US20100130104A1 - Carboxylic acid ester color-stabilized phenolic bound abrasive products and methods for making same - Google Patents
Carboxylic acid ester color-stabilized phenolic bound abrasive products and methods for making same Download PDFInfo
- Publication number
- US20100130104A1 US20100130104A1 US12/619,394 US61939409A US2010130104A1 US 20100130104 A1 US20100130104 A1 US 20100130104A1 US 61939409 A US61939409 A US 61939409A US 2010130104 A1 US2010130104 A1 US 2010130104A1
- Authority
- US
- United States
- Prior art keywords
- color
- abrasive article
- stable
- stabilizer
- stable abrasive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 title abstract description 13
- 125000003262 carboxylic acid ester group Chemical class [H]C([H])([*:2])OC(=O)C([H])([H])[*:1] 0.000 title abstract 2
- 229920001568 phenolic resin Polymers 0.000 claims abstract description 36
- 239000005011 phenolic resin Substances 0.000 claims abstract description 36
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000003086 colorant Substances 0.000 claims abstract description 33
- 239000003381 stabilizer Substances 0.000 claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 239000006061 abrasive grain Substances 0.000 claims abstract description 25
- 229920003987 resole Polymers 0.000 claims abstract description 23
- 239000011230 binding agent Substances 0.000 claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 12
- 230000008859 change Effects 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract description 4
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 19
- 150000001733 carboxylic acid esters Chemical class 0.000 claims description 14
- 229940116333 ethyl lactate Drugs 0.000 claims description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 8
- 239000000654 additive Substances 0.000 claims description 8
- 150000002148 esters Chemical class 0.000 claims description 8
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- AWQSAIIDOMEEOD-UHFFFAOYSA-N 5,5-Dimethyl-4-(3-oxobutyl)dihydro-2(3H)-furanone Chemical compound CC(=O)CCC1CC(=O)OC1(C)C AWQSAIIDOMEEOD-UHFFFAOYSA-N 0.000 claims description 4
- WIYVVIUBKNTNKG-UHFFFAOYSA-N 6,7-dimethoxy-3,4-dihydronaphthalene-2-carboxylic acid Chemical compound C1CC(C(O)=O)=CC2=C1C=C(OC)C(OC)=C2 WIYVVIUBKNTNKG-UHFFFAOYSA-N 0.000 claims description 4
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 claims description 4
- 239000004310 lactic acid Substances 0.000 claims description 4
- 235000014655 lactic acid Nutrition 0.000 claims description 4
- 230000000996 additive effect Effects 0.000 claims description 3
- 150000001735 carboxylic acids Chemical class 0.000 claims description 3
- 239000006184 cosolvent Substances 0.000 claims 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 claims 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 1
- 125000003827 glycol group Chemical group 0.000 claims 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 239000003999 initiator Substances 0.000 claims 1
- 150000002978 peroxides Chemical class 0.000 claims 1
- 239000003082 abrasive agent Substances 0.000 abstract description 22
- -1 for example Substances 0.000 description 21
- 229920005989 resin Polymers 0.000 description 20
- 239000011347 resin Substances 0.000 description 20
- 239000000047 product Substances 0.000 description 19
- 239000010410 layer Substances 0.000 description 15
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical class O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 238000000227 grinding Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 239000000975 dye Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 229920003261 Durez Polymers 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 229910001610 cryolite Inorganic materials 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 235000019256 formaldehyde Nutrition 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 4
- 239000001055 blue pigment Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- PQJUJGAVDBINPI-UHFFFAOYSA-N 9H-thioxanthene Chemical compound C1=CC=C2CC3=CC=CC=C3SC2=C1 PQJUJGAVDBINPI-UHFFFAOYSA-N 0.000 description 3
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 3
- 229910052580 B4C Inorganic materials 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910033181 TiB2 Inorganic materials 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 150000004056 anthraquinones Chemical class 0.000 description 3
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 229910001651 emery Inorganic materials 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000002223 garnet Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 2
- XBNVWXKPFORCRI-UHFFFAOYSA-N 2h-naphtho[2,3-f]quinolin-1-one Chemical compound C1=CC=CC2=CC3=C4C(=O)CC=NC4=CC=C3C=C21 XBNVWXKPFORCRI-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 150000008062 acetophenones Chemical class 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Chemical class CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- WURBFLDFSFBTLW-UHFFFAOYSA-N benzil Chemical compound C=1C=CC=CC=1C(=O)C(=O)C1=CC=CC=C1 WURBFLDFSFBTLW-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical compound O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 150000005075 thioxanthenes Chemical class 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- XWZOKATWICIEMU-UHFFFAOYSA-N (3,5-difluoro-4-formylphenyl)boronic acid Chemical compound OB(O)C1=CC(F)=C(C=O)C(F)=C1 XWZOKATWICIEMU-UHFFFAOYSA-N 0.000 description 1
- GPYLCFQEKPUWLD-UHFFFAOYSA-N 1h-benzo[cd]indol-2-one Chemical compound C1=CC(C(=O)N2)=C3C2=CC=CC3=C1 GPYLCFQEKPUWLD-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- CSJZKSXYLTYFPU-UHFFFAOYSA-N 2-azaniumyl-3-(4-tert-butylphenyl)propanoate Chemical compound CC(C)(C)C1=CC=C(CC(N)C(O)=O)C=C1 CSJZKSXYLTYFPU-UHFFFAOYSA-N 0.000 description 1
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 1
- FECDACOUYKFOOP-UHFFFAOYSA-N 2-ethylhexyl 2-hydroxypropanoate Chemical compound CCCCC(CC)COC(=O)C(C)O FECDACOUYKFOOP-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- JBIJLHTVPXGSAM-UHFFFAOYSA-N 2-naphthylamine Chemical compound C1=CC=CC2=CC(N)=CC=C21 JBIJLHTVPXGSAM-UHFFFAOYSA-N 0.000 description 1
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 1
- AGIJRRREJXSQJR-UHFFFAOYSA-N 2h-thiazine Chemical compound N1SC=CC=C1 AGIJRRREJXSQJR-UHFFFAOYSA-N 0.000 description 1
- OALHHIHQOFIMEF-UHFFFAOYSA-N 3',6'-dihydroxy-2',4',5',7'-tetraiodo-3h-spiro[2-benzofuran-1,9'-xanthene]-3-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 OALHHIHQOFIMEF-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- KYNSBQPICQTCGU-UHFFFAOYSA-N Benzopyrane Chemical compound C1=CC=C2C=CCOC2=C1 KYNSBQPICQTCGU-UHFFFAOYSA-N 0.000 description 1
- MRABAEUHTLLEML-UHFFFAOYSA-N Butyl lactate Chemical compound CCCCOC(=O)C(C)O MRABAEUHTLLEML-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-ONCXSQPRSA-N abietic acid Chemical compound C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C(O)=O RSWGJHLUYNHPMX-ONCXSQPRSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- RREGISFBPQOLTM-UHFFFAOYSA-N alumane;trihydrate Chemical compound O.O.O.[AlH3] RREGISFBPQOLTM-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229940051880 analgesics and antipyretics pyrazolones Drugs 0.000 description 1
- 229940054058 antipsychotic thioxanthene derivative Drugs 0.000 description 1
- 239000000987 azo dye Chemical class 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 150000001562 benzopyrans Chemical class 0.000 description 1
- 229920006378 biaxially oriented polypropylene Polymers 0.000 description 1
- 239000011127 biaxially oriented polypropylene Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- YXVFYQXJAXKLAK-UHFFFAOYSA-N biphenyl-4-ol Chemical compound C1=CC(O)=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 239000001191 butyl (2R)-2-hydroxypropanoate Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- ISAOCJYIOMOJEB-UHFFFAOYSA-N desyl alcohol Natural products C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004924 electrostatic deposition Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 150000002220 fluorenes Chemical class 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001046 green dye Substances 0.000 description 1
- 239000001056 green pigment Substances 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- BSIHWSXXPBAGTC-UHFFFAOYSA-N isoviolanthrone Chemical compound C12=CC=CC=C2C(=O)C2=CC=C3C(C4=C56)=CC=C5C5=CC=CC=C5C(=O)C6=CC=C4C4=C3C2=C1C=C4 BSIHWSXXPBAGTC-UHFFFAOYSA-N 0.000 description 1
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000002832 nitroso derivatives Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000001048 orange dye Substances 0.000 description 1
- 239000001053 orange pigment Substances 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical class C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- ILVGAIQLOCKNQA-UHFFFAOYSA-N propyl 2-hydroxypropanoate Chemical compound CCCOC(=O)C(C)O ILVGAIQLOCKNQA-UHFFFAOYSA-N 0.000 description 1
- KXXXUIKPSVVSAW-UHFFFAOYSA-K pyranine Chemical compound [Na+].[Na+].[Na+].C1=C2C(O)=CC(S([O-])(=O)=O)=C(C=C3)C2=C2C3=C(S([O-])(=O)=O)C=C(S([O-])(=O)=O)C2=C1 KXXXUIKPSVVSAW-UHFFFAOYSA-K 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical class C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- MLVYOYVMOZFHIU-UHFFFAOYSA-M sodium;4-[(4-anilinophenyl)diazenyl]benzenesulfonate Chemical compound [Na+].C1=CC(S(=O)(=O)[O-])=CC=C1N=NC(C=C1)=CC=C1NC1=CC=CC=C1 MLVYOYVMOZFHIU-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 150000003732 xanthenes Chemical class 0.000 description 1
- 125000002256 xylenyl group Chemical class C1(C(C=CC=C1)C)(C)* 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/34—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
- B24D3/342—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent
- B24D3/344—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent the bonding agent being organic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/005—Stabilisers against oxidation, heat, light, ozone
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0041—Optical brightening agents, organic pigments
Definitions
- phenolic resin describes a wide variety of resin products that result from the reaction product of phenols and aldehydes. Phenols react with formaldehydes under both acidic and basic conditions. If a based-catalyzed mixture of a phenol and a formaldehyde contains one or more moles of formaldehyde per moles of phenol, it will produce a thermosetting (one-step) resin, or “resole.”
- Common base compounds employed as catalysts for resole resins include the hydroxides of alkali metals, such as sodium, potassium, or lithium. While alkali metal hydroxide-catalyzed phenolic resins are commercially useful, they have an undesirable tendency to darken as they age, are heated or otherwise cured. The extent of darkening is known to be dependent on the curing or use temperature of the resin and the time of exposure to such temperature.
- Alkali metal hydroxide-catalyzed phenolic resins are commonly used as a component of the bond system of abrasive products, such as coated, bonded, and three-dimensional, low density abrasive products.
- the resin darkening problem is particularly pronounced in coated abrasive and three-dimensional, low density abrasive products because of the more visible presence of the bond system.
- any variation in the temperature profile of the product results in color variation within the product itself. Color variation is particularly noticeable for light-colored products, causing such products to be unacceptable for aesthetic or other reasons.
- abrasive bond systems may comprise colorants to identify the manufacturer, type of product, application, etc.
- the darkening of the resin can interfere with the desired coloration, causing the final product to have a different color from the colorant added.
- a resin that normally turns yellow after curing will yield a green colored product when combined with a blue dye or pigment.
- the resin will typically result in simply another shade of green.
- One known method for imparting color stability in phenolic resoles include adding melamine formaldehyde resin into the formulation. While this achieves color stability, it also imparts brittleness, takes longer to cure, and results in mechanical weakness and therefore reduced grinding performance in the finished product.
- Another proposed method includes the addition of an ammonium based salt to the phenolic resole.
- this method is not sufficiently effective in stabilizing the color of phenolic resin products having certain colorants, such as light blue and orange pigments or dyes.
- the present invention is directed to a color-stable abrasive article that includes a phenolic resin binder; a color stabilizer, a colorant, and abrasive grains.
- the color stabilizer includes at least one carboxylic acid ester, ester, carboxylic acid, or a dione or acrylic group.
- the present invention is directed to a method of making a color-stable abrasive article including the steps of blending a resole and a color stabilizer to form a resole composition; contacting a plurality of abrasive particles with the resole composition; and curing the resole composition to produce the color-stable abrasive article.
- the color stabilizer includes at least one carboxylic acid ester, ester, carboxylic acid, or a dione or acrylic group.
- the present invention is directed to a method for abrading a work surface including applying color-stable abrasive article to a work surface in an abrading motion to remove a portion of the work surface.
- the abrasive product includes a binder having a phenolic resin; a color-stabilizer that includes at least one includes at least one carboxylic acid ester, ester, carboxylic acid, or a dione or acrylic group; and abrasive grains.
- color stabilized phenolic bound abrasives and a method for making such abrasives that resist color change over time and upon exposure to high temperature and maintain the mechanical strength of a phenolic resin.
- FIG. 1 is a schematic representation of a cross-sectional view of one embodiment of coated abrasive tools of the invention.
- FIG. 2 is a schematic representation of a cross-sectional view of another embodiment of coated abrasive tools of the invention.
- FIG. 3 contains photographs comparing cured phenolic resin samples containing no color stabilizer and color stabilizers of the present invention.
- FIG. 4 contains photographs comparing the color change of an embodiment of the present invention and a control over time during curing.
- FIG. 5 is a graphical representation of the color change in the samples of FIG. 4 over time.
- the present invention relates to abrasive articles which include a phenolic resin binder that is color-stabilized by at least one carboxylic acid ester.
- the color-stabilized abrasive article further includes a colorant and abrasive grains.
- an abrasive article or resin is considered to be “color-stable” if it has essentially the same color after about 8 hours of curing at about 235° F. as it does after about 2 hours of curing at about 235° F.
- phenolic resin refers to any resinous reaction product of a phenol, such as phenol, resorcinol, alkyl-substituted phenol such as cresol, xylenol, p-tert-butylphenol, and p-phenylphenol and the like, with an aldehyde, such as formaldehyde, acetaldehyde and furfuraldehyde, and the like.
- phenol-stabilized alkali metal hydroxide catalyzed phenolic resin refers to a cured alkali metal hydroxide phenolic resin which is color-stabilized by a color stabilizing agent.
- the abrasive products are characterized by having a phenolic resin binder, one or more carboxylic acid ester color-stabilizers, one or more optional colorants, abrasive grains, a support member or backing, and can further include curing agents, non-reactive thermoplastic resins, fillers, grinding aids, and other additives.
- the color-stable abrasive article includes a phenolic resin binder, a color stabilizer, and an abrasive material.
- the color-stable abrasive article can be either a bonded, structured, or coated abrasive.
- Coated abrasive tools of the invention can include a substrate, an abrasive material and at least one phenolic resin binder to hold the abrasive material to the substrate.
- the term “coated abrasive tool” encompasses a nonwoven abrasive tool.
- the abrasive material such as abrasive grains, particles or agglomerate thereof, can be present in one layer (e.g., resin-abrasive layer) or in two layers (e.g., make coat and size coat) of the coated abrasive tools. Examples of such coated abrasive tools that can be made by the methods of the invention are shown in FIGS. 1 and 2 . Referring to FIG.
- coated abrasive tool 10 substrate 12 is treated with optional backsize coat 16 and optional presize coat 18 .
- Overlaying the optional presize coat 18 is make coat 20 to which abrasive material 14 , such as abrasive grains or particles, are applied.
- Size coat 22 is optionally applied over make coat 20 and abrasive material 14 .
- Overlaying size coat 22 is optional supersize coat 24 .
- coated abrasive tool 10 may or may not include backsize coat 16 and/or presize coat 18 .
- coated abrasive tools 10 may or may not include size coat 22 and/or supersize coat 24 . Shown in FIG.
- coated abrasive tool 30 includes a single layer of an abrasive material and adhesive(s) (binder-abrasive layer 32 ) and optionally backsize coat 16 .
- presize coat 18 , size coat 22 and supersize coat 24 can be included in coated abrasive tool 30 .
- the coated abrasive article can include a color stable phenolic resin binder in at least one layer selected from the group consisting of a binder-abrasive layer, a backsize coat, a presize coat, a make coat, a size coat, and a supersize coat.
- abrasive materials can be applied separately by gravity, electrostatic deposition, air stream, or as a slurry together with the polyurethane adhesive compositions.
- the make coat 20 adheres the abrasive material to the surface of the substrate, and can be formed by impregnating the support substrate with the phenolic resin binder without abrasive grains.
- the support substrate may be impregnated with a resin/abrasive slurry that includes an abrasive material and a resin composition including a phenolic resin binder and a color-stabilizer, to form a binder/abrasive layer 32 .
- a method of making a color-stable abrasive article includes: blending a resole and a color-stabilizer comprising at least one carboxylic acid ester to form a resole composition; contacting a plurality of abrasive particles with the resole composition; and curing the resole composition to produce the color-stable abrasive product.
- color-stable abrasive articles formed by this method include, for example, structured abrasives and bonded abrasives.
- the article is formed by any of those techniques known in the art in which abrasive structures are shaped prior to curing.
- Such techniques include, for example, embossing techniques.
- a mixture including a phenolic resin binder, at least one compound selected from the group consisting of a carboxylic acid ester, an ester, a carboxylic acid, a compound including a dione, a compound including an acrylic group, and combinations of thereof, optional colorants, and abrasive grains can be contacted with a backing and a production tool wherein the mixture adheres to one surface of the backing.
- Abrasive structures are thus formed that have the shape of an inside surface of the production tool.
- a bonded abrasive article can be formed by preparing an agglomerate that includes the phenolic resin binder, at least one compound selected from the group consisting of a carboxylic acid ester, an ester, a carboxylic acid, a compound including a dione group, a compound including an acrylic group and combinations of thereof, optional colorants, and abrasive grains.
- the agglomerate is then shaped using any of the techniques known in the art for preparing a bonded abrasive. Suitable techniques for preparing bonded abrasives are further described, for example, in U.S. Pat. No. 5,738,696 of Wu; U.S. Pat. No. 5,738,697 of Wu, et al.; and U.S. Pat. No. 6,679,758 of Bright, et al.; and U.S. Patent Publication No. 2003/0192258 A1 of Simon, the entire contents of each of which are incorporated herein by reference.
- a work surface is abraded by applying the color-stable abrasive article to a work surface in an abrading motion to remove a portion of the work surface.
- Typical phenolic resins employed in the present invention are resoles, which result from the alkali metal hydroxide catalyzed reaction of phenol and formaldehyde in a mole ratio of phenol:formaldehyde of about 1:1 to about 1:3 moles and a mole ratio of phenol:alkali metal hydroxide of about 1:1 to about 100:1.
- the color of such resole, or base-catalyzed phenolic resin is stabilized by the addition of one or more carboxylic esters.
- Durez Varcum Resin No. 94908, manufactured by Durez Corporation is one example of a water-based, single-staged liquid phenolic resin that can be used as the binder.
- the color-stabilizers employed in the present invention include carboxylic acid esters, esters, carboxylic acids, compounds containing a dione group, compounds containing an acrylic group, and combinations of thereof.
- suitable compounds include but are not limited to methyl lactate, ethyl lactate, n-propyl lactate, butyl lactate, 2-ethylhexyl lactate, heptanoic acid, lactic acid, ethyl acetoacetate, 2,2,5-trimethyl-1-3-dioxane-4-6-dione, and 2-(dimethylamino) ethylmethacrylate.
- the color-stabilizer is present in an amount between about 1% and about 40% by weight of the phenolic resin. In other embodiments, the color-stabilizer is present in an amount between about 4% and about 10% by weight of the phenolic resin.
- Ethyl lactate has been found to be particularly effective.
- one embodiment of the invention includes:
- Heptanoic acid, lactic acid, ethyl acetoacetate, 2,2,5-trimethyl-1-3-dioxane-4-6-dione, 2-(dimethylamino)ethylmethacrylate have demonstrated to be effective color stabilizer agents when added in amounts as little as 5% or 10% of the total weight of the resin
- the abrasive product can include a colorant, for example, dyes or pigments. Generally, a portion of the colorant can be visible through the cured resin. In some embodiments, a portion of the colorant is included in the cured resin, in an optional support substrate, and/or in a coating between the optional support substrate and the cured resin.
- the colorant can include organic polycyclic dyes, organic monoazo dyes, organic diazo dyes, organometal complexes, inorganic pigments such as metal oxides or complexes. Dyes can be perinone, anthraquinone, azo dye complexes and thioindigoid.
- a fluorescent colorant is a dye or pigment containing a fluorescent organic molecule.
- fluorescent colorants can be found in Zollinger, H., “Color Chemistry: Synthesis, Properties, and Applications of Organic Dyes and Pigments”, 2 nd Ed., VCH, New York, 1991, the entire teachings of which are incorporated herein by reference.
- a fluorescent colorant can be, for example, a xanthene, thioxanthene, fluorene (e.g., fluoresceins, rhodamines, eosines, phloxines, uranines, succineins, sacchareins, rosamines, and rhodols), napthylamine, naphthylimide, naphtholactam, azalactone, methine, oxazine, thiazine, benzopyran, coumarin, aminoketone, anthraquinone, isoviolanthrone, anthrapyridone, pyranine, pyrazolone, benzothiazene, perylene, or thioindigoid.
- fluorene e.g., fluoresceins, rhodamines, eosines, phloxines, uranines, succineins, sacchareins
- a fluorescent colorant is selected from the group consisting of xanthenes, thioxanthenes, benzopyrans, coumarins, aminoketones, anthraquinones, isoviolanthrones, anthrapyridones, pyranines, pyrazolones, benzothiazenes, thioindigoids and fluorenes.
- the fluorescent colorant is a thioxanthene or thioxanthene.
- Examples of preferred fluorescent colorants include C.I. Solvent Orange 63 (Hostasol Red GG, Hoechst AG, Frankfurt, Germany), C.I. Solvent Yellow 98 (Hostasol Yellow 3G, Hoechst AG, Frankfurt, Germany), and C.I. Solvent Orange 118 (FL Orange SFR, Keystone Aniline Corporation, Chicago, Ill.).
- the amount of colorant that can be employed depends on the particulars of the intended use, the characteristics of the colorant, the other components in the composition, and the like. One skilled in the art will know how to judge these details to determine the amount of colorant for a particular use. Typically, the amount of colorant will be a weight fraction of the total composition of between about 0.01 and about 2%, more preferably between about 0.05 and about 0.5%, and most preferably, about 0.2%.
- the colorant is a red, orange, yellow, green, blue, indigo, or violet colorant.
- the colorant is fluorescent, for example, a fluorescent red, fluorescent orange (blaze orange), fluorescent yellow, fluorescent green, or the like.
- Suitable colorants include Elcoment Orange GS (Blaze); Elcoment Green Nort Liq.; and especially Elcoment Blue RS, all of which are available from Greenville Colorants located in Greenville, S.C.; and Akrosperse E5137, which is available from Akrochem Corp. located in Akron, Ohio.
- the colorant can be employed to identify the abrasive product, e.g., for commercial branding, for usage indication such as wet, dry, wood, metal, or the like, or for identification of grit size, or the like.
- Abrasive grains can include of any one or a combination of grains, including, but not limited to, silica, alumina (fused or sintered), zirconia, zirconia/alumina oxides, silicon carbide, garnet, diamond, cubic boron nitride (CBN), silicon nitride, ceria, titanium dioxide, titanium diboride, boron carbide, tin oxide, tungsten carbide, titanium carbide, iron oxide, chromia, flint, and emery.
- silica alumina (fused or sintered)
- zirconia zirconia/alumina oxides
- silicon carbide garnet, diamond, cubic boron nitride (CBN), silicon nitride, ceria, titanium dioxide, titanium diboride, boron carbide, tin oxide, tungsten carbide, titanium carbide, iron oxide, chromia, flint, and emery.
- CBN cubic
- the abrasive grains may be selected from a group consisting of silica, alumina, zirconia, silicon carbide, silicon nitride, boron nitride, garnet, diamond, cofused alumina zirconia, ceria, titanium diboride, boron carbide, flint, emery, alumina nitride, and a blend thereof.
- dense abrasive grains comprised principally of alpha-alumina and/or gamma alumina can be used.
- the abrasive grains can also include abrasive agglomerate grains, also known as agglomerated abrasive grains.
- Abrasive agglomerate grains include abrasive particles adhered together by a particle binder material.
- the abrasive particles present in abrasive agglomerate grains can include one or more of the abrasives known for use in abrasive tools such as, for example, silica, alumina (fused or sintered), zirconia, zirconia/alumina oxides, silicon carbide, garnet, diamond, cubic boron nitride (CBN), silicon nitride, ceria, titanium dioxide, titanium diboride, boron carbide, tin oxide, tungsten carbide, titanium carbide, iron oxide, chromia, flint, emery, and combinations thereof.
- the abrasive particles can be of any size or shape.
- the abrasive agglomerate grains can be adhered together by a particle binder material such as, for example, a metallic, organic, or vitreous material, or a combination of such materials.
- a particle binder material such as, for example, a metallic, organic, or vitreous material, or a combination of such materials.
- Abrasive agglomerate grains suitable for use in the present invention are further described in U.S. Pat. No. 6,797,023, to Knapp, et al., the entire contents of which are incorporated herein by reference.
- the abrasive grains can have one or more particular shapes.
- Example of such particular shapes include rods, triangles, pyramids, cones, solid spheres, hollow spheres and the like.
- the abrasive grains can be randomly shaped.
- the abrasive grains have an average grain size not greater than 2000 microns such as, for example, not greater than about 1500 microns.
- the abrasive grain size is not greater than about 750 microns, such as not greater than about 350 microns.
- the abrasive grain size may be at least 0.1 microns, such as from about 0.1 microns to about 1500 microns, and, more typically, from about 0.1 microns to about 200 microns or from about 1 micron to about 100 microns.
- the grain size of the abrasive grains is typically specified to be the longest dimension of the abrasive grain. Generally, there is a range distribution of grain sizes. In some instances, the grain size distribution is tightly controlled.
- the abrasive articles can include a support member, or backing.
- the backing can be flexible or rigid.
- the backing can be made of any number of various materials including those conventionally used as backings in the manufacture of coated abrasives.
- Suitable backings can include polymeric films (for example, a primed film), such as polyolefin films (e.g., polypropylene including biaxially oriented polypropylene), polyester films (e.g., polyethylene terephthalate), polyamide films, or cellulose ester films; metal foils; meshes; foams (e.g., natural sponge material or polyurethane foam); cloth (e.g., woven, non-woven, fleeced, stitch bonded, or quilted, or cloth made from fibers or yarns comprising polyester, nylon, silk, cotton, poly-cotton or rayon); paper; vulcanized paper; vulcanized rubber; vulcanized fiber; nonwoven materials; a treated backing thereof; or any combination thereof.
- polymeric films
- the backing can have at least one of a saturant, a presize layer or a backsize layer.
- the purpose of these layers typically is to seal the backing or to protect yarn or fibers in the backing. If the backing is a cloth material, at least one of these layers typically is used.
- the addition of the presize layer or backsize layer may additionally result in a “smoother” surface on either the front or the back side of the backing.
- Other optional layers known in the art can also be used (for example, a tie layer; see U.S. Pat. No. 5,700,302 of Stoetzel, et al., the entire contents of which are incorporated herein by reference).
- the abrasive articles are intended for use as fine grinding materials and hence a very smooth surface can be preferred.
- smooth surfaced backings include finely calendered papers, plastic films or fabrics with smooth surface coatings.
- the backing can have antistatic properties.
- the addition of an antistatic material can reduce the tendency of the abrasive article to accumulate static electricity when sanding wood or wood-like materials. Additional details regarding antistatic backings and backing treatments can be found in, for example, U.S. Pat. No. 5,108,463 of Buchanan, et al.; U.S. Pat. No. 5,137,542 of Buchanan, et al.; U.S. Pat. No. 5,328,716 of Buchanan; and U.S. Pat. No. 5,560,753 of Buchanan, et al., the entire contents of which are incorporated herein by reference.
- the backing can include a fibrous reinforced thermoplastic such as described, for example, in U.S. Pat. No. 5,417,726 of Stout, et al., or an endless spliceless belt, as described, for example, in U.S. Pat. No. 5,573,619 of Benedict, et al., the entire contents of which are incorporated herein by reference.
- the backing can include a polymeric substrate having hooking stems projecting therefrom such as that described, for example, in U.S. Pat. No. 5,505,747 of Chesley, et al., the entire contents of which are incorporated herein by reference.
- the backing can include a loop fabric such as that described, for example, in U.S. Pat. No. 5,565,011 of Follett, et al., the entire contents of which are incorporated herein by reference.
- the abrasive articles of the present invention can also include various other components, such as curing additives, non-reactive thermoplastic resins, fillers, grinding aids; and other additives.
- the abrasive article includes a curing additive, such as a photoinitiator, which generates free radicals when exposed to radiation, e.g., UV radiation.
- a curing additive such as a photoinitiator
- Free-radical generators can include organic peroxides, azo compounds, quinones, benzophenones, nitroso compounds, acryl halides, hydrozones, mercapto compounds, pyrylium compounds, triacrylimidazoles, bisimidazoles, chloroalkyltriazines, benzoin ethers, benzil ketals, thioxanthones and acetophenones, including derivatives of such compounds.
- photoinitiators are the benzil ketals such as 2,2-dimethoxy-2-phenyl acetophenone (available from Ciba Specialty Chemicals under the trademark IRGACURE® 651) and acetophenone derivatives such as 2,2-diethoxyacetophenone (“DEAP”, which is commercially available from First Chemical Corporation), 2-hydroxy-2-methyl-1-phenyl-propan-1-one (“HMPP,” which is commercially available from Ciba Specialty Chemicals under the trademark DAROCUR® 1173), 2-benzyl-2-N,N-dimethylamino-1-(4-morpholinophenyl)-1-butanone, (which is commercially available from Ciba Specialty Chemicals under the trademark IRGACURE® 369); and 2-methyl-1-(4-(methylthio)phenyl)-2-morpholinopropan-1-one, (available from Ciba Specialty Chemicals under the trademark IRGACURE® 907).
- benzil ketals such as 2,2-dime
- the abrasive articles can include a non-reactive thermoplastic resin such as, for example, polypropylene glycol, polyethylene glycol, and polyoxypropylene-polyoxyethene block copolymer.
- a non-reactive thermoplastic resin such as, for example, polypropylene glycol, polyethylene glycol, and polyoxypropylene-polyoxyethene block copolymer.
- Fillers include organic fillers, inorganic fillers, and nano-fillers.
- suitable fillers include, but are not limited to, metal carbonates such as calcium carbonate and sodium carbonate; silicas such as quartz, glass beads, glass bubbles; silicates such as talc, clays, calcium metasilicate; metal sulfate such as barium sulfate, calcium sulfate, aluminum sulfate; metal oxides such as calcium oxide, aluminum oxide; aluminum trihydrate, and combinations thereof.
- the abrasive articles can include a grinding aid to increase the grinding efficiency and cut rate.
- Useful grinding aids can be inorganic, such as halide salts, e.g., sodium cryolite and potassium tetrafluoroborate; or organic based, such as chlorinated waxes, e.g., polyvinyl chloride.
- the abrasive article includes cryolite and potassium tetrafluoroborate with particle size ranging from about 1 micron to about 80 microns, most typically from about 5 microns to about 30 microns.
- the concentration of grinding aid in a make coat is generally not greater than about 50 wt %, for example, the concentration of grinding aid is often about 0.1 wt % to 50 wt %, and most typically about 10 wt % to 30 wt % (all wt % based on make coat weight including abrasive grains).
- additional additives include coupling agents, such as silane coupling agents, e.g., A-174 and A-1100 available from Osi Specialties, Inc., titanate, and zircoalurminates; anti-static agents, such as graphite, carbon black, and the like; suspending agent, such as fumed silica, e.g., Cab-O-Sil M5, Aerosil 200; anti-loading agents such as zinc stearate and calcium stearate; lubricants such as wax, PTFE powder, polyethylene glycol, polypropylene glycol, and polysiloxanes; wetting agents; pigments; dispersants; and defoamers.
- coupling agents such as silane coupling agents, e.g., A-174 and A-1100 available from Osi Specialties, Inc., titanate, and zircoalurminates
- anti-static agents such as graphite, carbon black, and the like
- suspending agent such as fumed silica, e.g
- heptanoic acid lactic acid, ethyl acetoacetate, 2,2,5-trimethyl-1-3-dioxane-4-6-dione, and 2-(dimethylamino)ethylmethacrylate.
- Formulations containing neat phenolic resin and the color stabilizer agent (between 4% and 10% per resin weight) were prepared and cured at 180° C. for 12 hours; heptanoic acid was cured at 250° F. for 6 hours. The cured samples are shown in FIG. 3 .
- Ethyl lactate was tested as a color stabilizer agent in a phenolic resin size coat formulation and compared to a control formulation that did not includes ethyl lactate.
- the formulations are described below:
- Control Size Formulation (considered “non-color stable”) Ingredient % Durez 94-908 PF resin 55.39 Tamol 165A 0.81 Nalco 2341 0.32 Blue Dye/Pigment 4.94 Syn. Cryolite 38.34 Cab-O-Sil 0.20
- Color Stable Size Formulation (includes Ethyl lactate) Ingredient % Durez 94-908 PF resin 53.89 Ethyl Lactate 2.72 Tamol 165A 0.8 Nalco 2341 0.29 Blue Dye/Pigment 4.81 Syn. Cryolite 37.3 Cab-O-Sil 0.19
- Both of these formulations were applied to a pre-made coated abrasive sample.
- the samples included a backing on which a make coat and grain had been coated and cured to the normal extent before a typical size coat would be applied during a typical manufacturing process.
- FIG. 5 shows the reduction in total color shift, delta E, with the use of ethyl lactate.
- Typical processing conditions of post cure would be between 4 and 8 hours.
- the observable delta E for the non-color stable size during this time period increased from 11.14 to 17.18, yielding a difference of 6.04.
- the delta E increased only from 6.12 to 8.31, yielding a 2.19 difference, thus showing a significant reduction in color shift.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Described is a color-stable abrasive article that includes a phenolic resin binder; a color stabilizer, a colorant, and abrasive grains. The color stabilizer includes at least one carboxylic acid ester. The color-stable abrasive article is formed by a method including the steps of blending a resole and a color stabilizer to form a resole composition; contacting a plurality of abrasive particles with the resole composition; and curing the resole composition to produce the color-stable abrasive article. Thus provided are color stabilized phenolic bound abrasives and a method for making such abrasives that resist color change over time and upon exposure to high temperature and maintain the mechanical strength of a phenolic resin.
Description
- This application claims the benefit of U.S. Provisional Application No. 61/199,472, filed on Nov. 17, 2008. The entire teachings of the above application are incorporated herein by reference.
- The term “phenolic resin” describes a wide variety of resin products that result from the reaction product of phenols and aldehydes. Phenols react with formaldehydes under both acidic and basic conditions. If a based-catalyzed mixture of a phenol and a formaldehyde contains one or more moles of formaldehyde per moles of phenol, it will produce a thermosetting (one-step) resin, or “resole.” Common base compounds employed as catalysts for resole resins include the hydroxides of alkali metals, such as sodium, potassium, or lithium. While alkali metal hydroxide-catalyzed phenolic resins are commercially useful, they have an undesirable tendency to darken as they age, are heated or otherwise cured. The extent of darkening is known to be dependent on the curing or use temperature of the resin and the time of exposure to such temperature.
- Alkali metal hydroxide-catalyzed phenolic resins are commonly used as a component of the bond system of abrasive products, such as coated, bonded, and three-dimensional, low density abrasive products. The resin darkening problem is particularly pronounced in coated abrasive and three-dimensional, low density abrasive products because of the more visible presence of the bond system. Also, since the darkening increases with temperature and exposure time, any variation in the temperature profile of the product results in color variation within the product itself. Color variation is particularly noticeable for light-colored products, causing such products to be unacceptable for aesthetic or other reasons.
- Furthermore, abrasive bond systems may comprise colorants to identify the manufacturer, type of product, application, etc. The darkening of the resin can interfere with the desired coloration, causing the final product to have a different color from the colorant added. For example, a resin that normally turns yellow after curing will yield a green colored product when combined with a blue dye or pigment. On the other hand, if the same yellow resin is combined with a green dye or pigment, the resin will typically result in simply another shade of green.
- One known method for imparting color stability in phenolic resoles include adding melamine formaldehyde resin into the formulation. While this achieves color stability, it also imparts brittleness, takes longer to cure, and results in mechanical weakness and therefore reduced grinding performance in the finished product.
- Another proposed method includes the addition of an ammonium based salt to the phenolic resole. However, this method is not sufficiently effective in stabilizing the color of phenolic resin products having certain colorants, such as light blue and orange pigments or dyes.
- What is needed is an effective phenolic resin color-stabilizer that reduces the aforementioned problems without imparting undesirable properties in the finished product.
- In one aspect, the present invention is directed to a color-stable abrasive article that includes a phenolic resin binder; a color stabilizer, a colorant, and abrasive grains. The color stabilizer includes at least one carboxylic acid ester, ester, carboxylic acid, or a dione or acrylic group.
- In another aspect, the present invention is directed to a method of making a color-stable abrasive article including the steps of blending a resole and a color stabilizer to form a resole composition; contacting a plurality of abrasive particles with the resole composition; and curing the resole composition to produce the color-stable abrasive article. The color stabilizer includes at least one carboxylic acid ester, ester, carboxylic acid, or a dione or acrylic group.
- In yet another aspect, the present invention is directed to a method for abrading a work surface including applying color-stable abrasive article to a work surface in an abrading motion to remove a portion of the work surface. The abrasive product includes a binder having a phenolic resin; a color-stabilizer that includes at least one includes at least one carboxylic acid ester, ester, carboxylic acid, or a dione or acrylic group; and abrasive grains.
- Thus provided are color stabilized phenolic bound abrasives and a method for making such abrasives that resist color change over time and upon exposure to high temperature and maintain the mechanical strength of a phenolic resin.
- The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.
-
FIG. 1 is a schematic representation of a cross-sectional view of one embodiment of coated abrasive tools of the invention. -
FIG. 2 is a schematic representation of a cross-sectional view of another embodiment of coated abrasive tools of the invention. -
FIG. 3 contains photographs comparing cured phenolic resin samples containing no color stabilizer and color stabilizers of the present invention. -
FIG. 4 contains photographs comparing the color change of an embodiment of the present invention and a control over time during curing. -
FIG. 5 is a graphical representation of the color change in the samples ofFIG. 4 over time. - The teachings of all patents, published applications and references cited herein are incorporated by reference in their entirety. In particular, U.S. Ser. No. 61/199,471, entitled, “Acrylate Color-Stabilized Phenolic Bound Abrasive Products and Methods for Making Same,” of Wijaya, which application is filed concurrently herewith, is incorporated by reference herein in its entirety.
- The present invention relates to abrasive articles which include a phenolic resin binder that is color-stabilized by at least one carboxylic acid ester. The color-stabilized abrasive article further includes a colorant and abrasive grains. As used herein, an abrasive article or resin is considered to be “color-stable” if it has essentially the same color after about 8 hours of curing at about 235° F. as it does after about 2 hours of curing at about 235° F.
- The term “phenolic resin” refers to any resinous reaction product of a phenol, such as phenol, resorcinol, alkyl-substituted phenol such as cresol, xylenol, p-tert-butylphenol, and p-phenylphenol and the like, with an aldehyde, such as formaldehyde, acetaldehyde and furfuraldehyde, and the like. “Color-stabilized alkali metal hydroxide catalyzed phenolic resin” refers to a cured alkali metal hydroxide phenolic resin which is color-stabilized by a color stabilizing agent.
- The abrasive products are characterized by having a phenolic resin binder, one or more carboxylic acid ester color-stabilizers, one or more optional colorants, abrasive grains, a support member or backing, and can further include curing agents, non-reactive thermoplastic resins, fillers, grinding aids, and other additives.
- In one embodiment, the color-stable abrasive article includes a phenolic resin binder, a color stabilizer, and an abrasive material. The color-stable abrasive article can be either a bonded, structured, or coated abrasive.
- Coated abrasive tools of the invention can include a substrate, an abrasive material and at least one phenolic resin binder to hold the abrasive material to the substrate. As used herein, the term “coated abrasive tool” encompasses a nonwoven abrasive tool. The abrasive material, such as abrasive grains, particles or agglomerate thereof, can be present in one layer (e.g., resin-abrasive layer) or in two layers (e.g., make coat and size coat) of the coated abrasive tools. Examples of such coated abrasive tools that can be made by the methods of the invention are shown in
FIGS. 1 and 2 . Referring toFIG. 1 , in coatedabrasive tool 10,substrate 12 is treated withoptional backsize coat 16 andoptional presize coat 18. Overlaying theoptional presize coat 18 is makecoat 20 to whichabrasive material 14, such as abrasive grains or particles, are applied.Size coat 22 is optionally applied over makecoat 20 andabrasive material 14. Overlayingsize coat 22 isoptional supersize coat 24. Depending upon their specific applications, coatedabrasive tool 10 may or may not includebacksize coat 16 and/orpresize coat 18. Also, depending upon their specific applications, coatedabrasive tools 10 may or may not includesize coat 22 and/orsupersize coat 24. Shown inFIG. 2 is an example of coated abrasive tools that can be formed by the methods of the invention, where coatedabrasive tool 30 includes a single layer of an abrasive material and adhesive(s) (binder-abrasive layer 32) and optionallybacksize coat 16. Optionally,presize coat 18,size coat 22 andsupersize coat 24, as shown inFIG. 1 , can be included in coatedabrasive tool 30. The coated abrasive article can include a color stable phenolic resin binder in at least one layer selected from the group consisting of a binder-abrasive layer, a backsize coat, a presize coat, a make coat, a size coat, and a supersize coat. - In embodiments including size coats and supersize coats, such as that shown in
FIG. 1 , abrasive materials can be applied separately by gravity, electrostatic deposition, air stream, or as a slurry together with the polyurethane adhesive compositions. Themake coat 20 adheres the abrasive material to the surface of the substrate, and can be formed by impregnating the support substrate with the phenolic resin binder without abrasive grains. - In the embodiment of
FIG. 2 , the support substrate may be impregnated with a resin/abrasive slurry that includes an abrasive material and a resin composition including a phenolic resin binder and a color-stabilizer, to form a binder/abrasive layer 32. - In one embodiment, a method of making a color-stable abrasive article includes: blending a resole and a color-stabilizer comprising at least one carboxylic acid ester to form a resole composition; contacting a plurality of abrasive particles with the resole composition; and curing the resole composition to produce the color-stable abrasive product. In addition to the coated abrasives described above, color-stable abrasive articles formed by this method include, for example, structured abrasives and bonded abrasives.
- With respect to structured abrasives, the article is formed by any of those techniques known in the art in which abrasive structures are shaped prior to curing. Such techniques include, for example, embossing techniques. In one embodiment, for instance, a mixture including a phenolic resin binder, at least one compound selected from the group consisting of a carboxylic acid ester, an ester, a carboxylic acid, a compound including a dione, a compound including an acrylic group, and combinations of thereof, optional colorants, and abrasive grains, can be contacted with a backing and a production tool wherein the mixture adheres to one surface of the backing. Abrasive structures are thus formed that have the shape of an inside surface of the production tool.
- A bonded abrasive article can be formed by preparing an agglomerate that includes the phenolic resin binder, at least one compound selected from the group consisting of a carboxylic acid ester, an ester, a carboxylic acid, a compound including a dione group, a compound including an acrylic group and combinations of thereof, optional colorants, and abrasive grains. The agglomerate is then shaped using any of the techniques known in the art for preparing a bonded abrasive. Suitable techniques for preparing bonded abrasives are further described, for example, in U.S. Pat. No. 5,738,696 of Wu; U.S. Pat. No. 5,738,697 of Wu, et al.; and U.S. Pat. No. 6,679,758 of Bright, et al.; and U.S. Patent Publication No. 2003/0192258 A1 of Simon, the entire contents of each of which are incorporated herein by reference.
- A work surface is abraded by applying the color-stable abrasive article to a work surface in an abrading motion to remove a portion of the work surface.
- Typical phenolic resins employed in the present invention are resoles, which result from the alkali metal hydroxide catalyzed reaction of phenol and formaldehyde in a mole ratio of phenol:formaldehyde of about 1:1 to about 1:3 moles and a mole ratio of phenol:alkali metal hydroxide of about 1:1 to about 100:1. The color of such resole, or base-catalyzed phenolic resin is stabilized by the addition of one or more carboxylic esters. Durez Varcum Resin No. 94908, manufactured by Durez Corporation is one example of a water-based, single-staged liquid phenolic resin that can be used as the binder.
- The color-stabilizers employed in the present invention include carboxylic acid esters, esters, carboxylic acids, compounds containing a dione group, compounds containing an acrylic group, and combinations of thereof. For example, suitable compounds include but are not limited to methyl lactate, ethyl lactate, n-propyl lactate, butyl lactate, 2-ethylhexyl lactate, heptanoic acid, lactic acid, ethyl acetoacetate, 2,2,5-trimethyl-1-3-dioxane-4-6-dione, and 2-(dimethylamino) ethylmethacrylate.
- In certain embodiments, the color-stabilizer is present in an amount between about 1% and about 40% by weight of the phenolic resin. In other embodiments, the color-stabilizer is present in an amount between about 4% and about 10% by weight of the phenolic resin.
- Ethyl lactate has been found to be particularly effective. For example, one embodiment of the invention includes:
-
Ingredient % Durez 94-908 PF resin 53.89 Ethyl Lactate 2.72 Tamol 165A 0.8 Nalco 2341 0.29 Blue Dye/Pigment 4.81 Syn. Cryolite 37.3 Cab-O-Sil 0.19 - Heptanoic acid, lactic acid, ethyl acetoacetate, 2,2,5-trimethyl-1-3-dioxane-4-6-dione, 2-(dimethylamino)ethylmethacrylate have demonstrated to be effective color stabilizer agents when added in amounts as little as 5% or 10% of the total weight of the resin
- The abrasive product can include a colorant, for example, dyes or pigments. Generally, a portion of the colorant can be visible through the cured resin. In some embodiments, a portion of the colorant is included in the cured resin, in an optional support substrate, and/or in a coating between the optional support substrate and the cured resin. In particular embodiments, the colorant can include organic polycyclic dyes, organic monoazo dyes, organic diazo dyes, organometal complexes, inorganic pigments such as metal oxides or complexes. Dyes can be perinone, anthraquinone, azo dye complexes and thioindigoid.
- A fluorescent colorant is a dye or pigment containing a fluorescent organic molecule. Detailed descriptions of fluorescent colorants can be found in Zollinger, H., “Color Chemistry: Synthesis, Properties, and Applications of Organic Dyes and Pigments”, 2nd Ed., VCH, New York, 1991, the entire teachings of which are incorporated herein by reference. As used herein, a fluorescent colorant can be, for example, a xanthene, thioxanthene, fluorene (e.g., fluoresceins, rhodamines, eosines, phloxines, uranines, succineins, sacchareins, rosamines, and rhodols), napthylamine, naphthylimide, naphtholactam, azalactone, methine, oxazine, thiazine, benzopyran, coumarin, aminoketone, anthraquinone, isoviolanthrone, anthrapyridone, pyranine, pyrazolone, benzothiazene, perylene, or thioindigoid. More preferably, a fluorescent colorant is selected from the group consisting of xanthenes, thioxanthenes, benzopyrans, coumarins, aminoketones, anthraquinones, isoviolanthrones, anthrapyridones, pyranines, pyrazolones, benzothiazenes, thioindigoids and fluorenes. Most preferably, the fluorescent colorant is a thioxanthene or thioxanthene.
- One skilled in the art understands that, for many, commercially available colorants, the specific chemical structure of individual derivatives within a class, e.g., thioxanthene derivatives, may not be publicly available. Thus, specific fluorescent colorants are typically referred to by Colour Index (C.I.) name, as defined in “Colour Index International”, 4th Ed. American Association of Textile Chemists and Colorists, Research Triangle Park, NC, 2002. The Colour Index is also available online at www.colour-index.org. The entire teachings of the Colour Index are incorporated herein by reference.
- Examples of preferred fluorescent colorants include C.I. Solvent Orange 63 (Hostasol Red GG, Hoechst AG, Frankfurt, Germany), C.I. Solvent Yellow 98 (Hostasol Yellow 3G, Hoechst AG, Frankfurt, Germany), and C.I. Solvent Orange 118 (FL Orange SFR, Keystone Aniline Corporation, Chicago, Ill.).
- The amount of colorant that can be employed depends on the particulars of the intended use, the characteristics of the colorant, the other components in the composition, and the like. One skilled in the art will know how to judge these details to determine the amount of colorant for a particular use. Typically, the amount of colorant will be a weight fraction of the total composition of between about 0.01 and about 2%, more preferably between about 0.05 and about 0.5%, and most preferably, about 0.2%.
- In specific embodiments, the colorant is a red, orange, yellow, green, blue, indigo, or violet colorant. In specific embodiments, the colorant is fluorescent, for example, a fluorescent red, fluorescent orange (blaze orange), fluorescent yellow, fluorescent green, or the like.
- Examples of suitable colorants include Elcoment Orange GS (Blaze); Elcoment Green Nort Liq.; and especially Elcoment Blue RS, all of which are available from Greenville Colorants located in Greenville, S.C.; and Akrosperse E5137, which is available from Akrochem Corp. located in Akron, Ohio.
- The colorant can be employed to identify the abrasive product, e.g., for commercial branding, for usage indication such as wet, dry, wood, metal, or the like, or for identification of grit size, or the like.
- Abrasive grains can include of any one or a combination of grains, including, but not limited to, silica, alumina (fused or sintered), zirconia, zirconia/alumina oxides, silicon carbide, garnet, diamond, cubic boron nitride (CBN), silicon nitride, ceria, titanium dioxide, titanium diboride, boron carbide, tin oxide, tungsten carbide, titanium carbide, iron oxide, chromia, flint, and emery. For example, the abrasive grains may be selected from a group consisting of silica, alumina, zirconia, silicon carbide, silicon nitride, boron nitride, garnet, diamond, cofused alumina zirconia, ceria, titanium diboride, boron carbide, flint, emery, alumina nitride, and a blend thereof. In some instances, dense abrasive grains comprised principally of alpha-alumina and/or gamma alumina can be used.
- The abrasive grains can also include abrasive agglomerate grains, also known as agglomerated abrasive grains. Abrasive agglomerate grains include abrasive particles adhered together by a particle binder material. The abrasive particles present in abrasive agglomerate grains can include one or more of the abrasives known for use in abrasive tools such as, for example, silica, alumina (fused or sintered), zirconia, zirconia/alumina oxides, silicon carbide, garnet, diamond, cubic boron nitride (CBN), silicon nitride, ceria, titanium dioxide, titanium diboride, boron carbide, tin oxide, tungsten carbide, titanium carbide, iron oxide, chromia, flint, emery, and combinations thereof. The abrasive particles can be of any size or shape. The abrasive agglomerate grains can be adhered together by a particle binder material such as, for example, a metallic, organic, or vitreous material, or a combination of such materials. Abrasive agglomerate grains suitable for use in the present invention are further described in U.S. Pat. No. 6,797,023, to Knapp, et al., the entire contents of which are incorporated herein by reference.
- The abrasive grains can have one or more particular shapes. Example of such particular shapes include rods, triangles, pyramids, cones, solid spheres, hollow spheres and the like. Alternatively, the abrasive grains can be randomly shaped.
- Typically, the abrasive grains have an average grain size not greater than 2000 microns such as, for example, not greater than about 1500 microns. In another example, the abrasive grain size is not greater than about 750 microns, such as not greater than about 350 microns. In some embodiments, the abrasive grain size may be at least 0.1 microns, such as from about 0.1 microns to about 1500 microns, and, more typically, from about 0.1 microns to about 200 microns or from about 1 micron to about 100 microns. The grain size of the abrasive grains is typically specified to be the longest dimension of the abrasive grain. Generally, there is a range distribution of grain sizes. In some instances, the grain size distribution is tightly controlled.
- The abrasive articles can include a support member, or backing. The backing can be flexible or rigid. The backing can be made of any number of various materials including those conventionally used as backings in the manufacture of coated abrasives. Suitable backings can include polymeric films (for example, a primed film), such as polyolefin films (e.g., polypropylene including biaxially oriented polypropylene), polyester films (e.g., polyethylene terephthalate), polyamide films, or cellulose ester films; metal foils; meshes; foams (e.g., natural sponge material or polyurethane foam); cloth (e.g., woven, non-woven, fleeced, stitch bonded, or quilted, or cloth made from fibers or yarns comprising polyester, nylon, silk, cotton, poly-cotton or rayon); paper; vulcanized paper; vulcanized rubber; vulcanized fiber; nonwoven materials; a treated backing thereof; or any combination thereof.
- The backing can have at least one of a saturant, a presize layer or a backsize layer. The purpose of these layers typically is to seal the backing or to protect yarn or fibers in the backing. If the backing is a cloth material, at least one of these layers typically is used. The addition of the presize layer or backsize layer may additionally result in a “smoother” surface on either the front or the back side of the backing. Other optional layers known in the art can also be used (for example, a tie layer; see U.S. Pat. No. 5,700,302 of Stoetzel, et al., the entire contents of which are incorporated herein by reference).
- In some embodiments, the abrasive articles are intended for use as fine grinding materials and hence a very smooth surface can be preferred. Examples of such smooth surfaced backings include finely calendered papers, plastic films or fabrics with smooth surface coatings.
- The backing can have antistatic properties. The addition of an antistatic material can reduce the tendency of the abrasive article to accumulate static electricity when sanding wood or wood-like materials. Additional details regarding antistatic backings and backing treatments can be found in, for example, U.S. Pat. No. 5,108,463 of Buchanan, et al.; U.S. Pat. No. 5,137,542 of Buchanan, et al.; U.S. Pat. No. 5,328,716 of Buchanan; and U.S. Pat. No. 5,560,753 of Buchanan, et al., the entire contents of which are incorporated herein by reference.
- The backing can include a fibrous reinforced thermoplastic such as described, for example, in U.S. Pat. No. 5,417,726 of Stout, et al., or an endless spliceless belt, as described, for example, in U.S. Pat. No. 5,573,619 of Benedict, et al., the entire contents of which are incorporated herein by reference. Likewise, the backing can include a polymeric substrate having hooking stems projecting therefrom such as that described, for example, in U.S. Pat. No. 5,505,747 of Chesley, et al., the entire contents of which are incorporated herein by reference. Similarly, the backing can include a loop fabric such as that described, for example, in U.S. Pat. No. 5,565,011 of Follett, et al., the entire contents of which are incorporated herein by reference.
- The abrasive articles of the present invention can also include various other components, such as curing additives, non-reactive thermoplastic resins, fillers, grinding aids; and other additives.
- In some embodiments, the abrasive article includes a curing additive, such as a photoinitiator, which generates free radicals when exposed to radiation, e.g., UV radiation. Free-radical generators can include organic peroxides, azo compounds, quinones, benzophenones, nitroso compounds, acryl halides, hydrozones, mercapto compounds, pyrylium compounds, triacrylimidazoles, bisimidazoles, chloroalkyltriazines, benzoin ethers, benzil ketals, thioxanthones and acetophenones, including derivatives of such compounds. Among these the most commonly employed photoinitiators are the benzil ketals such as 2,2-dimethoxy-2-phenyl acetophenone (available from Ciba Specialty Chemicals under the trademark IRGACURE® 651) and acetophenone derivatives such as 2,2-diethoxyacetophenone (“DEAP”, which is commercially available from First Chemical Corporation), 2-hydroxy-2-methyl-1-phenyl-propan-1-one (“HMPP,” which is commercially available from Ciba Specialty Chemicals under the trademark DAROCUR® 1173), 2-benzyl-2-N,N-dimethylamino-1-(4-morpholinophenyl)-1-butanone, (which is commercially available from Ciba Specialty Chemicals under the trademark IRGACURE® 369); and 2-methyl-1-(4-(methylthio)phenyl)-2-morpholinopropan-1-one, (available from Ciba Specialty Chemicals under the trademark IRGACURE® 907).
- The abrasive articles can include a non-reactive thermoplastic resin such as, for example, polypropylene glycol, polyethylene glycol, and polyoxypropylene-polyoxyethene block copolymer.
- Fillers include organic fillers, inorganic fillers, and nano-fillers. Examples of suitable fillers include, but are not limited to, metal carbonates such as calcium carbonate and sodium carbonate; silicas such as quartz, glass beads, glass bubbles; silicates such as talc, clays, calcium metasilicate; metal sulfate such as barium sulfate, calcium sulfate, aluminum sulfate; metal oxides such as calcium oxide, aluminum oxide; aluminum trihydrate, and combinations thereof.
- The abrasive articles can include a grinding aid to increase the grinding efficiency and cut rate. Useful grinding aids can be inorganic, such as halide salts, e.g., sodium cryolite and potassium tetrafluoroborate; or organic based, such as chlorinated waxes, e.g., polyvinyl chloride. In one particular embodiment, the abrasive article includes cryolite and potassium tetrafluoroborate with particle size ranging from about 1 micron to about 80 microns, most typically from about 5 microns to about 30 microns. The concentration of grinding aid in a make coat is generally not greater than about 50 wt %, for example, the concentration of grinding aid is often about 0.1 wt % to 50 wt %, and most typically about 10 wt % to 30 wt % (all wt % based on make coat weight including abrasive grains).
- Examples of additional additives include coupling agents, such as silane coupling agents, e.g., A-174 and A-1100 available from Osi Specialties, Inc., titanate, and zircoalurminates; anti-static agents, such as graphite, carbon black, and the like; suspending agent, such as fumed silica, e.g., Cab-O-Sil M5, Aerosil 200; anti-loading agents such as zinc stearate and calcium stearate; lubricants such as wax, PTFE powder, polyethylene glycol, polypropylene glycol, and polysiloxanes; wetting agents; pigments; dispersants; and defoamers.
- The invention will now be further and specifically described by the following examples which are not intended to be limiting.
- The following compounds were tested for performance as color stabilizer agents: heptanoic acid, lactic acid, ethyl acetoacetate, 2,2,5-trimethyl-1-3-dioxane-4-6-dione, and 2-(dimethylamino)ethylmethacrylate. Formulations containing neat phenolic resin and the color stabilizer agent (between 4% and 10% per resin weight) were prepared and cured at 180° C. for 12 hours; heptanoic acid was cured at 250° F. for 6 hours. The cured samples are shown in
FIG. 3 . - Ethyl lactate was tested as a color stabilizer agent in a phenolic resin size coat formulation and compared to a control formulation that did not includes ethyl lactate. The formulations are described below:
-
Control Size Formulation (considered “non-color stable”) Ingredient % Durez 94-908 PF resin 55.39 Tamol 165A 0.81 Nalco 2341 0.32 Blue Dye/Pigment 4.94 Syn. Cryolite 38.34 Cab-O-Sil 0.20 -
Color Stable Size Formulation (includes Ethyl lactate) Ingredient % Durez 94-908 PF resin 53.89 Ethyl Lactate 2.72 Tamol 165A 0.8 Nalco 2341 0.29 Blue Dye/Pigment 4.81 Syn. Cryolite 37.3 Cab-O-Sil 0.19 - Both of these formulations were applied to a pre-made coated abrasive sample. The samples included a backing on which a make coat and grain had been coated and cured to the normal extent before a typical size coat would be applied during a typical manufacturing process.
- After the two size coats had been applied to the pre-made coated abrasive and given a standard size cure, 5 samples of each were placed into an oven at 235° F. and a single sample was pulled from the oven after 2, 4, 6, 8 and 24 hours of dwell time to emulate a “post cure” process. The visual comparison of the color shift is shown in
FIG. 4 . - In addition to this qualitative comparison of color shift, a more quantitative measurement was made using a MiniScan XE Plus Colorimeter supplied by HunterLab, the results of which are provided in
FIG. 5 . -
FIG. 5 shows the reduction in total color shift, delta E, with the use of ethyl lactate. Typical processing conditions of post cure would be between 4 and 8 hours. In this case, the observable delta E for the non-color stable size during this time period increased from 11.14 to 17.18, yielding a difference of 6.04. With the use of ethyl lactate at 5% by weight of the resin, the delta E increased only from 6.12 to 8.31, yielding a 2.19 difference, thus showing a significant reduction in color shift. - While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
Claims (18)
1. A color-stable abrasive article, comprising:
a) a binder comprising a phenolic resin;
b) a color-stabilizer that includes at least one carboxylic acid ester; and
c) abrasive grains.
2. The color-stable abrasive article of claim 1 , wherein the color-stabilizer includes a compound selected from the group consisting of carboxylic acid esters, esters, carboxylic acids, compounds including a dione group, compounds including an acrylic group, and combinations of thereof.
3. The color-stable abrasive article of claim 2 , wherein the color-stabilizer includes a lactate.
4. The color-stable abrasive article of claim 2 , wherein the color-stabilizer includes at least one compound selected from the group consisting of heptanoic acid, lactic acid, ethyl acetoacetate, 2,2,5-trimethyl-1-3-dioxane-4-6-dione, ethyl lactate, and 2-(dimethylamino)ethylmethacrylate.
5. The color-stable abrasive article of claim 1 , wherein the phenolic resin is a resole.
6. The color-stable abrasive article of claim 1 , wherein the color-stabilizer is present in an amount between about 1% and about 40% by weight of the phenolic resin.
7. The color-stable abrasive article of claim 6 , wherein the color-stabilizer is present in an amount between about 4% and about 10% by weight of the phenolic resin.
8. The color-stable abrasive article of claim 1 , further comprising a support member.
9. The color-stable abrasive article of claim 1 , further comprising a co-solvent.
10. The color-stable abrasive article of claim 9 , wherein the co-solvent is glycol.
11. The color-stable abrasive article of claim 1 , further comprising a curing additive.
12. The color-stable abrasive article of claim 11 , wherein the curing additive includes one or more additives selected from the group of peroxide and a UV photo-initiator.
13. The color-stable abrasive article of claim 1 , having no visually perceptible color change after about 8 hours of curing at about 235° F. relative to the same article after about 2 hours of curing at about 235° F.
14. The color-stable abrasive article of claim 1 , further comprising a colorant.
15. The color-stable abrasive article of claim 1 , wherein the article is a bonded, structured, or coated abrasive article.
16. The color-stable abrasive article of claim 15 , wherein the phenolic resin binder and color stabilizer are present in at least one layer selected from the group consisting of a binder-abrasive layer, a backsize coat, a presize coat, a make coat, a size coat, and a supersize coat.
17. A method of making a color-stable abrasive article, comprising the steps of:
a) blending a resole and a color-stabilizer comprising at least one carboxylic acid ester to form a resole composition;
b) contacting a plurality of abrasive particles with the resole composition; and
c) curing the resole composition to produce the color-stable abrasive article.
18. A method for abrading a work surface, comprising applying color-stable abrasive article to a work surface in an abrading motion to remove a portion of the work surface, the abrasive product including:
a) a binder comprising a phenolic resin;
b) a color-stabilizer that includes a compound selected from the group consisting of carboxylic acid esters, esters, carboxylic acids, compounds including a dione group, compounds including an acrylic group, and combinations of thereof; and
c) abrasive grains.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/619,394 US20100130104A1 (en) | 2008-11-17 | 2009-11-16 | Carboxylic acid ester color-stabilized phenolic bound abrasive products and methods for making same |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US19947208P | 2008-11-17 | 2008-11-17 | |
| US12/619,394 US20100130104A1 (en) | 2008-11-17 | 2009-11-16 | Carboxylic acid ester color-stabilized phenolic bound abrasive products and methods for making same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20100130104A1 true US20100130104A1 (en) | 2010-05-27 |
Family
ID=42170761
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/619,394 Abandoned US20100130104A1 (en) | 2008-11-17 | 2009-11-16 | Carboxylic acid ester color-stabilized phenolic bound abrasive products and methods for making same |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US20100130104A1 (en) |
| EP (1) | EP2367893A4 (en) |
| JP (1) | JP2012509195A (en) |
| KR (1) | KR101277637B1 (en) |
| CN (1) | CN102272257A (en) |
| AU (1) | AU2009313814B2 (en) |
| BR (1) | BRPI0921157A2 (en) |
| CA (1) | CA2743858A1 (en) |
| MX (1) | MX2011005164A (en) |
| WO (1) | WO2010057075A2 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100227531A1 (en) * | 2008-11-17 | 2010-09-09 | Jony Wijaya | Acrylate color-stabilized phenolic bound abrasive products and methods for making same |
| US20130040537A1 (en) * | 2010-04-27 | 2013-02-14 | Mark G. Schwabel | Ceramic shaped abrasive particles, methods of making the same, and abrasive articles containing the same |
| US20130225054A1 (en) * | 2010-11-18 | 2013-08-29 | 3M Innovative Properties Company | Convolute abrasive wheel and method of making |
| WO2016109780A1 (en) * | 2014-12-31 | 2016-07-07 | Saint-Gobain Abrasives, Inc. | Colored abrasive articles and method of making colored abrasive articles |
| WO2018118596A3 (en) * | 2016-12-22 | 2018-08-02 | 3M Innovative Properties Company | Resin bonded-abrasive article having multiple colors |
| US20220080554A1 (en) * | 2019-02-11 | 2022-03-17 | 3M Innovative Properties Company | Abrasive articles and methods of making and using the same |
| WO2024145518A1 (en) * | 2022-12-28 | 2024-07-04 | Saint-Gobain Abrasives, Inc. | Abrasive article with eco-friendly solvent |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| BR112016012064A2 (en) * | 2013-12-06 | 2017-08-08 | Saint Gobain Abrasives Inc | COATED ABRASIVE ARTICLE INCLUDING A NON-WOVEN MATERIAL |
| JP2017518887A (en) * | 2014-04-14 | 2017-07-13 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | Abrasive articles containing shaped abrasive particles |
| FR3041650B1 (en) * | 2015-09-30 | 2017-10-20 | Commissariat Energie Atomique | LUMINESCENT SUBSTRATE CONTAINING ABRASIVE PARTICLES, AND PROCESS FOR PREPARING THE SAME |
| KR102215243B1 (en) * | 2018-10-30 | 2021-02-15 | 주식회사 인실리코 | Thermochromic composition and thermochromic microcapsule comprising the same |
| CN116179050A (en) * | 2023-02-28 | 2023-05-30 | 东南大学 | A kind of antiskid repair coating for ship deck and its application structure |
Citations (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3804706A (en) * | 1970-07-29 | 1974-04-16 | Kuraray Co | Inorganic fiber board with binder of thermosetting resin and thermoplastic vinylic resin |
| US4366303A (en) * | 1981-12-11 | 1982-12-28 | Union Carbide Corporation | Particulate resoles with improved cure rate and sinter resistance |
| US4547204A (en) * | 1980-10-08 | 1985-10-15 | Carborundum Abrasives Company | Resin systems for high energy electron curable resin coated webs |
| US4588419A (en) * | 1980-10-08 | 1986-05-13 | Carborundum Abrasives Company | Resin systems for high energy electron curable resin coated webs |
| US4644703A (en) * | 1986-03-13 | 1987-02-24 | Norton Company | Plural layered coated abrasive |
| US4903440A (en) * | 1988-11-23 | 1990-02-27 | Minnesota Mining And Manufacturing Company | Abrasive product having binder comprising an aminoplast resin |
| US4927431A (en) * | 1988-09-08 | 1990-05-22 | Minnesota Mining And Manufacturing Company | Binder for coated abrasives |
| US5096983A (en) * | 1990-08-02 | 1992-03-17 | Borden, Inc. | Method for making a phenolic resole resin composition having extended work life |
| US5213591A (en) * | 1992-07-28 | 1993-05-25 | Ahmet Celikkaya | Abrasive grain, method of making same and abrasive products |
| US5236472A (en) * | 1991-02-22 | 1993-08-17 | Minnesota Mining And Manufacturing Company | Abrasive product having a binder comprising an aminoplast binder |
| US5389716A (en) * | 1992-06-26 | 1995-02-14 | Georgia-Pacific Resins, Inc. | Fire resistant cured binder for fibrous mats |
| US5928394A (en) * | 1997-10-30 | 1999-07-27 | Minnesota Mining And Manufacturing Company | Durable abrasive articles with thick abrasive coatings |
| US6056794A (en) * | 1999-03-05 | 2000-05-02 | 3M Innovative Properties Company | Abrasive articles having bonding systems containing abrasive particles |
| US6228133B1 (en) * | 1998-05-01 | 2001-05-08 | 3M Innovative Properties Company | Abrasive articles having abrasive layer bond system derived from solid, dry-coated binder precursor particles having a fusible, radiation curable component |
| US20020026752A1 (en) * | 1996-09-11 | 2002-03-07 | Minnesota Mining And Manufacturing Company | Abrasive article and method of making |
| US20030024170A1 (en) * | 2001-03-20 | 2003-02-06 | Larson Eric G. | Discrete particles that include a polymeric material and articles formed therefrom |
| US20040029511A1 (en) * | 2001-03-20 | 2004-02-12 | Kincaid Don H. | Abrasive articles having a polymeric material |
| US20070011951A1 (en) * | 2005-06-29 | 2007-01-18 | Gaeta Anthony C | High-performance resin for abrasive products |
| US20090241432A1 (en) * | 2005-03-24 | 2009-10-01 | Solvay Fluor Gmbh | Abrasive means, use of alkali metal fluoroaluminates or alkaline earth fluoroaluminates for stabilizing polymers against change in color by the action of heat, and mixture consisting of potassium tetrafluoroaluminate and dipotassium pentafluoroaluminate and of other abrasive-active fillers |
| US20100227531A1 (en) * | 2008-11-17 | 2010-09-09 | Jony Wijaya | Acrylate color-stabilized phenolic bound abrasive products and methods for making same |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4751138A (en) * | 1986-08-11 | 1988-06-14 | Minnesota Mining And Manufacturing Company | Coated abrasive having radiation curable binder |
| US5232468A (en) * | 1990-02-13 | 1993-08-03 | Minnesota Mining And Manufacturing Company | Abrasive products bonded with color stabilized base catalyzed phenolic resin |
| JPH0778030B2 (en) * | 1991-08-20 | 1995-08-23 | 千代田化工建設株式会社 | Method for producing high-quality bisphenol A |
| JP2744572B2 (en) * | 1993-02-17 | 1998-04-28 | 鐘紡株式会社 | Method for preventing discoloration of polyphenol compound-containing external preparation for skin |
| US5414149A (en) * | 1994-03-02 | 1995-05-09 | General Electric Company | Color stable bisphenols |
| DE59806917D1 (en) * | 1997-09-29 | 2003-02-20 | Ciba Sc Holding Ag | Stabilizer mixture for organic materials |
| US5980597A (en) * | 1998-04-09 | 1999-11-09 | Norton Company | Color stable coated abrasives |
| JP2004337986A (en) * | 2003-05-12 | 2004-12-02 | Noritake Co Ltd | Cylindrical resin grindstone and method of manufacturing the same |
| JP2005319528A (en) * | 2004-05-07 | 2005-11-17 | Three M Innovative Properties Co | Method of polishing curved surface of workpiece |
-
2009
- 2009-11-16 KR KR1020117013261A patent/KR101277637B1/en not_active Expired - Fee Related
- 2009-11-16 BR BRPI0921157A patent/BRPI0921157A2/en not_active IP Right Cessation
- 2009-11-16 CN CN2009801533960A patent/CN102272257A/en active Pending
- 2009-11-16 CA CA2743858A patent/CA2743858A1/en not_active Abandoned
- 2009-11-16 JP JP2011536553A patent/JP2012509195A/en not_active Ceased
- 2009-11-16 US US12/619,394 patent/US20100130104A1/en not_active Abandoned
- 2009-11-16 AU AU2009313814A patent/AU2009313814B2/en not_active Ceased
- 2009-11-16 MX MX2011005164A patent/MX2011005164A/en not_active Application Discontinuation
- 2009-11-16 WO PCT/US2009/064546 patent/WO2010057075A2/en not_active Ceased
- 2009-11-16 EP EP09826893.1A patent/EP2367893A4/en not_active Withdrawn
Patent Citations (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3804706A (en) * | 1970-07-29 | 1974-04-16 | Kuraray Co | Inorganic fiber board with binder of thermosetting resin and thermoplastic vinylic resin |
| US4547204A (en) * | 1980-10-08 | 1985-10-15 | Carborundum Abrasives Company | Resin systems for high energy electron curable resin coated webs |
| US4588419A (en) * | 1980-10-08 | 1986-05-13 | Carborundum Abrasives Company | Resin systems for high energy electron curable resin coated webs |
| US4366303A (en) * | 1981-12-11 | 1982-12-28 | Union Carbide Corporation | Particulate resoles with improved cure rate and sinter resistance |
| US4644703A (en) * | 1986-03-13 | 1987-02-24 | Norton Company | Plural layered coated abrasive |
| US4927431A (en) * | 1988-09-08 | 1990-05-22 | Minnesota Mining And Manufacturing Company | Binder for coated abrasives |
| US4903440A (en) * | 1988-11-23 | 1990-02-27 | Minnesota Mining And Manufacturing Company | Abrasive product having binder comprising an aminoplast resin |
| US5096983A (en) * | 1990-08-02 | 1992-03-17 | Borden, Inc. | Method for making a phenolic resole resin composition having extended work life |
| US5236472A (en) * | 1991-02-22 | 1993-08-17 | Minnesota Mining And Manufacturing Company | Abrasive product having a binder comprising an aminoplast binder |
| US5389716A (en) * | 1992-06-26 | 1995-02-14 | Georgia-Pacific Resins, Inc. | Fire resistant cured binder for fibrous mats |
| US5213591A (en) * | 1992-07-28 | 1993-05-25 | Ahmet Celikkaya | Abrasive grain, method of making same and abrasive products |
| US20020026752A1 (en) * | 1996-09-11 | 2002-03-07 | Minnesota Mining And Manufacturing Company | Abrasive article and method of making |
| US5928394A (en) * | 1997-10-30 | 1999-07-27 | Minnesota Mining And Manufacturing Company | Durable abrasive articles with thick abrasive coatings |
| US6228133B1 (en) * | 1998-05-01 | 2001-05-08 | 3M Innovative Properties Company | Abrasive articles having abrasive layer bond system derived from solid, dry-coated binder precursor particles having a fusible, radiation curable component |
| US20010011108A1 (en) * | 1998-05-01 | 2001-08-02 | 3M Innovative Properties Company | Abrasive articles having abrasive layer bond system derived from solid, dry-coated binder precursor particles having a fusible, radiation curable component |
| US6753359B2 (en) * | 1998-05-01 | 2004-06-22 | 3M Innovative Properties Company | Abrasive articles having abrasive layer bond system derived from solid, dry-coated binder precursor particles having a fusible, radiation curable component |
| US6441058B2 (en) * | 1998-05-01 | 2002-08-27 | 3M Innovative Properties Company | Abrasive articles having abrasive layer bond system derived from solid, dry-coated binder precursor particles having a fusible, radiation curable component |
| US20020123548A1 (en) * | 1998-05-01 | 2002-09-05 | 3M Innovative Properties Company | Abrasive articles having abrasive layer bond system derived from solid, dry-coated binder precursor particles having a fusible, radiation curable component |
| US6056794A (en) * | 1999-03-05 | 2000-05-02 | 3M Innovative Properties Company | Abrasive articles having bonding systems containing abrasive particles |
| US6582487B2 (en) * | 2001-03-20 | 2003-06-24 | 3M Innovative Properties Company | Discrete particles that include a polymeric material and articles formed therefrom |
| US20040029511A1 (en) * | 2001-03-20 | 2004-02-12 | Kincaid Don H. | Abrasive articles having a polymeric material |
| US20030024170A1 (en) * | 2001-03-20 | 2003-02-06 | Larson Eric G. | Discrete particles that include a polymeric material and articles formed therefrom |
| US20090241432A1 (en) * | 2005-03-24 | 2009-10-01 | Solvay Fluor Gmbh | Abrasive means, use of alkali metal fluoroaluminates or alkaline earth fluoroaluminates for stabilizing polymers against change in color by the action of heat, and mixture consisting of potassium tetrafluoroaluminate and dipotassium pentafluoroaluminate and of other abrasive-active fillers |
| US20070011951A1 (en) * | 2005-06-29 | 2007-01-18 | Gaeta Anthony C | High-performance resin for abrasive products |
| US20100227531A1 (en) * | 2008-11-17 | 2010-09-09 | Jony Wijaya | Acrylate color-stabilized phenolic bound abrasive products and methods for making same |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100227531A1 (en) * | 2008-11-17 | 2010-09-09 | Jony Wijaya | Acrylate color-stabilized phenolic bound abrasive products and methods for making same |
| US20130040537A1 (en) * | 2010-04-27 | 2013-02-14 | Mark G. Schwabel | Ceramic shaped abrasive particles, methods of making the same, and abrasive articles containing the same |
| US9573250B2 (en) * | 2010-04-27 | 2017-02-21 | 3M Innovative Properties Company | Ceramic shaped abrasive particles, methods of making the same, and abrasive articles containing the same |
| US20130225054A1 (en) * | 2010-11-18 | 2013-08-29 | 3M Innovative Properties Company | Convolute abrasive wheel and method of making |
| US9079294B2 (en) * | 2010-11-18 | 2015-07-14 | 3M Innovative Properties Company | Convolute abrasive wheel and method of making |
| WO2016109780A1 (en) * | 2014-12-31 | 2016-07-07 | Saint-Gobain Abrasives, Inc. | Colored abrasive articles and method of making colored abrasive articles |
| WO2018118596A3 (en) * | 2016-12-22 | 2018-08-02 | 3M Innovative Properties Company | Resin bonded-abrasive article having multiple colors |
| US20220080554A1 (en) * | 2019-02-11 | 2022-03-17 | 3M Innovative Properties Company | Abrasive articles and methods of making and using the same |
| US12296436B2 (en) * | 2019-02-11 | 2025-05-13 | 3M Innovative Properties Company | Abrasive articles and methods of making and using the same |
| WO2024145518A1 (en) * | 2022-12-28 | 2024-07-04 | Saint-Gobain Abrasives, Inc. | Abrasive article with eco-friendly solvent |
Also Published As
| Publication number | Publication date |
|---|---|
| KR101277637B1 (en) | 2013-06-25 |
| EP2367893A4 (en) | 2015-02-25 |
| BRPI0921157A2 (en) | 2019-09-24 |
| KR20110095309A (en) | 2011-08-24 |
| MX2011005164A (en) | 2011-07-29 |
| AU2009313814B2 (en) | 2013-09-26 |
| EP2367893A2 (en) | 2011-09-28 |
| CA2743858A1 (en) | 2010-05-20 |
| WO2010057075A2 (en) | 2010-05-20 |
| WO2010057075A3 (en) | 2010-07-08 |
| CN102272257A (en) | 2011-12-07 |
| AU2009313814A1 (en) | 2010-05-20 |
| JP2012509195A (en) | 2012-04-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2009313814B2 (en) | Carboxylic acid ester color-stabilized phenolic bound abrasive products and methods for making same | |
| TWI343854B (en) | High-performance resin for abrasive products | |
| US20100227531A1 (en) | Acrylate color-stabilized phenolic bound abrasive products and methods for making same | |
| CA2823666C (en) | Abrasive particle and method of forming same | |
| US20140378036A1 (en) | Abrasive article and method of making same | |
| HK1117557B (en) | High performance resin for abrasive products |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SAINT-GOBAIN ABRASIFS, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EVERTS, DARRELL K.;FLORES, MARCOS;SIGNING DATES FROM 20100113 TO 20100114;REEL/FRAME:023873/0783 Owner name: SAINT-GOBAIN ABRASIVES, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EVERTS, DARRELL K.;FLORES, MARCOS;SIGNING DATES FROM 20100113 TO 20100114;REEL/FRAME:023873/0783 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |