US20100113798A1 - Process for preparation of irbesartan - Google Patents
Process for preparation of irbesartan Download PDFInfo
- Publication number
- US20100113798A1 US20100113798A1 US12/683,713 US68371310A US2010113798A1 US 20100113798 A1 US20100113798 A1 US 20100113798A1 US 68371310 A US68371310 A US 68371310A US 2010113798 A1 US2010113798 A1 US 2010113798A1
- Authority
- US
- United States
- Prior art keywords
- formula
- acid
- group
- mixture
- irbesartan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 86
- 239000002947 C09CA04 - Irbesartan Substances 0.000 title claims abstract description 58
- 229960002198 irbesartan Drugs 0.000 title claims abstract description 58
- 238000002360 preparation method Methods 0.000 title claims abstract description 36
- YCPOHTHPUREGFM-UHFFFAOYSA-N irbesartan Chemical compound O=C1N(CC=2C=CC(=CC=2)C=2C(=CC=CC=2)C=2[N]N=NN=2)C(CCCC)=NC21CCCC2 YCPOHTHPUREGFM-UHFFFAOYSA-N 0.000 title claims abstract 10
- 150000001875 compounds Chemical class 0.000 claims abstract description 44
- JBDSSBMEKXHSJF-UHFFFAOYSA-N cyclopentanecarboxylic acid Chemical compound OC(=O)C1CCCC1 JBDSSBMEKXHSJF-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000003960 organic solvent Substances 0.000 claims abstract description 23
- 239000002253 acid Substances 0.000 claims abstract description 22
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical class C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 125000004093 cyano group Chemical group *C#N 0.000 claims abstract description 6
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims abstract description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 90
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 claims description 34
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 23
- LRGAANMQNVMQFA-UHFFFAOYSA-N 2-[4-(aminomethyl)phenyl]benzonitrile Chemical group C1=CC(CN)=CC=C1C1=CC=CC=C1C#N LRGAANMQNVMQFA-UHFFFAOYSA-N 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 22
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 20
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 18
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 16
- 239000002585 base Substances 0.000 claims description 16
- -1 phosphonium compound Chemical class 0.000 claims description 15
- 229940098779 methanesulfonic acid Drugs 0.000 claims description 14
- 239000003444 phase transfer catalyst Substances 0.000 claims description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 12
- 229940078552 o-xylene Drugs 0.000 claims description 11
- IJIBRSFAXRFPPN-UHFFFAOYSA-N 5-bromo-2-methoxybenzaldehyde Chemical compound COC1=CC=C(Br)C=C1C=O IJIBRSFAXRFPPN-UHFFFAOYSA-N 0.000 claims description 10
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 9
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 claims description 9
- 125000003831 tetrazolyl group Chemical group 0.000 claims description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 8
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 8
- ONNMHNDIUIHULO-UHFFFAOYSA-N 1-aminocyclopentane-1-carboxylic acid;hydrochloride Chemical compound Cl.OC(=O)C1(N)CCCC1 ONNMHNDIUIHULO-UHFFFAOYSA-N 0.000 claims description 7
- XGISHOFUAFNYQF-UHFFFAOYSA-N pentanoyl chloride Chemical compound CCCCC(Cl)=O XGISHOFUAFNYQF-UHFFFAOYSA-N 0.000 claims description 7
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 6
- SHFJWMWCIHQNCP-UHFFFAOYSA-M hydron;tetrabutylazanium;sulfate Chemical compound OS([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC SHFJWMWCIHQNCP-UHFFFAOYSA-M 0.000 claims description 6
- 239000008096 xylene Substances 0.000 claims description 6
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 4
- 238000007327 hydrogenolysis reaction Methods 0.000 claims description 4
- 239000011736 potassium bicarbonate Substances 0.000 claims description 4
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 4
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 3
- 150000008044 alkali metal hydroxides Chemical group 0.000 claims description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 3
- 150000003868 ammonium compounds Chemical class 0.000 claims description 3
- 229960000686 benzalkonium chloride Drugs 0.000 claims description 3
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 claims description 3
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 claims description 3
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- 230000007062 hydrolysis Effects 0.000 claims description 3
- 238000006460 hydrolysis reaction Methods 0.000 claims description 3
- 229920000570 polyether Polymers 0.000 claims description 3
- 125000003944 tolyl group Chemical group 0.000 claims description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 2
- JFNOKYCMLHDVQH-UHFFFAOYSA-N n-[4-(2-cyanophenyl)phenyl]-n-methyl-1-(pentanoylamino)cyclopentane-1-carboxamide Chemical compound C=1C=C(C=2C(=CC=CC=2)C#N)C=CC=1N(C)C(=O)C1(NC(=O)CCCC)CCCC1 JFNOKYCMLHDVQH-UHFFFAOYSA-N 0.000 claims description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims 10
- 150000007522 mineralic acids Chemical class 0.000 claims 10
- 150000007524 organic acids Chemical class 0.000 claims 10
- YOSHYTLCDANDAN-UHFFFAOYSA-N irbesartan Chemical compound O=C1N(CC=2C=CC(=CC=2)C=2C(=CC=CC=2)C=2NN=NN=2)C(CCCC)=NC21CCCC2 YOSHYTLCDANDAN-UHFFFAOYSA-N 0.000 description 55
- 239000000047 product Substances 0.000 description 31
- 239000012071 phase Substances 0.000 description 22
- 239000000243 solution Substances 0.000 description 22
- 238000003756 stirring Methods 0.000 description 21
- HPHUHSPLHSCYJB-UHFFFAOYSA-N 1-(pentanoylamino)cyclopentane-1-carboxylic acid Chemical compound CCCCC(=O)NC1(C(O)=O)CCCC1 HPHUHSPLHSCYJB-UHFFFAOYSA-N 0.000 description 20
- 239000011541 reaction mixture Substances 0.000 description 20
- 0 *C1=CC=CC=C1C1=CC=C(CN)C=C1 Chemical compound *C1=CC=CC=C1C1=CC=C(CN)C=C1 0.000 description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 18
- 239000012074 organic phase Substances 0.000 description 17
- AVIFOZHEWGXVNT-UHFFFAOYSA-N 1,2-diazaspiro[4.4]non-1-en-4-one Chemical compound O=C1CN=NC11CCCC1 AVIFOZHEWGXVNT-UHFFFAOYSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 16
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 13
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 11
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 10
- 238000005160 1H NMR spectroscopy Methods 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 8
- 239000012267 brine Substances 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 239000000706 filtrate Substances 0.000 description 8
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 8
- 239000000543 intermediate Substances 0.000 description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 6
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 6
- NILQLFBWTXNUOE-UHFFFAOYSA-N 1-aminocyclopentanecarboxylic acid Chemical compound OC(=O)C1(N)CCCC1 NILQLFBWTXNUOE-UHFFFAOYSA-N 0.000 description 5
- HZRZMHNRCSIQFT-UHFFFAOYSA-N CC1=NC(C)(C)CO1 Chemical compound CC1=NC(C)(C)CO1 HZRZMHNRCSIQFT-UHFFFAOYSA-N 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- KFPMRYNOEZCHDP-UHFFFAOYSA-N 1-aminocyclopentane-1-carbonitrile Chemical compound N#CC1(N)CCCC1 KFPMRYNOEZCHDP-UHFFFAOYSA-N 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- KWEQEHOPDHARIA-UHFFFAOYSA-N CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C#N)C=C1 Chemical compound CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C#N)C=C1 KWEQEHOPDHARIA-UHFFFAOYSA-N 0.000 description 4
- DFBHPKMDRYJLRX-UHFFFAOYSA-L CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C#N)C=C1.CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C2=NN=NN2)C=C1.I.I[V]I Chemical compound CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C#N)C=C1.CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C2=NN=NN2)C=C1.I.I[V]I DFBHPKMDRYJLRX-UHFFFAOYSA-L 0.000 description 4
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000003610 charcoal Substances 0.000 description 4
- 238000011097 chromatography purification Methods 0.000 description 4
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 4
- 238000005984 hydrogenation reaction Methods 0.000 description 4
- 125000006239 protecting group Chemical group 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 4
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 3
- MKYTUSQDAVDVAG-UHFFFAOYSA-K CCCCC(=O)NC1(C(=O)O)CCCC1.CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C#N)C=C1.I[V]I.[C-]#[N+]C1=CC=CC=C1C1=CC=C(CN)C=C1.[V].[V]I Chemical compound CCCCC(=O)NC1(C(=O)O)CCCC1.CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C#N)C=C1.I[V]I.[C-]#[N+]C1=CC=CC=C1C1=CC=C(CN)C=C1.[V].[V]I MKYTUSQDAVDVAG-UHFFFAOYSA-K 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000029936 alkylation Effects 0.000 description 3
- 238000005804 alkylation reaction Methods 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000012442 inert solvent Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052987 metal hydride Inorganic materials 0.000 description 3
- 150000004681 metal hydrides Chemical class 0.000 description 3
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 3
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 2
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 2
- PQSUYGKTWSAVDQ-ZVIOFETBSA-N Aldosterone Chemical compound C([C@@]1([C@@H](C(=O)CO)CC[C@H]1[C@@H]1CC2)C=O)[C@H](O)[C@@H]1[C@]1(C)C2=CC(=O)CC1 PQSUYGKTWSAVDQ-ZVIOFETBSA-N 0.000 description 2
- PQSUYGKTWSAVDQ-UHFFFAOYSA-N Aldosterone Natural products C1CC2C3CCC(C(=O)CO)C3(C=O)CC(O)C2C2(C)C1=CC(=O)CC2 PQSUYGKTWSAVDQ-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- FTSKFVCPJIFMPR-UHFFFAOYSA-M CCCCC(=O)Cl.CCCCC(=O)NC1(C(=O)O)CCCC1.Cl.NC1(C(=O)O)CCCC1.[V].[V]I Chemical compound CCCCC(=O)Cl.CCCCC(=O)NC1(C(=O)O)CCCC1.Cl.NC1(C(=O)O)CCCC1.[V].[V]I FTSKFVCPJIFMPR-UHFFFAOYSA-M 0.000 description 2
- OUNGORNEBGLFCR-UHFFFAOYSA-N CCCCC(=O)NC1(C(=O)O)CCCC1.[C-]#[N+]C1=CC=CC=C1C1=CC=C(CN)C=C1 Chemical compound CCCCC(=O)NC1(C(=O)O)CCCC1.[C-]#[N+]C1=CC=CC=C1C1=CC=C(CN)C=C1 OUNGORNEBGLFCR-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- XAKBSHICSHRJCL-UHFFFAOYSA-N [CH2]C(=O)C1=CC=CC=C1 Chemical group [CH2]C(=O)C1=CC=CC=C1 XAKBSHICSHRJCL-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 229960002478 aldosterone Drugs 0.000 description 2
- 125000004849 alkoxymethyl group Chemical group 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 125000005745 ethoxymethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])* 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 125000000623 heterocyclic group Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 2
- 125000004092 methylthiomethyl group Chemical group [H]C([H])([H])SC([H])([H])* 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 2
- 125000006503 p-nitrobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1[N+]([O-])=O)C([H])([H])* 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- LHJSLDBKUGXPMI-UHFFFAOYSA-N tris(2-methylpropyl) borate Chemical compound CC(C)COB(OCC(C)C)OCC(C)C LHJSLDBKUGXPMI-UHFFFAOYSA-N 0.000 description 2
- QIVUCLWGARAQIO-OLIXTKCUSA-N (3s)-n-[(3s,5s,6r)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]-2-oxospiro[1h-pyrrolo[2,3-b]pyridine-3,6'-5,7-dihydrocyclopenta[b]pyridine]-3'-carboxamide Chemical compound C1([C@H]2[C@H](N(C(=O)[C@@H](NC(=O)C=3C=C4C[C@]5(CC4=NC=3)C3=CC=CN=C3NC5=O)C2)CC(F)(F)F)C)=C(F)C=CC(F)=C1F QIVUCLWGARAQIO-OLIXTKCUSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- HZQLUIZFUXNFHK-UHFFFAOYSA-N 1-(bromomethyl)-4-phenylbenzene Chemical group C1=CC(CBr)=CC=C1C1=CC=CC=C1 HZQLUIZFUXNFHK-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- YLRBJYMANQKEAW-UHFFFAOYSA-N 1-bromo-4-(bromomethyl)benzene Chemical compound BrCC1=CC=C(Br)C=C1 YLRBJYMANQKEAW-UHFFFAOYSA-N 0.000 description 1
- WWRHZLCKSVQRBG-UHFFFAOYSA-N 2-butyl-1,3-diazaspiro[4.4]non-1-en-4-one;hydrochloride Chemical compound Cl.O=C1NC(CCCC)=NC11CCCC1 WWRHZLCKSVQRBG-UHFFFAOYSA-N 0.000 description 1
- XWKFPIODWVPXLX-UHFFFAOYSA-N 2-methyl-5-methylpyridine Natural products CC1=CC=C(C)N=C1 XWKFPIODWVPXLX-UHFFFAOYSA-N 0.000 description 1
- NZQPLTFMMZVHAD-UHFFFAOYSA-N 3-[(4-bromophenyl)methyl]-2-butyl-1,3-diazaspiro[4.4]non-1-en-4-one Chemical compound O=C1N(CC=2C=CC(Br)=CC=2)C(CCCC)=NC21CCCC2 NZQPLTFMMZVHAD-UHFFFAOYSA-N 0.000 description 1
- XTDHFSNDNWURCG-QRYKVFGRSA-H B.BrCC1=CC=C(Br)C=C1.C.CCCCC(=O)NC1(C(=O)NCC2=CC=C(C3=C(C#N)C=CC=C3)C=C2)CCCC1.CCCCC(=O)NC1(C(=O)O)CCCC1.CCCCC1=NC2(CCCC2)C(=O)N1.CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(Br)C=C1.CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C#N)C=C1.CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C2=NN=NN2)C=C1.Cl.I[V](I)I.I[V]I.N#CC1=C(C2=CC=C(CN)C=C2)C=CC=C1.NC1(C(=O)O)CCCC1.OB(O)C1=C(C2=NN=NN2C(C2=CC=CC=C2)(C2=CC=CC=C2)C2=CC=CC=C2)C=CC=C1.[2HH].[2H]C#C.[V].[V]I Chemical compound B.BrCC1=CC=C(Br)C=C1.C.CCCCC(=O)NC1(C(=O)NCC2=CC=C(C3=C(C#N)C=CC=C3)C=C2)CCCC1.CCCCC(=O)NC1(C(=O)O)CCCC1.CCCCC1=NC2(CCCC2)C(=O)N1.CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(Br)C=C1.CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C#N)C=C1.CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C2=NN=NN2)C=C1.Cl.I[V](I)I.I[V]I.N#CC1=C(C2=CC=C(CN)C=C2)C=CC=C1.NC1(C(=O)O)CCCC1.OB(O)C1=C(C2=NN=NN2C(C2=CC=CC=C2)(C2=CC=CC=C2)C2=CC=CC=C2)C=CC=C1.[2HH].[2H]C#C.[V].[V]I XTDHFSNDNWURCG-QRYKVFGRSA-H 0.000 description 1
- JFICSVPWOMNSMP-UHFFFAOYSA-N B.CC.CC1=CC=CC=C1.CCC1=CC=CC=C1 Chemical compound B.CC.CC1=CC=CC=C1.CCC1=CC=CC=C1 JFICSVPWOMNSMP-UHFFFAOYSA-N 0.000 description 1
- YRCWDKATYITJDZ-UHFFFAOYSA-N CCCCC(=O)NC1(C(=O)NCC2=CC=C(C3=C(C#N)C=CC=C3)C=C2)CCCC1 Chemical compound CCCCC(=O)NC1(C(=O)NCC2=CC=C(C3=C(C#N)C=CC=C3)C=C2)CCCC1 YRCWDKATYITJDZ-UHFFFAOYSA-N 0.000 description 1
- KGEGEALKTCYXIP-UHFFFAOYSA-N CCCCC(=O)NC1(C(=O)NCC2=CC=C(C3=CC=CC=C3C#N)C=C2)CCCC1.CCCCC(=O)NC1(C(=O)O)CCCC1.CCCCC(=O)NC1(C(=O)OCC2=CC=CC=C2)CCCC1.CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C#N)C=C1.CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C2=NN=NN2)C=C1.NC1(C(=O)OCC2=CC=CC=C2)CCCC1 Chemical compound CCCCC(=O)NC1(C(=O)NCC2=CC=C(C3=CC=CC=C3C#N)C=C2)CCCC1.CCCCC(=O)NC1(C(=O)O)CCCC1.CCCCC(=O)NC1(C(=O)OCC2=CC=CC=C2)CCCC1.CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C#N)C=C1.CCCCC1=NC2(CCCC2)C(=O)N1CC1=CC=C(C2=CC=CC=C2C2=NN=NN2)C=C1.NC1(C(=O)OCC2=CC=CC=C2)CCCC1 KGEGEALKTCYXIP-UHFFFAOYSA-N 0.000 description 1
- HOGMTDHFHCGGIX-UHFFFAOYSA-N CCCCC1=NC2(CCCC2=O)CN1CC1=CC=C(C2=CC=CC=C2C2=NN=NN2)C=C1 Chemical compound CCCCC1=NC2(CCCC2=O)CN1CC1=CC=C(C2=CC=CC=C2C2=NN=NN2)C=C1 HOGMTDHFHCGGIX-UHFFFAOYSA-N 0.000 description 1
- NMWDAIIAWWIPMK-UHFFFAOYSA-M Cl.Cl.I[IH]I.N#CC1(N)CCCC1.NC1(C(=O)O)CCCC1.[V]I Chemical compound Cl.Cl.I[IH]I.N#CC1(N)CCCC1.NC1(C(=O)O)CCCC1.[V]I NMWDAIIAWWIPMK-UHFFFAOYSA-M 0.000 description 1
- XTATWDKANPRKIL-UHFFFAOYSA-N Cl.II.I[IH]I.N.N#CC1(N)CCCC1.N#C[Na].O=C1CCCC1 Chemical compound Cl.II.I[IH]I.N.N#CC1(N)CCCC1.N#C[Na].O=C1CCCC1 XTATWDKANPRKIL-UHFFFAOYSA-N 0.000 description 1
- MWHHJYUHCZWSLS-UHFFFAOYSA-N FC=1C=C(C=CC1C1=C2CNC(C2=C(C=C1)C=1NC(=CN1)C)=O)NC(=O)NC1=C(C=C(C=C1F)F)F Chemical compound FC=1C=C(C=CC1C1=C2CNC(C2=C(C=C1)C=1NC(=CN1)C)=O)NC(=O)NC1=C(C=C(C=C1F)F)F MWHHJYUHCZWSLS-UHFFFAOYSA-N 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- ZTCLCSCHTACERP-AWEZNQCLSA-N N-[(1S)-1-[3-chloro-5-fluoro-2-[[2-methyl-4-(2-methyl-1,2,4-triazol-3-yl)quinolin-8-yl]oxymethyl]phenyl]ethyl]-2-(difluoromethoxy)acetamide Chemical compound C1=C(C=C(C(=C1Cl)COC1=CC=CC2=C(C=3N(N=CN=3)C)C=C(C)N=C12)[C@@H](NC(=O)COC(F)F)C)F ZTCLCSCHTACERP-AWEZNQCLSA-N 0.000 description 1
- 238000006069 Suzuki reaction reaction Methods 0.000 description 1
- GCTFWCDSFPMHHS-UHFFFAOYSA-M Tributyltin chloride Chemical compound CCCC[Sn](Cl)(CCCC)CCCC GCTFWCDSFPMHHS-UHFFFAOYSA-M 0.000 description 1
- ZLYJIFZYUSWGHQ-UHFFFAOYSA-N [4-[2-(1-trityltetrazol-5-yl)phenyl]phenyl]methanamine Chemical group C1=CC(CN)=CC=C1C1=CC=CC=C1C1=NN=NN1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 ZLYJIFZYUSWGHQ-UHFFFAOYSA-N 0.000 description 1
- JIBOPSQZJVLDAY-UHFFFAOYSA-N [C-]#[N+]C1=CC=CC=C1C1=CC=C(CN)C=C1 Chemical compound [C-]#[N+]C1=CC=CC=C1C1=CC=C(CN)C=C1 JIBOPSQZJVLDAY-UHFFFAOYSA-N 0.000 description 1
- 210000004404 adrenal cortex Anatomy 0.000 description 1
- 229910000102 alkali metal hydride Inorganic materials 0.000 description 1
- 150000008046 alkali metal hydrides Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229940000201 avapro Drugs 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 229960004132 diethyl ether Drugs 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000005555 hypertensive agent Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- VOVZXURTCKPRDQ-CQSZACIVSA-N n-[4-[chloro(difluoro)methoxy]phenyl]-6-[(3r)-3-hydroxypyrrolidin-1-yl]-5-(1h-pyrazol-5-yl)pyridine-3-carboxamide Chemical compound C1[C@H](O)CCN1C1=NC=C(C(=O)NC=2C=CC(OC(F)(F)Cl)=CC=2)C=C1C1=CC=NN1 VOVZXURTCKPRDQ-CQSZACIVSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- XULSCZPZVQIMFM-IPZQJPLYSA-N odevixibat Chemical compound C12=CC(SC)=C(OCC(=O)N[C@@H](C(=O)N[C@@H](CC)C(O)=O)C=3C=CC(O)=CC=3)C=C2S(=O)(=O)NC(CCCC)(CCCC)CN1C1=CC=CC=C1 XULSCZPZVQIMFM-IPZQJPLYSA-N 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- NTTOTNSKUYCDAV-UHFFFAOYSA-N potassium hydride Chemical compound [KH] NTTOTNSKUYCDAV-UHFFFAOYSA-N 0.000 description 1
- 229910000105 potassium hydride Inorganic materials 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000002820 sympathetic nervous system Anatomy 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- FVRKTAOFDKFAMI-UHFFFAOYSA-M tributylstannanylium;bromide Chemical compound [Br-].CCCC[Sn+](CCCC)CCCC FVRKTAOFDKFAMI-UHFFFAOYSA-M 0.000 description 1
- KQPIFPBKXYBDGV-UHFFFAOYSA-M triethylstannanylium;bromide Chemical group CC[Sn](Br)(CC)CC KQPIFPBKXYBDGV-UHFFFAOYSA-M 0.000 description 1
- 239000005526 vasoconstrictor agent Substances 0.000 description 1
- KMIOJWCYOHBUJS-HAKPAVFJSA-N vorolanib Chemical compound C1N(C(=O)N(C)C)CC[C@@H]1NC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C KMIOJWCYOHBUJS-HAKPAVFJSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/02—Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/06—Systems containing only non-condensed rings with a five-membered ring
- C07C2601/08—Systems containing only non-condensed rings with a five-membered ring the ring being saturated
Definitions
- the present invention relates to an improved process for preparing Irbesartan of formula (I).
- Irbesartan 2-Butyl-3-[[2′-(1H-tetrazol-5-yl)[1,1′-biphenyl]-4-yl]methyl]-1,3-diazaspiro[4,4]non-1-en-4-one and formula is C 25 H 28 N 6 O and molecular weight is 428.53.
- the current pharmaceutical product containing this drug is being sold by Sanofi Synthelabo using the tradename AVAPRO, in the form of tablets.
- Irbesartan is useful in the treatment of diabetic nefropathy, heart failure therapy and hypertension.
- Irbesartan is angiotension II type I (AII 1 )-receptor antagonist.
- Angiotension II is the principal pressor agent of the rennin-angiotension system and also stimulates aldosterone synthesis and secretion by adrenal cortex, cardiac contraction, renal resorption of sodium, activity of the sympathetic nervous system and smooth muscle cell growth.
- Irbesartan blocks the vasoconstrictor and aldosterone-secreting effects of angiotension II by selectively binding to the AT 1 angiotension II receptor.
- R 1 , R 2 , R 3 , R 4 , R 5 , and t, z and Hal have the meanings given in said U.S. Pat. No. 5,270,317, in the presence of an inert solvent such as DMF, DMSO or THF, with a basic reagent, for example KOH, a metal alcoholate, a metal hydride, calcium carbonate or triethylamine.
- a basic reagent for example KOH, a metal alcoholate, a metal hydride, calcium carbonate or triethylamine.
- U.S. Pat. Nos. 5,352,788, and 5,559,233, and WO 91/14679 also describe identical alkylation of the nitrogen atom of the heterocyclic compound with the halo-biphenyl compound using the same inert solvent and the same basic reagents.
- X, R 1 , Z 1 and Z 6 have the meanings given therein, in the presence of N,N-dimethylformamide and a basic reagent, such as alkali metal hydrides for example sodium or potassium hydride.
- a basic reagent such as alkali metal hydrides for example sodium or potassium hydride.
- This process comprises the steps of protecting carboxylic group present on cyclopentane ring which is deprotected in consecutive step by vigourous hydrogenation condition in autoclave which is operationally difficult at a large scale.
- US Patent No. 2004242894 also discloses the process of preparation of Irbesartan from 4-bromomethyl biphenyl 2′-(1H-tetrazol(2-triphenylmethyl)5-yl) and Ethyl ester of 1-Valeramido cyclopentanecarboxylic acid in toluene in presence of base and PTC, and then hydrolyzing the protecting group.
- this requires chromatographic purification.
- This patent also discloses the process of preparation of tetrazolyl protected Irbesartan using 2,6 lutidine and oxalylchloride in toluene. However in this process the yield is as low as 30%.
- US Patent No. 2004192713 discloses the process of preparation of Irbesartan by condensing the two intermediates via Suzuki coupling reaction.
- the reaction scheme is as given herein below.
- WO2005113518 discloses the process of preparation of Irbesartan by condensing n-pentanoyl cycloleucine (V) with 2-(4-aminomethyl phenyl)benzonitrile (VI) using dicyclocarbodiimide (DCC) and 1-hydroxy benzotriazole as catalyst to give an open chain intermediate of formula (VIII) which is then cyclized in the presence of an acid, preferably trifluoro acetic acid to give cyano derivative of formula (VII) and which in turn is converted to Irbesartan by treating it with tributyl tin chloride and sodium azide.
- DCC dicyclocarbodiimide
- VIII open chain intermediate of formula
- an acid preferably trifluoro acetic acid
- cyano derivative of formula (VII) which in turn is converted to Irbesartan by treating it with tributyl tin chloride and sodium azide.
- an object of the present invention is to provide an improved process for the preparation of Irbesartan.
- Another object of the present invention is to provide an improved process for the preparation of intermediate 1-valeramido cyclopentanecarboxylic acid which is used in the process of preparation of Irbesartan.
- Another object of the present invention is to provide a process which is simple and easy to handle at an industrial scale.
- a further object of the present invention is to provide a process which eliminates the use of chromatographic purification at intermediate stages and provides such kind of purification which is feasible at commercial scale.
- Yet another object of the present invention is to provide a process which involves less number of steps to produce Irbesartan (I).
- Yet another object of the present invention is to provide a process for the preparation of Irbesartan comprising step of reacting 4′ aminomethyl-2-cyano biphenyl of formula (VI) with 1-veleramido cyclopentane carboxylic acid (V) in an organic solvent and in the presence of acid.
- Yet another object of the present invention is to provide a process for the preparation of Irbesartan without activation the —COOH group of compound of formula (V).
- Yet another object of the present invention is to provide a process for the preparation of Irbesartan which does not involve isolation step of open chain compound of formula VIII and also without activating —COOH group of compound of formula (V).
- present invention provides an improved process of preparation of Irbesartan comprising steps of:
- the present invention provides an improved process of preparation of Irbesartan comprising steps of:
- step (i) is carried out at a temperature equal to the boiling point of the solution. In general it is in the range of from about 100° C. to about 150° C.
- the water which is liberated during the course of the reaction is removed from the reaction mixture by methods such as azeotropic distillation or using an apparatus such as dean stark or by any conventional methods known in the art.
- the solvent mentioned hereinabove is such that it should be capable of removing the water azeotropically.
- organic solvent includes but not limited to C 1-8 hydrocarbons such as toluene, xylene and the like or the mixture thereof.
- the example of the “acid” as mentioned hereinabove includes but not limited to methane sulfonic acid, p-toluene sulfonic acid, sulfuric acid and the like or the mixture thereof.
- the solvent is removed from the reaction mass by distillation either under vacuum or atmospheric pressure.
- the residue is dissolved in solvent such as Ethyl acetate, dichloromethane, chloroform and the like which is then washed with base solution.
- Base is selected from the group comprising NaOH, KOH, LiOH, NaHCO 3 , KHCO 3 , Na 2 CO 3 , K 2 CO 3 and the like or mixture thereof.
- Organic phase is separated and distilled out completely under vacuum.
- the residue is leached with non-polar solvent which includes but not limited to Methyl t-butyl ether, diisopropyl ether, diethylether, cyclohexane and the like or mixture thereof.
- the product is isolated by filtration or decandation or centrifugal methods.
- step (ii) compound (VII) obtained in step (i) is reacted with tributyl tin azide in organic solvent such as o-xylene at reflux temperature for 80 hours to give the crude Irbesartan.
- the mass is treated with 1N NaOH.
- the phases were separated and aq. phase is washed with o-xylene and isopropyl ether.
- Aqueous phase is treated with charcoal, filtered through hyflobed and then treated with 3N HCl.
- the product title compound is filtered, washed with water and dried under vacuum at 60° C.
- the product is crystallized from 95% ethanol to give Irbesartan of formula (I).
- Starting material 1-veleramidocyclopentane carboxylic acid of formula (V) is prepared by reacting Aminocyclopentane carboxylic acid hydrochloride salt of formula (IV) with valeroyl chloride in the presence of pyridine.
- the starting material 1-veleramido cyclopentane carboxylic acid of formula (V) is prepared by an improved process which comprises reacting Aminocyclopentane carboxylic acid hydrochloride salt of formula (IV)
- the example of the PTC as mentioned hereinabove includes but not limited to quarternery ammonium compound, phosphonium compound and cyclic polyethers such as tetrabutyl ammonium bromide (TBAB), tetrabutyl ammonium hydrogensulfate, benzalkonium chloride, cetyl trimethyl ammonium chloride, and the like or the mixture thereof.
- TBAB tetrabutyl ammonium bromide
- benzalkonium chloride cetyl trimethyl ammonium chloride
- cetyl trimethyl ammonium chloride and the like or the mixture thereof.
- the suitable solvent as mentioned hereinabove is selected from the group of non polar water immisible solvent.
- non polar water immisible solvent includes but not limited to toluene, xylene, benzene, dichloromethane, cyclohexane, hexane, heptane and the like or the mixture thereof.
- the example of the base as mentioned hereinabove is selected from the group comprising alkali metal hydroxide, alkaline earth metal carbonate or bicarbonate such as NaOH or KOH, LiOH, Na 2 CO 3 , K 2 CO 3 , KHCO 3 , NaHCO 3 , CaCO 3 and the like or mixture thereof.
- the process of preparation of Irbesartan comprises the steps of:
- an improved process for the preparation of Irbesartan comprises steps of:
- R represents the group selected from —CONH 2 or compound of formula
- X is H or C 1 - 4 alkyl; preferably methyl
- A represents protected tetrazolyl group.
- Suitable protecting groups of protected 1H-tetrazol-5-yl are the protecting groups customarily used in tetrazole chemistry, especially triphenylmethyl, unsubstituted or substituted, for example nitro-substituted, benzyl, such as 4-nitrobenzyl, lower alkoxymethyl, such as methoxymethyl or ethoxymethyl, lower alkylthiomethyl, such as methylthiomethyl, and 2-cyanoethyl, also lower alkoxy-lower alkoxymethyl, such as 2-methoxyethoxymethyl, benzyloxymethyl and phenacyl.
- benzyl such as 4-nitrobenzyl
- lower alkoxymethyl such as methoxymethyl or ethoxymethyl
- lower alkylthiomethyl such as methylthiomethyl
- 2-cyanoethyl also lower alkoxy-lower alkoxymethyl, such as 2-methoxyethoxymethyl, benzyloxymethyl and phenacyl.
- triphenylmethyl is customarily removed by means of hydrolysis especially in the presence of an acid, for example in the presence of hydrogen halide, advantageously in an inert solvent, such as haloalkane or an ether, for example in dichloromethane or dioxane, and with heating; or by hydrogenolysis in the presence of hydrogenation catalyst, 4-nitrobenzyl is removed, for example by hydrogenolysis in the presence of hydrogenation catalyst; methoxymethyl or ethoxymethyl is removed, for example by treatment with a lower alkyl tin bromide such as triethyl- or tributyl-tin bromide; methylthiomethyl is removed for example by treatment with trifluoroacetic acid; 2-cyanoethyl is removed, for example, by hydrolysis, for example with hydrochloric acid; and benzyloxymethyl and phenacyl are removed, for example by hydrogenolysis in the presence of a hydrogenation catalyst.
- an acid for example in the presence of hydrogen halide, advantageous
- an improved process for the preparation of Irbesartan comprises steps of:
- Cyclopentanone of formula (II) is reacted with sodium cyanide in the presence of ammonium chloride and aqueous ammonia in methanol and water at 60° C. for 1-1.5 hours. The mass is extracted with dichloromethane whereupon the removal of the solvent provides 1-Aminocyclopentane carbonitrile.
- 1-Aminocyclopentane carbonitrile of formula (III) obtained in above step is treated with aq. HCl at 100° C. for 24 hours.
- the mass is cooled to 0° C. and filtered the solid.
- the solid is dissolved in water at 90-95° C.
- Activated charcoal is added and stirred.
- the solution is filtered through hyflow bed.
- the pH of the solution is adjusted 5 with TEA.
- the mass is cooled to 0-5° C. and stirred for 2 hours whereupon the product is precipitate out which is filtered to give 1-Amino cyclopentane carboxylic acid as hydrochloride salt.
- 1-Aminocyclopentane carboxylic acid hydrochloride of formula (IV) obtained in above step is treated with valeroyl chloride in the presence of tetrabutyl ammonium bromide and aqueous sodium hydroxide solution at 0-5° C. for 1 hours.
- the reaction mix was diluted with water and toluene and separated the two phases.
- the aqueous phase was washed with toluene, chilled and then acidified to give precipitate.
- the solid was filtrated and washed with water to give 1-veleramido cyclopentane carboxylicacid.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
A process for the preparation of Irbesartan of formula (I) using the step of,
-
- reacting biphenyl derivative of formula (VIa)
-
- wherein R represents a group selected from —CONH2 or compound of formula
-
- wherein X represents H or C1-4 alkyl, preferably methyl;
- or any other such group which can be converted to cyano group,
- with 1-veleramido cyclopentane carboxylic acid of formula (V)
-
- in the presence of an acid in an organic solvent to give biphenyl derivative of formula (VIIa)
-
- wherein R has the same meaning as mentioned hereinabove.
Description
- This application is a divisional of U.S. Patent Application Ser. No. 11/406,919, filed Apr. 19, 2006. This application claims foreign priority to Indian Application No. 1360/MUM/2005, filed Oct. 28, 2005.
- The present invention relates to an improved process for preparing Irbesartan of formula (I).
- The chemical name of Irbesartan is 2-Butyl-3-[[2′-(1H-tetrazol-5-yl)[1,1′-biphenyl]-4-yl]methyl]-1,3-diazaspiro[4,4]non-1-en-4-one and formula is C25H28N6O and molecular weight is 428.53. The current pharmaceutical product containing this drug is being sold by Sanofi Synthelabo using the tradename AVAPRO, in the form of tablets.
- Irbesartan is useful in the treatment of diabetic nefropathy, heart failure therapy and hypertension. Irbesartan is angiotension II type I (AII1)-receptor antagonist. Angiotension II is the principal pressor agent of the rennin-angiotension system and also stimulates aldosterone synthesis and secretion by adrenal cortex, cardiac contraction, renal resorption of sodium, activity of the sympathetic nervous system and smooth muscle cell growth. Irbesartan blocks the vasoconstrictor and aldosterone-secreting effects of angiotension II by selectively binding to the AT1 angiotension II receptor.
- U.S. Pat. Nos. 5,270,317 and 5,559,233 describes a process for the preparation of N-substituted heterocyclic derivatives which involves reacting a heterocyclic compound of the formula
- with a (biphenyl-4-yl)methyl derivative of the formula
- wherein R1, R2, R3, R4, R5, and t, z and Hal have the meanings given in said U.S. Pat. No. 5,270,317, in the presence of an inert solvent such as DMF, DMSO or THF, with a basic reagent, for example KOH, a metal alcoholate, a metal hydride, calcium carbonate or triethylamine. The products of the reaction were purified by chromatography.
- U.S. Pat. Nos. 5,352,788, and 5,559,233, and WO 91/14679 also describe identical alkylation of the nitrogen atom of the heterocyclic compound with the halo-biphenyl compound using the same inert solvent and the same basic reagents.
- Also Canadian Patent No. 2050769 describes the alkylation of the nitrogen atom of the heterocycle of the formula
- with a compound of the formula
- wherein X, R1, Z1 and Z6 have the meanings given therein, in the presence of N,N-dimethylformamide and a basic reagent, such as alkali metal hydrides for example sodium or potassium hydride.
- All of the above identified patents describe alkylation in solvents, such as N,N-dimethylformamide or DMSO, etc. in the presence of a basic reagent, for example, a metal hydride or a metal alcoholate etc. The strong bases, such as metal hydride or a metal alcoholate require anhydrous reaction conditions. Since N,N-dimethylformamide is used as a solvent, its removal requires high temperature concentration by distillation, which can result in degradation of the final product. The product intermediate is also purified by chromatography which is commercially not feasible and cumbersome on large scale.
- Another process given in Canadian Patent No. 2050769 provides synthetic scheme as herein given below.
- This process comprises the steps of protecting carboxylic group present on cyclopentane ring which is deprotected in consecutive step by vigourous hydrogenation condition in autoclave which is operationally difficult at a large scale.
- US Patent No. 2004242894 also discloses the process of preparation of Irbesartan from 4-bromomethyl biphenyl 2′-(1H-tetrazol(2-triphenylmethyl)5-yl) and Ethyl ester of 1-Valeramido cyclopentanecarboxylic acid in toluene in presence of base and PTC, and then hydrolyzing the protecting group. However this requires chromatographic purification.
- This patent also discloses the process of preparation of tetrazolyl protected Irbesartan using 2,6 lutidine and oxalylchloride in toluene. However in this process the yield is as low as 30%.
- US Patent No. 2004192713 discloses the process of preparation of Irbesartan by condensing the two intermediates via Suzuki coupling reaction. The reaction scheme is as given herein below.
- However, this process has several disadvantages such as use of the reagents like butyl lithium and triisobutyl borate at low temp such as −20 to −30° C. under Argon atmosphere condition which is difficult to maintain at commercial scale.
- WO2005113518 discloses the process of preparation of Irbesartan by condensing n-pentanoyl cycloleucine (V) with 2-(4-aminomethyl phenyl)benzonitrile (VI) using dicyclocarbodiimide (DCC) and 1-hydroxy benzotriazole as catalyst to give an open chain intermediate of formula (VIII) which is then cyclized in the presence of an acid, preferably trifluoro acetic acid to give cyano derivative of formula (VII) and which in turn is converted to Irbesartan by treating it with tributyl tin chloride and sodium azide.
- In this application further describes another process comprising the steps of reacting 2-butyl-1,3-diazaspiro[4,4]non-1-en-4-one monohydrochloride (A) with 4-bromobenzyl bromide (B) in presence of base and solvent to give 3-[4-bromobenzyl]-2-butyl-1,3-diazaspiro[4,4]non-1-en-4-one (C) which is condensed with 2-[2′-(triphenylmethyl-2′H-tetrazol-5′-yl)phenyl boronic acid in the presence of tetrakis triphenyl phosphine palladium and base to give Irbesartan (I). However these processes suffer with several disadvantages such as it uses trifluoroacetic acid for the cyclization step which is highly corrosive material. The process requires an additional step of activation by DCC. This step not only increases number of steps but also create problem in handling DCC at an industrial scale as it is highly prone to hazard which makes the process least preferred on a large scale production of Irbesartan. Further it uses phenyl boronic acid derivative and triphenyl phosphine complex which are harmful for the skin and eye tissue and also harmful for respiratory system. Tetrakis triphenyl phosphine palladium is also a costly material which increases overall cost for the production of Irbesartan. Moreover the yield is as low as 22%.
- All the above patents/applications are incorporated herein as reference.
- In summary, prior art relating to the process for the preparation of Irbesartan suffers with several drawbacks such as
-
- i) It requires chromatographic purification of intermediates at various stages.
- ii) It requires specific autoclave conditions for a deprotection of protecting group.
- iii) It requires maintaining low temperature conditions such as −30° C. and requires special handling care and air and moisture tight condition with the reagents such as butyl lithium and triisobutyl borate.
- iv) It uses hazardous and highly corrosive reagents.
- v) It suffers low yield problem.
- vi) All the process is having more number of reaction steps.
- It is therefore, a need to develop a process which not only overcomes the disadvantages of the prior art but also economical, operationally simple and industrially applicable. Present inventors have directed their research work towards developing a process for the preparation of Irbesartan which is devoid of the above disadvantages.
- It is therefore an object of the present invention is to provide an improved process for the preparation of Irbesartan.
- Another object of the present invention is to provide an improved process for the preparation of intermediate 1-valeramido cyclopentanecarboxylic acid which is used in the process of preparation of Irbesartan.
- Another object of the present invention is to provide a process which is simple and easy to handle at an industrial scale.
- A further object of the present invention is to provide a process which eliminates the use of chromatographic purification at intermediate stages and provides such kind of purification which is feasible at commercial scale.
- Yet another object of the present invention is to provide a process which involves less number of steps to produce Irbesartan (I).
- Yet another object of the present invention is to provide a process for the preparation of Irbesartan comprising step of reacting 4′ aminomethyl-2-cyano biphenyl of formula (VI) with 1-veleramido cyclopentane carboxylic acid (V) in an organic solvent and in the presence of acid.
- Yet another object of the present invention is to provide a process for the preparation of Irbesartan without activation the —COOH group of compound of formula (V).
- Yet another object of the present invention is to provide a process for the preparation of Irbesartan which does not involve isolation step of open chain compound of formula VIII and also without activating —COOH group of compound of formula (V).
- Accordingly, present invention provides an improved process of preparation of Irbesartan comprising steps of:
- (i) reacting 4′ aminomethyl-2-cyano biphenyl of formula (VI) with 1-veleramido cyclopentane carboxylic acid (V) in an organic solvent and in the presence of acid to obtain the compound of the formula (VII).
- (ii) reacting the compound of the formula (VII) with tributyl tin azide in an organic solvent at elevated temperature to provide Irbesartan of formula (I).
- The present invention provides an improved process of preparation of Irbesartan comprising steps of:
- (i) reacting 4′ aminomethyl-2-cyano biphenyl of formula (VI) with 1-veleramido cyclopentane carboxylic acid (V) in an organic solvent and in the presence of acid to obtain the compound of the formula (VII).
- (ii) reacting the compound of the formula (VII) with tributyl tin azide in an organic solvent at elevated temperature to provide Irbesartan of formula (I).
- The reaction in step (i) is carried out at a temperature equal to the boiling point of the solution. In general it is in the range of from about 100° C. to about 150° C. The water which is liberated during the course of the reaction is removed from the reaction mixture by methods such as azeotropic distillation or using an apparatus such as dean stark or by any conventional methods known in the art.
- The solvent mentioned hereinabove is such that it should be capable of removing the water azeotropically.
- The example of “organic solvent” as mentioned hereinabove includes but not limited to C1-8 hydrocarbons such as toluene, xylene and the like or the mixture thereof.
- The example of the “acid” as mentioned hereinabove includes but not limited to methane sulfonic acid, p-toluene sulfonic acid, sulfuric acid and the like or the mixture thereof.
- After the completion of reaction the solvent is removed from the reaction mass by distillation either under vacuum or atmospheric pressure. The residue is dissolved in solvent such as Ethyl acetate, dichloromethane, chloroform and the like which is then washed with base solution. Base is selected from the group comprising NaOH, KOH, LiOH, NaHCO3, KHCO3, Na2CO3, K2CO3 and the like or mixture thereof. Organic phase is separated and distilled out completely under vacuum. The residue is leached with non-polar solvent which includes but not limited to Methyl t-butyl ether, diisopropyl ether, diethylether, cyclohexane and the like or mixture thereof. The product is isolated by filtration or decandation or centrifugal methods.
- The solid is dried under vacuum at 50-60° C. to give compound of formula (VII).
- The conversion of cyano group to tetrazolyl group of Irbesartan is done as per the methods known in the art.
- In the reaction in step (ii), compound (VII) obtained in step (i) is reacted with tributyl tin azide in organic solvent such as o-xylene at reflux temperature for 80 hours to give the crude Irbesartan.
- The mass is treated with 1N NaOH. The phases were separated and aq. phase is washed with o-xylene and isopropyl ether. Aqueous phase is treated with charcoal, filtered through hyflobed and then treated with 3N HCl. The product title compound is filtered, washed with water and dried under vacuum at 60° C. The product is crystallized from 95% ethanol to give Irbesartan of formula (I).
- Starting material 1-veleramidocyclopentane carboxylic acid of formula (V) is prepared by reacting Aminocyclopentane carboxylic acid hydrochloride salt of formula (IV) with valeroyl chloride in the presence of pyridine.
- In another embodiment of the present invention, the starting material 1-veleramido cyclopentane carboxylic acid of formula (V) is prepared by an improved process which comprises reacting Aminocyclopentane carboxylic acid hydrochloride salt of formula (IV)
- with valeroyl chloride in the presence of a base and a phase transfer catalyst (PTC) in a suitable solvent to give 1-veleramido cyclopentane carboxylic acid of formula (V).
- The example of the PTC as mentioned hereinabove includes but not limited to quarternery ammonium compound, phosphonium compound and cyclic polyethers such as tetrabutyl ammonium bromide (TBAB), tetrabutyl ammonium hydrogensulfate, benzalkonium chloride, cetyl trimethyl ammonium chloride, and the like or the mixture thereof.
- The suitable solvent as mentioned hereinabove is selected from the group of non polar water immisible solvent.
- The example of the non polar water immisible solvent mentioned hereinabove includes but not limited to toluene, xylene, benzene, dichloromethane, cyclohexane, hexane, heptane and the like or the mixture thereof.
- The example of the base as mentioned hereinabove is selected from the group comprising alkali metal hydroxide, alkaline earth metal carbonate or bicarbonate such as NaOH or KOH, LiOH, Na2CO3, K2CO3, KHCO3, NaHCO3, CaCO3 and the like or mixture thereof.
- In another embodiment, the process of preparation of Irbesartan comprises the steps of:
- (i) reacting Cyclopentanone of formula (II) with sodium cyanide in the presence of ammonium chloride and aqueous ammonia in methanol to give the 1-Aminocyclopentane carbonitrile of formula (III).
- (ii) reacting 1-Aminocyclopentane carbonitrile of formula (III) obtained in above step (i) with aqueous HCl to give 1-Amino cyclopentane carboxylic acid as hydrochloride salt of formula (IV)
- (iii) reacting Aminocyclopentane carboxylic acid hydrochloride salt of formula (IV) obtained in above step (ii) with valeroyl chloride in the presence of base and phase transfer catalyst in a suitable solvent and water to give 1-veleramido cyclopentane carboxylic acid of formula (V);
-
- wherein the said PTC is tetrabutyl ammonium bromide, the said solvent is toluene and the said base is NaOH.
- (iv) reacting 1-veleramidocyclopentanecarboxylic acid compound of formula (V) obtained in above step (iii) with 4′ aminomethyl-2-cyano biphenyl of formula (VI) in a solvent such as toluene and in the presence of methane sulfonic acid to give compound of formula (VII).
- (v) reacting 2-(n-Butyl)-3-(2′-cyanobiphenyl-4-ylmethyl)-4-oxo-1,3 diazaspiro[4.4]non-1-ene-4-one of formula (VII) obtained in above step (iv) with tributyl tin azide in o-xylene to give the title compound Irbesartan of formula (I).
- In another embodiment of the present invention, an improved process for the preparation of Irbesartan comprises steps of:
- (i) reacting biphenyl derivative of formula (VIa) with 1-veleramido cyclopentane carboxylic acid (V) in an organic solvent and in the presence of an acid to obtain the compound of the formula (VIIa).
- wherein R represents the group selected from —CONH2 or compound of formula
- where X is H or C1-4 alkyl; preferably methyl;
- or any other such group which can be converted to cyano group,
- wherein the said “acid” and “organic solvent” is selected from the group as defined earlier.
- (ii) converting the compound of formula (VIIa) to compound of formula (VII).
- (iii) reacting the compound of the formula (VII) with tributyl tin azide in an organic solvent at elevated temperature to provide Irbesartan of formula (I).
- The conversion of compound of formula (VIIa) to compound of formula (VII) is performed by conventional methods known in the art.
- When R represents —CONH2, the conversion of compound of formula (VIIa) to compound of formula (VII) is carried out in the presence of thionyl chloride.
- When R represents compound of formula
- wherein X has the same meaning given above; the conversion of compound of formula (VIIa) to compound of formula (VII) is carried out in polar solvent and in the presence of phosphorous oxychloride.
- In another embodiment of the present invention, it provides an improved process for the preparation of Irbesartan comprises steps of:
- (i) reacting biphenyl derivative of formula (VIb) with 1-veleramido cyclopentane carboxylic acid (V) in an organic solvent and in the presence of an acid to obtain the compound of the formula (VIIb).
- wherein A represents protected tetrazolyl group.
- Suitable protecting groups of protected 1H-tetrazol-5-yl are the protecting groups customarily used in tetrazole chemistry, especially triphenylmethyl, unsubstituted or substituted, for example nitro-substituted, benzyl, such as 4-nitrobenzyl, lower alkoxymethyl, such as methoxymethyl or ethoxymethyl, lower alkylthiomethyl, such as methylthiomethyl, and 2-cyanoethyl, also lower alkoxy-lower alkoxymethyl, such as 2-methoxyethoxymethyl, benzyloxymethyl and phenacyl.
- wherein the said “acid” and “organic solvent” is selected from the group as defined earlier.
- (ii) deprotecting the protected tetrazolyl group present in the compound of formula (VIIb) by known methods to get Irbesartan of formula (I)
- For example triphenylmethyl is customarily removed by means of hydrolysis especially in the presence of an acid, for example in the presence of hydrogen halide, advantageously in an inert solvent, such as haloalkane or an ether, for example in dichloromethane or dioxane, and with heating; or by hydrogenolysis in the presence of hydrogenation catalyst, 4-nitrobenzyl is removed, for example by hydrogenolysis in the presence of hydrogenation catalyst; methoxymethyl or ethoxymethyl is removed, for example by treatment with a lower alkyl tin bromide such as triethyl- or tributyl-tin bromide; methylthiomethyl is removed for example by treatment with trifluoroacetic acid; 2-cyanoethyl is removed, for example, by hydrolysis, for example with hydrochloric acid; and benzyloxymethyl and phenacyl are removed, for example by hydrogenolysis in the presence of a hydrogenation catalyst.
- In another embodiment of the present invention, an improved process for the preparation of Irbesartan comprises steps of:
- (i) reacting 4′ aminomethyl-2-cyano biphenyl of formula (VI) with 1-veleramido cyclopentane carboxylic acid of formula (V)
-
- in toluene and in the presence of methane sulfonic acid, without activating the —COOH group of compound of formula (V) and without isolating open chain compound of formula (VIII) to give 1-(2′cyanobiphenyl-4-yl-methylaminocarbonyl)-1-pentanoylamino cyclopentane of formula (VII).
- (ii) converting the compound of formula (VII) obtained in step (i) to Irbesartan of formula (I) by reacting the compound of the formula (VII) with tributyl tin azide in o-xylene to give Irbesartan of formula (I).
- The process of the present invention has following advantages:
-
- (i) It eliminates the requirement of chromatographic purification of intermediates at various stages and provides a process which is economical, operationally simple and industrially applicable.
- (ii) The process provides less number of steps as it eliminates the steps of protection and deprotection.
- (iii) The process is simple and easy to handle and does not require special handling care or critical temperature conditions.
- (iv) It eliminates the use of reagents which is greatly air and moisture sensitive.
- (v) It does not require tedious step of activation of carboxylic group of compound of formula (V) using dicyclocarbodiimide (DCC) which is not only difficult in handling but highly prone to hazard.
- The following examples illustrate the invention further and do not limit the scope of the invention in any manner.
- 4′aminomethyl-2-cyano biphenyl (50 g) (VI) is added to toluene (2 Liter) and methane sulfonic acid (19 ml) and stirred at ambient temperature.
- 1-Valeramidocyclopentanecarboxylic acid (56.3 g) (V) is added to the above solution and the mass is refluxed under stirring for 24 hours and water is separated by dean stark apparatus. Methane sulphonic acid (4 ml) is added to the reaction mixture and refluxed under stirring for 24 hours and water is separated by dean stark apparatus. The reaction mixture is cooled to ambient temperature and toluene is distilled under vacuum completely. Ethyl acetate (2 Liter) and 2N sodium hydroxide solution (320 ml) is added to the residue and stirred for 30 minutes. Two phases are separated and the organic phase is washed with brine (400 ml). The organic phase is treated with activated charcoal, filtered through hyflobed and filtrate is distilled out under vacuum completely. Methyl t-butyl ether (123 ml) is added to the residue and stirred for 2 hours at ambient temperature. The product is filtered and washed with methyl t-butyl ether (90 ml) and suck dried. The product is dried under vacuum at 50° C. till constant weight. (Yield: 88%)
- 1H-NMR (CDCl3): δppm 0.83 (t,3H); 1.24-136(sex,2H); 1.51-1.61(quent,2H); 1.78-1.98(m,10H); 2.32(t, 2H); 4.71(s, 2H); 7.24-7.73(m,8H)
- 4′aminomethyl-2-cyano biphenyl (50 g) (VI) is added to toluene (2 Liter) and methane sulfonic acid (19 ml) and stirred it at ambient temperature.
- 1-Valeramidocyclopentanecarboxylic acid (56.3 g) (V) is added to the above solution and the mass is refluxed under stirring for 24 hours and water is separated by dean stark apparatus. Methane sulphonic acid (4 ml) is added to the reaction mixture and refluxed under stirring for 24 hours and water is separated by dean stark apparatus. The reaction mixture is cooled to ambient temperature and 2N sodium hydroxide solution (320 ml) is added to the residue and stirred for 30 minutes. Two phases are separated and the organic phase is washed with brine (400 ml). The organic phase is treated with activated charcoal, filtered through hyflobed and filtrate is distilled out under vacuum completely. Methyl t-butyl ether (123 ml) is added to the residue and stirred for 2 hours at ambient temperature. The product is filtered and washed with methyl t-butyl ether (90 ml) and suck dried. The product is dried under vacuum at 50° C. till constant weight. (Yield: 90%)
- 1H-NMR (CDCl3): δppm 0.83 (t,3H); 1.24-136(sex,2H); 1.51-1.61(quent,2H); 1.78-1.98(m,10H); 2.32(t, 2H); 4.71(s, 2H); 7.24-7.73(m,8H)
- 4′aminomethyl-2-cyano biphenyl (50 g) (VI) is added to xylene (2 Liter) and methane sulfonic acid (19 ml) and stirred it at ambient temperature.
- 1-Valeramidocyclopentanecarboxylic acid (56.3 g) (V) is added to the above solution and the mass is refluxed under stirring for 24 hours and water is separated by dean stark apparatus. Methane sulphonic acid (4 ml) is added to the reaction mixture and refluxed under stirring for 24 hours and water is separated by dean stark apparatus. The reaction mixture is cooled to ambient temperature and 2N sodium hydroxide solution (320 ml) is added to the residue and stirred for 30 minutes. Two phases are separated and the organic phase is washed with brine (400 ml). The organic phase is treated with activated charcoal, filtered through hyflobed and filtrate is distilled out under vacuum completely. Diisopropyl ether (123 ml) is added to the residue and stirred for 2 hours at ambient temperature. The product is filtered and washed with diisopropyl ether (90 ml) and suck dried. The product is dried under vacuum at 50° C. till constant weight. (Yield: 88%)
- 1H-NMR (CDCl3): δppm 0.83 (t,3H); 1.24-136(sex,2H); 1.51-1.61(quent,2H); 1.78-1.98(m,10H); 2.32(t, 2H); 4.71(s, 2H); 7.24-7.73(m,8H)
- 4′aminomethyl-2-cyano biphenyl (50 g) (VI) is added to xylene (2 Liter) and p-toluene sulfonic acid (54.8 g) and stirred it at ambient temperature.
- 1-Valeramidocyclopentanecarboxylic acid (56.3 g) (V) is added to the above solution and the mass is refluxed under stirring for 24 hours and water is separated by dean stark apparatus. P-toluene sulfonic acid (13.7 g) is added to the reaction mixture and refluxed under stirring for 24 hours and water is separated by dean stark apparatus. The reaction mixture is cooled to ambient temperature and 2N potassium hydroxide solution (320 ml) is added to the residue and stirred for 30 minutes. Two phases are separated and the organic phase is washed with brine (400 ml). The organic phase is treated with activated charcoal, filtered through hyflobed and filtrate is distilled out under vacuum completely. Diisopropyl ether (123 ml) is added to the residue and stirred for 2 hours at ambient temperature. The product is filtered and washed with diisopropyl ether (90 ml) and suck dried. The product is dried under vacuum at 50° C. till constant weight. (Yield: 84%)
- 1H-NMR (CDCl3): δppm 0.83 (t,3H); 1.24-136(sex,2H); 1.51-1.61(quent,2H); 1.78-1.98(m,10H); 2.32(t, 2H); 4.71(s, 2H); 7.24-7.73(m,8H)
- Cyclopentanone of formula (II) is reacted with sodium cyanide in the presence of ammonium chloride and aqueous ammonia in methanol and water at 60° C. for 1-1.5 hours. The mass is extracted with dichloromethane whereupon the removal of the solvent provides 1-Aminocyclopentane carbonitrile.
- 1-Aminocyclopentane carbonitrile of formula (III) obtained in above step is treated with aq. HCl at 100° C. for 24 hours. The mass is cooled to 0° C. and filtered the solid. The solid is dissolved in water at 90-95° C. Activated charcoal is added and stirred. The solution is filtered through hyflow bed. The pH of the solution is adjusted 5 with TEA. The mass is cooled to 0-5° C. and stirred for 2 hours whereupon the product is precipitate out which is filtered to give 1-Amino cyclopentane carboxylic acid as hydrochloride salt.
- 1-Aminocyclopentane carboxylic acid hydrochloride of formula (IV) obtained in above step is treated with valeroyl chloride in the presence of tetrabutyl ammonium bromide and aqueous sodium hydroxide solution at 0-5° C. for 1 hours. The reaction mix was diluted with water and toluene and separated the two phases. The aqueous phase was washed with toluene, chilled and then acidified to give precipitate. The solid was filtrated and washed with water to give 1-veleramido cyclopentane carboxylicacid.
- 4′aminomethyl-2-cyano biphenyl (50 g) (VI) is added to toluene (2 Liter) and p-toluene sulfonic acid (54.8 g) and stirred it at ambient temperature.
- 1-Valeramidocyclopentanecarboxylic acid (56.3 g) (V) obtained in above step is added to the above solution and the mass is refluxed under stirring for 24 hours and water is separated by dean stark apparatus. P-toluene sulfonic acid (13.7 g) is added to the reaction mixture and refluxed under stirring for 24 hours and water is separated by dean stark apparatus. The reaction mixture is cooled to ambient temperature and 2N sodium hydroxide solution (320 ml) is added to the residue and stirred for 30 minutes. Two phases are separated and the organic phase is washed with brine (400 ml). The organic phase is treated with activated charcoal, filtered through hyflobed and filtrate is distilled out under vacuum completely. Methyl t-butyl ether (123 ml) is added to the residue and stirred for 2 hours at ambient temperature. The product is filtered and washed with methyl t-butyl ether (90 ml) and suck dried. The product is dried under vacuum at 50° C. till constant weight. (Yield: 88%)
- 2-(n-Butyl)-3-(2′-cyanobiphenyl-4-ylmethyl)-4-oxo-1,3 diazaspiro[4.4]non-1-ene-4-one of formula (VII) obtained in above step is reacted with tributyl tin azide in o-xylene at reflux temperature for 80 hours to give crude Irbesartan. The mass is treated with 1N NaOH. The phases were separated and aq. phase is washed with o-xylene and isopropyl ether. Aq phase is treated with charcoal, filtered through hyflobed and then treated with 3N HCl. The product title compound is filtered, washed with water and dried under vacuum at 60° C. The product is crystallized from 95% ethanol to give Irbesartan. (Yield: 86%).
- 1H-NMR (DMSO d6): δppm 0.78 (t, 3H); 1.17-1.30 (sex, 2H); 1.40-1.50 (quent, 2H); 1.64-1.66 (m, 2H); 1.80-1.82 (m, 6H); 2.22-2.29 (t, 2H); 4.67 (s, 2H); 7.07 (s, 4H); 7.50-7.68 (m, 4H)
- M+: 429.6
- 4′aminomethyl-2-(1,3-oxazolin-4,4-dimethyl)-1,1′ biphenyl (67.2 g) (VIa, where R is 1,3-oxazolin-4,4-dimethyl-2-yl) is added to toluene (2 Liter) and methane sulfonic acid (19 ml) and stir it at ambient temperature.
- 1-Valeramidocyclopentanecarboxylic acid (56.3 g) (V) is added to the above solution and the mass is refluxed under stirring for 24 hours and water is separated by dean stark apparatus. Methane sulphonic acid (4 ml) is added to the reaction mixture and refluxed under stirring for 24 hours and water is separated by dean stark apparatus. The reaction mixture is cooled to ambient temperature and toluene is distilled under vacuum completely. Ethyl acetate (2 Liter) and saturated sodium bicarbonate solution (320 ml) is added to the residue and stirred for 30 minutes. Two phases are separated and the organic phase is washed with brine (400 ml). The organic phase is treated with activated charcoal, filtered through hyflobed and filtrate is distilled out under vacuum completely. Methyl t-butyl ether (123 ml) is added to the residue and stirred for 2 hours at ambient temperature. The product is filtered and washed with methyl t-butyl ether (90 ml) and suck dried. The product is dried under vacuum at 50° C. till constant weight. (Yield: 80%) to give 2-(n-Butyl)-3-[2′(1,3-oxazolin-4,4-dimethyl)-biphenyl-4-ylmethyl]-4-oxo-1,3 diazaspiro[4.4]non-1-ene-4-one.
- 2-(n-Butyl)-3-[2′(1,3-oxazolin-4,4-dimethyl)-biphenyl-4-ylmethyl]-4-oxo-1,3 diazaspiro[4.4]non-1-ene-4-one of formula (VIIa, where R is 1,3-oxazolin-4,4-dimethyl-2-yl) obtained in above step is treated with phosphorous oxychloride in a polar solvent to give 2-(n-Butyl)-3-[2′cyanobiphenyl-4-ylmethyl]-4-oxo-1,3 diazaspiro[4.4]non-1-ene-4-one.
- 2-(n-Butyl)-3-[2′cyanobiphenyl-4-ylmethyl]-4-oxo-1,3 diazaspiro[4.4]non-1-ene-4-one of formula (VII) obtained in above step is reacted with tributyl tin azide in o-xylene at reflux temperature for 80 hours to give crude Irbesartan. The mass is treated with 1N NaOH. The phases were separated and aq. phase is washed with o-xylene and isopropyl ether. Aq phase is treated with charcoal, filtered through hyflobed and then treated with 3N HCl. The product title compound is filtered, washed with water and dried under vacuum at 60° C. The product is crystallized from 95% ethanol to give Irbesartan. (Yield: 81%)
- 1H-NMR (DMSO d6): δppm 0.78 (t, 3H); 1.17-1.30 (sex, 2H); 1.40-1.50 (quent, 2H); 1.64-1.66 (m, 2H); 1.80-1.82 (m, 6H); 2.22-2.29 (t, 2H); 4.67 (s, 2H); 7.07 (s, 4H); 7.50-7.68 (m, 4H)
- M+: 429.6
- 4′aminomethyl-2-amide-1,1′ biphenyl (54.3 g) (VIa, where R is —CONH2) is added to toluene (2 Liter) and methane sulfonic acid (19 ml) and stir it at ambient temperature.
- 1-Valeramidocyclopentanecarboxylic acid (56.3 g) (V) is added to the above solution and the mass is refluxed under stirring for 24 hours and water is separated by dean stark apparatus. Methane sulphonic acid (4 ml) is added to the reaction mixture and refluxed under stirring for 24 hours and water is separated by dean stark apparatus. The reaction mixture is cooled to ambient temperature and toluene is distilled under vacuum completely. Ethyl acetate (2 Liter) and 2N sodium hydroxide solution (320 ml) is added to the residue and stirred for 30 minutes. Two phases are separated and the organic phase is washed with brine (400 ml). The organic phase is treated with activated charcoal, filtered through hyflobed and filtrate is distilled out under vacuum completely. Methyl t-butyl ether (123 ml) is added to the residue and stirred for 2 hours at ambient temperature. The product is filtered and washed with methyl t-butyl ether (90 ml) and suck dried. The product is dried under vacuum at 50° C. till constant weight. (Yield: 80%) to give 2-(n-Butyl)-3-[2′amidebiphenyl-4-ylmethyl]-4-oxo-1,3 diazaspiro[4.4]non-1-ene-4-one.
- 2-(n-Butyl)-3-[2′amidebiphenyl-4-ylmethyl]-4-oxo-1,3 diazaspiro[4.4]non-1-ene-4-one of formula (VIIa, where R is —CONH2) obtained in above step is treated with thionyl chloride at reflux for 3.5 hours. The reaction was filtered and the thionyl chloride removed in vacuo. The residue was dissolved in toluene and reconcentrated in vacuo. On standing overnight, the residue crystallized. The crystals were collected and washed with hexane to give 2-(n-Butyl)-3-[2′cyanobiphenyl-4-ylmethyl]-4-oxo-1,3 diazaspiro[4.4]non-1-ene-4-one.
- 2-(n-Butyl)-3-[2′cyanobiphenyl-4-ylmethyl]-4-oxo-1,3 diazaspiro[4.4]non-1-ene-4-one of formula (VII) obtained in above step is reacted with tributyl tin azide in o-xylene at reflux temperature for 80 hours to give crude Irbesartan. The mass is treated with 1N NaOH. The phases were separated and aq. phase is washed with o-xylene and isopropyl ether. Aq phase is treated with charcoal, filtered through hyflobed and then treated with 3N HCl. The product title compound is filtered, washed with water and dried under vacuum at 60° C. The product is crystallized from 95% ethanol to give Irbesartan. (Yield: 85%)
- 1H-NMR (DMSO d6): δppm 0.78 (t, 3H); 1.17-1.30 (sex, 2H); 1.40-1.50 (quent, 2H); 1.64-1.66 (m, 2H); 1.80-1.82 (m, 6H); 2.22-2.29 (t, 2H); 4.67 (s, 2H); 7.07 (s, 4H); 7.50-7.68 (m, 4H)
- M+: 429.6
- 4′aminomethyl-2-(1-triphenylmethyl-1H-tetrazol-5-yl)-1,1′ biphenyl (118.46 g) (VIb, where A is triphenylmethyl protected tetrazolyl group) is added to toluene (2 Liter) and methane sulfonic acid (19 ml) and stir it at ambient temperature.
- 1-Valeramidocyclopentanecarboxylic acid (56.3 g) (V) is added to the above solution and the mass is refluxed under stirring for 24 hours and water is separated by dean stark apparatus. Methane sulphonic acid (4 ml) is added to the reaction mixture and refluxed under stirring for 24 hours and water is separated by dean stark apparatus. The reaction mixture is cooled to ambient temperature and toluene is distilled under vacuum completely. Ethyl acetate (2 Liter) and saturated sodium bicarbonate solution (320 ml) is added to the residue and stirred for 30 minutes. Two phases are separated and the organic phase is washed with brine (400 ml). The organic phase is treated with activated charcoal, filtered through hyflobed and filtrate is distilled out under vacuum completely. Methyl t-butyl ether (123 ml) is added to the residue and stirred for 2 hours at ambient temperature. The product is filtered and washed with methyl t-butyl ether (90 ml) and suck dried. The product is dried under vacuum at 50° C. till constant weight. (Yield: 80%) to give 2-(n-Butyl)-3-[2′(1-triphenylmethyl-1H-tetrazol-5-yl)biphenyl-4-ylmethyl]-4-oxo-1,3 diazaspiro[4.4]non-1-ene-4-one.
- 2-(n-Butyl)-3-[2′(1-triphenylmethyl-1H-tetrazol-5-yl)biphenyl-4-ylmethyl]-4-oxo-1,3 diazaspiro[4.4]non-1-ene-4-one of formula (VIIb, where A is triphenylmethyl protected tetrazolyl group) obtained in above step was treated with 5 N HCl in methanol and tetrahydrofuran at 0-5° C. and then stirred at ambient temperature for overnight. After completion of reaction tetrahydrofuran and methanol was distilled out under vacuum. The residue was partitioned between toluene and 1N sodium hydroxide. Two phases were separated and aqueous phase was washed with isopropyl ether. The aqueous phase was adjusted to pH 4.6 by 3N hydrochloric acid. The product was filtered and washed with water and dried in air to get Irbesartan. (Yield: 75%)
- 1H-NMR (DMSO d6): δppm 0.78 (t, 3H); 1.17-1.30 (sex, 2H); 1.40-1.50 (quent, 2H); 1.64-1.66 (m, 2H); 1.80-1.82 (m, 6H); 2.22-2.29 (t, 2H); 4.67 (s, 2H); 7.07 (s, 4H); 7.50-7.68 (m, 4H)
- M+: 429.6
- In a 3 necked 250 ml round bottom flask equipped with mechanical stirrer, was charged with sodium hydroxide solution (24.1 g dissolved in 100 ml water) and 1-aminocyclopentane carboxylic acid hydrochloride (25 g) and chilled to 0° C. under stirring. Tetra butyl ammonium bromide (0.25 g) was added to the reaction mixture followed by slow addition of a solution of valeroyl chloride (27.5 g) in toluene (20 ml) during one hour at 0-5° C. under stirring. The reaction mass was stirred for 1 hour at 0-5° C. The reaction mixture was diluted with water (100 ml) toluene (20 ml) and stirred for 15 minutes. The two phases were separated. The aqueous phase was washed with toluene (20 ml). Aqueous phase was chilled to 10° C. and acidified with hydrochloric acid and stirred it for 1 hour. The product was filtered and washed with water. The product was dried at 60° C. till constant weight. (Yield: 22 g; 68%).
- 1H-NMR (DMSOd6): δ ppm 0.819 (t,3H); 1.16-128(sex,2H); 1.37-1.47(quent,2H); 1.59(m,4H); 1.79-1.84(m,2H);1.97-2.05 (m,4H); 8.02(s, 1H); 12.0 (Broad singlet, 1H).
Claims (43)
1. A process for the preparation of Irbesartan of formula (I) comprising step of,
wherein X represents H or C1-4 alkyl, preferably methyl;
or any other such group which can be converted to cyano group,
with 1-veleramido cyclopentane carboxylic acid of formula (V)
2. The process as claimed in claim 1 , wherein said acid is selected from the group consisting of organic and inorganic acids or mixture thereof.
3. The process as claimed in claim 2 , wherein the organic acid is selected from the group comprising methane sulfonic acid and p-toluene sulfonic acid.
4. The process as claimed in claim 2 , wherein the inorganic acid is sulfuric acid.
5. The process as claimed in claim 1 , wherein said organic solvent is selected from the group consisting of C1-8 aromatic hydrocarbons or mixture thereof.
6. The process as claimed in claim 5 wherein C1-8 aromatic hydrocarbons is toluene.
7. A process for the preparation of Irbesartan of formula (I) comprising steps of:
wherein X represents H or C1-4 alkyl, preferably methyl;
or any other such group which can be converted to cyano group,
with 1-veleramido cyclopentane carboxylic acid of formula (V),
wherein R has the same meaning as mentioned hereinabove;
(ii) converting the compound of formula (VIIa) to compound of formula (VII);
8. The process as claimed in claim 7 , wherein said acid is selected from the group consisting of organic and inorganic acids or mixture thereof.
9. The process as claimed in claim 8 , wherein the organic acid is selected from the group comprising methane sulfonic acid and p-toluene sulfonic acid.
10. The process as claimed in claim 8 , wherein the inorganic acid is sulfuric acid.
11. The process as claimed in claim 7 , wherein said organic solvent is selected from the group consisting of C1-8 aromatic hydrocarbons or mixture thereof.
12. The process as claimed in claim 11 wherein C1-8 aromatic hydrocarbons is toluene.
13. A process for the preparation of Irbesartan of formula (I) comprising step of,
wherein A represents protected tetrazolyl group
with 1-veleramido cyclopentane carboxylic acid of formula (V)
14. The process as claimed in claim 13 , wherein said acid is selected from the group consisting of organic and inorganic acids or mixture thereof.
15. The process as claimed in claim 14 , wherein the organic acid is selected from the group comprising methane sulfonic acid and p-toluene sulfonic acid.
16. The process as claimed in claim 14 , wherein the inorganic acid is sulfuric acid.
17. The process as claimed in claim 13 , wherein said organic solvent is selected from the group consisting of C1-8 aromatic hydrocarbons or mixture thereof.
18. The process as claimed in claim 17 wherein C1-8 aromatic hydrocarbons is toluene.
19. A process for the preparation of Irbesartan of formula (I) comprising steps of:
wherein A represents protected tetrazolyl group
with 1-veleramido cyclopentane carboxylic acid of formula (V)
20. The process as claimed in claim 19 , wherein said acid is selected from the group consisting of organic and inorganic acids or mixture thereof.
21. The process as claimed in claim 20 , wherein the organic acid is selected from the group comprising methane sulfonic acid and p-toluene sulfonic acid.
22. The process as claimed in claim 20 , wherein the inorganic acid is sulfuric acid.
23. The process as claimed in claim 19 , wherein said organic solvent is selected from the group consisting of C1-8 aromatic hydrocarbons or mixture thereof.
24. The process as claimed in claim 23 wherein C1-8 aromatic hydrocarbons is toluene.
25. A process for the preparation of 1-veleramidocyclopentane carboxylic acid of formula (V) comprising,
26. The process as claimed in claim 25 , wherein the phase transfer catalyst is selected from the group comprising quarternery ammonium compound, phosphonium compound and cyclic polyethers.
27. The process as claimed in claim 26 , wherein the phase transfer catalyst is selected from the group tetrabutyl ammonium bromide (TBAB), tetrabutyl ammonium hydrogensulfate, benzalkonium chloride, cetyl trimethyl ammonium chloride or mixture thereof.
28. The process as claimed in claim 25 , wherein the suitable solvent is selected from the group comprising non polar water immiscible solvent.
29. The process as claimed in claim 28 , wherein the suitable solvent is selected from toluene, xylene, benzene, dichloromethane, cyclohexane, hexane, heptane and the mixture thereof.
30. The process as claimed in claim 25 , wherein the base is selected from alkali metal hydroxide, alkaline earth metal carbonate or bicarbonate.
31. The process as claimed in claim 30 , wherein the base is selected from NaOH or KOH, LiOH, Na2CO3, K2CO3, KHCO3, NaHCO3, CaCO3 or mixture thereof.
32. A process of preparation of Irbesartan comprising the steps of:
(i) reacting Aminocyclopentane carboxylic acid hydrochloride salt of formula (IV)
with valeroyl chloride in the presence of a base and a phase transfer catalyst (PTC) in a suitable solvent and water to give 1-veleramido cyclopentane carboxylic acid of formula (V)
(ii) reacting 4′ aminomethyl-2-cyano biphenyl of formula (VI) with 1-veleramido cyclopentane carboxylic acid of formula (V)
in the presence of an acid in an organic solvent to give 1-(2′cyanobiphenyl-4-yl-methylaminocarbonyl)-1-pentanoylamino cyclopentane of formula (VII).
33. The process as claimed in claim 32 , wherein the phase transfer catalyst is selected from the group comprising quarternery ammonium compound, phosphonium compound and cyclic polyethers.
34. The process as claimed in claim 33 , wherein the phase transfer catalyst is selected from the group tetrabutyl ammonium bromide (TBAB), tetrabutyl ammonium hydrogensulfate, benzalkonium chloride, cetyl trimethyl ammonium chloride or mixture thereof.
35. The process as claimed in claim 32 , wherein the suitable solvent is selected from the group comprising non polar water immiscible solvent.
36. The process as claimed in claim 35 , wherein the suitable solvent is selected from toluene, xylene, benzene, dichloromethane, cyclohexane, hexane, heptane and the mixture thereof.
37. The process as claimed in claim 32 , wherein the base is selected from alkali metal hydroxide, alkaline earth metal carbonate or bicarbonate.
38. The process as claimed in claim 37 , wherein the base is selected from NaOH or KOH, LiOH, Na2CO3, K2CO3, KHCO3, NaHCO3, CaCO3 or mixture thereof.
39. The process as claimed in claim 32 , wherein said acid is selected from the group consisting of organic and inorganic acids or mixture thereof.
40. The process as claimed in claim 39 , wherein the organic acid is selected from the group comprising methane sulfonic acid and p-toluene sulfonic acid.
41. The process as claimed in claim 39 , wherein the inorganic acid is sulfuric acid.
42. The process as claimed in claim 32 , wherein said organic solvent is selected from the group consisting of C1-8 aromatic hydrocarbons or mixture thereof.
43. The process as claimed in claim 42 wherein C1-8 aromatic hydrocarbons is toluene.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/683,713 US20100113798A1 (en) | 2005-10-28 | 2010-01-07 | Process for preparation of irbesartan |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IN1360/MUM/2005 | 2005-10-28 | ||
| IN1360MU2005 | 2005-10-28 | ||
| US11/406,919 US7652147B2 (en) | 2005-10-28 | 2006-04-19 | Process for preparation of Irbesartan |
| US12/683,713 US20100113798A1 (en) | 2005-10-28 | 2010-01-07 | Process for preparation of irbesartan |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/406,919 Division US7652147B2 (en) | 2005-10-28 | 2006-04-19 | Process for preparation of Irbesartan |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20100113798A1 true US20100113798A1 (en) | 2010-05-06 |
Family
ID=37635900
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/406,919 Expired - Fee Related US7652147B2 (en) | 2005-10-28 | 2006-04-19 | Process for preparation of Irbesartan |
| US12/683,713 Abandoned US20100113798A1 (en) | 2005-10-28 | 2010-01-07 | Process for preparation of irbesartan |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/406,919 Expired - Fee Related US7652147B2 (en) | 2005-10-28 | 2006-04-19 | Process for preparation of Irbesartan |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US7652147B2 (en) |
| EP (1) | EP1948641A1 (en) |
| AU (1) | AU2006307471A1 (en) |
| CA (1) | CA2604404A1 (en) |
| WO (1) | WO2007049293A1 (en) |
| ZA (1) | ZA200803678B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105001209A (en) * | 2015-06-29 | 2015-10-28 | 千辉药业(安徽)有限责任公司 | Synthetic method of irbesartan |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100234614A1 (en) * | 2007-12-07 | 2010-09-16 | Hetero Drugs Limited | Process for pure irbesartan |
| CN102050761A (en) * | 2010-12-10 | 2011-05-11 | 江苏江神药物化学有限公司 | Key intermediate of Erbesartan, synthesis method thereof and method for synthesizing Erbesartan therefrom |
| CN108276389B (en) * | 2018-02-09 | 2020-10-16 | 北京化工大学 | A kind of synthetic method of irbesartan |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| PT97078B (en) | 1990-03-20 | 1997-07-31 | Sanofi Sa | PROCESS FOR THE PREPARATION OF N-SUBSTITUTED HETEROCYCLIC DERIVATIVES AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
| US5270317A (en) * | 1990-03-20 | 1993-12-14 | Elf Sanofi | N-substituted heterocyclic derivatives, their preparation and the pharmaceutical compositions in which they are present |
| IL99372A0 (en) | 1990-09-10 | 1992-08-18 | Ciba Geigy Ag | Azacyclic compounds |
| CN1759113A (en) | 2003-01-16 | 2006-04-12 | 特瓦制药工业有限公司 | A New Synthetic Method of Irbesartan |
| PT1590343E (en) | 2003-02-05 | 2008-09-11 | Teva Pharma | Synthesis of 2-butyl-3-(2` -(1-trityl-1h-tetrazol-5-yl)biphen yl-4-yl)-1,3-diazaspiro-4,4 -nonene-4-one |
| WO2005013518A1 (en) | 2003-08-01 | 2005-02-10 | Fujitsu Limited | Raman optical amplifier |
| US20090286990A1 (en) * | 2004-05-20 | 2009-11-19 | Reguri Buchi Reddy | Process for preparing irbesartan |
-
2006
- 2006-04-04 WO PCT/IN2006/000116 patent/WO2007049293A1/en not_active Ceased
- 2006-04-04 CA CA002604404A patent/CA2604404A1/en not_active Abandoned
- 2006-04-04 EP EP06809899A patent/EP1948641A1/en not_active Withdrawn
- 2006-04-04 AU AU2006307471A patent/AU2006307471A1/en not_active Abandoned
- 2006-04-19 US US11/406,919 patent/US7652147B2/en not_active Expired - Fee Related
-
2008
- 2008-04-25 ZA ZA200803678A patent/ZA200803678B/en unknown
-
2010
- 2010-01-07 US US12/683,713 patent/US20100113798A1/en not_active Abandoned
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105001209A (en) * | 2015-06-29 | 2015-10-28 | 千辉药业(安徽)有限责任公司 | Synthetic method of irbesartan |
Also Published As
| Publication number | Publication date |
|---|---|
| US7652147B2 (en) | 2010-01-26 |
| EP1948641A1 (en) | 2008-07-30 |
| CA2604404A1 (en) | 2007-05-03 |
| ZA200803678B (en) | 2009-02-25 |
| US20070099973A1 (en) | 2007-05-03 |
| WO2007049293A1 (en) | 2007-05-03 |
| AU2006307471A1 (en) | 2007-05-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7923567B2 (en) | Process for preparing valsartan | |
| US20100249429A1 (en) | Process for the manufacture of valsartan | |
| KR20170023942A (en) | Process for the preparation of 4-alkoxy-3-hydroxypicolinic acids | |
| JP2013538208A (en) | Improved rufinamide preparation process | |
| US9879009B2 (en) | Pyrazole derivative manufacturing method | |
| US20100113798A1 (en) | Process for preparation of irbesartan | |
| US20090286990A1 (en) | Process for preparing irbesartan | |
| EP2260018A2 (en) | Process for preparation of valsartan intermediate | |
| US20100036125A1 (en) | Synthesis of ccr5 receptor antagonists | |
| CZ298685B6 (en) | Process for preparing N-(1-oxopentyl)-N-[[2?-(1H-tetrazol-5-yl)[1,1?-biphenyl]-4-yl]methyl]-L-valine (valsartan) | |
| WO2008007391A2 (en) | An improved process for the preparation of valsartan | |
| JP2008531642A (en) | Method for obtaining pharmaceutically active compound irbesartan and synthetic intermediates thereof | |
| JP4356111B2 (en) | Process for producing N- (2-amino-1,2-dicyanovinyl) formamidine | |
| US20070249839A1 (en) | Process for the Preparation of Losartan Potassium Form I | |
| EP1919469B1 (en) | Process for preparing an angiotensin ii receptor antagonist | |
| US7728024B2 (en) | Metal salts of 2′-(1H-Tetrazol-5yl)-1.1′-biphenyl-4-carboxaldehyde | |
| KR20060052974A (en) | Method for preparing phenyltetrazole derivatives | |
| WO2007057919A2 (en) | An improved process for preparation of (s)-n-(1-carboxy-2-methyl-prop-1-yl)-n-pentanoyl-n-[2'-(1h-tetrazol-5-yl)biphenyl-4-ylmethyl]-amine | |
| US20070149606A1 (en) | Process for producing phenylacetic acid derivative | |
| WO2010133909A2 (en) | Process for preparation of 5-substituted tetrazoles | |
| CN119768406A (en) | Process for the preparation of substituted pyrrolopyrimidines and intermediates | |
| US9000221B2 (en) | Processes for the preparation of 4′-[3-[4-(6-Fluoro-1 ,2-benzisoxazol-3-yl)piperidino]propoxy]-3′-methoxyacetophenone and intermediates thereof | |
| WO2010079405A2 (en) | An improved process for preparing 1-(pentanoylamino)cyclopentanecarboxylic acid | |
| KR20070093656A (en) | New method for preparing losartan and benzylimidazole derivatives, useful intermediates for their preparation | |
| CZ2005221A3 (en) | Process for preparing trityl irbesartan and use thereof in irbesartan synthesis process |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |