[go: up one dir, main page]

US20100258112A1 - Generation of steam from solar energy - Google Patents

Generation of steam from solar energy Download PDF

Info

Publication number
US20100258112A1
US20100258112A1 US12/757,100 US75710010A US2010258112A1 US 20100258112 A1 US20100258112 A1 US 20100258112A1 US 75710010 A US75710010 A US 75710010A US 2010258112 A1 US2010258112 A1 US 2010258112A1
Authority
US
United States
Prior art keywords
solar energy
tubes
steam
cavity
energy receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/757,100
Other languages
English (en)
Inventor
John C. Viskup, Jr.
Bochuan Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victory Energy Operations LLC
Original Assignee
Victory Energy Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victory Energy Operations LLC filed Critical Victory Energy Operations LLC
Priority to US12/757,100 priority Critical patent/US20100258112A1/en
Assigned to Victory Energy Operations LLC reassignment Victory Energy Operations LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIN, BOCHUAN, VISKUP, JOHN C., JR.
Publication of US20100258112A1 publication Critical patent/US20100258112A1/en
Assigned to US BANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT reassignment US BANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: VICTORY ENERGY OPERATIONS, L.L.C.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/02Control systems for steam boilers for steam boilers with natural convection circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/86Arrangements for concentrating solar-rays for solar heat collectors with reflectors in the form of reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • This invention relates to recovering solar energy in the form of steam, which may be used to generate electricity or in industrial processes. More particularly, the invention includes a novel method and apparatus for converting solar energy to high pressure steam; that is, a steam boiler that employs the sun's rays to produce steam.
  • the present invention is within the class of solar energy power systems referred to as power towers.
  • a power tower uses an array of reflecting mirrors at ground level to focus the sun's rays onto a central receiver mounted on a tall tower.
  • the solar energy is absorbed by a heat transfer medium, such as water, liquid sodium, molten salts, and organic liquids.
  • Steam can be generated directly, or indirectly using another heat transfer medium, and used to drive a turbine generating electricity or in other uses.
  • a means for storing heat may be provided and used to produce steam and electricity.
  • the present invention relates to an improved method and apparatus for directly generating high pressure steam at the top of a power tower.
  • the present application includes a cavity type receiver which employs natural circulation of water.
  • the source of the solar energy may be an array of reflecting mirrors such as described in U.S. Pat. Nos. 6,959,993 and 7,192,146.
  • the mirrors direct the sun's rays onto openings in the side of the steam generating apparatus, which is enclosed in a structure that confines the solar energy and limits heat losses from reflected solar radiation.
  • the entire steam generating apparatus or steam boiler is completely enclosed. Only the entrance ports for the focused solar energy are open.
  • the invention includes a cavity-type solar energy receiver for generating high pressure superheated steam in which panels of tubes are positioned inside an enclosure to receive concentrated solar energy through an opening in the enclosure.
  • Water from a steam drum is passed by natural circulation through evaporator tubes exposed to concentrated solar energy to produce steam.
  • the steam is separated from the steam/water mixture in the steam drum and then superheated before being supplied to a turbine driven electrical generator or used for other purposes.
  • two of the cavity-type solar energy receivers are positioned as mirror images, one facing north and the other south, both receiving concentrated solar energy from mirrors at ground level (a heliostat) reflecting light to the solar energy receivers mounted on a tower.
  • a steam drum serving both receivers is mounted between them and within an enclosure for both receivers.
  • the panels of tubes form a cavity within which concentrated solar energy is used to generate high pressure steam. Between the cavity formed by panels of tubes and the surrounding enclosure refractory insulation is provided to limit heat losses and to protect the outer enclosure.
  • the solar energy receiver(s) has evaporator tubes mounted opposite the solar energy opening and against adjacent side walls.
  • Economizer tubes for preheating boiler feed water may be included which, if used, could be positioned on the side walls and/or floor of the receiver adjacent the solar energy opening.
  • Superheater tubes are positioned as a roof at the top of the cavity adjacent the evaporator tubes. Auxiliary superheater tubes may be added on the side walls as desired in some embodiments.
  • FIG. 1 is a process diagram.
  • FIG. 2 is a perspective view of a duplex steam boiler of the invention.
  • FIG. 3 is a sectional elevation view of the steam boiler of FIG. 2 .
  • the steam quality will have to be maintained as conditions change.
  • a solar boiler will be designed to produce a given amount of high pressure steam at a given temperature using solar energy of a given maximum concentration. If the steam is to maintain its design quality (i.e. temperature and pressure) the ground-based mirrors can be adjusted to optimize the amount of the solar energy reaching the solar boiler. To a lesser degree, the steam temperature can be continuously adjusted by injecting boiler feed water into the superheated steam.
  • the tubes receiving solar energy will frequently expand and contract as the temperature of the tube walls varies with changes in the concentrated solar energy. It will be appreciated that excessive temperatures can cause tube failures so that adjusting the mirrors and maintaining water and steam flows is important.
  • the tubes also must prevent solar energy from overheating the insulation and the external structure.
  • the solar receiver tubes may be subject to cyclic fatigue failure. This is a unique problem that results from the frequent heating up and cooling down due to unstable solar energy heat input. The worst operating conditions are expected to be in the superheater tubes, where the tube temperature may become very high, making the tubes more vulnerable to cyclic damage.
  • An important feature of this invention is that the superheater tubes are warmed with reflected heat from the evaporator panels, that is, an indirect method, rather than a direct method.
  • the maximum heat flux in the reflected sun's rays is substantially less than that from direct rays. This reduces the maximum tube wall temperature and increases the reliability and life of the superheater panels.
  • Another important feature of this invention is natural water circulation. That is, water leaving the steam drum flows downward and enters the tubes. In the tubes the water it receives solar energy and a portion of the water becomes steam, rising up to the steam drum. The density difference between the water and the steam/water mixture creates a natural flow or circulation, which does not require the complication and expense of pumping and improves reliability of boiler operation.
  • the solar energy receiver of the invention is referred to as a cavity-type solar energy receiver. It is deployed at the top of a “power tower” that receives concentrated solar energy from a heliostat, i.e. a set of ground-based mirrors.
  • the solar energy receiver includes an external enclosure that protects the steam boiler and limits energy losses. When viewed from the outside, the steam boiler and other internals are not generally visible.
  • a steam drum and its associated tubes are positioned so as to receive concentrated solar energy reflected from fields of ground-based mirrors.
  • the steam drum and its associated tubes are generally referred to as a steam boiler.
  • the tubes that receive solar energy are backed by insulation, which contains and helps to reflect the solar energy received from the heliostat and also protects the external structure
  • a cavity-type solar receiver by definition has an opening sized to receive energy focused on it by minors, which are usually located at ground level.
  • the size of the cavity opening will be determined by the arrangement and positioning of the mirrors.
  • the intensity of the focused solar energy will be determined by the number and size of the mirrors used and their reflective properties. Consequently, a cavity-type solar receiver would be designed to have a specific opening size and shape and to receive a specified quantity of solar energy.
  • two cavity-type receivers are paired with a single steam drum.
  • the evaporator tubes receive the focused solar energy directly by being placed opposite the cavity opening. Additional evaporator tube panels may be located on the side walls of the cavity adjacent the main panels, where they receive some reflected solar energy.
  • the solar receiver of the invention is not limited by or require such adjacent panels.
  • An embodiment that is shown in the drawings places preheat tube panels and superheater tube panels so that they receive solar energy reflected back from the evaporator tube panels opposite the cavity opening. While this arrangement of these panels is considered to provide a useful configuration, the location of such panels may be rearranged if desired. In a preferred embodiment the preheat panels are eliminated.
  • the interior of the cavity receiver contains tube panels sized and arranged to receive a specified solar heat flux and to provide the specified amount of heat to water and steam.
  • FIG. 1 is a process flow diagram that will assist the reader in understanding the description of the steam boiler which will follow.
  • two sets of heat exchange panels forming two cavities are shown, one which typically would face north and the second one typically south, with ground-based mirrors reflecting solar energy into the cavity on each side.
  • the position of the panels is also indicated, that is, whether the panels are on the east side, the west side, the roof, or on the floor of the cavity.
  • a single cavity-type receiver having only one set of tube panels could be used if positioned at the edge of a field of mirrors. Electricity is generated at ground level by a turbine-generator (not shown) driven by the high pressure steam produced by the solar receivers.
  • the steam After leaving the turbine-generator, the steam is condensed and then pumped as hot water up the tower into the steam boiler 10 via the four economizer panels, shown as ECON 1 - 4 .
  • this water which has a temperature of about 425° F. and a pressure of about 998 psig, is reheated in the economizer panels ECON 1 - 4 to a temperature just below that of the steam drum 10 , about 502° F.
  • the steam drum 10 supplies the hot water via natural circulation to six evaporating panels, shown as EVAP 1 - 6 , which generate steam at about 544° F., which returns to the steam drum 10 .
  • the saturated steam from steam drum 10 is then passed through the superheating panels, shown as SH 1 - 4 , where the temperature is raised to about 825° F. for use in the turbine-generator.
  • a desuperheater is provided between SH 3 and 4 , to adjust the temperature of the steam as required.
  • the temperature also may be adjusted by changes to the position of the ground-based reflecting mirrors (not shown).
  • FIG. 2 is a perspective view of a duplex steam boiler of the invention.
  • the steam drum 10 is located between the north and south receivers and supplies water by natural circulation to the evaporating tube panels (EVAP 1 - 6 ), which return steam and water to the steam drum 10 . After the saturated steam is separated from water returning to drum 10 , it is superheated before being sent down the tower to be used.
  • the heat exchange tube panels are backed by ceramic type insulation, which is adjacent to an outer enclosure (not shown).
  • focused solar energy enters the north and south openings and is partially reflected from the back wall to the side walls and the roof of the north and south units where the radiant energy is absorbed by three types of tube panels, which preheat boiler feed water, produce steam, and superheat the steam.
  • the location of some of the tube panels are identified in FIG. 2 . It should be understood that, except for superheater panels SH 1 and 2 which are on opposite sides of their respective units, the panels are mirror images.
  • the preheater and superheater tube panels operate in series, water or steam passing through tube panels in both of the north and south units.
  • the evaporator panels operate in parallel, three sets in each unit.
  • ECON 1 - 2 heat boiler feed water pumped from ground level and then send the heated water to ECON 3 - 4 in the south unit for additional heating before passing to the steam drum 10 .
  • These economizer tube panels are not required and may be omitted if desired.
  • the evaporator tube panels EVAP 3 and 6 (not shown), which face the steam drum and are opposite the solar energy openings, are located where the solar energy is most concentrated, since they are directly exposed to the focused sun's rays.
  • Evaporator tube panels EVAP 1 - 2 (north section) and EVAP 4 - 5 (south section) are located on the side walls of their cavities.
  • the north unit has the same arrangement of tube panels except for superheater panel SH 2 ; the corresponding superheat panel SH 1 is located on the east side of the south unit.
  • hot water from the steam drum 10 is vaporized and a mixture of steam and water is returned to the steam drum.
  • the steam passes through superheater tubes SH 1 - 4 before being sent down the tower to the users.
  • a desuperheater (not shown in FIG. 2 ) is provided to adjust the steam outlet temperature by spraying water into the superheated steam.
  • the steam drum 10 is positioned between the north and south units as seen in FIG. 2 . It receives heated feed water leaving economizer tube panel ECON 4 and entering the steam drum 10 though holes in a pipe extending into the drum (not shown). Water leaves the bottom of the steam drum 10 and enters the lower manifolds 12 N and 12 S, which each serve three evaporator tube panels, two which are seen in the north unit as EVAP 1 and 2 on the east and west walls. Evaporator tube panel EVAP 3 is seen in part in the north unit, where it is exposed to the most direct solar energy. The corresponding evaporator panels are EVAP 4 - 6 are in the south unit.
  • the evaporator tube panels discharge into the upper manifolds 14 N and 14 S, which are generally U-shaped. From the upper manifolds multiple return pipes ( 16 N and S in FIG. 2 ), are used to provide uniform recirculation.
  • the steam drum internals (not shown) include steam-water separators and demisters to remove water droplets from the saturated steam before leaving the drum and entering the superheat panels SH 1 - 4 .
  • Economizer tubes are not required but, when included, may be placed in locations not suited for evaporator or super heater tubes in order to complete the cavity.
  • the economizer tubes are positioned inside the solar energy openings (e.g. 18 in the south unit) as tube panels ECON 1 - 2 and ECON 3 - 4 on each side of each of the north and south units respectively.
  • Economizer tube panels could be added at the floor of the cavity, although not preferred.
  • the tubes in each panel receive boiler feed water from a manifold at one end of the tubes and deliver heated water to an outlet manifold at the other end of the tubes.
  • Thehot feed water enters panel ECON 1 in the north unit, then leaves and proceeds to panels ECON 2 - 4 for further heating.
  • the tubes enter horizontally with bends to each manifold as shown in FIG. 2 in order to accommodate thermal expansion and contraction, which will occur during operation of the receiver as the concentration of solar energy or electrical load varies.
  • the economizer tubes are expected to receive a maximum heat density of about 90,000 BTU/ft 2 per hour. Tubes have an outside diameter of 1.25 inches with a 0.165 inch thick wall (0.120 min) and are made of ASME SA-178A low carbon steel. Membrane bars, which are welded to the tubes to bind them together as a continuous heat transfer surface, are 0.25 inches thick and 0.825 inches wide. The cavity side of the economizer tubes are coated with a high emissivity coating to be discussed below.
  • Each of the north and south units has three sets of evaporator tube panels, operating in parallel in connection with the steam drum.
  • Two panels EVAP 4 and 5 (south) and EVAP 1 and 2 (north) are located adjacent the wall opposite the solar energy opening. These panels principally receive reflected light, while panels EVAP 3 and 6 are located on the back wall of each section that receives direct exposure to the concentrated solar energy.
  • EVAP 3 is shown in part of FIG. 2 , but EVAP 6 is not visible due to the orientation of the two units.
  • Each of the evaporator panels consists of a series of tubes receiving hot water by natural circulation from the steam drum through manifolds at the lower end of the tubes ( 12 N and 12 S).
  • FIG. 3 is an sectional elevation view of the east wall of the duplex steam solar boiler in FIG. 2 , as viewed from the inside of the cavities.
  • the north unit is at the left and the south unit at the right.
  • Two of the economizer panels are shown (ECON 1 and 3 and the position of superheater panels (SH 3 and 4 ) atop the two cavities can be seen.
  • Solar energy enters the north and south openings as indicated by the arrows.
  • the natural circulation of water from the steam drum 10 through evaporator panels EVAP 1 (north side) and 4 (south side) is illustrated by arrows. (The main evaporator tube panels EVAP 3 and 6 are not visible in this sectional view).
  • the return pipes have a bend of about 90 degrees, which helps to absorb thermal expansion and contraction during operation.
  • the evaporator tubes are expected to receive a maximum heat density of about 100,000 BTU/ft 2 per hour.
  • the tubes have an outside diameter of 1.75 inches, with a 0.135 inch thick (0.120 min) wall and are made of ASME SA-178A low carbon steel.
  • the tubes are joined by membrane bars, which are 0.25 inches thick and 0.5 inches wide.
  • the cavity side of the evaporator tubes is also coated with a high emissivity coating.
  • Each of the north and south sections has three sets of superheater tube panels SH 1 - 4 , operating in series.
  • the first panels, SH 1 and 2 receive the higher heat density but, since they receive saturated steam leaving the steam drum, operate at a lower temperature.
  • Tube panel SH 2 can be seen on the west wall of the north section in FIG. 2 .
  • Tube panel SH 1 can be seen on the east wall of the south section in FIG. 3 .
  • Superheater tube Panels SH 1 and 2 are positioned adjacent evaporator tube panel EVAP 4 (south) and evaporator panel EVAP 2 (north).
  • Superheater panels SH 3 and 4 are located at the top or roof of their respective cavities.
  • the first superheater panels SH 1 and 2 are expected to receive a maximum heat density of about 70,000 BTU/ft 2 per hour.
  • the tubes are 1.25 inches in outside diameter, with a 0.15 inch thick wall, made of ASME SA-213T22 2 1 ⁇ 4 chrome, 1% molybdenum steel. They do not have membrane bars, but are positioned to abut adjacent tubes to limit passage of solar energy.
  • the second superheater tube panels SH 3 and 4 are expected to receive a maximum heat density of about 60,000 BTU/ft 2 per hour.
  • the tubes are 1.25 inches in outside diameter, with a 0.165 inch thick (0.165 min) wall and made of ASME SA-213T22 2 1 ⁇ 4% chrome, 1% molybdenum steel.
  • the cavity side of the superheater tubes are coated with a high emissivity coating. Each of the superheater tubes will bend at one or both ends to absorb thermal expansion.
  • the cavity side of the boiler tubes are coated to both improve heat transfer to the tubes and to reflect solar energy towards the other tubes, Since the heat density is high and steam temperatures reach as high as 825° F., a very durable coating is required.
  • the coating is CORR-PAINT CP-40XX Series (AREMCO PRODUCTS, Valley Cottage, NY), which is a silicone-based material resisting temperatures up to 1100° F.
  • the coating should absorb between 50 and 99% of the solar energy received and have a reflectivity rating of 1 to 50%.
  • the preferred coating is a mixture of 80% white and 20% black paint to produce a gray shade that reflects about 20% of the incident light. The coating used required high temperature curing.
  • the tube panels are backed by insulation inside the outer structure.
  • the insulation is shielded from direct exposure to solar radiation by the tubes joined by the attached bars that make a continuous surface. Water passing through the tubes also limits the temperature at the surface of the insulation.
  • the insulation thickness varies between 1 to 6 inches, depending on the temperature expected at each area of the solar receiver.
  • the insulation may be mineral wool on the back of the evaporator or economizer panels and ceramic fiber in back of the superheater panels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
US12/757,100 2009-04-10 2010-04-09 Generation of steam from solar energy Abandoned US20100258112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/757,100 US20100258112A1 (en) 2009-04-10 2010-04-09 Generation of steam from solar energy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US21239009P 2009-04-10 2009-04-10
US21742509P 2009-05-29 2009-05-29
US12/757,100 US20100258112A1 (en) 2009-04-10 2010-04-09 Generation of steam from solar energy

Publications (1)

Publication Number Publication Date
US20100258112A1 true US20100258112A1 (en) 2010-10-14

Family

ID=42933344

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/757,100 Abandoned US20100258112A1 (en) 2009-04-10 2010-04-09 Generation of steam from solar energy

Country Status (2)

Country Link
US (1) US20100258112A1 (fr)
WO (1) WO2010118276A2 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090241939A1 (en) * 2008-02-22 2009-10-01 Andrew Heap Solar Receivers with Internal Reflections and Flux-Limiting Patterns of Reflectivity
US20100252025A1 (en) * 2007-07-26 2010-10-07 Israel Kroizer Solar receiver
WO2012052588A1 (fr) * 2010-10-20 2012-04-26 Abengoa Solar New Technologies, S.A. Configuration de récepteur de tour pour hautes tensions
WO2012089869A1 (fr) * 2010-12-30 2012-07-05 Abengoa Solar New Technologies, S.A. Procédé de revêtement in situ de récepteur solaire de tour
US20120291772A1 (en) * 2010-02-05 2012-11-22 Mitsubisi Heavy Industries, Ltd Solar heat receiver
WO2012154438A3 (fr) * 2011-05-06 2013-01-17 Babcock Power Services, Inc. Panneaux modulaires de réception d'énergie solaire et chaudières solaires équipées de panneaux modulaires de réception d'énergie solaire
WO2013074767A1 (fr) * 2011-11-16 2013-05-23 Babcock & Wilcox Power Generation Group, Inc. Système de protection d'un récepteur solaire contre la congélation
US20130125875A1 (en) * 2010-06-02 2013-05-23 Abengoa Solar New Technologies, S.A. Concave receiver for stirling dish and manufacturing method therefor
WO2013079744A1 (fr) * 2011-11-29 2013-06-06 Abengoa Solar New Technologies, S.A. Configuration des récepteurs dans des centrales solaires à concentration à tour
WO2013028867A3 (fr) * 2011-08-23 2014-02-20 Chevron Usa Inc. Système de collecte de rayonnement solaire concentré
US20140116361A1 (en) * 2012-03-20 2014-05-01 Rob Williams Systems and Methods for Heat Recovery Steam Generation at Dual Pressures
US8733340B2 (en) 2009-02-12 2014-05-27 Babcock Power Services, Inc. Arrangement of tubing in solar boiler panels
US20140215824A1 (en) * 2011-02-09 2014-08-07 Babcock Power Services, Inc. Systems and methods for solar boiler construction
WO2016057404A1 (fr) * 2014-10-06 2016-04-14 The Babcock & Wilcox Company Tours solaires à sel fondu modulaires à accumulateur thermique destinées à un traitement, à une production ou à une production combinée d'électricité
US20160123309A1 (en) * 2014-10-29 2016-05-05 Lai Fan Huang Solar Water Heater
CN106225263A (zh) * 2016-09-13 2016-12-14 深圳市爱能森科技有限公司 一种盘管蜂窝腔式液体工质太阳能集热器
US20170138588A1 (en) * 2015-11-18 2017-05-18 Bosal Emission Control Systems Nv Combined evalporator and mixer
WO2017216255A1 (fr) * 2016-06-15 2017-12-21 General Electric Technology Gmbh Récepteur solaire à rendement amélioré de champ d'héliostats
EP4193099A1 (fr) * 2020-08-14 2023-06-14 ODQA Renewable Energy Technologies Limited Récepteur solaire
CN120176093A (zh) * 2025-05-21 2025-06-20 广西大学 一种基于预热的太阳能驱动界面蒸发蒸汽制备系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014026703A1 (fr) 2012-08-17 2014-02-20 Solar Tower Technologies Ag Récepteur solaire à champ d'héliostats

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927659A (en) * 1973-09-21 1975-12-23 Martin Marietta Corp Peak efficiency solar energy powered boiler and superheater
US4033118A (en) * 1974-08-19 1977-07-05 Powell William R Mass flow solar energy receiver
US4089325A (en) * 1975-07-18 1978-05-16 Entreprise Industrielle De Chaudronnerie Solar heated boiler
US4164123A (en) * 1976-08-25 1979-08-14 Smith Otto J M Solar thermal electric power plant
US4245618A (en) * 1978-10-10 1981-01-20 The Babcock & Wilcox Co. Vapor generator
US4289114A (en) * 1978-09-12 1981-09-15 The Babcock & Wilcox Company Control system for a solar steam generator
US4387574A (en) * 1980-05-08 1983-06-14 Kraftwerk Union Aktiengesellschaft Solar power plant including a solar heater on a tower
US4485803A (en) * 1982-10-14 1984-12-04 The Babcock & Wilcox Company Solar receiver with interspersed panels
US4546758A (en) * 1979-09-17 1985-10-15 Kraftwerk Union Aktiengesellschaft Solar-tower power station
US4789114A (en) * 1986-12-15 1988-12-06 Sanwa Needle Bearing Co., Ltd. Composite tape guide of cassette tape for VTR
US20040035111A1 (en) * 2000-09-19 2004-02-26 Ven Livien Domien Method and device for producing steam by means of solar energy
US6857426B2 (en) * 2002-09-25 2005-02-22 Dirk Besier Absorber element for solar high-temperature heat generation, and a method for its production
US6931851B2 (en) * 2002-12-13 2005-08-23 The Boeing Company Solar central receiver with inboard headers
US6959993B2 (en) * 2003-07-10 2005-11-01 Energy Innovations, Inc. Solar concentrator array with individually adjustable elements
US7011068B2 (en) * 2001-11-07 2006-03-14 Honda Giken Kogyo Kabushiki Kaisha Accessory mounting structure for internal combustion engine
US7186252B2 (en) * 2003-09-29 2007-03-06 Ethicon Endo-Surgery, Inc. Endoscopic mucosal resection device and method of use
US7192146B2 (en) * 2003-07-28 2007-03-20 Energy Innovations, Inc. Solar concentrator array with grouped adjustable elements
US20090056646A1 (en) * 2007-08-31 2009-03-05 Matthews Jr Floyd E Stationary, Solar-Powered Boiler for Generating Steam
US20090199557A1 (en) * 2008-02-12 2009-08-13 Lawrence Livermore National Security, Llc Solar Thermal Power System
US20090241938A1 (en) * 2008-03-28 2009-10-01 Porter Arbogast Solar thermal receiver for medium- and high-temperature applications
US20090241939A1 (en) * 2008-02-22 2009-10-01 Andrew Heap Solar Receivers with Internal Reflections and Flux-Limiting Patterns of Reflectivity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19723543C2 (de) * 1997-06-05 2003-04-17 Deutsch Zentr Luft & Raumfahrt Energieerzeugungsanlage
JP4322902B2 (ja) * 2006-08-10 2009-09-02 川崎重工業株式会社 太陽熱発電設備および熱媒体供給設備

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927659A (en) * 1973-09-21 1975-12-23 Martin Marietta Corp Peak efficiency solar energy powered boiler and superheater
US4033118A (en) * 1974-08-19 1977-07-05 Powell William R Mass flow solar energy receiver
US4089325A (en) * 1975-07-18 1978-05-16 Entreprise Industrielle De Chaudronnerie Solar heated boiler
US4164123A (en) * 1976-08-25 1979-08-14 Smith Otto J M Solar thermal electric power plant
US4289114A (en) * 1978-09-12 1981-09-15 The Babcock & Wilcox Company Control system for a solar steam generator
US4245618A (en) * 1978-10-10 1981-01-20 The Babcock & Wilcox Co. Vapor generator
US4546758A (en) * 1979-09-17 1985-10-15 Kraftwerk Union Aktiengesellschaft Solar-tower power station
US4387574A (en) * 1980-05-08 1983-06-14 Kraftwerk Union Aktiengesellschaft Solar power plant including a solar heater on a tower
US4485803A (en) * 1982-10-14 1984-12-04 The Babcock & Wilcox Company Solar receiver with interspersed panels
US4789114A (en) * 1986-12-15 1988-12-06 Sanwa Needle Bearing Co., Ltd. Composite tape guide of cassette tape for VTR
US20040035111A1 (en) * 2000-09-19 2004-02-26 Ven Livien Domien Method and device for producing steam by means of solar energy
US7011068B2 (en) * 2001-11-07 2006-03-14 Honda Giken Kogyo Kabushiki Kaisha Accessory mounting structure for internal combustion engine
US6857426B2 (en) * 2002-09-25 2005-02-22 Dirk Besier Absorber element for solar high-temperature heat generation, and a method for its production
US6931851B2 (en) * 2002-12-13 2005-08-23 The Boeing Company Solar central receiver with inboard headers
US6959993B2 (en) * 2003-07-10 2005-11-01 Energy Innovations, Inc. Solar concentrator array with individually adjustable elements
US7192146B2 (en) * 2003-07-28 2007-03-20 Energy Innovations, Inc. Solar concentrator array with grouped adjustable elements
US7186252B2 (en) * 2003-09-29 2007-03-06 Ethicon Endo-Surgery, Inc. Endoscopic mucosal resection device and method of use
US20090056646A1 (en) * 2007-08-31 2009-03-05 Matthews Jr Floyd E Stationary, Solar-Powered Boiler for Generating Steam
US7552727B2 (en) * 2007-08-31 2009-06-30 Matthews Jr Floyd E Stationary, solar-powered boiler for generating steam
US20090260617A1 (en) * 2007-08-31 2009-10-22 Matthews Jr Floyd E Stationary, Solar-Powered Boiler For Generating Steam
US20090199557A1 (en) * 2008-02-12 2009-08-13 Lawrence Livermore National Security, Llc Solar Thermal Power System
US20090241939A1 (en) * 2008-02-22 2009-10-01 Andrew Heap Solar Receivers with Internal Reflections and Flux-Limiting Patterns of Reflectivity
US20090241938A1 (en) * 2008-03-28 2009-10-01 Porter Arbogast Solar thermal receiver for medium- and high-temperature applications

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100252025A1 (en) * 2007-07-26 2010-10-07 Israel Kroizer Solar receiver
US8490618B2 (en) 2007-07-26 2013-07-23 Brightsource Industries (Israel) Ltd. Solar receiver
US20090241939A1 (en) * 2008-02-22 2009-10-01 Andrew Heap Solar Receivers with Internal Reflections and Flux-Limiting Patterns of Reflectivity
US8733340B2 (en) 2009-02-12 2014-05-27 Babcock Power Services, Inc. Arrangement of tubing in solar boiler panels
US8517008B2 (en) 2009-02-12 2013-08-27 Babcock Power Services, Inc. Modular solar receiver panels and solar boilers with modular receiver panels
US20120291772A1 (en) * 2010-02-05 2012-11-22 Mitsubisi Heavy Industries, Ltd Solar heat receiver
US20130125875A1 (en) * 2010-06-02 2013-05-23 Abengoa Solar New Technologies, S.A. Concave receiver for stirling dish and manufacturing method therefor
US9080790B2 (en) * 2010-06-02 2015-07-14 Abengoa Solar New Technologies, S.A. Concave receiver for stirling dish and method for manufacturing the same
US20140150428A1 (en) * 2010-10-20 2014-06-05 Jose Maria Mendez Marcos High-power tower receiver configuration
CN103250011A (zh) * 2010-10-20 2013-08-14 阿文戈亚太阳能新技术有限公司 高功率塔接收器构造
WO2012052588A1 (fr) * 2010-10-20 2012-04-26 Abengoa Solar New Technologies, S.A. Configuration de récepteur de tour pour hautes tensions
ES2382707A1 (es) * 2010-10-20 2012-06-12 Abengoa Solar New Technologies S.A. Configuración de receptor de torre para altas potencias.
WO2012089869A1 (fr) * 2010-12-30 2012-07-05 Abengoa Solar New Technologies, S.A. Procédé de revêtement in situ de récepteur solaire de tour
ES2386051A1 (es) * 2010-12-30 2012-08-07 Abengoa Solar New Technologies S.A. Metodo de recubrimiento in situ de receptor solar de torre
EP2667114A4 (fr) * 2010-12-30 2016-01-06 Abengoa Solar New Tech Sa Procédé de revêtement in situ de récepteur solaire de tour
US20140215824A1 (en) * 2011-02-09 2014-08-07 Babcock Power Services, Inc. Systems and methods for solar boiler construction
WO2012154438A3 (fr) * 2011-05-06 2013-01-17 Babcock Power Services, Inc. Panneaux modulaires de réception d'énergie solaire et chaudières solaires équipées de panneaux modulaires de réception d'énergie solaire
ES2525197R1 (es) * 2011-05-06 2015-01-22 Babcock Power Services Inc. Caldera solar
WO2013028867A3 (fr) * 2011-08-23 2014-02-20 Chevron Usa Inc. Système de collecte de rayonnement solaire concentré
US8863516B2 (en) 2011-08-23 2014-10-21 Chevron U.S.A. Inc. System for collecting concentrated solar radiation
WO2013074767A1 (fr) * 2011-11-16 2013-05-23 Babcock & Wilcox Power Generation Group, Inc. Système de protection d'un récepteur solaire contre la congélation
CN103946644A (zh) * 2011-11-16 2014-07-23 巴布科克和威尔科克斯能量产生集团公司 用于太阳能接收器的凝结保护系统
US9273884B2 (en) 2011-11-16 2016-03-01 The Babcock & Wilcox Company Freeze protection system for solar receiver
CN104067067A (zh) * 2011-11-29 2014-09-24 阿本戈太阳能新技术公司 在具有塔的集聚式太阳能电厂中的接收器的配置
ES2411282A1 (es) * 2011-11-29 2013-07-05 Abengoa Solar New Technologies S.A. Configuración de los receptores en plantas de concentración solar de torre.
WO2013079744A1 (fr) * 2011-11-29 2013-06-06 Abengoa Solar New Technologies, S.A. Configuration des récepteurs dans des centrales solaires à concentration à tour
US20140116361A1 (en) * 2012-03-20 2014-05-01 Rob Williams Systems and Methods for Heat Recovery Steam Generation at Dual Pressures
WO2016057404A1 (fr) * 2014-10-06 2016-04-14 The Babcock & Wilcox Company Tours solaires à sel fondu modulaires à accumulateur thermique destinées à un traitement, à une production ou à une production combinée d'électricité
US20160123309A1 (en) * 2014-10-29 2016-05-05 Lai Fan Huang Solar Water Heater
US9482209B2 (en) * 2014-10-29 2016-11-01 Lai Fan Huang Solar water heater
US20170138588A1 (en) * 2015-11-18 2017-05-18 Bosal Emission Control Systems Nv Combined evalporator and mixer
US10465902B2 (en) * 2015-11-18 2019-11-05 Bosal Emission Control Systems Nv Combined evaporator and mixer
WO2017216255A1 (fr) * 2016-06-15 2017-12-21 General Electric Technology Gmbh Récepteur solaire à rendement amélioré de champ d'héliostats
US10539339B2 (en) 2016-06-15 2020-01-21 General Electric Technology Gmbh Solar receiver having improved heliostat field performance
CN106225263A (zh) * 2016-09-13 2016-12-14 深圳市爱能森科技有限公司 一种盘管蜂窝腔式液体工质太阳能集热器
EP4193099A1 (fr) * 2020-08-14 2023-06-14 ODQA Renewable Energy Technologies Limited Récepteur solaire
CN120176093A (zh) * 2025-05-21 2025-06-20 广西大学 一种基于预热的太阳能驱动界面蒸发蒸汽制备系统及方法

Also Published As

Publication number Publication date
WO2010118276A2 (fr) 2010-10-14
WO2010118276A3 (fr) 2011-02-17

Similar Documents

Publication Publication Date Title
US20100258112A1 (en) Generation of steam from solar energy
EP2000669B1 (fr) Usine de concentration solaire de production de vapeur surchauffée
US7690377B2 (en) High temperature solar receiver
US20120240577A1 (en) Thermal generation systems
US8863516B2 (en) System for collecting concentrated solar radiation
US20120186251A1 (en) Solar power plant
Roldán Serrano Concentrating solar thermal technologies
US20090261591A1 (en) Solar steam generator
US9863664B2 (en) Solar collector for solar heat boiler, and tower-type solar heat boiler equipped with same
JPH0243961B2 (fr)
GB2060860A (en) Solar power installation
US20130139807A1 (en) Thermal energy generation system
JP2014514525A (ja) 工業プロセスで用いる蒸気を生成するための方法及び機器
KR101577489B1 (ko) 플래그 형상의 열교환기
Giostri Transient effects in linear concentrating solar thermal power plant
Munoz et al. A conceptual design of solar boiler
Donatini et al. High efficency integration of thermodynamic solar plant with natural gas combined cycle
CN102927546B (zh) 线性菲涅尔直接产生蒸汽的系统
EP3055562B1 (fr) Procédé de chauffage contrôlé d'un fluide de traitement par le biais d'une centrale solaire thermique à concentration et d'un système caloporteur et appareil associé
Romero et al. Solar thermal power plants: from endangered species to bulk power production in sun-belt regions
EP2410177B1 (fr) Installation solaire combinée à technologie air-vapeur
Zarza et al. Solar thermal power plants with parabolic-trough collectors
Chandramohan et al. Low and Medium Temperature Solar Thermal Collectors
US20140238386A1 (en) Radiation absorbing metal pipe
Morrison et al. Solar Thermal Power Systems–Stanwell Power Station Project”

Legal Events

Date Code Title Description
AS Assignment

Owner name: VICTORY ENERGY OPERATIONS LLC, OKLAHOMA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VISKUP, JOHN C., JR.;LIN, BOCHUAN;SIGNING DATES FROM 20100426 TO 20100427;REEL/FRAME:024328/0607

AS Assignment

Owner name: US BANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AG

Free format text: SECURITY AGREEMENT;ASSIGNOR:VICTORY ENERGY OPERATIONS, L.L.C.;REEL/FRAME:029300/0212

Effective date: 20121114

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE