US20100192876A1 - Boiler and method for adjusting temperature of steam output from boiler - Google Patents
Boiler and method for adjusting temperature of steam output from boiler Download PDFInfo
- Publication number
- US20100192876A1 US20100192876A1 US12/679,576 US67957608A US2010192876A1 US 20100192876 A1 US20100192876 A1 US 20100192876A1 US 67957608 A US67957608 A US 67957608A US 2010192876 A1 US2010192876 A1 US 2010192876A1
- Authority
- US
- United States
- Prior art keywords
- super heater
- boiler
- steam
- shield plate
- combustion gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 13
- 239000000567 combustion gas Substances 0.000 claims abstract description 59
- 230000001105 regulatory effect Effects 0.000 claims abstract description 25
- 230000008020 evaporation Effects 0.000 claims abstract description 12
- 238000001704 evaporation Methods 0.000 claims abstract description 12
- 238000002485 combustion reaction Methods 0.000 claims abstract description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000007789 gas Substances 0.000 abstract description 47
- 238000010521 absorption reaction Methods 0.000 description 11
- 230000001276 controlling effect Effects 0.000 description 4
- 239000000284 extract Substances 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G5/00—Controlling superheat temperature
- F22G5/04—Controlling superheat temperature by regulating flue gas flow, e.g. by proportioning or diverting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B21/00—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
- F22B21/002—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically involving a single upper drum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B21/00—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
- F22B21/02—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially-straight water tubes
- F22B21/04—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially-straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely
- F22B21/08—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially-straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely the water tubes being arranged sectionally in groups or in banks, e.g. bent over at their ends
- F22B21/081—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially-straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely the water tubes being arranged sectionally in groups or in banks, e.g. bent over at their ends involving a combustion chamber, placed at the side and built-up from water tubes
Definitions
- the present invention relates to a boiler configured to regulate the amount of combustion gas originating from combustion in a burner and passing the upper side of a super heater, and to a method for adjusting the temperature of steam output from such a boiler.
- FIG. 6 is a schematic of an exemplary configuration of a marine boiler having a super heater that has been conventionally adopted.
- this conventional boiler 100 includes a burner 101 , a furnace 102 , a front tube bank 103 , a super heater (SH) 104 , and an evaporation tube bank (rear tube bank) 105 .
- Combustion gas 120 originating from combustion in the burner 101 flows from the furnace 102 and passes through the front tube bank 103 , the super heater 104 , and the evaporation tube bank 105 while exchanging heat therewith.
- the combustion gas 120 flows through an outlet gas duct 106 and then flows out from a gas outlet 107 .
- the steam collected in a steam drum 108 is then supplied to some devices (not shown) as a driving source (see Patent Document 1).
- the numeral 109 indicates a water drum
- the numerals 110 , 111 indicate headers
- the numeral 112 indicates a wall tube.
- the conventional boiler 100 extracts a part of the steam in the midstream of the super heater 104 , reduces the temperature of the steam with the water drum 109 , makes the steam exchange heat with the super heater 104 again, and thus adjusts the outlet temperature of the steam generated in the super heater 104 .
- a control desuper heater CDSH
- the combustion gas 120 needs to equally flow through an entire heat exchange tube bank that is made up of the super heater 104 , the evaporation tube bank 105 , and the like.
- the conventional boiler 100 controls the steam temperature so that the boiler 100 is operated efficiently.
- Patent Document 1 Japanese Patent Application Laid-open No. 2002-243106
- the super heater 104 is U-shaped, as illustrated in FIG. 7 , when the combustion gas 120 bypasses an upper space A on the upper side of the super heater 104 as bypass gas 113 without passing the super heater 104 , the combustion gas 120 flowing in the upper space A does not contribute to heat absorption of the super heater 104 . Therefore, heat exchange with the heat exchange tube bunk made up of the super heater 104 and the evaporation tube bank 105 does not take place. This causes problems of lowering the heat exchange rate in the super heater 104 and short of steam temperature.
- Rated operation may not be available when the steam temperature changes out of a CDSH adjustable range, that is, for example, when the steam temperature rises to equal to or higher than 560 degrees Celsius or, the steam temperature is insufficient at, for example, equal to or lower than 515 degrees Celsius.
- an object of the present invention is to provide a boiler configured to regulate flow patterns of combustion gas originating from combustion in a burner, adjust the temperature of steam generated in a super heater, and enable efficient operation, and a method for adjusting the temperature of steam output from such a boiler.
- a boiler that flows combustion gas produced by combustion in a burner through a super heater and an evaporation tube bank from a furnace, includes: a shield plate that is configured to be slidable in a vertical direction of the super heater or to be rotatable about one end as a rotation axis in order to allow adjustment of an opening degree thereof, the shield plate being provided at any one or both of an upstream side and a downstream side of the combustion gas flowing above the super heater.
- a flow rate of the combustion gas entering an upper space of the super heater is regulated.
- a temperature of a part of steam extracted in midstream of the super heater is reduced with a water drum, and the steam is provided to the super heater again, so that a temperature of steam of the super heater is adjusted.
- a method for adjusting a temperature of steam of a boiler that flows combustion gas produced by combustion in a burner through a super heater and an evaporation tube bank from a furnace includes: providing a shield plate that is configured to be slidable in a vertical direction of the super heater or to be rotatable about one end as a rotation axis in order to allow adjustment of an opening degree thereof, the shield plate being provided at any one or both of an upstream side and a downstream side of the combustion gas flowing above the super heater; and adjusting a flow rate of the combustion gas entering an upper space of the super heater by adjusting a sliding degree or the opening degree of the shield plate.
- a part of steam is extracted in midstream of the super heater, a temperature of the steam thus extracted is reduced with a water drum, and the steam is provided to the super heater again, so that a temperature of steam of the super heater is adjusted.
- the flow patterns of combustion gas originating from combustion in the burner can be regulated.
- the amount of combustion gas that contributes to heat absorption of the super heater can be thus changed. Accordingly, the temperature of steam generated in the super heater can be controlled, and a controllable temperature range can be extended, whereby the boiler can be efficiently operated.
- the temperature of the steam generated in the super heater can be controlled by extracting a part of the steam in the midstream of the super heater; reducing the temperature of the steam with a water drum; supplying the steam to the super heater again; and thus adjusting the temperature of the steam in the super heater.
- FIG. 1 is a schematic of the configuration of a boiler according to a first embodiment of the present invention.
- FIG. 2 is an illustrative view of flows of bypass gas and mainstream gas passing through a super heater.
- FIG. 3A is an illustrative view of a downstream shield plate when incorporated in an existing boiler.
- FIG. 3B is an illustrative view of a downstream shield plate when incorporated in a newly manufactured boiler.
- FIG. 4 is a schematic of the configuration of the boiler according to a second embodiment of the present embodiment.
- FIG. 5A is an illustrative view of flows of combustion gas in the boiler according to the first embodiment of the present invention.
- FIG. 5B is an illustrative view of flows of combustion gas in the boiler according to the second embodiment of the present invention.
- FIG. 6 is a schematic of an exemplary configuration of a boiler including a conventional super heater.
- FIG. 7 is an illustrative view of flows of combustion gas in the conventional boiler.
- the boiler according to the present embodiment has a similar configuration to that of a conventional boiler as shown in FIG. 6 ; therefore, like elements have like reference numerals, and repeated descriptions will be omitted.
- FIG. 1 is a schematic of the configuration of the boiler according to the first embodiment of the present invention.
- this boiler 10 A is a boiler configured to make combustion gas originating from combustion in the burner 101 flow from the furnace 102 and pass through the super heater (SH) 104 and the evaporation tube bank 105 .
- the boiler includes a downstream shield plate 11 A that is slidable in the vertical direction of the super heater 104 at a position downstream of the combustion gas flowing above the super heater 104 , thereby regulating the flow rate of combustion gas entering the upper space A of the super heater 104 .
- combustion gas entering the upper space A of the super heater 104 is referred to as bypass gas 12 and combustion gas passing through the super heater 104 is referred to as mainstream gas 13 in the present embodiment.
- the downstream shield plate 11 A is oriented perpendicular to the flow direction of the combustion gas.
- the downstream shield plate 11 A provided at a position downstream of the combustion gas flowing above the super heater 104 is slidable in the vertical direction.
- FIG. 2 is an illustrative view of the flows of the bypass gas and the mainstream gas passing through the super heater. As illustrated in FIG. 2 , by making the downstream shield plate 11 A slide in the vertical direction, the flow rate of the bypass gas 12 can be regulated, and the flow rate of the mainstream gas 13 is in turn regulated.
- the conventional boiler 100 employs a straightening vane, for example, to regulate the flow of combustion gas and make the combustion gas flow evenly into the super heater 104 and the evaporation tube bank 105 .
- the boiler 10 A employs the downstream shield plate 11 A that is slidable, and makes the downstream shield plate 11 A slide in the vertical direction, thereby directly regulating the flow rate of the bypass gas 12 entering the upper space A of the super heater 104 , and in turn regulating the flow rate of the mainstream gas 13 passing through the super heater 104 .
- the temperature of steam generated in the super heater 104 can thus be controlled.
- the downstream shield plate 11 A slide in the vertical direction, regulating the flow rate of the bypass gas 12 entering the upper space A of the super heater 104 , and in turn regulating the flow rate of the mainstream gas 13 , the amount of combustion gas that contributes to heat absorption of the super heater 104 can be changed. Accordingly, the temperature of steam output from the super heater 104 can be controlled.
- the downstream shield plate 11 A preferably has a height equal to or more than that of the upper space A of the super heater 104 to enable control over the bypass gas 12 entering the upper space A with the downstream shield plate 11 A.
- the downstream shield plate 11 A preferably has a height ranging from 10% to 15%, inclusive, of the total height of the super heater 104 and the upper space A. More specifically, given that the upper space A is approximately 15% as high as the total height of the super heater 104 and the upper space A, the downstream shield plate 11 A shields the upper space A, whereby the temperature of steam generated in the super heater 104 can be controlled by approximately 25%, and further by approximately 30%, better than other cases involving no downstream shield plate 11 A shielding the upper space A.
- the downstream shield plate 11 A may be incorporated in an existing boiler or a newly manufactured boiler, both as the boiler 10 A according to the present embodiment.
- Incorporating the downstream shield plate 11 A in an existing boiler that has been installed enables regulation of the flow rate of the bypass gas 12 with the downstream shield plate 11 A by a height h 1 of the upper space A relative to a total height H 0 of a height H 1 of the super heater 104 and the upper space A as illustrated in FIG. 3A , whereby the flow rate of the mainstream gas 13 can be regulated.
- incorporating the downstream shield plate 11 A in a new boiler that is newly manufactured makes a height H 2 of the super heater 104 smaller than the height H 1 of the super heater 104 in the existing boiler as illustrated in FIG. 3B , thereby increasing a height h 2 of the upper space A.
- This increases the flow rate of the bypass gas 12 that is regulatable with the downstream shield plate 11 A in association with the increased height h 2 of the upper space A compared with the existing boiler, thereby in turn increasing the regulatable amount of the flow rate of the mainstream gas 13 . Consequently, the fluctuation range of the amount of combustion gas that contributes to heat absorption of the super heater 104 can be increased, and thus the controllable range of the temperature of steam output from the super heater 104 can be made large.
- the height of the upper space A of the super heater 104 may be increased to extend the controllable range of the temperature of steam generated in the super heater 104 .
- the flow rate of the mainstream gas 13 can be regulated, and the controllable range of the temperature of steam generated in the super heater 104 can be extended.
- the boiler 10 A according to the present embodiment may also incorporate a so-called CDSH, which extracts a part of the steam in the midstream of the super heater 104 , reduces the temperature of the steam with the water drum 109 , makes the steam exchange heat with the super heater 104 again, and thus adjusts the outlet temperature of steam generated in the super heater 104 .
- CDSH so-called CDSH
- the flow rate of the bypass gas 12 entering the upper space A of the super heater 104 with the downstream shield plate 11 A the flow rate of the mainstream gas 13 passing through the super heater 104 can be regulated.
- the amount of combustion gas that contributes to heat absorption of the super heater 104 can be thus changed, whereby the temperature of steam generated in the super heater 104 can be controlled.
- the flow rate of the bypass gas 12 that is regulatable with the downstream shield plate 11 A can be increased, and the regulatable amount of the flow rate of the mainstream gas 13 is in turn increased. Therefore, the controllable range of the temperature of steam output from the super heater 104 can be made large.
- a boiler according to a second embodiment of the present invention will now be described with reference to FIG. 4 .
- FIG. 4 is a schematic of the configuration of the boiler according to the present embodiment.
- the boiler according to the present embodiment has a similar configuration to that of the boiler according to the first embodiment; therefore, like elements have like reference numerals, and repeated descriptions will be omitted.
- this boiler 10 B includes an upstream shield plate 11 B at a position upstream of combustion gas flowing above the super heater 104 in the boiler 10 A shown in FIG. 1 , and a downstream shield plate 11 C replacing the downstream shield plate 11 A at a position downstream of combustion gas flowing above the super heater 104 and having a rotation axis on one end to enable adjustment of its opening degree.
- the downstream shield plate 11 C has a rotation axis on its upper or lower end to enable adjustment of its opening degree.
- the downstream shield plate 11 C has a rotation axis on its lower end to enable adjustment of its opening degree.
- the upstream shield plate 11 B provided at a position upstream of the combustion gas flowing above the super heater 104 is slidable in the vertical direction, and the downstream shield plate 11 C provided at a position downstream of the combustion gas flowing on the upper side of the super heater 104 has a rotation axis on its lower end to enable adjustment of its opening degree. With this arrangement, the flow rate of the mainstream gas 13 passing through the super heater 104 is regulated.
- FIG. 5A is an illustrative view of flows of combustion gas in the boiler according to the first embodiment of the present invention.
- FIG. 5B is an illustrative view of flows of combustion gas in the boiler according to the second embodiment of the present invention.
- the downstream shield plate 11 C has a rotation axis on its upper end to enable adjustment of its opening degree.
- the bypass gas 12 is controlled to flow into the super heater 104 on the downstream of the super heater 104 with the downstream shield plate 11 A as illustrated in FIG. 5A ; therefore, the bypass gas 12 on the upstream of the super heater 104 does not contribute to heat absorption.
- the bypass gas 12 can be merged with the mainstream gas 13 .
- the downstream shield plate 11 C when closed can prevent the bypass gas 12 or the mainstream gas 13 ascending toward the upper space A of the super heater 104 from leaking out of the upper space A of the super heater 104 . Accordingly, the flow rate of the mainstream gas 13 can be increased in ratio.
- the bypass gas 12 and the mainstream gas 13 can contribute to heat absorption of the super heater 104 on both the upstream and the downstream of the super heater 104 .
- the use of the boiler 10 B according to the second embodiment of the present invention can thus further extend the controllable range of the temperature of steam generated in the super heater 104 .
- the flow rate of the mainstream gas 13 passing through the super heater 104 can be regulated.
- the amount of combustion gas that contributes to heat absorption of the super heater 104 can be thus changed, whereby the temperature of steam output from the super heater 104 can be controlled.
- the flow rate of the mainstream gas 13 passing through the super heater 104 can be regulated.
- the amount of combustion gas that contributes to heat absorption of the super heater 104 can be thus changed, whereby the temperature of steam output from the super heater 104 can be controlled.
- the present invention is not limited thereto. Any one of the upstream shield plate 11 B and the downstream shield plate 11 C may be provided above the super heater 104 .
- the downstream shield plate 11 A employed in the boiler 10 A according to the first embodiment illustrated in FIG. 1 may replace the downstream shield plate 11 C and be provided above the super heater 104 , together with the upstream shield plate 11 B.
- the upstream shield plate 11 B may be a shield plate having a rotation axis on one end to enable adjustment of its opening degree like the downstream shield plate 11 C, whereby the shield plates on both the upstream and the downstream above the super heater 104 enable adjustment of their opening degrees.
- the temperature of steam output from the super heater 104 can be controlled.
- the boilers and the methods for adjusting the temperature of steam output from a boiler according to the present invention can regulate the flow rate of combustion gas entering the upper space of a super heater with a shield plate, change the flow patterns of combustion gas, and regulate the flow rate of combustion gas passing through the super heater, thereby changing the amount of combustion gas that contributes to heat absorption of the super heater.
- the boilers and the methods therefore, are suitably applicable for boilers that can control the temperature of steam output from the super heater and for methods for adjusting the temperature of steam output from such boilers.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007-270224 | 2007-10-17 | ||
| JP2007270224A JP2009097801A (ja) | 2007-10-17 | 2007-10-17 | ボイラ及びボイラの蒸気温度調整方法 |
| PCT/JP2008/060471 WO2009050918A1 (fr) | 2007-10-17 | 2008-06-06 | Chaudière et procédé de régulation de la température de la vapeur de la chaudière |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20100192876A1 true US20100192876A1 (en) | 2010-08-05 |
Family
ID=40567201
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/679,576 Abandoned US20100192876A1 (en) | 2007-10-17 | 2008-06-06 | Boiler and method for adjusting temperature of steam output from boiler |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20100192876A1 (fr) |
| EP (1) | EP2199672A1 (fr) |
| JP (1) | JP2009097801A (fr) |
| KR (1) | KR20100056564A (fr) |
| CN (1) | CN101821551A (fr) |
| WO (1) | WO2009050918A1 (fr) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100236501A1 (en) * | 2007-10-17 | 2010-09-23 | Mitsubishi Heavy Industries, Ltd. | Reheat boiler and gas temperature controlling method of reheat boiler |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102287807B (zh) * | 2011-06-17 | 2015-10-14 | 江苏太湖锅炉股份有限公司 | 高温烟道进口的烟气温度调节结构 |
| CN102537937A (zh) * | 2012-02-26 | 2012-07-04 | 哈尔滨锅炉厂有限责任公司 | 通过采用尾部三烟道方式调节锅炉再热汽温的装置 |
| JP6644569B2 (ja) * | 2016-02-05 | 2020-02-12 | 三菱重工業株式会社 | ボイラ及びこれを備えた浮体設備 |
| JP7003431B2 (ja) * | 2017-04-06 | 2022-01-20 | ウシオ電機株式会社 | 光照射装置 |
| JP7152957B2 (ja) * | 2019-01-08 | 2022-10-13 | 三菱重工マリンマシナリ株式会社 | 舶用ボイラ及び舶用ボイラの改造方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2223199A (en) * | 1938-11-25 | 1940-11-26 | Superheater Co Ltd | Superheater |
| US2226445A (en) * | 1937-05-05 | 1940-12-24 | Babcock & Wilcox Co | Fluid heat exchange apparatus |
| US2842104A (en) * | 1955-08-10 | 1958-07-08 | Foster Wheeler Corp | Vapor generator |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61204119U (fr) * | 1985-06-10 | 1986-12-23 | ||
| JPH05248603A (ja) * | 1992-03-09 | 1993-09-24 | Babcock Hitachi Kk | 再熱器出口蒸気温度調節装置 |
| JPH0828808A (ja) * | 1994-07-19 | 1996-02-02 | Babcock Hitachi Kk | 廃熱回収ボイラ装置およびその制御方法 |
| JPH08145301A (ja) * | 1994-11-25 | 1996-06-07 | Babcock Hitachi Kk | 廃熱回収ボイラ |
| JP2000337604A (ja) * | 1999-05-25 | 2000-12-08 | Mitsubishi Heavy Ind Ltd | 緩熱装置 |
| JP2001317893A (ja) * | 2000-05-02 | 2001-11-16 | Mitsubishi Heavy Ind Ltd | ガスショートパス防止バッフル |
| JP2002147701A (ja) * | 2000-11-08 | 2002-05-22 | Babcock Hitachi Kk | 排熱回収蒸気発生装置 |
| JP2002243106A (ja) * | 2001-02-21 | 2002-08-28 | Mitsubishi Heavy Ind Ltd | ボイラ |
| JP2004301479A (ja) * | 2003-04-01 | 2004-10-28 | Babcock Hitachi Kk | 排ガスバイパス流れ防止構造を有する排熱回収ボイラ |
-
2007
- 2007-10-17 JP JP2007270224A patent/JP2009097801A/ja active Pending
-
2008
- 2008-06-06 EP EP08765284A patent/EP2199672A1/fr not_active Withdrawn
- 2008-06-06 KR KR1020107008392A patent/KR20100056564A/ko not_active Ceased
- 2008-06-06 WO PCT/JP2008/060471 patent/WO2009050918A1/fr not_active Ceased
- 2008-06-06 CN CN200880111208A patent/CN101821551A/zh active Pending
- 2008-06-06 US US12/679,576 patent/US20100192876A1/en not_active Abandoned
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2226445A (en) * | 1937-05-05 | 1940-12-24 | Babcock & Wilcox Co | Fluid heat exchange apparatus |
| US2223199A (en) * | 1938-11-25 | 1940-11-26 | Superheater Co Ltd | Superheater |
| US2842104A (en) * | 1955-08-10 | 1958-07-08 | Foster Wheeler Corp | Vapor generator |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100236501A1 (en) * | 2007-10-17 | 2010-09-23 | Mitsubishi Heavy Industries, Ltd. | Reheat boiler and gas temperature controlling method of reheat boiler |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2009050918A1 (fr) | 2009-04-23 |
| KR20100056564A (ko) | 2010-05-27 |
| CN101821551A (zh) | 2010-09-01 |
| JP2009097801A (ja) | 2009-05-07 |
| EP2199672A1 (fr) | 2010-06-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20100192876A1 (en) | Boiler and method for adjusting temperature of steam output from boiler | |
| US8291704B2 (en) | Operation method of nuclear power plant | |
| AU2016274736B2 (en) | Burner, combustion device, boiler, and burner control method | |
| US10240780B2 (en) | High turn-down modulating burner | |
| CN105202556A (zh) | 一种可调节主、再热汽温及排烟温度的锅炉尾部烟道结构 | |
| CN205560806U (zh) | 挡板调节烟温和汽温的烟道 | |
| JP5022204B2 (ja) | 舶用ボイラ構造 | |
| JP5360560B2 (ja) | ボイラ | |
| JP2010144997A (ja) | 排熱回収ボイラ | |
| JP2010203728A (ja) | ボイラおよび濃縮ブロー方法 | |
| JP5403486B2 (ja) | ボイラ | |
| EP2619149B1 (fr) | Procédé et dispositif permettant l'alimentation en effluents gazeux de process et la régulation du volume des effluents gazeux afin d'améliorer la stabilisation de la pression dans un four dans des process de fonte de verre et de filtration dans des cuves à brûleurs transversaux avec chauffage par récupération | |
| CN113108308A (zh) | 针对低负荷停磨后对冲燃烧锅炉壁温的调整方法 | |
| EP2206952B1 (fr) | Chaudière à surchauffe et procédé de régulation de la température du gaz d'une chaudière à surchauffe | |
| JP2014219121A (ja) | ボイラ | |
| CN219928974U (zh) | 一种直吹式深调分配器 | |
| CN102124267A (zh) | 锅炉结构 | |
| JPS59138705A (ja) | 給水温度の制御装置 | |
| JP2006250657A (ja) | 原子力発電プラントの運転方法 | |
| WO2025078729A1 (fr) | Dispositif et procédé de fourniture d'air dans un four à combustion et four à combustion | |
| JP2001133577A (ja) | 原子炉 | |
| JP2001124301A (ja) | 排ガス流に偏流を生じさせる排ガスボイラ |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MITSUBISHI HEAVY INDUSTRIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IMADA, JUNJI;NAGANO, HIDEFUMI;REEL/FRAME:024147/0686 Effective date: 20100301 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |