08 | The Board Of Regents Of The University Of Oklahoma | Method and catalyst for producing single walled carbon nanotubes |
| US7354988B2 (en) * | 2003-08-12 | 2008-04-08 | General Electric Company | Electrically conductive compositions and method of manufacture thereof |
| US20080247939A1 (en) * | 2005-08-29 | 2008-10-09 | University Of The Witwatersrand, Johannesburg | Process for Producing Carbon Nanotubes |
| US7473466B1 (en) * | 2000-05-10 | 2009-01-06 | University Of Central Florida Research Foundation, Inc. | Filamentous carbon particles for cleaning oil spills and method of production |
| US20090017301A1 (en) * | 2005-12-23 | 2009-01-15 | Ssint-Gobain Technical Fabrics Europe | Glass fibres and glass fibre structures provided with a coating containing nanoparticles |
| WO2009008291A1 (fr) * | 2007-07-06 | 2009-01-15 | National Institute Of Advanced Industrial Science And Technology | Procédé de fabrication d'un film de nanotubes de carbone, appareil de fabrication de film et film de nanotubes de carbone |
| US7479052B2 (en) * | 2005-12-13 | 2009-01-20 | Samsung Sdi Co., Ltd. | Method of growing carbon nanotubes and method of manufacturing field emission device using the same |
| US20090021136A1 (en) * | 2005-05-31 | 2009-01-22 | Coll Bernard F | Emitting device having electron emitting nanostructures and method of operation |
| US20090020734A1 (en) * | 2007-07-19 | 2009-01-22 | Jang Bor Z | Method of producing conducting polymer-transition metal electro-catalyst composition and electrodes for fuel cells |
| US7488455B2 (en) * | 2001-04-04 | 2009-02-10 | Commonwealth Scientific And Industrial Research Organisation | Apparatus for the production of carbon nanotubes |
| US20090047453A1 (en) * | 2007-08-13 | 2009-02-19 | Smart Nanomaterials, Llc | Nano-enhanced smart panel |
| US20090047502A1 (en) * | 2007-08-13 | 2009-02-19 | Smart Nanomaterials, Llc | Nano-enhanced modularly constructed composite panel |
| US7494639B2 (en) * | 2004-12-28 | 2009-02-24 | William Marsh Rice University | Purification of carbon nanotubes based on the chemistry of fenton's reagent |
| US20090068387A1 (en) * | 2006-07-31 | 2009-03-12 | Matthew Panzer | Composite thermal interface material including aligned nanofiber with low melting temperature binder |
| US20090068461A1 (en) * | 2003-10-16 | 2009-03-12 | The University Of Akron | Carbon nanotubes on carbon nanofiber substrate |
| US20090081383A1 (en) * | 2007-09-20 | 2009-03-26 | Lockheed Martin Corporation | Carbon Nanotube Infused Composites via Plasma Processing |
| US20090081441A1 (en) * | 2007-09-20 | 2009-03-26 | Lockheed Martin Corporation | Fiber Tow Comprising Carbon-Nanotube-Infused Fibers |
| US7510695B2 (en) * | 1997-03-07 | 2009-03-31 | William Marsh Rice University | Method for forming a patterned array of fullerene nanotubes |
| US20090092832A1 (en) * | 2005-12-23 | 2009-04-09 | Saint-Gobain Technical Fabrics Europe | Glass fibres coated with size containing nanoparticles |
| US20090099016A1 (en) * | 2005-12-19 | 2009-04-16 | Advanced Technology Materials, Inc. | Production of carbon nanotubes |
| US20100000770A1 (en) * | 2005-12-19 | 2010-01-07 | University Of Virginia Patent Foundation | Conducting Nanotubes or Nanostructures Based Composites, Method of Making Them and Applications |
| US7656027B2 (en) * | 2003-01-24 | 2010-02-02 | Nanoconduction, Inc. | In-chip structures and methods for removing heat from integrated circuits |
| US7666915B2 (en) * | 2007-09-24 | 2010-02-23 | Headwaters Technology Innovation, Llc | Highly dispersible carbon nanospheres in a polar solvent and methods for making same |
| US20100059243A1 (en) * | 2008-09-09 | 2010-03-11 | Jin-Hong Chang | Anti-electromagnetic interference material arrangement |
| US20100074834A1 (en) * | 2008-09-22 | 2010-03-25 | Samsung Electronics Co., Ltd. | Apparatus and method for surface-treating carbon fiber by resistive heating |
| US7687981B2 (en) * | 2006-05-05 | 2010-03-30 | Brother International Corporation | Method for controlled density growth of carbon nanotubes |
| US20100081769A1 (en) * | 2008-09-26 | 2010-04-01 | E.I.Du Pont De Nemours And Company | Process for producing block copolymer pigment dispersants |
| US7700943B2 (en) * | 2005-12-14 | 2010-04-20 | Intel Corporation | In-situ functionalization of carbon nanotubes |
| US20100098931A1 (en) * | 2008-06-02 | 2010-04-22 | Texas A & M University System | Carbon nanotube fiber-reinforced polymer composites having improved fatigue durability and methods for production thereof |
| US7862795B2 (en) * | 2004-11-16 | 2011-01-04 | Hyperion Catalysis International, Inc. | Method for preparing single walled carbon nanotubes |
| US7867468B1 (en) * | 2008-02-28 | 2011-01-11 | Carbon Solutions, Inc. | Multiscale carbon nanotube-fiber reinforcements for composites |
| US7871591B2 (en) * | 2005-01-11 | 2011-01-18 | Honda Motor Co., Ltd. | Methods for growing long carbon single-walled nanotubes |
| US7880376B2 (en) * | 2001-06-14 | 2011-02-01 | Hyperion Catalysis International, Inc. | Field emission devices made with laser and/or plasma treated carbon nanotube mats, films or inks |
| US20110024409A1 (en) * | 2009-04-27 | 2011-02-03 | Lockheed Martin Corporation | Cnt-based resistive heating for deicing composite structures |
| US20110024694A1 (en) * | 2009-02-17 | 2011-02-03 | Lockheed Martin Corporation | Composites comprising carbon nanotubes on fiber |
| US8148276B2 (en) * | 2005-11-28 | 2012-04-03 | University Of Hawaii | Three-dimensionally reinforced multifunctional nanocomposites |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3768867B2 (ja) * | 2001-12-03 | 2006-04-19 | 株式会社リコー | カーボンナノチューブの作製方法 |
| JP3972674B2 (ja) * | 2002-02-14 | 2007-09-05 | 東レ株式会社 | 炭素繊維その製造方法および炭素繊維強化樹脂組成物 |
| EP2067741B1 (fr) * | 2003-07-28 | 2017-09-06 | William Marsh Rice University | Composites à base de polymères comprenant des nanotubes de carbone fonctionnalisés avec silanes. |
| CN100579900C (zh) * | 2004-12-13 | 2010-01-13 | 日机装株式会社 | 单壁碳纳米管的制造方法 |
| EP1877255A4 (fr) * | 2005-03-10 | 2011-03-30 | Mat & Electrochem Res Corp | Procede et dispositif de production de film mince |
| JP2009535530A (ja) * | 2006-05-02 | 2009-10-01 | ロール インコーポレイテッド | ナノ補強材を用いた複合材料中に用いられる補強繊維トウの修飾 |
| US8158217B2 (en) * | 2007-01-03 | 2012-04-17 | Applied Nanostructured Solutions, Llc | CNT-infused fiber and method therefor |
| CN101049927B (zh) * | 2007-04-18 | 2010-11-10 | 清华大学 | 连续化生产碳纳米管的方法及装置 |
-
2010
- 2010-04-09 WO PCT/US2010/030621 patent/WO2010118381A1/fr not_active Ceased
- 2010-04-09 CA CA2757474A patent/CA2757474A1/fr not_active Abandoned
- 2010-04-09 US US12/757,907 patent/US20100260931A1/en not_active Abandoned
- 2010-04-09 JP JP2012504905A patent/JP5604506B2/ja not_active Expired - Fee Related
- 2010-04-09 BR BRPI1014162A patent/BRPI1014162A2/pt not_active IP Right Cessation
- 2010-04-09 CN CN201080016242.XA patent/CN102388172B/zh not_active Expired - Fee Related
- 2010-04-09 EP EP10762534.5A patent/EP2417288A4/fr not_active Withdrawn
- 2010-04-09 KR KR1020117022198A patent/KR20120002980A/ko not_active Withdrawn
- 2010-04-09 AU AU2010233113A patent/AU2010233113A1/en not_active Abandoned
-
2011
- 2011-09-14 ZA ZA2011/06734A patent/ZA201106734B/en unknown
Patent Citations (102)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3304855A (en) * | 1963-05-15 | 1967-02-21 | H G Molenaar & Company Proprie | Extractor means for extracting liquid from a liquids containing mass |
| US4566969A (en) * | 1981-09-29 | 1986-01-28 | Crane & Co., Inc. | Rolling filter apparatus |
| US5714089A (en) * | 1984-10-31 | 1998-02-03 | Igen International, Inc. | Luminescent metal chelatte labels and means for detection |
| US5731147A (en) * | 1984-10-31 | 1998-03-24 | Igen International, Inc. | Luminescent metal chelate labels and means for detection |
| US4797378A (en) * | 1986-02-18 | 1989-01-10 | Minnesota Mining And Manufacturing Company | Internally modified ceramic fiber |
| US5093155A (en) * | 1988-11-29 | 1992-03-03 | Tonen Corporation | Process for sizing reinforcing fiber by applying sulfone compounds containing sulfonyl groups and sized reinforcing fibers obtained thereby |
| US5595750A (en) * | 1991-08-09 | 1997-01-21 | E. I. Du Pont De Nemours And Company | Antimicrobial particles of silver and barium sulfate or zinc oxide |
| US6184280B1 (en) * | 1995-10-23 | 2001-02-06 | Mitsubishi Materials Corporation | Electrically conductive polymer composition |
| US7510695B2 (en) * | 1997-03-07 | 2009-03-31 | William Marsh Rice University | Method for forming a patterned array of fullerene nanotubes |
| US6863942B2 (en) * | 1998-06-19 | 2005-03-08 | The Research Foundation Of State University Of New York | Free-standing and aligned carbon nanotubes and synthesis thereof |
| US20030068432A1 (en) * | 1998-08-14 | 2003-04-10 | The Board Of Trustees Of The Leland Stanford Junior University | Carbon nanotube devices |
| US20020035170A1 (en) * | 1999-02-12 | 2002-03-21 | Paul Glatkowski | Electromagnetic shielding composite comprising nanotubes |
| US6221154B1 (en) * | 1999-02-18 | 2001-04-24 | City University Of Hong Kong | Method for growing beta-silicon carbide nanorods, and preparation of patterned field-emitters by chemical vapor depositon (CVD) |
| US6994907B2 (en) * | 1999-06-02 | 2006-02-07 | The Board Of Regents Of The University Of Oklahoma | Carbon nanotube product comprising single-walled carbon nanotubes |
| US7354881B2 (en) * | 1999-06-02 | 2008-04-08 | The Board Of Regents Of The University Of Oklahoma | Method and catalyst for producing single walled carbon nanotubes |
| US6361861B2 (en) * | 1999-06-14 | 2002-03-26 | Battelle Memorial Institute | Carbon nanotubes on a substrate |
| US6692717B1 (en) * | 1999-09-17 | 2004-02-17 | William Marsh Rice University | Catalytic growth of single-wall carbon nanotubes from metal particles |
| US6673392B2 (en) * | 2000-03-15 | 2004-01-06 | Samsung Sdi Co., Ltd. | Method of vertically aligning carbon nanotubes on substrates at low pressure using thermal chemical vapor deposition with DC bias |
| US7473466B1 (en) * | 2000-05-10 | 2009-01-06 | University Of Central Florida Research Foundation, Inc. | Filamentous carbon particles for cleaning oil spills and method of production |
| US20040026234A1 (en) * | 2000-08-23 | 2004-02-12 | Pierre Vanden Brande | Method and device for continuous cold plasma deposition of metal coatings |
| US7018600B2 (en) * | 2001-03-21 | 2006-03-28 | Gsi Creos Corporation | Expanded carbon fiber product and composite using the same |
| US6986853B2 (en) * | 2001-03-26 | 2006-01-17 | Eikos, Inc. | Carbon nanotube fiber-reinforced composite structures for EM and lightning strike protection |
| US20030024884A1 (en) * | 2001-04-02 | 2003-02-06 | Petrik Viktor Ivanovich | Method for removing oil, petroleum products and/or chemical, pollutants from liquid and/or gas and/or surface |
| US7488455B2 (en) * | 2001-04-04 | 2009-02-10 | Commonwealth Scientific And Industrial Research Organisation | Apparatus for the production of carbon nanotubes |
| US7160531B1 (en) * | 2001-05-08 | 2007-01-09 | University Of Kentucky Research Foundation | Process for the continuous production of aligned carbon nanotubes |
| US7504078B1 (en) * | 2001-05-08 | 2009-03-17 | University Of Kentucky Research Foundation | Continuous production of aligned carbon nanotubes |
| US7157068B2 (en) * | 2001-05-21 | 2007-01-02 | The Trustees Of Boston College | Varied morphology carbon nanotubes and method for their manufacture |
| US7880376B2 (en) * | 2001-06-14 | 2011-02-01 | Hyperion Catalysis International, Inc. | Field emission devices made with laser and/or plasma treated carbon nanotube mats, films or inks |
| US7329698B2 (en) * | 2001-08-06 | 2008-02-12 | Showa Denko K.K. | Conductive curable resin composition and separator for fuel cell |
| US20050090176A1 (en) * | 2001-08-29 | 2005-04-28 | Dean Kenneth A. | Field emission display and methods of forming a field emission display |
| US6837928B1 (en) * | 2001-08-30 | 2005-01-04 | The Board Of Trustees Of The Leland Stanford Junior University | Electric field orientation of carbon nanotubes |
| US6528572B1 (en) * | 2001-09-14 | 2003-03-04 | General Electric Company | Conductive polymer compositions and methods of manufacture thereof |
| US7022776B2 (en) * | 2001-11-07 | 2006-04-04 | General Electric | Conductive polyphenylene ether-polyamide composition, method of manufacture thereof, and article derived therefrom |
| US7011760B2 (en) * | 2001-12-21 | 2006-03-14 | Battelle Memorial Institute | Carbon nanotube-containing structures, methods of making, and processes using same |
| US6986877B2 (en) * | 2002-01-08 | 2006-01-17 | Futaba Corporation | Method for preparing nano-carbon fiber and nano-carbon fiber |
| US20070035226A1 (en) * | 2002-02-11 | 2007-02-15 | Rensselaer Polytechnic Institute | Carbon nanotube hybrid structures |
| US20050026778A1 (en) * | 2002-02-25 | 2005-02-03 | Axtell Holly C. | Multi-functional protective fiber and methods for use |
| US20040082247A1 (en) * | 2002-03-21 | 2004-04-29 | Shahyaan Desai | Fibrous micro-composite material |
| US20040009115A1 (en) * | 2002-06-13 | 2004-01-15 | Wee Thye Shen Andrew | Selective area growth of aligned carbon nanotubes on a modified catalytic surface |
| US6852410B2 (en) * | 2002-07-01 | 2005-02-08 | Georgia Tech Research Corporation | Macroscopic fiber comprising single-wall carbon nanotubes and acrylonitrile-based polymer and process for making the same |
| US20040007955A1 (en) * | 2002-07-09 | 2004-01-15 | Zvi Yaniv | Nanotriode utilizing carbon nanotubes and fibers |
| US20040037767A1 (en) * | 2002-08-21 | 2004-02-26 | First Nano, Inc. | Method and apparatus of carbon nanotube fabrication |
| US20040079278A1 (en) * | 2002-10-28 | 2004-04-29 | Kamins Theodore I. | Method of forming three-dimensional nanocrystal array |
| US20060052509A1 (en) * | 2002-11-01 | 2006-03-09 | Mitsubishi Rayon Co., Ltd. | Composition containing carbon nanotubes having coating thereof and process for producing them |
| US7656027B2 (en) * | 2003-01-24 | 2010-02-02 | Nanoconduction, Inc. | In-chip structures and methods for removing heat from integrated circuits |
| US20060083674A1 (en) * | 2003-02-14 | 2006-04-20 | Shigeo Maruyama | Method for forming catalyst metal particles for production of single-walled carbon nanotube |
| US7160532B2 (en) * | 2003-03-19 | 2007-01-09 | Tsinghua University | Carbon nanotube array and method for forming same |
| US20050009694A1 (en) * | 2003-06-30 | 2005-01-13 | Watts Daniel J. | Catalysts and methods for making same |
| US7354988B2 (en) * | 2003-08-12 | 2008-04-08 | General Electric Company | Electrically conductive compositions and method of manufacture thereof |
| US20090068461A1 (en) * | 2003-10-16 | 2009-03-12 | The University Of Akron | Carbon nanotubes on carbon nanofiber substrate |
| US20100099319A1 (en) * | 2004-01-15 | 2010-04-22 | Nanocomp Technologies, Inc. | Systems and Methods for Synthesis of Extended Length Nanostructures |
| US20080014431A1 (en) * | 2004-01-15 | 2008-01-17 | Nanocomp Technologies, Inc. | Systems and methods of synthesis of extended length nanostructures |
| US20070189953A1 (en) * | 2004-01-30 | 2007-08-16 | Centre National De La Recherche Scientifique (Cnrs) | Method for obtaining carbon nanotubes on supports and composites comprising same |
| US7338684B1 (en) * | 2004-02-12 | 2008-03-04 | Performance Polymer Solutions, Inc. | Vapor grown carbon fiber reinforced composite materials and methods of making and using same |
| US7927701B2 (en) * | 2004-02-12 | 2011-04-19 | Performance Polymer Solutions, Inc. | Vapor grown carbon fiber reinforced composite materials and methods of making and using same |
| US20080023396A1 (en) * | 2004-05-13 | 2008-01-31 | Hokkaido Technology Licensing Office Co., Ltd. | Fine Carbon Dispesion |
| US20080017845A1 (en) * | 2004-05-25 | 2008-01-24 | The Trustees Of The University Of Pennsylvania | Nanostructure Assemblies, Methods And Devices Thereof |
| US20060067871A1 (en) * | 2004-05-26 | 2006-03-30 | Massachusetts Institute Of Technology | Methods and devices for growth and/or assembly of nanostructures |
| US20080069760A1 (en) * | 2004-06-04 | 2008-03-20 | The Trustees Of Columbia University In The City Of New York | Methods For Preparing Single -Walled Carbon Nanoturbes |
| US20070020167A1 (en) * | 2004-06-22 | 2007-01-25 | Han In-Taek | Method of preparing catalyst for manufacturing carbon nanotubes |
| US20060002844A1 (en) * | 2004-07-02 | 2006-01-05 | Kabushiki Kaisha Toshiba | Manufacturing methods of catalysts for carbon fiber composition and carbon material compound, manufacturing methods of carbon fiber and catalyst material for fuel cell, and catalyst material for fuel cell |
| US20080048364A1 (en) * | 2004-07-22 | 2008-02-28 | William Marsh Rice University | Polymer / Carbon-Nanotube Interpenetrating Networks and Process for Making Same |
| US20060062944A1 (en) * | 2004-09-20 | 2006-03-23 | Gardner Slade H | Ballistic fabrics with improved antiballistic properties |
| US20060083927A1 (en) * | 2004-10-15 | 2006-04-20 | Zyvex Corporation | Thermal interface incorporating nanotubes |
| US7862795B2 (en) * | 2004-11-16 | 2011-01-04 | Hyperion Catalysis International, Inc. | Method for preparing single walled carbon nanotubes |
| US20070009421A1 (en) * | 2004-12-01 | 2007-01-11 | William Marsh Rice University | Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip |
| US7494639B2 (en) * | 2004-12-28 | 2009-02-24 | William Marsh Rice University | Purification of carbon nanotubes based on the chemistry of fenton's reagent |
| US7871591B2 (en) * | 2005-01-11 | 2011-01-18 | Honda Motor Co., Ltd. | Methods for growing long carbon single-walled nanotubes |
| US20090021136A1 (en) * | 2005-05-31 | 2009-01-22 | Coll Bernard F | Emitting device having electron emitting nanostructures and method of operation |
| US20070092431A1 (en) * | 2005-06-28 | 2007-04-26 | Resasco Daniel E | Methods for growing and harvesting carbon nanotubes |
| US20070053824A1 (en) * | 2005-08-12 | 2007-03-08 | Samsung Electronics Co., Ltd. | Method of forming carbon nanotubes |
| US20070048521A1 (en) * | 2005-08-25 | 2007-03-01 | Rudyard Istvan | Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers |
| US20080247939A1 (en) * | 2005-08-29 | 2008-10-09 | University Of The Witwatersrand, Johannesburg | Process for Producing Carbon Nanotubes |
| US20070054105A1 (en) * | 2005-09-05 | 2007-03-08 | Hon Hai Precision Industry Co., Ltd. | Thermal interface material and method for making same |
| US20070090489A1 (en) * | 2005-10-25 | 2007-04-26 | Hart Anastasios J | Shape controlled growth of nanostructured films and objects |
| US8148276B2 (en) * | 2005-11-28 | 2012-04-03 | University Of Hawaii | Three-dimensionally reinforced multifunctional nanocomposites |
| US7479052B2 (en) * | 2005-12-13 | 2009-01-20 | Samsung Sdi Co., Ltd. | Method of growing carbon nanotubes and method of manufacturing field emission device using the same |
| US7700943B2 (en) * | 2005-12-14 | 2010-04-20 | Intel Corporation | In-situ functionalization of carbon nanotubes |
| US20100000770A1 (en) * | 2005-12-19 | 2010-01-07 | University Of Virginia Patent Foundation | Conducting Nanotubes or Nanostructures Based Composites, Method of Making Them and Applications |
| US20090099016A1 (en) * | 2005-12-19 | 2009-04-16 | Advanced Technology Materials, Inc. | Production of carbon nanotubes |
| US20090017301A1 (en) * | 2005-12-23 | 2009-01-15 | Ssint-Gobain Technical Fabrics Europe | Glass fibres and glass fibre structures provided with a coating containing nanoparticles |
| US20090092832A1 (en) * | 2005-12-23 | 2009-04-09 | Saint-Gobain Technical Fabrics Europe | Glass fibres coated with size containing nanoparticles |
| US7687981B2 (en) * | 2006-05-05 | 2010-03-30 | Brother International Corporation | Method for controlled density growth of carbon nanotubes |
| US20080075954A1 (en) * | 2006-05-19 | 2008-03-27 | Massachusetts Institute Of Technology | Nanostructure-reinforced composite articles and methods |
| US20080020193A1 (en) * | 2006-07-24 | 2008-01-24 | Jang Bor Z | Hybrid fiber tows containning both nano-fillers and continuous fibers, hybrid composites, and their production processes |
| US20090068387A1 (en) * | 2006-07-31 | 2009-03-12 | Matthew Panzer | Composite thermal interface material including aligned nanofiber with low melting temperature binder |
| US20080053922A1 (en) * | 2006-09-01 | 2008-03-06 | Honsinger Charles P Jr | Nanostructured materials comprising support fibers coated with metal containing compounds and methods of using the same |
| WO2009008291A1 (fr) * | 2007-07-06 | 2009-01-15 | National Institute Of Advanced Industrial Science And Technology | Procédé de fabrication d'un film de nanotubes de carbone, appareil de fabrication de film et film de nanotubes de carbone |
| US20110014446A1 (en) * | 2007-07-06 | 2011-01-20 | Takeshi Saito | Method for forming carbon nanotube film, film-forming apparatus, and carbon nanotube film |
| US20090020734A1 (en) * | 2007-07-19 | 2009-01-22 | Jang Bor Z | Method of producing conducting polymer-transition metal electro-catalyst composition and electrodes for fuel cells |
| US20090047453A1 (en) * | 2007-08-13 | 2009-02-19 | Smart Nanomaterials, Llc | Nano-enhanced smart panel |
| US20090047502A1 (en) * | 2007-08-13 | 2009-02-19 | Smart Nanomaterials, Llc | Nano-enhanced modularly constructed composite panel |
| US20090081383A1 (en) * | 2007-09-20 | 2009-03-26 | Lockheed Martin Corporation | Carbon Nanotube Infused Composites via Plasma Processing |
| US20090081441A1 (en) * | 2007-09-20 | 2009-03-26 | Lockheed Martin Corporation | Fiber Tow Comprising Carbon-Nanotube-Infused Fibers |
| US7666915B2 (en) * | 2007-09-24 | 2010-02-23 | Headwaters Technology Innovation, Llc | Highly dispersible carbon nanospheres in a polar solvent and methods for making same |
| US7867468B1 (en) * | 2008-02-28 | 2011-01-11 | Carbon Solutions, Inc. | Multiscale carbon nanotube-fiber reinforcements for composites |
| US20100098931A1 (en) * | 2008-06-02 | 2010-04-22 | Texas A & M University System | Carbon nanotube fiber-reinforced polymer composites having improved fatigue durability and methods for production thereof |
| US20100059243A1 (en) * | 2008-09-09 | 2010-03-11 | Jin-Hong Chang | Anti-electromagnetic interference material arrangement |
| US20100074834A1 (en) * | 2008-09-22 | 2010-03-25 | Samsung Electronics Co., Ltd. | Apparatus and method for surface-treating carbon fiber by resistive heating |
| US20100081769A1 (en) * | 2008-09-26 | 2010-04-01 | E.I.Du Pont De Nemours And Company | Process for producing block copolymer pigment dispersants |
| US20110024694A1 (en) * | 2009-02-17 | 2011-02-03 | Lockheed Martin Corporation | Composites comprising carbon nanotubes on fiber |
| US20110024409A1 (en) * | 2009-04-27 | 2011-02-03 | Lockheed Martin Corporation | Cnt-based resistive heating for deicing composite structures |
Cited By (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9573812B2 (en) | 2007-01-03 | 2017-02-21 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
| US9574300B2 (en) | 2007-01-03 | 2017-02-21 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
| US8951631B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
| US8951632B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
| US9005755B2 (en) | 2007-01-03 | 2015-04-14 | Applied Nanostructured Solutions, Llc | CNS-infused carbon nanomaterials and process therefor |
| US8580342B2 (en) | 2009-02-27 | 2013-11-12 | Applied Nanostructured Solutions, Llc | Low temperature CNT growth using gas-preheat method |
| US10138128B2 (en) | 2009-03-03 | 2018-11-27 | Applied Nanostructured Solutions, Llc | System and method for surface treatment and barrier coating of fibers for in situ CNT growth |
| US8969225B2 (en) | 2009-08-03 | 2015-03-03 | Applied Nano Structured Soultions, LLC | Incorporation of nanoparticles in composite fibers |
| US8784937B2 (en) | 2010-09-14 | 2014-07-22 | Applied Nanostructured Solutions, Llc | Glass substrates having carbon nanotubes grown thereon and methods for production thereof |
| US8815341B2 (en) | 2010-09-22 | 2014-08-26 | Applied Nanostructured Solutions, Llc | Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof |
| US9260646B2 (en) | 2012-05-09 | 2016-02-16 | Laird Technologies, Inc. | Polymer matrices functionalized with carbon-containing species for enhanced thermal conductivity |
| US9506194B2 (en) | 2012-09-04 | 2016-11-29 | Ocv Intellectual Capital, Llc | Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media |
| US10533247B2 (en) * | 2012-12-29 | 2020-01-14 | Tsinghua University | Method for growing carbon nanotubes |
| US20140186547A1 (en) * | 2012-12-29 | 2014-07-03 | Hon Hai Precision Industry Co., Ltd. | Reactor and method for growing carbon nanotube using the same |
| US9567218B2 (en) * | 2012-12-29 | 2017-02-14 | Tsinghua University | Reactor and method for growing carbon nanotube using the same |
| US20170057824A1 (en) * | 2012-12-29 | 2017-03-02 | Tsinghua University | Method for growing carbon nanotubes |
| US9987608B2 (en) | 2014-09-19 | 2018-06-05 | NanoSynthesis Plus, Ltd. | Methods and apparatuses for producing dispersed nanostructures |
| US10099930B2 (en) | 2014-12-05 | 2018-10-16 | Q-Flo Limited | Method for the production of carbon nanotube structures |
| WO2016087857A1 (fr) * | 2014-12-05 | 2016-06-09 | Q-Flo Limited | Procédé |
| CN105908491A (zh) * | 2016-05-31 | 2016-08-31 | 哈尔滨工业大学 | 制备表面生长有碳纳米管的连续碳纤维的装置和方法 |
| WO2018034625A1 (fr) * | 2016-08-16 | 2018-02-22 | Istanbul Teknik Universitesi | Nanotubes de carbone à répartition aléatoire et/ou croissance verticale/horizontale sur des nanofibres polymères et leurs composites |
| US20210187788A1 (en) * | 2018-05-31 | 2021-06-24 | Lintec Corporation | Method of producing carbon-resin composite material, and composite structure for producing carbon-resin composite material |
| EP3810547A4 (fr) * | 2018-06-22 | 2022-04-06 | The Government of the United States of America, as represented by the Secretary of the Navy | Appareil et procédé de croissance de structures de carbone sp2 cylindriques ultralongues distinctes |
| WO2020071655A1 (fr) * | 2018-10-04 | 2020-04-09 | Awexomeray | Procédé de préparation d'un fil comprenant des nanotubes de carbone et fil ainsi préparé |
| US11408097B2 (en) | 2018-10-04 | 2022-08-09 | Awexome Ray, Inc. | Process for preparing a yarn comprising carbon nanotubes and yarn prepared thereby |
| US11453591B2 (en) | 2018-11-30 | 2022-09-27 | Awexome Ray, Inc. | Process for preparing a carbon nanotube sheet comprising a uniaxially aligned yarn and carbon nanotube sheet prepared thereby |
| US11600462B2 (en) | 2019-01-24 | 2023-03-07 | Awexome Ray, Inc. | Emitter with excellent structural stability and enhanced efficiency of electron emission and X-ray tube comprising the same |
| US11798773B2 (en) | 2019-01-24 | 2023-10-24 | Awexome Ray, Inc. | Emitter with excellent structural stability and enhanced efficiency of electron emission and X-ray tube comprising the same |
| US10643816B1 (en) | 2019-04-04 | 2020-05-05 | aweXomeRay Co., Ltd. | X-ray emitting device comprising a focusing electrode composed of a ceramic-based material |
| US11195684B2 (en) | 2019-07-26 | 2021-12-07 | Awexome Ray, Inc. | Field emission apparatus with superior structural stability and X-ray tube comprising the same |
Also Published As
| Publication number | Publication date |
|---|---|
| JP5604506B2 (ja) | 2014-10-08 |
| EP2417288A4 (fr) | 2013-10-30 |
| CN102388172A (zh) | 2012-03-21 |
| KR20120002980A (ko) | 2012-01-09 |
| WO2010118381A1 (fr) | 2010-10-14 |
| AU2010233113A1 (en) | 2011-10-13 |
| CN102388172B (zh) | 2015-02-11 |
| JP2012523368A (ja) | 2012-10-04 |
| BRPI1014162A2 (pt) | 2016-04-26 |
| CA2757474A1 (fr) | 2010-10-14 |
| EP2417288A1 (fr) | 2012-02-15 |
| ZA201106734B (en) | 2012-08-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20100260931A1 (en) | Method and apparatus for using a vertical furnace to infuse carbon nanotubes to fiber | |
| US8580342B2 (en) | Low temperature CNT growth using gas-preheat method | |
| US20200010983A1 (en) | Apparatuses and Methods for Large-Scale Production of Hybrid Fibers Containing Carbon Nanostructures and Related Materials | |
| US9573812B2 (en) | CNT-infused metal fiber materials and process therefor | |
| JP5823393B2 (ja) | 複合繊維へのナノ粒子の組み込み | |
| US9447259B2 (en) | Composite materials formed by shear mixing of carbon nanostructures and related methods | |
| AU2012326007B2 (en) | Systems and methods for continuously producing carbon nanostructures on reusable substrates | |
| US20110171469A1 (en) | Cnt-infused aramid fiber materials and process therefor | |
| US20110168083A1 (en) | Cnt-infused ceramic fiber materials and process therefor | |
| JP2013500937A5 (fr) | ||
| AU2010217757A1 (en) | CNT-infused glass fiber materials and process therefor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: APPLIED NANOSTRUCTURED SOLUTIONS, LLC, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LOCKHEED MARTIN CORPORATION;REEL/FRAME:024349/0133 Effective date: 20100429 |
|
| AS | Assignment |
Owner name: LOCKHEED MARTIN CORPORATION, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MALECKI, HARRY C.;SHAH, TUSHAR K.;ALBERDING, MARK R.;SIGNING DATES FROM 20100524 TO 20100525;REEL/FRAME:024591/0337 |
|
| AS | Assignment |
Owner name: APPLIED NANOSTRUCTURED SOLUTIONS, LLC, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LOCKHEED MARTIN CORPORATION;REEL/FRAME:025913/0473 Effective date: 20110302 |
|
| AS | Assignment |
Owner name: APPLIED NANOSTRUCTURED SOLUTIONS, LLC, MARYLAND Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY LISTED SERIAL NO. 12/757,901 PREVIOUSLY RECORDED ON REEL 025913 FRAME 0473. ASSIGNOR(S) HEREBY CONFIRMS THE SERIAL NO. 12/757,901 SHOULD BE REMOVED FROM THE ASSIGNMENT.;ASSIGNOR:LOCKHEED MARTIN CORPORATION;REEL/FRAME:028720/0565 Effective date: 20110302 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |