US20100087468A1 - Modulators of ppar and methods of their preparation - Google Patents
Modulators of ppar and methods of their preparation Download PDFInfo
- Publication number
- US20100087468A1 US20100087468A1 US12/574,861 US57486109A US2010087468A1 US 20100087468 A1 US20100087468 A1 US 20100087468A1 US 57486109 A US57486109 A US 57486109A US 2010087468 A1 US2010087468 A1 US 2010087468A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- group
- halo
- independently selected
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 238000002360 preparation method Methods 0.000 title description 10
- 101150014691 PPARA gene Proteins 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 335
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 58
- 208000001072 type 2 diabetes mellitus Diseases 0.000 claims abstract description 53
- 201000010099 disease Diseases 0.000 claims abstract description 47
- 208000031226 Hyperlipidaemia Diseases 0.000 claims abstract description 30
- 208000008589 Obesity Diseases 0.000 claims abstract description 27
- 235000020824 obesity Nutrition 0.000 claims abstract description 27
- 150000003839 salts Chemical class 0.000 claims abstract description 26
- 201000001320 Atherosclerosis Diseases 0.000 claims abstract description 21
- 208000035150 Hypercholesterolemia Diseases 0.000 claims abstract description 17
- 208000024172 Cardiovascular disease Diseases 0.000 claims abstract description 16
- 201000001431 Hyperuricemia Diseases 0.000 claims abstract description 14
- 208000006575 hypertriglyceridemia Diseases 0.000 claims abstract description 13
- 206010060378 Hyperinsulinaemia Diseases 0.000 claims abstract description 12
- 201000001421 hyperglycemia Diseases 0.000 claims abstract description 12
- 230000003451 hyperinsulinaemic effect Effects 0.000 claims abstract description 12
- 201000008980 hyperinsulinism Diseases 0.000 claims abstract description 12
- 208000011580 syndromic disease Diseases 0.000 claims abstract description 12
- 208000030814 Eating disease Diseases 0.000 claims abstract description 10
- 208000019454 Feeding and Eating disease Diseases 0.000 claims abstract description 10
- 102000003728 Peroxisome Proliferator-Activated Receptors Human genes 0.000 claims abstract description 10
- 108090000029 Peroxisome Proliferator-Activated Receptors Proteins 0.000 claims abstract description 10
- 235000014632 disordered eating Nutrition 0.000 claims abstract description 10
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 claims description 266
- 125000005843 halogen group Chemical group 0.000 claims description 233
- 125000001424 substituent group Chemical group 0.000 claims description 152
- -1 —OR7 Chemical group 0.000 claims description 148
- 125000006648 (C1-C8) haloalkyl group Chemical group 0.000 claims description 138
- 229910052739 hydrogen Inorganic materials 0.000 claims description 127
- 125000003118 aryl group Chemical group 0.000 claims description 119
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 55
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 40
- 125000000623 heterocyclic group Chemical group 0.000 claims description 37
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 34
- 125000004648 C2-C8 alkenyl group Chemical group 0.000 claims description 32
- 229910052736 halogen Inorganic materials 0.000 claims description 29
- 125000001072 heteroaryl group Chemical group 0.000 claims description 27
- 125000006272 (C3-C7) cycloalkyl group Chemical group 0.000 claims description 26
- 206010022489 Insulin Resistance Diseases 0.000 claims description 21
- 125000004649 C2-C8 alkynyl group Chemical group 0.000 claims description 20
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 16
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 15
- 125000005647 linker group Chemical group 0.000 claims description 14
- XEGAKAFEBOXGPV-UHFFFAOYSA-N 2,3,3a,4-tetrahydro-1h-benzotriazole Chemical group C1C=CC=C2NNNC12 XEGAKAFEBOXGPV-UHFFFAOYSA-N 0.000 claims description 13
- 239000012964 benzotriazole Chemical group 0.000 claims description 13
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 claims description 13
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 13
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 claims description 12
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical group C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 claims description 12
- 125000002971 oxazolyl group Chemical group 0.000 claims description 12
- OVCXRBARSPBVMC-UHFFFAOYSA-N triazolopyridine Chemical group C=1N2C(C(C)C)=NN=C2C=CC=1C=1OC=NC=1C1=CC=C(F)C=C1 OVCXRBARSPBVMC-UHFFFAOYSA-N 0.000 claims description 12
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 claims description 11
- 125000002947 alkylene group Chemical group 0.000 claims description 11
- 125000004076 pyridyl group Chemical group 0.000 claims description 11
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 claims description 10
- 125000002883 imidazolyl group Chemical group 0.000 claims description 10
- 125000003226 pyrazolyl group Chemical group 0.000 claims description 10
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical group C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 claims description 9
- 125000004450 alkenylene group Chemical group 0.000 claims description 7
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 claims description 7
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 claims description 7
- 125000004419 alkynylene group Chemical group 0.000 claims description 6
- 102000005962 receptors Human genes 0.000 claims description 6
- 108020003175 receptors Proteins 0.000 claims description 6
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 claims description 5
- 102000016267 Leptin Human genes 0.000 claims description 5
- 108010092277 Leptin Proteins 0.000 claims description 5
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 claims description 5
- 229940039781 leptin Drugs 0.000 claims description 5
- 238000005304 joining Methods 0.000 claims description 4
- 125000001425 triazolyl group Chemical group 0.000 claims description 4
- 239000000651 prodrug Substances 0.000 abstract description 15
- 229940002612 prodrug Drugs 0.000 abstract description 15
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 10
- 239000012453 solvate Substances 0.000 abstract description 9
- 230000037356 lipid metabolism Effects 0.000 abstract description 8
- 150000004677 hydrates Chemical class 0.000 abstract description 6
- 230000003914 insulin secretion Effects 0.000 abstract description 6
- 230000004153 glucose metabolism Effects 0.000 abstract description 4
- 230000001404 mediated effect Effects 0.000 abstract description 2
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 105
- 239000000203 mixture Substances 0.000 description 94
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 76
- 206010012601 diabetes mellitus Diseases 0.000 description 55
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 52
- 229910002092 carbon dioxide Inorganic materials 0.000 description 52
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 46
- 238000005160 1H NMR spectroscopy Methods 0.000 description 44
- 125000004093 cyano group Chemical group *C#N 0.000 description 44
- 125000000217 alkyl group Chemical group 0.000 description 43
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 42
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 39
- 102000004877 Insulin Human genes 0.000 description 38
- 108090001061 Insulin Proteins 0.000 description 38
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 38
- 229940125396 insulin Drugs 0.000 description 38
- 0 CC(C)C#CC1=CC=CC=C1.[11*]C1=C([12*])N=C(C(C)C)N1.[13*]C1=C([14*])N=C(C(C)C)O1.[15*]C1=C([16*])N=C(C(C)C)S1.[17*]C1=CN(C(C)C)N=C1[18*].[19*]C1CN(C(C)C)CC1[20*].[21*]N1CCN(C(C)C)CC1.[22*]C.[23*]C.[9*]C1=NN(C(C)C)N=C1[10*] Chemical compound CC(C)C#CC1=CC=CC=C1.[11*]C1=C([12*])N=C(C(C)C)N1.[13*]C1=C([14*])N=C(C(C)C)O1.[15*]C1=C([16*])N=C(C(C)C)S1.[17*]C1=CN(C(C)C)N=C1[18*].[19*]C1CN(C(C)C)CC1[20*].[21*]N1CCN(C(C)C)CC1.[22*]C.[23*]C.[9*]C1=NN(C(C)C)N=C1[10*] 0.000 description 37
- 125000003545 alkoxy group Chemical group 0.000 description 32
- 150000002148 esters Chemical class 0.000 description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 30
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 27
- 108010007622 LDL Lipoproteins Proteins 0.000 description 27
- 102000007330 LDL Lipoproteins Human genes 0.000 description 27
- 230000015572 biosynthetic process Effects 0.000 description 26
- 239000001257 hydrogen Substances 0.000 description 26
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 23
- 239000000543 intermediate Substances 0.000 description 23
- 239000000243 solution Substances 0.000 description 22
- 238000003786 synthesis reaction Methods 0.000 description 22
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 21
- 108010010234 HDL Lipoproteins Proteins 0.000 description 21
- 102000015779 HDL Lipoproteins Human genes 0.000 description 21
- 125000000753 cycloalkyl group Chemical group 0.000 description 21
- 239000008103 glucose Substances 0.000 description 21
- 239000002904 solvent Substances 0.000 description 21
- 239000000741 silica gel Substances 0.000 description 20
- 229910002027 silica gel Inorganic materials 0.000 description 20
- 239000003814 drug Substances 0.000 description 19
- 210000002381 plasma Anatomy 0.000 description 19
- 210000004369 blood Anatomy 0.000 description 18
- 239000008280 blood Substances 0.000 description 18
- 125000004432 carbon atom Chemical group C* 0.000 description 18
- WZZBNLYBHUDSHF-DHLKQENFSA-N 1-[(3s,4s)-4-[8-(2-chloro-4-pyrimidin-2-yloxyphenyl)-7-fluoro-2-methylimidazo[4,5-c]quinolin-1-yl]-3-fluoropiperidin-1-yl]-2-hydroxyethanone Chemical compound CC1=NC2=CN=C3C=C(F)C(C=4C(=CC(OC=5N=CC=CN=5)=CC=4)Cl)=CC3=C2N1[C@H]1CCN(C(=O)CO)C[C@@H]1F WZZBNLYBHUDSHF-DHLKQENFSA-N 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 16
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 16
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 16
- 239000007787 solid Substances 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 229940079593 drug Drugs 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 14
- 229910000024 caesium carbonate Inorganic materials 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 210000000577 adipose tissue Anatomy 0.000 description 13
- 125000004429 atom Chemical group 0.000 description 13
- 239000012267 brine Substances 0.000 description 13
- 238000009472 formulation Methods 0.000 description 13
- 150000002431 hydrogen Chemical group 0.000 description 13
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- 102000004895 Lipoproteins Human genes 0.000 description 12
- 108090001030 Lipoproteins Proteins 0.000 description 12
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 12
- 235000012000 cholesterol Nutrition 0.000 description 12
- 150000002367 halogens Chemical class 0.000 description 12
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 12
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- 239000002775 capsule Substances 0.000 description 11
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 11
- 208000035475 disorder Diseases 0.000 description 11
- 239000000546 pharmaceutical excipient Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 108010054147 Hemoglobins Proteins 0.000 description 10
- 102000001554 Hemoglobins Human genes 0.000 description 10
- 241000282414 Homo sapiens Species 0.000 description 10
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical class OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 10
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 10
- 108010062497 VLDL Lipoproteins Proteins 0.000 description 10
- 150000001299 aldehydes Chemical class 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 10
- 230000007812 deficiency Effects 0.000 description 10
- 208000024891 symptom Diseases 0.000 description 10
- 150000003852 triazoles Chemical group 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 238000002648 combination therapy Methods 0.000 description 9
- 229940125773 compound 10 Drugs 0.000 description 9
- 238000003818 flash chromatography Methods 0.000 description 9
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 9
- 210000004185 liver Anatomy 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000012074 organic phase Substances 0.000 description 9
- 125000003884 phenylalkyl group Chemical group 0.000 description 9
- 239000003826 tablet Substances 0.000 description 9
- 239000004215 Carbon black (E152) Substances 0.000 description 8
- 102000017011 Glycated Hemoglobin A Human genes 0.000 description 8
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 8
- YASAKCUCGLMORW-UHFFFAOYSA-N Rosiglitazone Chemical compound C=1C=CC=NC=1N(C)CCOC(C=C1)=CC=C1CC1SC(=O)NC1=O YASAKCUCGLMORW-UHFFFAOYSA-N 0.000 description 8
- 230000004913 activation Effects 0.000 description 8
- 230000036528 appetite Effects 0.000 description 8
- 235000019789 appetite Nutrition 0.000 description 8
- 210000004204 blood vessel Anatomy 0.000 description 8
- 208000029078 coronary artery disease Diseases 0.000 description 8
- 235000005911 diet Nutrition 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 8
- 239000000194 fatty acid Substances 0.000 description 8
- 229930195729 fatty acid Natural products 0.000 description 8
- 125000001188 haloalkyl group Chemical group 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 8
- 150000002632 lipids Chemical class 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 7
- 208000002705 Glucose Intolerance Diseases 0.000 description 7
- 108010046315 IDL Lipoproteins Proteins 0.000 description 7
- 102000023984 PPAR alpha Human genes 0.000 description 7
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 7
- 239000013543 active substance Substances 0.000 description 7
- 150000001408 amides Chemical class 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 239000000969 carrier Substances 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 238000004587 chromatography analysis Methods 0.000 description 7
- 230000006378 damage Effects 0.000 description 7
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 7
- 150000004665 fatty acids Chemical class 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 150000003949 imides Chemical class 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 229910052938 sodium sulfate Inorganic materials 0.000 description 7
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 6
- 108010014663 Glycated Hemoglobin A Proteins 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 206010020772 Hypertension Diseases 0.000 description 6
- 108010001831 LDL receptors Proteins 0.000 description 6
- 108010016731 PPAR gamma Proteins 0.000 description 6
- 102000000536 PPAR gamma Human genes 0.000 description 6
- 108010044210 PPAR-beta Proteins 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 125000004438 haloalkoxy group Chemical group 0.000 description 6
- 125000004404 heteroalkyl group Chemical group 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- DDJNSCLRZMCRIQ-UHFFFAOYSA-N methyl 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]phenyl]acetate Chemical compound C1=CC(CC(=O)OC)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 DDJNSCLRZMCRIQ-UHFFFAOYSA-N 0.000 description 6
- 125000002950 monocyclic group Chemical group 0.000 description 6
- 210000003205 muscle Anatomy 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- HYAFETHFCAUJAY-UHFFFAOYSA-N pioglitazone Chemical compound N1=CC(CC)=CC=C1CCOC(C=C1)=CC=C1CC1C(=O)NC(=O)S1 HYAFETHFCAUJAY-UHFFFAOYSA-N 0.000 description 6
- 150000003254 radicals Chemical class 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 125000006413 ring segment Chemical group 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 6
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 6
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical group C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 5
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical group C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 5
- OYYRDGYYLDWHPV-UHFFFAOYSA-N 2-[3-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]phenyl]acetic acid Chemical compound OC(=O)CC1=CC=CC(OCCCOC=2C(=CC(Cl)=CC=2)N2N=C3C=CC=CC3=N2)=C1 OYYRDGYYLDWHPV-UHFFFAOYSA-N 0.000 description 5
- XGMVPXQRWZJYQP-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]-3-chlorophenoxy]acetic acid Chemical compound ClC1=CC(OCC(=O)O)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 XGMVPXQRWZJYQP-UHFFFAOYSA-N 0.000 description 5
- FHHFSTGSJVQULZ-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]phenyl]acetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 FHHFSTGSJVQULZ-UHFFFAOYSA-N 0.000 description 5
- DOIFGUONUFEIFW-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-thiophen-2-ylphenoxy]propoxy]phenyl]acetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1OCCCOC1=CC=C(C=2SC=CC=2)C=C1N1N=C2C=CC=CC2=N1 DOIFGUONUFEIFW-UHFFFAOYSA-N 0.000 description 5
- ZQNMQDLMRLYZGB-UHFFFAOYSA-N 2-[4-[3-[3-(1,3-benzoxazol-2-yl)phenoxy]propylsulfanyl]-2-methylphenoxy]acetic acid Chemical compound C1=C(OCC(O)=O)C(C)=CC(SCCCOC=2C=C(C=CC=2)C=2OC3=CC=CC=C3N=2)=C1 ZQNMQDLMRLYZGB-UHFFFAOYSA-N 0.000 description 5
- NQMUINKVGXAHJD-UHFFFAOYSA-N 2-[4-[3-[3-(4,5-dimethyl-1,3-oxazol-2-yl)phenoxy]propylsulfanyl]-2-methylphenoxy]acetic acid Chemical compound O1C(C)=C(C)N=C1C1=CC=CC(OCCCSC=2C=C(C)C(OCC(O)=O)=CC=2)=C1 NQMUINKVGXAHJD-UHFFFAOYSA-N 0.000 description 5
- CFZAFBUBIKLWGD-UHFFFAOYSA-N 2-[4-[3-[4-chloro-2-(4,5-dimethyltriazol-2-yl)phenoxy]propoxy]phenyl]acetic acid Chemical compound N1=C(C)C(C)=NN1C1=CC(Cl)=CC=C1OCCCOC1=CC=C(CC(O)=O)C=C1 CFZAFBUBIKLWGD-UHFFFAOYSA-N 0.000 description 5
- XVYXKJOOHQGXOS-UHFFFAOYSA-N 2-[5-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]indazol-1-yl]acetic acid Chemical compound N1=C2C=CC=CC2=NN1C1=CC(Cl)=CC=C1OCCCOC1=CC=C2N(CC(=O)O)N=CC2=C1 XVYXKJOOHQGXOS-UHFFFAOYSA-N 0.000 description 5
- SQTFYWZSHQAVRD-UHFFFAOYSA-N 2-[5-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]indol-1-yl]acetic acid Chemical compound N1=C2C=CC=CC2=NN1C1=CC(Cl)=CC=C1OCCCOC1=CC=C2N(CC(=O)O)C=CC2=C1 SQTFYWZSHQAVRD-UHFFFAOYSA-N 0.000 description 5
- GAFMPOQWHKRMJO-UHFFFAOYSA-N 4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]-3-chlorobenzoic acid Chemical compound ClC1=CC(C(=O)O)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 GAFMPOQWHKRMJO-UHFFFAOYSA-N 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 102000000853 LDL receptors Human genes 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- LVDRREOUMKACNJ-BKMJKUGQSA-N N-[(2R,3S)-2-(4-chlorophenyl)-1-(1,4-dimethyl-2-oxoquinolin-7-yl)-6-oxopiperidin-3-yl]-2-methylpropane-1-sulfonamide Chemical compound CC(C)CS(=O)(=O)N[C@H]1CCC(=O)N([C@@H]1c1ccc(Cl)cc1)c1ccc2c(C)cc(=O)n(C)c2c1 LVDRREOUMKACNJ-BKMJKUGQSA-N 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 5
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000008298 dragée Substances 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 239000008273 gelatin Substances 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 235000011852 gelatine desserts Nutrition 0.000 description 5
- 125000001475 halogen functional group Chemical group 0.000 description 5
- 229940088597 hormone Drugs 0.000 description 5
- 239000005556 hormone Substances 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- 230000000269 nucleophilic effect Effects 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 235000019198 oils Nutrition 0.000 description 5
- 108091008725 peroxisome proliferator-activated receptors alpha Proteins 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 201000009104 prediabetes syndrome Diseases 0.000 description 5
- 125000006239 protecting group Chemical group 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 238000013268 sustained release Methods 0.000 description 5
- 239000012730 sustained-release form Substances 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- VEFLKXRACNJHOV-UHFFFAOYSA-N 1,3-dibromopropane Chemical compound BrCCCBr VEFLKXRACNJHOV-UHFFFAOYSA-N 0.000 description 4
- VWOJIHPUDICYKQ-UHFFFAOYSA-N 2-[4-[2-[2-(benzotriazol-2-yl)-4-chlorophenoxy]ethoxy]phenyl]acetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1OCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 VWOJIHPUDICYKQ-UHFFFAOYSA-N 0.000 description 4
- PYCYEHMDMCQCJQ-UHFFFAOYSA-N 2-[4-[2-[2-(benzotriazol-2-yl)-4-chlorophenoxy]ethylsulfanyl]-2-methylphenoxy]acetic acid Chemical compound C1=C(OCC(O)=O)C(C)=CC(SCCOC=2C(=CC(Cl)=CC=2)N2N=C3C=CC=CC3=N2)=C1 PYCYEHMDMCQCJQ-UHFFFAOYSA-N 0.000 description 4
- POPDSEUULNCAFO-UHFFFAOYSA-N 2-[4-[3-[2-(1,3-benzothiazol-2-yl)-4-chlorophenoxy]propoxy]phenyl]acetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1OCCCOC1=CC=C(Cl)C=C1C1=NC2=CC=CC=C2S1 POPDSEUULNCAFO-UHFFFAOYSA-N 0.000 description 4
- UEHPBCZHFSHEKW-UHFFFAOYSA-N 2-[4-[3-[2-(1,3-benzoxazol-2-yl)-4-bromophenoxy]propoxy]phenyl]acetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1OCCCOC1=CC=C(Br)C=C1C1=NC2=CC=CC=C2O1 UEHPBCZHFSHEKW-UHFFFAOYSA-N 0.000 description 4
- BEIMALWXBXFLAS-UHFFFAOYSA-N 2-[4-[3-[2-(1,3-benzoxazol-2-yl)-4-bromophenoxy]propylsulfanyl]-2-methylphenoxy]acetic acid Chemical compound C1=C(OCC(O)=O)C(C)=CC(SCCCOC=2C(=CC(Br)=CC=2)C=2OC3=CC=CC=C3N=2)=C1 BEIMALWXBXFLAS-UHFFFAOYSA-N 0.000 description 4
- VKMWKPKQKTXABP-UHFFFAOYSA-N 2-[4-[3-[2-(4,5,6,7-tetrahydrobenzotriazol-2-yl)phenoxy]propoxy]phenyl]acetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1OCCCOC1=CC=CC=C1N1N=C2CCCCC2=N1 VKMWKPKQKTXABP-UHFFFAOYSA-N 0.000 description 4
- ATOJXIBOKXFCAF-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]-2-chlorophenoxy]-2-methylpropanoic acid Chemical compound C1=C(Cl)C(OC(C)(C)C(O)=O)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 ATOJXIBOKXFCAF-UHFFFAOYSA-N 0.000 description 4
- ADUUMMIDEIORLJ-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]-2-methylphenoxy]-2-methylpropanoic acid Chemical compound C1=C(OC(C)(C)C(O)=O)C(C)=CC(OCCCOC=2C(=CC(Cl)=CC=2)N2N=C3C=CC=CC3=N2)=C1 ADUUMMIDEIORLJ-UHFFFAOYSA-N 0.000 description 4
- BNGSDHBJPFGCCJ-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]-3-bromophenyl]acetic acid Chemical compound BrC1=CC(CC(=O)O)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 BNGSDHBJPFGCCJ-UHFFFAOYSA-N 0.000 description 4
- BLXQIPDXVMDDFA-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]-3-chlorophenyl]acetic acid Chemical compound ClC1=CC(CC(=O)O)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 BLXQIPDXVMDDFA-UHFFFAOYSA-N 0.000 description 4
- SSWQPEUEFFJAMM-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]-3-methoxyphenyl]acetic acid Chemical compound COC1=CC(CC(O)=O)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 SSWQPEUEFFJAMM-UHFFFAOYSA-N 0.000 description 4
- XAOINWNPRPLOEE-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]-3-propylphenyl]acetic acid Chemical compound CCCC1=CC(CC(O)=O)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 XAOINWNPRPLOEE-UHFFFAOYSA-N 0.000 description 4
- CNNSFWBRGXWUKD-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]phenoxy]acetic acid Chemical compound C1=CC(OCC(=O)O)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 CNNSFWBRGXWUKD-UHFFFAOYSA-N 0.000 description 4
- PHNIYPZICAUNKT-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]phenyl]-2-methoxyacetic acid Chemical compound C1=CC(C(C(O)=O)OC)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 PHNIYPZICAUNKT-UHFFFAOYSA-N 0.000 description 4
- RVZJIEZQOMCDLK-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]phenyl]-2-methylpropanoic acid Chemical compound C1=CC(C(C)(C(O)=O)C)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 RVZJIEZQOMCDLK-UHFFFAOYSA-N 0.000 description 4
- KMXNTCVJPPXZAT-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propoxy]phenyl]propanoic acid Chemical compound C1=CC(C(C(O)=O)C)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 KMXNTCVJPPXZAT-UHFFFAOYSA-N 0.000 description 4
- HBWSANHFNNGKGS-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propylsulfanyl]-2-methylphenoxy]acetic acid Chemical compound C1=C(OCC(O)=O)C(C)=CC(SCCCOC=2C(=CC(Cl)=CC=2)N2N=C3C=CC=CC3=N2)=C1 HBWSANHFNNGKGS-UHFFFAOYSA-N 0.000 description 4
- QVBFKUPRJZSKCF-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-fluorophenoxy]propoxy]phenyl]acetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1OCCCOC1=CC=C(F)C=C1N1N=C2C=CC=CC2=N1 QVBFKUPRJZSKCF-UHFFFAOYSA-N 0.000 description 4
- LAAADJCYVQYHTE-UHFFFAOYSA-N 2-[4-[3-[4-chloro-2-(2-phenylethynyl)phenoxy]propoxy]phenyl]acetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1OCCCOC1=CC=C(Cl)C=C1C#CC1=CC=CC=C1 LAAADJCYVQYHTE-UHFFFAOYSA-N 0.000 description 4
- DPTDKELHUGOOKL-UHFFFAOYSA-N 2-[4-[3-[4-chloro-2-(4,5,6,7-tetrahydrobenzotriazol-2-yl)phenoxy]propoxy]phenyl]acetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2CCCCC2=N1 DPTDKELHUGOOKL-UHFFFAOYSA-N 0.000 description 4
- NEXSKWCKODBRBV-UHFFFAOYSA-N 2-[4-[3-[4-chloro-2-(4-methylbenzotriazol-2-yl)phenoxy]propoxy]phenyl]acetic acid Chemical compound N1=C2C(C)=CC=CC2=NN1C1=CC(Cl)=CC=C1OCCCOC1=CC=C(CC(O)=O)C=C1 NEXSKWCKODBRBV-UHFFFAOYSA-N 0.000 description 4
- XQTSPBZVWMPWHB-UHFFFAOYSA-N 2-[4-[3-[4-chloro-2-[2-(3-methoxyphenyl)ethynyl]phenoxy]propoxy]phenyl]acetic acid Chemical compound COC1=CC=CC(C#CC=2C(=CC=C(Cl)C=2)OCCCOC=2C=CC(CC(O)=O)=CC=2)=C1 XQTSPBZVWMPWHB-UHFFFAOYSA-N 0.000 description 4
- SRPJPABMPGIREG-UHFFFAOYSA-N 2-[4-[3-[4-fluoro-2-(4,5,6,7-tetrahydrobenzotriazol-2-yl)phenoxy]propoxy]phenyl]acetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1OCCCOC1=CC=C(F)C=C1N1N=C2CCCCC2=N1 SRPJPABMPGIREG-UHFFFAOYSA-N 0.000 description 4
- OTSHOGOBNSLVPM-UHFFFAOYSA-N 2-[5-[2-[2-(benzotriazol-2-yl)-4-chlorophenoxy]ethoxy]indol-1-yl]acetic acid Chemical compound N1=C2C=CC=CC2=NN1C1=CC(Cl)=CC=C1OCCOC1=CC=C2N(CC(=O)O)C=CC2=C1 OTSHOGOBNSLVPM-UHFFFAOYSA-N 0.000 description 4
- HKVATRJSNGUIFN-UHFFFAOYSA-N 3-[3-chloro-4-[3-[2-(4,5,6,7-tetrahydrobenzotriazol-2-yl)phenoxy]propoxy]phenyl]propanoic acid Chemical compound ClC1=CC(CCC(=O)O)=CC=C1OCCCOC1=CC=CC=C1N1N=C2CCCCC2=N1 HKVATRJSNGUIFN-UHFFFAOYSA-N 0.000 description 4
- NBCCXLOHJADMQX-UHFFFAOYSA-N 3-[3-chloro-4-[3-[4-chloro-2-(4,5,6,7-tetrahydrobenzotriazol-2-yl)phenoxy]propoxy]phenyl]propanoic acid Chemical compound ClC1=CC(CCC(=O)O)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2CCCCC2=N1 NBCCXLOHJADMQX-UHFFFAOYSA-N 0.000 description 4
- XQXPVVBIMDBYFF-UHFFFAOYSA-N 4-hydroxyphenylacetic acid Chemical compound OC(=O)CC1=CC=C(O)C=C1 XQXPVVBIMDBYFF-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 102000008946 Fibrinogen Human genes 0.000 description 4
- 108010049003 Fibrinogen Proteins 0.000 description 4
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 4
- 102000003746 Insulin Receptor Human genes 0.000 description 4
- 108010001127 Insulin Receptor Proteins 0.000 description 4
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical group C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- 241000283984 Rodentia Species 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 239000000556 agonist Substances 0.000 description 4
- 238000010171 animal model Methods 0.000 description 4
- 239000002876 beta blocker Substances 0.000 description 4
- 229940097320 beta blocking agent Drugs 0.000 description 4
- 229920000080 bile acid sequestrant Polymers 0.000 description 4
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000037213 diet Effects 0.000 description 4
- 230000000378 dietary effect Effects 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- SHCHNAHDUYOVFO-UHFFFAOYSA-N ethyl 2-[4-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propylsulfanyl]-2-methylphenoxy]acetate Chemical compound C1=C(C)C(OCC(=O)OCC)=CC=C1SCCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 SHCHNAHDUYOVFO-UHFFFAOYSA-N 0.000 description 4
- FBXNLNFDHYRUOA-UHFFFAOYSA-N ethyl 2-[4-[3-[4-chloro-2-(2-phenylethynyl)phenoxy]propoxy]phenyl]acetate Chemical compound C1=CC(CC(=O)OCC)=CC=C1OCCCOC1=CC=C(Cl)C=C1C#CC1=CC=CC=C1 FBXNLNFDHYRUOA-UHFFFAOYSA-N 0.000 description 4
- YDEVHMUSHVARKC-UHFFFAOYSA-N ethyl 2-[4-[3-[4-chloro-2-(4-methylbenzotriazol-2-yl)phenoxy]propoxy]phenyl]acetate Chemical compound C1=CC(CC(=O)OCC)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2C(C)=CC=CC2=N1 YDEVHMUSHVARKC-UHFFFAOYSA-N 0.000 description 4
- 235000019197 fats Nutrition 0.000 description 4
- 229940012952 fibrinogen Drugs 0.000 description 4
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 4
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 230000014101 glucose homeostasis Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000012280 lithium aluminium hydride Substances 0.000 description 4
- 239000011570 nicotinamide Substances 0.000 description 4
- 235000005152 nicotinamide Nutrition 0.000 description 4
- 229960003512 nicotinic acid Drugs 0.000 description 4
- 150000002825 nitriles Chemical class 0.000 description 4
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 4
- 150000002989 phenols Chemical class 0.000 description 4
- DHHVAGZRUROJKS-UHFFFAOYSA-N phentermine Chemical compound CC(C)(N)CC1=CC=CC=C1 DHHVAGZRUROJKS-UHFFFAOYSA-N 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- FYPMFJGVHOHGLL-UHFFFAOYSA-N probucol Chemical compound C=1C(C(C)(C)C)=C(O)C(C(C)(C)C)=CC=1SC(C)(C)SC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 FYPMFJGVHOHGLL-UHFFFAOYSA-N 0.000 description 4
- 229960003912 probucol Drugs 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 229960004586 rosiglitazone Drugs 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 210000002027 skeletal muscle Anatomy 0.000 description 4
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 4
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 4
- 239000004059 squalene synthase inhibitor Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 150000003626 triacylglycerols Chemical class 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- 108010002139 very low density lipoprotein triglyceride Proteins 0.000 description 4
- IUSARDYWEPUTPN-OZBXUNDUSA-N (2r)-n-[(2s,3r)-4-[[(4s)-6-(2,2-dimethylpropyl)spiro[3,4-dihydropyrano[2,3-b]pyridine-2,1'-cyclobutane]-4-yl]amino]-3-hydroxy-1-[3-(1,3-thiazol-2-yl)phenyl]butan-2-yl]-2-methoxypropanamide Chemical compound C([C@H](NC(=O)[C@@H](C)OC)[C@H](O)CN[C@@H]1C2=CC(CC(C)(C)C)=CN=C2OC2(CCC2)C1)C(C=1)=CC=CC=1C1=NC=CS1 IUSARDYWEPUTPN-OZBXUNDUSA-N 0.000 description 3
- HUWSZNZAROKDRZ-RRLWZMAJSA-N (3r,4r)-3-azaniumyl-5-[[(2s,3r)-1-[(2s)-2,3-dicarboxypyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl]amino]-5-oxo-4-sulfanylpentane-1-sulfonate Chemical compound OS(=O)(=O)CC[C@@H](N)[C@@H](S)C(=O)N[C@@H]([C@H](C)CC)C(=O)N1CCC(C(O)=O)[C@H]1C(O)=O HUWSZNZAROKDRZ-RRLWZMAJSA-N 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- RBZKTWNFYPAGKC-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 RBZKTWNFYPAGKC-UHFFFAOYSA-N 0.000 description 3
- GNOPSMUYPUJSQB-UHFFFAOYSA-N 2-[4-[2-[2-(benzotriazol-2-yl)-4-chlorophenoxy]ethoxy]-3-propylphenyl]acetic acid Chemical compound CCCC1=CC(CC(O)=O)=CC=C1OCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 GNOPSMUYPUJSQB-UHFFFAOYSA-N 0.000 description 3
- IRXZJTZOYXMCTG-UHFFFAOYSA-N 2-[4-[3-[2-(1,3-benzothiazol-2-yl)-4-chlorophenoxy]propylsulfanyl]-2-methylphenoxy]acetic acid Chemical compound C1=C(OCC(O)=O)C(C)=CC(SCCCOC=2C(=CC(Cl)=CC=2)C=2SC3=CC=CC=C3N=2)=C1 IRXZJTZOYXMCTG-UHFFFAOYSA-N 0.000 description 3
- ZFGFTDHGGKWHSR-UHFFFAOYSA-N 2-[4-[3-[2-(1,3-benzoxazol-2-yl)-4-thiophen-2-ylphenoxy]propoxy]phenyl]acetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1OCCCOC1=CC=C(C=2SC=CC=2)C=C1C1=NC2=CC=CC=C2O1 ZFGFTDHGGKWHSR-UHFFFAOYSA-N 0.000 description 3
- VKLGUQQCVXANCF-UHFFFAOYSA-N 2-[4-[3-[4-chloro-2-(2-pyridin-2-ylethynyl)phenoxy]propoxy]phenyl]acetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1OCCCOC1=CC=C(Cl)C=C1C#CC1=CC=CC=N1 VKLGUQQCVXANCF-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 3
- 101100168093 Caenorhabditis elegans cogc-2 gene Proteins 0.000 description 3
- 229920001268 Cholestyramine Polymers 0.000 description 3
- 229920002911 Colestipol Polymers 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 208000032928 Dyslipidaemia Diseases 0.000 description 3
- 101150071666 HBA gene Proteins 0.000 description 3
- 206010020710 Hyperphagia Diseases 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 208000017170 Lipid metabolism disease Diseases 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 3
- 101100221487 Mus musculus Cog2 gene Proteins 0.000 description 3
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 3
- 206010033307 Overweight Diseases 0.000 description 3
- 208000018262 Peripheral vascular disease Diseases 0.000 description 3
- 108010022233 Plasminogen Activator Inhibitor 1 Proteins 0.000 description 3
- 102100039418 Plasminogen activator inhibitor 1 Human genes 0.000 description 3
- TUZYXOIXSAXUGO-UHFFFAOYSA-N Pravastatin Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(O)C=C21 TUZYXOIXSAXUGO-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 229940123464 Thiazolidinedione Drugs 0.000 description 3
- 229960001138 acetylsalicylic acid Drugs 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000003282 alkyl amino group Chemical group 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 239000000010 aprotic solvent Substances 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 125000004104 aryloxy group Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 230000027455 binding Effects 0.000 description 3
- SIPUZPBQZHNSDW-UHFFFAOYSA-N bis(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229960001214 clofibrate Drugs 0.000 description 3
- KNHUKKLJHYUCFP-UHFFFAOYSA-N clofibrate Chemical compound CCOC(=O)C(C)(C)OC1=CC=C(Cl)C=C1 KNHUKKLJHYUCFP-UHFFFAOYSA-N 0.000 description 3
- GMRWGQCZJGVHKL-UHFFFAOYSA-N colestipol Chemical compound ClCC1CO1.NCCNCCNCCNCCN GMRWGQCZJGVHKL-UHFFFAOYSA-N 0.000 description 3
- 229960002604 colestipol Drugs 0.000 description 3
- 229940125807 compound 37 Drugs 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- XMCJTXYIVCFXEG-UHFFFAOYSA-N ethyl 2-[4-(3-bromopropoxy)phenyl]acetate Chemical compound CCOC(=O)CC1=CC=C(OCCCBr)C=C1 XMCJTXYIVCFXEG-UHFFFAOYSA-N 0.000 description 3
- PQJJJMRNHATNKG-UHFFFAOYSA-N ethyl bromoacetate Chemical compound CCOC(=O)CBr PQJJJMRNHATNKG-UHFFFAOYSA-N 0.000 description 3
- 229940125753 fibrate Drugs 0.000 description 3
- 239000002319 fibrinogen receptor antagonist Substances 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 230000002496 gastric effect Effects 0.000 description 3
- 230000009395 genetic defect Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 208000004104 gestational diabetes Diseases 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 125000001041 indolyl group Chemical group 0.000 description 3
- 208000017169 kidney disease Diseases 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 229960004844 lovastatin Drugs 0.000 description 3
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 3
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- GZOKBRQIWRDVHB-UHFFFAOYSA-N methyl 2-[4-[3-[4-chloro-2-(4,5,6,7-tetrahydrobenzotriazol-2-yl)phenoxy]propoxy]phenyl]acetate Chemical compound C1=CC(CC(=O)OC)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2CCCCC2=N1 GZOKBRQIWRDVHB-UHFFFAOYSA-N 0.000 description 3
- 229960003966 nicotinamide Drugs 0.000 description 3
- 235000001968 nicotinic acid Nutrition 0.000 description 3
- 239000011664 nicotinic acid Substances 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 102000004164 orphan nuclear receptors Human genes 0.000 description 3
- 108090000629 orphan nuclear receptors Proteins 0.000 description 3
- 239000003614 peroxisome proliferator Substances 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 229960005095 pioglitazone Drugs 0.000 description 3
- 229960002965 pravastatin Drugs 0.000 description 3
- TUZYXOIXSAXUGO-PZAWKZKUSA-N pravastatin Chemical compound C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC(O)=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 TUZYXOIXSAXUGO-PZAWKZKUSA-N 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 229960002855 simvastatin Drugs 0.000 description 3
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 3
- 150000001467 thiazolidinediones Chemical class 0.000 description 3
- GXPHKUHSUJUWKP-UHFFFAOYSA-N troglitazone Chemical compound C1CC=2C(C)=C(O)C(C)=C(C)C=2OC1(C)COC(C=C1)=CC=C1CC1SC(=O)NC1=O GXPHKUHSUJUWKP-UHFFFAOYSA-N 0.000 description 3
- 229960001641 troglitazone Drugs 0.000 description 3
- GXPHKUHSUJUWKP-NTKDMRAZSA-N troglitazone Natural products C([C@@]1(OC=2C(C)=C(C(=C(C)C=2CC1)O)C)C)OC(C=C1)=CC=C1C[C@H]1SC(=O)NC1=O GXPHKUHSUJUWKP-NTKDMRAZSA-N 0.000 description 3
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 2
- ITOFPJRDSCGOSA-KZLRUDJFSA-N (2s)-2-[[(4r)-4-[(3r,5r,8r,9s,10s,13r,14s,17r)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H](CC[C@]13C)[C@@H]2[C@@H]3CC[C@@H]1[C@H](C)CCC(=O)N[C@H](C(O)=O)CC1=CNC2=CC=CC=C12 ITOFPJRDSCGOSA-KZLRUDJFSA-N 0.000 description 2
- IYTUKSIOQKTZEG-UHFFFAOYSA-N (3-chloro-4-hydroxyphenyl)acetic acid Chemical compound OC(=O)CC1=CC=C(O)C(Cl)=C1 IYTUKSIOQKTZEG-UHFFFAOYSA-N 0.000 description 2
- ZGGHKIMDNBDHJB-NRFPMOEYSA-M (3R,5S)-fluvastatin sodium Chemical compound [Na+].C12=CC=CC=C2N(C(C)C)C(\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O)=C1C1=CC=C(F)C=C1 ZGGHKIMDNBDHJB-NRFPMOEYSA-M 0.000 description 2
- DEVSOMFAQLZNKR-RJRFIUFISA-N (z)-3-[3-[3,5-bis(trifluoromethyl)phenyl]-1,2,4-triazol-1-yl]-n'-pyrazin-2-ylprop-2-enehydrazide Chemical compound FC(F)(F)C1=CC(C(F)(F)F)=CC(C2=NN(\C=C/C(=O)NNC=3N=CC=NC=3)C=N2)=C1 DEVSOMFAQLZNKR-RJRFIUFISA-N 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 2
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 2
- FTNJQNQLEGKTGD-UHFFFAOYSA-N 1,3-benzodioxole Chemical group C1=CC=C2OCOC2=C1 FTNJQNQLEGKTGD-UHFFFAOYSA-N 0.000 description 2
- ZOBPZXTWZATXDG-UHFFFAOYSA-N 1,3-thiazolidine-2,4-dione Chemical compound O=C1CSC(=O)N1 ZOBPZXTWZATXDG-UHFFFAOYSA-N 0.000 description 2
- MHSLDASSAFCCDO-UHFFFAOYSA-N 1-(5-tert-butyl-2-methylpyrazol-3-yl)-3-(4-pyridin-4-yloxyphenyl)urea Chemical compound CN1N=C(C(C)(C)C)C=C1NC(=O)NC(C=C1)=CC=C1OC1=CC=NC=C1 MHSLDASSAFCCDO-UHFFFAOYSA-N 0.000 description 2
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical group C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 2
- OQCDWOSICZWOHN-UHFFFAOYSA-N 2-(1,3-benzoxazol-2-yl)-4-bromophenol Chemical compound OC1=CC=C(Br)C=C1C1=NC2=CC=CC=C2O1 OQCDWOSICZWOHN-UHFFFAOYSA-N 0.000 description 2
- UEKXLYBOVXSNAE-UHFFFAOYSA-N 2-(4-hydroxy-3-propylphenyl)acetic acid Chemical compound CCCC1=CC(CC(O)=O)=CC=C1O UEKXLYBOVXSNAE-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 2
- ZIYRDJLAJYTELF-UHFFFAOYSA-N 2-bromo-4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1Br ZIYRDJLAJYTELF-UHFFFAOYSA-N 0.000 description 2
- QHUYLIOMTFQOSN-UHFFFAOYSA-N 3-(1,3-benzoxazol-2-yl)phenol Chemical compound OC1=CC=CC(C=2OC3=CC=CC=C3N=2)=C1 QHUYLIOMTFQOSN-UHFFFAOYSA-N 0.000 description 2
- XMIIGOLPHOKFCH-UHFFFAOYSA-N 3-phenylpropionic acid Chemical compound OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 2
- 239000005541 ACE inhibitor Substances 0.000 description 2
- 229940077274 Alpha glucosidase inhibitor Drugs 0.000 description 2
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 2
- 239000005695 Ammonium acetate Substances 0.000 description 2
- 229940123413 Angiotensin II antagonist Drugs 0.000 description 2
- 101710129690 Angiotensin-converting enzyme inhibitor Proteins 0.000 description 2
- 239000004342 Benzoyl peroxide Substances 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- 102100034159 Beta-3 adrenergic receptor Human genes 0.000 description 2
- 229940123208 Biguanide Drugs 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 101710086378 Bradykinin-potentiating and C-type natriuretic peptides Proteins 0.000 description 2
- CBTQGXLFZLZXAK-UHFFFAOYSA-N CC(C)(C)C1=CC2=C(C=C1)N(C(C)(C)C)C=C2 Chemical compound CC(C)(C)C1=CC2=C(C=C1)N(C(C)(C)C)C=C2 CBTQGXLFZLZXAK-UHFFFAOYSA-N 0.000 description 2
- FOEYUJHXSBHTPD-UHFFFAOYSA-N CC(C)(C)C1=CC2=C(C=C1)N(C(C)(C)C)C=C2.CC(C)(C)C1=CC2=C(C=C1)N(C(C)(C)C)N=C2 Chemical compound CC(C)(C)C1=CC2=C(C=C1)N(C(C)(C)C)C=C2.CC(C)(C)C1=CC2=C(C=C1)N(C(C)(C)C)N=C2 FOEYUJHXSBHTPD-UHFFFAOYSA-N 0.000 description 2
- GJDCWOOLIKRYOX-UHFFFAOYSA-N CC(C)(C)C1=CC2=C(C=C1)N(C(C)(C)C)N=C2 Chemical compound CC(C)(C)C1=CC2=C(C=C1)N(C(C)(C)C)N=C2 GJDCWOOLIKRYOX-UHFFFAOYSA-N 0.000 description 2
- MAVNWBMVVXVIQU-UHFFFAOYSA-N CCOC(=O)CC1=CC=C(OCCCOC2=C(Br)C=C(Cl)C=C2)C=C1 Chemical compound CCOC(=O)CC1=CC=C(OCCCOC2=C(Br)C=C(Cl)C=C2)C=C1 MAVNWBMVVXVIQU-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 229940122502 Cholesterol absorption inhibitor Drugs 0.000 description 2
- 108010004103 Chylomicrons Proteins 0.000 description 2
- 208000014311 Cushing syndrome Diseases 0.000 description 2
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical group OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- 101000783577 Dendroaspis angusticeps Thrombostatin Proteins 0.000 description 2
- 101000783578 Dendroaspis jamesoni kaimosae Dendroaspin Proteins 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 206010014476 Elevated cholesterol Diseases 0.000 description 2
- 206010014486 Elevated triglycerides Diseases 0.000 description 2
- UEXCJVNBTNXOEH-UHFFFAOYSA-N Ethynylbenzene Chemical group C#CC1=CC=CC=C1 UEXCJVNBTNXOEH-UHFFFAOYSA-N 0.000 description 2
- 201000001376 Familial Combined Hyperlipidemia Diseases 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 102100039556 Galectin-4 Human genes 0.000 description 2
- HEMJJKBWTPKOJG-UHFFFAOYSA-N Gemfibrozil Chemical compound CC1=CC=C(C)C(OCCCC(C)(C)C(O)=O)=C1 HEMJJKBWTPKOJG-UHFFFAOYSA-N 0.000 description 2
- 206010018429 Glucose tolerance impaired Diseases 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- 101000608765 Homo sapiens Galectin-4 Proteins 0.000 description 2
- 108010000775 Hydroxymethylglutaryl-CoA synthase Proteins 0.000 description 2
- 102100028889 Hydroxymethylglutaryl-CoA synthase, mitochondrial Human genes 0.000 description 2
- 208000000563 Hyperlipoproteinemia Type II Diseases 0.000 description 2
- 208000026350 Inborn Genetic disease Diseases 0.000 description 2
- 102000036770 Islet Amyloid Polypeptide Human genes 0.000 description 2
- 108010041872 Islet Amyloid Polypeptide Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000008214 LDL Cholesterol Methods 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 108010028924 PPAR alpha Proteins 0.000 description 2
- 108010015181 PPAR delta Proteins 0.000 description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 208000004880 Polyuria Diseases 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 208000017442 Retinal disease Diseases 0.000 description 2
- 206010038923 Retinopathy Diseases 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- 229940123185 Squalene epoxidase inhibitor Drugs 0.000 description 2
- 229940123495 Squalene synthetase inhibitor Drugs 0.000 description 2
- 102000001494 Sterol O-Acyltransferase Human genes 0.000 description 2
- 108010054082 Sterol O-acyltransferase Proteins 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 229940100389 Sulfonylurea Drugs 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 2
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 2
- 229930003268 Vitamin C Natural products 0.000 description 2
- 229930003427 Vitamin E Natural products 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 125000004442 acylamino group Chemical group 0.000 description 2
- 229940023375 adipex-p Drugs 0.000 description 2
- 210000001789 adipocyte Anatomy 0.000 description 2
- 239000000048 adrenergic agonist Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 2
- 239000003888 alpha glucosidase inhibitor Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000002333 angiotensin II receptor antagonist Substances 0.000 description 2
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 2
- 239000003957 anion exchange resin Substances 0.000 description 2
- 239000000883 anti-obesity agent Substances 0.000 description 2
- 239000003529 anticholesteremic agent Substances 0.000 description 2
- 239000003524 antilipemic agent Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 229940127218 antiplatelet drug Drugs 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000001769 aryl amino group Chemical group 0.000 description 2
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 2
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 235000013734 beta-carotene Nutrition 0.000 description 2
- 239000011648 beta-carotene Substances 0.000 description 2
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 2
- 229960002747 betacarotene Drugs 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- 150000004283 biguanides Chemical class 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 125000005518 carboxamido group Chemical group 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- NTSGEVXMOPCWCT-UHFFFAOYSA-N chembl1806516 Chemical compound OC1=CC=C(Cl)C=C1C1=NC2=CC=CC=C2S1 NTSGEVXMOPCWCT-UHFFFAOYSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 108700010039 chimeric receptor Proteins 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 2
- 239000005516 coenzyme A Substances 0.000 description 2
- 229940093530 coenzyme a Drugs 0.000 description 2
- 229940125810 compound 20 Drugs 0.000 description 2
- 229940127573 compound 38 Drugs 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- RMRCNWBMXRMIRW-BYFNXCQMSA-M cyanocobalamin Chemical compound N#C[Co+]N([C@]1([H])[C@H](CC(N)=O)[C@]\2(CCC(=O)NC[C@H](C)OP(O)(=O)OC3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)C)C/2=C(C)\C([C@H](C/2(C)C)CCC(N)=O)=N\C\2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O RMRCNWBMXRMIRW-BYFNXCQMSA-M 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- FMGSKLZLMKYGDP-USOAJAOKSA-N dehydroepiandrosterone Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC=C21 FMGSKLZLMKYGDP-USOAJAOKSA-N 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 125000004663 dialkyl amino group Chemical group 0.000 description 2
- 125000004986 diarylamino group Chemical group 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 230000001804 emulsifying effect Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 229940011871 estrogen Drugs 0.000 description 2
- 239000000262 estrogen Substances 0.000 description 2
- HYUPPKVFCGIMDB-UHFFFAOYSA-N ethyl 2-(4-hydroxyphenyl)acetate Chemical compound CCOC(=O)CC1=CC=C(O)C=C1 HYUPPKVFCGIMDB-UHFFFAOYSA-N 0.000 description 2
- BRMJQWFBFXQALV-UHFFFAOYSA-N ethyl 2-[4-(2-bromoethylsulfanyl)-2-methylphenoxy]acetate Chemical compound CCOC(=O)COC1=CC=C(SCCBr)C=C1C BRMJQWFBFXQALV-UHFFFAOYSA-N 0.000 description 2
- LCOMEFABOXNXNN-UHFFFAOYSA-N ethyl 2-[4-(3-bromopropylsulfanyl)-2-methylphenoxy]acetate Chemical compound CCOC(=O)COC1=CC=C(SCCCBr)C=C1C LCOMEFABOXNXNN-UHFFFAOYSA-N 0.000 description 2
- 239000010685 fatty oil Substances 0.000 description 2
- 229960002297 fenofibrate Drugs 0.000 description 2
- YMTINGFKWWXKFG-UHFFFAOYSA-N fenofibrate Chemical compound C1=CC(OC(C)(C)C(=O)OC(C)C)=CC=C1C(=O)C1=CC=C(Cl)C=C1 YMTINGFKWWXKFG-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229960003765 fluvastatin Drugs 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 235000021588 free fatty acids Nutrition 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 125000002541 furyl group Chemical group 0.000 description 2
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 2
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 2
- 208000016361 genetic disease Diseases 0.000 description 2
- 230000009229 glucose formation Effects 0.000 description 2
- 230000004190 glucose uptake Effects 0.000 description 2
- ZNNLBTZKUZBEKO-UHFFFAOYSA-N glyburide Chemical compound COC1=CC=C(Cl)C=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZNNLBTZKUZBEKO-UHFFFAOYSA-N 0.000 description 2
- 108091005995 glycated hemoglobin Proteins 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 125000004992 haloalkylamino group Chemical group 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- 230000004130 lipolysis Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- XGDZEDRBLVIUMX-UHFFFAOYSA-N methyl 2-(4-hydroxyphenyl)acetate Chemical compound COC(=O)CC1=CC=C(O)C=C1 XGDZEDRBLVIUMX-UHFFFAOYSA-N 0.000 description 2
- KXACAHKAWVIIMS-UHFFFAOYSA-N methyl 2-[4-[2-[2-(benzotriazol-2-yl)-4-thiophen-2-ylphenoxy]propoxy]phenyl]acetate Chemical compound C1=CC(CC(=O)OC)=CC=C1OCC(C)OC1=CC=C(C=2SC=CC=2)C=C1N1N=C2C=CC=CC2=N1 KXACAHKAWVIIMS-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- TXXHDPDFNKHHGW-UHFFFAOYSA-N muconic acid Chemical group OC(=O)C=CC=CC(O)=O TXXHDPDFNKHHGW-UHFFFAOYSA-N 0.000 description 2
- 210000000663 muscle cell Anatomy 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- HHQJWDKIRXRTLS-UHFFFAOYSA-N n'-bromobutanediamide Chemical compound NC(=O)CCC(=O)NBr HHQJWDKIRXRTLS-UHFFFAOYSA-N 0.000 description 2
- YGBMCLDVRUGXOV-UHFFFAOYSA-N n-[6-[6-chloro-5-[(4-fluorophenyl)sulfonylamino]pyridin-3-yl]-1,3-benzothiazol-2-yl]acetamide Chemical compound C1=C2SC(NC(=O)C)=NC2=CC=C1C(C=1)=CN=C(Cl)C=1NS(=O)(=O)C1=CC=C(F)C=C1 YGBMCLDVRUGXOV-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 125000004957 naphthylene group Chemical group 0.000 description 2
- 201000001119 neuropathy Diseases 0.000 description 2
- 230000007823 neuropathy Effects 0.000 description 2
- 150000002826 nitrites Chemical class 0.000 description 2
- PIDFDZJZLOTZTM-KHVQSSSXSA-N ombitasvir Chemical compound COC(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)NC1=CC=C([C@H]2N([C@@H](CC2)C=2C=CC(NC(=O)[C@H]3N(CCC3)C(=O)[C@@H](NC(=O)OC)C(C)C)=CC=2)C=2C=CC(=CC=2)C(C)(C)C)C=C1 PIDFDZJZLOTZTM-KHVQSSSXSA-N 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 229960001243 orlistat Drugs 0.000 description 2
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 208000033808 peripheral neuropathy Diseases 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000000106 platelet aggregation inhibitor Substances 0.000 description 2
- 206010036067 polydipsia Diseases 0.000 description 2
- 208000022530 polyphagia Diseases 0.000 description 2
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 201000009395 primary hyperaldosteronism Diseases 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 2
- LXNHXLLTXMVWPM-UHFFFAOYSA-N pyridoxine Chemical compound CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 2
- ZUFQODAHGAHPFQ-UHFFFAOYSA-N pyridoxine hydrochloride Chemical compound Cl.CC1=NC=C(CO)C(CO)=C1O ZUFQODAHGAHPFQ-UHFFFAOYSA-N 0.000 description 2
- 125000005493 quinolyl group Chemical group 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical group OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 229960004425 sibutramine Drugs 0.000 description 2
- UNAANXDKBXWMLN-UHFFFAOYSA-N sibutramine Chemical compound C=1C=C(Cl)C=CC=1C1(C(N(C)C)CC(C)C)CCC1 UNAANXDKBXWMLN-UHFFFAOYSA-N 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 239000012312 sodium hydride Substances 0.000 description 2
- 229910000104 sodium hydride Inorganic materials 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 125000004299 tetrazol-5-yl group Chemical group [H]N1N=NC(*)=N1 0.000 description 2
- 150000003536 tetrazoles Chemical class 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- ARYHTUPFQTUBBG-UHFFFAOYSA-N thiophen-2-ylboronic acid Chemical compound OB(O)C1=CC=CS1 ARYHTUPFQTUBBG-UHFFFAOYSA-N 0.000 description 2
- 229930192474 thiophene Chemical group 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 229940116269 uric acid Drugs 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 239000011715 vitamin B12 Substances 0.000 description 2
- 239000011726 vitamin B6 Substances 0.000 description 2
- 235000019154 vitamin C Nutrition 0.000 description 2
- 239000011718 vitamin C Substances 0.000 description 2
- 235000019165 vitamin E Nutrition 0.000 description 2
- 239000011709 vitamin E Substances 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 229940002552 xenical Drugs 0.000 description 2
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 2
- DBGIVFWFUFKIQN-VIFPVBQESA-N (+)-Fenfluramine Chemical compound CCN[C@@H](C)CC1=CC=CC(C(F)(F)F)=C1 DBGIVFWFUFKIQN-VIFPVBQESA-N 0.000 description 1
- DBGIVFWFUFKIQN-UHFFFAOYSA-N (+-)-Fenfluramine Chemical compound CCNC(C)CC1=CC=CC(C(F)(F)F)=C1 DBGIVFWFUFKIQN-UHFFFAOYSA-N 0.000 description 1
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- QYYZXEPEVBXNNA-QGZVFWFLSA-N (1R)-2-acetyl-N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-5-methylsulfonyl-1,3-dihydroisoindole-1-carboxamide Chemical compound C(C)(=O)N1[C@H](C2=CC=C(C=C2C1)S(=O)(=O)C)C(=O)NC1=CC=C(C=C1)C(C(F)(F)F)(C(F)(F)F)O QYYZXEPEVBXNNA-QGZVFWFLSA-N 0.000 description 1
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- XUFXOAAUWZOOIT-SXARVLRPSA-N (2R,3R,4R,5S,6R)-5-[[(2R,3R,4R,5S,6R)-5-[[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)-1-cyclohex-2-enyl]amino]-2-oxanyl]oxy]-3,4-dihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-6-(hydroxymethyl)oxane-2,3,4-triol Chemical compound O([C@H]1O[C@H](CO)[C@H]([C@@H]([C@H]1O)O)O[C@H]1O[C@@H]([C@H]([C@H](O)[C@H]1O)N[C@@H]1[C@@H]([C@@H](O)[C@H](O)C(CO)=C1)O)C)[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O XUFXOAAUWZOOIT-SXARVLRPSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- MPDDTAJMJCESGV-CTUHWIOQSA-M (3r,5r)-7-[2-(4-fluorophenyl)-5-[methyl-[(1r)-1-phenylethyl]carbamoyl]-4-propan-2-ylpyrazol-3-yl]-3,5-dihydroxyheptanoate Chemical compound C1([C@@H](C)N(C)C(=O)C2=NN(C(CC[C@@H](O)C[C@@H](O)CC([O-])=O)=C2C(C)C)C=2C=CC(F)=CC=2)=CC=CC=C1 MPDDTAJMJCESGV-CTUHWIOQSA-M 0.000 description 1
- RWIUTHWKQHRQNP-ZDVGBALWSA-N (9e,12e)-n-(1-phenylethyl)octadeca-9,12-dienamide Chemical compound CCCCC\C=C\C\C=C\CCCCCCCC(=O)NC(C)C1=CC=CC=C1 RWIUTHWKQHRQNP-ZDVGBALWSA-N 0.000 description 1
- 125000004765 (C1-C4) haloalkyl group Chemical group 0.000 description 1
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 description 1
- 125000006650 (C2-C4) alkynyl group Chemical group 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- XBYRMPXUBGMOJC-UHFFFAOYSA-N 1,2-dihydropyrazol-3-one Chemical class OC=1C=CNN=1 XBYRMPXUBGMOJC-UHFFFAOYSA-N 0.000 description 1
- BOVGTQGAOIONJV-BETUJISGSA-N 1-[(3ar,6as)-3,3a,4,5,6,6a-hexahydro-1h-cyclopenta[c]pyrrol-2-yl]-3-(4-methylphenyl)sulfonylurea Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NN1C[C@H]2CCC[C@H]2C1 BOVGTQGAOIONJV-BETUJISGSA-N 0.000 description 1
- LLJFMFZYVVLQKT-UHFFFAOYSA-N 1-cyclohexyl-3-[4-[2-(7-methoxy-4,4-dimethyl-1,3-dioxo-2-isoquinolinyl)ethyl]phenyl]sulfonylurea Chemical compound C=1C(OC)=CC=C(C(C2=O)(C)C)C=1C(=O)N2CCC(C=C1)=CC=C1S(=O)(=O)NC(=O)NC1CCCCC1 LLJFMFZYVVLQKT-UHFFFAOYSA-N 0.000 description 1
- ZASXCTCNZKFDTP-UHFFFAOYSA-N 1-ethynyl-3-methoxybenzene Chemical compound COC1=CC=CC(C#C)=C1 ZASXCTCNZKFDTP-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- AMMPLVWPWSYRDR-UHFFFAOYSA-N 1-methylbicyclo[2.2.2]oct-2-ene-4-carboxylic acid Chemical compound C1CC2(C(O)=O)CCC1(C)C=C2 AMMPLVWPWSYRDR-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Substances C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- JCYJPBPDRBXEMB-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4-fluorophenol Chemical compound OC1=CC=C(F)C=C1N1N=C2C=CC=CC2=N1 JCYJPBPDRBXEMB-UHFFFAOYSA-N 0.000 description 1
- HUHXLHLWASNVDB-UHFFFAOYSA-N 2-(oxan-2-yloxy)oxane Chemical class O1CCCCC1OC1OCCCC1 HUHXLHLWASNVDB-UHFFFAOYSA-N 0.000 description 1
- QKWOXBZJMMIRGS-UHFFFAOYSA-N 2-[1-[3-[2-(benzotriazol-2-yl)-4-chlorophenoxy]propyl]indol-5-yl]oxyacetic acid Chemical compound N1=C2C=CC=CC2=NN1C1=CC(Cl)=CC=C1OCCCN1C2=CC=C(OCC(=O)O)C=C2C=C1 QKWOXBZJMMIRGS-UHFFFAOYSA-N 0.000 description 1
- VVHLFEHHHCMWLS-UHFFFAOYSA-N 2-[4-[2-[2-(benzotriazol-2-yl)-4-chlorophenoxy]ethoxy]-3-propan-2-ylphenyl]acetic acid Chemical compound CC(C)C1=CC(CC(O)=O)=CC=C1OCCOC1=CC=C(Cl)C=C1N1N=C2C=CC=CC2=N1 VVHLFEHHHCMWLS-UHFFFAOYSA-N 0.000 description 1
- ZSIZIKOJCMRJSL-UHFFFAOYSA-N 2-[4-[3-[2-(benzotriazol-2-yl)-4-methoxyphenoxy]propoxy]phenyl]acetic acid Chemical compound N1=C2C=CC=CC2=NN1C1=CC(OC)=CC=C1OCCCOC1=CC=C(CC(O)=O)C=C1 ZSIZIKOJCMRJSL-UHFFFAOYSA-N 0.000 description 1
- QJLOANPBLAEMGI-UHFFFAOYSA-N 2-[5-[3-[3-(1,3-benzoxazol-2-yl)phenoxy]propoxy]indol-1-yl]acetic acid Chemical compound C1=CC=C2OC(C=3C=CC=C(C=3)OCCCOC=3C=C4C=CN(C4=CC=3)CC(=O)O)=NC2=C1 QJLOANPBLAEMGI-UHFFFAOYSA-N 0.000 description 1
- ZTNUBGIGMCKXCG-UHFFFAOYSA-N 2-[5-[[2-(benzotriazol-2-yl)-4-chlorophenoxy]methyl]indol-1-yl]acetic acid Chemical compound N1=C2C=CC=CC2=NN1C1=CC(Cl)=CC=C1OCC1=CC=C2N(CC(=O)O)C=CC2=C1 ZTNUBGIGMCKXCG-UHFFFAOYSA-N 0.000 description 1
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 1
- NHUBNHMFXQNNMV-UHFFFAOYSA-N 2-ethynylpyridine Chemical compound C#CC1=CC=CC=N1 NHUBNHMFXQNNMV-UHFFFAOYSA-N 0.000 description 1
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical class C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- UPHOPMSGKZNELG-UHFFFAOYSA-N 2-hydroxynaphthalene-1-carboxylic acid Chemical group C1=CC=C2C(C(=O)O)=C(O)C=CC2=C1 UPHOPMSGKZNELG-UHFFFAOYSA-N 0.000 description 1
- HZLCGUXUOFWCCN-UHFFFAOYSA-N 2-hydroxynonadecane-1,2,3-tricarboxylic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)C(O)(C(O)=O)CC(O)=O HZLCGUXUOFWCCN-UHFFFAOYSA-N 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- UMJGOCMSBZWCNY-UHFFFAOYSA-N 2-methyl-4-sulfanylphenol Chemical compound CC1=CC(S)=CC=C1O UMJGOCMSBZWCNY-UHFFFAOYSA-N 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- VMKYTRPNOVFCGZ-UHFFFAOYSA-N 2-sulfanylphenol Chemical class OC1=CC=CC=C1S VMKYTRPNOVFCGZ-UHFFFAOYSA-N 0.000 description 1
- DCOZYFSOLLFJQJ-UHFFFAOYSA-N 3-(4,5-dimethyl-1,3-oxazol-2-yl)phenol Chemical compound O1C(C)=C(C)N=C1C1=CC=CC(O)=C1 DCOZYFSOLLFJQJ-UHFFFAOYSA-N 0.000 description 1
- XLZYKTYMLBOINK-UHFFFAOYSA-N 3-(4-hydroxybenzoyl)benzoic acid Chemical compound OC(=O)C1=CC=CC(C(=O)C=2C=CC(O)=CC=2)=C1 XLZYKTYMLBOINK-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- VGSOCYWCRMXQAB-UHFFFAOYSA-N 3-chloro-4-hydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C=C1Cl VGSOCYWCRMXQAB-UHFFFAOYSA-N 0.000 description 1
- ZRPLANDPDWYOMZ-UHFFFAOYSA-N 3-cyclopentylpropionic acid Chemical compound OC(=O)CCC1CCCC1 ZRPLANDPDWYOMZ-UHFFFAOYSA-N 0.000 description 1
- DOFIAZGYBIBEGI-UHFFFAOYSA-N 3-sulfanylphenol Chemical class OC1=CC=CC(S)=C1 DOFIAZGYBIBEGI-UHFFFAOYSA-N 0.000 description 1
- QXZBMSIDSOZZHK-DOPDSADYSA-N 31362-50-2 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1NC(=O)CC1)C(C)C)C1=CNC=N1 QXZBMSIDSOZZHK-DOPDSADYSA-N 0.000 description 1
- XYVMOLOUBJBNBF-UHFFFAOYSA-N 3h-1,3-oxazol-2-one Chemical class OC1=NC=CO1 XYVMOLOUBJBNBF-UHFFFAOYSA-N 0.000 description 1
- GYGOKMFGWUVBKA-UHFFFAOYSA-N 4-chloro-2-(4,5-dimethyltriazol-2-yl)phenol Chemical compound N1=C(C)C(C)=NN1C1=CC(Cl)=CC=C1O GYGOKMFGWUVBKA-UHFFFAOYSA-N 0.000 description 1
- RJWBTWIBUIGANW-UHFFFAOYSA-N 4-chlorobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(Cl)C=C1 RJWBTWIBUIGANW-UHFFFAOYSA-N 0.000 description 1
- ITZMJCSORYKOSI-AJNGGQMLSA-N APGPR Enterostatin Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N1[C@H](C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)CCC1 ITZMJCSORYKOSI-AJNGGQMLSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 206010000599 Acromegaly Diseases 0.000 description 1
- 229940123324 Acyltransferase inhibitor Drugs 0.000 description 1
- 239000000275 Adrenocorticotropic Hormone Substances 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 238000003691 Amadori rearrangement reaction Methods 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 102000005666 Apolipoprotein A-I Human genes 0.000 description 1
- 108010059886 Apolipoprotein A-I Proteins 0.000 description 1
- 101710095342 Apolipoprotein B Proteins 0.000 description 1
- 102100040202 Apolipoprotein B-100 Human genes 0.000 description 1
- 102100029470 Apolipoprotein E Human genes 0.000 description 1
- 101710095339 Apolipoprotein E Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 description 1
- XUKUURHRXDUEBC-UHFFFAOYSA-N Atorvastatin Natural products C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CCC(O)CC(O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 102000013585 Bombesin Human genes 0.000 description 1
- 108010051479 Bombesin Proteins 0.000 description 1
- OUOOOFMCUHZVBC-VESVSODOSA-N BrCCCBr.C.CCOC(=O)/C=C/C1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1.ClC1=CC(N2/N=C3/C=CC=C/C3=N/2)=C(OCCCBr)C=C1.ClC1=CC=C(OCCCBr)C(N2/N=C3/C=CC=C/C3=N/2)=C1.O=C(O)C1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1.OC1=C(N2/N=C3/C=CC=C/C3=N/2)C=C(Cl)C=C1.OC1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1.[H]C(=O)C1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1.[H]C(=O)C1=CC=C(O)C(Cl)=C1 Chemical compound BrCCCBr.C.CCOC(=O)/C=C/C1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1.ClC1=CC(N2/N=C3/C=CC=C/C3=N/2)=C(OCCCBr)C=C1.ClC1=CC=C(OCCCBr)C(N2/N=C3/C=CC=C/C3=N/2)=C1.O=C(O)C1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1.OC1=C(N2/N=C3/C=CC=C/C3=N/2)C=C(Cl)C=C1.OC1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1.[H]C(=O)C1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1.[H]C(=O)C1=CC=C(O)C(Cl)=C1 OUOOOFMCUHZVBC-VESVSODOSA-N 0.000 description 1
- RSOXWZNZSBBHDE-UHFFFAOYSA-N C.CC1=CC=C(OCCCSC2=CC=C(OCC(=O)O)C(C)=C2)C(C2=NC3=C(C=CC=C3)S2)=C1.O=C(O)CC1=CC=C(OCCCOC2=C(/C3=N/C4=C(C=CC=C4)S3)C=C(Cl)C=C2)C=C1 Chemical compound C.CC1=CC=C(OCCCSC2=CC=C(OCC(=O)O)C(C)=C2)C(C2=NC3=C(C=CC=C3)S2)=C1.O=C(O)CC1=CC=C(OCCCOC2=C(/C3=N/C4=C(C=CC=C4)S3)C=C(Cl)C=C2)C=C1 RSOXWZNZSBBHDE-UHFFFAOYSA-N 0.000 description 1
- NXOCWFWTHKEEJL-UHFFFAOYSA-N C.O=C(O)CN1/C=C\C2=CC(OCCCOC3=CC=C(Cl)C=C3N3N=C4C=CC=CC4=N3)=CC=C21.O=C(O)CN1/C=C\C2=CC(OCCOC3=CC=C(Cl)C=C3N3N=C4C=CC=CC4=N3)=CC=C21 Chemical compound C.O=C(O)CN1/C=C\C2=CC(OCCCOC3=CC=C(Cl)C=C3N3N=C4C=CC=CC4=N3)=CC=C21.O=C(O)CN1/C=C\C2=CC(OCCOC3=CC=C(Cl)C=C3N3N=C4C=CC=CC4=N3)=CC=C21 NXOCWFWTHKEEJL-UHFFFAOYSA-N 0.000 description 1
- 125000004399 C1-C4 alkenyl group Chemical group 0.000 description 1
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 1
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 1
- DPILIXVHFFWYSA-UHFFFAOYSA-N CC(C(=O)O)C1=CC=C(OCCCOC2=C(N3N=C4C=CC=CC4=N3)C=C(Cl)C=C2)C=C1.CC(C)(C(=O)O)C1=CC=C(OCCCOC2=C(N3N=C4C=CC=CC4=N3)C=C(Cl)C=C2)C=C1.CC(C)(OC1=C(Cl)C=C(OCCCOC2=C(N3N=C4C=CC=CC4=N3)C=C(Cl)C=C2)C=C1)C(=O)O.CC1=C(OC(C)(C)C(=O)O)C=CC(OCCCOC2=C(N3N=C4C=CC=CC4=N3)C=C(Cl)C=C2)=C1.O=C(O)CC1=CC=C(OCCCOC2=C(N3N=C4C=CC=CC4=N3)C=C(Cl)C=C2)C(Br)=C1.O=C(O)COC1=CC=C(OCCCOC2=C(N3N=C4C=CC=CC4=N3)C=C(Cl)C=C2)C(Cl)=C1 Chemical compound CC(C(=O)O)C1=CC=C(OCCCOC2=C(N3N=C4C=CC=CC4=N3)C=C(Cl)C=C2)C=C1.CC(C)(C(=O)O)C1=CC=C(OCCCOC2=C(N3N=C4C=CC=CC4=N3)C=C(Cl)C=C2)C=C1.CC(C)(OC1=C(Cl)C=C(OCCCOC2=C(N3N=C4C=CC=CC4=N3)C=C(Cl)C=C2)C=C1)C(=O)O.CC1=C(OC(C)(C)C(=O)O)C=CC(OCCCOC2=C(N3N=C4C=CC=CC4=N3)C=C(Cl)C=C2)=C1.O=C(O)CC1=CC=C(OCCCOC2=C(N3N=C4C=CC=CC4=N3)C=C(Cl)C=C2)C(Br)=C1.O=C(O)COC1=CC=C(OCCCOC2=C(N3N=C4C=CC=CC4=N3)C=C(Cl)C=C2)C(Cl)=C1 DPILIXVHFFWYSA-UHFFFAOYSA-N 0.000 description 1
- UPUTXDGRORWPLS-UHFFFAOYSA-N CC1=CC(SCCCOC2=CC=CC(/C3=N/C4=C(C=CC=C4)O3)=C2)=CC=C1OCC(=O)O.CC1=CC(SCCCOC2=CC=CC(C3=NC(C)=C(C)O3)=C2)=CC=C1OCC(=O)O.CC1=CC=C(OCCCSC2=CC=C(OCC(=O)O)C(C)=C2)C(C2=NC3=C(C=CC=C3)O2)=C1.O=C(O)CC1=CC=C(OCCCOC2=C(/C3=N/C4=C(C=CC=C4)O3)C=C(Br)C=C2)C=C1.O=C(O)CC1=CC=C(OCCCOC2=C(/C3=N/C4=C(C=CC=C4)O3)C=C(C3=CC=CS3)C=C2)C=C1 Chemical compound CC1=CC(SCCCOC2=CC=CC(/C3=N/C4=C(C=CC=C4)O3)=C2)=CC=C1OCC(=O)O.CC1=CC(SCCCOC2=CC=CC(C3=NC(C)=C(C)O3)=C2)=CC=C1OCC(=O)O.CC1=CC=C(OCCCSC2=CC=C(OCC(=O)O)C(C)=C2)C(C2=NC3=C(C=CC=C3)O2)=C1.O=C(O)CC1=CC=C(OCCCOC2=C(/C3=N/C4=C(C=CC=C4)O3)C=C(Br)C=C2)C=C1.O=C(O)CC1=CC=C(OCCCOC2=C(/C3=N/C4=C(C=CC=C4)O3)C=C(C3=CC=CS3)C=C2)C=C1 UPUTXDGRORWPLS-UHFFFAOYSA-N 0.000 description 1
- DECAIRGHEOFSCT-UKTHLTGXSA-N CCOC(=O)/C=C/C1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1 Chemical compound CCOC(=O)/C=C/C1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1 DECAIRGHEOFSCT-UKTHLTGXSA-N 0.000 description 1
- ZCKJHQBCGMCKHV-UHFFFAOYSA-N CCOC(=O)CCC1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1.CCOC(=O)CCC1=CC(Cl)=C(OCCCOC2=CC=CC=C2N2/N=C3/C=CC=C/C3=N/2)C=C1 Chemical compound CCOC(=O)CCC1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1.CCOC(=O)CCC1=CC(Cl)=C(OCCCOC2=CC=CC=C2N2/N=C3/C=CC=C/C3=N/2)C=C1 ZCKJHQBCGMCKHV-UHFFFAOYSA-N 0.000 description 1
- QLXIJAAAPUVVBU-UHFFFAOYSA-K CCOC(=O)CCC1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/CCCC/C3=N/2)C=C1.CCOC(=O)CCC1=CC(Cl)=C(OCCCOC2=CC=CC=C2N2/N=C3/CCCC/C3=N/2)C=C1.CCOC(=O)COC1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1.O=C(O)CCC1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1.O=C(O)CCC1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/CCCC/C3=N/2)C=C1.O=C(O)CCC1=CC(Cl)=C(OCCCOC2=CC=CC=C2N2/N=C3/CCCC/C3=N/2)C=C1.[Li]O.[Li]O.[Li]O Chemical compound CCOC(=O)CCC1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/CCCC/C3=N/2)C=C1.CCOC(=O)CCC1=CC(Cl)=C(OCCCOC2=CC=CC=C2N2/N=C3/CCCC/C3=N/2)C=C1.CCOC(=O)COC1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1.O=C(O)CCC1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1.O=C(O)CCC1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/CCCC/C3=N/2)C=C1.O=C(O)CCC1=CC(Cl)=C(OCCCOC2=CC=CC=C2N2/N=C3/CCCC/C3=N/2)C=C1.[Li]O.[Li]O.[Li]O QLXIJAAAPUVVBU-UHFFFAOYSA-K 0.000 description 1
- RCJIDBYQEBHGTE-UHFFFAOYSA-N COC(=O)CC1=CC=C(OCCCBr)C=C1 Chemical compound COC(=O)CC1=CC=C(OCCCBr)C=C1 RCJIDBYQEBHGTE-UHFFFAOYSA-N 0.000 description 1
- MYXGKFLIMXYOBI-UHFFFAOYSA-N COC(=O)CC1=CC=C(OCCCOC2=CC=C(C3=CC=CS3)C=C2N2N=C3C=CC=CC3=N2)C=C1 Chemical compound COC(=O)CC1=CC=C(OCCCOC2=CC=C(C3=CC=CS3)C=C2N2N=C3C=CC=CC3=N2)C=C1 MYXGKFLIMXYOBI-UHFFFAOYSA-N 0.000 description 1
- DCERHCFNWRGHLK-UHFFFAOYSA-N C[Si](C)C Chemical compound C[Si](C)C DCERHCFNWRGHLK-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 208000014882 Carotid artery disease Diseases 0.000 description 1
- 241001155433 Centrarchus macropterus Species 0.000 description 1
- 206010065559 Cerebral arteriosclerosis Diseases 0.000 description 1
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 1
- 108091007403 Cholesterol transporters Proteins 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- CXNPOZDLXIRPLX-UHFFFAOYSA-N ClC1=CC(N2/N=C3/C=CC=C/C3=N/2)=C(OCCBr)C=C1 Chemical compound ClC1=CC(N2/N=C3/C=CC=C/C3=N/2)=C(OCCBr)C=C1 CXNPOZDLXIRPLX-UHFFFAOYSA-N 0.000 description 1
- NLCTUYZHIVWHNX-UHFFFAOYSA-N ClC1=CC(N2/N=C3/C=CC=C/C3=N/2)=C(OCCCBr)C=C1 Chemical compound ClC1=CC(N2/N=C3/C=CC=C/C3=N/2)=C(OCCCBr)C=C1 NLCTUYZHIVWHNX-UHFFFAOYSA-N 0.000 description 1
- UNOHHZZLXMVIIN-UHFFFAOYSA-N ClC1=CC(N2/N=C3/C=CC=C/C3=N/2)=C(OCCCI)C=C1 Chemical compound ClC1=CC(N2/N=C3/C=CC=C/C3=N/2)=C(OCCCI)C=C1 UNOHHZZLXMVIIN-UHFFFAOYSA-N 0.000 description 1
- NEBLFQNATCGMMQ-UHFFFAOYSA-N ClCCCOC1=C(N2/N=C3/C=CC=C/C3=N/2)C=C(Cl)C=C1 Chemical compound ClCCCOC1=C(N2/N=C3/C=CC=C/C3=N/2)C=C(Cl)C=C1 NEBLFQNATCGMMQ-UHFFFAOYSA-N 0.000 description 1
- 208000031288 Combined hyperlipidaemia Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 101800000414 Corticotropin Proteins 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- NBSCHQHZLSJFNQ-GASJEMHNSA-N D-Glucose 6-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@H]1O NBSCHQHZLSJFNQ-GASJEMHNSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Chemical group OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- FMGSKLZLMKYGDP-UHFFFAOYSA-N Dehydroepiandrosterone Natural products C1C(O)CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CC=C21 FMGSKLZLMKYGDP-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 102000015554 Dopamine receptor Human genes 0.000 description 1
- 108050004812 Dopamine receptor Proteins 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 208000017701 Endocrine disease Diseases 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 206010059183 Familial hypertriglyceridaemia Diseases 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- YDBLKRPLXZNVNB-UHFFFAOYSA-N GW 501516 Chemical compound CC=1N=C(C=2C=CC(=CC=2)C(F)(F)F)SC=1CSC1=CC=C(OCC(O)=O)C(C)=C1 YDBLKRPLXZNVNB-UHFFFAOYSA-N 0.000 description 1
- 102000019432 Galanin Human genes 0.000 description 1
- 101800002068 Galanin Proteins 0.000 description 1
- VFRROHXSMXFLSN-UHFFFAOYSA-N Glc6P Natural products OP(=O)(O)OCC(O)C(O)C(O)C(O)C=O VFRROHXSMXFLSN-UHFFFAOYSA-N 0.000 description 1
- FAEKWTJYAYMJKF-QHCPKHFHSA-N GlucoNorm Chemical compound C1=C(C(O)=O)C(OCC)=CC(CC(=O)N[C@@H](CC(C)C)C=2C(=CC=CC=2)N2CCCCC2)=C1 FAEKWTJYAYMJKF-QHCPKHFHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Chemical group OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 108010023302 HDL Cholesterol Proteins 0.000 description 1
- 208000018565 Hemochromatosis Diseases 0.000 description 1
- 206010019851 Hepatotoxicity Diseases 0.000 description 1
- 208000001021 Hyperlipoproteinemia Type I Diseases 0.000 description 1
- 201000010252 Hyperlipoproteinemia Type III Diseases 0.000 description 1
- MFESCIUQSIBMSM-UHFFFAOYSA-N I-BCP Chemical compound ClCCCBr MFESCIUQSIBMSM-UHFFFAOYSA-N 0.000 description 1
- 229940122199 Insulin secretagogue Drugs 0.000 description 1
- 206010023379 Ketoacidosis Diseases 0.000 description 1
- 208000007976 Ketosis Diseases 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical group OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 229940127470 Lipase Inhibitors Drugs 0.000 description 1
- 229940086609 Lipase inhibitor Drugs 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- 239000012448 Lithium borohydride Substances 0.000 description 1
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 1
- 206010054805 Macroangiopathy Diseases 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- ZPXSCAKFGYXMGA-UHFFFAOYSA-N Mazindol Chemical compound N12CCN=C2C2=CC=CC=C2C1(O)C1=CC=C(Cl)C=C1 ZPXSCAKFGYXMGA-UHFFFAOYSA-N 0.000 description 1
- 239000000637 Melanocyte-Stimulating Hormone Substances 0.000 description 1
- 108010007013 Melanocyte-Stimulating Hormones Proteins 0.000 description 1
- 101710151321 Melanostatin Proteins 0.000 description 1
- 208000001145 Metabolic Syndrome Diseases 0.000 description 1
- IBAQFPQHRJAVAV-ULAWRXDQSA-N Miglitol Chemical compound OCCN1C[C@H](O)[C@@H](O)[C@H](O)[C@H]1CO IBAQFPQHRJAVAV-ULAWRXDQSA-N 0.000 description 1
- TXXHDPDFNKHHGW-CCAGOZQPSA-N Muconic acid Chemical group OC(=O)\C=C/C=C\C(O)=O TXXHDPDFNKHHGW-CCAGOZQPSA-N 0.000 description 1
- 101000741778 Mus musculus Peroxisome proliferator-activated receptor alpha Proteins 0.000 description 1
- 101000741798 Mus musculus Peroxisome proliferator-activated receptor delta Proteins 0.000 description 1
- 101000741806 Mus musculus Peroxisome proliferator-activated receptor gamma Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 102400000064 Neuropeptide Y Human genes 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- IATGXRDZDUHQDT-UHFFFAOYSA-N O=C(O)CC1=CC=C(OCCCOC2=C(N3N=C4CCCCC4=N3)C=C(F)C=C2)C=C1.O=C(O)CC1=CC=C(OCCCOC2=C(N3N=C4CCCCC4=N3)C=CC=C2)C=C1.O=C(O)CCC1=CC=C(OCCCOC2=C(N3N=C4CCCCC4=N3)C=C(Cl)C=C2)C(Cl)=C1.O=C(O)CCC1=CC=C(OCCCOC2=C(N3N=C4CCCCC4=N3)C=CC=C2)C(Cl)=C1 Chemical compound O=C(O)CC1=CC=C(OCCCOC2=C(N3N=C4CCCCC4=N3)C=C(F)C=C2)C=C1.O=C(O)CC1=CC=C(OCCCOC2=C(N3N=C4CCCCC4=N3)C=CC=C2)C=C1.O=C(O)CCC1=CC=C(OCCCOC2=C(N3N=C4CCCCC4=N3)C=C(Cl)C=C2)C(Cl)=C1.O=C(O)CCC1=CC=C(OCCCOC2=C(N3N=C4CCCCC4=N3)C=CC=C2)C(Cl)=C1 IATGXRDZDUHQDT-UHFFFAOYSA-N 0.000 description 1
- YSZYMSJSTAGBLK-UHFFFAOYSA-N O=C(O)COC1=CC=C(OCCCOC2=C(N3/N=C4/CCCC/C4=N/3)C=C(Cl)C=C2)C(Cl)=C1 Chemical compound O=C(O)COC1=CC=C(OCCCOC2=C(N3/N=C4/CCCC/C4=N/3)C=C(Cl)C=C2)C(Cl)=C1 YSZYMSJSTAGBLK-UHFFFAOYSA-N 0.000 description 1
- GYDSVLRQGKKIBQ-UHFFFAOYSA-N O=C(O)COC1=CC=C(OCCCOC2=C(N3/N=C4/CCCC/C4=N/3)C=CC=C2)C(Cl)=C1 Chemical compound O=C(O)COC1=CC=C(OCCCOC2=C(N3/N=C4/CCCC/C4=N/3)C=CC=C2)C(Cl)=C1 GYDSVLRQGKKIBQ-UHFFFAOYSA-N 0.000 description 1
- PGZOTFITSFVFRZ-UHFFFAOYSA-N OC1=CC=C(OCCCOC2=C(N3/N=C4/C=CC=C/C4=N/3)C=C(Cl)C=C2)C(Cl)=C1 Chemical compound OC1=CC=C(OCCCOC2=C(N3/N=C4/C=CC=C/C4=N/3)C=C(Cl)C=C2)C(Cl)=C1 PGZOTFITSFVFRZ-UHFFFAOYSA-N 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 206010033645 Pancreatitis Diseases 0.000 description 1
- YNHIGQDRGKUECZ-UHFFFAOYSA-L PdCl2(PPh3)2 Substances [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 101710117029 Peroxisome proliferator-activated receptor delta Proteins 0.000 description 1
- 102100038824 Peroxisome proliferator-activated receptor delta Human genes 0.000 description 1
- 206010036049 Polycystic ovaries Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 229940123934 Reductase inhibitor Drugs 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- 206010041925 Staphylococcal infections Diseases 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 206010043458 Thirst Diseases 0.000 description 1
- JLRGJRBPOGGCBT-UHFFFAOYSA-N Tolbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(C)C=C1 JLRGJRBPOGGCBT-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 206010060751 Type III hyperlipidaemia Diseases 0.000 description 1
- 206010045261 Type IIa hyperlipidaemia Diseases 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- FZNCGRZWXLXZSZ-CIQUZCHMSA-N Voglibose Chemical compound OCC(CO)N[C@H]1C[C@](O)(CO)[C@@H](O)[C@H](O)[C@H]1O FZNCGRZWXLXZSZ-CIQUZCHMSA-N 0.000 description 1
- 208000021017 Weight Gain Diseases 0.000 description 1
- 206010048214 Xanthoma Diseases 0.000 description 1
- 206010048215 Xanthomatosis Diseases 0.000 description 1
- KRRPZIHWVMPTHF-UHFFFAOYSA-N [H]C(=O)C1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1 Chemical compound [H]C(=O)C1=CC(Cl)=C(OCCCOC2=CC=C(Cl)C=C2N2/N=C3/C=CC=C/C3=N/2)C=C1 KRRPZIHWVMPTHF-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 206010000059 abdominal discomfort Diseases 0.000 description 1
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 229960002632 acarbose Drugs 0.000 description 1
- XUFXOAAUWZOOIT-UHFFFAOYSA-N acarviostatin I01 Natural products OC1C(O)C(NC2C(C(O)C(O)C(CO)=C2)O)C(C)OC1OC(C(C1O)O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O XUFXOAAUWZOOIT-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229960001466 acetohexamide Drugs 0.000 description 1
- VGZSUPCWNCWDAN-UHFFFAOYSA-N acetohexamide Chemical compound C1=CC(C(=O)C)=CC=C1S(=O)(=O)NC(=O)NC1CCCCC1 VGZSUPCWNCWDAN-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 150000001263 acyl chlorides Chemical class 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000002404 acyltransferase inhibitor Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002293 adipogenic effect Effects 0.000 description 1
- 210000003486 adipose tissue brown Anatomy 0.000 description 1
- 229940126157 adrenergic receptor agonist Drugs 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 229940040563 agaric acid Drugs 0.000 description 1
- 150000004705 aldimines Chemical class 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 150000001348 alkyl chlorides Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001315 anti-hyperlipaemic effect Effects 0.000 description 1
- 230000003579 anti-obesity Effects 0.000 description 1
- 229940125708 antidiabetic agent Drugs 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 229940125710 antiobesity agent Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000005018 aryl alkenyl group Chemical group 0.000 description 1
- 230000003143 atherosclerotic effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960005370 atorvastatin Drugs 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 208000035707 autosomal dominant type B hypercholesterolemia Diseases 0.000 description 1
- 208000028281 autosomal inheritance Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 125000004603 benzisoxazolyl group Chemical group O1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- 229940076810 beta sitosterol Drugs 0.000 description 1
- 108010014502 beta-3 Adrenergic Receptors Proteins 0.000 description 1
- LGJMUZUPVCAVPU-UHFFFAOYSA-N beta-Sitostanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CC)C(C)C)C1(C)CC2 LGJMUZUPVCAVPU-UHFFFAOYSA-N 0.000 description 1
- NJKOMDUNNDKEAI-UHFFFAOYSA-N beta-sitosterol Natural products CCC(CCC(C)C1CCC2(C)C3CC=C4CC(O)CCC4C3CCC12C)C(C)C NJKOMDUNNDKEAI-UHFFFAOYSA-N 0.000 description 1
- 108040005346 beta3-adrenergic receptor activity proteins Proteins 0.000 description 1
- 229960000516 bezafibrate Drugs 0.000 description 1
- IIBYAHWJQTYFKB-UHFFFAOYSA-N bezafibrate Chemical compound C1=CC(OC(C)(C)C(O)=O)=CC=C1CCNC(=O)C1=CC=C(Cl)C=C1 IIBYAHWJQTYFKB-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006347 bis(trifluoromethyl)hydroxymethyl group Chemical group [H]OC(*)(C(F)(F)F)C(F)(F)F 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- ZMCUDHNSHCRDBT-UHFFFAOYSA-M caesium bicarbonate Chemical compound [Cs+].OC([O-])=O ZMCUDHNSHCRDBT-UHFFFAOYSA-M 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 235000020934 caloric restriction Nutrition 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 230000023852 carbohydrate metabolic process Effects 0.000 description 1
- 235000021256 carbohydrate metabolism Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960001761 chlorpropamide Drugs 0.000 description 1
- 150000001840 cholesterol esters Chemical class 0.000 description 1
- 235000020974 cholesterol intake Nutrition 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- YZFWTZACSRHJQD-UHFFFAOYSA-N ciglitazone Chemical compound C=1C=C(CC2C(NC(=O)S2)=O)C=CC=1OCC1(C)CCCCC1 YZFWTZACSRHJQD-UHFFFAOYSA-N 0.000 description 1
- 229950009226 ciglitazone Drugs 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 1
- 229960000258 corticotropin Drugs 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- 239000011666 cyanocobalamin Substances 0.000 description 1
- 229960002104 cyanocobalamin Drugs 0.000 description 1
- 235000000639 cyanocobalamin Nutrition 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 229960004597 dexfenfluramine Drugs 0.000 description 1
- 125000004985 dialkyl amino alkyl group Chemical group 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 235000013367 dietary fats Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- XXEPPPIWZFICOJ-UHFFFAOYSA-N diethylpropion Chemical compound CCN(CC)C(C)C(=O)C1=CC=CC=C1 XXEPPPIWZFICOJ-UHFFFAOYSA-N 0.000 description 1
- 229960004890 diethylpropion Drugs 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- CNXMDTWQWLGCPE-UHFFFAOYSA-N ditert-butyl-(2-phenylphenyl)phosphane Chemical compound CC(C)(C)P(C(C)(C)C)C1=CC=CC=C1C1=CC=CC=C1 CNXMDTWQWLGCPE-UHFFFAOYSA-N 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- DLNKOYKMWOXYQA-UHFFFAOYSA-N dl-pseudophenylpropanolamine Natural products CC(N)C(O)C1=CC=CC=C1 DLNKOYKMWOXYQA-UHFFFAOYSA-N 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical group CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 235000006694 eating habits Nutrition 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000003821 enantio-separation Methods 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 208000030172 endocrine system disease Diseases 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- AFAXGSQYZLGZPG-UHFFFAOYSA-N ethanedisulfonic acid Chemical compound OS(=O)(=O)CCS(O)(=O)=O AFAXGSQYZLGZPG-UHFFFAOYSA-N 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- YKUIWVYFNZVEBJ-UHFFFAOYSA-N ethyl 2-(2-chloro-4-hydroxyphenoxy)-2-methylpropanoate Chemical compound CCOC(=O)C(C)(C)OC1=CC=C(O)C=C1Cl YKUIWVYFNZVEBJ-UHFFFAOYSA-N 0.000 description 1
- ZLLUDQCJBVEZTQ-UHFFFAOYSA-N ethyl 2-(4-hydroxy-2-methylphenoxy)-2-methylpropanoate Chemical compound CCOC(=O)C(C)(C)OC1=CC=C(O)C=C1C ZLLUDQCJBVEZTQ-UHFFFAOYSA-N 0.000 description 1
- XHUFQNPVNAZWBC-UHFFFAOYSA-N ethyl 2-[4-[2-[2-(benzotriazol-2-yl)-4-thiophen-2-ylphenoxy]ethoxy]-3-propylphenyl]acetate Chemical compound CCCC1=CC(CC(=O)OCC)=CC=C1OCCOC1=CC=C(C=2SC=CC=2)C=C1N1N=C2C=CC=CC2=N1 XHUFQNPVNAZWBC-UHFFFAOYSA-N 0.000 description 1
- RSOUGMXAOHHXQJ-UHFFFAOYSA-N ethyl 2-[4-[3-[4-chloro-2-(4,5,6,7-tetrahydrobenzotriazol-2-yl)phenoxy]propoxy]phenyl]acetate Chemical compound C1=CC(CC(=O)OCC)=CC=C1OCCCOC1=CC=C(Cl)C=C1N1N=C2CCCCC2=N1 RSOUGMXAOHHXQJ-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 210000003020 exocrine pancreas Anatomy 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 201000001386 familial hypercholesterolemia Diseases 0.000 description 1
- 229960001582 fenfluramine Drugs 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- MDQRDWAGHRLBPA-UHFFFAOYSA-N fluoroamine Chemical group FN MDQRDWAGHRLBPA-UHFFFAOYSA-N 0.000 description 1
- 235000012631 food intake Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229960003627 gemfibrozil Drugs 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 229960004580 glibenclamide Drugs 0.000 description 1
- 229960000346 gliclazide Drugs 0.000 description 1
- WIGIZIANZCJQQY-RUCARUNLSA-N glimepiride Chemical compound O=C1C(CC)=C(C)CN1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)N[C@@H]2CC[C@@H](C)CC2)C=C1 WIGIZIANZCJQQY-RUCARUNLSA-N 0.000 description 1
- 229960004346 glimepiride Drugs 0.000 description 1
- ZJJXGWJIGJFDTL-UHFFFAOYSA-N glipizide Chemical compound C1=NC(C)=CN=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZJJXGWJIGJFDTL-UHFFFAOYSA-N 0.000 description 1
- 229960001381 glipizide Drugs 0.000 description 1
- 229960003468 gliquidone Drugs 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 239000000174 gluconic acid Chemical group 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 208000018914 glucose metabolism disease Diseases 0.000 description 1
- 239000004220 glutamic acid Chemical group 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000002308 glutamine derivatives Chemical class 0.000 description 1
- 229940120105 glynase Drugs 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000002650 habitual effect Effects 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 230000007686 hepatotoxicity Effects 0.000 description 1
- 231100000304 hepatotoxicity Toxicity 0.000 description 1
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 1
- 125000004415 heterocyclylalkyl group Chemical group 0.000 description 1
- 235000009200 high fat diet Nutrition 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 208000020887 hyperlipoproteinemia type 3 Diseases 0.000 description 1
- 208000000522 hyperlipoproteinemia type IV Diseases 0.000 description 1
- 208000003532 hypothyroidism Diseases 0.000 description 1
- 230000002989 hypothyroidism Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 201000005851 intracranial arteriosclerosis Diseases 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 108020001756 ligand binding domains Proteins 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000004322 lipid homeostasis Effects 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 208000018769 loss of vision Diseases 0.000 description 1
- 231100000864 loss of vision Toxicity 0.000 description 1
- 235000004213 low-fat Nutrition 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229960000299 mazindol Drugs 0.000 description 1
- 229950008446 melinamide Drugs 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 1
- 229960003105 metformin Drugs 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- FYKFTMDYVSKEGK-UHFFFAOYSA-N methyl 2-(3-bromo-4-hydroxyphenyl)acetate Chemical compound COC(=O)CC1=CC=C(O)C(Br)=C1 FYKFTMDYVSKEGK-UHFFFAOYSA-N 0.000 description 1
- AMDDOQIUPAINLH-UHFFFAOYSA-N methyl 2-(3-hydroxyphenyl)acetate Chemical compound COC(=O)CC1=CC=CC(O)=C1 AMDDOQIUPAINLH-UHFFFAOYSA-N 0.000 description 1
- JJJSFAGPWHEUBT-UHFFFAOYSA-N methyl 2-(4-hydroxy-3-methoxyphenyl)acetate Chemical compound COC(=O)CC1=CC=C(O)C(OC)=C1 JJJSFAGPWHEUBT-UHFFFAOYSA-N 0.000 description 1
- WJIJOJKHXJLXHS-UHFFFAOYSA-N methyl 2-(4-hydroxyphenyl)-2-methoxyacetate Chemical compound COC(=O)C(OC)C1=CC=C(O)C=C1 WJIJOJKHXJLXHS-UHFFFAOYSA-N 0.000 description 1
- MNRZNDJHQPESOZ-UHFFFAOYSA-N methyl 2-(4-hydroxyphenyl)-2-methylpropanoate Chemical compound COC(=O)C(C)(C)C1=CC=C(O)C=C1 MNRZNDJHQPESOZ-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229960001110 miglitol Drugs 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- SLZIZIJTGAYEKK-CIJSCKBQSA-N molport-023-220-247 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CN)[C@@H](C)O)C1=CNC=N1 SLZIZIJTGAYEKK-CIJSCKBQSA-N 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- OELFLUMRDSZNSF-BRWVUGGUSA-N nateglinide Chemical compound C1C[C@@H](C(C)C)CC[C@@H]1C(=O)N[C@@H](C(O)=O)CC1=CC=CC=C1 OELFLUMRDSZNSF-BRWVUGGUSA-N 0.000 description 1
- 229960000698 nateglinide Drugs 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- ODUCDPQEXGNKDN-UHFFFAOYSA-N nitroxyl Chemical compound O=N ODUCDPQEXGNKDN-UHFFFAOYSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- 102000006255 nuclear receptors Human genes 0.000 description 1
- 108020004017 nuclear receptors Proteins 0.000 description 1
- URPYMXQQVHTUDU-OFGSCBOVSA-N nucleopeptide y Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 URPYMXQQVHTUDU-OFGSCBOVSA-N 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical group CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Chemical group CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003791 organic solvent mixture Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Chemical group OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 210000002824 peroxisome Anatomy 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229960003562 phentermine Drugs 0.000 description 1
- 125000004351 phenylcyclohexyl group Chemical group C1(=CC=CC=C1)C1(CCCCC1)* 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- DLNKOYKMWOXYQA-APPZFPTMSA-N phenylpropanolamine Chemical compound C[C@@H](N)[C@H](O)C1=CC=CC=C1 DLNKOYKMWOXYQA-APPZFPTMSA-N 0.000 description 1
- 229960000395 phenylpropanolamine Drugs 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 229940096701 plain lipid modifying drug hmg coa reductase inhibitors Drugs 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 201000010065 polycystic ovary syndrome Diseases 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 1
- IUBQJLUDMLPAGT-UHFFFAOYSA-N potassium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([K])[Si](C)(C)C IUBQJLUDMLPAGT-UHFFFAOYSA-N 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- WSHYKIAQCMIPTB-UHFFFAOYSA-M potassium;2-oxo-3-(3-oxo-1-phenylbutyl)chromen-4-olate Chemical compound [K+].[O-]C=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 WSHYKIAQCMIPTB-UHFFFAOYSA-M 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 229960003611 pramlintide Drugs 0.000 description 1
- 108010029667 pramlintide Proteins 0.000 description 1
- NRKVKVQDUCJPIZ-MKAGXXMWSA-N pramlintide acetate Chemical compound C([C@@H](C(=O)NCC(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CS)NC(=O)[C@@H](N)CCCCN)[C@@H](C)O)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 NRKVKVQDUCJPIZ-MKAGXXMWSA-N 0.000 description 1
- 229960002847 prasterone Drugs 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108010070701 procolipase Proteins 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 229950003776 protoporphyrin Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical compound OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 description 1
- 239000011677 pyridoxine Substances 0.000 description 1
- 235000008160 pyridoxine Nutrition 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 229960002354 repaglinide Drugs 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000004141 reverse cholesterol transport Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 208000004124 rheumatic heart disease Diseases 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 201000005404 rubella Diseases 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 235000021003 saturated fats Nutrition 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000000580 secretagogue effect Effects 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000000276 sedentary effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- KZJWDPNRJALLNS-VJSFXXLFSA-N sitosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](CC)C(C)C)[C@@]1(C)CC2 KZJWDPNRJALLNS-VJSFXXLFSA-N 0.000 description 1
- 229950005143 sitosterol Drugs 0.000 description 1
- 210000002363 skeletal muscle cell Anatomy 0.000 description 1
- 108091008012 small dense LDL Proteins 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000012439 solid excipient Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008117 stearic acid Chemical group 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 208000023516 stroke disease Diseases 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003455 sulfinic acids Chemical class 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001975 sympathomimetic effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000005887 tetrahydrobenzofuranyl group Chemical group 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000000147 tetrahydroquinolinyl group Chemical group N1(CCCC2=CC=CC=C12)* 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- SWFSRMBSDMJGOK-UHFFFAOYSA-N thiadiazol-4-ol Chemical class OC1=CSN=N1 SWFSRMBSDMJGOK-UHFFFAOYSA-N 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000005505 thiomorpholino group Chemical group 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229960002277 tolazamide Drugs 0.000 description 1
- OUDSBRTVNLOZBN-UHFFFAOYSA-N tolazamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NN1CCCCCC1 OUDSBRTVNLOZBN-UHFFFAOYSA-N 0.000 description 1
- 229960005371 tolbutamide Drugs 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 230000037426 transcriptional repression Effects 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- IIHPVYJPDKJYOU-UHFFFAOYSA-N triphenylcarbethoxymethylenephosphorane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(=CC(=O)OCC)C1=CC=CC=C1 IIHPVYJPDKJYOU-UHFFFAOYSA-N 0.000 description 1
- 229940046728 tumor necrosis factor alpha inhibitor Drugs 0.000 description 1
- 239000002452 tumor necrosis factor alpha inhibitor Substances 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 230000004393 visual impairment Effects 0.000 description 1
- 239000011708 vitamin B3 Substances 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 229940011671 vitamin b6 Drugs 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 229960001729 voglibose Drugs 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 230000037221 weight management Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/52—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
- C07D263/54—Benzoxazoles; Hydrogenated benzoxazoles
- C07D263/56—Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
- C07D263/57—Aryl or substituted aryl radicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/14—Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/06—Antigout agents, e.g. antihyperuricemic or uricosuric agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
- A61P5/50—Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/04—1,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
- C07D249/06—1,2,3-Triazoles; Hydrogenated 1,2,3-triazoles with aryl radicals directly attached to ring atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/16—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms condensed with carbocyclic rings or ring systems
- C07D249/18—Benzotriazoles
- C07D249/20—Benzotriazoles with aryl radicals directly attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/10—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
Definitions
- Peroxisome Proliferator-Activated Receptors are implicated in a number of biological processes and disease states including Type 2 diabetes, hyperinsulinemia, hyperlipidemia, hyperuricemia, hypercholesteremia, atherosclerosis, one or more risk factors for cardiovascular disease, Syndrome X, hypertriglyceridemia, hyperglycemia, obesity, eating disorders and suppressing appetite.
- Diabetes mellitus commonly called diabetes, refers to a disease process derived from multiple causative factors and characterized by elevated levels of plasma glucose, referred to as hyperglycemia. See, e.g., LeRoith, D. et al., (eds.), D IABETES M ELLITUS (Lippincott-Raven Publishers, Philadelphia, Pa. U.S.A. 1996) and all references cited therein. According to the American Diabetes Association, diabetes mellitus is estimated to affect approximately 6% of the world population.
- Uncontrolled hyperglycemia is associated with increased and premature mortality due to an increased risk for microvascular and macrovascular diseases, including nephropathy, neuropathy, retinopathy, hypertension, cerebrovascular disease, coronary heart disease and other cardiovascular diseases. Therefore, control of glucose homeostasis is a critically important approach for the treatment of diabetes.
- Type 1 diabetes (formerly referred to as insulin-dependent diabetes or IDDM); and Type 2 diabetes (formerly referred to as non-insulin dependent diabetes or NIDDM).
- IDDM insulin-dependent diabetes
- NIDDM non-insulin dependent diabetes
- Type 1 diabetes is the result of an absolute deficiency of insulin, the hormone which regulates glucose utilization. This insulin deficiency is usually characterized by ⁇ -cell destruction within the Islets of Langerhans in the pancreas, which usually leads to absolute insulin deficiency.
- Type 1 diabetes has two forms: Immune-Mediated Diabetes Mellitus, which results from a cellular mediated autoimmune destruction of the ⁇ -cells of the pancreas; and Idiopathic Diabetes Mellitus, which refers to forms of the disease that have no known etiologies.
- Type 2 diabetes is a complex disease characterized by defects in glucose and lipid metabolism. Typically there are perturbations in many metabolic parameters including increases in fasting plasma glucose levels, free fatty acid levels and triglyceride levels (hypertriglyceridemia), as well as a decrease in the ratio of HDL/LDL.
- One of the principal underlying causes of diabetes is thought to be when muscle, fat and liver cells fail to respond to normal concentrations of insulin (insulin resistance). Insulin resistance may be due to reduced numbers of insulin receptors on these cells or a dysfunction of signaling pathways within the cells or both. Insulin resistance is characteristically accompanied by a relative, rather than absolute, insulin deficiency. Type 2 diabetes can range from predominant insulin resistance with relative insulin deficiency to predominant insulin deficiency with some insulin resistance.
- Type 2 diabetes is brought on by a combination of genetic and acquired risk factors—including a high-fat diet, lack of exercise and aging. Worldwide, Type 2 diabetes has become an epidemic, driven by increases in obesity and a sedentary lifestyle, widespread adoption of western dietary habits and the general aging of the population in many countries. In 1985, an estimated 30 million people worldwide had diabetes—by 2000, this figure had increased 5-fold, to an estimated 154 million people. The number of people with diabetes is expected to double between now and 2025, to about 300 million.
- TZD thiazolidinedione
- these drugs have been marketed under the names RezulinTM, AvandiaTM and ActosTM, respectively.
- the principal effect of these drugs is to improve glucose homeostasis.
- TZDs thiazolidinedione
- Treatment of diabetes also improves Islet (of Langerhans) function, specifically, insulin secretion, islet architecture, beta cell mass and the like.
- Hyperlipidemia is a condition generally characterized by an abnormal increase in serum lipids in the bloodstream and, as noted above, is an important risk factor in developing atherosclerosis and coronary heart disease.
- disorders of lipid metabolism see, e.g., Wilson, J. et al., (ed.), Disorders of Lipid Metabolism , Chapter 23, Textbook of Endocrinology, 9th Edition, (W.B. Sanders Company, Philadelphia, Pa. U.S.A. 1998; this reference and all references cited therein are herein incorporated by reference).
- Serum lipoproteins are the carriers for lipids in the circulation.
- Hyperlipidemia is usually classified as primary or secondary hyperlipidemia.
- Primary hyperlipidemia is generally caused by genetic defects, while secondary hyperlipidemia is generally caused by other factors, such as various disease states, drugs and dietary factors. Alternatively, hyperlipidemia can result from both a combination of primary and secondary causes of hyperlipidemia.
- Hypercholesterolemia a form of hyperlipidemia, is characterized by excessive high levels of blood cholesterol.
- the blood cholesterol pool is generally dependant on dietary uptake of cholesterol from the intestine and biosynthesis of cholesterol throughout the body, especially the liver.
- the majority of the cholesterol in plasma is carried on apolipoprotein B-containing lipoproteins, such as the very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL), intermediate density lipoproteins (IDL) and high density lipoproteins (HDL).
- VLDL very-low-density lipoproteins
- LDL low-density lipoproteins
- IDL intermediate density lipoproteins
- HDL high density lipoproteins
- Hypercholesterolemia is characterized by elevated LDL cholesterol levels. The risk of coronary artery disease in man increases when LDL and VLDL levels increase. Conversely, high HDL levels are protective against coronary artery disease (see Gordon, D.
- HMG-CoA reductase inhibitors are useful for treating conditions associated with high LDL levels.
- Other important anti-lipidemia drugs include fibrates such as gemfibril and clofibrate, bile acid sequestrant such as cholestyramine and colestipol, probucol and nicotinic acid analogs.
- Elevated cholesterol levels are in turn associated with a number of disease states, including coronary artery disease, angina pectoris, carotid artery disease, strokes, cerebral arteriosclerosis and xanthoma.
- Dyslipidemia or abnormal levels of lipoproteins in blood plasma is a frequent occurrence among diabetics and has been shown to be one of the main contributors to the increased incidence of coronary events and deaths among diabetic subjects (see, e.g., Joslin, E. Ann. Chim. Med . (1927) 5: 1061-1079).
- Epidemiological studies since then have confirmed the association and have shown a several-fold increase in coronary deaths among diabetic subjects when compared with nondiabetic subjects (see, e.g., Garcia, M. J. et al., Diabetes (1974) 23: 105-11; and Laakso, M. and Lehto, S. Diabetes Reviews (1997) 5(4): 294-315).
- Several lipoprotein abnormalities have been described among diabetic subjects (Howard B., et al., Atherosclerosis (1978) 30: 153-162).
- cardiovascular disease problems including cardiovascular disease problems, conditions associated with insulin resistance such as Type 2 diabetes and certain types of cancers.
- Type 2 diabetes and hypertension rises steeply with increasing body fatness. Weight reduction leads to correction of a number of obesity-associated endocrine and metabolic disorders.
- Effective weight management for individuals and groups at risk of developing obesity involves a range of long term strategies. These include prevention, weight maintenance, management of co-morbidities and weight loss.
- Existing treatment strategies include caloric restriction programs, surgery (gastric stapling) and drug intervention.
- the currently available anti-obesity drugs can be divided into two classes: central acting and peripheral acting. Three marketed drugs are Xenical (Orlistat), Merida (Sibutramine) and Adipex-P (Phentermine).
- Xenical is a non-ic acting GI lipase inhibitor which is indicated for short and long term obesity management. Merida reduces food intake by re-uptake inhibition of primarily norepinephrine and serotonin.
- Adipex-P is a phenteramine with sympathomimetic activities and suppresses appetite. It is indicated only for short term use. A more drastic solution to permanent weight loss is surgery and a gastric by-pass which limits absorption of calories through massive reduction in stomach size.
- Syndrome X is loosely defined as a collection of abnormalities including hyperinsulinemia, hyperuricemia, obesity, elevated levels of triglycerides, fibrinogen, small dense LDL particles and plasminogen activator inhibitor 1 (PAI-1) and decreased levels of HDL-c. These abnormalities are associated with eating disorders, particularly an overactive appetite.
- PPARs are members of the nuclear receptor superfamily of transcription factors, a large and diverse group of proteins that mediate ligand-dependent transcriptional activation and repression. They play a role in controlling expression of proteins that regulate lipid metabolism. Furthermore, the PPARs are activated by fatty acids and fatty acid metabolites. Three PPAR subtypes have been isolated: PPAR ⁇ , PPAR ⁇ (also referred to as ⁇ or NUC1) and PPAR ⁇ . Each receptor shows a different pattern of gene expression by binding to DNA sequence elements, termed PPAR response elements (PPRE). In addition, each receptor show a difference in activation by structurally diverse compounds.
- PPRE PPAR response elements
- PPREs have been identified in the enhancers of a number of genes encoding proteins that regulate lipid metabolism suggesting that PPARs play a pivotal role in the adipogenic signaling cascade and lipid homeostasis (Keller, H. and Wahli, W. Trends Endoodn. Met . (1993) 4:291-296.
- PPAR ⁇ is found in the liver, heart, kidney, muscle, brown adipose tissue and gut and is involved in stimulating ⁇ -oxidation of fatty acids.
- PPAR ⁇ is also involved in the control of cholesterol levels in rodents and in humans. Fibrates are weak PPAR ⁇ agonists that are effective in the treatment of lipid disorders.
- PPAR ⁇ agonists have also been reported to prevent diabetes and to improve insulin sensitivity and reduce adiposity in obese and diabetic rodents (see Koh, E. H. et al. Diabetes (2003) 52:2331-2337; and Guerre-Millo, M. et al. J. Biol. Chem . (2000) 275: 16638-16642).
- PPAR ⁇ is ubiquitously expressed. Activation of PPAR ⁇ increases HDL levels in rodents and monkeys (see Oliver, W. R. et al. PNAS (2001) 98:5306-5311; and Leibowitz, M. D. et al. FEBS Letters (2000) 473:333-336). Moreover, PPAR ⁇ has been recently shown to be a key regulator of lipid catabolism and energy uncoupling in skeletal muscle cells (Dressel, U. et al. Mol. Endocrinol . (2003) 17: 2477-2493).
- PPAR ⁇ activation induces fatty ⁇ -oxidation in skeletal muscle and adipose tissue, leading to protection against diet-induced obesity and diabetes (see Wang, Y. X. et al. Cell (2003) 113:159-170; and Tanaka et al. PNAS (2003) 100:15924-15929).
- PPAR ⁇ activation also increases the reverse cholesterol transporter ATP-binding cassette A1 and induces apolipoprotein A1-specific cholesterol efflux (see Oliver, W. R. et al. PNAS (2001) 98:5306-5311). Activation also increases energy expenditure.
- PPAR- ⁇ is expressed most abundantly in adipose tissue and is thought to regulate adipocyte differentiation.
- Drugs of the thiazolidinedione (TZD) class namely troglitazone, pioglitazone and rosiglitazone are potent and selective activators of PPAR- ⁇ . In human, they increase insulin action, reduce serum glucose and have small but significant effects on reducing serum triglyceride levels in patients with type 2 diabetes.
- Anti-lipidemia, anti-obesity and anti-diabetes agents are still considered to have non-uniform effectiveness, in part because of poor patient compliance due to unacceptable side effects.
- these side effects include diarrhea and gastrointestinal discomfort.
- anti-diabetic agents they include weight gain, edema and hepatotoxicity. Furthermore, each type of drug does not work equally well in all patients.
- the present invention fulfills this and other needs by providing such compounds, compositions and methods modulating peroxisome proliferators activated receptor, insulin resistance, fibrinogen levels, leptin levels, LDLc, decreasing LDL particles numbers or shifting LDL particle size from small dense to large dense LDL, increasing HDL particles numbers or shifting HDL particle size from small dense to large dense HDL, decreasing VLDL-triglyceride levels, decreasing VLDL-triglyceride levels, decreasing adipose tissue mass, increasing fatty acid oxidation in adipose tissue or skeletal muscle, increasing energy expenditure and improving islet function.
- the present invention also provides compounds, compositions and methods useful for treating Type 2 diabetes, hyperinsulinemia, hyperlipidemia, hyperuricemia, hypercholesteremia, atherosclerosis, one or more risk factors for cardiovascular disease, Syndrome X, hypertriglyceridemia, hyperglycemia, obesity, eating disorders and suppressing appetite.
- the present invention provides compounds having the formula:
- Ar 1 represents a monocyclic or bicyclic aromatic ring selected from the group consisting of benzene, naphthylene, imidazole, benzimidazole, pyrrole, indole, indazole, thiophene, benzothiophene, furan, benzofuran and benzodioxole.
- Each of these rings can be optionally substituted with a R 2 substituent, a R 3 substituent or a combination of R 2 and R 3 substituents.
- Ar 2 represents a 6-membered monocyclic aromatic ring.
- Ar 2 aryl groups provide compounds having the desired activity.
- Ar 2 aryl groups can be benzene, pyridine, pyrazine, pyrimidine, pyridazine and triazine. Each of these rings can be optionally substituted with from one to two R 4 substituents.
- variables R 2 , R 3 and R 4 represent from one to two substituents on their respective rings, wherein each substituent present can be the same or different from any other substituent. More particularly, each R 2 or R 3 substituent is independently selected from the group consisting of halogen, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, —OR 7 , (C 2 -C 8 )alkenyl, (C 2 -C 8 )alkynyl, (C 3 -C 7 )cycloalkyl, (C 3 -C 7 )cycloalkyl(C 1 -C 4 )alkyl, aryl, aryl(C 1 -C 4 )alkyl, aryl(C 2 -C 8 )alkenyl, aryl(C 2 -C 8 )alkynyl, heterocyclyl, heterocyclyl(C 1 -C 4 )alkyl
- R 4 is independently selected from the group consisting of halogen, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, —OR 7 , (C 2 -C 8 )alkenyl, (C 2 -C 8 )alkynyl, (C 3 -C 7 )cycloalkyl, (C 3 -C 7 )cycloalkyl(C 1 -C 4 )alkyl, aryl(C 1 -C 4 )alkyl, aryl(C 2 -C 8 )alkenyl, aryl(C 2 -C 8 )alkynyl, heterocyclyl, heterocyclyl(C 1 -C 4 )alkyl, —COR 7 , —CO 2 R 7 , —NR 7 R 24 , —NO 2 , —CN, —S(O) r1 R 7 , —X 2 OR 7 , —X 2
- each ring of which is optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C 1 -C 8 )alkyl; and the wavy line indicates the point of attachment to Ar 2 .
- each R 7 and R 24 is a member independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, —X 3 OR 25 , —CO, aryl, aryl(C 1 -C 4 )alkyl and heteroarylor optionally, if both are present on the same atom, may be joined together to form a three- to eight-membered ring .
- R 25 is a member selected from the group consisting of H, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, aryl, aryl(C 1 -C 4 )alkyl and heteroaryl.
- Each X 1 , X 2 and X 3 is a member independently selected from the group consisting of (C 1 -C 4 )alkylene, (C 2 -C 4 )alkenylene and (C 2 -C 4 )alkynylene.
- the subscript r1 is an integer of from 0 to 2.
- K represents a linking group having from one to seven main chain atoms and having the formula —Y 1 m1 Y 2 m2 Y 3 m3 — wherein K can be attached to any available ring member of Ar 1 .
- L represents a linking group having from one to seven main chain atoms and having the formula —Y 4 m4 Y 5 m5 Y 6 m6 — wherein L can be attached to any available ring member of Ar 1 or Ar 2 .
- Each Y 1 , Y 2 , Y 3 , Y 4 , Y 5 and Y 6 represents a member independently selected from the group consisting of —(CR 5 R 6 ) p —, —C ⁇ O—, —C ⁇ ONR 7 —, —C ⁇ NOR 7 —, —NR 7 C ⁇ O—, —NR 7 —, —O—, —S(O) r2 —, —NR 7 SO 2 — and —SO 2 NR 7 —; wherein R 7 is as defined above.
- Each R 5 and R 6 are members independently selected from the group consisting of H, halogen, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, OR 7 , aryl, heteroaryl and aryl(C 1 -C 4 )alkyl or optionally, if both are present on the same atom, may be joined together to form a three- to eight-membered ring or if present on adjacent carbon atoms are combined to form a double bond or triple bond between the atoms to which they are attached.
- Each subscript m1-m6 is an integer of from 0 to 1
- the subscript r2 is an integer of from 0 to 2
- the subscript p is an integer of from 1 to 4. More preferably the subscript m1 is 0, the subscript r2 is 0; and the subscripts m2-m6 are 1. More preferably the subscript p is 3.
- Z is selected from the group consisting of CH 2 OR 8 , CO 2 R 8 , CN, tetrazol-5-yl, CONR 8 2 , CONHSO 2 R 7 and CHO; wherein each R 8 is a member independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, —X 4 OR 7 , —X 4 NR 7 R 24 , (C 2 -C 8 )alkenyl, (C 3 -C 7 )cycloalkyl, heterocyclyl, heteroaryl, aryl, aryl(C 1 -C 4 )alkyl and aryl(C 2 -C 8 )alkenyl.
- X 4 is a member independently selected from the group consisting of (C 1 -C 4 )alkylene, (C 2 -C 4 )alkenylene and (C 2 -C 4 )alkynylene.
- R 7 and R 24 are as defined above.
- R 1 represents a member independently selected from the group consisting of:
- Each R 9 or R 10 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl.
- Each R 11 or R 12 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl.
- Each R 13 or R 14 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl.
- Each R 15 or R 16 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl.
- Each R 17 or R 18 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl.
- Each R 19 or R 20 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl.
- R 21 is CH 3 , phenyl or pyridyl, wherein the phenyl and pyridyl substituents are, optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl.
- Each of R 22 or R 23 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, —OR 7 , halo or (C 1 -C 8 )haloalkyl.
- Each W 1 or W 2 is independently N or CR 22 .
- the present invention further includes all salts thereof and particularly, pharmaceutically acceptable salts thereof. Still further, the invention includes compounds that are single isomers of the above formula (e.g., single enantiomers of compounds having a single chiral center), as well as solvate, hydrate and prodrug forms thereof.
- the present invention provides compositions containing one or more compounds of Formula (I), as well as methods for the use of such compounds and compositions, either alone or in combination with other pharmaceutical agents as provided in detail below.
- the present invention provides methods of using the compounds and/or compositions for the treatment of Type 2 diabetes, hyperinsulinemia, hyperlipidemia, hyperuricemia, hypercholesteremia, atherosclerosis, one or more risk factors for cardiovascular disease, Syndrome X, hypertriglyceridemia, hyperglycemia, obesity, eating disorders, suppressing appetite.
- the present invention provides methods of using the compounds and/or compositions for the modulation of peroxisome proliferators activated receptor, insulin resistance, fibrinogen levels, leptin levels, LDLc, decreasing LDL particles numbers or shifting LDL particle size from small dense to large dense LDL, increasing HDL particles numbers or shifting HDL particle size from small dense to large dense HDL, decreasing VLDL-triglyceride levels, decreasing VLDL-triglyceride levels, decreasing adipose tissue mass, increasing fatty acid oxidation in adipose tissue or skeletal muscle, increasing energy expenditure and improving islet function. Additionally, the present invention provides methods of using the compounds and/or compositions for the treatment of diseases modulated by any of the isoforms of peroxisome proliferation activated receptor (PPAR).
- PPAR peroxisome proliferation activated receptor
- FIG. 1 illustrates a variety of preferred compounds of the invention.
- Alkyl refers to a linear saturated monovalent hydrocarbon radical or a branched saturated monovalent hydrocarbon radical having the number of carbon atoms indicated in the prefix.
- (C 1 -C 8 )alkyl is meant to include methyl, ethyl, n-propyl, 2-propyl, n-butyl, 2-butyl, tert-butyl, pentyl and the like.
- alkyl, alkenyl, alkoxy, araalkyloxy when a prefix is not included to indicate the number of main chain carbon atoms in an alkyl portion, the radical or portion thereof will have six or fewer main chain carbon atoms.
- Alkylene refers to a linear saturated divalent hydrocarbon radical or a branched saturated divalent hydrocarbon radical having the number of carbon atoms indicated in the prefix.
- (C 1 -C 6 )alkylene is meant to include methylene, ethylene, propylene, 2-methylpropylene, pentylene and the like.
- Alkenyl refers to a linear monovalent hydrocarbon radical or a branched monovalent hydrocarbon radical having the number of carbon atoms indicated in the prefix and containing at least one double bond, but no more than three double bonds.
- (C 2 -C 6 )alkenyl is meant to include, ethenyl, propenyl, 1,3-butadienyl and the like.
- Alkynyl means a linear monovalent hydrocarbon radical or a branched monovalent hydrocarbon radical containing at least one triple bond and having the number of carbon atoms indicated in the prefix.
- alkynyl is also meant to include those alkyl groups having one triple bond and one double bond.
- (C 2 -C 6 )alkynyl is meant to include ethynyl, propynyl and the like.
- Alkoxy refers to a radical —OR wherein R is an alkyl, aryl or arylalkyl, respectively, as defined herein, e.g., methoxy, phenoxy, benzyloxy and the like.
- Aryl refers to a monovalent monocyclic or bicyclic aromatic hydrocarbon radical of 6 to 10 ring atoms which is substituted independently with one to four substituents, preferably one, two or three substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, halo, nitro, cyano, hydroxy, alkoxy, amino, acylamino, mono-alkylamino, di-alkylamino, haloalkyl, haloalkoxy, heteroalkyl, COR (where R is hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, phenyl or phenylalkyl), —(CR′R′′)n-COOR (where n is an integer from 0 to 5, R′ and R′′ are independently hydrogen or alkyl and R is hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, phenyl or
- Araalkyl or “Aryl(C 1 -C x )alkyl” refers to the radical —R x R y where R x is an alkylene group (having eight or fewer main chain carbon atoms) and R y is an aryl group as defined above.
- Aralkyl refers to groups such as, for example, benzyl, phenylethyl, 3-(4-nitrophenyl)-2-methylbutyl and the like.
- Araalkenyl means a radical —R x R y where Rx is an alkenylene group (an alkylene group having one or two double bonds) and R y is an aryl group as defined above, e.g., styryl, 3-phenyl-2-propenyl and the like.
- Cycloalkyl refers to a monovalent cyclic hydrocarbon radical of three to seven ring carbons.
- the cycloalkyl group may have one double bond and may also be optionally substituted independently with one, two or three substituents selected from the group consisting of alkyl, optionally substituted phenyl and —C(O)R z (where R z is hydrogen, alkyl, haloalkyl, amino, mono-alkylamino, di-alkylamino, hydroxy, alkoxy or optionally substituted phenyl).
- cycloalkyl includes, for example, cyclopropyl, cyclohexyl, cyclohexenyl, phenylcyclohexyl, 4-carboxycyclohexyl, 2-carboxamidocyclohexenyl, 2-dimethylaminocarbonyl-cyclohexyl and the like.
- Cycloalkyl-alkyl means a radical —R x R y wherein R x is an alkylene group and R y is a cycloalkyl group as defined herein, e.g., cyclopropylmethyl, cyclohexenylpropyl, 3-cyclohexyl-2-methylpropyl and the like.
- the prefix indicating the number of carbon atoms e.g., C 4 -C 10 ) refers to the total number of carbon atoms from both the cycloalkyl portion and the alkyl portion.
- Haloalkyl refers to an alkyl group which is substituted with one or more same or different halo atoms, e.g., —CH 2 Cl, —CH 2 F, —CH 2 Br, —CFClBr, —CH 2 CH 2 Cl, —CH 2 CH 2 F, —CF 3 , —CH 2 CF 3 , —CH 2 CCl 3 and the like and further includes those alkyl groups such as perfluoroalkyl in which all hydrogen atoms are replaced by fluorine atoms.
- halo and the term “halogen” when used to describe a substituent, refer to —F, —Cl, —Br and —I.
- Haloalkoxy refers to an alkoxy group which is substituted with one or more same or different halo atoms, e.g., —CH 3 OCHCl, —CH 3 OCHF, —CH 3 OCHBr, —CH 3 OCHCH 2 Cl, —CH 3 CH 2 OCHF, —CH 3 OCHCF 3 and the like.
- Heteroalkyl means an alkyl radical as defined herein with one, two or three substituents independently selected from the group consisting of cyano, —OR w , —NR x R y and —S(O) n R z (where n is an integer from 0 to 2), with the understanding that the point of attachment of the heteroalkyl radical is through a carbon atom of the heteroalkyl radical.
- R w is hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, araalkyl, alkoxycarbonyl, aryloxycarbonyl, carboxamido or mono- or di-alkylcarbamoyl.
- R x is hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, aryl or araalkyl.
- Ry is hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, araalkyl, alkoxycarbonyl, aryloxycarbonyl, carboxamido, mono- or di-alkylcarbamoyl or alkylsulfonyl.
- R z is hydrogen (provided that n is 0), alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, araalkyl, amino, mono-alkylamino, di-alkylamino or hydroxyalkyl.
- R w , R x , R y and R z can be further substituted by amino, fluorine, alkylamino, di-alkylamino, OH or alkoxy.
- the prefix indicating the number of carbon atoms refers to the total number of carbon atoms in the portion of the heteroalkyl group exclusive of the cyano, —OR w , —NR x R y or —S(O) n R z portions.
- Heteroaryl means a monovalent monocyclic or bicyclic radical of 5 to 12 ring atoms having at least one aromatic ring containing one, two or three ring heteroatoms selected from N, O or S, the remaining ring atoms being C, with the understanding that the attachment point of the heteroaryl radical will be on an aromatic ring.
- the heteroaryl ring is optionally substituted independently with one to four substituents, preferably one or two substituents, selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, halo, nitro, cyano, hydroxy, alkoxy, amino, acylamino, mono-alkylamino, di-alkylamino, haloalkyl, haloalkoxy, heteroalkyl, —COR (where R is hydrogen, alkyl, phenyl or phenylalkyl, —(CR′R′′) n —COOR (where n is an integer from 0 to 5, R′ and R′′ are independently hydrogen or alkyl and R is hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, phenyl or phenylalkyl) and —(CR′R′′)n-CONR x R y (where n is an integer from 0 to 5,
- heteroaryl includes, but is not limited to, pyridyl, furanyl, thienyl, thiazolyl, isothiazolyl, triazolyl, imidazolyl, isoxazolyl, pyrrolyl, pyrazolyl, pyridazinyl, pyrimidinyl, benzofuranyl, tetrahydrobenzofuranyl, isobenzofuranyl, benzothiazolyl, benzoisothiazolyl, benzotriazolyl, indolyl, isoindolyl, benzoxazolyl, quinolyl, tetrahydroquinolinyl, isoquinolyl, benzimidazolyl, benzisoxazolyl or benzothienyl and the derivatives thereof.
- Heterocyclyl or “cycloheteroalkyl” means a saturated or unsaturated non-aromatic cyclic radical of 3 to 8 ring atoms in which one to four ring atoms are heteroatoms selected from O, NR (where R is independently hydrogen or alkyl) or S(O) n (where n is an integer from 0 to 2), the remaining ring atoms being C, where one or two C atoms may optionally be replaced by a carbonyl group.
- the heterocyclyl ring may be optionally substituted independently with one, two or three substituents selected from alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, cycloalkyl-alkyl, halo, nitro, cyano, hydroxy, alkoxy, amino, mono-alkylamino, di-alkylamino, haloalkyl, haloalkoxy, —COR (where R is hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, phenyl or phenylalkyl), —(CR′R′′) n —COOR (n is an integer from 0 to 5, R′ and R′′ are independently hydrogen or alkyl and R is hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, phenyl or phenylalkyl) or —(CR′R′′) n —CON
- heterocyclyl includes, but is not limited to, pyridyl, tetrahydropyranyl, piperidino, N-methylpiperidin-3-yl, piperazino, N-methylpyrrolidin-3-yl, 3-pyrrolidino, 2-pyrrolidon-1-yl, furyl, quinolyl, morpholino, thienyl, benzothienyl, thiomorpholino, thiomorpholino-1-oxide, thiomorpholino-1,1-dioxide, pyrrolidinyl and the derivatives thereof.
- the prefix indicating the number of carbon atoms refers to the total number of carbon atoms in the portion of the cycloheteroalkyl or heterocyclyl group exclusive of the number of heteroatoms.
- Heterocyclylalkyl or “Cycloheteroalkyl-alkyl” means a radical —R x R y where R x is an alkylene group and R y is a heterocyclyl group as defined herein, e.g., tetrahydropyran-2-ylmethyl, 4-(4-substituted-phenyl)piperazin-1-ylmethyl, 3-piperidinylethyl and the like.
- heterocyclo group optionally mono- or di-substituted with an alkyl group means that the alkyl may but need not be present and the description includes situations where the heterocyclo group is mono- or disubstituted with an alkyl group and situations where the heterocyclo group is not substituted with the alkyl group.
- “Optionally substituted” means a ring which is optionally substituted independently with substituents.
- di-alkylamino refers to an amino moiety bearing two alkyl groups that can be the same or different.
- carboxylic acid equivalent refers to those moieties that are used as equivalents for a carboxylic acid moiety. Such groups are generally known to one of skill in the art (see, for example, The Practice of Medicinal Chemistry; Wermuth, C. G., ed., Academic Press, New York, 1996, page 203).
- Suitable isosteres or equivalents include —C(O)NHSO 2 R wherein R can be alkyl, haloalkyl, heteroalkyl, araalkyl, aryl, heteroaryl, heterocyclyl, alkoxy, haloalkoxy, aryloxy, alkylamino, haloalkylamino, dialkylamino, dihaloalkylamino, arylamino, diarylamino, araalkylamino, diaraalkylamino or other groups to provide an overall acidic character to the moiety; sulfonic acids; sulfinic acids; phosphonic acids; phosphinic acids; activated sulfonamides (e.g., —SO 2 NHX wherein X is an electron withdrawing group relative to an alkyl group, such as an acyl group or aryl group; activated carboxamides (e.g., —C(O)NHCN); hydroxamic acids (
- carboxylic acid equivalent also refers to those moieties that may be converted into a carboxylic acid moiety in vivo.
- Such groups are generally known to one of skill in the art. While it is recognized that these groups initially may be non-acidic, suitable in vivo equivalents include aldehydes (CHO) and alcohols CH 2 OH and esters CH 2 OR wherein R can be alkyl, alkenyl, cycloalkyl, haloalkyl, heteroalkyl, araalkyl, aryl, heteroaryl, heterocyclyl, arylalkyl, arylalkenyl, alkoxy, haloalkoxy, aryloxy, alkylamino, haloalkylamino, dialkylamino, dihaloalkylamino, arylamino, diarylamino, araalkylamino, diaraalkylamino or other groups that are cleaved under physiological conditions to provide a hydroxyl group that can
- isomers Compounds that have the same molecular formula but differ in the nature or sequence of bonding of their atoms or the arrangement of their atoms in space are termed “isomers”. Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers”. Stereoisomers that are not mirror images of one another are termed “diastereomers” and those that are non-superimposable mirror images of each other are termed “enantiomers”. When a compound has an asymmetric center, for example, it is bonded to four different groups, a pair of enantiomers is possible.
- An enantiomer can be characterized by the absolute configuration of its asymmetric center and is described by the R- and S-sequencing rules of Cahn and Prelog or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or ( ⁇ )-isomers respectively).
- a chiral compound can exist as either individual enantiomer or as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a “racemic mixture”.
- the compounds of this invention may exist in stereoisomeric form if they possess one or more asymmetric centers or a double bond with asymmetric substitution and, therefore, can be produced as individual stereoisomers or as mixtures. Unless otherwise indicated, the description is intended to include individual stereoisomers as well as mixtures.
- the methods for the determination of stereochemistry and the separation of stereoisomers are well-known in the art (see discussion in Chapter 4 of A DVANCED O RGANIC C HEMISTRY, 4th edition J. March, John Wiley and Sons, New York, 1992).
- “Pharmaceutically acceptable salt” of a compound means a salt that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound.
- Such salts include:
- acid addition salts formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like; or formed with organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethane-disulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, 4-toluenesulfonic acid, camphorsulfonic acid,
- a metal ion e.g., an alkali metal ion, an alkaline earth ion or an aluminum ion
- coordinates with an organic base such as ethanolamine, diethanolamine, triethanolamine, trimethylamine, N-methylglucamine and the like.
- Prodrugs means any compound which releases an active parent drug according to Formula (I) in vivo when such prodrug is administered to a mammalian subject.
- Prodrugs of a compound of Formula (I) are prepared by modifying functional groups present in the compound of Formula (I) in such a way that the modifications may be cleaved in vivo to release the parent compound.
- Prodrugs include compounds of Formula (I) wherein a hydroxy, amino or sulfhydryl group in a compound of Formula (I) is bonded to any group that may be cleaved in vivo to regenerate the free hydroxyl, amino or sulfhydryl group, respectively.
- prodrugs include, but are not limited to esters (e.g., acetate, formate and benzoate derivatives), amides/imides, carbamates (e.g., N,N-dimethylaminocarbonyl) of hydroxy functional groups in compounds of Formula (I) and the like.
- Protecting group refers to a grouping of atoms that when attached to a reactive group in a molecule masks, reduces or prevents that reactivity. Examples of protecting groups can be found in T. W. Greene and P. G. Wuts, P ROTECTIVE G ROUPS IN O RGANIC C HEMISTRY , (Wiley, 2nd ed. 1991) and Harrison and Harrison et al., C OMPENDIUM OF S YNTHETIC O RGANIC M ETHODS , Vols. 1-8 (John Wiley and Sons. 1971-1996).
- Representative amino protecting groups include formyl, acetyl, trifluoroacetyl, benzyl, benzyloxycarbonyl (CBZ), tert-butoxycarbonyl (Boc), trimethyl silyl (TMS), 2-trimethylsilyl-ethanesulfonyl (SES), trityl and substituted trityl groups, allyloxycarbonyl, 9-fluorenylmethyloxycarbonyl (FMOC), nitro-veratryloxycarbonyl (NVOC) and the like.
- hydroxy protecting groups include those where the hydroxy group is either acylated or alkylated such as benzyl and trityl ethers as well as alkyl ethers, tetrahydropyranyl ethers, trialkylsilyl ethers and allyl ethers.
- the term “pharmaceutically acceptable carrier or excipient” means a carrier or excipient that is useful in preparing a pharmaceutical composition that is generally safe, non-toxic and neither biologically nor otherwise undesirable and includes a carrier or excipient that is acceptable for veterinary use as well as human pharmaceutical use.
- a “pharmaceutically acceptable carrier or excipient” as used in the specification and claims includes both one and more than one such carrier or excipient.
- treating or “treatment” of a disease includes:
- therapeutically effective amount means the amount of the subject compound that will elicit the biological or medical response of a tissue, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician. “A therapeutically effective amount” includes the amount of a compound that, when administered to a mammal for treating a disease, is sufficient to effect such treatment for the disease. The “therapeutically effective amount” will vary depending on the compound, the disease and its severity and the age, weight, etc., of the mammal to be treated.
- patient means all mammals, including humans. Examples of patients include, but are not limited to, humans, cows, dogs, cats, goats, sheep, pigs and rabbits.
- mammal includes, without limitation, humans, domestic animals (e.g., dogs or cats), farm animals (cows, horses or pigs), monkeys, rabbits, mice and laboratory animals.
- insulin resistance can be defined generally as a disorder of glucose metabolism. More specifically, insulin resistance can be defined as the diminished ability of insulin to exert its biological action across a broad range of concentrations producing less than the expected biologic effect. (see, e.g., Reaven, G. M. J. Basic & Clin. Phys. & Pharm . (1998) 9: 387-406 and Flier, J. Ann Rev. Med . (1983) 34: 145-60). Insulin resistant persons have a diminished ability to properly metabolize glucose and respond poorly, if at all, to insulin therapy.
- Insulin resistance can cause or contribute to polycystic ovarian syndrome, Impaired Glucose Tolerance (IGT), gestational diabetes, hypertension, obesity, atherosclerosis and a variety of other disorders. Eventually, the insulin resistant individuals can progress to a point where a diabetic state is reached.
- ITT Impaired Glucose Tolerance
- diabetes mellitus or “diabetes” means a disease or condition that is generally characterized by metabolic defects in production and utilization of glucose which result in the failure to maintain appropriate blood sugar levels in the body. The result of these defects is elevated blood glucose, referred to as “hyperglycemia.”
- Type 1 diabetes is generally the result of an absolute deficiency of insulin, the hormone which regulates glucose utilization.
- Type 2 diabetes often occurs in the face of normal or even elevated levels of insulin and can result from the inability of tissues to respond appropriately to insulin.
- Type 2 diabetic patients are insulin resistant and have a relative deficiency of insulin, in that insulin secretion can not compensate for the resistance of peripheral tissues to respond to insulin.
- Type 2 diabetics are obese.
- Other types of disorders of glucose homeostasis include Impaired Glucose Tolerance, which is a metabolic stage intermediate between normal glucose homeostasis and diabetes and Gestational Diabetes Mellitus, which is glucose intolerance in pregnancy in women with no previous history of Type 1 or Type 2 diabetes.
- second diabetes is diabetes resulting from other identifiable etiologies which include: genetic defects of ⁇ cell function (e.g., maturity onset-type diabetes of youth, referred to as “MODY,” which is an early-onset form of Type 2 diabetes with autosomal inheritance; see, e.g., Fajans, S. et al. Diabet. Med . (1996) (9 Suppl 6): S90-5 and Bell, G. et al., Annu. Rev. Physiol .
- MODY maturity onset-type diabetes of youth
- hyperinsulinemia refers to the presence of an abnormally elevated level of insulin in the blood.
- hyperuricemia refers to the presence of an abnormally elevated level of uric acid in the blood.
- hyperlipidemia refers to the presence of an abnormally elevated level of lipids in the blood.
- Hyperlipidemia can appear in at least three forms: (1) hypercholesterolemia, i.e., an elevated cholesterol level; (2) hypertriglyceridemia, i.e., an elevated triglyceride level; and (3) combined hyperlipidemia, i.e., a combination of hypercholesterolemia and hypertriglyceridemia.
- secretagogue means a substance or compound that stimulates secretion.
- an insulin secretagogue is a substance or compound that stimulates secretion of insulin.
- hemoglobin refers to a respiratory pigment present in erythrocytes, which is largely responsible for oxygen transport.
- a hemoglobin molecule comprises four polypeptide subunits (two ⁇ chain s and two ⁇ chain s, respectively). Each subunit is formed by association of one globin protein and one heme molecule which is an iron-protoporphyrin complex.
- the major class of hemoglobin found in normal adult hemolysate is adult hemoglobin (referred to as “HbA”; also referred to HbA 0 for distinguishing it from glycated hemoglobin, which is referred to as “HbA 1 ,” described infra) having ⁇ 2 ⁇ 2 subunits. Trace components such as HbA 2 ( ⁇ 2 ⁇ 2 ) can also be found in normal adult hemolysate.
- HbA 1 glycated hemoglobin
- HbA 1a2 glycated hemoglobin
- HbA 1b glycated hemoglobin
- HbA 1c glycated hemoglobin
- All of these subclasses have the same primary structure, which is stabilized by formation of an aldimine (Schiff base) by the amino group of N-terminal valine in the ⁇ subunit chain of normal hemoglobin HbA and glucose (or, glucose-6-phosphate or fructose) followed by formation of ketoamine by Amadori rearrangement.
- glycoglobin A 1c refers to a stable product of the nonenzymatic glycosylation of the ⁇ -chain of hemoglobin by plasma glucose.
- Hemoglobin A 1c comprises the main portion of glycated hemoglobins in the blood. The ratio of glycosylated hemoglobin is proportional to blood glucose level. Therefore, hemoglobin A 1c rate of formation directly increases with increasing plasma glucose levels.
- glycosylation occurs at a constant rate during the 120-day lifespan of an erythrocyte
- measurement of glycosylated hemoglobin levels reflect the average blood glucose level for an individual during the preceding two to three months. Therefore determination of the amount of glycosylated hemoglobin HbA 1c can be a good index for carbohydrate metabolism control. Accordingly, blood glucose levels of the last two months can be estimated on the basis of the ratio of HbA 1c to total hemoglobin Hb.
- the analysis of the hemoglobin A 1c in blood is used as a measurement enabling long-term control of blood glucose level (see, e.g., Jain, S. et al., Diabetes (1989) 38: 1539-1543; Peters A. et al., JAMA (1996) 276: 1246-1252).
- symptom of diabetes includes, but is not limited to, polyuria, polydipsia and polyphagia, as used herein, incorporating their common usage.
- polyuria means the passage of a large volume of urine during a given period
- polydipsia means chronic, excessive thirst
- polyphagia means excessive eating.
- Other symptoms of diabetes include, e.g., increased susceptibility to certain infections (especially fungal and staphylococcal infections), nausea and ketoacidosis (enhanced production of ketone bodies in the blood).
- microvascular complications are those complications which generally result in small blood vessel damage. These complications include, e.g., retinopathy (the impairment or loss of vision due to blood vessel damage in the eyes); neuropathy (nerve damage and foot problems due to blood vessel damage to the nervous); and nephropathy (kidney disease due to blood vessel damage in the kidneys). Macrovascular complications are those complications which generally result from large blood vessel damage. These complications include, e.g., cardiovascular disease and peripheral vascular disease. Cardiovascular disease refers to diseases of blood vessels of the heart. See. e.g., Kaplan, R. M.
- Cardiovascular disease is generally one of several forms, including, e.g., hypertension (also referred to as high blood pressure), coronary heart disease, stroke and rheumatic heart disease.
- Peripheral vascular disease refers to diseases of any of the blood vessels outside of the heart. It is often a narrowing of the blood vessels that carry blood to leg and arm muscles.
- Atherosclerosis encompasses vascular diseases and conditions that are recognized and understood by physicians practicing in the relevant fields of medicine.
- Atherosclerotic cardiovascular disease, coronary heart disease (also known as coronary artery disease or ischemic heart disease), cerebrovascular disease and peripheral vessel disease are all clinical manifestations of atherosclerosis and are therefore encompassed by the terms “atherosclerosis” and “atherosclerotic disease”.
- antihyperlipidemic refers to the lowering of excessive lipid concentrations in blood to desired levels.
- antiuricemic refers to the lowering of excessive uric acid concentrations in blood to desired levels.
- modulate refers to the treating, prevention, suppression, enhancement or induction of a function or condition.
- the compounds of the present invention can modulate hyperlipidemia by lowering cholesterol in a human, thereby suppressing hyperlipidemia.
- TGs triglyceride(s)
- TGs consist of three fatty acid molecules esterified to a glycerol molecule and serve to store fatty acids which are used by muscle cells for energy production/expenditure or are taken up and stored in adipose tissue.
- Lipoproteins are water insoluble, they must be packaged in special molecular complexes known as “lipoproteins” in order to be transported in the plasma. Lipoproteins can accumulate in the plasma due to overproduction and/or deficient removal. There are at least five distinct lipoproteins differing in size, composition, density and function. In the cells of the small of the intestine, dietary lipids are packaged into large lipoprotein complexes called “chylomicrons”, which have a high TG and low-cholesterol content.
- VLDL very low density lipoprotein
- IDL intermediate density lipoprotein
- LDL low density lipoprotein
- HDL High density lipoprotein
- dislipidemia refers to abnormal levels of lipoproteins in blood plasma including both depressed and/or elevated levels of lipoproteins (e.g., elevated levels of LDL, VLDL and depressed levels of HDL).
- Exemplary Primary Hyperlipidemia include, but are not limited to, the following:
- Familial Hyperchylomicronemia a rare genetic disorder which causes a deficiency in an enzyme, LP lipase, that breaks down fat molecules.
- the LP lipase deficiency can cause the accumulation of large quantities of fat or lipoproteins in the blood;
- Familial Hypercholesterolemia a relatively common genetic disorder caused where the underlying defect is a series of mutations in the LDL receptor gene that result in malfunctioning LDL receptors and/or absence of the LDL receptors. This brings about ineffective clearance of LDL by the LDL receptors resulting in elevated LDL and total cholesterol levels in the plasma;
- Familial Combined Hyperlipidemia also known as multiple lipoprotein-type hyperlipidemia; an inherited disorder where patients and their affected first-degree relatives can at various times manifest high cholesterol and high triglycerides. Levels of HDL cholesterol are often moderately decreased;
- Familial Defective Apolipoprotein B-100 is a relatively common autosomal dominant genetic abnormality.
- the defect is caused by a single nucleotide mutation that produces a substitution of glutamine for arginine which can cause reduced affinity of LDL particles for the LDL receptor. Consequently, this can cause high plasma LDL and total cholesterol levels;
- Familial Dysbetaliproteinemia also referred to as Type III Hyperlipoproteinemia, is an uncommon inherited disorder resulting in moderate to severe elevations of serum TG and cholesterol levels with abnormal apolipoprotein E function. HDL levels are usually normal; and
- Familial Hypertriglyceridemia is a common inherited disorder in which the concentration of plasma VLDL is elevated. This can cause mild to moderately elevated triglyceride levels (and usually not cholesterol levels) and can often be associated with low plasma HDL levels.
- Risk factors in exemplary Secondary Hyperlipidemia include, but are not limited to, the following: (1) disease risk factors, such as a history of Type 1 diabetes, Type 2 diabetes, Cushing's syndrome, hypothyroidism and certain types of renal failure; (2) drug risk factors, which include, birth control pills; hormones, such as estrogen and corticosteroids; certain diuretics; and various ⁇ blockers; (3) dietary risk factors include dietary fat intake per total calories greater than 40%; saturated fat intake per total calories greater than 10%; cholesterol intake greater than 300 mg per day; habitual and excessive alcohol use; and obesity.
- the terms “obese” and “obesity” refers to, according to the World Health Organization, a Body Mass Index (BMI) greater than 27.8 kg/m2 for men and 27.3 kg/m2 for women (BMI equals weight (kg)/height (m2).
- BMI Body Mass Index
- Obesity is linked to a variety of medical conditions including diabetes and hyperlipidemia. Obesity is also a known risk factor for the development of Type 2 diabetes (See, e.g., Barrett-Conner, E. Epidemol. Rev . (1989) 11: 172-181; and Knowler, et al. Am. J. Clin. Nutr . (1991) 53:1543-1551).
- the present invention derives from the discovery that compounds of Formula (I) are useful in treating or controlling a number of diseases associated with glucose metabolism, lipid metabolism and insulin secretion. More particularly, the compounds of the invention are useful in treating Type 2 diabetes, hyperinsulinemia, hyperlipidemia, hyperuricemia, hypercholesteremia, atherosclerosis, one or more risk factors for cardiovascular disease, Syndrome X, hypertriglyceridemia, hyperglycemia, obesity, eating disorders and suppressing appetite.
- the compounds of Formula (I) operate via modulation of receptor interactions associated with one or more isoforms of PPAR.
- the compounds have utility in treating a variety of diseases states or conditions associated with PPAR.
- the present invention provides compounds having the formula:
- Ar 1 represents a monocyclic or bicyclic aromatic ring selected from the group consisting of benzene, naphthylene, imidazole, benzimidazole, pyrrole, indole, indazole, thiophene, benzothiophene, furan, benzofuran and benzodioxole.
- Ar 2 represents 6-membered monocyclic aromatic ring selected from the group consisting of benzene, pyridine, pyrazine, pyrimidine, pyridazine and triazine.
- Ar 1 and Ar 2 may have substituents on their respective rings, wherein each substituted present can be the same or different from any other substituent. More particularly, Ar 1 may have from 0 to 2 R 2 or R 3 substituents , more preferably from 0 to 1 R 2 or R 3 substituents.
- Each R 2 or R 3 substituent is independently selected from the group consisting of halogen, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, —OR 7 , (C 2 -C 8 )alkenyl, (C 2 -C 8 )alkynyl, (C 3 -C 7 )cycloalkyl, (C 3 -C 7 )cycloalkyl(C 1 -C 4 )alkyl, aryl, aryl(C 1 -C 4 )alkyl, aryl(C 2 -C 8 )alkenyl, aryl(C 2 -C 8 )alkynyl, heterocyclyl, heterocyclyl(C 1 -C 4 )alkyl, —COR 7 , —CO 2 R 7 , —NR 7 R 24 , —NO 2 , —CN, —S(O) r1 R 7 —X 1 OR 7
- Ar 2 may have from 0 to 2 R 4 substituents, more preferably from 0 to 1 R 4 substituents.
- R 4 substituents are independently selected from the group consisting of halogen, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, —OR 7 , (C 2 -C 8 )alkenyl, (C 2 -C 8 )alkynyl, (C 3 -C 7 )cycloalkyl, (C 3 -C 7 )cycloalkyl(C 1 -C 4 )alkyl, aryl(C 1 -C 4 )alkyl, aryl(C 2 -C 8 )alkenyl, aryl(C 2 -C 8 )alkynyl, heterocyclyl, heterocyclyl(C 1 -C 4 )alkyl, —COR 7 , —CO 2 R 7 , —NR 7 R 24 , —NO
- each ring of which is optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C 1 -C 8 )alkyl; and the wavy line indicates the point of attachment to Ar 2 .
- K represents a linking group having from one to seven main chain atoms and having the formula —Y 1 m1 Y 2 m2 Y 3 m3 — wherein K can be attached to any available ring member of Ar 1 ; and each Y 1 , Y 2 and Y 3 is a member independently selected from the group consisting of —(CR 5 R 6 ) p —, —C ⁇ O—, —C ⁇ ONR 7 —, —C ⁇ NOR 7 —, —NR 7 C ⁇ O—, —NR 7 —, —O—, —S(O) r2 —, —NR 7 SO 2 — and —SO 2 NR 7 —.
- L represents a linking group joining Ar 1 and Ar 2 and having from one to seven main chain atoms represented by the formula —Y 4 m4 Y 5 m5 Y 6 m6 — wherein L can be attached to any available ring member of Ar 1 and to any available ring member of Ar 2 and each Y 4 , Y 5 and Y 6 is a member independently selected from the group consisting of —(CR 5 R 6 ) p —, —C ⁇ O—, —C ⁇ ONR 7 —, —C ⁇ NOR 7 —, —NR 7 C ⁇ O—, —NR 7 —, —O—, —S(O) r2 —, —NR 7 SO 2 — and —SO 2 NR 7 —.
- z represents a carboxylic acid equivalent and is selected from the group consisting of CH 2 OR 8 , CO 2 R 8 , CN, tetrazol-5-yl, CONHSO 2 R 7 and CHO.
- R 1 represents a member independently selected from the group consisting of:
- Each R 5 and R 6 is a member independently selected from the group consisting of H, halogen, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, —OR 7 , aryl, heteroaryl and aryl(C 1 -C 4 )alkyl or optionally, if both are present on the same atom, may be joined together to form a three- to eight-membered ring or if present on adjacent carbon atoms are combined to form a double bond or triple bond between the atoms to which they are attached.
- Each R 7 and R 24 is a member independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, —X 3 OR 25 , —CO, aryl, aryl(C 1 -C 4 )alkyl and heteroaryl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring .
- R 25 is a member selected from the group consisting of H, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, aryl, aryl(C 1 -C 4 )alkyl and heteroaryl.
- Each R 8 is a member independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, —X 4 OR 7 , —X 4 NR 7 R 24 , (C 2 -C 8 )alkenyl, (C 3 -C 7 )cycloalkyl, heterocyclyl, heteroaryl, aryl, aryl(C 1 -C 4 )alkyl and aryl(C 2 -C 8 )alkenyl.
- Each R 9 or R 10 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl.
- Each R 11 or R 12 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl.
- Each R 13 or R 14 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl.
- Each R 15 or R 16 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl.
- Each R 17 or R 18 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl.
- Each R 19 or R 20 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl.
- R 21 is CH 3 , phenyl or pyridyl, wherein the phenyl and pyridyl substituents are, optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl.
- Each of R 22 or R 23 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, —OR 7 , halo and (C 1 -C 8 )haloalkyl.
- Each W 1 or W 2 is independently N or CR 22 .
- Each X 1 , X 2 , X 3 and X 4 is a member independently selected from the group consisting of (C 1 -C 4 )alkyl, (C 2 -C 4 )alkenyl and (C 2 -C 4 )alkynyl.
- the subscripts m1, m2, m3, m4, m5 and m6 are each integers of from 0 to 1; the subscripts r1 and r2 are integers of from 0 to 2; and the subscript p is an integer of from 1 to 4.
- the present invention further includes all salts thereof and particularly, pharmaceutically acceptable salts thereof. Still further, the invention includes compounds that are single isomers of the above formula (e.g., single enantiomers of compounds having a single chiral center), as well as solvate, hydrate and prodrug forms thereof.
- Z is CO 2 R 8 and R 8 is preferably H.
- Y 1 , Y 2 , Y 3 , Y 4 , Y 5 and Y 6 is a member independently selected from the group consisting of —(CR 5 R 6 ) p —, —C ⁇ O—, —NR 7 —, —O— and —S—;
- R 7 is H;
- each R 5 and R 6 is a member independently selected from the group consisting of H, (C 1 -C 8 )alkyl and halo(C 1 -C 8 )alkyl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring .
- Y 2 is —(CR 5 R 6 ) p — and Y 3 is —O—.
- Y 3 is —O—.
- preferably at least one of m1, m2 or m3 is 0.
- preferably K is a member selected from the group consisting of: —CH 2 —, —CH 2 O—, —CH(CH 3 )O—, —C(CH 3 ) 2 O—, —CH(CH 3 )— and —C(CH 3 ) 2 —.
- Y 4 is —CR 5 R 6 —, —NR 7 —, —O— or —S—
- Y 5 is —CR 5 R 6 —
- Y 6 is —O— or —S—.
- L is a member selected from the group consisting of: —O(CH 2 ) 3 O—, —O(CH 2 ) 2 O—, —S(CH 2 ) 3 O—, —S(CH 2 ) 2 O—, —NH(CH 2 ) 3 O—, —S(CH 2 ) 3 S—, —O(CH 2 ) 3 S—, —O(CH 2 ) 4 —, —HCO(CH 2 ) 2 O—, —(CH 2 ) 4 —, —CH 2 ) 4 O—, —(CH 2 ) 5 — and —OCH 2 (CH 3 ) 2 CH 2 O—.
- R 5 and R 6 each is independently H, CH 3 or joined together to form a three- to six-membered ring selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. Compounds, wherein both R 5 and R 6 are H are further preferred.
- Ar 1 is selected from the group consisting of:
- a benzothiophene ring optionally substituted with a R 2 substituent, a R 3 substituent or a combination thereof; wherein each R 2 or R 3 is independently selected from the group consisting of halogen, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl and —OR 7 .
- Ar 1 is preferably (i) an indole ring , optionally substituted with a R 2 substituent, a R 3 substituent or a combination thereof; or (ii) an indazole ring , optionally substituted with a R 2 substituent, a R 3 substituent or a combination thereof.
- Ar 1 is preferably substituted with from one to three R 7 substituents independently selected from the group consisting of halogen, (C 1 -C 4 )haloalkyl, heterocyclyl, heterocyclyl(C 1 -C 4 )alkyl and —OR 2 . Further preferred within this embodiment is where Ar 1 is
- each R 2 or R 3 is independently selected from the group consisting of halogen, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl and —OR 7 ; and the dashed line indicates the point of attachment to K and the wavy line indicates the point of attachment to L.
- Ar 1 is preferably
- each R 2 or R 3 is independently selected from the group consisting of halogen, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl and —OR 7 ; and the dashed line indicates the point of attachment to K and the wavy line indicates the point of attachment to L.
- Ar 1 is preferably
- each R 2 or R 3 is independently selected from the group consisting of halogen, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl and —OR 7 ; and the dashed line indicates the point of attachment to K and the wavy line indicates the point of attachment to L.
- Ar 1 is preferably
- each R 2 or R 3 is independently selected from the group consisting of halogen, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl and —OR 7 ; and the dashed line indicates the point of attachment to L and the wavy line indicates the point of attachment to K.
- Ar 1 is preferably
- each R 2 or R 3 is independently selected from the group consisting of halogen, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl and —OR 7 ; and the dashed line indicates the point of attachment to L and the wavy line indicates the point of attachment to K.
- Ar 1 is preferably
- each R 2 or R 3 is independently selected from the group consisting of halogen, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl and —OR 7 ; and the dashed line indicates the point of attachment to L and the wavy line indicates the point of attachment to K.
- Ar 1 is more preferably benzene, optionally substituted with a R 2 substituent, a R 3 substituent or a combination thereof; wherein each R 2 or R 3 is independently selected from the group consisting of halogen, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl and —OR 7 .
- R 1 is preferably a member selected from the group consisting of:
- each R 9 or R 10 is independently CH 3 or halo or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C 1 -C 8 )alkyl; each R 13 or R 14 is independently CH 3 halo or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two (C 1 -C 8 )alkyl or halo; R 23 is halo or (C 1 -C 8 )alkoxy; and W 1 is N or CR 22 . Each is equally preferred.
- Ar 2 is selected from the group consisting of: (i) benzene, optionally substituted with from one to two R 4 substituents as defined above.
- Ar 2 is pyridine.
- Ar 2 has the formula:
- Ar 2 is benzene and especially preferred are embodiments when L and K include their preferred embodiments above. Within these embodiments, Ar 2 is preferably has the formula:
- Y 2 is —CR 5 R 6 —;
- Y 3 is —S—, —O—, —NH— or —CHR 6 —;
- Y 4 is a member selected from the group consisting of —NHCO—, —NH—, —O—, —S— and —CH 2 —,
- Y 5 is —CH 2 —; —CH 2 CR 5 R 6 — or —CH 2 CH 2 CH 2 —
- Y 6 is —S—, —O— or —CH 2 —;
- R 1 is a member independently selected from the group consisting of:
- R 2 is H, (C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy, halo or (C 1 -C 8 )haloalkyl;
- R 3 is a member independently selected from the group consisting of H, halogen and (C 1 -C 8 )alkyl;
- R 4 is a member selected from the group consisting of —H, -halo, (C 1 -C 8 )alkyl, -halo(C 1 -C 8 )alkyl and (C 1 -C 8 )alkoxy or is a member of the group consisting of:
- each ring of which is optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C 1 -C 8 )alkyl;
- each R 5 and R 6 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy and (C 1 -C 8 )haloalkyl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring;
- each R 9 or R 10 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 11 or R 12 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 13 or R 14 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 15 or R 16 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 17 or R 18 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 19 or R 20 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- R 21 is CH 3 , phenyl or pyridyl, wherein the phenyl and pyridyl substituents are, optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each of R 22 or R 23 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, —OR 7 , halo and (C 1 -C 8 )haloalkyl;
- R 25 is a member selected from the group consisting of H, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, aryl, aryl(C 1 -C 4 )alkyl and heteroaryl;
- each W 1 , W 2 , W 3 or W 4 is independently N or CR 22 ;
- m2 and m3 are independently an integer of from 0 to 1;
- p is an integer of from 1 to 4.
- Y 3 is —S—, —O—, —NH—, —CHR 6 —;
- Y 4 is a member selected from the group consisting of —NHCO—, —NH—, —O—, —S— and —CH 2 —,
- Y 5 is —CH 2 —; —CH 2 CR 5 R 6 — or —CH 2 CH 2 CH 2 —
- Y 6 is —S—, —O— or —CH 2 —;
- R 1 is a member independently selected from the group consisting of:
- R 2 is H, (C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy, halo or (C 1 -C 8 )haloalkyl;
- R 3 is a member independently selected from the group consisting of H, halogen and (C 1 -C 8 )alkyl;
- R 4 is a member selected from the group consisting of H, -halo, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy,
- each ring of which is optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C 1 -C 8 )alkyl;
- each R 5 and R 6 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy and (C 1 -C 8 )haloalkyl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring;
- each R 9 or R 10 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 11 or R 12 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 13 or R 14 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 15 or R 16 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 17 or R 18 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 19 or R 20 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- R 21 is CH 3 , phenyl or pyridyl, wherein the phenyl and pyridyl substituents are, optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each of R 22 or R 23 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, —OR 7 , halo or (C 1 -C 8 )haloalkyl;
- R 25 is a member selected from the group consisting of H, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, aryl, aryl(C 1 -C 4 )alkyl and heteroaryl;
- each W 1 , W 2 , W 3 or W 4 is independently N or CR 22 ;
- m3 is an integer of from 0 to 1;
- p is an integer of from 1 to 4.
- the wavy line indicates the point of attachment to the rest of the molecule; and pharmaceutically acceptable salts, solvates, hydrates and prodrugs thereof.
- Y 4 is a member selected from the group consisting of —NHCO—, —NH—, —O—, —S— and —CH 2 —,
- Y 5 is —CH 2 —; —CH 2 CR 5 R 6 — or —CH 2 CH 2 CH 2 —
- Y 6 is —S—, —O— or —CH 2 —;
- R 1 is a member independently selected from the group consisting of:
- R 2 is H, (C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy, halo or (C 1 -C 8 )haloalkyl;
- R 3 is a member independently selected from the group consisting of H, halogen and (C 1 -C 8 )alkyl;
- R 4 is a member selected from the group consisting of —H, halo, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy,
- each ring of which is optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C 1 -C 8 )alkyl;
- each R 5 and R 6 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy and (C 1 -C 8 )haloalkyl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring;
- each R 9 or R 10 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 11 or R 12 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 13 or R 14 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 15 or R 16 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 17 or R 18 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 19 or R 20 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- R 21 is CH 3 , phenyl or pyridyl, wherein the phenyl and pyridyl substituents are, optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each of R 22 or R 23 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, —OR 7 , halo and (C 1 -C 8 )haloalkyl;
- R 25 is a member selected from the group consisting of H, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, aryl, aryl(C 1 -C 4 )alkyl and heteroaryl;
- each W 1 , W 2 , W 3 or W 4 is independently N or CR 22 ;
- m3 is an integer of from 0 to 1;
- p is an integer of from 1 to 4.
- Y 3 is —S—, —O—, —NH—, —CHR 6 —;
- Y 4 is a member selected from the group consisting of —NHCO—, —NH—, —O—, —S— and —CH 2 —,
- Y 5 is —CH 2 —; —CH 2 CR 5 R 6 — or —CH 2 CH 2 CH 2 —
- Y 6 is —S—, —O— or —CH 2 —;
- R 1 is a member independently selected from the group consisting of:
- R 2 is H, (C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy, halo or (C 1 -C 8 )haloalkyl
- R 3 is a member independently selected from the group consisting of H, halogen and (C 1 -C 8 )alkyl
- R 4 is a member selected from the group consisting of -halo, (C 1 -C 8 )alkyl, -halo(C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy,
- each R 5 and R 6 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy and (C 1 -C 8 )haloalkyl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring;
- each R 9 or R 10 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 11 or R 12 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 13 or R 14 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 15 or R 16 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 17 or R 18 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each R 19 or R 20 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo and (C 1 -C 8 )haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , —CO 2 R 7 , —NR 7 R 24 , —CN, —S(O) r1 R 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- R 21 is CH 3 , phenyl or pyridyl, wherein the phenyl and pyridyl substituents are, optionally substituted with from one to two substituents independently selected from the group consisting of —OR 7 , halo, (C 1 -C 8 )alkyl and (C 1 -C 8 )haloalkyl;
- each of R 22 or R 23 is independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo or (C 1 -C 8 )haloalkyl;
- R 25 is a member selected from the group consisting of H, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, aryl, aryl(C 1 -C 4 )alkyl and heteroaryl;
- each W 1 , W 2 , W 3 or W 4 is independently N or CR 22 ;
- the subscript m3 is an integer of from 0 to 1.
- R 1 is preferably a member selected from the group consisting of:
- each R 9 or R 10 is independently CH 3 or halo or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C 1 -C 8 )alkyl; each R 13 or R 14 is independently CH 3 , halo or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two (C 1 -C 8 )alkyl or halo substituents; each R 15 or R 16 is independently H, (C 1 -C 8 )alkyl, halo or (C 1 -C 8 )haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from
- R 1 is a member selected from the group consisting of:
- each R 9 or R 10 is independently CH 3 or halo or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C 1 -C 8 )alkyl; each R 13 or R 14 is independently CH 3 , halo or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two (C 1 -C 8 )alkyl or halo substituents; each R 15 or R 16 is independently H, (C 1 -C 8 )alkyl, halo or (C 1 -C 8 )haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from
- R 1 has the formula:
- R 1 has the formula:
- R 1 has the formula:
- R 1 has the formula:
- R 1 has the formula:
- Y 3 is —O— or —CR 5 R 6 —
- Y 4 is a member selected from the group consisting of —O—, —S— and —CH 2 —;
- Y 5 is —CH 2 CH 2 — or —CH 2 CH 2 CH 2 —;
- R 2 is independently H, (C 1 -C 8 )alkyl or halo
- R 3 is a member independently selected from the group consisting of H, halogen, (C 1 -C 8 )alkyl and (C 1 -C 8 )alkoxy;
- R 4 is a member selected from the group consisting of H, halo, (C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy and 2-thiophenyl;
- each R 5 or R 6 is independently H, (C 1 -C 8 )alkyl or (C 1 -C 8 )alkoxy,
- R 27 is (C 1 -C 8 )alkyl or halo
- W 3 is N, C or CH
- n3 is an integer of from 0 to 1;
- R 1 has the formula:
- Y 3 is —O— or —CR 5 R 6 —
- Y 4 is a member selected from the group consisting of —O—, —S— and —CH 2 —;
- Y 5 is —CH 2 CH 2 — or —CH 2 CH 2 CH 2 —;
- R 2 is independently H, (C 1 -C 8 )alkyl or halo
- R 3 is a member independently selected from the group consisting of H, halogen and (C 1 -C 8 )alkyl;
- R 4 is a member selected from the group consisting of H, halo, (C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy and 2-thiophenyl;
- each R 5 and R 6 is independently H or (C 1 -C 8 )alkyl
- R 27 is (C 1 -C 8 )alkyl or halo
- W 3 is N, C or CH
- n3 is an integer of from 0 to 1 are preferred
- Y 3 is —O— or —CHR 6 —
- each R 5 or R 6 is independently H, (C 1 -C 8 )alkyl or (C 1 -C 8 )alkoxy;
- R 4 is a member selected from the group consisting of H, halo, (C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy and 2-thiophenyl;
- R 27 is (C 1 -C 8 )alkyl or halo
- W 3 is N, C or CH
- n3 is an integer of from 0 to 1;
- Y 3 is —O— or —CHR 6 —
- each R 5 or R 6 is independently H or (C 1 -C 8 )alkyl
- R 4 is a member selected from the group consisting of H, halo, (C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy and 2-thiophenyl;
- R 27 is (C 1 -C 8 )alkyl or halo
- W 3 is N, C or CH
- n3 is an integer of from 0 to 1; are especially preferred
- a variety of compounds have the desired activity.
- one group of preferred compounds are provided in FIG. 1 .
- Particularly preferred compounds of the invention are: ⁇ -4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-phenyl ⁇ -acetic acid and ⁇ 4-[3-(2-benzotriazol-2-yl-4-thiophen-2-yl-phenoxy)-propoxy]-phenyl ⁇ -acetic acid.
- the compounds of the present invention can be prepared in a number of ways familiar to one skilled in the art of organic synthesis.
- the compounds outlined herein can be synthesized using methods generally outlined in Scheme 1, along with methods typically utilized by a synthetic chemist and combinations or variations of those methods, which are generally known to one skilled in the art of synthetic chemistry.
- the synthetic route of compounds in the present invention is not limited to the methods outlined below. It is assumed one skilled in the art will be able to use the schemes outlined below to synthesized compounds claimed in this invention.
- Individual compounds may require manipulation of the condition in order to accommodate various functional groups. A variety of protecting groups generally known to one skilled in the art may be required. Purification, if necessary can be accomplished on a silica gel column eluted with the appropriate organic solvent . Also, reverse phase HPLC or recrystallization may be employed.
- electrophilic, aryl compounds of formula (I) are condensed with suitably substituted, nucleophilic aryl compounds ii generally in the presence of solvent and a non-nucleophilic base to provide target compound iii.
- nucleophilic, aryl compounds of formula iv are condensed with suitably substituted, electrophilic aryl compounds v generally in the presence of solvent and a non-nucleophilic base to provide target compound iii.
- suitable non-nucleophilic bases include, but are not limited to, potassium carbonate, cesium bicarbonate, sodium hydride and the like.
- aryl compounds vi prepared as described below are condensed with a substituted haloalkylether vii in the presence of cesium carbonate to provide target compounds viii.
- aryl compounds ix prepared as described below are condensed with a substituted phenol x in the presence of cesium carbonate to provide target compounds viii.
- Compounds viii where R 1 is halogen can be converted into the corresponding amino-substituted compounds xi (e.g.
- NR 2 tetrahydroisoindoyl or 4-arylpiperidine) or alkynyl compounds xiii by treatment with an appropriately substituted amine or alkyne respectively.
- Compounds viii where R 1 is a benzotriazole can be converted into the corresponding tetrahydrobenzotriazole compounds xii via hydrogenation.
- Treatment of the target esters viii, xi, xii and xiii (Z ⁇ CO 2 R) with lithium hydroxide converts the esters to carboxylic acid compounds viii, xi, xii and xiii (Z ⁇ CO 2 H).
- compounds of formula (I) wherein R 1 is aryl can be prepared by treating 4-chloro-aryl compound xiv with 2-thiophene boronic acid to provide aryl substituted compounds, xv.
- target compounds with linking groups of different lengths and functionality can be prepared.
- structural isomers, having the Y 3 attached at either the 2- or 3-position relative to the phenol hydroxyl group in compound x can be prepared from the corresponding 2- or 3-mercaptophenols.
- reaction conditions e.g., amounts of reactants, solvents, temperatures and workup conditions
- Examples below as a guide.
- the carboxylic acids of this invention can be converted into the corresponding alcohols, ethers, nitriles, amides/imides and aldehydes by a number of methods, including the routes A-D shown in Scheme 6.
- the method to be used in a given case depends on the nature of R and the substituents thereon. A variety of useful methods are described in Larock, COMPREHENSIVE ORGANIC TRANSFORMATIONS, VCH Publishers Inc, New York (1989).
- esters 31 to aldehydes 33 (p 620), esters 31 to aldehydes 33 (p 621), esters 31 to carbinols 35 (p 549), carboxylic acids 31 to carbinols 35 (p 548), esters 31 to amides/imides 34 (p 987) and esters 31 to nitriles 36 (p 988).
- a carboxylic acid 31 is first converted into the corresponding acid chloride 32.
- This transformation is effected by reacting the acid 31 with oxalyl chloride, phosphorus pentachloride or, preferably, thionyl chloride.
- the reaction is conducted in an aprotic solvent such as dichloromethane, tetrahydrofuran or, preferably, 1,2-dichloroethane.
- the acid chloride 32 is then converted into the aldehyde 33 by chemical reduction, such as by the use of sodium borohydride in DMF at ⁇ 70° C., as described in Tetrahedron Lett.
- the reaction is conducted in an aprotic solvent such as toluene or, preferably, xylene.
- the aldehyde 33 is converted into the carbinol 35 by reduction, for example by reaction with 9 BBN, lithium aluminum tritertiarybutoxy hydride or more preferably sodium borohydride, (see, J. Amer. Chem. Soc. 71:122 (1949)).
- the reaction is conducted in a protic solvent such as ethanol or preferably, isopropanol.
- ester 31 can be converted directly into the aldehyde 3 by reduction, for example, by the use of sodium aluminum hydride or preferably, diisobutyl aluminum hydride (see e.g., Synthesis, 617 (1975)).
- the reaction is conducted in a non-polar solvent such as benzene or, preferably, toluene.
- ester 31 is converted into the amide/imide 34 by transesterification with hydroxypyridine and the corresponding amine (see, J.C.S.C. 89 (1969)).
- the reaction is conducted in an ethereal solvent such as dioxane or, preferably, tetrahydrofuran.
- ester 31 is converted into the carbinol 35 by reduction with lithium aluminum hydride or, preferably, with lithium borohydride (see, J. Amer. Chem. Soc., 109:1186 (1987)).
- the reaction is conducted in an ethereal solvent such as dioxane or, preferably, tetrahydrofuran.
- carboxylic acid 31 can be converted into the carbinol 35.
- This conversion is effected by reacting the carboxylic acid with a reducing agent such as lithium aluminum hydride or, preferably, with diborane, as described in ORGANIC SYNTHESES, 64:104 (1985).
- a reducing agent such as lithium aluminum hydride or, preferably, with diborane, as described in ORGANIC SYNTHESES, 64:104 (1985).
- the reaction is conducted in an ethereal solvent such as dioxane or, preferably, tetrahydrofuran.
- the carbinol 35 (R 6 ⁇ H) can be converted into the ether 35 (R 6 ⁇ C 1 -C 8 ).
- This transformation is effected by an alkylation reaction, for example by reacting the carbinol 35 with an alkyl chloride (C 1 -C 8 )Cl.
- the reaction is conducted in an aprotic solvent such as dichloromethane or, preferably, tetrahydrofuran, in the presence of an organic base such as triethylamine or, preferably, pyridine.
- tetrazole derivatives may be conveniently prepared by a general process wherein a compound like 36 is coupled to an alcohol using the Mitsunobu protocol ( Synthesis 1, (1981).
- the compounds of the present invention possess one or more chiral centers and each center may exist in the R or S configuration.
- the present invention includes all diastereomeric, enantiomeric and epimeric forms as well as the appropriate mixtures thereof.
- a single chiral center is present (at the carbon atom bearing R 2 ), resulting in racemic mixtures of enantiomers.
- the present invention further includes compounds, compositions and methods wherein a single isomer (or single enantiomer) is provided or used. Methods of preparing chiral compounds are provided in the Examples.
- mixtures of enantiomers can be separated into their individual isomers via methods known in the art such as salt formation and crystallization with chiral bases, chiral chromatography (e.g., HPLC using commercially available columns for chiral resolution) and via methods such as simulated moving bed chromatography (see, for example, U.S. Pat. No. 5,518,625).
- the ( ⁇ )-isomer of the compound of formula (I) is used, which is substantially free of its (+)-isomer.
- substantially free refers to a compound that is contaminated by less than about 20%, more preferably 10%, still more preferably 5%, even more preferably 2% and most preferably less than about 1% of the undesired isomer.
- the (+)-isomer of the compound of formula (I) is used, which is substantially free of its ( ⁇ )-isomer.
- the compounds of the present invention may exist as geometric isomers.
- the present invention includes all cis, trans, syn, anti,
- E
- Z
- isomers as well as the appropriate mixtures thereof.
- compounds may exist as tautomers. All tautomers are included within formula (I) and are provided by this invention.
- the compounds of the present invention can exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol and the like.
- the solvated forms are considered equivalent to the unsolvated forms for the purposes of the present invention.
- the compounds of the invention are present in a prodrug form.
- the invention also provides, for example, compounds of Formula (I) in which CO 2 H is esterified to form —CO 2 R 6 , wherein R 6 is a member selected from the group consisting of H, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, —X 4 OR 2 , —X 4 NR 2 R 3 , (C 2 -C 8 )alkenyl, (C 3 -C 7 )cycloalkyl, heterocyclyl, aryl(C 1 -C 4 )alkyl and aryl(C 2 -C 8 )alkenyl.
- R 6 is a member selected from the group consisting of H, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, —X 4 OR 2 , —X 4 NR 2 R 3 , (C 2 -C 8
- R 2 and R 3 are members independently selected from the group consisting of H, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, —X 3 OR 9 , aryl, aryl(C 1 -C 4 )alkyl and heteroaryl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring .
- Each X 3 and X 4 are members independently selected from the group consisting of (C 1 -C 4 )alkylene, (C 2 -C 4 )alkenylene and (C 2 -C 4 )alkynylene.
- Esters of the compounds of the present invention may be prepared as described herein or according to conventional methods.
- a therapeutically effective amount of a compound of Formula (I) can be used for the preparation of a pharmaceutical composition useful for treating diabetes, treating hyperlipidemia, treating hyperuricemia, treating obesity, lowering triglyceride levels, lowering cholesterol levels, raising the plasma level of high density lipoprotein and for treating, preventing or reducing the risk of developing atherosclerosis.
- compositions of the invention can include compounds of Formula (I), pharmaceutically acceptable salts thereof or a hydrolysable precursor thereof.
- the compound is mixed with suitable carriers or excipient(s) in a therapeutically effective amount.
- a “therapeutically effective dose”, “therapeutically effective amount” or, interchangeably, “pharmacologically acceptable dose” or “pharmacologically acceptable amount” it is meant that a sufficient amount of the compound of the present invention and a pharmaceutically acceptable carrier, will be present in order to achieve a desired result, e.g., alleviating a symptom or complication of Type 2 diabetes.
- the compounds of Formula (I) that are used in the methods of the present invention can be incorporated into a variety of formulations for therapeutic administration. More particularly, the compounds of Formula (I) can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents and can be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, pills, powders, granules, dragees, gels, slurries, ointments, solutions, suppositories, injections, inhalants and aerosols. As such, administration of the compounds can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intratracheal administration. Moreover, the compound can be administered in a local rather than ic manner, in a depot or sustained release formulation. In addition, the compounds can be administered in a liposome.
- the compounds of Formula (I) can be formulated with common excipients, diluents or carriers and compressed into tablets or formulated as elixirs or solutions for convenient oral administration or administered by the intramuscular or intravenous routes.
- the compounds can be administered transdermally and can be formulated as sustained release dosage forms and the like.
- Compounds of Formula (I) can be administered alone, in combination with each other or they can be used in combination with other known compounds (see Combination Therapy below).
- Suitable formulations for use in the present invention are found in Remington's Pharmaceutical Sciences (Mack Publishing Company (1985) Philadelphia, Pa., 17th ed.), which is incorporated herein by reference. Moreover, for a brief review of methods for drug delivery, see, Langer, Science (1990) 249:1527-1533, which is incorporated herein by reference.
- the pharmaceutical compositions described herein can be manufactured in a manner that is known to those of skill in the art, i.e., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. The following methods and excipients are merely exemplary and are in no way limiting.
- the compounds can be formulated into preparations by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
- the compounds of the present invention can be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution or physiological saline buffer.
- penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
- the compounds of Formula (I) can be formulated readily by combining with pharmaceutically acceptable carriers that are well known in the art.
- Such carriers enable the compounds to be formulated as tablets, pills, dragees, capsules, emulsions, lipophilic and hydrophilic suspensions, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated.
- Pharmaceutical preparations for oral use can be obtained by mixing the compounds with a solid excipient, optionally grinding a resulting mixture and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores.
- Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose and/or polyvinylpyrrolidone (PVP).
- disintegrating agents can be added, such as the cross-linked polyvinyl pyrrolidone, agar or alginic acid or a salt thereof such as sodium alginate.
- Dragee cores are provided with suitable coatings.
- suitable coatings can be used, which can optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol and/or titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures.
- Dyestuffs or pigments can be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
- compositions which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
- the push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers.
- the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin or liquid polyethylene glycols.
- stabilizers can be added. All formulations for oral administration should be in dosages suitable for such administration.
- compositions can take the form of tablets or lozenges formulated in conventional manner.
- the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas or from propellant-free, dry-powder inhalers.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas or from propellant-free, dry-powder inhalers.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas or from propellant-free, dry-powder inhalers.
- the dosage unit can
- the compounds can be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
- Formulations for injection can be presented in unit dosage form, e.g., in ampules or in multidose containers, with an added preservative.
- the compositions can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles and can contain formulator agents such as suspending, stabilizing and/or dispersing agents.
- compositions for parenteral administration include aqueous solutions of the active compounds in water-soluble form.
- suspensions of the active compounds can be prepared as appropriate oily injection suspensions.
- Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil or synthetic fatty acid esters, such as ethyl oleate or triglycerides or liposomes.
- Aqueous injection suspensions can contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol or dextran.
- the suspension can also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
- the active ingredient can be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- the compounds can also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter, carbowaxes, polyethylene glycols or other glycerides, all of which melt at body temperature, yet are solidified at room temperature.
- rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter, carbowaxes, polyethylene glycols or other glycerides, all of which melt at body temperature, yet are solidified at room temperature.
- the compounds can also be formulated as a depot preparation. Such long acting formulations can be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
- the compounds can be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
- hydrophobic pharmaceutical compounds can be employed.
- Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs.
- long-circulating, i.e., stealth liposomes can be employed.
- liposomes are generally described in Woodle, et al., U.S. Pat. No. 5,013,556.
- the compounds of the present invention can also be administered by controlled release means and/or delivery devices such as those described in U.S. Pat. Nos. 3,845,770; 3,916,899; 3,536,809; 3,598,123; and 4,008,719.
- DMSO dimethylsulfoxide
- the compounds can be delivered using a sustained-release , such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent.
- sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules can, depending on their chemical nature, release the compounds for a few hours up to over 100 days.
- compositions also can comprise suitable solid or gel phase carriers or excipients.
- suitable solid or gel phase carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin and polymers such as polyethylene glycols.
- compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in a therapeutically effective amount.
- the amount of composition administered will, of course, be dependent on the subject being treated, on the subject's weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician. Determination of an effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.
- a therapeutically effective dose can be estimated initially from cell culture assays or animal models.
- toxicity and therapeutic efficacy of the compounds described herein can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., by determining the LD 50 , (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effect is the therapeutic index and can be expressed as the ratio between LD 50 and ED 50 .
- Compounds which exhibit high therapeutic indices are preferred.
- the data obtained from these cell culture assays and animal studies can be used in formulating a dosage range that is not toxic for use in human.
- the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity.
- the dosage can vary within this range depending upon the dosage form employed and the route of administration utilized.
- the exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See, e.g., Fingl et al. 1975 In: The Pharmacological Basis of Therapeutics , Ch. 1).
- suitable unit doses for the compounds of the present invention can, for example, preferably contain between 100 mg to about 3000 mg of the active compound.
- a preferred unit dose is between 500 mg to about 1500 mg.
- a more preferred unit dose is between 500 to about 1000 mg.
- Such unit doses can be administered more than once a day, for example 2, 3, 4, 5 or 6 times a day, but preferably 1 or 2 times per day, so that the total daily dosage for a 70 kg adult is in the range of 0.1 to about 250 mg per kg weight of subject per administration.
- a preferred dosage is 5 to about 250 mg per kg weight of subject per administration and such therapy can extend for a number of weeks or months and in some cases, years. It will be understood, however, that the specific dose level for any particular patient will depend on a variety of factors including the activity of the specific compound employed; the age, body weight, general health, sex and diet of the individual being treated; the time and route of administration; the rate of excretion; other drugs which have previously been administered; and the severity of the particular disease undergoing therapy, as is well understood by those of skill in the area.
- a typical dosage can be one 10 to about 1500 mg tablet taken once a day or, multiple times per day or one time-release capsule or tablet taken once a day and containing a proportionally higher content of active ingredient.
- the time-release effect can be obtained by capsule materials that dissolve at different pH values, by capsules that release slowly by osmotic pressure or by any other known means of controlled release.
- the compounds of the present invention will, in some instances, be used in combination with other therapeutic agents to bring about a desired effect. Selection of additional agents will, in large part, depend on the desired target therapy (see, e.g., Turner, N. et al. Prog. Drug Res . (1998) 51: 33-94; Haffner, S. Diabetes Care (1998) 21: 160-178; and DeFronzo, R. et al. (eds.), Diabetes Reviews (1997) Vol. 5 No. 4). A number of studies have investigated the benefits of combination therapies with oral agents (see, e.g., Mahler, R. J. Clin. Endocrinol. Metab .
- Combination therapy includes administration of a single pharmaceutical dosage formulation which contains a compound having the general structure of Formula (I) and one or more additional active agents, as well as administration of a compound of Formula (I) and each active agent in its own separate pharmaceutical dosage formulation.
- a compound of Formula (I) and an HMG-CoA reductase inhibitor can be administered to the human subject together in a single oral dosage composition, such as a tablet or capsule or each agent can be administered in separate oral dosage formulations.
- a compound of Formula (I) and one or more additional active agents can be administered at essentially the same time (i.e., concurrently) or at separately staggered times (i.e., sequentially). Combination therapy is understood to include all these regimens.
- a compound of Formula (I) is administered in combination with one or more of the following active agents: an antihyperlipidemic agent; a plasma HDL-raising agent; an antihypercholesterolemic agent, such as a cholesterol biosynthesis inhibitor, e.g., an hydroxymethylglutaryl (HMG) CoA reductase inhibitor (also referred to as statins, such as lovastatin, simvastatin, pravastatin, fluvastatin and atorvastatin), an HMG-CoA synthase inhibitor, a squalene epoxidase inhibitor or a squalene synthetase inhibitor (also known as squalene synthase inhibitor); an acyl-coenzyme A cholesterol acyltransferase (ACAT) inhibitor, such as melinamide; probucol; nicotinic acid
- ACAT acyl-coenzyme A cholesterol acyltransferase
- the compounds of Formula (I) can be administered in combination with more than one additional active agent, for example, a combination of a compound of Formula (I) with an HMG-CoA reductase inhibitor (e.g., lovastatin, simvastatin and pravastatin) and aspirin or a compound of Formula (I) with an HMG-CoA reductase inhibitor and a ⁇ blocker.
- an HMG-CoA reductase inhibitor e.g., lovastatin, simvastatin and pravastatin
- combination therapy can be seen in treating obesity or obesity-related disorders, wherein the compounds of Formula (I) can be effectively used in combination with, for example, phenylpropanolamine, phenteramine, diethylpropion, mazindol; fenfluramine, dexfenfluramine, phentiramine, ⁇ -3 adrenoceptor agonist agents; sibutramine, gastrointestinal lipase inhibitors (such as orlistat) and leptins.
- agents used in treating obesity or obesity-related disorders wherein the compounds of Formula (I) can be effectively used in combination with, for example, neuropeptide Y, enterostatin, cholecytokinin, bombesin, amylin, histamine H 3 receptors, dopamine D 2 receptors, melanocyte stimulating hormone, corticotrophin releasing factor, galanin and gamma amino butyric acid (GABA).
- neuropeptide Y enterostatin
- cholecytokinin bombesin
- amylin histamine H 3 receptors
- dopamine D 2 receptors dopamine D 2 receptors
- melanocyte stimulating hormone corticotrophin releasing factor
- galanin gamma amino butyric acid
- Still another example of combination therapy can be seen in modulating diabetes (or treating diabetes and its related symptoms, complications and disorders), wherein the compounds of Formula (I) can be effectively used in combination with, for example, sulfonylureas (such as chlorpropamide, tolbutamide, acetohexamide, tolazamide, glyburide, gliclazide, glynase, glimepiride and glipizide), biguanides (such as metformin), thiazolidinediones (such as ciglitazone, pioglitazone, troglitazone and rosiglitazone); dehydroepiandrosterone (also referred to as DHEA or its conjugated sulphate ester, DHEA-SO 4 ); antiglucocorticoids; TNF ⁇ inhibitors; ⁇ -glucosidase inhibitors (such as acarbose, miglitol and voglibose), pramlint
- a further example of combination therapy can be seen in modulating hyperlipidemia (treating hyperlipidemia and its related complications), wherein the compounds of Formula (I) can be effectively used in combination with, for example, statins (such as fluvastatin, lovastatin, pravastatin or simvastatin), bile acid-binding resins (such as colestipol or cholestyramine), nicotinic acid, probucol, betacarotene, vitamin E or vitamin C.
- statins such as fluvastatin, lovastatin, pravastatin or simvastatin
- bile acid-binding resins such as colestipol or cholestyramine
- nicotinic acid probucol
- betacarotene vitamin E or vitamin C.
- kits with unit doses of the compounds of Formula (I), either in oral or injectable doses are provided.
- the containers containing the unit doses will be an informational package insert describing the use and attendant benefits of the drugs in alleviating symptoms and/or complications associated with Type 2 diabetes as well as in alleviating hyperlipidemia and hyperuricemia or for alleviating conditions dependent on PPAR.
- Preferred compounds and unit doses are those described herein above.
- compositions, methods and kits provided above, one of skill in the art will understand that preferred compounds for use in each are those compounds that are preferred above and particularly those compounds provided in formula (I) in FIGS. 1A-1D . Still further preferred compounds for the compositions, methods and kits are those compounds provided in the Examples below.
- compound 1400 was synthesized via coupling with 1-ethynyl-3-methoxybenzene.
- 1 H NMR 400 MHz, CDCl 3 ) ⁇ 7.45 (s, 1H), 7.24-6.83 (m, 10H), 4.22 (m, 4H), 3.77 (s, 3H), 3.56 (s, 2H), 2.31 (m, 2H).
- compound 1500 was synthesized via coupling with 2-ethynyl-pyridine.
- 1 H NMR 400 MHz, CDCl 3 ) ⁇ 8.58 (br, 1H), 7.64 (m, 1H), 7.51-7.45 (m, 2H), 7.28-7.24 (m, 2H), 7.16-7.13 (m, 2H), 6.88-6.85 (m, 3H), 4.23 (m, 4H), 3.53 (s, 2H), 2.32 (m, 2H).
- Chimeric receptors were constructed in which the yeast transcription factor GAL4 DNA binding domain was fused to the ligand binding domain of either mouse PPAR ⁇ , mouse PPAR ⁇ or mouse PPAR ⁇ in order to assess the ability of the compounds of the present invention to activate gene expression in a PPAR-dependent manner.
- the chimeric receptor expression plasmids (GAL4-mPPAR ⁇ , GAL4-mPPAR ⁇ and GAL4-PPAR ⁇ ) and the reporter plasmid containing 5 ⁇ GAL4 binding site (pFR-Luc, obtained from Stratagene) were transfected into HEK293T cells using the Lipofectamine 2000 reagent (Invitrogen), according to the manufacturers instructions.
- the compounds of the invention are excellent modulators of PPAR.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Diabetes (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Hematology (AREA)
- Endocrinology (AREA)
- Obesity (AREA)
- Emergency Medicine (AREA)
- Vascular Medicine (AREA)
- Rheumatology (AREA)
- Heart & Thoracic Surgery (AREA)
- Urology & Nephrology (AREA)
- Child & Adolescent Psychology (AREA)
- Nutrition Science (AREA)
- Pain & Pain Management (AREA)
- Cardiology (AREA)
- Physical Education & Sports Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Pyridine Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
The present invention is directed to certain novel compounds represented by Formula (I) and pharmaceutically acceptable salts, solvates, hydrates and prodrugs thereof. The present invention is also directed to methods of making and using such compounds and pharmaceutical compositions containing such compounds to treat or control a number of diseases mediated by PPAR such as glucose metabolism, lipid metabolism and insulin secretion, specifically Type 2 diabetes, hyperinsulinemia, hyperlipidemia, hyperuricemia, hypercholesteremia, atherosclerosis, one or more risk factors for cardiovascular disease, Syndrome X, hypertriglyceridemia, hyperglycemia, obesity and eating disorders.
Description
- This application is a divisional of U.S. patent application Ser. No. 11/202,963, filed Aug. 11, 2005, now allowed, which claims benefit of priority under 35 U.S.C. §119(e) to U.S. Provisional Application Ser. No. 60/601,305 filed Aug. 13, 2004; each are herein incorporated by reference in their entirety.
- Peroxisome Proliferator-Activated Receptors (PPARs) are implicated in a number of biological processes and disease states including Type 2 diabetes, hyperinsulinemia, hyperlipidemia, hyperuricemia, hypercholesteremia, atherosclerosis, one or more risk factors for cardiovascular disease, Syndrome X, hypertriglyceridemia, hyperglycemia, obesity, eating disorders and suppressing appetite.
- Diabetes mellitus, commonly called diabetes, refers to a disease process derived from multiple causative factors and characterized by elevated levels of plasma glucose, referred to as hyperglycemia. See, e.g., LeRoith, D. et al., (eds.), D
IABETES MELLITUS (Lippincott-Raven Publishers, Philadelphia, Pa. U.S.A. 1996) and all references cited therein. According to the American Diabetes Association, diabetes mellitus is estimated to affect approximately 6% of the world population. Uncontrolled hyperglycemia is associated with increased and premature mortality due to an increased risk for microvascular and macrovascular diseases, including nephropathy, neuropathy, retinopathy, hypertension, cerebrovascular disease, coronary heart disease and other cardiovascular diseases. Therefore, control of glucose homeostasis is a critically important approach for the treatment of diabetes. - There are two major forms of diabetes: Type 1 diabetes (formerly referred to as insulin-dependent diabetes or IDDM); and Type 2 diabetes (formerly referred to as non-insulin dependent diabetes or NIDDM).
- Type 1 diabetes is the result of an absolute deficiency of insulin, the hormone which regulates glucose utilization. This insulin deficiency is usually characterized by β-cell destruction within the Islets of Langerhans in the pancreas, which usually leads to absolute insulin deficiency. Type 1 diabetes has two forms: Immune-Mediated Diabetes Mellitus, which results from a cellular mediated autoimmune destruction of the β-cells of the pancreas; and Idiopathic Diabetes Mellitus, which refers to forms of the disease that have no known etiologies.
- Type 2 diabetes is a complex disease characterized by defects in glucose and lipid metabolism. Typically there are perturbations in many metabolic parameters including increases in fasting plasma glucose levels, free fatty acid levels and triglyceride levels (hypertriglyceridemia), as well as a decrease in the ratio of HDL/LDL. One of the principal underlying causes of diabetes is thought to be when muscle, fat and liver cells fail to respond to normal concentrations of insulin (insulin resistance). Insulin resistance may be due to reduced numbers of insulin receptors on these cells or a dysfunction of signaling pathways within the cells or both. Insulin resistance is characteristically accompanied by a relative, rather than absolute, insulin deficiency. Type 2 diabetes can range from predominant insulin resistance with relative insulin deficiency to predominant insulin deficiency with some insulin resistance.
- The beta cells in insulin resistant individuals initially compensate for this insulin resistance by secreting abnormally high amounts of insulin (hyperinsulinemia). Over time, these cells become unable to produce enough insulin to maintain normal glucose levels, indicating progression to Type 2 diabetes. When inadequate amounts of insulin are present to compensate for insulin resistance and adequately control glucose, a state of impaired glucose tolerance develops. In a significant number of individuals, insulin secretion declines further and the plasma glucose level rises, resulting in the clinical state of diabetes. Type 2 diabetes can be due to a profound resistance to insulin stimulating regulatory effects on glucose and lipid metabolism in the main insulin-sensitive tissues: muscle, liver and adipose tissue. This resistance to insulin responsiveness results in insufficient insulin activation of glucose uptake, oxidation and storage in muscle and inadequate insulin repression of lipolysis in adipose tissue and of glucose production and secretion in liver. In Type 2 diabetes, free fatty acid levels are often elevated in obese and some non-obese patients and lipid oxidation is increased. Consequently, in Type 2 diabetics, adipose tissue mass is often increased.
- Type 2 diabetes is brought on by a combination of genetic and acquired risk factors—including a high-fat diet, lack of exercise and aging. Worldwide, Type 2 diabetes has become an epidemic, driven by increases in obesity and a sedentary lifestyle, widespread adoption of western dietary habits and the general aging of the population in many countries. In 1985, an estimated 30 million people worldwide had diabetes—by 2000, this figure had increased 5-fold, to an estimated 154 million people. The number of people with diabetes is expected to double between now and 2025, to about 300 million.
- Therapies aimed at reducing peripheral insulin resistance are available. The most relevant to this invention are drugs of the thiazolidinedione (TZD) class namely troglitazone, pioglitazone and rosiglitazone. In the US these have been marketed under the names Rezulin™, Avandia™ and Actos™, respectively. The principal effect of these drugs is to improve glucose homeostasis. Notably in diabetics treated with TZDs there are increases in peripheral glucose disposal rates indicative of increased insulin sensitivity in both muscle and fat. Treatment of diabetes also improves Islet (of Langerhans) function, specifically, insulin secretion, islet architecture, beta cell mass and the like.
- Premature development of atherosclerosis and increased rate of cardiovascular and peripheral vascular diseases are characteristic features of patients with diabetes, with hyperlipidemia being an important precipitating factor for these diseases.
- Hyperlipidemia is a condition generally characterized by an abnormal increase in serum lipids in the bloodstream and, as noted above, is an important risk factor in developing atherosclerosis and coronary heart disease. For a review of disorders of lipid metabolism, see, e.g., Wilson, J. et al., (ed.), Disorders of Lipid Metabolism, Chapter 23, Textbook of Endocrinology, 9th Edition, (W.B. Sanders Company, Philadelphia, Pa. U.S.A. 1998; this reference and all references cited therein are herein incorporated by reference). Serum lipoproteins are the carriers for lipids in the circulation. They are classified according to their density: chylomicrons; very low-density lipoproteins (VLDL); intermediate density lipoproteins (IDL); low density lipoproteins (LDL); and high density lipoproteins (HDL). Hyperlipidemia is usually classified as primary or secondary hyperlipidemia. Primary hyperlipidemia is generally caused by genetic defects, while secondary hyperlipidemia is generally caused by other factors, such as various disease states, drugs and dietary factors. Alternatively, hyperlipidemia can result from both a combination of primary and secondary causes of hyperlipidemia.
- Hypercholesterolemia, a form of hyperlipidemia, is characterized by excessive high levels of blood cholesterol. The blood cholesterol pool is generally dependant on dietary uptake of cholesterol from the intestine and biosynthesis of cholesterol throughout the body, especially the liver. The majority of the cholesterol in plasma is carried on apolipoprotein B-containing lipoproteins, such as the very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL), intermediate density lipoproteins (IDL) and high density lipoproteins (HDL). Hypercholesterolemia is characterized by elevated LDL cholesterol levels. The risk of coronary artery disease in man increases when LDL and VLDL levels increase. Conversely, high HDL levels are protective against coronary artery disease (see Gordon, D. and Rifkind, B. N. Engl. J. Med. 1989 321: 1311-15; and Stein, O and Stein, Y. Atherosclerosis 1999 144: 285-303). Therefore, although it is desirable to lower elevated levels of LDL, it is also desirable to increase HDL levels.
- Initial treatment for hypercholesterolemia is to place the patients on a low fat/low cholesterol diet coupled with adequate physical exercise, followed by drug therapy when LDL-lowering goals are not met by diet and exercise alone. HMG-CoA reductase inhibitors (statins) are useful for treating conditions associated with high LDL levels. Other important anti-lipidemia drugs include fibrates such as gemfibril and clofibrate, bile acid sequestrant such as cholestyramine and colestipol, probucol and nicotinic acid analogs.
- Elevated cholesterol levels are in turn associated with a number of disease states, including coronary artery disease, angina pectoris, carotid artery disease, strokes, cerebral arteriosclerosis and xanthoma.
- Dyslipidemia or abnormal levels of lipoproteins in blood plasma, is a frequent occurrence among diabetics and has been shown to be one of the main contributors to the increased incidence of coronary events and deaths among diabetic subjects (see, e.g., Joslin, E. Ann. Chim. Med. (1927) 5: 1061-1079). Epidemiological studies since then have confirmed the association and have shown a several-fold increase in coronary deaths among diabetic subjects when compared with nondiabetic subjects (see, e.g., Garcia, M. J. et al., Diabetes (1974) 23: 105-11; and Laakso, M. and Lehto, S. Diabetes Reviews (1997) 5(4): 294-315). Several lipoprotein abnormalities have been described among diabetic subjects (Howard B., et al., Atherosclerosis (1978) 30: 153-162).
- Obesity has reached epidemic proportions globally with more than 1 billion adults overweight—at least 300 million of them clinical obese—and is a major contributor to the global burden of chronic diseases including cardiovascular disease problems, conditions associated with insulin resistance such as Type 2 diabetes and certain types of cancers. The likelihood of developing Type 2 diabetes and hypertension rises steeply with increasing body fatness. Weight reduction leads to correction of a number of obesity-associated endocrine and metabolic disorders.
- Effective weight management for individuals and groups at risk of developing obesity involves a range of long term strategies. These include prevention, weight maintenance, management of co-morbidities and weight loss. Existing treatment strategies include caloric restriction programs, surgery (gastric stapling) and drug intervention. The currently available anti-obesity drugs can be divided into two classes: central acting and peripheral acting. Three marketed drugs are Xenical (Orlistat), Merida (Sibutramine) and Adipex-P (Phentermine). Xenical is a non-ic acting GI lipase inhibitor which is indicated for short and long term obesity management. Merida reduces food intake by re-uptake inhibition of primarily norepinephrine and serotonin. Adipex-P is a phenteramine with sympathomimetic activities and suppresses appetite. It is indicated only for short term use. A more drastic solution to permanent weight loss is surgery and a gastric by-pass which limits absorption of calories through massive reduction in stomach size.
- Carrying extra body weight and body fat go hand and hand with the development of diabetes. People who are overweight (BMI greater than 25) are at a much greater risk of developing type 2 diabetes than normal weight individuals. Almost 90% of people with type 2 diabetes are overweight.
- Syndrome X (including metabolic syndrome) is loosely defined as a collection of abnormalities including hyperinsulinemia, hyperuricemia, obesity, elevated levels of triglycerides, fibrinogen, small dense LDL particles and plasminogen activator inhibitor 1 (PAI-1) and decreased levels of HDL-c. These abnormalities are associated with eating disorders, particularly an overactive appetite.
- PPARs are members of the nuclear receptor superfamily of transcription factors, a large and diverse group of proteins that mediate ligand-dependent transcriptional activation and repression. They play a role in controlling expression of proteins that regulate lipid metabolism. Furthermore, the PPARs are activated by fatty acids and fatty acid metabolites. Three PPAR subtypes have been isolated: PPARα, PPARβ (also referred to as δ or NUC1) and PPARγ. Each receptor shows a different pattern of gene expression by binding to DNA sequence elements, termed PPAR response elements (PPRE). In addition, each receptor show a difference in activation by structurally diverse compounds. To date, PPREs have been identified in the enhancers of a number of genes encoding proteins that regulate lipid metabolism suggesting that PPARs play a pivotal role in the adipogenic signaling cascade and lipid homeostasis (Keller, H. and Wahli, W. Trends Endoodn. Met. (1993) 4:291-296. PPARα is found in the liver, heart, kidney, muscle, brown adipose tissue and gut and is involved in stimulating β-oxidation of fatty acids. PPARα is also involved in the control of cholesterol levels in rodents and in humans. Fibrates are weak PPARα agonists that are effective in the treatment of lipid disorders. In humans, they have been shown to lower plasma triglycerides and LDL cholesterol. In addition, PPARα agonists have also been reported to prevent diabetes and to improve insulin sensitivity and reduce adiposity in obese and diabetic rodents (see Koh, E. H. et al. Diabetes (2003) 52:2331-2337; and Guerre-Millo, M. et al. J. Biol. Chem. (2000) 275: 16638-16642).
- PPARβ is ubiquitously expressed. Activation of PPARβ increases HDL levels in rodents and monkeys (see Oliver, W. R. et al. PNAS (2001) 98:5306-5311; and Leibowitz, M. D. et al. FEBS Letters (2000) 473:333-336). Moreover, PPARβ has been recently shown to be a key regulator of lipid catabolism and energy uncoupling in skeletal muscle cells (Dressel, U. et al. Mol. Endocrinol. (2003) 17: 2477-2493). In rodents, activation of PPARβ induces fatty β-oxidation in skeletal muscle and adipose tissue, leading to protection against diet-induced obesity and diabetes (see Wang, Y. X. et al. Cell (2003) 113:159-170; and Tanaka et al. PNAS (2003) 100:15924-15929). In human macrophages, PPARβ activation also increases the reverse cholesterol transporter ATP-binding cassette A1 and induces apolipoprotein A1-specific cholesterol efflux (see Oliver, W. R. et al. PNAS (2001) 98:5306-5311). Activation also increases energy expenditure.
- PPAR-γ is expressed most abundantly in adipose tissue and is thought to regulate adipocyte differentiation. Drugs of the thiazolidinedione (TZD) class namely troglitazone, pioglitazone and rosiglitazone are potent and selective activators of PPAR-γ. In human, they increase insulin action, reduce serum glucose and have small but significant effects on reducing serum triglyceride levels in patients with type 2 diabetes.
- Certain compounds that activate or otherwise interact with one or more of the PPARs have been implicated in the regulation of triglyceride and cholesterol levels in animal models. (See e.g., U.S. Pat. No. 5,859,501 and PCT publications WO 97/28149 and 99/04815.
- Taken together, these data clearly indicate that PPARs agonists are useful in treating hypertriglyceridemia, hypercholesterolemia, obesity and type 2 diabetes.
- Anti-lipidemia, anti-obesity and anti-diabetes agents are still considered to have non-uniform effectiveness, in part because of poor patient compliance due to unacceptable side effects. For Anti-lipidemia and anti-obesity agents, these side effects include diarrhea and gastrointestinal discomfort. For anti-diabetic agents, they include weight gain, edema and hepatotoxicity. Furthermore, each type of drug does not work equally well in all patients.
- What is needed in the art are new compounds and methods useful for modulating peroxisome proliferators activated receptor, insulin resistance, fibrinogen levels, leptin levels, LDLc shifting LDL particle size from small dense to normal dense or large dense LDL. What is also needed in the art are new compounds and methods useful for treating Type 2 diabetes, hyperinsulinemia, hyperlipidemia, hyperuricemia, hypercholesteremia, atherosclerosis, one or more risk factors for cardiovascular disease, Syndrome X, hypertriglyceridemia, hyperglycemia, obesity, eating disorders and suppressing appetite. The present invention fulfills this and other needs by providing such compounds, compositions and methods modulating peroxisome proliferators activated receptor, insulin resistance, fibrinogen levels, leptin levels, LDLc, decreasing LDL particles numbers or shifting LDL particle size from small dense to large dense LDL, increasing HDL particles numbers or shifting HDL particle size from small dense to large dense HDL, decreasing VLDL-triglyceride levels, decreasing VLDL-triglyceride levels, decreasing adipose tissue mass, increasing fatty acid oxidation in adipose tissue or skeletal muscle, increasing energy expenditure and improving islet function. The present invention also provides compounds, compositions and methods useful for treating Type 2 diabetes, hyperinsulinemia, hyperlipidemia, hyperuricemia, hypercholesteremia, atherosclerosis, one or more risk factors for cardiovascular disease, Syndrome X, hypertriglyceridemia, hyperglycemia, obesity, eating disorders and suppressing appetite.
- In one aspect, the present invention provides compounds having the formula:
-
Z—K—Ar1-L-Ar2—R1 (I) - wherein Ar1 represents a monocyclic or bicyclic aromatic ring selected from the group consisting of benzene, naphthylene, imidazole, benzimidazole, pyrrole, indole, indazole, thiophene, benzothiophene, furan, benzofuran and benzodioxole. Each of these rings can be optionally substituted with a R2 substituent, a R3 substituent or a combination of R2 and R3 substituents.
- In the above formula, the symbol Ar2 represents a 6-membered monocyclic aromatic ring. A variety of Ar2 aryl groups provide compounds having the desired activity. In particular, Ar2 aryl groups can be benzene, pyridine, pyrazine, pyrimidine, pyridazine and triazine. Each of these rings can be optionally substituted with from one to two R4 substituents.
- Within Ar1 and Ar2, variables R2, R3 and R4 represent from one to two substituents on their respective rings, wherein each substituent present can be the same or different from any other substituent. More particularly, each R2 or R3 substituent is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl, —OR7, (C2-C8)alkenyl, (C2-C8)alkynyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl(C1-C4)alkyl, aryl, aryl(C1-C4)alkyl, aryl(C2-C8)alkenyl, aryl(C2-C8)alkynyl, heterocyclyl, heterocyclyl(C1-C4)alkyl, —COR7, —CO2R7, —NR7R24, —NO2, —CN, —S(O)r1R7, —X1OR7, —X1COR7, —X1CO2R7, —X1NR7R24, —X1NO2, —X1CN and —X1S(O)r1R7. More particularly, R4 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl, —OR7, (C2-C8)alkenyl, (C2-C8)alkynyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl(C1-C4)alkyl, aryl(C1-C4)alkyl, aryl(C2-C8)alkenyl, aryl(C2-C8)alkynyl, heterocyclyl, heterocyclyl(C1-C4)alkyl, —COR7, —CO2R7, —NR7R24, —NO2, —CN, —S(O)r1R7, —X2OR7, —X2COR7, —X2CO2R7, —X2NR7R24, —X2NO2, —X2CN, —X2S(O)r1R7,
- each ring of which is optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C1-C8)alkyl; and the wavy line indicates the point of attachment to Ar2. Within these designations, each R7 and R24 is a member independently selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, —X3OR25, —CO, aryl, aryl(C1-C4)alkyl and heteroarylor optionally, if both are present on the same atom, may be joined together to form a three- to eight-membered ring . R25 is a member selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, aryl, aryl(C1-C4)alkyl and heteroaryl. Each X1, X2 and X3 is a member independently selected from the group consisting of (C1-C4)alkylene, (C2-C4)alkenylene and (C2-C4)alkynylene. The subscript r1 is an integer of from 0 to 2.
- Returning to formula (I), K represents a linking group having from one to seven main chain atoms and having the formula —Y1 m1Y2 m2Y3 m3— wherein K can be attached to any available ring member of Ar1.
- Similarly, L represents a linking group having from one to seven main chain atoms and having the formula —Y4 m4Y5 m5Y6 m6— wherein L can be attached to any available ring member of Ar1 or Ar2. Each Y1, Y2, Y3, Y4, Y5 and Y6 represents a member independently selected from the group consisting of —(CR5R6)p—, —C═O—, —C═ONR7—, —C═NOR7—, —NR7C═O—, —NR7—, —O—, —S(O)r2—, —NR7SO2— and —SO2NR7—; wherein R7 is as defined above. Each R5 and R6 are members independently selected from the group consisting of H, halogen, (C1-C8)alkyl, halo(C1-C8)alkyl, OR7, aryl, heteroaryl and aryl(C1-C4)alkyl or optionally, if both are present on the same atom, may be joined together to form a three- to eight-membered ring or if present on adjacent carbon atoms are combined to form a double bond or triple bond between the atoms to which they are attached. Each subscript m1-m6 is an integer of from 0 to 1, the subscript r2 is an integer of from 0 to 2; and the subscript p is an integer of from 1 to 4. More preferably the subscript m1 is 0, the subscript r2 is 0; and the subscripts m2-m6 are 1. More preferably the subscript p is 3.
- Returning to formula (I), Z is selected from the group consisting of CH2OR8, CO2R8, CN, tetrazol-5-yl, CONR8 2, CONHSO2R7 and CHO; wherein each R8 is a member independently selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, —X4OR7, —X4NR7R24, (C2-C8)alkenyl, (C3-C7)cycloalkyl, heterocyclyl, heteroaryl, aryl, aryl(C1-C4)alkyl and aryl(C2-C8)alkenyl. X4 is a member independently selected from the group consisting of (C1-C4)alkylene, (C2-C4)alkenylene and (C2-C4)alkynylene. R7 and R24 are as defined above.
- Returning to formula (I), the symbol R1 represents a member independently selected from the group consisting of:
- wherein the wavy line indicates the point of attachment to the rest of the molecule.
- Each R9 or R10 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl.
- Each R11 or R12 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl.
- Each R13 or R14 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl.
- Each R15 or R16 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl.
- Each R17 or R18 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl.
- Each R19 or R20 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl.
- R21 is CH3, phenyl or pyridyl, wherein the phenyl and pyridyl substituents are, optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl.
- Each of R22 or R23 is independently selected from the group consisting of H, (C1-C8)alkyl, —OR7, halo or (C1-C8)haloalkyl.
- Each W1 or W2 is independently N or CR22.
- In addition to compounds having formula (I) above, the present invention further includes all salts thereof and particularly, pharmaceutically acceptable salts thereof. Still further, the invention includes compounds that are single isomers of the above formula (e.g., single enantiomers of compounds having a single chiral center), as well as solvate, hydrate and prodrug forms thereof.
- In other aspects, the present invention provides compositions containing one or more compounds of Formula (I), as well as methods for the use of such compounds and compositions, either alone or in combination with other pharmaceutical agents as provided in detail below. In particular, the present invention provides methods of using the compounds and/or compositions for the treatment of Type 2 diabetes, hyperinsulinemia, hyperlipidemia, hyperuricemia, hypercholesteremia, atherosclerosis, one or more risk factors for cardiovascular disease, Syndrome X, hypertriglyceridemia, hyperglycemia, obesity, eating disorders, suppressing appetite. In addition, the present invention provides methods of using the compounds and/or compositions for the modulation of peroxisome proliferators activated receptor, insulin resistance, fibrinogen levels, leptin levels, LDLc, decreasing LDL particles numbers or shifting LDL particle size from small dense to large dense LDL, increasing HDL particles numbers or shifting HDL particle size from small dense to large dense HDL, decreasing VLDL-triglyceride levels, decreasing VLDL-triglyceride levels, decreasing adipose tissue mass, increasing fatty acid oxidation in adipose tissue or skeletal muscle, increasing energy expenditure and improving islet function. Additionally, the present invention provides methods of using the compounds and/or compositions for the treatment of diseases modulated by any of the isoforms of peroxisome proliferation activated receptor (PPAR).
-
FIG. 1 illustrates a variety of preferred compounds of the invention. - The abbreviations used herein are conventional, unless otherwise defined:
- AcOH: acetic acid; BPO: benzoyl peroxide; CBr4: tetrabromomethane; Cs2CO3: cesium carbonate; CH2Cl2: dichloromethane; CuCl2: copper chloride; DIBAL: diisobutylaluminum hydride; DMSO: dimethyl sulfoxide; EtOAc: ethyl acetate; H2: hydrogen; H2O: water; HBr: hydrogen bromide; HCl: hydrogen chloride; KCN: potassium cyanide; LiAlH4: lithium aluminum hydride; LiOH: lithium hydroxide; MeCN: acetonitrile; MeOH: methanol; N2: nitrogen; Na2CO3: sodium carbonate; NaHCO3: sodium bicarbonate; NaNO2: sodium nitrite; NaOH: sodium hydroxide; Na2S2O3: sodium thiosulfate; Na2SO4: sodium sulfate; NBS: N-bromosuccinamide; NH4Cl: ammonium chloride; NH4OAc: ammonium acetate; NMR: nuclear magnetic resonance; Pd/C: palladium on carbon; PPh3: triphenyl phosphine; SOCl2: thionyl chloride; THF: tetrahydrofuran; TLC: thin layer chromatography.
- Unless otherwise stated, the following terms used in the specification and claims have the meanings given below:
- “Alkyl” refers to a linear saturated monovalent hydrocarbon radical or a branched saturated monovalent hydrocarbon radical having the number of carbon atoms indicated in the prefix. For example, (C1-C8)alkyl is meant to include methyl, ethyl, n-propyl, 2-propyl, n-butyl, 2-butyl, tert-butyl, pentyl and the like. For each of the definitions herein (e.g., alkyl, alkenyl, alkoxy, araalkyloxy), when a prefix is not included to indicate the number of main chain carbon atoms in an alkyl portion, the radical or portion thereof will have six or fewer main chain carbon atoms.
- “Alkylene” refers to a linear saturated divalent hydrocarbon radical or a branched saturated divalent hydrocarbon radical having the number of carbon atoms indicated in the prefix. For example, (C1-C6)alkylene is meant to include methylene, ethylene, propylene, 2-methylpropylene, pentylene and the like.
- “Alkenyl” refers to a linear monovalent hydrocarbon radical or a branched monovalent hydrocarbon radical having the number of carbon atoms indicated in the prefix and containing at least one double bond, but no more than three double bonds. For example, (C2-C6)alkenyl is meant to include, ethenyl, propenyl, 1,3-butadienyl and the like.
- “Alkynyl” means a linear monovalent hydrocarbon radical or a branched monovalent hydrocarbon radical containing at least one triple bond and having the number of carbon atoms indicated in the prefix. The term “alkynyl” is also meant to include those alkyl groups having one triple bond and one double bond. For example, (C2-C6)alkynyl is meant to include ethynyl, propynyl and the like.
- “Alkoxy”, “aryloxy” or “araalkyloxy” refers to a radical —OR wherein R is an alkyl, aryl or arylalkyl, respectively, as defined herein, e.g., methoxy, phenoxy, benzyloxy and the like.
- “Aryl” refers to a monovalent monocyclic or bicyclic aromatic hydrocarbon radical of 6 to 10 ring atoms which is substituted independently with one to four substituents, preferably one, two or three substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, halo, nitro, cyano, hydroxy, alkoxy, amino, acylamino, mono-alkylamino, di-alkylamino, haloalkyl, haloalkoxy, heteroalkyl, COR (where R is hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, phenyl or phenylalkyl), —(CR′R″)n-COOR (where n is an integer from 0 to 5, R′ and R″ are independently hydrogen or alkyl and R is hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, phenyl or phenylalkyl) and —(CR′R″)n—CONRxRy (where n is an integer from 0 to 5, R′ and R″ are independently hydrogen or alkyl and Rx and Ry are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, phenyl and phenylalkyl). More specifically the term aryl includes, but is not limited to, phenyl, biphenyl, 1-naphthyl and 2-naphthyl and the substituted forms thereof.
- “Araalkyl” or “Aryl(C1-Cx)alkyl” refers to the radical —RxRy where Rx is an alkylene group (having eight or fewer main chain carbon atoms) and Ry is an aryl group as defined above. Thus, “araalkyl” refers to groups such as, for example, benzyl, phenylethyl, 3-(4-nitrophenyl)-2-methylbutyl and the like. Similarly, “Araalkenyl” means a radical —RxRy where Rx is an alkenylene group (an alkylene group having one or two double bonds) and Ry is an aryl group as defined above, e.g., styryl, 3-phenyl-2-propenyl and the like.
- “Cycloalkyl” refers to a monovalent cyclic hydrocarbon radical of three to seven ring carbons. The cycloalkyl group may have one double bond and may also be optionally substituted independently with one, two or three substituents selected from the group consisting of alkyl, optionally substituted phenyl and —C(O)Rz (where Rz is hydrogen, alkyl, haloalkyl, amino, mono-alkylamino, di-alkylamino, hydroxy, alkoxy or optionally substituted phenyl). More specifically, the term cycloalkyl includes, for example, cyclopropyl, cyclohexyl, cyclohexenyl, phenylcyclohexyl, 4-carboxycyclohexyl, 2-carboxamidocyclohexenyl, 2-dimethylaminocarbonyl-cyclohexyl and the like.
- “Cycloalkyl-alkyl” means a radical —RxRy wherein Rx is an alkylene group and Ry is a cycloalkyl group as defined herein, e.g., cyclopropylmethyl, cyclohexenylpropyl, 3-cyclohexyl-2-methylpropyl and the like. The prefix indicating the number of carbon atoms (e.g., C4-C10) refers to the total number of carbon atoms from both the cycloalkyl portion and the alkyl portion.
- “Haloalkyl” refers to an alkyl group which is substituted with one or more same or different halo atoms, e.g., —CH2Cl, —CH2F, —CH2Br, —CFClBr, —CH2CH2Cl, —CH2CH2F, —CF3, —CH2CF3, —CH2CCl3 and the like and further includes those alkyl groups such as perfluoroalkyl in which all hydrogen atoms are replaced by fluorine atoms. The prefix “halo” and the term “halogen” when used to describe a substituent, refer to —F, —Cl, —Br and —I.
- “Haloalkoxy” refers to an alkoxy group which is substituted with one or more same or different halo atoms, e.g., —CH3OCHCl, —CH3OCHF, —CH3OCHBr, —CH3OCHCH2Cl, —CH3CH2OCHF, —CH3OCHCF3 and the like.
- “Heteroalkyl” means an alkyl radical as defined herein with one, two or three substituents independently selected from the group consisting of cyano, —ORw, —NRxRy and —S(O)nRz (where n is an integer from 0 to 2), with the understanding that the point of attachment of the heteroalkyl radical is through a carbon atom of the heteroalkyl radical. Rw is hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, araalkyl, alkoxycarbonyl, aryloxycarbonyl, carboxamido or mono- or di-alkylcarbamoyl. Rx is hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, aryl or araalkyl. Ry is hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, araalkyl, alkoxycarbonyl, aryloxycarbonyl, carboxamido, mono- or di-alkylcarbamoyl or alkylsulfonyl. Rz is hydrogen (provided that n is 0), alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, araalkyl, amino, mono-alkylamino, di-alkylamino or hydroxyalkyl. Representative examples include, for example, 2-hydroxyethyl, 2,3-dihydroxypropyl, 2-methoxyethyl, benzyloxymethyl, 2-cyanoethyl and 2-methylsulfonyl-ethyl. For each of the above, Rw, Rx, Ry and Rz can be further substituted by amino, fluorine, alkylamino, di-alkylamino, OH or alkoxy. Additionally, the prefix indicating the number of carbon atoms (e.g., C1-C10) refers to the total number of carbon atoms in the portion of the heteroalkyl group exclusive of the cyano, —ORw, —NRxRy or —S(O)nRz portions.
- “Heteroaryl” means a monovalent monocyclic or bicyclic radical of 5 to 12 ring atoms having at least one aromatic ring containing one, two or three ring heteroatoms selected from N, O or S, the remaining ring atoms being C, with the understanding that the attachment point of the heteroaryl radical will be on an aromatic ring. The heteroaryl ring is optionally substituted independently with one to four substituents, preferably one or two substituents, selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, halo, nitro, cyano, hydroxy, alkoxy, amino, acylamino, mono-alkylamino, di-alkylamino, haloalkyl, haloalkoxy, heteroalkyl, —COR (where R is hydrogen, alkyl, phenyl or phenylalkyl, —(CR′R″)n—COOR (where n is an integer from 0 to 5, R′ and R″ are independently hydrogen or alkyl and R is hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, phenyl or phenylalkyl) and —(CR′R″)n-CONRxRy (where n is an integer from 0 to 5, R′ and R″ are independently hydrogen or alkyl and Rx and Ry are, independently of each other, hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, phenyl or phenylalkyl). More specifically the term heteroaryl includes, but is not limited to, pyridyl, furanyl, thienyl, thiazolyl, isothiazolyl, triazolyl, imidazolyl, isoxazolyl, pyrrolyl, pyrazolyl, pyridazinyl, pyrimidinyl, benzofuranyl, tetrahydrobenzofuranyl, isobenzofuranyl, benzothiazolyl, benzoisothiazolyl, benzotriazolyl, indolyl, isoindolyl, benzoxazolyl, quinolyl, tetrahydroquinolinyl, isoquinolyl, benzimidazolyl, benzisoxazolyl or benzothienyl and the derivatives thereof.
- “Heterocyclyl” or “cycloheteroalkyl” means a saturated or unsaturated non-aromatic cyclic radical of 3 to 8 ring atoms in which one to four ring atoms are heteroatoms selected from O, NR (where R is independently hydrogen or alkyl) or S(O)n (where n is an integer from 0 to 2), the remaining ring atoms being C, where one or two C atoms may optionally be replaced by a carbonyl group. The heterocyclyl ring may be optionally substituted independently with one, two or three substituents selected from alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, cycloalkyl-alkyl, halo, nitro, cyano, hydroxy, alkoxy, amino, mono-alkylamino, di-alkylamino, haloalkyl, haloalkoxy, —COR (where R is hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, phenyl or phenylalkyl), —(CR′R″)n—COOR (n is an integer from 0 to 5, R′ and R″ are independently hydrogen or alkyl and R is hydrogen, alkyl, cycloalkyl, cycloalkyl-alkyl, phenyl or phenylalkyl) or —(CR′R″)n—CONRxRy (where n is an integer from 0 to 5, R′ and R″ are independently hydrogen or alkyl, Rx and Ry are, independently of each other, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, phenyl or phenylalkyl). More specifically the term heterocyclyl includes, but is not limited to, pyridyl, tetrahydropyranyl, piperidino, N-methylpiperidin-3-yl, piperazino, N-methylpyrrolidin-3-yl, 3-pyrrolidino, 2-pyrrolidon-1-yl, furyl, quinolyl, morpholino, thienyl, benzothienyl, thiomorpholino, thiomorpholino-1-oxide, thiomorpholino-1,1-dioxide, pyrrolidinyl and the derivatives thereof. The prefix indicating the number of carbon atoms (e.g., C3-C10) refers to the total number of carbon atoms in the portion of the cycloheteroalkyl or heterocyclyl group exclusive of the number of heteroatoms.
- “Heterocyclylalkyl” or “Cycloheteroalkyl-alkyl” means a radical —RxRy where Rx is an alkylene group and Ry is a heterocyclyl group as defined herein, e.g., tetrahydropyran-2-ylmethyl, 4-(4-substituted-phenyl)piperazin-1-ylmethyl, 3-piperidinylethyl and the like.
- The terms “optional” or “optionally” as used throughout the specification means that the subsequently described event or circumstance may but need not occur and that the description includes instances where the event or circumstance occurs and instances in which it does not. For example, “heterocyclo group optionally mono- or di-substituted with an alkyl group means that the alkyl may but need not be present and the description includes situations where the heterocyclo group is mono- or disubstituted with an alkyl group and situations where the heterocyclo group is not substituted with the alkyl group.
- “Optionally substituted” means a ring which is optionally substituted independently with substituents.
- For each of the definitions above, the term “di-alkylamino” refers to an amino moiety bearing two alkyl groups that can be the same or different.
- As used herein, the term “carboxylic acid equivalent” refers to those moieties that are used as equivalents for a carboxylic acid moiety. Such groups are generally known to one of skill in the art (see, for example, The Practice of Medicinal Chemistry; Wermuth, C. G., ed., Academic Press, New York, 1996, page 203). Suitable isosteres or equivalents include —C(O)NHSO2R wherein R can be alkyl, haloalkyl, heteroalkyl, araalkyl, aryl, heteroaryl, heterocyclyl, alkoxy, haloalkoxy, aryloxy, alkylamino, haloalkylamino, dialkylamino, dihaloalkylamino, arylamino, diarylamino, araalkylamino, diaraalkylamino or other groups to provide an overall acidic character to the moiety; sulfonic acids; sulfinic acids; phosphonic acids; phosphinic acids; activated sulfonamides (e.g., —SO2NHX wherein X is an electron withdrawing group relative to an alkyl group, such as an acyl group or aryl group; activated carboxamides (e.g., —C(O)NHCN); hydroxamic acids (—C(O)NHOH); acidic heterocycles or substituted heterocycles (e.g., tetrazoles, triazoles, hydroxypyrazoles, hydroxyoxazoles, hydroxythiadiazoles); and acidic alcohols (e.g., —C(CF3)2OH or —CH(CF3)OH). The term “carboxylic acid equivalent” also refers to those moieties that may be converted into a carboxylic acid moiety in vivo. Such groups are generally known to one of skill in the art. While it is recognized that these groups initially may be non-acidic, suitable in vivo equivalents include aldehydes (CHO) and alcohols CH2OH and esters CH2OR wherein R can be alkyl, alkenyl, cycloalkyl, haloalkyl, heteroalkyl, araalkyl, aryl, heteroaryl, heterocyclyl, arylalkyl, arylalkenyl, alkoxy, haloalkoxy, aryloxy, alkylamino, haloalkylamino, dialkylamino, dihaloalkylamino, arylamino, diarylamino, araalkylamino, diaraalkylamino or other groups that are cleaved under physiological conditions to provide a hydroxyl group that can be oxidized in vivo to provide a carboxylic acid.
- Compounds that have the same molecular formula but differ in the nature or sequence of bonding of their atoms or the arrangement of their atoms in space are termed “isomers”. Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers”. Stereoisomers that are not mirror images of one another are termed “diastereomers” and those that are non-superimposable mirror images of each other are termed “enantiomers”. When a compound has an asymmetric center, for example, it is bonded to four different groups, a pair of enantiomers is possible. An enantiomer can be characterized by the absolute configuration of its asymmetric center and is described by the R- and S-sequencing rules of Cahn and Prelog or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or (−)-isomers respectively). A chiral compound can exist as either individual enantiomer or as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a “racemic mixture”.
- The compounds of this invention may exist in stereoisomeric form if they possess one or more asymmetric centers or a double bond with asymmetric substitution and, therefore, can be produced as individual stereoisomers or as mixtures. Unless otherwise indicated, the description is intended to include individual stereoisomers as well as mixtures. The methods for the determination of stereochemistry and the separation of stereoisomers are well-known in the art (see discussion in Chapter 4 of A
DVANCED ORGANIC CHEMISTRY, 4th edition J. March, John Wiley and Sons, New York, 1992). - “Pharmaceutically acceptable salt” of a compound means a salt that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound. Such salts include:
- (1) acid addition salts, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like; or formed with organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethane-disulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, 4-toluenesulfonic acid, camphorsulfonic acid, 4-methylbicyclo[2.2.2]-oct-2-ene-1-carboxylic acid, glucoheptonic acid, 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, muconic acid and the like; or
- (2) salts formed when an acidic proton present in the parent compound either is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion or an aluminum ion; or coordinates with an organic base such as ethanolamine, diethanolamine, triethanolamine, trimethylamine, N-methylglucamine and the like.
- “Prodrugs” means any compound which releases an active parent drug according to Formula (I) in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound of Formula (I) are prepared by modifying functional groups present in the compound of Formula (I) in such a way that the modifications may be cleaved in vivo to release the parent compound. Prodrugs include compounds of Formula (I) wherein a hydroxy, amino or sulfhydryl group in a compound of Formula (I) is bonded to any group that may be cleaved in vivo to regenerate the free hydroxyl, amino or sulfhydryl group, respectively. Examples of prodrugs include, but are not limited to esters (e.g., acetate, formate and benzoate derivatives), amides/imides, carbamates (e.g., N,N-dimethylaminocarbonyl) of hydroxy functional groups in compounds of Formula (I) and the like.
- “Protecting group” refers to a grouping of atoms that when attached to a reactive group in a molecule masks, reduces or prevents that reactivity. Examples of protecting groups can be found in T. W. Greene and P. G. Wuts, P
ROTECTIVE GROUPS IN ORGANIC CHEMISTRY , (Wiley, 2nd ed. 1991) and Harrison and Harrison et al., COMPENDIUM OF SYNTHETIC ORGANIC METHODS , Vols. 1-8 (John Wiley and Sons. 1971-1996). Representative amino protecting groups include formyl, acetyl, trifluoroacetyl, benzyl, benzyloxycarbonyl (CBZ), tert-butoxycarbonyl (Boc), trimethyl silyl (TMS), 2-trimethylsilyl-ethanesulfonyl (SES), trityl and substituted trityl groups, allyloxycarbonyl, 9-fluorenylmethyloxycarbonyl (FMOC), nitro-veratryloxycarbonyl (NVOC) and the like. Representative hydroxy protecting groups include those where the hydroxy group is either acylated or alkylated such as benzyl and trityl ethers as well as alkyl ethers, tetrahydropyranyl ethers, trialkylsilyl ethers and allyl ethers. - Turning next to the compositions of the invention, the term “pharmaceutically acceptable carrier or excipient” means a carrier or excipient that is useful in preparing a pharmaceutical composition that is generally safe, non-toxic and neither biologically nor otherwise undesirable and includes a carrier or excipient that is acceptable for veterinary use as well as human pharmaceutical use. A “pharmaceutically acceptable carrier or excipient” as used in the specification and claims includes both one and more than one such carrier or excipient.
- With reference to the methods of the present invention, the following terms are used with the noted meanings:
- The terms “treating” or “treatment” of a disease includes:
- (1) preventing the disease, i.e., causing the clinical symptoms of the disease not to develop in a mammal that may be exposed to or predisposed to the disease but does not yet experience or display symptoms of the disease,
- (2) inhibiting the disease, i.e., arresting or reducing the development of the disease or its clinical symptoms or
- (3) relieving the disease, i.e., causing regression of the disease or its clinical symptoms.
- The term “therapeutically effective amount” means the amount of the subject compound that will elicit the biological or medical response of a tissue, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician. “A therapeutically effective amount” includes the amount of a compound that, when administered to a mammal for treating a disease, is sufficient to effect such treatment for the disease. The “therapeutically effective amount” will vary depending on the compound, the disease and its severity and the age, weight, etc., of the mammal to be treated.
- The term “patient” means all mammals, including humans. Examples of patients include, but are not limited to, humans, cows, dogs, cats, goats, sheep, pigs and rabbits.
- The term “mammal” includes, without limitation, humans, domestic animals (e.g., dogs or cats), farm animals (cows, horses or pigs), monkeys, rabbits, mice and laboratory animals.
- The term “insulin resistance” can be defined generally as a disorder of glucose metabolism. More specifically, insulin resistance can be defined as the diminished ability of insulin to exert its biological action across a broad range of concentrations producing less than the expected biologic effect. (see, e.g., Reaven, G. M. J. Basic & Clin. Phys. & Pharm. (1998) 9: 387-406 and Flier, J. Ann Rev. Med. (1983) 34: 145-60). Insulin resistant persons have a diminished ability to properly metabolize glucose and respond poorly, if at all, to insulin therapy. Manifestations of insulin resistance include insufficient insulin activation of glucose uptake, oxidation and storage in muscle and inadequate insulin repression of lipolysis in adipose tissue and skeletal muscle and of glucose production and secretion in liver. Insulin resistance can cause or contribute to polycystic ovarian syndrome, Impaired Glucose Tolerance (IGT), gestational diabetes, hypertension, obesity, atherosclerosis and a variety of other disorders. Eventually, the insulin resistant individuals can progress to a point where a diabetic state is reached. The association of insulin resistance with glucose intolerance, an increase in plasma triglyceride and a decrease in high-density lipoprotein cholesterol concentrations, high blood pressure, hyperuricemia, smaller denser low-density lipoprotein particles and higher circulating levels of plasminogen activator inhibitor-1), has been referred to as “Syndrome X” (see, e.g., Reaven, G. M. Physiol. Rev. (1995) 75: 473-486).
- The term “diabetes mellitus” or “diabetes” means a disease or condition that is generally characterized by metabolic defects in production and utilization of glucose which result in the failure to maintain appropriate blood sugar levels in the body. The result of these defects is elevated blood glucose, referred to as “hyperglycemia.” Two major forms of diabetes are Type 1 diabetes and Type 2 diabetes. As described above, Type 1 diabetes is generally the result of an absolute deficiency of insulin, the hormone which regulates glucose utilization. Type 2 diabetes often occurs in the face of normal or even elevated levels of insulin and can result from the inability of tissues to respond appropriately to insulin. Most Type 2 diabetic patients are insulin resistant and have a relative deficiency of insulin, in that insulin secretion can not compensate for the resistance of peripheral tissues to respond to insulin. In addition, many Type 2 diabetics are obese. Other types of disorders of glucose homeostasis include Impaired Glucose Tolerance, which is a metabolic stage intermediate between normal glucose homeostasis and diabetes and Gestational Diabetes Mellitus, which is glucose intolerance in pregnancy in women with no previous history of Type 1 or Type 2 diabetes.
- The term “secondary diabetes” is diabetes resulting from other identifiable etiologies which include: genetic defects of β cell function (e.g., maturity onset-type diabetes of youth, referred to as “MODY,” which is an early-onset form of Type 2 diabetes with autosomal inheritance; see, e.g., Fajans, S. et al. Diabet. Med. (1996) (9 Suppl 6): S90-5 and Bell, G. et al., Annu. Rev. Physiol. (1996) 58: 171-86; genetic defects in insulin action; diseases of the exocrine pancreas (e.g., hemochromatosis, pancreatitis and cystic fibrosis); certain endocrine diseases in which excess hormones interfere with insulin action (e.g., growth hormone in acromegaly and cortisol in Cushing's syndrome); certain drugs that suppress insulin secretion (e.g., phenyloin) or inhibit insulin action (e.g., estrogens and glucocorticoids); and diabetes caused by infection (e.g., rubella, Coxsackie and CMV); as well as other genetic syndromes.
- The guidelines for diagnosis for Type 2 diabetes, impaired glucose tolerance and gestational diabetes have been outlined by the American Diabetes Association (see, e.g., The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus, Diabetes Care, (1999) Vol 2 (Suppl 1): S5-19).
- The term “hyperinsulinemia” refers to the presence of an abnormally elevated level of insulin in the blood. Similarly, the term “hyperuricemia” refers to the presence of an abnormally elevated level of uric acid in the blood. The term “hyperlipidemia” refers to the presence of an abnormally elevated level of lipids in the blood. Hyperlipidemia can appear in at least three forms: (1) hypercholesterolemia, i.e., an elevated cholesterol level; (2) hypertriglyceridemia, i.e., an elevated triglyceride level; and (3) combined hyperlipidemia, i.e., a combination of hypercholesterolemia and hypertriglyceridemia.
- The term “secretagogue” means a substance or compound that stimulates secretion. For example, an insulin secretagogue is a substance or compound that stimulates secretion of insulin.
- The term “hemoglobin” or “Hb” refers to a respiratory pigment present in erythrocytes, which is largely responsible for oxygen transport. A hemoglobin molecule comprises four polypeptide subunits (two α chain s and two β chain s, respectively). Each subunit is formed by association of one globin protein and one heme molecule which is an iron-protoporphyrin complex. The major class of hemoglobin found in normal adult hemolysate is adult hemoglobin (referred to as “HbA”; also referred to HbA0 for distinguishing it from glycated hemoglobin, which is referred to as “HbA1,” described infra) having α2β2 subunits. Trace components such as HbA2 (α2δ2) can also be found in normal adult hemolysate.
- Among classes of adult hemoglobin HbAs, there is a glycated hemoglobin (referred to as “HbA1,” or “glycosylated hemoglobin”), which may be further fractionated into HbA1a1, HbA1a2, HbA1b and HbA1c with an ion exchange resin fractionation. All of these subclasses have the same primary structure, which is stabilized by formation of an aldimine (Schiff base) by the amino group of N-terminal valine in the β subunit chain of normal hemoglobin HbA and glucose (or, glucose-6-phosphate or fructose) followed by formation of ketoamine by Amadori rearrangement.
- The term “glycosylated hemoglobin” (also referred to as “HbA1c,”, “GHb”, “hemoglobin-glycosylated”, “diabetic control index” and “glycohemoglobin”; hereinafter referred to as “hemoglobin A1c”) refers to a stable product of the nonenzymatic glycosylation of the β-chain of hemoglobin by plasma glucose. Hemoglobin A1c comprises the main portion of glycated hemoglobins in the blood. The ratio of glycosylated hemoglobin is proportional to blood glucose level. Therefore, hemoglobin A1c rate of formation directly increases with increasing plasma glucose levels. Since glycosylation occurs at a constant rate during the 120-day lifespan of an erythrocyte, measurement of glycosylated hemoglobin levels reflect the average blood glucose level for an individual during the preceding two to three months. Therefore determination of the amount of glycosylated hemoglobin HbA1c can be a good index for carbohydrate metabolism control. Accordingly, blood glucose levels of the last two months can be estimated on the basis of the ratio of HbA1c to total hemoglobin Hb. The analysis of the hemoglobin A1c in blood is used as a measurement enabling long-term control of blood glucose level (see, e.g., Jain, S. et al., Diabetes (1989) 38: 1539-1543; Peters A. et al., JAMA (1996) 276: 1246-1252).
- The term “symptom” of diabetes, includes, but is not limited to, polyuria, polydipsia and polyphagia, as used herein, incorporating their common usage. For example, “polyuria” means the passage of a large volume of urine during a given period; “polydipsia” means chronic, excessive thirst; and “polyphagia” means excessive eating. Other symptoms of diabetes include, e.g., increased susceptibility to certain infections (especially fungal and staphylococcal infections), nausea and ketoacidosis (enhanced production of ketone bodies in the blood).
- The term “complication” of diabetes includes, but is not limited to, microvascular complications and macrovascular complications. Microvascular complications are those complications which generally result in small blood vessel damage. These complications include, e.g., retinopathy (the impairment or loss of vision due to blood vessel damage in the eyes); neuropathy (nerve damage and foot problems due to blood vessel damage to the nervous); and nephropathy (kidney disease due to blood vessel damage in the kidneys). Macrovascular complications are those complications which generally result from large blood vessel damage. These complications include, e.g., cardiovascular disease and peripheral vascular disease. Cardiovascular disease refers to diseases of blood vessels of the heart. See. e.g., Kaplan, R. M. et al., “Cardiovascular diseases” in H
EALTH AND HUMAN BEHAVIOR , pp. 206-242 (McGraw-Hill, New York 1993). Cardiovascular disease is generally one of several forms, including, e.g., hypertension (also referred to as high blood pressure), coronary heart disease, stroke and rheumatic heart disease. Peripheral vascular disease refers to diseases of any of the blood vessels outside of the heart. It is often a narrowing of the blood vessels that carry blood to leg and arm muscles. - The term “atherosclerosis” encompasses vascular diseases and conditions that are recognized and understood by physicians practicing in the relevant fields of medicine. Atherosclerotic cardiovascular disease, coronary heart disease (also known as coronary artery disease or ischemic heart disease), cerebrovascular disease and peripheral vessel disease are all clinical manifestations of atherosclerosis and are therefore encompassed by the terms “atherosclerosis” and “atherosclerotic disease”.
- The term “antihyperlipidemic” refers to the lowering of excessive lipid concentrations in blood to desired levels. Similarly, the term “antiuricemic” refers to the lowering of excessive uric acid concentrations in blood to desired levels.
- The term “modulate” refers to the treating, prevention, suppression, enhancement or induction of a function or condition. For example, the compounds of the present invention can modulate hyperlipidemia by lowering cholesterol in a human, thereby suppressing hyperlipidemia.
- The term “triglyceride(s)” (“TGs”), as used herein, incorporates its common usage. TGs consist of three fatty acid molecules esterified to a glycerol molecule and serve to store fatty acids which are used by muscle cells for energy production/expenditure or are taken up and stored in adipose tissue.
- Because cholesterol and TGs are water insoluble, they must be packaged in special molecular complexes known as “lipoproteins” in order to be transported in the plasma. Lipoproteins can accumulate in the plasma due to overproduction and/or deficient removal. There are at least five distinct lipoproteins differing in size, composition, density and function. In the cells of the small of the intestine, dietary lipids are packaged into large lipoprotein complexes called “chylomicrons”, which have a high TG and low-cholesterol content. In the liver, TG and cholesterol esters are packaged and released into plasma as TG-rich lipoprotein called very low density lipoprotein (“VLDL”), whose primary function is the endogenous transport of TGs made in the liver or released by adipose tissue. Through enzymatic action, VLDL can be either reduced and taken up by the liver or transformed into intermediate density lipoprotein (“IDL”). IDL, is in turn, either taken up by the liver or is further modified to form the low density lipoprotein (“LDL”). LDL is either taken up and broken down by the liver or is taken up by extrahepatic tissue. High density lipoprotein (“HDL”) helps remove cholesterol from peripheral tissues in a process called reverse cholesterol transport.
- The term “dyslipidemia” refers to abnormal levels of lipoproteins in blood plasma including both depressed and/or elevated levels of lipoproteins (e.g., elevated levels of LDL, VLDL and depressed levels of HDL).
- Exemplary Primary Hyperlipidemia include, but are not limited to, the following:
- (1) Familial Hyperchylomicronemia, a rare genetic disorder which causes a deficiency in an enzyme, LP lipase, that breaks down fat molecules. The LP lipase deficiency can cause the accumulation of large quantities of fat or lipoproteins in the blood;
- (2) Familial Hypercholesterolemia, a relatively common genetic disorder caused where the underlying defect is a series of mutations in the LDL receptor gene that result in malfunctioning LDL receptors and/or absence of the LDL receptors. This brings about ineffective clearance of LDL by the LDL receptors resulting in elevated LDL and total cholesterol levels in the plasma;
- (3) Familial Combined Hyperlipidemia, also known as multiple lipoprotein-type hyperlipidemia; an inherited disorder where patients and their affected first-degree relatives can at various times manifest high cholesterol and high triglycerides. Levels of HDL cholesterol are often moderately decreased;
- (4) Familial Defective Apolipoprotein B-100 is a relatively common autosomal dominant genetic abnormality. The defect is caused by a single nucleotide mutation that produces a substitution of glutamine for arginine which can cause reduced affinity of LDL particles for the LDL receptor. Consequently, this can cause high plasma LDL and total cholesterol levels;
- (5) Familial Dysbetaliproteinemia, also referred to as Type III Hyperlipoproteinemia, is an uncommon inherited disorder resulting in moderate to severe elevations of serum TG and cholesterol levels with abnormal apolipoprotein E function. HDL levels are usually normal; and
- (6) Familial Hypertriglyceridemia, is a common inherited disorder in which the concentration of plasma VLDL is elevated. This can cause mild to moderately elevated triglyceride levels (and usually not cholesterol levels) and can often be associated with low plasma HDL levels.
- Risk factors in exemplary Secondary Hyperlipidemia include, but are not limited to, the following: (1) disease risk factors, such as a history of Type 1 diabetes, Type 2 diabetes, Cushing's syndrome, hypothyroidism and certain types of renal failure; (2) drug risk factors, which include, birth control pills; hormones, such as estrogen and corticosteroids; certain diuretics; and various β blockers; (3) dietary risk factors include dietary fat intake per total calories greater than 40%; saturated fat intake per total calories greater than 10%; cholesterol intake greater than 300 mg per day; habitual and excessive alcohol use; and obesity.
- The terms “obese” and “obesity” refers to, according to the World Health Organization, a Body Mass Index (BMI) greater than 27.8 kg/m2 for men and 27.3 kg/m2 for women (BMI equals weight (kg)/height (m2). Obesity is linked to a variety of medical conditions including diabetes and hyperlipidemia. Obesity is also a known risk factor for the development of Type 2 diabetes (See, e.g., Barrett-Conner, E. Epidemol. Rev. (1989) 11: 172-181; and Knowler, et al. Am. J. Clin. Nutr. (1991) 53:1543-1551).
- The present invention derives from the discovery that compounds of Formula (I) are useful in treating or controlling a number of diseases associated with glucose metabolism, lipid metabolism and insulin secretion. More particularly, the compounds of the invention are useful in treating Type 2 diabetes, hyperinsulinemia, hyperlipidemia, hyperuricemia, hypercholesteremia, atherosclerosis, one or more risk factors for cardiovascular disease, Syndrome X, hypertriglyceridemia, hyperglycemia, obesity, eating disorders and suppressing appetite. Without intending to be bound by theory, it is considered that the compounds of Formula (I) operate via modulation of receptor interactions associated with one or more isoforms of PPAR. As a result, the compounds have utility in treating a variety of diseases states or conditions associated with PPAR.
- In one aspect, the present invention provides compounds having the formula:
-
Z—K—Ar1-L-Ar2—R1 (I) - wherein Ar1 represents a monocyclic or bicyclic aromatic ring selected from the group consisting of benzene, naphthylene, imidazole, benzimidazole, pyrrole, indole, indazole, thiophene, benzothiophene, furan, benzofuran and benzodioxole.
- Ar2 represents 6-membered monocyclic aromatic ring selected from the group consisting of benzene, pyridine, pyrazine, pyrimidine, pyridazine and triazine.
- Returning to Formula (I), Ar1 and Ar2 may have substituents on their respective rings, wherein each substituted present can be the same or different from any other substituent. More particularly, Ar1 may have from 0 to 2 R2 or R3 substituents , more preferably from 0 to 1 R2 or R3 substituents. Each R2 or R3 substituent is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl, —OR7, (C2-C8)alkenyl, (C2-C8)alkynyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl(C1-C4)alkyl, aryl, aryl(C1-C4)alkyl, aryl(C2-C8)alkenyl, aryl(C2-C8)alkynyl, heterocyclyl, heterocyclyl(C1-C4)alkyl, —COR7, —CO2R7, —NR7R24, —NO2, —CN, —S(O)r1R7—X1OR7, —X1COR7, —X1CO2R7, —X1NR7R24, —X1NO2, —X1CN and —X1S(O)r1R7.
- Ar2 may have from 0 to 2 R4 substituents, more preferably from 0 to 1 R4 substituents. R4 substituents are independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl, —OR7, (C2-C8)alkenyl, (C2-C8)alkynyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl(C1-C4)alkyl, aryl(C1-C4)alkyl, aryl(C2-C8)alkenyl, aryl(C2-C8)alkynyl, heterocyclyl, heterocyclyl(C1-C4)alkyl, —COR7, —CO2R7, —NR7R24, —NO2, —CN, —S(O)r1R7, —X2OR7, —X2COR7, —X2CO2R7, —X2NR7R24, —X2NO2, —X2CN, —X2S(O)r1R7;
- each ring of which is optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C1-C8)alkyl; and the wavy line indicates the point of attachment to Ar2.
- K represents a linking group having from one to seven main chain atoms and having the formula —Y1 m1Y2 m2Y3 m3— wherein K can be attached to any available ring member of Ar1; and each Y1, Y2 and Y3 is a member independently selected from the group consisting of —(CR5R6)p—, —C═O—, —C═ONR7—, —C═NOR7—, —NR7C═O—, —NR7—, —O—, —S(O)r2—, —NR7SO2— and —SO2NR7—.
- L represents a linking group joining Ar1 and Ar2 and having from one to seven main chain atoms represented by the formula —Y4 m4Y5 m5Y6 m6— wherein L can be attached to any available ring member of Ar1 and to any available ring member of Ar2 and each Y4, Y5 and Y6 is a member independently selected from the group consisting of —(CR5R6)p—, —C═O—, —C═ONR7—, —C═NOR7—, —NR7C═O—, —NR7—, —O—, —S(O)r2—, —NR7SO2— and —SO2NR7—.
- z represents a carboxylic acid equivalent and is selected from the group consisting of CH2OR8, CO2R8, CN, tetrazol-5-yl, CONHSO2R7 and CHO.
- R1 represents a member independently selected from the group consisting of:
- wherein the wavy line indicates the point of attachment to the rest of the molecule.
- Each R5 and R6 is a member independently selected from the group consisting of H, halogen, (C1-C8)alkyl, halo(C1-C8)alkyl, —OR7, aryl, heteroaryl and aryl(C1-C4)alkyl or optionally, if both are present on the same atom, may be joined together to form a three- to eight-membered ring or if present on adjacent carbon atoms are combined to form a double bond or triple bond between the atoms to which they are attached.
- Each R7 and R24 is a member independently selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, —X3OR25, —CO, aryl, aryl(C1-C4)alkyl and heteroaryl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring . R25 is a member selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, aryl, aryl(C1-C4)alkyl and heteroaryl.
- Each R8 is a member independently selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, —X4OR7, —X4NR7R24, (C2-C8)alkenyl, (C3-C7)cycloalkyl, heterocyclyl, heteroaryl, aryl, aryl(C1-C4)alkyl and aryl(C2-C8)alkenyl.
- Each R9 or R10 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl.
- Each R11 or R12 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl.
- Each R13 or R14 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl.
- Each R15 or R16 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl.
- Each R17 or R18 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl.
- Each R19 or R20 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl.
- R21 is CH3, phenyl or pyridyl, wherein the phenyl and pyridyl substituents are, optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl.
- Each of R22 or R23 is independently selected from the group consisting of H, (C1-C8)alkyl, —OR7, halo and (C1-C8)haloalkyl.
- Each W1 or W2 is independently N or CR22.
- Each X1, X2, X3 and X4 is a member independently selected from the group consisting of (C1-C4)alkyl, (C2-C4)alkenyl and (C2-C4)alkynyl.
- The subscripts m1, m2, m3, m4, m5 and m6 are each integers of from 0 to 1; the subscripts r1 and r2 are integers of from 0 to 2; and the subscript p is an integer of from 1 to 4.
- In addition to compounds having formula (I) above, the present invention further includes all salts thereof and particularly, pharmaceutically acceptable salts thereof. Still further, the invention includes compounds that are single isomers of the above formula (e.g., single enantiomers of compounds having a single chiral center), as well as solvate, hydrate and prodrug forms thereof.
- A number of other groups of embodiments are preferred and are set forth below.
- In a first group of embodiments, Z is CO2R8 and R8 is preferably H.
- In another group of embodiments, Y1, Y2, Y3, Y4, Y5 and Y6 is a member independently selected from the group consisting of —(CR5R6)p—, —C═O—, —NR7—, —O— and —S—; R7 is H; each R5 and R6 is a member independently selected from the group consisting of H, (C1-C8)alkyl and halo(C1-C8)alkyl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring . In one aspect of this embodiment, preferably m1 is 0, Y2 is —(CR5R6)p— and Y3 is —O—. In another aspect of this embodiment, preferably at least one of m1, m2 or m3 is 0. In yet another aspect of this embodiment, preferably K is a member selected from the group consisting of: —CH2—, —CH2O—, —CH(CH3)O—, —C(CH3)2O—, —CH(CH3)— and —C(CH3)2—. In a further aspect of this embodiment, preferably Y4 is —CR5R6—, —NR7—, —O— or —S—, Y5 is —CR5R6— and Y6 is —O— or —S—. In another aspect of this embodiment, preferably L is a member selected from the group consisting of: —O(CH2)3O—, —O(CH2)2O—, —S(CH2)3O—, —S(CH2)2O—, —NH(CH2)3O—, —S(CH2)3S—, —O(CH2)3S—, —O(CH2)4—, —HCO(CH2)2O—, —(CH2)4—, —CH2)4O—, —(CH2)5— and —OCH2(CH3)2CH2O—.
- With regard to groups R5 and R6 each is independently H, CH3 or joined together to form a three- to six-membered ring selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. Compounds, wherein both R5 and R6 are H are further preferred.
- In another group of embodiments, Ar1 is selected from the group consisting of:
- (i) an indole ring , optionally substituted with a R2 substituent, a R3 substituent or a combination thereof;
- (ii) an indazole ring , optionally substituted with a R2 substituent, a R3 substituent or a combination thereof;
- (iii) a benzofuran ring , optionally substituted with a R2 substituent, a R3 substituent or a combination thereof; and
- (iv) a benzothiophene ring , optionally substituted with a R2 substituent, a R3 substituent or a combination thereof; wherein each R2 or R3 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl and —OR7. Within this embodiment, Ar1 is preferably (i) an indole ring , optionally substituted with a R2 substituent, a R3 substituent or a combination thereof; or (ii) an indazole ring , optionally substituted with a R2 substituent, a R3 substituent or a combination thereof.
- Within this embodiment, Ar1 is preferably substituted with from one to three R7 substituents independently selected from the group consisting of halogen, (C1-C4)haloalkyl, heterocyclyl, heterocyclyl(C1-C4)alkyl and —OR2. Further preferred within this embodiment is where Ar1 is
- optionally substituted with a R2 substituent, a R3 substituent or a combination thereof; wherein each R2 or R3 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl and —OR7; and the dashed line indicates the point of attachment to K and the wavy line indicates the point of attachment to L. In one embodiment Ar1 is preferably
- optionally substituted with a R2 substituent, a R3 substituent or a combination thereof; wherein each R2 or R3 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl and —OR7; and the dashed line indicates the point of attachment to K and the wavy line indicates the point of attachment to L. Within this embodiment the compound
- is preferred.
- In another embodiment, Ar1 is preferably
- optionally substituted with a R2 substituent, a R3 substituent or a combination thereof; wherein each R2 or R3 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl and —OR7; and the dashed line indicates the point of attachment to K and the wavy line indicates the point of attachment to L. Within this embodiment the compounds
- are preferred.
- In other embodiments Ar1 is preferably
- optionally substituted with a R2 substituent, a R3 substituent or a combination thereof; wherein each R2 or R3 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl and —OR7; and the dashed line indicates the point of attachment to L and the wavy line indicates the point of attachment to K. In one embodiment Ar1 is preferably
- optionally substituted with a R2 substituent, a R3 substituent or a combination thereof; wherein each R2 or R3 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl and —OR7; and the dashed line indicates the point of attachment to L and the wavy line indicates the point of attachment to K. In another embodiment Ar1 is preferably
- optionally substituted with a R2 substituent, a R3 substituent or a combination thereof; wherein each R2 or R3 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl and —OR7; and the dashed line indicates the point of attachment to L and the wavy line indicates the point of attachment to K.
- In another group of embodiments, Ar1 is more preferably benzene, optionally substituted with a R2 substituent, a R3 substituent or a combination thereof; wherein each R2 or R3 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl and —OR7.
- R1 is preferably a member selected from the group consisting of:
- wherein the wavy line indicates the point of attachment to the rest of the molecule; each R9 or R10 is independently CH3 or halo or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C1-C8)alkyl; each R13 or R14 is independently CH3 halo or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two (C1-C8)alkyl or halo; R23 is halo or (C1-C8)alkoxy; and W1 is N or CR22. Each is equally preferred.
- In one embodiment, Ar2 is selected from the group consisting of: (i) benzene, optionally substituted with from one to two R4 substituents as defined above. One preferred embodiment is when Ar2 is pyridine. Within these embodiments, Ar2 has the formula:
- each of which is optionally substituted with from one to two R4 substituents as defined above, and wherein the dashed line indicates the point of attachment to L.
- Even further preferred are those embodiments in which Ar2 has the formula:
- each of which is optionally substituted with from one to two R4 substituents, and wherein the dashed line indicates the point of attachment to L.
- In most preferred embodiments, Ar2 is benzene and especially preferred are embodiments when L and K include their preferred embodiments above. Within these embodiments, Ar2 is preferably has the formula:
- and more preferably:
- wherein the dashed line indicates the point of attachment to L.
- In one preferred embodiment the compounds of the invention have having the formula:
- wherein
- Y2 is —CR5R6—;
- Y3 is —S—, —O—, —NH— or —CHR6—;
- Y4 is a member selected from the group consisting of —NHCO—, —NH—, —O—, —S— and —CH2—,
- Y5 is —CH2—; —CH2CR5R6— or —CH2CH2CH2—
- Y6 is —S—, —O— or —CH2—;
- R1 is a member independently selected from the group consisting of:
- R2 is H, (C1-C8)alkyl, (C1-C8)alkoxy, halo or (C1-C8)haloalkyl;
- R3 is a member independently selected from the group consisting of H, halogen and (C1-C8)alkyl;
- R4 is a member selected from the group consisting of —H, -halo, (C1-C8)alkyl, -halo(C1-C8)alkyl and (C1-C8)alkoxy or is a member of the group consisting of:
- each ring of which is optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C1-C8)alkyl;
- each R5 and R6 is independently selected from the group consisting of H, (C1-C8)alkyl, (C1-C8)alkoxy and (C1-C8)haloalkyl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring;
- each R9 or R10 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R11 or R12 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R13 or R14 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R15 or R16 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R17 or R18 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R19 or R20 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- R21 is CH3, phenyl or pyridyl, wherein the phenyl and pyridyl substituents are, optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each of R22 or R23 is independently selected from the group consisting of H, (C1-C8)alkyl, —OR7, halo and (C1-C8)haloalkyl;
- R25 is a member selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, aryl, aryl(C1-C4)alkyl and heteroaryl;
- each W1, W2, W3 or W4 is independently N or CR22;
- the subscripts m2 and m3 are independently an integer of from 0 to 1;
- the subscript p is an integer of from 1 to 4;
- the wavy line indicates the point of attachment to the rest of the molecule; and
- pharmaceutically acceptable salts, solvates, hydrates and prodrugs thereof.
- In one preferred embodiment the compounds of the invention have the formula:
- wherein
- Y3 is —S—, —O—, —NH—, —CHR6—;
- Y4 is a member selected from the group consisting of —NHCO—, —NH—, —O—, —S— and —CH2—,
- Y5 is —CH2—; —CH2CR5R6— or —CH2CH2CH2—
- Y6 is —S—, —O— or —CH2—;
- R1 is a member independently selected from the group consisting of:
- R2 is H, (C1-C8)alkyl, (C1-C8)alkoxy, halo or (C1-C8)haloalkyl;
- R3 is a member independently selected from the group consisting of H, halogen and (C1-C8)alkyl;
- R4 is a member selected from the group consisting of H, -halo, (C1-C8)alkyl, halo(C1-C8)alkyl, (C1-C8)alkoxy,
- each ring of which is optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C1-C8)alkyl;
- each R5 and R6 is independently selected from the group consisting of H, (C1-C8)alkyl, (C1-C8)alkoxy and (C1-C8)haloalkyl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring;
- each R9 or R10 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R11 or R12 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R13 or R14 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R15 or R16 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R17 or R18 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R19 or R20 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- R21 is CH3, phenyl or pyridyl, wherein the phenyl and pyridyl substituents are, optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each of R22 or R23 is independently selected from the group consisting of H, (C1-C8)alkyl, —OR7, halo or (C1-C8)haloalkyl;
- R25 is a member selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, aryl, aryl(C1-C4)alkyl and heteroaryl;
- each W1, W2, W3 or W4 is independently N or CR22;
- the subscript m3 is an integer of from 0 to 1;
- the subscript p is an integer of from 1 to 4;
- the wavy line indicates the point of attachment to the rest of the molecule; and pharmaceutically acceptable salts, solvates, hydrates and prodrugs thereof.
- Within this embodiment, the compound
- is preferred.
- In one preferred embodiment the compounds of the invention have the formula:
- wherein
- Y4 is a member selected from the group consisting of —NHCO—, —NH—, —O—, —S— and —CH2—,
- Y5 is —CH2—; —CH2CR5R6— or —CH2CH2CH2—
- Y6 is —S—, —O— or —CH2—;
- R1 is a member independently selected from the group consisting of:
- R2 is H, (C1-C8)alkyl, (C1-C8)alkoxy, halo or (C1-C8)haloalkyl;
- R3 is a member independently selected from the group consisting of H, halogen and (C1-C8)alkyl;
- R4 is a member selected from the group consisting of —H, halo, (C1-C8)alkyl, halo(C1-C8)alkyl, (C1-C8)alkoxy,
- each ring of which is optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C1-C8)alkyl;
- each R5 and R6 is independently selected from the group consisting of H, (C1-C8)alkyl, (C1-C8)alkoxy and (C1-C8)haloalkyl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring;
- each R9 or R10 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R11 or R12 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R13 or R14 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R15 or R16 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R17 or R18 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R19 or R20 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- R21 is CH3, phenyl or pyridyl, wherein the phenyl and pyridyl substituents are, optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each of R22 or R23 is independently selected from the group consisting of H, (C1-C8)alkyl, —OR7, halo and (C1-C8)haloalkyl;
- R25 is a member selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, aryl, aryl(C1-C4)alkyl and heteroaryl;
- each W1, W2, W3 or W4 is independently N or CR22;
- the subscript m3 is an integer of from 0 to 1;
- the subscript p is an integer of from 1 to 4;
- the wavy line indicates the point of attachment to the rest of the molecule; and
- pharmaceutically acceptable salts, solvates, hydrates and prodrugs thereof.
- Within this embodiment, the compound
- is preferred.
- In one preferred embodiment the compounds of the invention have the formula:
- wherein
- Y3 is —S—, —O—, —NH—, —CHR6—;
- Y4 is a member selected from the group consisting of —NHCO—, —NH—, —O—, —S— and —CH2—,
- Y5 is —CH2—; —CH2CR5R6— or —CH2CH2CH2—
- Y6 is —S—, —O— or —CH2—;
- R1 is a member independently selected from the group consisting of:
- wherein the wavy line indicates the point of attachment to the rest of the molecule;
R2 is H, (C1-C8)alkyl, (C1-C8)alkoxy, halo or (C1-C8)haloalkyl;
R3 is a member independently selected from the group consisting of H, halogen and (C1-C8)alkyl;
R4 is a member selected from the group consisting of -halo, (C1-C8)alkyl, -halo(C1-C8)alkyl, (C1-C8)alkoxy, - wherein the wavy line indicates the point of attachment to Ar2; each ring of which is optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C1-C8)alkyl;
- each R5 and R6 is independently selected from the group consisting of H, (C1-C8)alkyl, (C1-C8)alkoxy and (C1-C8)haloalkyl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring;
- each R9 or R10 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R11 or R12 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R13 or R14 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R15 or R16 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R17 or R18 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each R19 or R20 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- R21 is CH3, phenyl or pyridyl, wherein the phenyl and pyridyl substituents are, optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
- each of R22 or R23 is independently selected from the group consisting of H, (C1-C8)alkyl, halo or (C1-C8)haloalkyl;
- R25 is a member selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, aryl, aryl(C1-C4)alkyl and heteroaryl;
- each W1, W2, W3 or W4 is independently N or CR22; and
- the subscript m3 is an integer of from 0 to 1.
- R1 is preferably a member selected from the group consisting of:
- wherein the wavy line indicates the point of attachment to the rest of the molecule; each R9 or R10 is independently CH3 or halo or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C1-C8)alkyl; each R13 or R14 is independently CH3, halo or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two (C1-C8)alkyl or halo substituents; each R15 or R16 is independently H, (C1-C8)alkyl, halo or (C1-C8)haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl; R23 is halo or (C1-C8)alkoxy; W1 is N or CR22; and m3 is an integer of from 0 to 1. Each is equally preferred.
- Within the embodiment compounds having the formula:
- are preferred and compounds wherein R1 is a member selected from the group consisting of:
- wherein the wavy line indicates the point of attachment to the rest of the molecule; each R9 or R10 is independently CH3 or halo or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C1-C8)alkyl; each R13 or R14 is independently CH3, halo or is joined together with the oxazole ring to form a benzoxazolyl ring, optionally substituted with from one to two (C1-C8)alkyl or halo substituents; each R15 or R16 is independently H, (C1-C8)alkyl, halo or (C1-C8)haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl; R23 is halo or (C1-C8)alkoxy; W1 is N or CR22 and m3 is an integer of form 0 to 1 is more preferred. Each of these R1 substitutents are equally preferred.
- When R1 has the formula:
- the compounds:
- are especially preferred.
- When R1 has the formula:
- the compounds:
- are especially preferred.
- When R1 has the formula:
- the compounds:
- are especially preferred.
- When R1 has the formula:
- compounds having the formula:
- is preferred.
- In another embodiment, when R1 has the formula:
- compounds having the formula:
- wherein
- Y3 is —O— or —CR5R6—,
- Y4 is a member selected from the group consisting of —O—, —S— and —CH2—;
- Y5 is —CH2CH2— or —CH2CH2CH2—;
- R2 is independently H, (C1-C8)alkyl or halo;
- R3 is a member independently selected from the group consisting of H, halogen, (C1-C8)alkyl and (C1-C8)alkoxy;
- R4 is a member selected from the group consisting of H, halo, (C1-C8)alkyl, (C1-C8)alkoxy and 2-thiophenyl;
- each R5 or R6 is independently H, (C1-C8)alkyl or (C1-C8)alkoxy,
- R27 is (C1-C8)alkyl or halo;
- W3 is N, C or CH;
- m3 is an integer of from 0 to 1; and
- pharmaceutically acceptable salts, solvates, hydrates and prodrugs thereof are preferred.
- In another embodiment, when R1 has the formula:
- compounds having the formula:
- Y3 is —O— or —CR5R6—,
- Y4 is a member selected from the group consisting of —O—, —S— and —CH2—;
- Y5 is —CH2CH2— or —CH2CH2CH2—;
- R2 is independently H, (C1-C8)alkyl or halo;
- R3 is a member independently selected from the group consisting of H, halogen and (C1-C8)alkyl;
- R4 is a member selected from the group consisting of H, halo, (C1-C8)alkyl, (C1-C8)alkoxy and 2-thiophenyl;
- each R5 and R6 is independently H or (C1-C8)alkyl;
- R27 is (C1-C8)alkyl or halo;
- W3 is N, C or CH; and
- m3 is an integer of from 0 to 1 are preferred
- Within these embodiments, the compounds
- are preferred.
- In other embodiments, compounds having the formula:
- wherein
- Y3 is —O— or —CHR6—,
- each R5 or R6 is independently H, (C1-C8)alkyl or (C1-C8)alkoxy;
- R4 is a member selected from the group consisting of H, halo, (C1-C8)alkyl, (C1-C8)alkoxy and 2-thiophenyl;
- R27 is (C1-C8)alkyl or halo;
- W3 is N, C or CH;
- m3 is an integer of from 0 to 1; and
- pharmaceutically acceptable salts, solvates, hydrates and prodrugs thereof; are especially preferred.
- Within this embodiment, compounds having the formula:
- wherein
- Y3 is —O— or —CHR6—,
- each R5 or R6 is independently H or (C1-C8)alkyl,
- R4 is a member selected from the group consisting of H, halo, (C1-C8)alkyl, (C1-C8)alkoxy and 2-thiophenyl;
- R27 is (C1-C8)alkyl or halo;
- W3 is N, C or CH; and
- m3 is an integer of from 0 to 1; are especially preferred
- Within these embodiment, the compounds:
- are especially preferred.
- A variety of compounds have the desired activity. In particular, one group of preferred compounds are provided in
FIG. 1 . - Still other preferred groups of embodiments are provided in the Examples below. Examples of compounds of Formula I include
- {4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propylsulfanyl]-2-methyl-phenoxy}-acetic acid;
- {4-[3-(2-Benzooxazol-2-yl-4-bromo-phenoxy)-propylsulfanyl]-2-methyl-phenoxy}-acetic acid;
- {4-[2-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-ethylsulfanyl]-2-methyl-phenoxy}-acetic acid;
- {4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-3-propyl-phenyl}-acetic acid;
- {-4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-3-chloro-phenyl}-acetic acid;
- {4-[2-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-ethoxy]-phenyl}-acetic acid;
- {4-[2-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-ethoxy]-3-isopropyl-phenyl}-acetic acid;
- (4-{3-[4-Chloro-2-(4,5,6,7-tetrahydro-benzotriazol-2-yl)-phenoxy]-propoxy}-phenyl)-acetic acid;
- {4-[3-(4-Chloro-2-phenylethynyl-phenoxy)-propoxy]-phenyl}-acetic acid;
- (4-{3-[4-Chloro-2-(3-methoxy-phenylethynyl)-phenoxy]-propoxy}-phenyl)-acetic acid;
- {4-[3-(4-Chloro-2-pyridin-2-ylethynyl-phenoxy)-propoxy]-phenyl}-acetic acid;
- (4-{3-[4-Chloro-2-(4-methyl-benzotriazol-2-yl)-phenoxy]-propoxy}-phenyl)-acetic acid;
- {5-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-indazol-1-yl}-acetic acid;
- {5-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-indol-1-yl}-acetic acid;
- {5-[2-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-ethoxy]-indol-1-yl}-acetic acid;
- {5-[3-(3-Benzooxazol-2-yl-phenoxy)-propoxy]-indol-1-yl}-acetic acid;
- {4-[3-(3-Benzooxazol-2-yl-phenoxy)-propylsulfanyl]-2-methyl-phenoxy}-acetic acid;
- (4-{3-[3-(4,5-Dimethyl-oxazol-2-yl)-phenoxy]-propylsulfanyl}-2-methyl-phenoxy)-acetic acid;
- {1-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propyl]-1H-indol-5-yloxy}-acetic acid;
- 4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-3-chloro-benzoic acid;
- {4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-3-chloro-phenoxy}-acetic acid;
- 3-(3-Chloro-4-{3-[2-(4,5,6,7-tetrahydro-benzotriazol-2-yl)-phenoxy]-propoxy}-phenyl)-propionic acid;
- 3-(3-Chloro-4-{3-[4-chloro-2-(4,5,6,7-tetrahydro-benzotriazol-2-yl)-phenoxy]-propoxy}-phenyl)-propionic acid;
- {4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-phenoxy}-acetic acid;
- {4-[3-(2-Benzotriazol-2-yl-4-thiophen-2-yl-phenoxy)-propoxy]-phenyl}-acetic acid;
- [5-(2-Benzotriazol-2-yl-4-chloro-phenoxymethyl)-indol-1-yl]-acetic acid;
- {4-[3-(2-Benzotriazol-2-yl-4-methoxy-phenoxy)-propoxy]-phenyl}-acetic acid;
- (4-{3-[4-Chloro-2-(4-methyl-benzotriazol-2-yl)-phenoxy]-propoxy}-phenyl)-acetic acid ethyl ester;
- {4-[3-(4-Chloro-2-phenylethynyl-phenoxy)-propoxy]-phenyl}-acetic acid ethyl ester;
- (4-{3-[4-Chloro-2-(4,5,6,7-tetrahydro-benzotriazol-2-yl)-phenoxy]-propoxy}-phenyl)-acetic acid ethyl ester;
- {4-[2-(2-Benzotriazol-2-yl-4-thiophen-2-yl-phenoxy)-ethoxy]-3-propyl-phenyl}-acetic acid ethyl ester;
- {4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-phenyl}-acetic acid methyl ester;
- {4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-phenyl}-acetic acid;
- {4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propylsulfanyl]-2-methyl-phenoxy}-acetic acid ethyl ester;
- {4-[3-(3-Benzooxazol-2-yl-phenoxy)-propylsulfanyl]-2-methyl-phenoxy}-acetic acid;
- (4-{3-[3-(4,5-Dimethyl-oxazol-2-yl)-phenoxy]-propylsulfanyl}-2-methyl-phenoxy)-acetic acid;
- (4-{3-[4-Chloro-2-(4,5-dimethyl-[1,2,3]triazol-2-yl)-phenoxy]-propoxy}-phenyl)-acetic acid;
- {4-[3-(2-Benzooxazol-2-yl-4-bromo-phenoxy)-propoxy]-phenyl}-acetic acid;
- {4-[3-(2-Benzotriazol-2-yl-4-fluoro-phenoxy)-propoxy]-phenyl}-acetic acid;
- {4-[3-(2-Benzothiazol-2-yl-4-chloro-phenoxy)-propoxy]-phenyl}-acetic acid;
- {4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-3-methoxy-phenyl}-acetic acid;
- {4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-phenyl}-methoxy-acetic acid;
- {4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-3-Bromo-phenyl}-acetic acid;
- {3-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-phenyl}-acetic acid;
- 2-{4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-phenyl}-2-methyl-propionic acid;
- 2-{4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-2-methyl-phenoxy}-2-methyl-propionic acid;
- 2-{4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-2-chloro-phenoxy}-2-methyl-propionic acid;
- 2-{4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-phenyl}-propionic acid;
- {4-[3-(2-Benzooxazol-2-yl-4-thiophen-2-yl-phenoxy)-propoxy]-phenyl}-acetic acid;
- (4-{3-[4-Fluoro-2-(4,5,6,7-tetrahydro-benzotriazol-2-yl)-phenoxy]-propoxy}-phenyl)-acetic acid;
- (4-{3-[2-(4,5,6,7-Tetrahydro-benzotriazol-2-yl)-phenoxy]-propoxy}-phenyl)-acetic acid;
- 4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-3-chloro-benzoic acid;
- {4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-3-chloro-phenoxy}-acetic acid;
- 3-(3-Chloro-4-{3-[2-(4,5,6,7-tetrahydro-benzotriazol-2-yl)-phenoxy]-propoxy}-phenyl)-propionic acid; and
- 3-(3-Chloro-4-{3-[4-chloro-2-(4,5,6,7-tetrahydro-benzotriazol-2-yl)-phenoxy]-propoxy}-phenyl)-propionic acid.
- Particularly preferred compounds of the invention are: {-4-[3-(2-Benzotriazol-2-yl-4-chloro-phenoxy)-propoxy]-phenyl}-acetic acid and {4-[3-(2-benzotriazol-2-yl-4-thiophen-2-yl-phenoxy)-propoxy]-phenyl}-acetic acid.
- All the preferred and most preferred compounds listed above are selective hPPARδ agonists.
- The compounds of the present invention can be prepared in a number of ways familiar to one skilled in the art of organic synthesis. The compounds outlined herein can be synthesized using methods generally outlined in Scheme 1, along with methods typically utilized by a synthetic chemist and combinations or variations of those methods, which are generally known to one skilled in the art of synthetic chemistry. The synthetic route of compounds in the present invention is not limited to the methods outlined below. It is assumed one skilled in the art will be able to use the schemes outlined below to synthesized compounds claimed in this invention. Individual compounds may require manipulation of the condition in order to accommodate various functional groups. A variety of protecting groups generally known to one skilled in the art may be required. Purification, if necessary can be accomplished on a silica gel column eluted with the appropriate organic solvent . Also, reverse phase HPLC or recrystallization may be employed.
- The compounds of formula (I) can be prepared using methods generally outlined in Scheme 1
- According to Scheme 1, electrophilic, aryl compounds of formula (I) (either commercially available or prepared according to known methods or methods outlined below in Scheme 3) are condensed with suitably substituted, nucleophilic aryl compounds ii generally in the presence of solvent and a non-nucleophilic base to provide target compound iii. Alternatively nucleophilic, aryl compounds of formula iv (either commercially available or prepared according to known methods or methods outlined below in Scheme 3) are condensed with suitably substituted, electrophilic aryl compounds v generally in the presence of solvent and a non-nucleophilic base to provide target compound iii. Examples of suitable non-nucleophilic bases include, but are not limited to, potassium carbonate, cesium bicarbonate, sodium hydride and the like.
- The general synthesis schemes below are provided to illustrate the preparation of compounds of Formula (I) in which Z is a carboxylic acid or ester. For example, as shown in Scheme 2 aryl compounds vi (prepared as described below) are condensed with a substituted haloalkylether vii in the presence of cesium carbonate to provide target compounds viii. Similarly, aryl compounds ix (prepared as described below) are condensed with a substituted phenol x in the presence of cesium carbonate to provide target compounds viii. Compounds viii where R1 is halogen can be converted into the corresponding amino-substituted compounds xi (e.g. NR2=tetrahydroisoindoyl or 4-arylpiperidine) or alkynyl compounds xiii by treatment with an appropriately substituted amine or alkyne respectively. Compounds viii where R1 is a benzotriazole can be converted into the corresponding tetrahydrobenzotriazole compounds xii via hydrogenation. Treatment of the target esters viii, xi, xii and xiii (Z═CO2R) with lithium hydroxide converts the esters to carboxylic acid compounds viii, xi, xii and xiii (Z═CO2H).
- As shown in Scheme 3, compounds of formula (I) wherein R1 is aryl can be prepared by treating 4-chloro-aryl compound xiv with 2-thiophene boronic acid to provide aryl substituted compounds, xv.
- The synthesis of such aryl intermediates vi and ix is illustrated in Scheme 4 with intermediates in which Ar1 is a substituted benzene. Thus intermediates xix can be prepared by condensing substituted phenol Y2═O with a dihalo alkyl compound xviii . Functionality Z may be subsequently added by treatment of compound xvi with bromo-acetic acid ethyl ester in the presence of sodium hydride to provide the intermediate compound xix. Alternatively, functionality Z may be carried through as is shown with compound xx. Intermediate aryl compounds xix can be converted to the corresponding bi-aryl derivatives xvi with another substituted phenol such as 2-bromo-4-chloro-phenol. Conversion of compounds xxi to the further functionalized compounds is accomplished as noted in Scheme 2.
- Alternatively as outlined in Scheme 5, compounds of formula xxii can be converted into intermediate xxiii by treatment with a dihaloalkyl compound to form haloalkylether derivative xxiii. This route is particularly useful to form intermediates of formula viii in Scheme 2 which have Ar2 rings functionalized with different R1 groups.
- By using the methods outlined above, target compounds with linking groups of different lengths and functionality can be prepared. Thus, structural isomers, having the Y3 attached at either the 2- or 3-position relative to the phenol hydroxyl group in compound x can be prepared from the corresponding 2- or 3-mercaptophenols.
- Still further, the general schemes outlined in Schemes 1-5 can be used to prepare compounds of Formula (I) in which Ar2 is another ring . To obtain these compounds, the phenols are replaced by the corresponding hydroxy-substituted ring .
- Likewise, the general schemes outlined in Schemes 1-5 can be used to prepare compounds of Formula (I) in which L or K is an alternatively functionalized linking group. To obtain these compounds, mercapto phenols may be replaced with halo phenols or halothiophenols and the resulting halogenated aryl intermediates can be coupled with haloalkyl moieties to give alkyl linking groups.
- Likewise, related compounds with different Ar1 and Ar2 rings and different lengths and substitution of linkers L and K can be prepared in a similar manner beginning with appropriately substituted aryl compounds many of which are available from commercial sources or can be prepared according to literature methods. More specific details are provided in the examples below. In each of Schemes 1-5, reaction conditions (e.g., amounts of reactants, solvents, temperatures and workup conditions) can be selected using the Examples below as a guide.
- The above general synthesis schemes are provided to illustrate the prepared of compounds of Formula (I) in which Z is a carboxylic acid or ester. Conversion of each of these groups into the corresponding alcohols, ethers, nitriles, amides/imides or aldehydes can be accomplished using methods generally known to one of skill in the art. Several methods for reduction (and oxidation) are provided below as illustrative of the processes used in preparing additional compounds of the invention.
- Conversion of Carboxylic Acids into Alcohols, Ethers, Nitrites, Amide/Imides and Aldehydes
- The carboxylic acids of this invention can be converted into the corresponding alcohols, ethers, nitriles, amides/imides and aldehydes by a number of methods, including the routes A-D shown in Scheme 6. The method to be used in a given case depends on the nature of R and the substituents thereon. A variety of useful methods are described in Larock, COMPREHENSIVE ORGANIC TRANSFORMATIONS, VCH Publishers Inc, New York (1989). In particular, methods are described for converting acyl chlorides 32 to aldehydes 33 (p 620), esters 31 to aldehydes 33 (p 621), esters 31 to carbinols 35 (p 549), carboxylic acids 31 to carbinols 35 (p 548), esters 31 to amides/imides 34 (p 987) and esters 31 to nitriles 36 (p 988).
- In method A, Scheme 6, a carboxylic acid 31 is first converted into the corresponding acid chloride 32. This transformation is effected by reacting the acid 31 with oxalyl chloride, phosphorus pentachloride or, preferably, thionyl chloride. The reaction is conducted in an aprotic solvent such as dichloromethane, tetrahydrofuran or, preferably, 1,2-dichloroethane. The acid chloride 32 is then converted into the aldehyde 33 by chemical reduction, such as by the use of sodium borohydride in DMF at −70° C., as described in Tetrahedron Lett. 22:11 (1981) or, more preferably by hydrogenation using 5% palladium on barium sulfate as catalyst (see, for example, J. Amer. Chem. Soc., 108:2608 (1986)). The reaction is conducted in an aprotic solvent such as toluene or, preferably, xylene. The aldehyde 33 is converted into the carbinol 35 by reduction, for example by reaction with 9 BBN, lithium aluminum tritertiarybutoxy hydride or more preferably sodium borohydride, (see, J. Amer. Chem. Soc. 71:122 (1949)). The reaction is conducted in a protic solvent such as ethanol or preferably, isopropanol.
- Alternatively ester 31 can be converted directly into the aldehyde 3 by reduction, for example, by the use of sodium aluminum hydride or preferably, diisobutyl aluminum hydride (see e.g., Synthesis, 617 (1975)). The reaction is conducted in a non-polar solvent such as benzene or, preferably, toluene.
- In method B, Scheme 6, ester 31 is converted into the amide/imide 34 by transesterification with hydroxypyridine and the corresponding amine (see, J.C.S.C. 89 (1969)). The reaction is conducted in an ethereal solvent such as dioxane or, preferably, tetrahydrofuran.
- In method C, Scheme 6, ester 31 is converted into the carbinol 35 by reduction with lithium aluminum hydride or, preferably, with lithium borohydride (see, J. Amer. Chem. Soc., 109:1186 (1987)). The reaction is conducted in an ethereal solvent such as dioxane or, preferably, tetrahydrofuran.
- Alternatively, carboxylic acid 31 can be converted into the carbinol 35. This conversion is effected by reacting the carboxylic acid with a reducing agent such as lithium aluminum hydride or, preferably, with diborane, as described in ORGANIC SYNTHESES, 64:104 (1985). The reaction is conducted in an ethereal solvent such as dioxane or, preferably, tetrahydrofuran.
- The carbinol 35 (R6═H) can be converted into the ether 35 (R6═C1-C8). This transformation is effected by an alkylation reaction, for example by reacting the carbinol 35 with an alkyl chloride (C1-C8)Cl. The reaction is conducted in an aprotic solvent such as dichloromethane or, preferably, tetrahydrofuran, in the presence of an organic base such as triethylamine or, preferably, pyridine.
- In method D, Scheme 6, the ester 31 is converted into the nitrile 36. This conversion is effected by reacting the ester with a dehydrating agent such as dimethylaluminum nitride as described in Tett. Lett., 4907 (1979).
- Furthermore, the tetrazole derivatives may be conveniently prepared by a general process wherein a compound like 36 is coupled to an alcohol using the Mitsunobu protocol (Synthesis 1, (1981).
- Not all compounds of formula I may be compatible with some of the reaction conditions described in the Examples. Such restrictions are readily apparent to those skilled in the art of organic synthesis and alternative methods must then be used.
- Certain of the compounds of the present invention possess one or more chiral centers and each center may exist in the R or S configuration. The present invention includes all diastereomeric, enantiomeric and epimeric forms as well as the appropriate mixtures thereof. For many compounds of the present invention, a single chiral center is present (at the carbon atom bearing R2), resulting in racemic mixtures of enantiomers. As noted above, the present invention further includes compounds, compositions and methods wherein a single isomer (or single enantiomer) is provided or used. Methods of preparing chiral compounds are provided in the Examples. Alternatively, mixtures of enantiomers can be separated into their individual isomers via methods known in the art such as salt formation and crystallization with chiral bases, chiral chromatography (e.g., HPLC using commercially available columns for chiral resolution) and via methods such as simulated moving bed chromatography (see, for example, U.S. Pat. No. 5,518,625).
- In certain preferred embodiments of the invention, the (−)-isomer of the compound of formula (I) is used, which is substantially free of its (+)-isomer. In this context, “substantially free” refers to a compound that is contaminated by less than about 20%, more preferably 10%, still more preferably 5%, even more preferably 2% and most preferably less than about 1% of the undesired isomer. In other preferred embodiments of the invention, the (+)-isomer of the compound of formula (I) is used, which is substantially free of its (−)-isomer.
- Additionally, the compounds of the present invention may exist as geometric isomers. The present invention includes all cis, trans, syn, anti, entgegen (E) and zusammen (Z) isomers as well as the appropriate mixtures thereof.
- In some situations, compounds may exist as tautomers. All tautomers are included within formula (I) and are provided by this invention.
- In addition, the compounds of the present invention can exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol and the like. In general, the solvated forms are considered equivalent to the unsolvated forms for the purposes of the present invention.
- In some embodiments, the compounds of the invention are present in a prodrug form. In particular, the invention also provides, for example, compounds of Formula (I) in which CO2H is esterified to form —CO2R6, wherein R6 is a member selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, —X4OR2, —X4NR2R3, (C2-C8)alkenyl, (C3-C7)cycloalkyl, heterocyclyl, aryl(C1-C4)alkyl and aryl(C2-C8)alkenyl.
- R2 and R3 are members independently selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, —X3OR9, aryl, aryl(C1-C4)alkyl and heteroaryl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring . Each X3 and X4 are members independently selected from the group consisting of (C1-C4)alkylene, (C2-C4)alkenylene and (C2-C4)alkynylene.
- Esters of the compounds of the present invention may be prepared as described herein or according to conventional methods.
- In accordance with the present invention, a therapeutically effective amount of a compound of Formula (I) can be used for the preparation of a pharmaceutical composition useful for treating diabetes, treating hyperlipidemia, treating hyperuricemia, treating obesity, lowering triglyceride levels, lowering cholesterol levels, raising the plasma level of high density lipoprotein and for treating, preventing or reducing the risk of developing atherosclerosis.
- The compositions of the invention can include compounds of Formula (I), pharmaceutically acceptable salts thereof or a hydrolysable precursor thereof. In general, the compound is mixed with suitable carriers or excipient(s) in a therapeutically effective amount. By a “therapeutically effective dose”, “therapeutically effective amount” or, interchangeably, “pharmacologically acceptable dose” or “pharmacologically acceptable amount”, it is meant that a sufficient amount of the compound of the present invention and a pharmaceutically acceptable carrier, will be present in order to achieve a desired result, e.g., alleviating a symptom or complication of Type 2 diabetes.
- The compounds of Formula (I) that are used in the methods of the present invention can be incorporated into a variety of formulations for therapeutic administration. More particularly, the compounds of Formula (I) can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents and can be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, pills, powders, granules, dragees, gels, slurries, ointments, solutions, suppositories, injections, inhalants and aerosols. As such, administration of the compounds can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intratracheal administration. Moreover, the compound can be administered in a local rather than ic manner, in a depot or sustained release formulation. In addition, the compounds can be administered in a liposome.
- The compounds of Formula (I) can be formulated with common excipients, diluents or carriers and compressed into tablets or formulated as elixirs or solutions for convenient oral administration or administered by the intramuscular or intravenous routes. The compounds can be administered transdermally and can be formulated as sustained release dosage forms and the like. Compounds of Formula (I) can be administered alone, in combination with each other or they can be used in combination with other known compounds (see Combination Therapy below).
- Suitable formulations for use in the present invention are found in Remington's Pharmaceutical Sciences (Mack Publishing Company (1985) Philadelphia, Pa., 17th ed.), which is incorporated herein by reference. Moreover, for a brief review of methods for drug delivery, see, Langer, Science (1990) 249:1527-1533, which is incorporated herein by reference. The pharmaceutical compositions described herein can be manufactured in a manner that is known to those of skill in the art, i.e., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. The following methods and excipients are merely exemplary and are in no way limiting.
- For injection, the compounds can be formulated into preparations by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives. Preferably, the compounds of the present invention can be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
- For oral administration, the compounds of Formula (I) can be formulated readily by combining with pharmaceutically acceptable carriers that are well known in the art. Such carriers enable the compounds to be formulated as tablets, pills, dragees, capsules, emulsions, lipophilic and hydrophilic suspensions, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained by mixing the compounds with a solid excipient, optionally grinding a resulting mixture and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents can be added, such as the cross-linked polyvinyl pyrrolidone, agar or alginic acid or a salt thereof such as sodium alginate.
- Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions can be used, which can optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol and/or titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
- Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin or liquid polyethylene glycols. In addition, stabilizers can be added. All formulations for oral administration should be in dosages suitable for such administration.
- For buccal administration, the compositions can take the form of tablets or lozenges formulated in conventional manner.
- For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas or from propellant-free, dry-powder inhalers. In the case of a pressurized aerosol the dosage unit can be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator can be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
- The compounds can be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection can be presented in unit dosage form, e.g., in ampules or in multidose containers, with an added preservative. The compositions can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles and can contain formulator agents such as suspending, stabilizing and/or dispersing agents.
- Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds can be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil or synthetic fatty acid esters, such as ethyl oleate or triglycerides or liposomes. Aqueous injection suspensions can contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol or dextran. Optionally, the suspension can also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient can be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- The compounds can also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter, carbowaxes, polyethylene glycols or other glycerides, all of which melt at body temperature, yet are solidified at room temperature.
- In addition to the formulations described previously, the compounds can also be formulated as a depot preparation. Such long acting formulations can be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds can be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
- Alternatively, other delivery s for hydrophobic pharmaceutical compounds can be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. In a presently preferred embodiment, long-circulating, i.e., stealth liposomes can be employed. Such liposomes are generally described in Woodle, et al., U.S. Pat. No. 5,013,556. The compounds of the present invention can also be administered by controlled release means and/or delivery devices such as those described in U.S. Pat. Nos. 3,845,770; 3,916,899; 3,536,809; 3,598,123; and 4,008,719.
- Certain organic solvents such as dimethylsulfoxide (DMSO) also can be employed, although usually at the cost of greater toxicity. Additionally, the compounds can be delivered using a sustained-release , such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules can, depending on their chemical nature, release the compounds for a few hours up to over 100 days.
- The pharmaceutical compositions also can comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin and polymers such as polyethylene glycols.
- Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in a therapeutically effective amount. The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician. Determination of an effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.
- For any compound used in the method of the present invention, a therapeutically effective dose can be estimated initially from cell culture assays or animal models.
- Moreover, toxicity and therapeutic efficacy of the compounds described herein can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., by determining the LD50, (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effect is the therapeutic index and can be expressed as the ratio between LD50 and ED50. Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a dosage range that is not toxic for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See, e.g., Fingl et al. 1975 In: The Pharmacological Basis of Therapeutics, Ch. 1).
- The amount of active compound that can be combined with a carrier material to produce a single dosage form will vary depending upon the disease treated, the mammalian species and the particular mode of administration. However, as a general guide, suitable unit doses for the compounds of the present invention can, for example, preferably contain between 100 mg to about 3000 mg of the active compound. A preferred unit dose is between 500 mg to about 1500 mg. A more preferred unit dose is between 500 to about 1000 mg. Such unit doses can be administered more than once a day, for example 2, 3, 4, 5 or 6 times a day, but preferably 1 or 2 times per day, so that the total daily dosage for a 70 kg adult is in the range of 0.1 to about 250 mg per kg weight of subject per administration. A preferred dosage is 5 to about 250 mg per kg weight of subject per administration and such therapy can extend for a number of weeks or months and in some cases, years. It will be understood, however, that the specific dose level for any particular patient will depend on a variety of factors including the activity of the specific compound employed; the age, body weight, general health, sex and diet of the individual being treated; the time and route of administration; the rate of excretion; other drugs which have previously been administered; and the severity of the particular disease undergoing therapy, as is well understood by those of skill in the area.
- A typical dosage can be one 10 to about 1500 mg tablet taken once a day or, multiple times per day or one time-release capsule or tablet taken once a day and containing a proportionally higher content of active ingredient. The time-release effect can be obtained by capsule materials that dissolve at different pH values, by capsules that release slowly by osmotic pressure or by any other known means of controlled release.
- It can be necessary to use dosages outside these ranges in some cases as will be apparent to those skilled in the art. Further, it is noted that the clinician or treating physician will know how and when to interrupt, adjust or terminate therapy in conjunction with individual patient response.
- As noted above, the compounds of the present invention will, in some instances, be used in combination with other therapeutic agents to bring about a desired effect. Selection of additional agents will, in large part, depend on the desired target therapy (see, e.g., Turner, N. et al. Prog. Drug Res. (1998) 51: 33-94; Haffner, S. Diabetes Care (1998) 21: 160-178; and DeFronzo, R. et al. (eds.), Diabetes Reviews (1997) Vol. 5 No. 4). A number of studies have investigated the benefits of combination therapies with oral agents (see, e.g., Mahler, R. J. Clin. Endocrinol. Metab. (1999) 84: 1165-71; United Kingdom Prospective Diabetes Study Group: UKPDS 28, Diabetes Care (1998) 21: 87-92; Bardin, C. W.,(ed.), C
URRENT THERAPY IN ENDOCRINOLOGY AND METABOLISM , 6th Edition (Mosby—Year Book, Inc., St. Louis, Mo. 1997); Chiasson, J. et al., Ann. Intern. Med. (1994) 121: 928-935; Coniff, R. et al., Clin. Ther. (1997) 19: 16-26; Coniff, R. et al., Am. J. Med. (1995) 98: 443-451; and Iwamoto, Y. et al., Diabet. Med. (1996) 13 365-370; Kwiterovich, P. Am. J. Cardiol (1998) 82(12A): 3U-17U). These studies indicate that diabetes and hyperlipidemia modulation can be further improved by the addition of a second agent to the therapeutic regimen. Combination therapy includes administration of a single pharmaceutical dosage formulation which contains a compound having the general structure of Formula (I) and one or more additional active agents, as well as administration of a compound of Formula (I) and each active agent in its own separate pharmaceutical dosage formulation. For example, a compound of Formula (I) and an HMG-CoA reductase inhibitor can be administered to the human subject together in a single oral dosage composition, such as a tablet or capsule or each agent can be administered in separate oral dosage formulations. Where separate dosage formulations are used, a compound of Formula (I) and one or more additional active agents can be administered at essentially the same time (i.e., concurrently) or at separately staggered times (i.e., sequentially). Combination therapy is understood to include all these regimens. - An example of combination therapy that modulates (prevents the onset of the symptoms or complications associated) atherosclerosis, wherein a compound of Formula (I) is administered in combination with one or more of the following active agents: an antihyperlipidemic agent; a plasma HDL-raising agent; an antihypercholesterolemic agent, such as a cholesterol biosynthesis inhibitor, e.g., an hydroxymethylglutaryl (HMG) CoA reductase inhibitor (also referred to as statins, such as lovastatin, simvastatin, pravastatin, fluvastatin and atorvastatin), an HMG-CoA synthase inhibitor, a squalene epoxidase inhibitor or a squalene synthetase inhibitor (also known as squalene synthase inhibitor); an acyl-coenzyme A cholesterol acyltransferase (ACAT) inhibitor, such as melinamide; probucol; nicotinic acid and the salts thereof and niacinamide; a cholesterol absorption inhibitor, such as β-sitosterol; a bile acid sequestrant anion exchange resin, such as cholestyramine, colestipol or dialkylaminoalkyl derivatives of a cross-linked dextran; an LDL (low density lipoprotein) receptor inducer; fibrates, such as clofibrate, bezafibrate, fenofibrate and gemfibrizol; vitamin B6 (also known as pyridoxine) and the pharmaceutically acceptable salts thereof, such as the HCl salt; vitamin B12 (also known as cyanocobalamin); vitamin B3 (also known as nicotinic acid and niacinamide, supra); anti-oxidant vitamins, such as vitamin C and E and beta carotene; a beta-blocker; an angiotensin II antagonist; an angiotensin converting enzyme inhibitor; and a platelet aggregation inhibitor, such as fibrinogen receptor antagonists (i.e., glycoprotein IIb/IIIa fibrinogen receptor antagonists) and aspirin. As noted above, the compounds of Formula (I) can be administered in combination with more than one additional active agent, for example, a combination of a compound of Formula (I) with an HMG-CoA reductase inhibitor (e.g., lovastatin, simvastatin and pravastatin) and aspirin or a compound of Formula (I) with an HMG-CoA reductase inhibitor and a β blocker.
- Another example of combination therapy can be seen in treating obesity or obesity-related disorders, wherein the compounds of Formula (I) can be effectively used in combination with, for example, phenylpropanolamine, phenteramine, diethylpropion, mazindol; fenfluramine, dexfenfluramine, phentiramine, β-3 adrenoceptor agonist agents; sibutramine, gastrointestinal lipase inhibitors (such as orlistat) and leptins. Other agents used in treating obesity or obesity-related disorders wherein the compounds of Formula (I) can be effectively used in combination with, for example, neuropeptide Y, enterostatin, cholecytokinin, bombesin, amylin, histamine H3 receptors, dopamine D2 receptors, melanocyte stimulating hormone, corticotrophin releasing factor, galanin and gamma amino butyric acid (GABA).
- Still another example of combination therapy can be seen in modulating diabetes (or treating diabetes and its related symptoms, complications and disorders), wherein the compounds of Formula (I) can be effectively used in combination with, for example, sulfonylureas (such as chlorpropamide, tolbutamide, acetohexamide, tolazamide, glyburide, gliclazide, glynase, glimepiride and glipizide), biguanides (such as metformin), thiazolidinediones (such as ciglitazone, pioglitazone, troglitazone and rosiglitazone); dehydroepiandrosterone (also referred to as DHEA or its conjugated sulphate ester, DHEA-SO4); antiglucocorticoids; TNFα inhibitors; α-glucosidase inhibitors (such as acarbose, miglitol and voglibose), pramlintide (a synthetic analog of the human hormone amylin), other insulin secretogogues (such as repaglinide, gliquidone and nateglinide), insulin, as well as the active agents discussed above for treating atherosclerosis.
- A further example of combination therapy can be seen in modulating hyperlipidemia (treating hyperlipidemia and its related complications), wherein the compounds of Formula (I) can be effectively used in combination with, for example, statins (such as fluvastatin, lovastatin, pravastatin or simvastatin), bile acid-binding resins (such as colestipol or cholestyramine), nicotinic acid, probucol, betacarotene, vitamin E or vitamin C.
- Additionally, an effective amount of a compound of Formula (I) and a therapeutically effective amount of one or more active agents selected from the group consisting of: an antihyperlipidemic agent; a plasma HDL-raising agent; an antihypercholesterolemic agent, such as a cholesterol biosynthesis inhibitor, for example, an HMG-CoA reductase inhibitor, an HMG-CoA synthase inhibitor, a squalene epoxidase inhibitor or a squalene synthetase inhibitor (also known as squalene synthase inhibitor); an acyl-coenzyme A cholesterol acyltransferase inhibitor; probucol; nicotinic acid and the salts thereof; niacinamide; a cholesterol absorption inhibitor; a bile acid sequestrant anion exchange resin; a low density lipoprotein receptor inducer; clofibrate, fenofibrate and gemfibrozil; vitamin B6 and the pharmaceutically acceptable salts thereof; vitamin B12; an anti-oxidant vitamin; a β-blocker; an angiotensin II antagonist; an angiotensin converting enzyme inhibitor; a platelet aggregation inhibitor; a fibrinogen receptor antagonist; aspirin; phentiramines, β-3 adrenergic receptor agonists; sulfonylureas, biguanides, α-glucosidase inhibitors, other insulin secretogogues and insulin can be used together for the preparation of a pharmaceutical composition useful for the above-described treatments.
- In addition, the present invention provides for kits with unit doses of the compounds of Formula (I), either in oral or injectable doses. In addition to the containers containing the unit doses will be an informational package insert describing the use and attendant benefits of the drugs in alleviating symptoms and/or complications associated with Type 2 diabetes as well as in alleviating hyperlipidemia and hyperuricemia or for alleviating conditions dependent on PPAR. Preferred compounds and unit doses are those described herein above.
- For the compositions, methods and kits provided above, one of skill in the art will understand that preferred compounds for use in each are those compounds that are preferred above and particularly those compounds provided in formula (I) in
FIGS. 1A-1D . Still further preferred compounds for the compositions, methods and kits are those compounds provided in the Examples below. -
- To a mixture of 1,3-dibromopropane (3 eq) and 4-mercapto-2-methyl-phenol (1 eq) in MeCN was added Cs2CO3 (1 eq), the mixture was stirred at room temperature for 4 hrs. Ethyl bromoacetate (1.2 eq) was added followed by addition of Cs2CO3 (1.2 eq), the mixture was stirred for another 4 hours. The mixture was filtrated through Celite and washed with ethyl acetate. The solvent was evaporated and the residue was purified by flash chromatography on silica gel to give the desired compound 10.
-
- The same protocol as described for compound 10 was applied using 1,2-dibromoethane to give compound 20.
-
- To a mixture of 1,3-dibromopropane (3 eq) and 4-chloro-2-benzotriazol-2-yl-phenol (1 eq) in MeCN was added Cs2CO3 (1 eq). The mixture was stirred at room temperature for 4 hrs. The mixture was filtrated through Celite and washed with ethyl acetate. The solvent was evaporated and the residue was purified by flash chromatography on silica gel to give desired compound 30.
-
- The same protocol as described for compound 10 was applied using 1-chloro-3-bromopropane to give compound 37.
-
- To a solution of Compound 37 in acetone was added NaI (3 eq.), the resulting mixture was refluxed over night. The reaction mixture was cooled to room temperature and diluted with water. The precipitate was filtered and washed with water. The solid was air dried to yield compound 38.
-
- The same protocol as described for compound 30 was applied using 1,2-dibromoethane to give compound 40.
-
- In a round-bottomed flask was placed 4-hydroxyphenyl acetic acid (10.0 g, 65.7 mmol), ethanol (120 ml) and conc. H2SO4 (1 ml). The mixture was heated at reflux for 1 hr and was then allowed to cool to room temperature. The mixture was carefully neutralized with aqueous NaHCO3. Most of the ethanol was removed in vacuum. The aqueous phase was extracted with EtOAc, which was washed well with H2O and dried over Na2SO4. Evaporation of the solvent gave the desired compound as an oil (11.8 g, 100%). 1H NMR (400 MHz, CDCl3) δ 7.13 (d, 2H), 6.76 (d, 2H), 5.10 (s, 1H), 4.15 (q, 2H), 3.36 (s, 2H), 1.26 (t, 3H).
-
- A mixture of (4-hydroxy-phenyl)-acetic acid ethyl ester (5.8 g, 32.2 mmol), 1,3-dibromopropane (16.3 ml, 5 eq.) and Cs2CO3 (12.6 g, 1.2 eq.) in CH3CN (100 ml) was stirred at room temperature overnight. The solid was filtered off and the filtrate was concentrated in vacuum. The crude product was purified on silica gel (Combiflash, 120g cartridge, 5% to 25% EtOAc in hexanes in 20 min) to give 7.7 g (80%) of the desired compound as an oil. 1H NMR (400 MHz, CDCl3) δ 7.20 (d, 2H), 6.86 (d, 2H), 4.12 (q, 2H), 4.08 (t, 2H), 3.60 (t, 2H), 3.55 (s, 2H), 2.31 (m, 2H), 1.25 (t, 3H).
-
- The same protocol as described for compound 60 was applied using (4-hydroxy-phenyl)-acetic acid methyl ester, 1,3-dibromopropane to yield compound 61.
-
- A mixture of [4-(3-bromo-propoxyl)-phenyl]-acetic acid ethyl ester (2.0 g, 6.64 mmol), 2-bromo-4-chloro-phenol (1.52 g, 1.1 eq.) and Cs2CO3 (2.6 g, 1.2 eq.) in CH3CN (30 ml) was heated to reflux for 1 hr. After cooling to room temperature, the solid was filtered off and the filtrate was concentrated in vacuum. The crude product was purified on silica gel (Combiflash, 120g cartridge, 10% to 25% EtOAc in hexanes in 15 min) to give 2.64 g (96%) of the desired compound as a clear oil. 1H NMR (400 MHz, CDCl3) δ 7.52 (s, 1H), 7.21 (d, 1H), 7.18 (d, 2H), 6.88 (d, 2H), 6.83 (d, 1H), 4.19 (m, 4H), 4.13 (q, 2H), 3, 56 (s, 2H), 2.29 (m, 2H), 1.24 (t, 3H).
-
- To a mixture of 3-chloro-4-hydroxy-benzaldehyde (1.57 g, 10 mmol) and compound 30 (3.67 g, 10 mmol) in MeCN (40 mL) was added Cs2CO3 (3.91 g g, 24 mmol). The mixture was stirred at room temperature for 4 hrs. The mixture was filtrated through Celite and washed with ethyl acetate. The solvent was evaporated and the residue was purified by flash chromatography on silica gel to give 3.5 g desired 80.
-
- To a solution of compound 80 (0.88 g, 2 mmol) in toluene (10 mL) was added (triphenylphosphanylidene)-acetic acid ethyl ester (0.84 g, 2.4 mmol). The mixture was refluxed for 3 hrs, cooled to room temperature and evaporated. The residue was purified by flash column on silica gel to give 0.6 g of compound 81.
-
- To compound 80 (2 g, 4.5 mmol), in CH2Cl2 (30 mL) was added mCPBA (1.67 g, 70%, 6.75 mmol) at 0° C. The mixture was stirred over night at room temperature, quenched with aqueous Na2S2O3, washed with NaHCO3, brine and dried over Na2SO4. The volatile was evaporated. The residue was purified by flash chromatography on silica gel to give 0.65 g intermediate 82.
-
- To a mixture of [4-(3-bromo-propylsulfanyl)-2-methyl-phenoxy]-acetic acid ethyl ester (139 mg, 0.4 mmol) and 2-benzotriazole-2-yl-4-chloro-phenol (108 mg, 0.44 mmol) in MeCN (3 mL) was added Cs2CO3 (156 mg, 0.48 mmol). The mixture was stirred at room temperature for 4 hrs. The mixture was filtrated through Celite and washed with ethyl acetate. The solvent was evaporated and the residue was purified by flash chromatography on silica gel to give 145 mg of the desired ester.
-
- To a solution of the ester in THF (2 mL) was added aqueous LiOH (1.5 mL, 1.5 mmol). The mixture was stirred at room temperature for 1 hr, acidified with 1N HCl, extracted with EtOAc. The organic phase was washed with brine, dried and concentrated. The residue was recrystallized from hexanes and ethyl acetate to give 75 mg of
compound 100 as a white solid. 1H NMR (400 MHz, CDCl3) δ 9.4 (1H, br), 7.96-7.9 (2H, m), 7.71 (1H, d, J=2.4 Hz), 7.46˜7.4 (2H, m), 7.39 (1H, d, J=2.4 Hz), 7.11 (1H, d, J=2 Hz), 7.01˜6.99 (2H, m), 6.47 (1H, d, J=8.4 Hz), 4.61 (2H, s), 4.1 (2H, t, J=5.8 Hz), 2.88 (2H, t, J=7 Hz), 2.16 (3H, s), 1.96˜1.89 (2H, m). -
- The same protocol as described for
compound 100 was applied using compound 10 and 2-benzothiazol-2-yl-4-chloro-phenol to yield compound 200. 1H NMR (400 MHz, CDCl3) δ 10.2 (1H, br), 8.45 (1H, d, J=2.4 Hz), 8.08 (1H, d, J=3.6 Hz), 7.89˜7.86 (1H, m), 7.5˜7.48 (1H, m), 7.39˜7.37 (1H, m), 7.29 (1H, dd, J=8.8, 2.8 Hz), 7.21˜7.2 (1H, m), 7.16 (1H, dd, J=8, 2.4 Hz) 6.83 (1H, d, J=9.2 Hz), 6.56 (1H, d, J=8.4 Hz), 4.62 (2H, s), 4.2 (2H, t, J=5.8 Hz), 3.15 (2H, t, J=6.8 Hz), 2.26˜2.2 (2H, m), 2.17 (3H, s). -
- The same protocol as described for
compound 100 was applied using compound 10 and 2-benzooxazol-2-yl-4-bromo-phenol to yieldcompound 300. 1H NMR (400 MHz, DMSO) δ 13 (1H, br), 8.12 (1H, d, J=2.8 Hz), 7.77˜7.73 (1H, m), 7.71 (1H, d, J=2.8 Hz), 7.65˜7.62 (1H, m), 7.44˜7.38 (2H, m), 7.21 (1H, d, J=8.8 Hz), 7.17˜7.15 (1H, m), 7.12 (1H, dd, J=8, 2.6 Hz), 6.65 (1H, d, J=8.4 Hz), 4.62 (2H, s), 4.22 (2H, t, J=5.6 Hz), 3.17 (2H, t, J=7.2 Hz), 2.03˜1.98 (2H, m), 2.03 (3H, s). -
- The same protocol as described for
compound 100 was applied using of [4-(2-bromo-ethylsulfanyl)-2-methyl-phenoxy]-acetic acid ethyl ester and 2-benzotriazole-2-yl-4-chloro-phenol to yieldcompound 400. 1H NMR (400 MHz, CDCl3) δ 9 (1H, br), 7.96˜7.92 (2H, m), 7.69 (1H, d, J=2.8 Hz), 7.46˜7.4 (2H, m), 7.38 (1H, dd, J=9.2, 2.8 Hz), 7.16˜7.15 (1H, m), 7.1 (1H, dd, J=8.4, 2.4 Hz), 6.97 (1H, d, J=8.8 Hz), 6.53 (1H, d, J=8.4 Hz), 4.61 (2H, s), 4.12 (2H, t, J=7 Hz), 3.04 (2H, t, J=7 Hz), 2.19 (3H, s). -
- To a mixture of 4-hydroxy-phenyl-acetic acid methyl ester (100 mg, 0.6 mmol) and compound 30 (220 mg, 0.6 mmol) in MeCN (3 mL) was added Cs2CO3 (234 mg , 0.72 mmol). The mixture was stirred at room temperature for 4 hrs. The mixture was filtrated through Celite and washed with ethyl acetate. The solvent was evaporated and the residue was purified by flash chromatography on silica gel to give 210 mg desired ester 490.
-
- To a solution of the ester 490 in THF (2 mL) was added aqueous LiOH (1.8 mL, 1.8 mmol). The mixture was stirred at room temperature for 1 hr, acidified with 1N HCl and extracted with EtOAc. The organic phase was washed with brine, dried and concentrated. The residue was recrystallized from hexanes and ethyl acetate to give 110 mg of
compound 500 as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.92˜7.88 (2H, m), 7.7 (1H, d, J=2.8 Hz), 7.43˜7.38 (3H, m), 7.12˜7.06 (3H, m), 6.75˜6.(2H, m), 4.21 (2H, t, J=6.2 Hz), 3.96 (2H, t, J=6.2 Hz), 3.55 (2H, s), 2.15˜2.09 (2H, m). -
- The same protocol as described for
compound 500 was applied using 4-hydroxy-3-propyl-phenyl-acetic acid methyl and compound 30 to yieldcompound 600. 1H NMR (400 MHz, CDCl3) δ 7.92˜7.88 (2H, m), 7.71 (1H, d, J=2.8 Hz), 7.44˜7.38 (3H, m), 7.09 (1H, d, J=8.8 Hz), 7 (1H, d, J=2.4 Hz), 6.96 (1H, dd, J=8, 2.4 Hz), 6.62 (1H, d, J=8.8 Hz), 4.24 (2H, t, J=6.2 Hz), 3.95 (2H, t, J=6 Hz), 3.53 (2H, s), 2.49 (1H, t, J=7.6 Hz), 2.16-2.12 (2H, m), 1.56˜1.46 (2H, m), 0.87 (3H, t, J=7.8 Hz). -
- The same protocol as described for
compound 500 was applied using 3-chloro-4-hydroxy-phenyl-acetic acid methyl and compound 30 to yieldcompound 700. 1H NMR (400 MHz, CDCl3) δ 7.94˜7.88 (2H, m), 7.7 (1H, d, J=2.8 Hz), 7.46˜7.41 (3H, m), 7.25 (1H, d, J=2 Hz), 7.13 (1H, d, J=8.8 Hz), 6.98 (1H, dd, J=8.8, 2.4 Hz), 6.7 (1H, d, J=8.8 Hz), 4.28 (2H, t, J=6.4 Hz), 4.03 (2H, t, J=6 Hz), 3.53 (2H, s), 2.21˜2.15 (2H, m). -
- The same protocol as described for
compound 500 was applied using 4-hydroxy-phenyl-acetic acid methyl and compound 40 to yieldcompound 800. 1H NMR (400 MHz, CDCl3) δ 7.94˜7.88 (2H, m), 7.73 (1H, d, J=2.4 Hz), 7.48˜7.4 (3H, m), 7.19 (1H, d, J=9.2 Hz), 7.06˜7.02 (2H, m), 6.76˜6.72 (2H, m), 4.39 (2H, t, J=5 Hz), 4.21 (2H, t, J=5 Hz), 3.53 (2H, s). - The same protocol as described for
compound 500 was applied using 4-hydroxy-3-propyl-phenyl-acetic acid methyl and compound 30 to yieldcompound 900. 1H NMR (400 MHz, CDCl3) 8 1H NMR (400 MHz, CDCl3) δ 7.94˜7.88 (2H, m), 7.72 (1H, d, J=2.8 Hz), 7.46˜7.38 (3H, m), 7.17 (1H, d, J=9.2 Hz), 6.94 (1H, d, J=2.4 Hz), 6.86 (1H, dd, J=8.4, 2 Hz), 6.64 (1H, d, J=8 Hz), 4.38 (2H, t, J=5 Hz), 4.18 (2H, t, J=5 Hz), 3.49 (2H, 3), 2.37 (2H, t, J=7.6 Hz), 1.44˜1.38 (2H, m), 0.77 (3H, t, J=7.4 Hz). -
- The same protocol as described for compound 10 was applied using (4-hydroxy-phenoxy)-acetic acid methyl and compound 30 to yield compound 1000. 1H NMR (400 MHz, CDCl3) δ 7.94˜7.88 (2H, m), 7.71 (1H, d, J=2.8 Hz), 7.6˜7.42 (3H, m), 7.11 (1H, d, J=9.2 Hz), 6.81˜6.76 (2H, m), 6.74˜6.69 (2H, m), 4.38 (2H, t, J=5 Hz), 4.6 (2H, s), 4.24 (2H, t, J=6 Hz), 3.94 (2H, t, J=6.2 Hz), 2.16˜2.09 (2H, m).
-
- The mixture of compound 490 (451 mg, 1 mmol), palladium acetate (6.7 mg, 0.03 mmol), biphenyl-2-yl-di-tert-butyl-phosphine (18 mg, 0.06 mmol), potassium fluoride (174 mg, 3 mmol) and 2-thiopheneboronic acid (192 mg, 1.5 mmol) in anhydrous toluene (3 mL) was heated at 110° C. under N2 for 48 hours. The mixture was filtered through a pad of Celite and washed with EtOAc. The organic phase was washed with aqueous NaHCO3, brine, dried over NaSO4 and evaporated. The residue was purified by chromatography on silica gel to yield 0.18 g desired ester.
-
- To a solution of the ester 1090 in THF (5 mL) was added aqueous LiOH (1 mL, 1 mmol). The mixture was stirred at room temperature for 1 hr, acidified with 1N HCl and extracted with EtOAc. The organic phase was washed with brine, dried and concentrated. The residue was purified by chromatography on silica gel to yield 0.13 g compound 1100. 1H NMR (400 MHz, DMSO) δ 7.98˜7.94 (3H, m), 7.86 (1H, dd, J=8.8, 2.4 Hz), 7.54˜7.46 (4H, m), 7.44 (1H, d, J=8.8 Hz), 7.13-7.08 (3H, m), 6.76-6.7 (2H, m), 4.26 (2H, t, J=6 Hz), 3.93 (2H, t, J=6.4 Hz), 3.46 (2H, s), 2.94˜1.96 (2H, m).
-
- The mixture of 0.9
g compound 490, 100 mg 10% Pd/C in EtOAc (20 ml) was hydrogenated under H2 for 3 hours. The mixture was filtered through a pad of Celite, washed with EtOAc, the solvent was evaporated and residue was purified by chromatography to afford 0.6 g desired ester. -
- To a solution of the ester in THF (5 mL) was added aqueous LiOH (1 mL, 1 mmol). The mixture was stirred at room temperature for 1 hr, acidified with 1N HCl and extracted with EtOAc. The organic phase was washed with brine, dried and concentrated. The residue was purified by chromatography on silica gel to yield 0.13
g compound 1200. 1H NMR (400 MHz, CDCl3) δ 7.53 (1H, d, J=2.8 Hz), 7.29 (1H, dd, J=8.8, 2.8 Hz), 7.18˜7.14 (2H, m), 7 (1H, d, J=8.8 Hz), 6.84˜6.8 (2H, m), 4.19 (2H, t, J=6 Hz), 4.06 (2H, t, J=6.2 Hz), 3.57 (2H, s), 2.77˜2.73 (4H, m), 2.22-1.96 (2H, m), 1.87˜1.83 (4H, m). -
- A mixture of compound 70 (350 mg, 0.85 mmol), phenyl acetylene (121 μl, 1.3 eq.), PdCl2(PPh3)2 (60 mg) and CuI (33 mg) in a mixed solvent of Et3N and THF (15 ml) in a capped pressured flask under nitrogen was heated at 80° C. overnight. After cooling, the solvent was removed in vacuo. The residue was purified on silica gel to give the desired compound.
-
- To a solution of the ester 1290 in THF (2 ml) was added aqueous LiOH (1.5 ml). The mixture was stirred at r.t. for 1 hr. Then it was acidified with 1N HCl and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4 and concentrated. The residue was purified on silica gel to give the title compound as a pale yellow solid. 1H NMR (400 MHz, CDCl3) δ 7.52-7.45 (m, 3H), 7.33-7.31 (m, 3H), 7.24-7.13 (m, 3H), 6.89-6.82 (m, 3H), 4.21 (m, 4H), 3.55 (s, 2H), 2.29 (m, 2H).
-
- Using the same protocol as described for compound 1300,
compound 1400 was synthesized via coupling with 1-ethynyl-3-methoxybenzene. 1H NMR (400 MHz, CDCl3) δ7.45 (s, 1H), 7.24-6.83 (m, 10H), 4.22 (m, 4H), 3.77 (s, 3H), 3.56 (s, 2H), 2.31 (m, 2H). -
- Using the same protocol as described for compound 1300,
compound 1500 was synthesized via coupling with 2-ethynyl-pyridine. 1H NMR (400 MHz, CDCl3) δ 8.58 (br, 1H), 7.64 (m, 1H), 7.51-7.45 (m, 2H), 7.28-7.24 (m, 2H), 7.16-7.13 (m, 2H), 6.88-6.85 (m, 3H), 4.23 (m, 4H), 3.53 (s, 2H), 2.32 (m, 2H). -
- A mixture of 4-chloro-2-(4-methyl-benzotrizol-2-yl)-phenol (93 mg, 0.36 mmol), [4-(3-bromo-propoxyl)-phenyl]-acetic acid ethyl ester (130 mg, 1.2 eq.) and Cs2CO3 (140 mg, 1.2 eq.) in CH3CN (10 ml) was heated to reflux for 1 hr. After cooling to r.t., the solid was filtered off and the filtrate was concentrated in vacuo. The crude product was purified on silica gel to give the desired compound.
-
- To a solution of the ester 1590 in THF (2 ml) was added aqueous LiOH (1.5 ml). The mixture was stirred at r.t. for 1 hr. Then it was acidified with 1N HCl and extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4 and concentrated. The residue was purified on silica gel to give the title compound as a white solid. 1H NMR (400 MHz, DMSO) δ 12.20 (br, 1H), 7.80 (d, 1H), 7.73 (d, 1H), 7.65 (dd, 1H), 7.43-7.23 (m, 2H), 7.24 (d, 1H), 7.06 (d, 2H), 6.70 (d, 2H), 4.22 (t, 2H), 3.92 (t, 2H), 3.44 (s, 2H), 2.55 (s, 3H), 1.98 (m, 2H).
-
-
Compound 1700 was synthesized using the same protocol as described for compound 1600. 1H NMR (400 MHz, DMSO) δ93-7.90 (m, 3H), 7.82 (d, 1H), 7.66 (dd, 1H), 7.48-7.43 (m, 4H), 6.99 (d, 1H), 6.93 (dd, 1H), 5.19 (s, 2H), 4.26 (t, 2H), 3.94 (t, 2H), 2.00 (m, 2H). -
-
Compound 1800 was synthesized using the same protocol as described for compound 1700 starting with an indole compound. 1H NMR (400 MHz, DMSO) δ 7.93-7.90 (m, 3H), 7.82 (d, 1H), 7.66 (dd, 1H), 7.28-7.2 (m, 4H), 7.17 (d, 1H), 6.78 (dd, 1H), 5.19 (s, 2H), 4.3 (t, 2H), 3.9 (t, 2H), 2.00 (m, 2H). -
- Compound 1900 was synthesized using the same protocol as described for compound 1700 starting with an indole compound. 1H NMR (400 MHz, DMSO) δ 7.97-7.90 (m, 3H), 7.81 (d, 1H), 7.7 (dd, 1H), 7.28-7.2 (m, 5H), 6.78 (dd, 1H), 5.19 (s, 2H), 4.3 (t, 2H), 4.1 (t, 2H).
-
- The same protocol as described for
compound 500 was applied using 2-(4-Hydroxy-2-methyl-phenoxy)-2-methyl-propionic acid ethyl ester and compound 30 to yieldcompound 5800. 1H NMR (400 MHz, DMSO) δ 7.96˜7.9 (2H, m), 7.81 (1H, d, J=2.8 Hz), 7.65 (1H, dd, J=9.2, 2.8 Hz), 7.52˜7.46 (2H, m), 7.42 (1H, d, J=9.2 Hz), 6.62 (1H, d, J=9.2 Hz), 6.61 (1H, s), 6.44 (1H, d, J=8.8, 3.2 Hz), 4.21 (2H, t, J=6 Hz), 3.83 (2H, t, J=6.4 Hz), 2.07 (3H, s), 1.98-1.9 (2H, m), 1.41 (6H, s). -
- The same protocol as described for
compound 500 was applied using 2-(2-chloro-4-Hydroxy-phenoxy)-2-methyl-propionic acid ethyl ester and compound 30 to yieldcompound 7400. 1H NMR (400 MHz, DMSO) δ 13.09 (1H, br), 7.94˜7.92 (2H, m), 7.81 (1H, d, J=2.4 Hz), 7.65 (1H, dd, J=8.8, 2.8 Hz), 7.49˜7.47 (2H, m), 7.42 (1H, d, J=9.6 Hz), 6.90 (1H, d, J=9.2 Hz), 6.91 (1H, s), 6.66 (1H, dd, J=8.8, 3.2 Hz), 4.21 (2H, t, J=6 Hz), 3.89 (2H, t, J=6.4 Hz), 1.97˜1.94 (2H, m), 1.44 (6H, s). -
- The same protocol as described for
compound 100 was applied using compound 60A and 2-benzotriazol-2-yl-4-fluoro-phenol to yieldcompound 12210. 1H NMR (400 MHz, DMSO) δ 7.96˜7.9 (2H, m), 7.67 (1H, dd, J=8.4, 2.8 Hz), 7.52˜7.46 (3H, m), 7.43 (1H, dd, J=9.6, 5.2 Hz), 7.08 (2H, d, J=8.4 Hz), 6.7 (2H, d, J=8.8 Hz), 4.2 (2H, t, J=6 Hz), 3.89 (2H, t, J=6.4 Hz), 3.45 (2H, s), 2˜1.92 (2H, m). -
- To a solution of Compound 490 (0.45 g, 1 mmol) in THF (15 mL) was added KHMDS (3 mL, 1.5 mmol) at −78° C. under N2. The mixture was stirred at −78° for 0.5 hr and MeI (0.56 g, 4 mmol) was added. The mixture was stirred at −78° for 2 hrs and was quenched with saturated aqueous NH4Cl, diluted with EtOAc organic layer was dried over NaSO4, evaporated and the residue was purified by flash chromatography on silica gel to afford 0.36 g desired product.
- To a solution of compound obtained above (0.36 g, 0.77 mmol) in THF (4 mL) was added aqueous LiOH (2 mL, 2 mmol). The mixture was stirred at room temperature for 2 hrs, acidified with 1N HCl, extracted with EtOAc. The organic phase was washed with brine, dried and concentrated. The residue was recrystallized from hexanes and ethyl acetate to give 0.3 g of compound as a white solid. 1H NMR (400 MHz, DMSO) δ 7.96˜7.9 (2H, m), 7.81 (1H, d, J=2.8 Hz), 7.65 (1H, dd, J=9.2, 2.8 Hz), 751˜7.46 (2H, m), 7.42 (1H, d, J=9.2 Hz), 7.12˜7.08 (2H, m), 6.74˜6.68 (2H, m), 4.22 (2H, t, J=6 Hz), 3.9 (2H, t, J=6.4 Hz), 3.56 (1H, q, J=7.2 Hz), 2˜1.92 (2H, m), 1.3 (3H, d, J=6.8 Hz).
-
- The same protocol as described for
compound 500 was applied using 2-(4-Hydroxy-phenyl)-2-methyl-propionic acid methyl ester and compound 30 to yieldcompound 13100. 1H NMR (400 MHz, CDCl3) δ 7.92˜7.87 (2H, m), 7.71 (1H, d, J=2.4 Hz), 7.46˜7.4 (3H, m), 7.24˜7.2 (2H, m), 7.09 (1H, d, J=9.2 Hz), 6.76˜6.7 (2H, m), 4.23 (2H, t, J=6 Hz), 3.97 (2H, t, J=6.4 Hz), 2.18˜2.1 (2H, m), 1.56 (6H, s). -
- The same protocol as described for
compound 100 was applied using compound 10 and 3-benzooxazol-2-yl-phenol to yield compound 21200. 1H NMR (400 MHz, DMSO) δ 7.82˜7.74 (3H, m), 7.66 (1H, s), 7.50 (1H, t, J=8 Hz), 7.46˜7.37 (2H, m), 7.23˜7.14 (3H, m), 6.75 (1H, d, J=8.4 Hz), 4.64 (2H, s), 4.16 (2H, t, J=6 Hz), 3.02 (2H, t, J=7 Hz), 2.13 (3H, s), 2˜1.9 (2H, m). -
- The same protocol as described for
compound 100 was applied using compound 10 and 3-(4,5-Dimethyl-oxazol-2-yl)-phenol to yield compound 21300. 1H NMR (400 MHz, DMSO) δ 7.46˜7.34 (3H, m), 7.2 (1H, s), 7.16 (1H, dd, J=8.4, 2 Hz), 6.99 (1H, dd, J=8.4, 2 Hz), 6.75 (1H, d, J=8.8 Hz), 4.64 (2H, s), 4.09 (2H, t, J=6 Hz), 2.99 (2H, t, J=7.2 Hz), 2.29 (3H, s), 2.13 (3H, s), 2.07 (3H, s), 1.98˜1.9 (2H, m). -
- The same protocol as described for
compound 500 was applied using 4-hydroxy-3-methoxy-phenyl-acetic acid methyl ester and compound 30 to yield compound 21400. 1H NMR (400 MHz, CDCl3) δ 7.92˜7.88 (2H, m), 7.7 (1H, d, J=2.8 Hz), 7.45-7.41 (3H, m), 7.10 (1H, d, J=2 Hz), 6.76 (1H, m), 6.66 (1H, d, J=1.2 Hz), 4.25 (2H, t, J=6.4 Hz), 4.03 (2H, t, J=6 Hz), 3.79 (3H, s), 3.56 (2H, s), 2.19 (2H, m). -
- The same protocol as described for
compound 500 was applied using 3-Bromo-4-hydroxy-phenyl-acetic acid methyl ester and compound 30 to yield compound 21500. 1H NMR (400 MHz, DMSO) δ 7.96˜7.9 (2H, m), 7.81 (1H, d, J=2.8 Hz), 7.66 (1H, dd, J=9.2, 2.8 Hz), 7.52˜7.46 (2H, m), 7.43 (1H, d, J=8.8, 2 Hz), 7.11 (1H, dd, J 8.4, 1.6 Hz), 6.82 (1H, d, J=8.8 Hz), 4.27 (2H, t, J=6 Hz), 3.99 (2H, t, J=6 Hz), 3.47 (2H, s), 2.14-2.08 (2H, m). -
- The same protocol as described for
compound 500 was applied using 3-hydroxy-phenyl-acetic acid methyl ester and compound 30 to yield compound 21600. 1H NMR (400 MHz, CDCl3) δ 7.94˜7.88 (2H, m), 7.71 (1H, d, J=2.4 Hz), 7.46˜7.4 (3H, m), 7.17 (1H, t, J=8 Hz), 7.1 (1H, d, J=9.2 Hz), 6.83 (1H, d, J=7.2 Hz), 6.75 (1H, t, J=2 Hz), 6.72˜6.68 (1H, m), 4.23 (2H, t, J=6 Hz), 3.92 (2H, t, J=6 Hz), 3.56 (3H, s), 2.18˜2.1 (2H, m). -
- The same protocol as described for
compound 100 was applied using compound 60 and 2-benzothiazol-2-yl-4-chloro-phenol to yield compound 21700. 1H NMR (400 MHz, DMSO) δ 8.38 (1H, d, J=2.8 Hz), 8.06 (2H, d, J=8.8 Hz), 7.57 (1H, dd, J=8.8, 2.8 Hz), 7.54 (1H, t, J=8.4 hz), 7.44 (1H, t, J=8.4 Hz), 7.13 (2H, d, J=8.8 Hz), 6.99 (2H, d, J=8.4 Hz), 4.44 (2H, t, J=6 Hz), 4.25 (2H, t, J=6 Hz), 3.45 (2H, s), 2.42˜2.34 (2H, m). -
- The same protocol as described for
compound 100 was applied using compound 60 and 2-Benzooxazol-2-yl-4-bromo-phenol to yield compound 21800. 1H NMR (400 MHz, CDCl3) δ 8.25 (1H, d, J=2.4 Hz), 7.79˜7.74 (1H, m), 7.56 (1H, dd, J=8.8, 2.8 Hz), 7.52˜7.47 (1H, m), 7.37˜7.32 (2H, m), 7.17˜7.12 (2h, m), 6.97 (1H, d, J=8.8 Hz), 6.88˜6.84 (2H, m), 4.31 (2H, t, J=6 Hz), 4.27 (2H, t, J=6.4 Hz), 3.56 (2H, s), 2.18˜2.1 (2H, m). -
- The same protocol as described for compound 1100 was applied using ester of compound 21800 to yield compound 21900. 1H NMR (400 MHz, CDCl3) δ 8.35 (1H, d, J=2.4 Hz), 7.8˜7.77 (1H, m), 7.7 (1H, dd, J=8.8, 2.4 Hz), 7.54˜7.5 (1H, m), 7.36˜7.32 (3H, m), 7.28˜7.26 (1H, m), 7.15 (2H, d, J=9.2 Hz), 7.11 (1H, d, J=9.2 Hz), 7.08 (1H, dd, J=5.2, 3.2 Hz), 4.36 (2H, t, J=6.4 Hz), 4.29 (2H, t, J=6.4 Hz), 3.57 (2H, s), 2.4˜2.34 (2H, m).
-
- The mixture of
compound 500, 10% Pd/C in EtOAc was hydrogenated under H2 (50Psi) for 24 hours. The mixture was filtered through a pad of Celite, washed with EtOAc, the solvent was evaporated and residue was purified by chromatography to afford desired product. 1H NMR (400 MHz, DMSO) δ 12.21 (1H, br), 7.45˜7.38 (2H, m), 7.26 (1H, d, J=8 Hz), 7.13 (2H, d, J=8.4 Hz), 707˜7.02 (1H, m), 6.81 (2H, d, J=8.4 Hz), 4.17 (2H, t, J=6 Hz), 4.03 (2H, t, J=6 Hz), 3.46 (2H, s), 2.68˜2.6 (4H, m), 2.08˜2 (2H, m), 1.8˜1.72 (4H, m). -
- The same protocol as described for compound 1200 was applied using ester of
compound 12210 to yield compound 22100. 1H NMR (400 MHz, CDCl3) δ 7.3 (1H, dd, J=8.4, 2.4 Hz), 7.16 (2H, d, J=8.4 Hz), 7.06˜7 (2H, m), 6.82 (2H, d, J=8.8 Hz), 4.17 (2H, t, J=6 Hz), 4.06 (2H, t, J=6 Hz), 3.57 (2H, s), 2.78˜2.7 (4H, m), 2.22˜2.14 (2H, m), 1.1.9˜1.8 (4H, m). -
- The same protocol as described for
compound 100 was applied using compound 60 and 4-Chloro-2-(4,5-dimethyl-[1,2,3]triazol-2-yl)-phenol to yield compound 22200. 1H NMR (400 MHz, CDCl3) δ 7.51 (1H, d, J=2.4 Hz), 7.29 (1H, dd, J=9, 2.6 Hz), 7.18˜7.14 (2H, m), 6.99 (1H, d, J=8.8 Hz), 6.84˜6.8 (2H, m), 4.18 (2H, t, J=6 Hz), 4.05 (2H, t, J=6.4 Hz), 3.57 (2H, s), 2.27 (6H, s), 2.22˜2.16 (2H, m). -
- The same protocol as described for
compound 500 was applied using (4-Hydroxy-phenyl)-methoxy-acetic acid Methyl ester and compound 30 to yield compound 22300. 1H NMR (400 MHz, DMSO) δ 12.73 (1H, br), 7.94˜7.89 (2H, m), 7.81 (1H, d, J=2.8 Hz), 7.66 (1H, dd, J=9.2, 2.8 Hz), 7.5˜7.44 (2H, m), 7.43 (1H, d, J=9.6 Hz), 7.24˜7.19 (2H, m), 6.78˜6.74 (2H, m), 4.65 (1H, s), 4.23 (2H, t, J=6 Hz), 3.92 (2H, t, J=6 Hz), 3.25 (3H, s), 2.02˜1.94 (2H, m). -
- To compound 80 (2 g, 4.5 mmol), in CH2Cl2 (30 mL) was added mCPBA (1.67 g, 70%, 6.75 mmol) at 0° C. The mixture was stirred over night at room temperature, quenched with aqueous Na2S2O3, washed with NaHCO3, brine and dried over Na2SO4. The volatile was evaporated. The residue was purified by flash chromatography on silica gel to give 0.65 g intermediate 82 and 0.34 g Compound 22400. Compound 22400: 1H NMR (400 MHz, DMSO) δ 7.96˜7.9 (2H, m), 7.84 (1H, d, J=2 Hz), 7.81 (1H, d, J=2.8 Hz), 7.9 (1H, dd, J=8.8, 2 Hz), 7.5˜7.44 (2H, m), 7.44 (1H, d, J=8.8 Hz), 7.02 (1H, d, J=8.8 Hz), 4.27 (2H, t, J=6 Hz), 4.11 (2H, t, J=6 Hz), 2.15˜2.11 (2H, m).
-
- The mixture of compound 81 (0.6 g), 10% Pd/C (100 mg) in EtOAc (20 mL) was hydrogenated under H2 for 3 hours. The mixture was filtered through a pad of Celite, washed with EtOAc, the solvent was evaporated and residue was purified by chromatography to afford compound 22500 (0.14 g) and compound 22600 (0.15 g).
-
- To a mixture of ethyl bromoacetate (0.18 g, 1.1 mmol) and compound 82 (0.43 g, 1 mmol) in MeCN (5 mL) was added Cs2CO3 (0.39 g, 1.2 mmol). The mixture was stirred at room temperature for 3 hrs. The mixture was filtrated through Celite and washed with ethyl acetate. The solvent was evaporated and the residue was purified by flash chromatography on silica gel to give 0.41 g ester.
- To a solution of the ester in THF (4 mL) was added aqueous LiOH (3 mL, 3 mmol). The mixture was stirred at room temperature for 2 hrs, acidified with 1N HCl, extracted with EtOAc. The organic phase was washed with brine, dried and concentrated. The residue was recrystallized from hexanes and ethyl acetate to give 0.25 g of compound 22700 as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.94˜7.88 (2H, m), 7.71 (1H, d, J=2.4 Hz), 7.46˜7.4 (3H, m), 7.13 (1H, d, J=9.2 Hz), 6.94 (1H, d, J=2.8 Hz), 6.7˜6.63 (2H, m), 4.59 (2H, s), 4.29 (2H, t, J=6 Hz), 3.99 (2H, t, J=6 Hz), 2.2˜2.14 (2H, m).
-
- To a solution of Compound 22500 (0.14 g, 0.29 mmol) in THF (2 mL) was added aqueous LiOH (1 mL, 1 mmol). The mixture was stirred at room temperature for 2 hrs, acidified with 1N HCl, extracted with EtOAc. The organic phase was washed with brine, dried and concentrated. The residue was recrystallized from hexanes and ethyl acetate to give 90 mg of compound 22800 as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.48 (1H, dd, J=7.6, 1.6 Hz), 7.34 (1H, ddd, J=8.4, 7.6, 1.6 Hz), 7.18 (1H, d, J=2.4 Hz), 7.09 (1H, dd, J=8.4, 1 Hz), 7.02 (1H, td, J=7.6, 1.2 Hz), 6.99 (1H, dd, J=8.4, 2 Hz), 6.81 (1H, d, J=8 Hz), 4.24 (2H, t, J=6 Hz), 4.1 (2H, t, J=6 Hz), 2.84 (2H, t, J=7.6 Hz), 2.8˜2.73 (4H, m), 2.59 (2H, t, J=7.6 Hz), 2.26˜2.2 (2H, m), 1.89˜1.82 (4H, m).
-
- To a solution of Compound 22600 (0.15 g, 0.29 mmol) in THF (2 mL) was added aqueous LiOH (1 mL, 1 mmol). The mixture was stirred at room temperature for 2 hrs, acidified with 1N HCl, extracted with EtOAc. The organic phase was washed with brine, dried and concentrated. The residue was recrystallized from hexanes and ethyl acetate to give 80 mg of compound 22900 as a white solid. 1H NMR (400 MHz, DMSO) δ 7.53 (1H, d, J=2.4 Hz), 7.28 (1H, dd, J=8.8, 2.8 Hz), 7.18 (1H, d, J=2 Hz), 7.03 (1H, d, J=9.2 Hz), 7 (1H, dd, J=8, 2.4 Hz), 6.81 (1H, d, J=8 Hz), 4.23 (2H, t, J=6 Hz), 4.11 (2H, t, J=6 Hz), 2.84 (2H, t, J=7.6 Hz), 2.8˜2.72 (4H, m), 2.6 (2H, t, J=7.6 Hz), 2.26˜2.2 (2H, m), 1.89˜1.82 (4H, m).
- Chimeric receptors were constructed in which the yeast transcription factor GAL4 DNA binding domain was fused to the ligand binding domain of either mouse PPARγ, mouse PPAR δ or mouse PPAR α in order to assess the ability of the compounds of the present invention to activate gene expression in a PPAR-dependent manner. The chimeric receptor expression plasmids (GAL4-mPPARγ, GAL4-mPPAR δ and GAL4-PPAR α) and the reporter plasmid containing 5×GAL4 binding site (pFR-Luc, obtained from Stratagene) were transfected into HEK293T cells using the Lipofectamine 2000 reagent (Invitrogen), according to the manufacturers instructions. Six hours after transfection, the culture medium was renewed and the cells were incubated for 20 hours in presence of either 1) DMSO (vehicle), 2) a compound of the invention or 3) a reference compound for comparison. Rosiglitazone (obtained from WDF Pharma) was used as a reference compound for the PPARγ assay; GW501516 (prepared as described in Sznaidman et al. Bioorg. Med. Chem. Lett. (2003) 13:1517-1521) was used as a reference compound for the PPAR δ assay and GW7647 (obtained from Sigma) was used as a reference compound for the PPAR α assay. Luciferase activity was measured as a reporter of gene expression. Luciferase activity on the cell lysates using the Steady-Glo reagent was measured according to the manufacturers instructions.
-
TABLE 1 Results of the PPARs transactivation assay for selected compounds from FIG. 1. Gene Activation Assay: EC50 (≦10 μM) Compounds PPAR alpha PPAR delta PPAR gamma 2100 − + − 2200 − − + 1800 − + + 400 − + + 1900 − + + 300 + + + 600 + + + 500 + + + 1700 ND + + 2300 ND + + 2400 − + + 2500 − + + 700 + + + 2600 ND + + 2700 ND + + 2800 − + + 2900 + + + 3000 − − + 900 ND + + 800 − + + 1300 − + + 1400 − + + 1500 − + + 3100 + + + 1600 + + + 1200 + + + ND: no activity detected @ 30 μM - As is apparent from the test results above, the compounds of the invention are excellent modulators of PPAR.
- While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation and it is understood that various changes may be made without departing from the spirit and scope of the invention.
Claims (18)
1. A method of modulating insulin resistance or leptin levels in a subject, said method comprising the step of administering to said subject a therapeutically effective amount with at least one compound having the formula:
Z—K—Ar1-L-Ar2—R1 (I)
Z—K—Ar1-L-Ar2—R1 (I)
wherein
Ar1 is selected from the group consisting of benzene, imidazole, indole, and indazole, each of which is optionally substituted with a R2 substituent, a R3 substituent or a combination thereof;
Ar2 is benzene, which is optionally substituted with from one to two R4 substituents;
K is absent or is a linking group selected from the group consisting of —CH2—, —CH2CH2, —CH2O—, —CH(CH3)O—, —C(CH3)2O—, —CH(CH3)—, —CH(OCH3)— and —C(CH3)2— wherein K can be attached to any available ring member of Ar1;
L is a linking group joining Ar1 and Ar2 and is selected from the group consisting of —O(CH2)3O—, —O(CH2)2O—, —S(CH2)3O—, and —S(CH2)2O—, wherein L can be attached to any available ring member of Ar1 and to any available ring member of Ar2;
Z is CO2R8;
R1 is a member independently selected from the group consisting of:
each R2 or R3 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl, —OR7, (C2-C8)alkenyl, (C2-C8)alkynyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl(C1-C4)alkyl, aryl, aryl(C1-C4)alkyl, aryl(C2-C8)alkenyl, aryl(C2-C8)alkynyl, heterocyclyl, heterocyclyl(C1-C4)alkyl, —COR7, —CO2R7, —NR7R24, —NO2, —CN, —S(O)r1R7, —X1OR7, —X1COR7, —X1CO2R7, —X1NR7R24, —X1NO2, —X1CN and —X1S(O)r1R7;
each R4 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl, —OR7, (C2-C8)alkenyl, (C2-C8)alkynyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl(C1-C4)alkyl, aryl(C1-C4)alkyl, aryl(C2-C8)alkenyl, aryl(C2-C8)alkynyl, heterocyclyl, heterocyclyl(C1-C4)alkyl, —COR7, —CO2R7, —NR7R24, —NO2, —CN, —S(O)r1R7, —X2OR7, —X2COR7, —X2CO2R7, —X2NR7R24, —X2NO2, —X2CN, —X2s(O)r1R7,
each ring of which is optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C1-C8)alkyl;
each R7 and R24 is a member independently selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, —X3OR25, —CO, aryl, aryl(C1-C4)alkyl and heteroaryl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring;
each R8 is a member independently selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, —X4OR7, —X4NR7R24, (C2-C8)alkenyl, (C3-C7)cycloalkyl, heterocyclyl, heteroaryl, aryl, aryl(C1-C4)alkyl and aryl(C2-C8)alkenyl
each R9 or R10 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R11 or R12 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R13 or R14 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R15 or R16 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R17 or R18 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R19 or R20 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
R21 is CH3, phenyl or pyridyl, wherein the phenyl and pyridyl substituents are optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each of R22 or R23 is independently selected from the group consisting of (C1-C8)alkyl, —OR7, halo and (C1-C8)haloalkyl;
R25 is a member selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, aryl, aryl(C1-C4)alkyl and heteroaryl;
each W1 or W2 is independently N or CR22;
each X1, X2, X3 and X4 is a member independently selected from the group consisting of (C1-C4)alkylene, (C2-C4)alkenylene and (C2-C4)alkynylene;
the subscript r1 is an integer of from 0 to 2; and
pharmaceutically acceptable salts thereof.
2. The method of claim 1 , wherein the method is modulating insulin resistance.
3. The method of claim 1 , wherein the method is modulating leptin levels.
4. A method of modulating a peroxisome proliferator activated receptor, comprising the step of contacting the receptor with at least one compound having the formula:
Z—K—Ar1-L-Ar2—R1 (I)
Z—K—Ar1-L-Ar2—R1 (I)
wherein
Ar1 is selected from the group consisting of benzene, imidazole, indole, and indazole, each of which is optionally substituted with a R2 substituent, a R3 substituent or a combination thereof;
Ar2 is benzene, which is optionally substituted with from one to two R4 substituents;
K is absent or is a linking group selected from the group consisting of —CH2—, —CH2CH2, —CH2O—, —CH(CH3)O—, —C(CH3)2O—, —CH(CH3)—, —CH(OCH3)— and —C(CH3)2— wherein K can be attached to any available ring member of Ar1;
L is a linking group joining Ar1 and Ar2 and is selected from the group consisting of —O(CH2)3O—, —O(CH2)2O—, —S(CH2)3O—, and —S(CH2)2O—, wherein L can be attached to any available ring member of Ar1 and to any available ring member of Ar2;
Z is CO2R8;
R1 is a member independently selected from the group consisting of:
each R2 or R3 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl, —OR7, (C2-C8)alkenyl, (C2-C8)alkynyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl(C1-C4)alkyl, aryl, aryl(C1-C4)alkyl, aryl(C2-C8)alkenyl, aryl(C2-C8)alkynyl, heterocyclyl, heterocyclyl(C1-C4)alkyl, —COR7, —CO2R7, —NR7R24, —NO2, —CN, —S(O)r1R7, —X1OR7, —X1COR7, —X1CO2R7, —X1NR7R24, —X1NO2, —X1CN and —X1S(O)r1R7;
each R4 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl, —OR7, (C2-C8)alkenyl, (C2-C8)alkynyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl(C1-C4)alkyl, aryl(C1-C4)alkyl, aryl(C2-C8)alkenyl, aryl(C2-C8)alkynyl, heterocyclyl, heterocyclyl(C1-C4)alkyl, —COR7, —CO2R7, —NR7R24, —NO2, —CN, —S(O)r1R7, —X2OR7, —X2COR7, —X2CO2R7, —X2NR7R24, —X2NO2, —X2CN, —X2S(O)r1R7,
each ring of which is optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C1-C8)alkyl;
each R7 and R24 is a member independently selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, —X3OR25, —CO, aryl, aryl(C1-C4)alkyl and heteroaryl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring;
each R8 is a member independently selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, —X4OR7, —X4NR7R24, (C2-C8)alkenyl, (C3-C7)cycloalkyl, heterocyclyl, heteroaryl, aryl, aryl(C1-C4)alkyl and aryl(C2-C8)alkenyl
each R9 or R10 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R11 or R12 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R13 or R14 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R15 or R16 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R17 or R18 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R19 or R20 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
R21 is CH3, phenyl or pyridyl, wherein the phenyl and pyridyl substituents are optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each of R22 or R23 is independently selected from the group consisting of H, (C1-C8)alkyl, —OR7, halo and (C1-C8)haloalkyl;
R25 is a member selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, aryl, aryl(C1-C4)alkyl and heteroaryl;
each W1 or W2 is independently N or CR22;
each X1, X2, X3 and X4 is a member independently selected from the group consisting of (C1-C4)alkylene, (C2-C4)alkenylene and (C2-C4)alkynylene;
the subscript r1 is an integer of from 0 to 2; and
pharmaceutically acceptable salts thereof.
5. A method of treating a disease in a subject, wherein the disease is selected from the group consisting of Type 2 diabetes, hyperinsulinemia, hyperlipidemia, hyperuricemia, hypercholesterolemia, hypertriglyceridemia, hyperglycemia, atherosclerosis, Syndrome X , one or more risk factors for cardiovascular disease, obesity, and eating disorders, wherein said method comprises administering to said subject a therapeutically effective amount of a compound having the formula:
Z—K—Ar1-L-Ar2—R1 (I)
Z—K—Ar1-L-Ar2—R1 (I)
wherein
Ar1 is selected from the group consisting of benzene, imidazole, indole, and indazole, each of which is optionally substituted with a R2 substituent, a R3 substituent or a combination thereof;
Ar2 is benzene, which is optionally substituted with from one to two R4 substituents;
K is absent or is a linking group selected from the group consisting of —CH2—, —CH2CH2, —CH2O—, —CH(CH3)O—, —C(CH3)2O—, —CH(CH3)—, —CH(OCH3)— and —C(CH3)2— wherein K can be attached to any available ring member of Ar1;
L is a linking group joining Ar1 and Ar2 and is selected from the group consisting of —O(CH2)3O—, —O(CH2)2O—, —S(CH2)3O—, and —S(CH2)2O—, wherein L can be attached to any available ring member of Ar1 and to any available ring member of Ar2;
Z is CO2R8;
R1 is a member independently selected from the group consisting of:
each R2 or R3 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl, —OR7, (C2-C8)alkenyl, (C2-C8)alkynyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl(C1-C4)alkyl, aryl, aryl(C1-C4)alkyl, aryl(C2-C8)alkenyl, aryl(C2-C8)alkynyl, heterocyclyl, heterocyclyl(C1-C4)alkyl, —COR7, —CO2R7, —NR7R24, —NO2, —CN, —S(O)r1R7, —X1OR7, —X1COR7, —X1CO2R7, —X1NR7R24, —X1NO2, —X1CN and —X1S(O)r1R7;
each R4 is independently selected from the group consisting of halogen, (C1-C8)alkyl, halo(C1-C8)alkyl, —OR7, (C2-C8)alkenyl, (C2-C8)alkynyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl(C1-C4)alkyl, aryl(C1-C4)alkyl, aryl(C2-C8)alkenyl, aryl(C2-C8)alkynyl, heterocyclyl, heterocyclyl(C1-C4)alkyl, —COR7, —CO2R7, —NR7R24, —NO2, —CN, —S(O)r1R7, —X2OR7, —X2COR7, —X2CO2R7, —X2NR7R24, —X2NO2, —X2CN, —X2S(O)r1R7,
each ring of which is optionally substituted with from one to two substituents independently selected from the group consisting of halo and (C1-C8)alkyl;
each R7 and R24 is a member independently selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, —X3OR25, —CO, aryl, aryl(C1-C4)alkyl and heteroaryl or optionally, if both are present on the same substituent, may be joined together to form a three- to eight-membered ring;
each R8 is a member independently selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, —X4OR7, —X4NR7R24, (C2-C8)alkenyl, (C3-C7)cycloalkyl, heterocyclyl, heteroaryl, aryl, aryl(C1-C4)alkyl and aryl(C2-C8)alkenyl
each R9 or R10 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the triazole ring to form a triazolopyridine, benzotriazole or tetrahydrobenzotriazole ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R11 or R12 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the imidazole ring to form a benzimidazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R13 or R14 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the oxazole ring to form a benzoxazolyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R15 or R16 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the thiazole ring to form a benzothiazoyl ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R17 or R18 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrazole ring to form a indazoyl ring optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each R19 or R20 is independently selected from the group consisting of H, (C1-C8)alkyl, halo and (C1-C8)haloalkyl or is joined together with the pyrrolidine ring to form a dihydroisoindole ring , optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, —CO2R7, —NR7R24, —CN, —S(O)r1R7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
R21 is CH3, phenyl or pyridyl, wherein the phenyl and pyridyl substituents are optionally substituted with from one to two substituents independently selected from the group consisting of —OR7, halo, (C1-C8)alkyl and (C1-C8)haloalkyl;
each of R22 or R23 is independently selected from the group consisting of H, (C1-C8)alkyl, —OR7, halo and (C1-C8)haloalkyl;
R25 is a member selected from the group consisting of H, (C1-C8)alkyl, halo(C1-C8)alkyl, aryl, aryl(C1-C4)alkyl and heteroaryl;
each W1 or W2 is independently N or CR22;
each X1, X2, X3 and X4 is a member independently selected from the group consisting of (C1-C4)alkylene, (C2-C4)alkenylene and (C2-C4)alkynylene;
the subscript r1 is an integer of from 0 to 2; and
pharmaceutically acceptable salts thereof.
6. The method of claim 5 , wherein the disease is Type 2 diabetes.
7. The method of claim 5 , wherein the disease is hyperinsulinemia.
8. The method of claim 5 , wherein the disease is hyperlipidemia.
9. The method of claim 5 , wherein the disease is hyperuricemia.
10. The method of claim 5 , wherein the disease is hypercholesterolemia.
11. The method of claim 5 , wherein the disease is hypertriglyceridemia.
12. The method of claim 5 , wherein the disease is hyperglycemia.
13. The method of claim 5 , wherein the disease is atherosclerosis.
14. The method of claim 5 , wherein the disease is Syndrome X.
15. The method of claim 5 , wherein the disease is one or more risk factors for cardiovascular disease.
16. The method of claim 5 , wherein the disease is obesity.
17. The method of claim 5 , wherein the disease is an eating disorder.
18.-29. (canceled)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/574,861 US20100087468A1 (en) | 2004-08-13 | 2009-10-07 | Modulators of ppar and methods of their preparation |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US60130504P | 2004-08-13 | 2004-08-13 | |
| US11/202,963 US7622491B2 (en) | 2004-08-13 | 2005-08-11 | Modulators of PPAR and methods of their preparation |
| US12/574,861 US20100087468A1 (en) | 2004-08-13 | 2009-10-07 | Modulators of ppar and methods of their preparation |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/202,963 Division US7622491B2 (en) | 2004-08-13 | 2005-08-11 | Modulators of PPAR and methods of their preparation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20100087468A1 true US20100087468A1 (en) | 2010-04-08 |
Family
ID=35908200
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/202,963 Expired - Fee Related US7622491B2 (en) | 2004-08-13 | 2005-08-11 | Modulators of PPAR and methods of their preparation |
| US12/574,861 Abandoned US20100087468A1 (en) | 2004-08-13 | 2009-10-07 | Modulators of ppar and methods of their preparation |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/202,963 Expired - Fee Related US7622491B2 (en) | 2004-08-13 | 2005-08-11 | Modulators of PPAR and methods of their preparation |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US7622491B2 (en) |
| EP (1) | EP1776111A4 (en) |
| JP (1) | JP2008509929A (en) |
| WO (1) | WO2006020916A2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013134376A1 (en) * | 2012-03-06 | 2013-09-12 | Vanderbilt University | Positive allosteric modulators for melanocortin receptors |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7622491B2 (en) * | 2004-08-13 | 2009-11-24 | Metabolex Inc. | Modulators of PPAR and methods of their preparation |
| RU2008108221A (en) * | 2005-09-07 | 2009-10-20 | Плекссикон, Инк. (Us) | COMPOUNDS ACTIVE AGAINST PPAR (RECEPTORS OF ACTIVATORS OF PROLIFERATION BY PEROXISIS) |
| CN104034911A (en) * | 2006-09-22 | 2014-09-10 | 爱科来株式会社 | Blood Analysis Apparatus |
| CA2708391A1 (en) * | 2007-12-13 | 2009-06-25 | Sri International | Ppar-delta ligands and methods of their use |
| WO2009151695A1 (en) | 2008-03-13 | 2009-12-17 | Wellstat Therapeutics Corporation | Compounds and method for reducing uric acid |
| ES2712052T3 (en) * | 2008-10-17 | 2019-05-09 | Cymabay Therapeutics Inc | Methods to reduce small and dense LDL particles |
| KR101395146B1 (en) | 2011-02-09 | 2014-05-16 | 부산대학교 산학협력단 | New compounds having skin whitening, antioxidant and PPAR activity, and medical use thereof |
| TW202308997A (en) * | 2021-04-23 | 2023-03-01 | 加拿大商美蒂普爾製藥公司 | Compounds for treating proliferator-activated receptors (ppar) mediated diseaseas or conditions |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4518612A (en) * | 1981-03-24 | 1985-05-21 | Fisons Plc | Naphthalene and 2-oxo-benzopyran acids and derivatives and pharamaceutical use thereof |
| US20050124675A1 (en) * | 2003-12-04 | 2005-06-09 | Hsing-Pang Hsieh | Indole compounds |
| US7323480B2 (en) * | 2004-05-25 | 2008-01-29 | Metabolex, Inc. | Substituted triazoles as modulators of PPAR and methods of their preparation |
| US7622491B2 (en) * | 2004-08-13 | 2009-11-24 | Metabolex Inc. | Modulators of PPAR and methods of their preparation |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09165365A (en) * | 1995-09-27 | 1997-06-24 | Ono Pharmaceut Co Ltd | Sulfonamide derivative |
| US5795890A (en) * | 1995-09-27 | 1998-08-18 | Ono Pharmaceutical Co., Ltd. | Sulfonamide derivatives |
| GB9604242D0 (en) * | 1996-02-28 | 1996-05-01 | Glaxo Wellcome Inc | Chemical compounds |
| TWI262185B (en) * | 1999-10-01 | 2006-09-21 | Eisai Co Ltd | Carboxylic acid derivatives having anti-hyperglycemia and anti-hyperlipemia action, and pharmaceutical composition containing the derivatives |
| KR20040012905A (en) * | 2001-06-07 | 2004-02-11 | 일라이 릴리 앤드 캄파니 | Modulator of peroxisome proliferator activated receptors |
| WO2003016307A1 (en) * | 2001-08-14 | 2003-02-27 | Eli Lilly And Company | β3 ADRENERGIC AGONISTS |
| WO2003016265A1 (en) * | 2001-08-17 | 2003-02-27 | Eisai Co., Ltd. | Cyclic compound and ppar agonist |
| WO2003048109A1 (en) * | 2001-12-03 | 2003-06-12 | Novo Nordisk A/S | Novel glucagon antagonists |
| US7078421B2 (en) * | 2002-03-20 | 2006-07-18 | Metabolex, Inc. | Substituted phenylacetic acids |
| US6875780B2 (en) * | 2002-04-05 | 2005-04-05 | Warner-Lambert Company | Compounds that modulate PPAR activity and methods for their preparation |
| WO2004058174A2 (en) * | 2002-12-20 | 2004-07-15 | Bayer Pharmaceuticals Corporation | Indane acetic acid derivatives and their use as pharmaceutical agents, intermediates, and method of preparation |
| WO2004092131A1 (en) * | 2003-01-06 | 2004-10-28 | Eli Lilly And Company | Indole derivatives as ppar modulators |
| EP1620088A4 (en) * | 2003-04-28 | 2007-08-29 | Bayer Pharmaceuticals Corp | Indole acetic acid derivatives and their use as pharmaceutical agents |
| JP2007502815A (en) * | 2003-08-20 | 2007-02-15 | イーライ リリー アンド カンパニー | PPAR regulator |
| ES2352085T3 (en) * | 2004-05-05 | 2011-02-15 | High Point Pharmaceuticals, Llc | NEW COMPOUNDS, THEIR PREPARATION AND USE. |
-
2005
- 2005-08-11 US US11/202,963 patent/US7622491B2/en not_active Expired - Fee Related
- 2005-08-12 EP EP05785499A patent/EP1776111A4/en not_active Withdrawn
- 2005-08-12 WO PCT/US2005/028822 patent/WO2006020916A2/en not_active Ceased
- 2005-08-12 JP JP2007525845A patent/JP2008509929A/en active Pending
-
2009
- 2009-10-07 US US12/574,861 patent/US20100087468A1/en not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4518612A (en) * | 1981-03-24 | 1985-05-21 | Fisons Plc | Naphthalene and 2-oxo-benzopyran acids and derivatives and pharamaceutical use thereof |
| US20050124675A1 (en) * | 2003-12-04 | 2005-06-09 | Hsing-Pang Hsieh | Indole compounds |
| US7323480B2 (en) * | 2004-05-25 | 2008-01-29 | Metabolex, Inc. | Substituted triazoles as modulators of PPAR and methods of their preparation |
| US7622491B2 (en) * | 2004-08-13 | 2009-11-24 | Metabolex Inc. | Modulators of PPAR and methods of their preparation |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013134376A1 (en) * | 2012-03-06 | 2013-09-12 | Vanderbilt University | Positive allosteric modulators for melanocortin receptors |
| US9744171B2 (en) | 2012-03-06 | 2017-08-29 | Vanderbilt University | Positive allosteric modulators for melanocortin receptors |
Also Published As
| Publication number | Publication date |
|---|---|
| US7622491B2 (en) | 2009-11-24 |
| WO2006020916A3 (en) | 2006-06-01 |
| WO2006020916A2 (en) | 2006-02-23 |
| EP1776111A4 (en) | 2010-01-20 |
| JP2008509929A (en) | 2008-04-03 |
| US20060058301A1 (en) | 2006-03-16 |
| EP1776111A2 (en) | 2007-04-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20080108630A1 (en) | Substituted triazoles as modulators of ppar and methods of their preparation | |
| US20100087468A1 (en) | Modulators of ppar and methods of their preparation | |
| WO2003080545A2 (en) | Substituted phenylacetic acids | |
| US20100216827A1 (en) | Aryl gpr120 receptor agonists and uses thereof | |
| SK116398A3 (en) | Substituted 4-hydroxy-phenylalcanoic acid derivatives with agonist activity to ppar-gamma | |
| US20060014785A1 (en) | Bicyclic, substituted triazoles as modulators of ppar and methods of their preparation | |
| US7241793B2 (en) | Phenyloxyalkanonic acid derivatives as hPPAR activators | |
| JPWO2002046176A1 (en) | Activator of peroxisome proliferator-activated receptor | |
| US20080287441A1 (en) | Alpha-(trifluoromethyl-substituted aryloxy, arylamino, arylthio or arylmethyl)-trifluoromethyl-substituted phenylacetic acids and derivatives as antidiabetic agents | |
| US20050070517A1 (en) | Oxazol/thiazol-derivatives activators of the hppar-alpha receptor | |
| WO2009046371A1 (en) | Methods of treating metabolic diseases | |
| US20100048453A1 (en) | Oxazole and thiazole ppar modulator | |
| MXPA06009381A (en) | Alpha-(trifluoromethyl-substituted aryloxy, arylamino, arylthio or arylmethyl)-trifluoromethyl-substituted phenylacetic acids and derivatives as antidiabetic agents | |
| MXPA01001419A (en) | SUBSTITUTED OXAZOLES AND THIAZOLES DERIVATIVES AS hPPAR GAMMA AND hPPAR ALPHA ACTIVATORS |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |