US20100181053A1 - Plate Heat Exchanger - Google Patents
Plate Heat Exchanger Download PDFInfo
- Publication number
- US20100181053A1 US20100181053A1 US12/582,247 US58224709A US2010181053A1 US 20100181053 A1 US20100181053 A1 US 20100181053A1 US 58224709 A US58224709 A US 58224709A US 2010181053 A1 US2010181053 A1 US 2010181053A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- passages
- heat exchanger
- flow
- plate heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 claims abstract description 105
- 230000003014 reinforcing effect Effects 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 4
- 230000008646 thermal stress Effects 0.000 abstract description 10
- 239000004411 aluminium Substances 0.000 abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 7
- 238000005192 partition Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000010792 warming Methods 0.000 description 5
- 238000005219 brazing Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0062—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
- F28D9/0068—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J5/00—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
- F25J5/002—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J5/00—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
- F25J5/002—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
- F25J5/005—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0093—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/084—Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/025—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0061—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2200/00—Prediction; Simulation; Testing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2225/00—Reinforcing means
- F28F2225/04—Reinforcing means for conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2265/00—Safety or protection arrangements; Arrangements for preventing malfunction
- F28F2265/26—Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2270/00—Thermal insulation; Thermal decoupling
- F28F2270/02—Thermal insulation; Thermal decoupling by using blind conduits
Definitions
- the invention relates to a plate heat exchanger, in particular a brazed aluminium plate heat exchanger.
- the heat exchange portion of a plate heat exchanger consists in general of two or more layers of heat exchange passages, which are each delimited relative to one another by partition plates. Closing strips and cover plates form the outer frame of the heat exchange portion, which is often also known as a heat exchanger block. Further separating strips may be provided within a layer, which separate from one another the heat exchange passages for different fluid streams.
- the heat exchanger block initially consisting of loose components is brazed in a brazing furnace, such that all the components are joined together in a sealed manner. Then, headers are welded on over the inlet and outlet openings of the heat exchange passages, these headers each being provided with a fluid connection.
- Semi-cylindrical shells are conventionally used as the headers; the fluid connections are formed by connecting pieces, which are arranged in the semi-cylinder material of the headers. The pipes for incoming and outgoing fluid streams are connected to these tubular connecting pieces.
- plate heat exchangers may be designed for simultaneous heat exchange of a plurality of fluid streams.
- Corresponding headers are then mounted for each of the fluid streams over the respective inlet and outlet openings of the heat exchange passages and provided with pipes.
- the plate heat exchanger of the invention has a heat exchange portion, which comprises two or more first passages, through which a first fluid may flow, and two or more second passages, through which a second fluid may flow, in such a way that heat exchange takes place between the first fluid and the second fluid.
- the heat exchange portion comprises at least one layer through which no fluid flows, which is arranged between two passages through which fluid may flow.
- At least one layer is arranged through which no fluid flows or can flow, i.e. which is inactive.
- the arrangement of such inactive layers at suitable points between passages through which fluid may flow reduces the temperature gradient within the heat exchange portion and consequently also the thermal stresses therein. As a result, large temperature differences may be allowed between the fluid streams, without increasing the risk of leaks.
- the “plate heat exchanger” is in particular a brazed aluminium plate heat exchanger for indirect heat exchange between at least two fluid streams.
- heat exchange portion or “heat exchanger block” are understood to mean that part of a plate heat exchanger which may be prefabricated to the extent of already comprising warming and cooling passages.
- warmth passages and “cooling passages” relate to the ordinary operation for which the respective heat exchanger is designed. In ordinary operation a first fluid, which flows through the warming passages, absorbs heat and a second fluid, which flows through the cooling passages, dissipates heat.
- the present invention naturally also comprises condensers and evaporators. In the case of an evaporator, the “warming passages” take the form of evaporation passages, while in the case of a condenser the “cooling passages” take the form of liquefaction passages.
- At least one layer through which no fluid flows is arranged between two groups of two or more passages through which fluid may flow.
- These groups of two or more passages through which fluid may flow each contain at least one first passage and at least one second passage.
- the groups of two or more passages through which fluid may flow are formed for example by individual packages of passages within a heat exchange portion or by individual heat exchange portions, which are joined together in the form of modules, for example.
- the layers through which no fluid flows may take the form, for example, of closed cavities.
- the layers through which no fluid flows may also take the form wholly or in part of solid layers.
- reinforcing elements are provided in the layers through which no fluid flows, for which, in a preferred embodiment, the heat exchange profiles may be used which are also arranged in the layers through which fluid flows.
- a height dimension (dimension across the direction of flow) of the at least one layer through which fluid does not flow corresponds to at most one height dimension of the passages through which fluid may flow.
- a height dimension of the at least one layer through which fluid does not flow corresponds to at least one height dimension of the passages through which fluid may flow.
- the height dimension of the passages through which fluid may flow is defined for example as the height dimension of the first passages, the height dimension of the second passages, the average height dimension of the two passages, the larger height dimension of the two passages or the smaller height dimension of the two passages.
- the heat exchange portion comprises a plurality of groups with two or more passages through which fluid may flow, between which there is in each case arranged at least one layer through which fluid does not flow.
- FIG. 1 is a schematic perspective view, with partially omitted cover plates and attachments, of a plate heat exchanger according to the present invention.
- FIG. 2 is a schematic sectional representation of the arrangement of the passages in the heat exchange portion of the plate heat exchanger of FIG. 1 .
- FIG. 1 is a perspective view of a plate heat exchanger 10 , in particular a brazed aluminium plate heat exchanger, according to the present invention.
- the plate heat exchanger 10 has a central heat exchange portion (also known as a heat exchanger block) 12 , which has for example the following dimensions: a length (extent in the top-to-bottom direction in FIG. 1 ) of approx. 6 m and a width and a height of in each case approx. 1.2 m.
- the plate heat exchanger 10 of the exemplary embodiment takes the form of a two-stream heat exchanger, i.e. it contains alternately, parallel to the direction of flow of the fluids, first passages 14 a , through which a first fluid may flow, and second passages 14 b , through which a second fluid may flow.
- the present invention is not restricted solely to two-stream heat exchangers.
- the plate heat exchanger of the invention contains n different passages (n ⁇ 2), through which n fluid streams may be conveyed, in order to exchange heat between the n fluid streams.
- Both the partition plates 16 and the profiles 18 , 20 are made from aluminium.
- the external passages 14 of the heat exchange portion 12 are covered by a cover 22 of aluminium lying parallel to the passages 14 and the partition plates 16 .
- the distributor profiles 20 comprise distributor profile access points 24 , through which the respective fluids may be introduced into the associated passages 14 and removed once again therefrom.
- the distributor profiles 20 are covered by headers (also known as distributors/collectors) 26 , which are each semi-cylindrical in shape in the exemplary embodiment and comprise a connecting piece 28 .
- the connecting pieces 28 are joined to corresponding pipes (not shown), in order to convey the fluid streams via the headers 26 into the passages 14 or out of the passages 14 .
- the heat exchange portion 12 is conventionally produced by applying a brazing metal to the surfaces of the partition plates 16 and then alternately stacking the partition plates 16 and the profile plates 18 , 20 .
- the covers 22 cover this stack. Then this stack is brazed by heating in an appropriate brazing furnace. Finally, the headers 26 are brazed or welded onto this stack at the appropriate points.
- the heat exchange portion 12 of the plate heat exchanger 10 comprises first passages 14 a , through which a first fluid may flow, and second passages 14 b , through which a second fluid may flow.
- first and second passages 14 a , 14 b are for example arranged in packages of in each case two or more first and second passages 14 (two first passages 14 a and two second passages 14 b in the exemplary embodiment of FIG. 2 ). Between these packages of first and second passages 14 a , 14 b there is in each case arranged a layer 30 through which no fluid flows, i.e. which is inactive.
- These layers 30 through which no fluid flows take the form for example of a cavity or wholly or in part of solid layers.
- the layers 30 through which no fluid flows may additionally be advantageous for the layers 30 through which no fluid flows to be provided with a reinforcing element or profile.
- These reinforcing elements may advantageously comprise the heat exchange profiles needed in any event for the plate heat exchanger, which are inserted in the layers 14 through which fluid may flow.
- packages are in each case put together from two first passages 14 a and two second passages 14 b .
- the invention is, of course, not restricted to this embodiment. Any desired numbers of passages 14 through which fluid may flow may in principle be put together, between which an inactive layer 30 is then arranged. Moreover, a package of passages 14 may also comprise different numbers of first and second passages 14 a , 14 b.
- each layer 30 through which fluid does not flow is arranged between the passage packages.
- the present invention is, of course, not restricted to this embodiment.
- Two or more inactive layers 30 may optionally also be used between the packages of passages 14 through which fluid may flow.
- the layers 30 through which no fluid flows are inserted between packages of first and second passages 14 a , 14 b through which fluid may flow.
- the invention is, however, not restricted to this embodiment.
- the inactive layers 30 may for example also be arranged between the passages 14 through which fluid may flow of two heat exchange portions 12 , which are joined together in modular manner.
- first passages 14 a and the second passages 14 b have substantially the same cross-sectional areas and shapes.
- the present invention is, of course, not restricted solely to this embodiment. In principle, differently dimensioned and/or shaped passages 14 may also be used.
- the layers 30 through which no fluid flows have substantially the same cross-sectional shapes and height dimensions (dimensions across the direction of flow) as the first and second passages 14 through which fluid may flow.
- the invention is, however, not restricted solely to this embodiment.
- the inactive layers 30 may alternatively also have a different cross-sectional shape from the passages 14 through which fluid may flow.
- the inactive layers 30 may optionally also have a height dimension which is greater or less than the height dimension of the passages 14 through which fluid may flow.
- the height dimension of the passages 14 through which fluid may flow may be defined for example as the height dimension of the first passages 14 a , the height dimension of the second passages 14 b , the average height dimension of the two passages 14 a and 14 b , the larger height dimension of the two passages 14 a , 14 b or the smaller height dimension of the two passages 14 a , 14 b . If, for example, the first passages 14 a also have different height dimensions amongst themselves, the height dimension is determined as the average value thereof. Similar considerations also apply of course if the plate heat exchanger comprises more than two passages 14 through which fluid may flow.
- Typical values for the height dimensions both of the passages 14 through which fluid may flow and of the layers 30 through which no fluid flows are for example in the range from approx. 2 to 15 mm, more preferably from approx. 3 to 10 mm.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
A plate heat exchanger (10), in particular a brazed aluminium plate heat exchanger, has a heat exchange portion (12), which comprises two or more first passages (14 a), through which a first fluid may flow, and two or more second passages (14 b), through which a second fluid may flow, in such a way that heat exchange takes place between the first fluid and the second fluid. To reduce thermal stress inside the heat exchange portion (12), the heat exchange portion (12) comprises at least one layer (30) through which no fluid flows, which is arranged between two passages (14 a , 14 b) through which fluid may flow.
Description
- The invention relates to a plate heat exchanger, in particular a brazed aluminium plate heat exchanger.
- The heat exchange portion of a plate heat exchanger consists in general of two or more layers of heat exchange passages, which are each delimited relative to one another by partition plates. Closing strips and cover plates form the outer frame of the heat exchange portion, which is often also known as a heat exchanger block. Further separating strips may be provided within a layer, which separate from one another the heat exchange passages for different fluid streams.
- The heat exchanger block initially consisting of loose components is brazed in a brazing furnace, such that all the components are joined together in a sealed manner. Then, headers are welded on over the inlet and outlet openings of the heat exchange passages, these headers each being provided with a fluid connection. Semi-cylindrical shells are conventionally used as the headers; the fluid connections are formed by connecting pieces, which are arranged in the semi-cylinder material of the headers. The pipes for incoming and outgoing fluid streams are connected to these tubular connecting pieces.
- By suitable arrangement of the separating strips, plate heat exchangers may be designed for simultaneous heat exchange of a plurality of fluid streams. Corresponding headers are then mounted for each of the fluid streams over the respective inlet and outlet openings of the heat exchange passages and provided with pipes.
- The basic structure of such plate heat exchangers is described in detail for example in the ALPEMA (Brazed Aluminium Plate-Fin Heat Exchanger Manufacturer's Association) standard.
- Since fluids flow through the plate heat exchanger at different temperatures and also the fluids flowing through the heat exchange passages themselves have temperature distributions variable over space and time, different parts or portions of the heat exchanger block have different temperatures. These different temperatures in turn bring about thermal stresses in the heat exchanger block. The greater the temperature gradients within the heat exchange portion, the greater too are the thermal stresses caused, which increases the risk of leaks. As a rule, non-uniformities within the heat exchange portion increase these thermal stresses still further.
- The applicant has therefore already proposed methods of producing a plate heat exchanger in documents EP 1 798 508 A1 and EP 1 830 149 A1, in which a three-dimensional digital simulation is performed in order to calculate the thermal stresses inside the heat exchanger block during operation thereof.
- In many processes, such as for example LNG processes such as natural gas liquefaction or evaporation, complying with the recommended limit values for thermal stressing of heat exchangers has hitherto only been possible by using highly complex apparatus.
- It is an object of the present invention to provide an improved plate heat exchanger, in which the thermal stresses are reduced within its heat exchange portion.
- This object is achieved by a plate heat exchanger having the features of Claim 1. Advantageous embodiments and further developments of the invention constitute the subject matter of the subclaims.
- The plate heat exchanger of the invention has a heat exchange portion, which comprises two or more first passages, through which a first fluid may flow, and two or more second passages, through which a second fluid may flow, in such a way that heat exchange takes place between the first fluid and the second fluid. In addition, the heat exchange portion comprises at least one layer through which no fluid flows, which is arranged between two passages through which fluid may flow.
- In the heat exchange portion of the plate heat exchanger according to the invention, at least one layer is arranged through which no fluid flows or can flow, i.e. which is inactive. The arrangement of such inactive layers at suitable points between passages through which fluid may flow reduces the temperature gradient within the heat exchange portion and consequently also the thermal stresses therein. As a result, large temperature differences may be allowed between the fluid streams, without increasing the risk of leaks.
- Improvement of the plate heat exchanger in relation to the thermal stresses arising in its heat exchange portion are achieved according to the invention by a very simple structural measure. The arrangement of layers through which no fluid flows between heat exchanger passages does not change the basic structure of the plate heat exchanger and accordingly does not require any further adaptation of the other components.
- The “plate heat exchanger” is in particular a brazed aluminium plate heat exchanger for indirect heat exchange between at least two fluid streams.
- The terms “heat exchange portion” or “heat exchanger block” are understood to mean that part of a plate heat exchanger which may be prefabricated to the extent of already comprising warming and cooling passages. The terms “warming passages” and “cooling passages” relate to the ordinary operation for which the respective heat exchanger is designed. In ordinary operation a first fluid, which flows through the warming passages, absorbs heat and a second fluid, which flows through the cooling passages, dissipates heat. The present invention naturally also comprises condensers and evaporators. In the case of an evaporator, the “warming passages” take the form of evaporation passages, while in the case of a condenser the “cooling passages” take the form of liquefaction passages.
- In one embodiment of the invention, at least one layer through which no fluid flows is arranged between two groups of two or more passages through which fluid may flow. These groups of two or more passages through which fluid may flow each contain at least one first passage and at least one second passage. In addition, the groups of two or more passages through which fluid may flow are formed for example by individual packages of passages within a heat exchange portion or by individual heat exchange portions, which are joined together in the form of modules, for example.
- The layers through which no fluid flows may take the form, for example, of closed cavities. Alternatively, the layers through which no fluid flows may also take the form wholly or in part of solid layers. In the case of the former variant in particular, reinforcing elements are provided in the layers through which no fluid flows, for which, in a preferred embodiment, the heat exchange profiles may be used which are also arranged in the layers through which fluid flows.
- In a further development of the invention, a height dimension (dimension across the direction of flow) of the at least one layer through which fluid does not flow corresponds to at most one height dimension of the passages through which fluid may flow. In an alternative embodiment, a height dimension of the at least one layer through which fluid does not flow corresponds to at least one height dimension of the passages through which fluid may flow. The size ratios and numerical ratios between the passages through which fluid may flow and the passages through which fluid does not flow are suitably selected by a person skilled in the art in accordance with the temperatures of the fluid streams when the plate heat exchanger is in ordinary operation and the strength of the heat exchange portion.
- The height dimension of the passages through which fluid may flow is defined for example as the height dimension of the first passages, the height dimension of the second passages, the average height dimension of the two passages, the larger height dimension of the two passages or the smaller height dimension of the two passages.
- In a preferred embodiment of the invention, the heat exchange portion comprises a plurality of groups with two or more passages through which fluid may flow, between which there is in each case arranged at least one layer through which fluid does not flow.
- The above and further features and advantages of the invention are revealed by the following description of a preferred exemplary embodiment made with reference to the appended drawings, in which:
-
FIG. 1 is a schematic perspective view, with partially omitted cover plates and attachments, of a plate heat exchanger according to the present invention; and -
FIG. 2 is a schematic sectional representation of the arrangement of the passages in the heat exchange portion of the plate heat exchanger ofFIG. 1 . -
FIG. 1 is a perspective view of aplate heat exchanger 10, in particular a brazed aluminium plate heat exchanger, according to the present invention. Theplate heat exchanger 10 has a central heat exchange portion (also known as a heat exchanger block) 12, which has for example the following dimensions: a length (extent in the top-to-bottom direction inFIG. 1 ) of approx. 6 m and a width and a height of in each case approx. 1.2 m. - Inside this
heat exchange portion 12 there are provided a plurality of heat exchange passages (warming passages, cooling passages) 14. Theseheat exchange passages 14 are formed by alternating layers ofpartition plates 16 and heat exchange profiles (for example ribbed or corrugated plates, fins) 18 ordistributor profiles 20. Theplate heat exchanger 10 of the exemplary embodiment takes the form of a two-stream heat exchanger, i.e. it contains alternately, parallel to the direction of flow of the fluids,first passages 14 a, through which a first fluid may flow, andsecond passages 14 b, through which a second fluid may flow. - However, the present invention is not restricted solely to two-stream heat exchangers. Very generally, the plate heat exchanger of the invention contains n different passages (n≧2), through which n fluid streams may be conveyed, in order to exchange heat between the n fluid streams.
- Both the
partition plates 16 and the 18, 20 are made from aluminium. Theprofiles external passages 14 of theheat exchange portion 12 are covered by acover 22 of aluminium lying parallel to thepassages 14 and thepartition plates 16. - On the sides of the
heat exchange portion 12, thedistributor profiles 20 comprise distributorprofile access points 24, through which the respective fluids may be introduced into theassociated passages 14 and removed once again therefrom. Thedistributor profiles 20 are covered by headers (also known as distributors/collectors) 26, which are each semi-cylindrical in shape in the exemplary embodiment and comprise a connectingpiece 28. The connectingpieces 28 are joined to corresponding pipes (not shown), in order to convey the fluid streams via theheaders 26 into thepassages 14 or out of thepassages 14. - The
heat exchange portion 12 is conventionally produced by applying a brazing metal to the surfaces of thepartition plates 16 and then alternately stacking thepartition plates 16 and the 18, 20. The covers 22 cover this stack. Then this stack is brazed by heating in an appropriate brazing furnace. Finally, theprofile plates headers 26 are brazed or welded onto this stack at the appropriate points. - As is shown by way of example in
FIG. 2 , theheat exchange portion 12 of theplate heat exchanger 10 comprisesfirst passages 14 a, through which a first fluid may flow, andsecond passages 14 b, through which a second fluid may flow. These first and 14 a, 14 b are for example arranged in packages of in each case two or more first and second passages 14 (twosecond passages first passages 14 a and twosecond passages 14 b in the exemplary embodiment ofFIG. 2 ). Between these packages of first and 14 a, 14 b there is in each case arranged asecond passages layer 30 through which no fluid flows, i.e. which is inactive. - These
layers 30 through which no fluid flows take the form for example of a cavity or wholly or in part of solid layers. To increase stability it may additionally be advantageous for thelayers 30 through which no fluid flows to be provided with a reinforcing element or profile. These reinforcing elements may advantageously comprise the heat exchange profiles needed in any event for the plate heat exchanger, which are inserted in thelayers 14 through which fluid may flow. - The insertion of such inactive layers between the
14 a, 14 b through which fluid may flow reduces the temperature gradient within thepassages heat exchange portion 12 when theplate heat exchanger 10 is in ordinary operation and thereby reduces thermal stresses. Consequently, greater temperature differences may be allowed between the fluid streams through theheat exchange portion 12, without the risk of leakage as the consequence of thermal stresses. - In
FIG. 2 , packages are in each case put together from twofirst passages 14 a and twosecond passages 14 b. The invention is, of course, not restricted to this embodiment. Any desired numbers ofpassages 14 through which fluid may flow may in principle be put together, between which aninactive layer 30 is then arranged. Moreover, a package ofpassages 14 may also comprise different numbers of first and 14 a, 14 b.second passages - In
FIG. 2 , in each case precisely onelayer 30 through which fluid does not flow is arranged between the passage packages. The present invention is, of course, not restricted to this embodiment. Two or moreinactive layers 30 may optionally also be used between the packages ofpassages 14 through which fluid may flow. - In
FIG. 2 , thelayers 30 through which no fluid flows are inserted between packages of first and 14 a, 14 b through which fluid may flow. The invention is, however, not restricted to this embodiment. The inactive layers 30 may for example also be arranged between thesecond passages passages 14 through which fluid may flow of twoheat exchange portions 12, which are joined together in modular manner. - In
FIG. 2 , thefirst passages 14 a and thesecond passages 14 b have substantially the same cross-sectional areas and shapes. The present invention is, of course, not restricted solely to this embodiment. In principle, differently dimensioned and/or shapedpassages 14 may also be used. - In
FIG. 2 , thelayers 30 through which no fluid flows have substantially the same cross-sectional shapes and height dimensions (dimensions across the direction of flow) as the first andsecond passages 14 through which fluid may flow. The invention is, however, not restricted solely to this embodiment. The inactive layers 30 may alternatively also have a different cross-sectional shape from thepassages 14 through which fluid may flow. In addition, theinactive layers 30 may optionally also have a height dimension which is greater or less than the height dimension of thepassages 14 through which fluid may flow. Selection of the cross-sectional shapes, height dimensions and numbers ofinactive layers 30, in particular the ratios thereof to the corresponding sizes of thepassages 14 through which fluid may flow, depends on the temperature differences between the fluid streams through the first and 14 a, 14 b when the plate heat exchanger is in ordinary operation and the strength of thesecond passages heat exchange portion 12. - The height dimension of the
passages 14 through which fluid may flow may be defined for example as the height dimension of thefirst passages 14 a, the height dimension of thesecond passages 14 b, the average height dimension of the two 14 a and 14 b, the larger height dimension of the twopassages 14 a, 14 b or the smaller height dimension of the twopassages 14 a, 14 b. If, for example, thepassages first passages 14 a also have different height dimensions amongst themselves, the height dimension is determined as the average value thereof. Similar considerations also apply of course if the plate heat exchanger comprises more than twopassages 14 through which fluid may flow. - Typical values for the height dimensions both of the
passages 14 through which fluid may flow and of thelayers 30 through which no fluid flows are for example in the range from approx. 2 to 15 mm, more preferably from approx. 3 to 10 mm. - By way of precaution, it should be noted that a distinction must be made between the
layers 30 through which no fluid flows of theplate heat exchanger 10 of the invention and such inactive layers in conventional plate heat exchangers, which arise at the edge areas thereof during the brazing process during manufacture of the plate heat exchanger or are required as a weld backing for the headers to be attached. - Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The preceding preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
- In the foregoing and in the examples, all temperatures are set forth uncorrected in degrees Celsius and, all parts and percentages are by weight, unless otherwise indicated.
- The entire disclosures of all applications, patents and publications, cited herein and of corresponding DE application No. 102008052875.7, filed Oct. 23, 2008, are incorporated by reference herein.
- The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.
- From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.
Claims (15)
1. Plate heat exchanger (10), having a heat exchange portion (12), which comprises two or more first passages (14 a), through which a first fluid may flow, and two or more second passages (14 b), through which a second fluid may flow, in such a way that heat exchange takes place between the first fluid and the second fluid,
characterized in that
the heat exchange portion (12) comprises at least one layer (30) through which no fluid flows, which is arranged between two passages (14 a, 14 b) through which fluid may flow.
2. Plate heat exchanger according to claim 1 ,
characterized in that
the at least one layer (30) through which no fluid flows is arranged between two groups of two or more passages (14 a, 14 b) through which fluid may flow.
3. Plate heat exchanger according to claim 1 ,
characterized in that
the at least one layer (30) through which no fluid flows takes the form of a closed cavity.
4. Plate heat exchanger according to claim 1 ,
characterized in that
the at least one layer (30) through which no fluid flows takes the form at least in part of a solid layer.
5. Plate heat exchanger according to claim 3 ,
characterized in that
at least one reinforcing element is provided in the at least one layer (30) through which no fluid flows.
6. Plate heat exchanger according to claim 1 , characterized in that
a height dimension of the at least one layer (30) through which fluid does not flow corresponds at most to one height dimension of the passages (14 a, 14 b) through which fluid may flow.
7. Plate heat exchanger according to one of claim 1 , characterized in that
a height dimension of the at least one layer (30) through which fluid does not flow corresponds to at least one height dimension of the passages (14 a, 14 b) through which fluid may flow.
8. Plate heat exchanger according to claim 1 ,
characterized in that
the heat exchange portion (12) comprises a plurality of groups with two or more passages (14 a, 14 b) through which fluid may flow, between which there is in each case arranged at least one layer (30) through which fluid does not flow.
9. Plate heat exchanger according to claim 2 , characterized in that the at least one layer (30) through which no fluid flows takes the form of a closed cavity.
10. Plate heat exchanger according to claim 2 , characterized in that the at least one layer (30) through which no fluid flows takes the form at least in part of a solid layer.
11. Plate heat exchanger according to claim 4 , characterized in that at least one reinforcing element is provided in the at least one layer (30) through which no fluid flows.
12. Plate heat exchanger according to claim 2 , characterized in that
a height dimension of the at least one layer (30) through which fluid does not flow corresponds at most to one height dimension of the passages (14 a, 14 b) through which fluid may flow.
13. Plate heat exchanger according to claim 3 , characterized in that
a height dimension of the at least one layer (30) through which fluid does not flow corresponds at most to one height dimension of the passages (14 a, 14 b) through which fluid may flow.
14. Plate heat exchanger according to claim 4 , characterized in that
a height dimension of the at least one layer (30) through which fluid does not flow corresponds at most to one height dimension of the passages (14 a, 14 b) through which fluid may flow.
15. Plate heat exchanger according to claim 5 , characterized in that
a height dimension of the at least one layer (30) through which fluid does not flow corresponds at most to one height dimension of the passages (14 a, 14 b) through which fluid may flow.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102008052875.7 | 2008-10-23 | ||
| DE102008052875A DE102008052875A1 (en) | 2008-10-23 | 2008-10-23 | Soldered aluminum plate-type heat exchanger for exchanging between two fluid streams, has heat exchange section comprising non-flow layer that is arranged between two passages, where reinforcement element is provided in non-flow layer |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20100181053A1 true US20100181053A1 (en) | 2010-07-22 |
Family
ID=42055008
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/582,247 Abandoned US20100181053A1 (en) | 2008-10-23 | 2009-10-20 | Plate Heat Exchanger |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20100181053A1 (en) |
| JP (1) | JP2010101617A (en) |
| CN (1) | CN101726202A (en) |
| DE (1) | DE102008052875A1 (en) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130213081A1 (en) * | 2012-02-17 | 2013-08-22 | Hussmann Corporation | Microchannel suction line heat exchanger |
| CN105135209A (en) * | 2015-09-23 | 2015-12-09 | 韩小吉 | Aluminum plate-fin type natural gas gasifier applied to liquified natural gas-fueled vehicle |
| EP2950030A4 (en) * | 2013-03-18 | 2016-03-02 | Sumitomo Precision Prod Co | Heat exchanger |
| CN106440868A (en) * | 2015-08-13 | 2017-02-22 | 吉林省同达换热系统集成有限公司 | Special-shaped capillary runner heat exchanger |
| US9746174B2 (en) | 2012-01-17 | 2017-08-29 | General Electric Technology Gmbh | Flow control devices and methods for a once-through horizontal evaporator |
| US9989320B2 (en) | 2012-01-17 | 2018-06-05 | General Electric Technology Gmbh | Tube and baffle arrangement in a once-through horizontal evaporator |
| US20180292143A1 (en) * | 2015-10-06 | 2018-10-11 | Linde Aktiengesellschaft | Edge strips with surface structure for plate heat exchanger |
| US10378832B2 (en) * | 2014-10-23 | 2019-08-13 | Linde Aktiengesellschaft | Method for producing a plate heat exchanger using two welds, and a corresponding plate heat exchanger |
| US20210041164A1 (en) * | 2018-03-13 | 2021-02-11 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Reliquefaction device |
| US11022376B2 (en) | 2016-10-07 | 2021-06-01 | Sumitomo Precision Products Co., Ltd. | Heat exchanger |
| US11333447B2 (en) * | 2018-03-27 | 2022-05-17 | Hamilton Sundstrand Corporation | Additively manufactured heat exchangers and methods for making the same |
| US20230003447A1 (en) * | 2019-11-21 | 2023-01-05 | L'Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude | Heat exchanger having an arrangement of mixing devices improving the dispensing of a biphasic material |
| WO2023126163A1 (en) * | 2021-12-30 | 2023-07-06 | Fives Cryo | Brazed plate heat exchanger with sealed compartments capable of local deformation |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102012006483A1 (en) * | 2012-03-29 | 2013-10-02 | Linde Aktiengesellschaft | Plate heat exchanger with several modules connected by metal strips |
| DE102012006477A1 (en) * | 2012-03-29 | 2013-10-02 | Linde Aktiengesellschaft | Plate heat exchanger with several modules connected with profiles |
| EP2708840A1 (en) * | 2012-09-18 | 2014-03-19 | Linde Aktiengesellschaft | Plate heat exchanger with a connection element, in particular a T-shaped connection element |
| EP2843348B1 (en) * | 2013-08-29 | 2016-05-04 | Linde Aktiengesellschaft | Plate heat exchanger with heat exchanger blocks connected by metal foam |
| EP3217132B1 (en) * | 2016-03-07 | 2018-09-05 | Bosal Emission Control Systems NV | Plate heat exchanger and method for manufacturing a plate heat exchanger |
| CN105841524A (en) * | 2016-05-29 | 2016-08-10 | 大连格煜科技有限公司 | Multi-stream plate-shell type heat exchange device |
| JP6347003B1 (en) | 2017-01-25 | 2018-06-20 | デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド | LNG ship evaporative gas reliquefaction method and system |
| KR101858514B1 (en) * | 2017-01-25 | 2018-05-17 | 대우조선해양 주식회사 | Boil-Off Gas Reliquefaction Method and System for LNG Vessel |
| FR3078773B1 (en) * | 2018-03-09 | 2020-09-18 | Inetyx | THERMAL EXCHANGER, AS WELL AS A PROCESS FOR MANUFACTURING SUCH A HEAT EXCHANGER |
| CN108955316B (en) * | 2018-06-29 | 2020-11-13 | 合肥通用机械研究院有限公司 | Multi-strand printed circuit board type heat exchanger |
| CN112424464B (en) * | 2018-07-13 | 2021-07-06 | 三井易艾斯机械有限公司 | Gasifier |
| JP2022512705A (en) * | 2018-10-26 | 2022-02-07 | リンデ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Theoretical analysis method of process engineering equipment through which fluid flows |
| DE102019132013A1 (en) * | 2019-11-26 | 2021-05-27 | Bayerische Motoren Werke Aktiengesellschaft | Heat exchanger device for a motor vehicle, method for operating a heat exchanger device and method for producing a heat exchanger device |
| JP2023149895A (en) | 2022-03-31 | 2023-10-16 | 住友精密工業株式会社 | heat exchange system |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3469623A (en) * | 1966-11-18 | 1969-09-30 | Marston Excelsior Ltd | Plate-type heat exchanger |
| US3517731A (en) * | 1967-09-25 | 1970-06-30 | United Aircraft Corp | Self-sealing fluid/fluid heat exchanger |
| US4274481A (en) * | 1979-10-22 | 1981-06-23 | Stewart-Warner Corporation | Dry cooling tower with water augmentation |
| US4623019A (en) * | 1985-09-30 | 1986-11-18 | United Aircraft Products, Inc. | Heat exchanger with heat transfer control |
| DE102006017434A1 (en) * | 2005-08-04 | 2007-02-08 | Visteon Global Technologies, Inc., Van Buren Township | Multi-flow heat exchanger |
| US20080149318A1 (en) * | 2006-12-20 | 2008-06-26 | Caterpillar Inc | Heat exchanger |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1798508A1 (en) | 2005-12-13 | 2007-06-20 | Linde Aktiengesellschaft | Process for manufacturing a plate type heat exchanger |
| EP1830149B2 (en) | 2005-12-13 | 2013-11-20 | Linde AG | Process for detemining the rigidity of a plate heat exchanger and process for producing the plate heat exchanger |
-
2008
- 2008-10-23 DE DE102008052875A patent/DE102008052875A1/en not_active Withdrawn
-
2009
- 2009-09-22 CN CN200910173296A patent/CN101726202A/en active Pending
- 2009-10-20 US US12/582,247 patent/US20100181053A1/en not_active Abandoned
- 2009-10-22 JP JP2009243272A patent/JP2010101617A/en not_active Withdrawn
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3469623A (en) * | 1966-11-18 | 1969-09-30 | Marston Excelsior Ltd | Plate-type heat exchanger |
| US3517731A (en) * | 1967-09-25 | 1970-06-30 | United Aircraft Corp | Self-sealing fluid/fluid heat exchanger |
| US4274481A (en) * | 1979-10-22 | 1981-06-23 | Stewart-Warner Corporation | Dry cooling tower with water augmentation |
| US4623019A (en) * | 1985-09-30 | 1986-11-18 | United Aircraft Products, Inc. | Heat exchanger with heat transfer control |
| DE102006017434A1 (en) * | 2005-08-04 | 2007-02-08 | Visteon Global Technologies, Inc., Van Buren Township | Multi-flow heat exchanger |
| US20080308264A1 (en) * | 2005-08-04 | 2008-12-18 | Dragi Antonijevic | Multiple Flow Heat Exchanger |
| US20080149318A1 (en) * | 2006-12-20 | 2008-06-26 | Caterpillar Inc | Heat exchanger |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9746174B2 (en) | 2012-01-17 | 2017-08-29 | General Electric Technology Gmbh | Flow control devices and methods for a once-through horizontal evaporator |
| US9989320B2 (en) | 2012-01-17 | 2018-06-05 | General Electric Technology Gmbh | Tube and baffle arrangement in a once-through horizontal evaporator |
| US10274192B2 (en) | 2012-01-17 | 2019-04-30 | General Electric Technology Gmbh | Tube arrangement in a once-through horizontal evaporator |
| US9303925B2 (en) * | 2012-02-17 | 2016-04-05 | Hussmann Corporation | Microchannel suction line heat exchanger |
| US20130213081A1 (en) * | 2012-02-17 | 2013-08-22 | Hussmann Corporation | Microchannel suction line heat exchanger |
| EP2950030A4 (en) * | 2013-03-18 | 2016-03-02 | Sumitomo Precision Prod Co | Heat exchanger |
| US9810489B2 (en) | 2013-03-18 | 2017-11-07 | Sumitomo Precision Products Co., Ltd. | Heat exchanger |
| US10378832B2 (en) * | 2014-10-23 | 2019-08-13 | Linde Aktiengesellschaft | Method for producing a plate heat exchanger using two welds, and a corresponding plate heat exchanger |
| CN106440868A (en) * | 2015-08-13 | 2017-02-22 | 吉林省同达换热系统集成有限公司 | Special-shaped capillary runner heat exchanger |
| CN105135209A (en) * | 2015-09-23 | 2015-12-09 | 韩小吉 | Aluminum plate-fin type natural gas gasifier applied to liquified natural gas-fueled vehicle |
| US20180292143A1 (en) * | 2015-10-06 | 2018-10-11 | Linde Aktiengesellschaft | Edge strips with surface structure for plate heat exchanger |
| US11022376B2 (en) | 2016-10-07 | 2021-06-01 | Sumitomo Precision Products Co., Ltd. | Heat exchanger |
| US20210041164A1 (en) * | 2018-03-13 | 2021-02-11 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Reliquefaction device |
| US11754337B2 (en) * | 2018-03-13 | 2023-09-12 | Kobe Steel, Ltd. | Reliquefaction device |
| US11333447B2 (en) * | 2018-03-27 | 2022-05-17 | Hamilton Sundstrand Corporation | Additively manufactured heat exchangers and methods for making the same |
| US20230003447A1 (en) * | 2019-11-21 | 2023-01-05 | L'Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude | Heat exchanger having an arrangement of mixing devices improving the dispensing of a biphasic material |
| US12018887B2 (en) * | 2019-11-21 | 2024-06-25 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes | Heat exchanger having an arrangement of mixing devices improving the dispensing of a biphasic material |
| WO2023126163A1 (en) * | 2021-12-30 | 2023-07-06 | Fives Cryo | Brazed plate heat exchanger with sealed compartments capable of local deformation |
| FR3131626A1 (en) * | 2021-12-30 | 2023-07-07 | Fives Cryo | Brazed plate heat exchanger with sealed compartments capable of locally deforming |
Also Published As
| Publication number | Publication date |
|---|---|
| DE102008052875A1 (en) | 2010-04-29 |
| CN101726202A (en) | 2010-06-09 |
| JP2010101617A (en) | 2010-05-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20100181053A1 (en) | Plate Heat Exchanger | |
| EP3411648B1 (en) | Battery cooling plate heat exchanger and plate assembly | |
| EP1479985B1 (en) | Submerged evaporator comprising a plate heat exchanger and a cylindric casing where the plate heat exchanger is arranged | |
| US20090183862A1 (en) | Heat exchanger and related exchange module | |
| US9335102B2 (en) | Plate heat exchanger with several modules connected by sheet-metal strips | |
| US10288360B2 (en) | Method for producing a plate heat exchanger with multiple heat exchanger blocks connected by solder-coated supports | |
| US20100025026A1 (en) | Fatigue-proof plate heat exchanger | |
| US20150060031A1 (en) | Plate heat exchanger with heat exchanger blocks joined by metal form | |
| US4134195A (en) | Method of manifold construction for formed tube-sheet heat exchanger and structure formed thereby | |
| US20100175862A1 (en) | Brazed aluminum heat exchanger with split core arrangement | |
| USRE33528E (en) | Microtube-strip heat exchanger | |
| ITPD20120365A1 (en) | HEAT EXCHANGER | |
| EP3734212B1 (en) | Asymmetric cross counter flow heat exchanger | |
| US7051798B2 (en) | Heat exchanger | |
| EP3734213B1 (en) | Offset/slanted cross counter flow heat exchanger | |
| US20050066524A1 (en) | Method for producing a heat exchanger | |
| CA2600057A1 (en) | Heat exchanger device for the rapid heating or cooling of fluids | |
| JP6309525B2 (en) | Heat exchanger assembly | |
| JP2000039284A5 (en) | ||
| JP7173929B2 (en) | Method for manufacturing heat exchange part of plate-fin heat exchanger and heat exchange system | |
| JP4549228B2 (en) | Plate heat exchanger | |
| GB2426042A (en) | Plate fin heat exchanger assembly | |
| JP2003314976A (en) | Heat exchanger | |
| US20190247942A1 (en) | Method for producing a plate heat exchanger block with targeted application of the solder material to fins and sidebars in particular | |
| JP2003294338A (en) | Heat exchanger |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: LINDE AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HECHT, THOMAS;HOELZL, REINHOLD;JUNGFER, BERND;AND OTHERS;SIGNING DATES FROM 20091210 TO 20100309;REEL/FRAME:024645/0348 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |