US20100172828A1 - Metal Doped Zeolite and Process for its Preparation - Google Patents
Metal Doped Zeolite and Process for its Preparation Download PDFInfo
- Publication number
- US20100172828A1 US20100172828A1 US12/601,502 US60150208A US2010172828A1 US 20100172828 A1 US20100172828 A1 US 20100172828A1 US 60150208 A US60150208 A US 60150208A US 2010172828 A1 US2010172828 A1 US 2010172828A1
- Authority
- US
- United States
- Prior art keywords
- zeolite
- metal
- process according
- zeolites
- exchanged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000010457 zeolite Substances 0.000 title claims abstract description 118
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 90
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 79
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 75
- 239000002184 metal Substances 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000008569 process Effects 0.000 title claims abstract description 32
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims description 23
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 18
- 150000003839 salts Chemical class 0.000 claims description 14
- 239000011148 porous material Substances 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000000725 suspension Substances 0.000 claims description 9
- 229910021529 ammonia Inorganic materials 0.000 claims description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 230000002829 reductive effect Effects 0.000 claims description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- 239000011707 mineral Substances 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 239000007900 aqueous suspension Substances 0.000 claims 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract description 12
- 230000009467 reduction Effects 0.000 abstract description 7
- 150000001768 cations Chemical class 0.000 description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 239000003054 catalyst Substances 0.000 description 15
- 238000005342 ion exchange Methods 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 11
- 239000007789 gas Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000001117 sulphuric acid Substances 0.000 description 4
- 235000011149 sulphuric acid Nutrition 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 229910001387 inorganic aluminate Inorganic materials 0.000 description 2
- 159000000014 iron salts Chemical class 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- 229910017102 AlO4/2 Inorganic materials 0.000 description 1
- 229910002589 Fe-O-Fe Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000005569 Iron sulphate Substances 0.000 description 1
- 102220500397 Neutral and basic amino acid transport protein rBAT_M41T_mutation Human genes 0.000 description 1
- 229910020485 SiO4/2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- BKFAZDGHFACXKY-UHFFFAOYSA-N cobalt(II) bis(acetylacetonate) Chemical compound [Co+2].CC(=O)[CH-]C(C)=O.CC(=O)[CH-]C(C)=O BKFAZDGHFACXKY-UHFFFAOYSA-N 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- ZKXWKVVCCTZOLD-UHFFFAOYSA-N copper;4-hydroxypent-3-en-2-one Chemical compound [Cu].CC(O)=CC(C)=O.CC(O)=CC(C)=O ZKXWKVVCCTZOLD-UHFFFAOYSA-N 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052909 inorganic silicate Inorganic materials 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- WKPSFPXMYGFAQW-UHFFFAOYSA-N iron;hydrate Chemical compound O.[Fe] WKPSFPXMYGFAQW-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- -1 metal cations Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000003254 radicals Chemical group 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 1
- 238000010518 undesired secondary reaction Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/88—Ferrosilicates; Ferroaluminosilicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/061—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/068—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/072—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/44—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/46—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/50—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
- B01J29/52—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing iron group metals, noble metals or copper
- B01J29/54—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/50—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
- B01J29/52—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing iron group metals, noble metals or copper
- B01J29/56—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/65—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
- B01J29/66—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
- B01J29/67—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/65—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
- B01J29/66—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
- B01J29/68—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
- B01J29/7415—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/7615—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/30—Ion-exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/104—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20738—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20746—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20753—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20761—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
- B01D2255/502—Beta zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
- B01D2255/504—ZSM 5 zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/37—Acid treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/38—Base treatment
Definitions
- the present invention relates to a metal-doped zeolite, wherein the catalytically active doping metal is present isolated in the zeolite, i.e. as a monomeric species and/or dimeric species, and to a process for the preparation of such zeolites and their use as catalyst material, in particular for the purification of exhaust gases, quite particularly for the reduction of nitrogen oxides.
- Metal-doped zeolites are known from the state of the art and are widely used as catalyst material for the purification of exhaust gases.
- DeNOx The denitrification of combustion gases is also called DeNOx.
- SCR selective catalytic reduction
- Hydrocarbons HC—SCR
- NH 3 —SCR ammonia
- Ad-Blue® NH 3 precursors such as urea
- Metal-exchanged zeolites also called metal-doped zeolites
- They have proved to be very active SCR catalysts that can be used in a broad temperature range. They are mostly non-toxic and produce less N 2 O and SO 2 than the customary catalysts based on V 2 O 5 .
- iron-doped zeolites represent good alternatives to the normally used vanadium catalysts, because of their high activity and resistance to sulphur under hydrothermal conditions.
- Customary processes for doping zeolites with metals comprise for example methods such as liquid ion exchange, solid-phase ion exchange, vapour-phase ion exchange, mechanical-chemical processes, impregnation processes and the so-called extra-skeletal processes.
- U.S. Pat. No. 5,171,553 discloses for example an ion-exchange process in an aqueous solution wherein silicon-rich zeolites with Si/Al ratios of over 5 to approx. 50 are customarily used as support.
- cluster species of the catalytically active metals which are catalytically inactive or greatly reduce the catalytic activity, form as a result of the metal exchange inside the zeolite.
- clusters are meant polynuclear bridged or unbridged metal compounds which contain at least three identical or different metal atoms.
- Metal-exchanged zeolites in which no metal clusters were able to be detected inside the zeolite skeleton are thus far unknown.
- the object of the present invention was therefore to provide a metal-containing zeolite material which has an increased catalytic activity compared with the metal-containing zeolite materials known thus far.
- metal-exchanged zeolite wherein the replacement metal is present in the zeolite as isolated individual atoms or cations (monomeric species) and/or as dimeric species.
- metal-exchanged is meant that a metal or metal cation is replaced by a cation, typically H + , Na + , NH 4 ⁇ etc., present in the zeolite or zeolite skeleton.
- the metal-exchanged zeolite according to the invention (here also synonymously called metal-doped zeolite) is free from catalytically inactive or catalytically less active metal clusters, with the result that only monomeric (isolated species in the form of individual metal atoms or metal cations) or dimeric catalytically highly-active metal species are present in the pore structure i.e. more precisely in the zeolite skeleton.
- the metal species can in other words also be called “skeleton metal species”. It is important that the term “monomeric or dimeric species” as used in the invention does not include so-called “ship-in-a-bottle” zeolitic host-guest complexes, such as have been described e.g.
- the dimeric metal species in the zeolite according to the invention can be present either bridged (e.g. bridged via O or OH atoms) or unbridged, thus have a metal-metal bond.
- the activity and selectivity of the zeolite according to the invention is significantly increased compared with the known zeolites of the state of the art. It was found that generally, compared with the zeolites of the state of the art doped or exchanged with the same metal in which, as explained above, mostly metal clusters are present in the zeolite, the metal-exchanged zeolites according to the invention show an increase in activity of approx. 30% for each metal during the reduction from NO to N 2 . Inactive metal clusters also reduce the pore volume and impede the gas diffusion or lead to undesired secondary reactions, which can also be advantageously prevented by the zeolites according to the invention.
- zeolite is meant, within the framework of the present invention according to the definition of the International Mineralogical Association (D. S. Coombs et al., Can. Mineralogist, 35, 1997, 1571), a crystalline substance from the group of the aluminium silicates with a spatial network structure of the general formula
- the zeolite structure contains voids and channels which are characteristic of each zeolite.
- the zeolites are divided into different structural types (see above) according to their topology.
- the zeolite skeleton contains open voids in the form of channels and cages which are normally occupied by water molecules and extra-skeletal cations which can be replaced.
- An aluminium atom attracts an excess negative charge which is compensated for by these cations.
- the interior of the pore system is represented by the catalytically active surface. The more aluminium and the less silicon a zeolite contains, the denser is the negative charge in its lattice and the more polar its inner surface.
- the pore size and structure are determined, in addition to the parameters, during production (use or type of templates, pH, pressure, temperature, presence of seed crystals) by the Si/Al ratio which determines the greatest part of the catalytic character of a zeolite.
- the Si/Al ratio of a zeolite according to the invention lies in the range from 10 to 20 (corresponds to a SiO 2 /Al 2 O 3 ratio of 20-40).
- the zeolite Because of the presence of 2- or 3-valent cations as tetrahedron centre in the zeolite skeleton the zeolite receives a negative charge in the form of so-called anion sites in whose vicinity the corresponding cation positions are located.
- the negative charge is compensated for by incorporating cations, e.g. metal cations, into the pores of the zeolite material.
- cations e.g. metal cations
- zeolites show a uniform structure (e.g. ZSM-5 with MFI topology) with linear or zig-zag channels, while in others larger voids attach themselves behind the pore openings, e.g. in the case of the Y and A zeolites with the topologies FAU and LTA.
- Y and A zeolites with the topologies FAU and LTA.
- 10 and 12 “ring” zeolites are preferred according to the invention.
- any zeolite in particular any 10 and 12 “ring” zeolite, can be used.
- Zeolites with the topologies AEL, BEA, CEA, EUO, FAO, FER, KFI, LTA, LTL, MAZ, MOR, MEL, MTW, LEV, OFF, TON and MFI are preferred according to the invention.
- Zeolites of the topological structures BEA, MFI, FER, MOR, MTW and TRI are quite particularly preferred.
- zeolite-like materials can likewise be used, such as are described for example in U.S. Pat. No. 5,250,282, to the full disclosure content of which reference is made here.
- Further zeolite materials preferred according to the invention are mesoporous zeolite materials of silicates or aluminosilicates which are known under the name M41S and are described in detail in U.S. Pat. No. 5,098,684 and U.S. Pat. No. 5,102,643, to the full disclosure content of which reference is likewise made here.
- SAPOs silico-aluminophosphates
- the pore sizes of the zeolites used according to the invention lie in the range from 0.4 to 1.5 nm which, also because of the more favourable steric ratios for monomeric or dimeric metal species, contributes advantageously to the formation of monomeric or dimeric metal species instead of metal clusters.
- the metal content or the degree of exchange of a zeolite is decisively determined by the metal species present in the zeolite.
- the zeolite can also be doped or exchanged with only one metal or with different metals.
- ⁇ -, ⁇ - and ⁇ -positions which define the position of the exchange spaces (also called “exchangeable positions or sites”). All three positions are available to reactants during the NH 3 —SCR reaction, in particular when using MFI, BEA, FER, MOR, MTW and TRI zeolites.
- ⁇ -type cations show the weakest bond to the zeolite skeleton and are the last to be occupied in a liquid ion exchange.
- the ⁇ -type cations which represent the most-occupied position and catalyze the HC—SCR reaction most effectively during liquid-ion exchange, in particular with small degrees of exchange, display an average bonding strength to the zeolite skeleton.
- the ⁇ -type cations are those cations with the strongest bond to the zeolite skeleton and the most thermally stable. They are the least-occupied position during liquid-ion exchange, but are filled first. Cations, in particular iron and cobalt, in these positions are highly-active and are the catalytically most active cations.
- the preferred metals (or metal cations) for the exchange or doping are catalytically active metals such as Fe, Co, Ni, Ag, Co, V, Rh, Pd, Pt, Ir, and quite particularly preferred Fe, Co, Ni and Cu, which also form bridged dimeric species as are mainly present in particular at high degrees of exchange in the case of the zeolite according to the invention.
- the quantity of metal calculated as corresponding metal oxide is 1 to 5 wt.-% relative to the weight of the metal-exchanged zeolite.
- more than 50% of the exchangeable sites i.e. ⁇ -, ⁇ - and ⁇ -sites
- more than 70% of the exchangeable sites are exchanged.
- free sites should remain which are preferably Br ⁇ nstedt acid centres. This is because NO is strongly absorbed both at the exchanged metal centres and also in ion-exchange positions or at Br ⁇ nstedt centres of the zeolite skeleton.
- NH 3 reacts for preference with the strongly acid Br ⁇ nstedt centres, the presence of which is thus very important for a successful NH 3 —SCR reaction.
- the presence of free radical exchange spaces and/or Br ⁇ nstedt acid centres and the metal-exchanged lattice places is thus quite particularly preferred according to the invention. Therefore, a degree of exchange of 70-90% is most preferred. At a degree of exchange of more than 90%, a reduction in activity is observed during the reduction of NO to N 2 and the SCR—NH 3 reaction.
- the doping metals if possible do not form a stable compound, as a dealuminization is thereby promoted.
- the object of the present invention is further achieved by a process for the preparation of an above-described metal-exchanged doped zeolite, wherein firstly in a sealable reaction vessel an aqueous or water-containing suspension of a zeolite is prepared, and wherein the process further comprises the steps of
- the effect of controlling the reaction, in particular by increasing and reducing the pH is that a high degree of exchange of approx. 70-90% can be achieved without metal clusters unsuitable for catalysis forming in the metal-exchanged zeolite, something not previously achieved with processes known from the state of the art, in particular in the field of liquid exchange.
- the exchange rate and the extent of the exchange is further increased by the pre-treatment, in particular with ammonia. After setting the oxygen level, the reaction mixture is stirred for approx. 1 to 60 minutes.
- step b) of the process according to the invention highly-exchanged zeolites (exchange limit approx. 90%) without metal clusters form, although thus far in the state of the art it has been assumed and also found that, at low pHs, in most catalytically active metals, polynuclear hydroxo- or oxo species form which are catalytically inactive.
- the degree of exchange or doping can be increased to 100% of the exchangeable sites in the zeolite although, as stated above, 90% represents the preferred upper limit. It is equally possible, albeit in less preferred embodiments, that different metals are used for exchange or doping, varying the choice of metal salt in step c).
- the above-listed salts of the catalytically active metals as of their chlorides, sulphates, acetates, mixed ammonium-metal salts, nitrates and soluble complex compounds are used.
- the metal salt can be added both in solid form and also in the form of a solution, wherein aqueous solutions are preferred because they are easier to work up, but there is nothing to prevent dissolved metal salts also being used in organic solvents or mixtures of aqueous or organic solvents.
- the resultant suspension contains 5 to 25 wt.-% zeolites in order to guarantee a good thorough mixing by means of stirring, as higher levels allow the mixture to solidify.
- the pH is preferably increased by adding a strong base, quite particularly preferably in the form of ammonia water.
- a strong base can also be used, of course, wherein bases such as NaOH or KOH are less advantageous because of their tendency to promote the formation of polynuclear hydroxo species with the metal salts.
- the molar ratio of ammonia to zeolite is 0.01 to 0.1 in order to be able to accurately set the pH level.
- the suspension is typically acidified by adding a mineral acid such as HCl, H 2 SO 4 , HNO 3 etc.
- a mineral acid such as HCl, H 2 SO 4 , HNO 3 etc.
- the acid the anion of which is preferably also the anion of the corresponding metal salt which is then added, is used.
- HCl is less preferred however because of its high corrosivity during waste-water purification.
- the pH is thereby reduced to a range from 1.5 to 3 which, as already stated unlike in the state of the art, surprisingly does not lead to polynuclear hydroxo-bridged metal-cluster species.
- the acidification of the suspension is followed firstly by heating to a temperature in the range from 80 to 100° C. and then stirring for approx. 2 hours.
- the increased temperature during ion exchange advantageously leads to the hydration sphere of the metal ions being reduced and the exchange thus accelerated.
- the oxygen level in the reaction vessel during the reaction is ⁇ 10 and quite preferably ⁇ 5%, as here likewise the formation of polynuclear oxygen- or hydroxo-bridged metal species is suppressed.
- the reaction time for the metal exchange is approx. 2 to 8 hours, quite particularly preferably 3 to 5 hours.
- the powder obtained after reaction and doping is washed filtered-off, optionally dried at above 100° C., wherein the temperature during drying is not to exceed 250° C., as otherwise this leads to partial calcination.
- a calcination can be carried out in a range from 400 to 600° C., quite preferably under inert gas.
- any metal salt mentioned above can be used, irrespective of whether the metal is present in a di-, tri- or quadrivalent oxidation step, as the redox pairs usually balance during calcination.
- the divalent salts are quite particularly preferred in particular in the case of iron salts, as these typically tend less towards the precipitation of poorly soluble metal hydroxides and blocking of the zeolite pores. With higher-valency iron salts the chosen exchange time should therefore not be too long, because more hydroxides also precipitate as a result.
- the zeolite prepared by means of the process according to the invention is typically used when purifying exhaust gases, in particular in the reduction of nitrogen oxides.
- UV/VIS MIR diffuse reflection measurements were carried out on the zeolites obtained according to the invention using a Perkin Elmer UV/VIS spectrometer with diffuse reflection and BaSO 4 as reference.
- the absorption intensities were evaluated according to the Schuster-Kubelka-Munk equation (often also called the Kubelka Munk theory).
- NH 4 —ZSM5 (alternatively H—ZSM5 or Na—ZSM5 was also used) was suspended in an aqueous solution in a quantity of 10 to 15 wt.-% relative to the aqueous solution, and stirred at room temperature.
- Ammonia in the form of ammonia water was then added in a ratio of NH 3 to zeolite of 0.04, with the result that a pH of >9 was set. The pH was at most 10.
- reaction vessel was then closed, flushed with inert gas and the atmosphere inside the vessel set to an oxygen level of ⁇ 5%, followed by a wait of 20 min.
- Sulphuric acid in the form of dilute sulphuric acid concentration 25 vol. %) was then added, wherein the ratio of sulphuric acid to zeolite was 0.05.
- the oxygen level was left at ⁇ 5% and a pH of 4.0 set.
- the acidified suspension was then heated to a temperature of 90° C. and thereafter immediately solid FeSO 4 .7H 2 O added in a weight ratio of FeSO 4 :7H 2 O to zeolite of 0.2.
- the pH was 3 and the reaction was carried out in the reaction vessel over 8 hours accompanied by stirring at an oxygen level of less than 5%.
- the exchanged zeolite which had a virtually white colour, was then filtered and washed three times with distilled water and dried at 150° C. Calcination took place under inert gas at 500° C. for 3 hours.
- the resulting product contained 1.5 wt.-% Fe 2 O 3 relative to the total mass of zeolite.
- the thus-obtained iron-exchanged zeolite showed no bands in the wavelength range of 10-25,000 cm ⁇ 1 assigned to the polynuclear Fe clusters (i.e. more than 3 Fe atoms) which are only slightly, if at all, active during the SCR reaction.
- the iron-exchanged zeolite according to the invention shows thick bands in the wavelength range of 25,000 to 30,000 cm ⁇ 1 , which are allocated to iron-oxide dimers (Fe—O—Fe) which are highly active during the SCR reaction.
- the zeolite obtained in example 1 showed bands in the wavelength range between 30,000 and 50,000 cm ⁇ 1 , which can be allocated to monomers, iron species arranged in the zeolite lattice, or in particular monomeric FeOH species which are likewise highly active for the SCR reaction.
- a catalyst prepared by means of the iron zeolite according to the invention obtained in example 1 thus does not have polynuclear catalytically inactive iron clusters.
- UV/VIS 38-45,000 cm- 1 (m) (SCR active monomers and dimeric Co-centres), no bands at 10 to 15,000 cm ⁇ 1 (cluster species).
- UV/VIS 37-45,500 cm ⁇ 1 (m) (SCR active monomers and dimeric co-centres), no bands at 10 to 15,000 cm ⁇ 1 (cluster species).
- the catalyst obtained in example 1 was tested during the reduction of NO to N 2 .
- the catalyst obtained according to the invention was hydrothermally aged at 800° C. for 12 hours in an atmosphere with 10% water vapour, then pressed into shaped bodies and sieved to a size of 0.4 to 0.8 mm.
- comparison catalyst which was obtained according to the example of EP 955 080 B1 was hydrothermally aged in the same manner.
- This comparison catalyst was obtained by solid-state ion exchange.
- the exhaust-gas composition for the comparison test was:
- the test was carried out under customary test conditions.
- the conversion of NO to N 2 using a catalyst obtained according to the invention is clearly higher at 350° C. than when using a comparison catalyst from the state of the art.
- the temperature of 350° C. is approximately the optimum temperature for the above-named DeNO x processes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102007024125.0 | 2007-05-24 | ||
| DE102007063604.2 | 2007-05-24 | ||
| DE102007063604A DE102007063604A1 (de) | 2007-05-24 | 2007-05-24 | Metalldotierter Zeolith und Verfahren zu dessen Herstellung |
| DE102007024125A DE102007024125A1 (de) | 2007-05-24 | 2007-05-24 | Metalldotierter Zeolith und Verfahren zu dessen Herstellung |
| PCT/EP2008/004089 WO2008141823A2 (de) | 2007-05-24 | 2008-05-21 | Metalldotierter zeolith und verfahren zu dessen herstellung |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2008/004089 A-371-Of-International WO2008141823A2 (de) | 2007-05-24 | 2008-05-21 | Metalldotierter zeolith und verfahren zu dessen herstellung |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/324,498 Division US9669397B2 (en) | 2007-05-24 | 2014-07-07 | Metal doped zeolite and process for its preparation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20100172828A1 true US20100172828A1 (en) | 2010-07-08 |
Family
ID=39926604
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/601,502 Abandoned US20100172828A1 (en) | 2007-05-24 | 2008-05-21 | Metal Doped Zeolite and Process for its Preparation |
| US14/324,498 Expired - Fee Related US9669397B2 (en) | 2007-05-24 | 2014-07-07 | Metal doped zeolite and process for its preparation |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/324,498 Expired - Fee Related US9669397B2 (en) | 2007-05-24 | 2014-07-07 | Metal doped zeolite and process for its preparation |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US20100172828A1 (pl) |
| EP (1) | EP2158038B1 (pl) |
| JP (1) | JP5584116B2 (pl) |
| DE (1) | DE102007063604A1 (pl) |
| DK (1) | DK2158038T3 (pl) |
| PL (1) | PL2158038T3 (pl) |
| WO (1) | WO2008141823A2 (pl) |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110115136A1 (en) * | 2009-11-19 | 2011-05-19 | Ibiden Co., Ltd. | Manufacturing method of honeycomb structural body |
| US20120208691A1 (en) * | 2009-10-14 | 2012-08-16 | Basf Catalysts Llc | Copper Containing Levyne Molecular Sieve For Selective Reduction Of NOx |
| US20130323163A1 (en) * | 2010-12-22 | 2013-12-05 | Clariant Produkte (Deutschland) Gmbh | Method for producing titano-(silico)-alumino-phosphate |
| CN104584233A (zh) * | 2012-07-09 | 2015-04-29 | 罗伯特·博世有限公司 | 使用包含掺杂阳离子的微孔阴离子无机构架结构用于制造薄层太阳能电池 |
| US9517461B2 (en) | 2009-12-18 | 2016-12-13 | Basf Se | Ferrous zeolite, method for producing ferrous zeolites, and method for catalytically reducing nitrous oxides |
| US20170001169A1 (en) * | 2015-07-02 | 2017-01-05 | Johnson Matthey Public Limited Company | PASSIVE NOx ADSORBER |
| US20170128883A1 (en) * | 2015-11-06 | 2017-05-11 | Paccar Inc | High efficiency and durability selective catalytic reduction catalyst |
| US9764287B2 (en) | 2015-11-06 | 2017-09-19 | Paccar Inc | Binary catalyst based selective catalytic reduction filter |
| US20180117573A1 (en) * | 2016-10-31 | 2018-05-03 | Johnson Matthey Public Limited Company | Lta catalysts having extra-framework iron and/or manganese for treating exhaust gas |
| US10058819B2 (en) | 2015-11-06 | 2018-08-28 | Paccar Inc | Thermally integrated compact aftertreatment system |
| DE102018204688A1 (de) | 2017-03-31 | 2018-10-04 | Johnson Matthey Catalysts (Germany) Gmbh | Selektiver katalytischer Reduktionskatalysator |
| WO2018204796A1 (en) * | 2017-05-04 | 2018-11-08 | The Johns Hopkins University | Methods of removing and recovering phosphorus from aqueous solutions |
| US10188986B2 (en) | 2015-11-06 | 2019-01-29 | Paccar Inc | Electrochemical reductant generation while dosing DEF |
| US20190321783A1 (en) * | 2018-04-20 | 2019-10-24 | GM Global Technology Operations LLC | Nitrogen oxides and hydrocarbon storage catalyst and methods of using the same |
| US10675586B2 (en) | 2017-06-02 | 2020-06-09 | Paccar Inc | Hybrid binary catalysts, methods and uses thereof |
| US10835866B2 (en) | 2017-06-02 | 2020-11-17 | Paccar Inc | 4-way hybrid binary catalysts, methods and uses thereof |
| US10906031B2 (en) | 2019-04-05 | 2021-02-02 | Paccar Inc | Intra-crystalline binary catalysts and uses thereof |
| US10934918B1 (en) | 2019-10-14 | 2021-03-02 | Paccar Inc | Combined urea hydrolysis and selective catalytic reduction for emissions control |
| US11007514B2 (en) | 2019-04-05 | 2021-05-18 | Paccar Inc | Ammonia facilitated cation loading of zeolite catalysts |
| CN113428904A (zh) * | 2021-07-16 | 2021-09-24 | 上海应用技术大学 | 一种磁性zsm-5沸石分子筛及其制备方法 |
| US11634335B2 (en) * | 2019-01-14 | 2023-04-25 | Johnson Matthey Public Limited Company | Iron-loaded small pore aluminosilicate zeolites and method of making metal loaded small pore aluminosilicate zeolites |
| CN116474716A (zh) * | 2022-01-15 | 2023-07-25 | 中国石油化工股份有限公司 | 一种高效低氯一氧化碳吸附剂及其制备方法 |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100290963A1 (en) | 2007-04-26 | 2010-11-18 | Johnson Matthey Public Limited Company | Transition metal / zeolite scr catalysts |
| NL2001788C2 (nl) † | 2008-07-11 | 2010-01-12 | Stichting Energie | Werkwijze voor de decompositie van N2O, katalysator daarvoor en bereiding van deze katalysator. |
| JP2011125845A (ja) * | 2009-11-19 | 2011-06-30 | Ibiden Co Ltd | ハニカム構造体の製造方法 |
| DE102010056428B4 (de) | 2009-12-28 | 2013-01-31 | Süd-Chemie Ip Gmbh & Co. Kg | Geträgerte Übergangsmetallkatalysatoren |
| DE102010007626A1 (de) * | 2010-02-11 | 2011-08-11 | Süd-Chemie AG, 80333 | Kupferhaltiger Zeolith vom KFI-Typ und Verwendung in der SCR-Katalyse |
| DE102012007890B4 (de) | 2012-04-23 | 2014-09-04 | Clariant Produkte (Deutschland) Gmbh | Abgasreinigungssystem zur Reinigung von Abgasströmen aus Dieselmotoren |
| JP6153196B2 (ja) | 2013-06-14 | 2017-06-28 | ユニゼオ株式会社 | Mn+置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素の除去方法 |
| JP2016222505A (ja) * | 2015-06-01 | 2016-12-28 | イビデン株式会社 | ゼオライトの製造方法 |
| SG10202011536SA (en) * | 2016-05-24 | 2020-12-30 | Exxonmobil Chemical Patents Inc | A synthetic zeolite comprising a catalytic metal |
| KR20230028282A (ko) * | 2020-06-25 | 2023-02-28 | 바스프 코포레이션 | 구리-촉진된 제올라이트의 제조 방법 |
| DE102023002844A1 (de) | 2023-07-13 | 2025-01-16 | Hans-Jürgen Eberle | Katalysator zur Reduktion und/oder Zersetzung von Lachgas |
| EP4653085A1 (en) | 2024-05-24 | 2025-11-26 | Treibacher Industrie AG | Catalyst composition useful for selective catalytic reduction |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4257872A (en) * | 1979-10-22 | 1981-03-24 | Mobil Oil Corporation | Low pressure hydrocracking of refractory feed |
| US4792633A (en) * | 1986-05-19 | 1988-12-20 | E. I. Du Pont De Nemours And Company | Preparation of ortho-(alkyl- or arylthio)phenols |
| US5098684A (en) * | 1990-01-25 | 1992-03-24 | Mobil Oil Corp. | Synthetic mesoporous crystaline material |
| US5171553A (en) * | 1991-11-08 | 1992-12-15 | Air Products And Chemicals, Inc. | Catalytic decomposition of N2 O |
| US5250282A (en) * | 1990-01-25 | 1993-10-05 | Mobil Oil Corp. | Use of amphiphilic compounds to produce novel classes of crystalline oxide materials |
| US5451387A (en) * | 1994-07-07 | 1995-09-19 | Mobil Oil Corporation | Selective catalytic reduction of nitrogen oxides using an iron impregnated zeolite catalyst |
| US5603914A (en) * | 1994-08-24 | 1997-02-18 | Board Of Regents, The Univ. Of Texas System | Synthesis of novel molecular sieves using a metal complex as a template |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2411071A (en) | 1970-05-27 | 1972-07-13 | W. R. Grace & Co | High stability faujasite type zeolites with cerium rich rare earth mixtures |
| JPH08687B2 (ja) * | 1986-12-02 | 1996-01-10 | ライオン株式会社 | 金属超微粒子を含有するセラミツクス組成物 |
| DE69106121T2 (de) * | 1990-01-25 | 1995-05-04 | Mobil Oil Corp., Fairfax, Va. | Synthetisches poröses kristallines material, dessen herstellung und verwendung. |
| JPH04119913A (ja) * | 1990-05-31 | 1992-04-21 | Kanebo Ltd | ゼオライトをイオン交換処理する方法 |
| JPH08257403A (ja) * | 1995-03-24 | 1996-10-08 | Jisedai Haigasu Shokubai Kenkyusho:Kk | 排ガス浄化触媒 |
| DE19820515A1 (de) | 1998-05-08 | 1999-11-11 | Alsi Penta Zeolithe Gmbh | Verfahren zur Herstellung eines Katalysators für die Reinigung von Abgasen, die Stickstoffoxide in Gegenwart von Sauerstoff und Wasser enthalten |
| JP3049317B1 (ja) * | 1999-04-01 | 2000-06-05 | 工業技術院長 | 貴金属カプセル化ゼオライトの製造方法 |
| JP2003047857A (ja) * | 2001-08-08 | 2003-02-18 | Mitsubishi Heavy Ind Ltd | 一酸化炭素選択酸化触媒の製造方法 |
| CA2514586C (en) * | 2003-02-03 | 2009-01-20 | Showa Denko K.K. | Modified layered metallosilicate material and production process thereof |
-
2007
- 2007-05-24 DE DE102007063604A patent/DE102007063604A1/de not_active Withdrawn
-
2008
- 2008-05-21 DK DK08758690.5T patent/DK2158038T3/da active
- 2008-05-21 PL PL08758690T patent/PL2158038T3/pl unknown
- 2008-05-21 JP JP2010508740A patent/JP5584116B2/ja not_active Expired - Fee Related
- 2008-05-21 US US12/601,502 patent/US20100172828A1/en not_active Abandoned
- 2008-05-21 EP EP08758690.5A patent/EP2158038B1/de active Active
- 2008-05-21 WO PCT/EP2008/004089 patent/WO2008141823A2/de not_active Ceased
-
2014
- 2014-07-07 US US14/324,498 patent/US9669397B2/en not_active Expired - Fee Related
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4257872A (en) * | 1979-10-22 | 1981-03-24 | Mobil Oil Corporation | Low pressure hydrocracking of refractory feed |
| US4792633A (en) * | 1986-05-19 | 1988-12-20 | E. I. Du Pont De Nemours And Company | Preparation of ortho-(alkyl- or arylthio)phenols |
| US5098684A (en) * | 1990-01-25 | 1992-03-24 | Mobil Oil Corp. | Synthetic mesoporous crystaline material |
| US5102643A (en) * | 1990-01-25 | 1992-04-07 | Mobil Oil Corp. | Composition of synthetic porous crystalline material, its synthesis |
| US5250282A (en) * | 1990-01-25 | 1993-10-05 | Mobil Oil Corp. | Use of amphiphilic compounds to produce novel classes of crystalline oxide materials |
| US5171553A (en) * | 1991-11-08 | 1992-12-15 | Air Products And Chemicals, Inc. | Catalytic decomposition of N2 O |
| US5451387A (en) * | 1994-07-07 | 1995-09-19 | Mobil Oil Corporation | Selective catalytic reduction of nitrogen oxides using an iron impregnated zeolite catalyst |
| US5603914A (en) * | 1994-08-24 | 1997-02-18 | Board Of Regents, The Univ. Of Texas System | Synthesis of novel molecular sieves using a metal complex as a template |
Non-Patent Citations (4)
| Title |
|---|
| Battiston et al, "Evolution of Fe species during the synthesis of over-exchanged Fe/ZSM5 obtained by chemical vapor deposition of FeCl3", Journal of Catalysis 213 (2003) 251-271 * |
| Battiston et al., "Reactivity of binuclear Fe complexes in over-exchanged Fe/ZSM5, studied by in situ XAFS spectroscopy 2. Selective catalytic reduction of NO with isobutene", Journal of Catalysis, 218, 2003, pp. 163-177 * |
| Pirngruber et al., "On determining the nuclearity of iron sites in Fe-ZSM-5-a critical evaluation", Phys. Chem. Chem. Phys., 2006, 8, pp. 3939-3950 * |
| Pirngruber et al., "On determining the nuclearity of iron sites in Fe-ZSM-5-a critical Evaluation", Phys. Chem. Chem. Phys., 2006, 8, pp. 3939-3950. * |
Cited By (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120208691A1 (en) * | 2009-10-14 | 2012-08-16 | Basf Catalysts Llc | Copper Containing Levyne Molecular Sieve For Selective Reduction Of NOx |
| US9242241B2 (en) * | 2009-10-14 | 2016-01-26 | Base Se | Copper containing levyne molecular sieve for selective reduction of NOx |
| US20110115136A1 (en) * | 2009-11-19 | 2011-05-19 | Ibiden Co., Ltd. | Manufacturing method of honeycomb structural body |
| US9517461B2 (en) | 2009-12-18 | 2016-12-13 | Basf Se | Ferrous zeolite, method for producing ferrous zeolites, and method for catalytically reducing nitrous oxides |
| US20130323163A1 (en) * | 2010-12-22 | 2013-12-05 | Clariant Produkte (Deutschland) Gmbh | Method for producing titano-(silico)-alumino-phosphate |
| CN104584233A (zh) * | 2012-07-09 | 2015-04-29 | 罗伯特·博世有限公司 | 使用包含掺杂阳离子的微孔阴离子无机构架结构用于制造薄层太阳能电池 |
| US20170001169A1 (en) * | 2015-07-02 | 2017-01-05 | Johnson Matthey Public Limited Company | PASSIVE NOx ADSORBER |
| US11571679B2 (en) | 2015-07-02 | 2023-02-07 | Johnson Matthey Public Limited Company | Passive NOx adsorber |
| US10188986B2 (en) | 2015-11-06 | 2019-01-29 | Paccar Inc | Electrochemical reductant generation while dosing DEF |
| US10744458B2 (en) | 2015-11-06 | 2020-08-18 | Paccar Inc | Thermally integrated compact aftertreatment system |
| US20170128883A1 (en) * | 2015-11-06 | 2017-05-11 | Paccar Inc | High efficiency and durability selective catalytic reduction catalyst |
| US10058819B2 (en) | 2015-11-06 | 2018-08-28 | Paccar Inc | Thermally integrated compact aftertreatment system |
| US9764287B2 (en) | 2015-11-06 | 2017-09-19 | Paccar Inc | Binary catalyst based selective catalytic reduction filter |
| US9757691B2 (en) * | 2015-11-06 | 2017-09-12 | Paccar Inc | High efficiency and durability selective catalytic reduction catalyst |
| US20180117573A1 (en) * | 2016-10-31 | 2018-05-03 | Johnson Matthey Public Limited Company | Lta catalysts having extra-framework iron and/or manganese for treating exhaust gas |
| US10500574B2 (en) * | 2016-10-31 | 2019-12-10 | Johnson Matthey Public Limited Company | LTA catalysts having extra-framework iron and/or manganese for treating exhaust gas |
| US20200108379A1 (en) * | 2016-10-31 | 2020-04-09 | Johnson Matthey Public Limited Company | Lta catalysts having extra-framework iron and/or manganese for treating exhaust gas |
| DE102018204688A1 (de) | 2017-03-31 | 2018-10-04 | Johnson Matthey Catalysts (Germany) Gmbh | Selektiver katalytischer Reduktionskatalysator |
| US11401178B2 (en) | 2017-05-04 | 2022-08-02 | The Johns Hopkins University | Methods of removing and recovering phosphorus from aqueous solutions |
| WO2018204796A1 (en) * | 2017-05-04 | 2018-11-08 | The Johns Hopkins University | Methods of removing and recovering phosphorus from aqueous solutions |
| US10675586B2 (en) | 2017-06-02 | 2020-06-09 | Paccar Inc | Hybrid binary catalysts, methods and uses thereof |
| US10835866B2 (en) | 2017-06-02 | 2020-11-17 | Paccar Inc | 4-way hybrid binary catalysts, methods and uses thereof |
| US10953366B2 (en) * | 2018-04-20 | 2021-03-23 | GM Global Technology Operations LLC | Nitrogen oxides and hydrocarbon storage catalyst and methods of using the same |
| US20190321783A1 (en) * | 2018-04-20 | 2019-10-24 | GM Global Technology Operations LLC | Nitrogen oxides and hydrocarbon storage catalyst and methods of using the same |
| US11634335B2 (en) * | 2019-01-14 | 2023-04-25 | Johnson Matthey Public Limited Company | Iron-loaded small pore aluminosilicate zeolites and method of making metal loaded small pore aluminosilicate zeolites |
| US10906031B2 (en) | 2019-04-05 | 2021-02-02 | Paccar Inc | Intra-crystalline binary catalysts and uses thereof |
| US11007514B2 (en) | 2019-04-05 | 2021-05-18 | Paccar Inc | Ammonia facilitated cation loading of zeolite catalysts |
| US10934918B1 (en) | 2019-10-14 | 2021-03-02 | Paccar Inc | Combined urea hydrolysis and selective catalytic reduction for emissions control |
| CN113428904A (zh) * | 2021-07-16 | 2021-09-24 | 上海应用技术大学 | 一种磁性zsm-5沸石分子筛及其制备方法 |
| CN116474716A (zh) * | 2022-01-15 | 2023-07-25 | 中国石油化工股份有限公司 | 一种高效低氯一氧化碳吸附剂及其制备方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| US9669397B2 (en) | 2017-06-06 |
| WO2008141823A2 (de) | 2008-11-27 |
| PL2158038T3 (pl) | 2019-09-30 |
| US20140322127A1 (en) | 2014-10-30 |
| DK2158038T3 (da) | 2019-05-13 |
| JP2010527877A (ja) | 2010-08-19 |
| JP5584116B2 (ja) | 2014-09-03 |
| EP2158038A2 (de) | 2010-03-03 |
| WO2008141823A3 (de) | 2009-03-19 |
| DE102007063604A1 (de) | 2008-12-04 |
| EP2158038B1 (de) | 2019-03-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9669397B2 (en) | Metal doped zeolite and process for its preparation | |
| US8512659B2 (en) | Iron-containing aluminosilicate zeolites and methods of making and using same | |
| US20160129431A1 (en) | Copper Containing Levyne Molecular Sieve For Selective Reduction Of NOx | |
| EP3388392B1 (en) | Copper-containing zeolites having a low alkali metal content, method of making thereof, and their use as scr catalysts | |
| US9289756B2 (en) | Copper containing ZSM-34, OFF and/or ERI zeolitic material for selective reduction of NOx | |
| JP2013533804A (ja) | NOxの選択的還元用の銅含有ZSM−34、OFF及び/又はERIゼオライト系材料 | |
| US20120014866A1 (en) | Copper Containing ZSM-34, OFF And/Or ERI Zeolitic Material For Selective Reduction Of NOx | |
| US20100221165A1 (en) | Off-gas catalyst for hydrochloric acid-containing off-gases | |
| EP2593222A1 (en) | Copper containing zsm-34, off and/or eri zeolitic material for selective reduction of nox | |
| JP6171255B2 (ja) | NOx選択還元触媒、その製造方法、及び、それを用いたNOx浄化方法 | |
| RU2736265C1 (ru) | Способ приготовления медьсодержащих цеолитов и их применение | |
| WO2020222105A2 (en) | Methods of preparation of metal exchanged zeolites | |
| WO2023036238A1 (en) | Synthesis of cha zeolitic materials, cha zeolitic materials obtainable therefrom and scr catalysts comprising the same | |
| JPH0768180A (ja) | 窒素酸化物接触還元用触媒 | |
| JP2018020295A (ja) | NOx選択還元触媒及びそれを用いたNOx浄化方法 | |
| DE102007024125A1 (de) | Metalldotierter Zeolith und Verfahren zu dessen Herstellung | |
| PL246810B1 (pl) | Zeolitowy katalizator do selektywnej redukcji NOx amoniakiem i sposób jego wytwarzania | |
| JPH0768174A (ja) | 窒素酸化物接触還元用触媒 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SUD-CHEMIE AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALTHOFF, RODERICK;TISSLER, ARNO;TOUFAR, HELGE;SIGNING DATES FROM 20091110 TO 20091116;REEL/FRAME:024551/0982 |
|
| AS | Assignment |
Owner name: SUED-CHEMIE IP GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUED-CHEMIE AG;REEL/FRAME:028849/0765 Effective date: 20120618 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |